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arccot
arcsinh
arccosh
arctanh
arccsch
arcsech
arccoth
arg
args
array
hfarray
assert
assign
assignElements
assume
assumeAlso
assuming, _assuming
assumingAlso, _assumingAlso
asympt
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doprint
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int
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length
LEVEL
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subset, _subset, _notsubset
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surd
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:=, _assign

Assign variables

Syntax

x := value

_assign(x, value)

 [x1, x2, …] := [value1, value2, …] 

_assign([x1, x2, …], [value1, value2, …])

 f( X1, X2, … ) := value 

_assign(f(X1, X2, …), value)

Description

x := value assigns the variable x a value.

[x1, x2, ...] := [value1, value2, ...] assigns the variables x1, x2 etc. the
corresponding values value1, value2 etc.

f(X1, X2, ...) := value adds an entry to the remember table of the procedure f.

_assign(x, value) is equivalent to x := value.

_assign([x1, x2, ...], [value1, value2, ...]) is equivalent to [x1,
x2, ...] := [value1, value2, ...]. Both lists must have the same number of
elements.

Note: If x is neither a list, nor a table, nor an array, nor an hfarray, nor a matrix, nor
an element of a domain with a slot "set_index", then an indexed assignment such as
x[i] := value implicitly turns the identifier x into a table with a single entry (i =
value). See “Example 2” on page 1-15.

1-13



1 The Standard Library

The assignment f(X1, X2, ...) := value adds an entry to the remember table of
the procedure f.

Note: If f is neither procedure nor a function environment, then f is implicitly turned
into a (trivial) procedure with a single entry (X1, X2, ...) = value in its remember
table. See “Example 4” on page 1-17.

Identifiers on the left hand side of an assignment are not evaluated (use evalassign
if this is not desired). I.e., in x := value, the previous value of x, if any, is deleted
and replaced by the new value. Note, however, that the index of an indexed identifier is
evaluated. I.e., in x[i] := value, the index i is replaced by its current value before the
corresponding entry of x is assigned the value. See “Example 5” on page 1-18.

Examples

Example 1

The assignment operator := can be applied to a single identifier as well as to a list of
identifiers:

x := 42:

[x1, x2, x3] := [43, 44, 45]:

x, x1, x2, x3

In case of lists, all variables of the left-hand side are assigned their values
simultaneously:

[x1, x2] := [3, 4]:

[x1, x2] := [x2, x1]:

x1, x2

The functional equivalent of the assign operator := is the function _assign:
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_assign(x, 13): _assign([x1, x2], [14, 15]): x, x1, x2

Assigned values are deleted via the keyword delete:

delete x, x1, x2:

x, x1, x2

Example 2

Assigning a value to an indexed identifier, a corresponding table (table, DOM_TABLE)
is generated implicitly, if the identifier was not assigned a list, a table, an array, an
hfarray, or a matrix before:

delete x:

x[1] := 7:

x

If x is a list, a table, an array, an hfarray, or a matrix, then an indexed assignment adds
a further entry or changes an existing entry:

x[abc] := 8:

x

x := [a, b, c, d]:

x[3] := new:

x

x := array(1..2, 1..2):
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x[2, 1] := value:

x

delete x:

Example 3

For efficient use of indexed assignments (see “Example 2” on page 1-15 for an
overview), programmers should note the following rules:

MuPAD® uses reference counting and thereby allows multiple references to identical
data structures. Changing one of these logically distinct values means that the internal
structure must be copied, which takes time:

n := 10^4:

L := [0$n]:

time((for i from 1 to n do

        L_old := L:

        L[i] := i:

      end_for))

Compare this with the situation where only one variable or identifier refers to the
internal structure:

n := 10^4:

L := [0$n]:

time((for i from 1 to n do

        L[i] := i:

      end_for))

For lists, there is another situation that requires copying the list structure: Changing the
length of the list. The most frequently encountered example is appending to a list with
_concat (.) or append:
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n := 10^4:

L := []:

time((for i from 1 to n do

        L := L . [i]:

      end_for))

A loop written as above takes running time roughly proportional to the square of the
number of elements. It is advisable to rewrite such loops. In the case where you know the
length of the final list in advance, you can construct such a list and replace its entries
inside the loop:

n := 10^4:

L := [NIL$n]:

time((for i from 1 to n do

        L[i] := i:

      end_for))

If you don't know the final length, you can gain linear running time by first collecting the
elements into a table:

n := 10^4:

T := table()

time((for i from 1 to n do

        T[nops(T)+1] := i;

      end_for;

      L := [T[i] $ i = 1..nops(T)]))

Example 4

Consider a simple procedure:

f := x -> sin(x)/x:

f(0)
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Error: Division by zero.

  Evaluating: f

The following assignment adds an entry to the remember table:

f(0) := 1:

f(0)

If f does not evaluate to a function, then a trivial procedure with a remember table is
created implicitly:

delete f:

f(x) := x^2:

expose(f)

proc()

  name f;

  option remember;

begin

  procname(args())

end_proc

Note that the remember table only provides a result for the input x:

f(x), f(1.0*x), f(y)

delete f:

Example 5

The left hand side of an assignment is not evaluated. In the following, x := 3 assigns a
new value to x, not to y:

x := y:

x := 3:

x, y
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Consequently, the following is not a multiple assignment to the identifiers in the list, but
a single assignment to the list L:

L := [x1, x2]:

L := [21, 22]:

L, x1, x2

However, indices are evaluated in indexed assignments:

i := 2:

x[i] := value:

x

for i from 1 to 3 do

  x[i] := i^2;

end_for:

x

delete x, L, i:

Example 6

Since an assignment has a return value (the assigned value), the following command
assigns values to several identifiers simultaneously:

a := b := c := 42:

a, b, c
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For syntactical reasons, the inner assignment has to be enclosed by additional brackets
in the following command:

a := sin((b := 3)):

a, b

delete a, b, c:

Parameters

x, x1, x2, …

Identifiers or indexed identifiers

value, value1, value2, …

Arbitrary MuPAD objects

f

A procedure or a function environment

X1, X2, …

Arbitrary MuPAD objects

Return Values

value or [value1, value2, ...], respectively.

See Also

MuPAD Functions
anames | assign | assignElements | delete | evalassign
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., _concat
Concatenate objects

Syntax
object1. object2

_concat(object1, object2, …)

Description

object_1.object_2 concatenates two objects.

_concat( object1, object2, ...) concatenates an arbitrary number of objects.

_concat( object1, object2) is equivalent to object1. object2. The function
call _concat( object1, object2, object3, ...) is equivalent to (( object1.
object2). object3). ... . _concat() returns the void object of type DOM_NULL.

The following combinations are possible:

object1 object2 object1. object2

string string string
string identifier string
string integer string
string expression string
identifier string identifier
identifier identifier identifier
identifier integer identifier
identifier expression identifier
list list list

E.g., x.1 creates the identifier x1.
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Note that the objects to be concatenated are evaluated before concatenation. Thus,
if x := y, i := 1, the concatenation x.i produces the identifier y1. However, the
resulting identifier y1 is not fully evaluated. Cf. “Example 2” on page 1-22.

Examples

Example 1

We demonstrate all possible combinations of types that can be concatenated. Strings are
produced if the first object is a string:

"x"."1", "x".y, "x".1, "x".f(a)

Identifiers are produced if the first object is an identifier:

x."1", x.y , x.1, x.f(a)

The concatenation operator . also serves for concatenating lists:

[1, 2] . [3, 4]

L := []: for i from 1 to 10 do L := L . [x.i] end_for: L

delete L:

Example 2

We demonstrate the evaluation strategy of concatenation. Before concatenation, the
objects are evaluated:
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x := "Val": i := ue: x.i

ue := 1:  x.i

An identifier produced via concatenation is not fully evaluated:

delete x: x1 := 17: x.1, eval(x.1)

The . operator can be used to create variables dynamically. They can be assigned values
immediately:

delete x: for i from 1 to 5 do x.i := i^2 end_for:

Again, the result of the concatenation is not fully evaluated:

x.i $ i= 1..5

eval(%)

delete i, ue: (delete x.i) $ i = 1..5:

Example 3

The function _concat can be used to concatenate an arbitrary number of objects:

_concat("an", " ", "ex", "am", "ple")
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_concat("0", " ".i $ i = 1..15)

_concat([], [x.i] $ i = 1..10)

Parameters

object1

A character string, an identifier, or a list

object2, …

A character string, an identifier, an integer, a list, or an expression

Return Values

Object of the same type as object1.

Overloaded By

object_1, object_2

See Also

MuPAD Functions
@ | append
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.., _range
Range operator

Syntax
l .. r

_range(l, r)

Description

l..r defines a “range” with the left bound l and the right bound r.

A range is a technical construct that is used to specify ranges of numbers when calling
various system functions such as int, array, op, or the sequence operator $. Usually,
l..r represents a real interval (e.g., int(f(x), x = l..r)), or the sequence of
integers from l to r.

_range(l, r) is equivalent to l..r.

To create and operate on intervals in a mathematical sense, use the data type
Dom::Interval.

Examples

Example 1

A range can be defined with the .. operator as well as with a call to the function
_range:

_range(1, 42), 1..42

In the following call, the range represents an interval:
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int(x, x = l..r)

Ranges can be used for accessing the operands of expressions or to define the size of
arrays and hfarrays:

op(f(a, b, c, d, e), 2..4)

array(1..3, [a1, a2,a3])

hfarray(1..3, 1..2)

Ranges can also be used for creating expression sequences:

i^3 $ i = 1..5

Example 2

The range operator .. is a technical device that does not check its parameters with
respect to their semantics. It just creates a range which is interpreted in the context in
which it is used later. Any bounds are accepted:

float(PI) .. -sqrt(2)/3
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Parameters

l, r

Arbitrary MuPAD objects

Return Values

Expression of type "_range".

Overloaded By

See Also

MuPAD Domains
Dom::Interval

MuPAD Functions
$
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=, _equal
Equations (equal)

Syntax
x = y

_equal(x, y)

Description

x = y defines an equation.

x = y is equivalent to the function call _equal(x, y).

The operator = returns a symbolic expression representing an equation. The resulting
expression can be evaluated to TRUE or FALSE by the function bool. It also serves as
control conditions in if, repeat, and while statements. In all these cases, testing for
equality is a purely syntactical test. For example, bool(0.5 = 1/2) returns FALSE
although both numbers coincide numerically. Further, Boolean expressions can be
evaluated to TRUE, FALSE, or UNKNOWN by the function is. Tests using is are semantic
comparing x and y applying mathematical considerations.

Equations have two operands: the left side and the right side. Use lhs and rhs to extract
these operands.

The boolean expression not x = y is always converted to x <> y. The expression not
x <> y is always converted to x = y.

Examples

Example 1

In the following example, note the difference between syntactical and numerical equality.
The numbers 1.5 and  coincide numerically. However, 1.5 is of domain type DOM_FLOAT,
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whereas  is of domain type DOM_RAT. Consequently, they are not regarded as equal in

the following syntactical test:

1.5 = 3/2;

bool(%)

For equations with floating-point numbers, use the operator ~= instead of =. The
functions bool and is test whether the floating-point approximations coincide up to the
relative precision given by DIGITS:

1.5 ~= 3/2; 

bool(1.5 ~= 3/2);

is(1.5 ~= 3/2);

The following expressions coincide syntactically:

_equal(1/x, diff(ln(x),x));

bool(%)

The Boolean operator not converts equalities and inequalities:
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not a = b, not a <> b

Example 2

In this example, use the operator = to compare non-mathematical objects:

if "text" = "t"."e"."x"."t" then "yes" else "no" end

Example 3

Test equality of these expressions by using the syntactical test via bool and the
semantic test via testeq:

bool(1 = x/(x + y) + y/(x + y)),

testeq(1 = x/(x + y) + y/(x + y))

Example 4

Equations are typical input objects for system functions, such as solve:

solve(x^2 - 2*x = -1, x)

Parameters

x, y

Arbitrary MuPAD objects
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Return Values

Expression of type "_equal".

See Also

MuPAD Functions
< | <= | <> | > | >= | and | bool | FALSE | if | lhs | not | or | repeat | rhs |
solve | testeq | TRUE | UNKNOWN | while | ~=
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<>, _unequal
Inequalities (unequal)

Syntax
x <> y

_unequal(x, y)

Description
x <> y defines an inequality.

x <> y is equivalent to the function call _unequal(x, y).

The operator <> returns a symbolic expression representing an inequality.

The resulting expression can be evaluated to TRUE or FALSE by the function bool. It also
serves as control conditions in if, repeat, and while statements. In all these cases,
testing for equality or inequality is a purely syntactical test. For example, bool(0.5
<> 1/2) returns TRUE although both numbers coincide numerically. Further, Boolean
expressions can be evaluated to TRUE, FALSE, or UNKNOWN by the function is. Tests using
is semantically compare x and y applying mathematical considerations.

Inequalities have two operands: the left side and the right side. Use lhs and rhs to
extract these operands.

The boolean expression not x = y is always converted to x <> y.

The expression not x <> y is always converted to x = y.

Examples

Example 1

In the following example, note the difference between syntactical and numerical equality.
The numbers 1.5 and  coincide numerically. However, 1.5 is of domain type DOM_FLOAT,
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whereas  is of domain type DOM_RAT. Consequently, they are not regarded as equal in

the following syntactical test:

1.5 <> 3/2;

bool(%)

The following expressions coincide syntactically:

_unequal(1/x, diff(ln(x),x));

bool(%)

The Boolean operator not converts equalities and inequalities:

not a = b, not a <> b

Example 2

In this example, use the operator <> to compare two tables:

bool(table(a = PI) <> table(a = sqrt(2)))

Example 3

Test equality of these expressions by using the syntactical test via bool and the
semantical test via testeq:
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bool(1 <> x/(x + y) + y/(x + y)),

testeq(1 <> x/(x + y) + y/(x + y))

Example 4

Inequalities are typical input objects for system functions, such as solve:

solve(x^2 - 2*x <> -1, x)

Parameters

x, y

Arbitrary MuPAD objects

Return Values

Expression of type "_unequal".

See Also

MuPAD Functions
< | <= | = | > | >= | and | bool | FALSE | if | lhs | not | or | repeat | rhs |
solve | testeq | TRUE | UNKNOWN | while | ~=
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~=, _approx
Approximate equality

Syntax
x ~= y

_approx(x, y)

Description
x ~= y symbolizes approximate equality.

x ~= y is equivalent to the function call _approx(x, y).

The operator ~= returns a symbolic expression representing an approximate equality for
numerical values x and y. The calls bool(x ~= y) and is(x ~= y) check whether |
float((x - y)/x)| < 10^(-DIGITS) is satisfied, provided x ≠ 0 and y ≠ 0. Thus,
TRUE is returned if x and y coincide within the relative numerical precision specified by
DIGITS. For x = 0, the criterion is |float(y)| < 10^(-DIGITS). For y = 0, the
criterion is |float(x)| < 10^(-DIGITS). If either x or y contains a symbolic object
that cannot be converted to a real or complex floating-point number, the functions bool
and is return the value UNKNOWN.

Approximate equalities have two operands: the left side and the right side. Use lhs and
rhs to extract these operands.

Note:  a ~= b is not equivalent to a - b ~= 0.

Examples

Example 1

In the following example, note the difference between syntactical and numerical equality.
The numbers 1.5 and  coincide numerically. However, 1.5 is of domain type DOM_FLOAT,
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whereas  is of domain type DOM_RAT. Consequently, they are not regarded as equal in

the following syntactical test:

1.5 = 3/2; bool(%)

For equations with floating-point numbers, use the operator ~= instead of =. The
functions bool and is test whether the floating-point approximations coincide up to the
relative precision given by DIGITS:

1.5 ~= 3/2; 

bool(1.5 ~= 3/2);

is(1.5 ~= 3/2);

Parameters

x, y

Arbitrary MuPAD objects

Return Values

Expression of type "_approx".
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See Also

MuPAD Functions
< | <= | <> | = | > | >= | and | bool | FALSE | if | lhs | not | or | repeat | rhs |
solve | testeq | TRUE | UNKNOWN | while
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<, >, _less

Inequalities “less than” and “greater than”

Syntax

x < y

x > y

_less(x, y)

Description

x < y and x > y define inequalities.

x < y represents the Boolean statement “x is less than y”. It is equivalent to the
function call _less(x,y).

x > y represents the Boolean statement “x is greater than y”. It is always converted to y
< x, which is equivalent to the function call _less(y,x).

These operators return symbolic Boolean expressions. If only real numbers of
Type::Real are involved, these expressions can be evaluated to TRUE or FALSE by
the function bool. They also serve as control conditions in if, repeat, and while
statements. For floating-point intervals, these operators are interpreted as “strictly less
than” and “strictly greater than”. See “Example 2” on page 1-39. Further, Boolean
expressions can be evaluated to TRUE, FALSE, or UNKNOWN by the function is. Tests
using is can also be applied to constant symbolic expressions. See “Example 4” on page
1-40.

bool also handles inequalities involving character strings. It compares them with
respect to the lexicographical ordering.

Inequalities have two operands: the left side and the right side. Use lhs and rhs to
extract these operands.
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Examples

Example 1

The operators < and > produce symbolic inequalities. They can be evaluated to TRUE
or FALSE by the function bool if only real numbers of type Type::Real (integers,
rationals, and floats) are involved:

1.4 < 3/2;

bool(%)

Example 2

Comparison of intervals is interpreted as “strict”, that is, all combinations of numbers in
the intervals must fulfill the relation:

bool(0...1 < 2...3),

bool(0...2 < 1...3),

bool(0...1 < 1...2)

Example 3

Compare character strings:

if "text" < "t"."e"."x"."t"."book" then "yes" else "no" end

bool("a" > "b")
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Example 4

Note that bool does not perform symbolic simplification and therefore cannot handle
some combinations of symbolic expressions. Use the function is for comparisons
requiring symbolic simplification:

bool(sqrt(6) < sqrt(2)*sqrt(3))

Error: Cannot evaluate to Boolean. [_less]

is(sqrt(6) < sqrt(2)*sqrt(3))

Example 5

Inequalities are valid input objects for the system function solve:

solve(x^2 - 2*x < 3, x)

Example 6

The operator < can be overloaded by user-defined domains:

myDom := newDomain("myDom"):

myDom::print := x -> extop(x):

Without overloading _less or _leequal, elements of this domain cannot be compared:

x := new(myDom, PI):

y := new(myDom, sqrt(10)):

bool(x < y)
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Error: Cannot evaluate to Boolean. [_less]

Now, define a slot"_less". This slot is called when an inequality of type "_less" is
evaluated by bool. The slot compares floating-point approximations if the arguments are
not of type Type::Real:

myDom::_less := proc(x, y)

begin

     x := extop(x, 1):

     y := extop(y, 1):

     if not testtype(x, Type::Real) then

        x := float(x):

        if not testtype(x, Type::Real) then

           error("cannot compare")

        end_if

     end_if:

     if not testtype(y, Type::Real) then

        y := float(y):

        if not testtype(y, Type::Real) then

           error("cannot compare")

        end_if

     end_if:

     bool(x < y)

end_proc:

x, y, bool(x < y), bool(x > y)

bool(new(myDom, I) < new(myDom, PI))

Error: cannot compare [myDom::_less]

delete myDom, x, y:

Parameters

x, y

Arbitrary MuPAD objects

1-41



1 The Standard Library

Return Values

Expression of type "_less".

Overloaded By

x, y

See Also

MuPAD Functions
<= | <> | = | >= | and | bool | FALSE | if | lhs | not | or | repeat | rhs | solve
| TRUE | UNKNOWN | while
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<=, >=, _leequal

Inequalities “less than or equal to” and “greater than or equal to”

Syntax

x <= y

x >= y

_leequal(x, y)

Description

x <= y and x >= y define inequalities.

x <= y represents the Boolean statement “x is less than or equal to y”. It is equivalent
to the function call _leequal(x,y).

x >= y represents the Boolean statement “x is greater than or equal to y”. It is always
converted to y <= x, which is equivalent to the function call _leequal(y,x).

These operators return symbolic Boolean expressions. If only real numbers of
Type::Real are involved, these expressions can be evaluated to TRUE or FALSE by
the function bool. They also serve as control conditions in if, repeat, and while
statements. For floating-point intervals, these operators are interpreted as “strictly
less than or equal to” and “strictly greater than or equal to”. See “Example 2” on page
1-44. Further, Boolean expressions can be evaluated to TRUE, FALSE, or UNKNOWN by
the function is. Tests using is can also be applied to constant symbolic expressions. See
“Example 4” on page 1-45.

bool also handles inequalities involving character strings. It compares them with
respect to the lexicographical ordering.

Inequalities have two operands: the left side and the right side. Use lhs and rhs to
extract these operands.
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Examples

Example 1

The operators <= and >= produce symbolic inequalities. They can be evaluated to TRUE
or FALSE by the function bool if only real numbers of type Type::Real (integers,
rationals, and floats) are involved:

1.5 <= 3/2; bool(%)

Example 2

Comparison of intervals is interpreted as “strict”, that is, all combinations of numbers in
the intervals must fulfill the relation:

bool(0...1 <= 2...3), bool(0...2 <= 1...3),

bool(0...1 <= 1...2)

Example 3

Compare character strings:

if "text" <= "t"."e"."x"."t"."book" then "yes" else "no" end

bool("a" >= "b")
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Example 4

Note that bool does not perform symbolic simplification and therefore cannot handle
some combinations of symbolic expressions; the function is does perform symbolic
simplification:

bool(sqrt(6) <= sqrt(2)*sqrt(3))

Error: Cannot evaluate to Boolean. [_leequal]

is(sqrt(6) <= sqrt(2)*sqrt(3))

Example 5

Inequalities are valid input objects for the system function solve:

solve(x^2 - 2*x >= 3, x)

Example 6

The operator <= can be overloaded by user-defined domains:

myDom := newDomain("myDom"):

myDom::print := x -> extop(x):

Without overloading _leequal, elements of this domain cannot be compared:

x := new(myDom, PI):

y := new(myDom, sqrt(10)):

bool(x <= y)

Error: Cannot evaluate to Boolean. [_leequal]

Now, a slot"_less" is defined. It is called, when an inequality of type "_less" is
evaluated by bool. The slot compares floating-point approximations if the arguments are
not of type Type::Real:
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myDom::_leequal := proc(x, y)

begin

     x := extop(x, 1):

     y := extop(y, 1):

     if not testtype(x, Type::Real) then

        x := float(x):

        if not testtype(x, Type::Real) then

           error("cannot compare")

        end_if

     end_if:

     if not testtype(y, Type::Real) then

        y := float(y):

        if not testtype(y, Type::Real) then

           error("cannot compare")

        end_if

     end_if:

     bool(x <= y)

end_proc:

x, y, bool(x <= y), bool(x >= y)

bool(new(myDom, I) <= new(myDom, PI))

Error: cannot compare [myDom::_leequal]

delete myDom, x, y:

Parameters

x, y

Arbitrary MuPAD objects

Return Values

Expression of type "_leequal".
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Overloaded By

x, y

See Also

MuPAD Functions
< | <> | = | > | and | bool | FALSE | if | lhs | not | or | repeat | rhs | solve |
TRUE | UNKNOWN | while
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+, _plus
Add expressions

Syntax
x + y + ...

_plus(x, y, …)

Description

x + y + ... computes the sum of x, y etc.

x + y + ... is equivalent to the function call _plus(x, y, ...).

All terms that are numbers of type Type::Numeric are automatically combined to a
single number.

Terms of a symbolic sum may be rearranged internally. Cf. “Example 1” on page 1-49.
The user can control the ordering by the preference Pref::keepOrder. See also the
documentation for print.

_plus accepts an arbitrary number of arguments. In conjunction with the sequence
operator $, this function is the recommended tool for computing finite sums. Cf.
“Example 2” on page 1-50. The function sum may also serve for computing such sums.
However, sum is designed for the computation of symbolic and infinite sums. It is slower
than _plus.

x - y is internally represented as x + y*(-1) = _plus(x, _mult(y, -1)). See
_subtract for details.

For adding equalities, inequalities, and comparisons, the following rules are
implemented:

• Adding an arithmetical expression adds the expression to both sides.
• Adding an equality adds the left hand sides and the right hand sides separately.
• Adding a comparison does likewise, taking care of the correct operator. Adding a

comparison to an inequality is not permitted.
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Cf. “Example 4” on page 1-51.

Many library domains overload _plus by an appropriate slot"_plus". Sums involving
elements of library domains are processed as follows:

A sum x + y + ... is searched for elements of library domains from left to right. Let
z be the first term that is not of one of the basic types provided by the kernel (numbers,
expressions, etc.). If the domain d = z::dom = domtype(z) has a slot"_plus", it is
called in the form d::_plus(x, y, ...). The result returned by d::_plus is the
result of x + y + ....

Users should implement the slot d::_plus of their domains d according to the following
convention:

• If all terms are elements of d, an appropriate sum of type d should be returned.
• If at least one term cannot be converted to an element of d, the slot should return

FAIL.
• Care must be taken if there are terms that are not of type d, but can be converted to

type d. Such terms should be converted only if the mathematical semantics is obvious
to any user who uses this domain as a 'black box' (e.g., integers may be regarded as
rational numbers because of the natural mathematical embedding). If in doubt, the
"_plus" method should return FAIL instead of using implicit conversions. If implicit
conversions are used, they must be well-documented.

Cf. “Example 6” on page 1-53 and “Example 7” on page 1-54.

Most of the library domains in the MuPAD standard installation comply with this
convention.

_plus() returns the number 0.

Polynomials of type DOM_POLY are added by +, if they have the same indeterminates and
the same coefficient ring.

For finite sets X, Y, the sum X + Y is the set .

Examples

Example 1

Numerical terms are simplified automatically:
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3 + x + y + 2*x + 5*x - 1/2 - sin(4) + 17/4

The ordering of the terms of a sum is not necessarily the same as on input:

x + y + z + a + b + c

1 + x + x^2 + x^10

Internally, this sum is a symbolic call of _plus:

op(%, 0), type(%)

Example 2

The functional equivalent _plus of the operator + is a handy tool for computing finite
sums. In the following, the terms are generated via the sequence operator $:

_plus(i^2 $ i = 1..100)

E.g., it is easy to add up all elements in a set:

S := {a, b, 1, 2, 27}: _plus(op(S))

The following command “zips” two lists by adding corresponding elements:
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L1 := [a, b, c]: L2 := [1, 2, 3]: zip(L1, L2, _plus)

delete S, L1, L2:

Example 3

Polynomials of type DOM_POLY are added by +, if they have the same indeterminates and
the same coefficient ring:

poly(x^2 + 1, [x]) + poly(x^2 + x - 1, [x])

If the indeterminates or the coefficient rings do not match, _plus returns an error:

poly(x, [x]) + poly(x, [x, y])

Error: The argument is invalid. [_plus]

poly(x, [x]) + poly(x, [x], Dom::Integer)

Error: The argument is invalid. [_plus]

Example 4

Adding a constant to an equality, an inequality, or a comparison amounts to adding it to
both sides:

(a = b) + c, (a <> b) + c, (a <= b) + c, (a < b) + c

Adding an equality is performed by adding the left hand sides and the right hand sides
separately:

(a = b) + (c = d), (a <> b) + (c = d),
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(a <= b) + (c = d), (a < b) + (c = d)

Inequalities can only be added to equalities:

(a = b) + (c <> d), (a <> b) + (c <> d),

(a <= b) + (c <> d), (a < b) + (c <> d)

The addition of comparisons takes of the difference between < and <= into account. Note
that MuPAD uses only these two comparison operators; a > b and a ≥ b are automatically
rewritten:

(a = b) + (c <= d), (a <> b) + (c <= d),

(a <= b) + (c <= d), (a < b) + (c <= d);

(a = b) + (c < d), (a <> b) + (c < d),

(a <= b) + (c < d), (a < b) + (c < d);

(a = b) + (c >= d), (a <> b) + (c >= d),

(a <= b) + (c >= d), (a < b) + (c >= d);

(a = b) + (c > d), (a <> b) + (c > d),

(a <= b) + (c > d), (a < b) + (c > d);

Example 5

For finite sets X, Y, the sum X + Y is the set :
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{a, b, c} + {1, 2}

Example 6

Various library domains such as matrix domains overload _plus:

x := Dom::Matrix(Dom::Integer)([1, 2]):

y := Dom::Matrix(Dom::Rational)([2, 3]):

x + y, y + x

If the terms in a sum x + y are of different type, the first term x tries to convert y to the
data type of x. If successful, the sum is of the same type as x. In the previous example, x
and y have different types (both are matrices, but the component domains differ). Hence
the sums x + y and y + x differ syntactically, because they inherit their type from the
first term:

bool(x + y = y + x)

domtype(x + y), domtype(y + x)

If x does not succeed to convert y, then FAIL is returned. In the following call, the
component 2/3 cannot be converted to an integer:

y := Dom::Matrix(Dom::Rational)([2/3, 3]): x + y

delete x, y:
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Example 7

This example demonstrates how to implement a slot"_plus" for a domain. The following
domain myString is to represent character strings. The sum of such strings is to be the
concatenation of the strings.

The "new" method uses expr2text to convert any MuPAD object to a string. This string
is the internal representation of elements of myString. The "print" method turns this
string into the screen output:

myString := newDomain("myString"):

myString::new := proc(x) 

begin

  if args(0) = 0 then x := "": end_if;

  case domtype(x)

    of myString do return(x);

    of DOM_STRING do return(new(dom, x));

    otherwise return(new(dom, expr2text(x)));

  end_case 

end_proc:

myString::print := x -> extop(x, 1):

Without a "_plus" method, the system function _plus handles elements of this domain
like any symbolic object:

y := myString(y): z := myString(z): 1 + x + y + z + 3/2

Now, we implement the "_plus" method. It checks all arguments. Arguments are
converted, if they are not of type myString. Generally, such an implicit conversion
should be avoided. In this case, however, any object has a corresponding string
representation via expr2text and an implicit conversion is implemented. Finally, the
sum of myString objects is defined as the concatenation of the internal strings:

myString::_plus := proc()

local n, Arguments, i;

begin

  print(Unquoted, "Info: myString::_plus called with the arguments:",

           args()):

  n := args(0):
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  Arguments := [args()];

  for i from 1 to n do

    if domtype(Arguments[i]) <> myString then

      // convert the i-th term to myString

      Arguments[i] := myString::new(Arguments[i]):

    end_if;

  end_for:

  myString::new(_concat(extop(Arguments[i], 1) $ i = 1..n))

end_proc:

Now, myString objects can be added:

myString("This ") + myString("is ") + myString("a string")

Info: myString::_plus called with the arguments:, This , is , a string

In the following sum, y and z are elements of myString. The term y is the first term
that is an element of a library domain. Its "_plus" method is called and concatenates all
terms to a string of type myString:

1 + x + y + z + 3/2;

                                                              3

Info: myString::_plus called with the arguments:, 1, x, y, z, -

                                                              2

delete myString, y, z:

Parameters

x, y, …

arithmetical expressions, polynomials of type DOM_POLY, sets, equations, inequalities, or
comparisons
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Return Values

Arithmetical expression, a polynomial, a set, an equation, an inequality, or a comparison.

Overloaded By

x, y

See Also

MuPAD Functions
* | - | / | ^ | _invert | _subtract | poly | Pref::keepOrder | sum
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-, _negate
Negative of an expression

Syntax
- x

_negate(x)

Description

- x computes the negative of x.

-x is equivalent to the function call _negate(x). Both calls represent the inverse of the
element x of an additive group.

The negative of a number of type Type::Numeric is also a number.

If x is an element of a domain that does not have the _negate method (slot), MuPAD
internally represents -x as x*(-1) = _mult(x, -1).

If x is an element of a domain that has the _negate method (slot), MuPAD uses this
method to compute -x.

The difference x - y is equivalent to x + (-y) = _plus (x, _negate(y)).

The negative of a polynomial of type DOM_POLY produces a polynomial. The coefficients of
the resulting polynomial are the negatives of the original coefficients.

For finite sets, -X is the set .

Examples

Example 1

Compute the negatives of the following expressions. The negative of an expression is the
inverse with respect to + (_plus):
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x - x = x + _negate(x)

-1 + x - 2*x + 23

Example 2

Internally, MuPAD represents -x as _mult(x, -1):

type(-x), op(-x, 0), op(-x, 1), op(-x, 2)

Example 3

Compute the negative of a polynomial. The result is a polynomial with the coefficients
that are the negatives of the coefficients of the original polynomial:

-poly(x^2 + x - 1, [x])

-poly(x, [x], Dom::Integer)

Example 4

Compute the negative of a finite set. For finite sets, -X is the set :

-{a, b, c}
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Example 5

Various library domains such as matrix domains or residue class domains overload
_negate:

x := Dom::Matrix(Dom::IntegerMod(7))([2, 10]): x, -x, x + (-x)

delete x:

Parameters

x

An arithmetical expression, a polynomial of type DOM_POLY, or a set

Return Values

Arithmetical expression, a polynomial, or a set.

Overloaded By

x

See Also

MuPAD Functions
* | + | / | ^ | _invert | _subtract | poly
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*, _mult
Multiply expressions

Syntax
x * y * ...

_mult(x, y, …)

Description

x * y * ... computes the product of x, y etc.

x * y * ... is equivalent to the function call _mult(x, y, ...).

All terms that are numbers of type Type::Numeric are automatically combined to a
single number.

The terms of a symbolic product may be rearranged internally if no term belongs to a
library domain that overloads _mult: on terms composed of kernel domains (numbers,
identifiers, expressions etc.), multiplication is assumed to be commutative. Cf. “Example
1” on page 1-61.

Via overloading, the user can implement a non-commutative product for special domains.

_mult accepts an arbitrary number of arguments. In conjunction with the sequence
operator $, this function is the recommended tool for computing finite products. Cf.
“Example 2” on page 1-62. The function product may also serve for computing such
products. However, product is designed for the computation of symbolic and infinite
products. It is slower than _mult.

The quotient x/y is internally represented as x * (1/y) = _mult(x, _power(y,
-1)). See _divide for details.

Many library domains overload _mult by an appropriate slot"_mult". Products
involving elements of library domains are processed as follows:

A product x * y * ... is searched for elements of library domains from left to
right. Let z be the first term that is not of one of the basic types provided by the
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kernel (numbers, expressions, etc.). If the domain d = z::dom = domtype(z) has a
slot"_mult", it is called in the form d::_mult(x, y, ...). The result returned by
d::_mult is the result of x * y * ....

Cf. “Example 6” on page 1-66 and “Example 7” on page 1-67.

_mult() returns the number 1.

Polynomials of type DOM_POLY are multiplied by *, if they have the same indeterminates
and the same coefficient ring. Use multcoeffs to multiply polynomials with scalar
factors.

For finite sets X, Y, the product X * Y is the set .

Equalities, inequalities, and comparisons can be multiplied with one another or with
arithmetical expressions. The results of such combinations are demonstrated in
“Example 5” on page 1-64.

Examples

Example 1

Numerical terms are simplified automatically:

3 * x * y * (1/18) * sin(4) * 4

The ordering of the terms of a product is not necessarily the same as on input:

x * y * 3 * z * a * b * c

Internally, this product is a symbolic call of _mult:

op(%, 0), type(%)
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Note that the screen output does not necessarily reflect the internal order of the terms in
a product:

op(%2)

In particular, a numerical factor is internally stored as the last operand. On the screen, a
numerical factor is displayed in front of the remaining terms:

3 * x * y * 4

op(%)

Example 2

The functional equivalent _mult of the operator * is a handy tool for computing finite
products. In the following, the terms are generated via the sequence operator $:

_mult(i $ i = 1..20)

E.g., it is easy to multiply all elements in a set:

S := {a, b, 1, 2, 27}: _mult(op(S))

The following command “zips” two lists by multiplying corresponding elements:
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L1 := [1, 2, 3]: L2 := [a, b, c]: zip(L1, L2, _mult)

delete S, L1, L2:

Example 3

Polynomials of type DOM_POLY are multiplied by *, if they have the same indeterminates
and the same coefficient ring:

poly(x^2 + 1, [x]) * poly(x^2 + x - 1, [x])

If the indeterminates or the coefficient rings do not match, _mult returns an error:

poly(x, [x]) * poly(x, [x, y])

Error: The argument is invalid. [_mult]

poly(x, [x]) * poly(x, [x], Dom::Integer)

Error: The argument is invalid. [_mult]

Using *, you can multiply polynomials by scalar factors:

2 * y * poly(x, [x])

Use multcoeffs instead:

multcoeffs(poly(x^2 - 2, [x]), 2*y)
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Example 4

For finite sets X, Y, the product X * Y is the set :

{a, b, c} * {1, 2}

Note that complex numbers of type DOM_INT, DOM_RAT, DOM_COMPLEX, DOM_FLOAT, and
identifiers are implicitly converted to one-element sets:

2 * {a, b, c}

a * {b, c}, PI * {3, 4}

Example 5

Multiplying by a constant expression is performed on both sides of an equation:

(a = b) * c

For inequalities, this step is only performed if the constant is known to be non-zero:

assume(d <> 0):

(a <> b) * c, (a <> b) * d;

delete d:

The multiplication of a comparison with a constant is only defined for real numbers.
Even for these, the result depends on the sign of the constant, since multiplication with a
negative constant changes the direction of the comparison:

1-64



 *, _mult

(a < b) * 2, (a < b) * (-3)

(a < b) * I

Error: Inequalities must not be multiplied by complex numbers. [_less::_mult]

(a < b) * c, (a <= b) * c

Multiplication of two equalities is performed by multiplying the left hand sides and the
right hand sides separately:

(a = b) * (c = d)

Inequalities cannot be multiplied with one another or with comparisons; multiplication
with equalities is, however, defined, if at least one operand of the equation is known to be
non-zero:

assume(d <> 0):

(a <> b) * (c = d);

delete d:

In other cases, the product is not expanded:

delete c, d:

(a <> b) * (c = d)

Multiplication of comparisons with equalities and comparisons is performed similar to
the cases above:
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assume(c > 0):

(a < b) * (c = d);

delete c:

(a <= b) * (c <= d)

Example 6

Various library domains such as matrix domains overload _mult. The multiplication is
not commutative:

x := Dom::Matrix(Dom::Integer)([[1, 2], [3, 4]]):

y := Dom::Matrix(Dom::Rational)([[10, 11], [12, 13]]):

x * y, y * x

If the terms in x * y are of different type, the first term x tries to convert y to the data
type of x. If successful, the product is of the same type as x. In the previous example, x
and y have different types (both are matrices, but the component domains differ). Hence
x * y and y * x have different types that is inherited from the first term:

domtype(x * y), domtype(y * x)

If x does not succeed to convert y, then y tries to convert x. In the following call, the
component 27/2 cannot be converted to an integer. Consequently, in x * y, the term y
converts x and produces a result that coincides with the domain type of y:

y := Dom::Matrix(Dom::Rational)([[10, 11], [12, 27/2]]):

x * y, y * x
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domtype(x * y), domtype(y * x)

delete x, y:

Example 7

This example demonstrates how to implement a slot"_mult" for a domain. The following
domain myString is to represent character strings. Via overloading of _mult, integer
multiples of such strings should produce the concatenation of an appropriate number of
copies of the string.

The "new" method uses expr2text to convert any MuPAD object to a string. This string
is the internal representation of elements of myString. The "print" method turns this
string into the screen output:

myString := newDomain("myString"):

myString::new := proc(x)

begin

  if args(0) = 0 then x := "": end_if;

  case domtype(x)

    of myString do return(x);

    of DOM_STRING do return(new(dom, x));

    otherwise return(new(dom, expr2text(x)));

  end_case

end_proc:

myString::print := x -> extop(x, 1):

Without a "_mult" method, the system function _mult handles elements of this domain
like any symbolic object:

y := myString(y):

z := myString(z):

4 * x * y * z * 3/2
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Now, we implement the "_mult" method. It uses split to pick out all integer terms
in its argument list and multiplies them. The result is an integer n. If there is exactly
one other term left (this must be a string of type myString), it is copied n times. The
concatenation of the copies is returned:

myString::_mult:= proc()

local Arguments, intfactors, others, dummy, n;

begin

  print(Unquoted, "Info: myString::_mult called with the arguments:",

           args());

  Arguments := [args()];

  // split the argument list into integers and other factors:

  [intfactors, others, dummy] := 

      split(Arguments, testtype, DOM_INT);

  // multiply all integer factors:

  n := _mult(op(intfactors));

  if nops(others) <> 1 then

     return(FAIL)

  end_if;

  myString::new(_concat(extop(others[1], 1) $ n))

end_proc:

Now, integer multiples of myString objects can be constructed via the * operator:

2 * myString("string") * 3

Info: myString::_mult called with the arguments:, 2, string, 3

Only products of integers and myString objects are allowed:

3/2 * myString("a ") * myString("string")

                                                  3

Info: myString::_mult called with the arguments:, -, a , string

                                                  2

delete myString, y, z:
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Parameters

x, y, …

arithmetical expressions, polynomials of type DOM_POLY, sets, equations, inequalities, or
comparisons

Return Values

Arithmetical expression, a polynomial, a set, an equation, an inequality, or a comparison.

Overloaded By

x,  y

See Also

MuPAD Functions
+ | - | / | ^ | _invert | _subtract | poly | product
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/, _divide
Divide expressions

Syntax
x / y

_divide(x, y)

Description

x/y computes the quotient of x and y.

x/y is equivalent to the function call _divide(x, y).

For numbers of type Type::Numeric, the quotient is returned as a number.

If neither x nor y are elements of library domains with "_divide" methods, x/y is
internally represented as x * y^(-1) = _mult(x, _power(y, -1)).

If x or y is an element of a domain with a slot"_divide", then this method is used
to compute x/y. Many library domains overload the / operator by an appropriate
"_divide" slot. Quotients are processed as follows:

x/y is searched for elements of library domains from left to right. Let z (either x or y)
be the first term that is not of one of the basic types provided by the kernel (numbers,
expressions, etc.). If the domain d = z::dom = domtype(z) has a slot"_divide", it is
called in the form d::_divide(x, y). The result returned by d::_divide is the result
of x/y.

Cf. examples “Example 4” on page 1-72 and “Example 5” on page 1-73.

Polynomials of type DOM_POLY can be divided by /, if they have the same indeterminates
and the same coefficient ring, and if exact division is possible. The function divide can
be used to compute the quotient of polynomials with a remainder term.

For finite sets X, Y, the quotient X/Y is the set .
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Examples

Example 1

The quotient of numbers is simplified to a number:

1234/234, 7.5/7, 6*I/2

Internally, a symbolic quotient x/y is represented as the product x * y^(-1):

type(x/y), op(x/y, 0), op(x/y, 1), op(x/y, 2)

op(op(x/y, 2), 0), op(op(x/y, 2), 1), op(op(x/y, 2), 2)

Example 2

For finite sets X, Y, the quotient X/Y is the set :

{a, b, c} / {2, 3}

Example 3

Polynomials of type DOM_POLY can be divided by / if they have the same indeterminates,
the same coefficient ring, and if exact division is possible:

poly(x^2 - 1, [x]) / poly(x - 1, [x])
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poly(x^2 - 1, [x]) / poly(x - 2, [x])

The function divide provides division with a remainder:

divide(poly(x^2 - 1, [x]), poly(x - 2, [x]))

The polynomials must have the same indeterminates and the same coefficient ring:

poly(x^2 - 1, [x, y]) / poly(x - 1, [x])

Error: The argument is invalid. [divide]

Example 4

Various library domains such as matrix domains overload _divide. The matrix domain
defines x/y as x * (1/y), where 1/y is the inverse of y:

x := Dom::Matrix(Dom::Integer)([[1, 2], [3, 4]]):

y := Dom::Matrix(Dom::Rational)([[10, 11], [12, 13]]):

x/y

The inverse of x has rational entries. Therefore, 1/x returns FAIL, because the
component ring of x is Dom::Integer. Consequently, also y/x returns FAIL:

y/x
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delete x, y:

Example 5

This example demonstrates the behavior of _divide on user-defined domains. In the
first case below, the user-defined domain does not have a "_divide"slot. Thus x/y is
transformed to x * (1/y):

Do := newDomain("Do"): x := new(Do, 1): y := new(Do, 2):

x/y; op(x/y, 0..2)

After the slot"_divide" is defined in the domain Do, this method is used to divide
elements:

Do::_divide := proc() begin "The Result" end: x/y

delete Do, x, y:

Parameters

x, y, …

arithmetical expressions, polynomials of type DOM_POLY, or sets

Return Values

Arithmetical expression, a polynomial, or a set.
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Overloaded By

x,  y

See Also

MuPAD Functions
* | + | - | ^ | _invert | _subtract | div | divide | pdivide | poly
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^, _power
Raise an expression to a power

Compatibility

For the power function in MATLAB®, see power.

Syntax
x ^ y

_power(x, y)

Description

x^y computes the y-th power of x.

x^y is equivalent to the function call _power(x, y).

The power operator ^ is left associative: x^y^z is parsed as (x^y)^z. Cf. “Example 2” on
page 1-77.

If x is a polynomial of type DOM_POLY, then y must be a nonnegative integer smaller
than 231.

_power is overloaded for matrix domains (matrix). In particular, x^(-1) returns the
inverse of the matrix x.

Use powermod to compute modular powers. Cf. “Example 3” on page 1-77.

Mathematically, the call sqrt(x) is equivalent to x^(1/2). Note, however, that sqrt
tries to simplify the result. Cf. “Example 4” on page 1-77.

If x or y is an element of a domain with a slot"_power", then this method is used
to compute x^y. Many library domains overload the ^ operator by an appropriate
"_power" slot. Powers are processed as follows:
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x^y is searched for elements of library domains from left to right. Let z (either x or y)
be the first term that is not of one of the basic types provided by the kernel (numbers,
expressions, etc.). If the domain d = z::dom = domtype(z) has a slot"_power", it is
called in the form d::_power(x, y). The result returned by d::_power is the result of
x^y.

See “Example 6” on page 1-78 and “Example 7” on page 1-78.

For finite sets X, Y, the power X^Y is the set .

Examples

Example 1

Some powers are computed:

2^10, I^(-5), 0.3^(1/3), x^(1/2) + y^(-1/2), (x^(-10) + 1)^2

Use expand to “expand” powers of sums:

(x + y)^2 = expand((x + y)^2)

Note that identities such as (x*y)^z = x^z * y^z only hold in certain areas of the
complex plane:

((-1)*(-1))^(1/2) <> (-1)^(1/2) * (-1)^(1/2)

Consequently, the following expand command does not expand its argument:
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expand((x*y)^(1/2))

Example 2

The power operator ^ is left associative:

2^3^4 = (2^3)^4, x^y^z

Example 3

Modular powers can be computed directly using ^ and mod. However, powermod is more
efficient:

123^12345 mod 17 = powermod(123, 12345, 17)

Example 4

The function sqrt produces simpler results than _power:

sqrt(4*x*y), (4*x*y)^(1/2)

Example 5

For finite sets, X^Y is the set :

{a, b, c}^2, {a, b, c}^{q, r, s}
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Example 6

Various library domains such as matrix domains or residue class domains overload
_power:

x := Dom::Matrix(Dom::IntegerMod(7))([[2, 3], [3, 4]]):

x^2, x^(-1), x^3 * x^(-3)

delete x:

Example 7

This example demonstrates the behavior of _power on user-defined domains. Without a
"power"slot, powers of domain elements are handled like any other symbolic powers:

myDomain := newDomain("myDomain"): x := new(myDomain, 1): x^2

type(x^2), op(x^2, 0), op(x^2, 1), op(x^2, 2)

After the "_power" slot is defined, this method is used to compute powers of myDomain
objects:

myDomain::_power := proc() begin "The result" end: x^2

delete myDomain, x:
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Parameters

x, y

arithmetical expressions, polynomials of type DOM_POLY, floating-point intervals, or sets

Return Values

Arithmetical expression, a polynomial, a floating-point interval, or a set.

Overloaded By

x,  y

See Also

MuPAD Functions
* | + | - | / | _invert | _subtract | numlib::ispower | powermod | surd
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@, _fconcat
Compose functions

Syntax
f @ g @ ...

_fconcat(f, g, …)

Description

f@g represents the composition  of the functions f and g.

In MuPAD, functions are usually represented by procedures of type DOM_PROC,
functionenvironments, or functional expressions such as f@g@exp + id^2. In fact,
practically any MuPAD object may serve as a function.

f @ g is equivalent to the function call _fconcat(f, g).

_fconcat() returns the identity map id; _fconcat(f) returns f.

Examples

Example 1

The following function h is the composition of the system functions abs and sin:

h := abs@sin

h(x), h(y + 2), h(0.5)

The following functional expressions represent polynomials:
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f := id^3 + 3*id - 1: f(x), (f@f)(x)

The random generator random produces nonnegative integers with 12 digits. The
following composition of float and random produces random floating-point numbers
between 0.0 and 1.0:

rand := float@random/10^12: rand() $ k = 1..12

In conjunction with the function map, the composition operator @ is a handy tool to apply
composed functions to the operands of a data structure:

map([1, 2, 3, 4], (PI + id^2)@sin),

map({1, 2, 3, 4}, cos@float)

delete h, f, rand:

Example 2

Some simplifications of functional expressions are possible via simplify:

exp@ln + cos@arccos = simplify(cos@arccos + exp@ln)

Parameters

f, g, …

functions
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Return Values

Expression of type "_fconcat".

Overloaded By

f, g

See Also

MuPAD Functions
@@
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@@, _fnest
Iterate a function

Syntax
f @@ n

_fnest(f, n)

Description

f@@n represents the n-fold iterate x -> f(f(...(f(x))...)) of the function f.

The statement f@@n is equivalent to the call _fnest(f, n).

For positive n, f@@n is also equivalent to _fconcat(f $ n).

f@@0 returns the identity map id.

If f is a function environment with the slot "inverse" set, n can also be negative. Cf.
“Example 2” on page 1-84.

Iteration is only reasonable for functions that accept their own return values as input.
Note that fp::fixargs is a handy tool for converting functions with parameters
to univariate functions which may be suitable for iteration. Cf. “Example 3” on page
1-84.

Examples

Example 1

For a nonnegative integer n, f@@n is equivalent to an _fconcat call:

f@@4, (f@@4)(x)
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@@ simplifies the composition of symbolic iterates:

(f@@n)@@m

The iterate may be called like any other MuPAD function. If f evaluates to a procedure
and n to an integer, a corresponding value is computed:

f := x -> x^2:  (f@@n)(x) $ n = 0..10

delete f:

Example 2

For functions with a known inverse function, n may be negative. The function f must
have been declared as a function environment with the "inverse" slot. Examples of
such functions include the trigonometric functions which are implemented as function
environments in MuPAD:

sin::"inverse", sin@@-3, (sin@@(-3))(x)

Example 3

@@ can only be used for functions that accept their own output domain as an input, i.e.,
 for some set M. If you want to use @@ with a function which needs additional

parameters, fp::fixargs is a handy tool to generate a corresponding univariate
function. In the following call, the function f: x -> g(x, p) is iterated:

g := (x, y) -> x^2 + y: f := fp::fixargs(g, 1, p): (f@@4)(x)

delete g, f:
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Parameters

f

A function

n

An integer or a symbolic name

Return Values

Function

See Also

MuPAD Functions
@ | fp::fixargs | fp::fold | fp::nest | fp::nestvals
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$, _seqgen, _seqin, _seqstep
Create an expression sequence

Syntax
$ a .. b

_seqgen(a .. b)

$ c .. d step e

_seqstep(c .. d, e)

f $ n

_seqgen(f, n)

f $ c step e 

_seqstep(f, c, e)

f $ i = a .. b

_seqgen(f, i, a .. b)

f $ i = c .. d step e

_seqstep(f, i, c .. d, e)

f $ i in object

_seqin(f, i, object)

Description

$ a..b creates the sequence of integers from a through b.

$c..d step e creates the sequence of numbers from c through d with increment e.

f $ n creates the sequence f, ..., f consisting of n copies of f.

f $ c step e creates the sequence f, ..., f consisting of trunc(c/e) copies of f.
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f(i) $ i = a..b creates the sequence f(a), f(a+1), ..., f(b).

f(i) $ i = c..d step e creates the sequence f(c), f(c+e), ..., f(c+j*e), with j
such that c+j*e <= d and c+(j+1)*e > d.

f(i) $ i in object creates the sequence f(i1), f(i2), ..., where i1, i2 etc. are the
operands of the object.

The $ operator is a most useful tool. It serves for generating sequences of objects.
Sequences are used to define sets or lists, and may be passed as arguments to system
functions. See “Example 1” on page 1-88.

$ a..b and the equivalent function call _seqgen(a..b) produce the sequence of
integers a, a + 1, ..., b. The void object of type DOM_NULL is produced if a > b.

$ c..d step e and the equivalent function call _seqstep(c..d, e) produce the
sequence of numbers c, c + e, ..., c + j*e, with j such that c + j*e <= d and c +
(j + 1)*e > d. The void object of type DOM_NULL is produced if c > d.

f $ n and the equivalent function call _seqgen(f, n) produce a sequence of n copies
of the object f. Note that f is evaluated only once, before the sequence is created. The
empty sequence of type DOM_NULL is produced if n is not positive.

f $ c step e and the equivalent function call _seqstep(f, c, e) produce a
sequence of trunc(c/e) copies of the object f. Note that f is evaluated only once, before
the sequence is created. The empty sequence of type DOM_NULL is produced if trunc(c/
e) is not positive.

f $ i = a..b and the equivalent function call _seqgen(f, i, a..b) successively
set i := a through i := b and evaluate f with these values. After this (or in case of an
error, earlier), the previous value of i is restored.

Note that f is not evaluated before the first assignment. The void object of type
DOM_NULL is produced if a > b.

f $ i = c..d step e and the equivalent function call _seqstep(f, i, c..d, e)
successively set i := c, i := c + e, ... until the value of i exceeds d and evaluate
f with these values. After this (or in case of an error, earlier), the previous value of i is
restored.

Note that f is not evaluated before the first assignment. The void object of type
DOM_NULL is produced if c > d.
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f $ i in object and the equivalent function call _seqin(f, i, object)
successively assign the operands of the object to i: they set i := op(object, 1)
through i := op(object, n) and evaluate f with these values, returning the result.
(n = nops(object) is the number of operands.)

Note that f is not evaluated before the assignments. The empty sequence of type
DOM_NULL is produced if the object has no operands.

The “loop variable” i in f $ i = a..b and f $ i in object may have a value. This
value is restored after the $ statement returns.

Examples

Example 1

The following sequence can be passed as arguments to the function _plus, which adds
up its arguments:

i^2 $ i = 1..5

_plus(i^2 $ i = 1..5)

The 5-th derivative of the expression exp(x^2) is:

diff(exp(x^2), x $ 5)

We compute the first derivatives of sin(x):

diff(sin(x), x $ i) $ i = 0..5
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We use ithprime to compute the first 10 prime numbers:

ithprime(i) $ i = 1..10

We select all primes from the set of integers between 1990 and 2010:

select({$ 1990..2010}, isprime)

The 3×3matrix with entries Aij = i j is generated:

n := 3: matrix([[i*j $ j = 1..n] $ i = 1..n])

delete n:

Example 2

In f $ n, the object f is evaluated only once. The result is copied n times. Consequently,
the following call produces copies of one single random number:

random() $ 3

The following call evaluates random for each value of of i:

random() $ i = 1..3

Example 3

In the following call, i runs through the list:
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i^2 $ i in [3, 2, 1]

Note that the screen output of sets does not necessarily coincide with the internal
ordering:

set := {i^2 $ i = 1..19}: 

set; 

[op(set)]

The $ operator respects the internal ordering:

i^2 $ i in set

delete set:

Example 4

Arbitrary objects f are allowed in f $ i = a..b. In the following call, f is an
assignment (it has to be enclosed in brackets). The sequence computes a table f[i] =
i!:

f[0] := 1: (f[i] := i*f[i - 1]) $ i = 1..4: f
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delete f:

Example 5

Apart from the usual sequence generator with the step size 1, _seqstep allows arbitrary
integer, rational, or real numbers as step sizes:

1 $ 2 step 0.5

$ 1..2 step .2

f(i) $ i = 1..2 step 1/2

Like in a for-loop, the step size can be negative:

f(i) $ i = 5..1 step -2

In contrast to _seqgen the range bounds in _seqstep can be rational or floating-point
numbers:

1 $ 5/2 step 0.5

$ 1.1..2.1 step .2

f(i) $ i = 1/2..5/2 step 1/2
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Example 6

the $-expression returns symbolically, if the given range is symbolic:

x $ n, $ a..b, f(i) $ i = a..b

Parameters

f, object

Arbitrary MuPAD objects

n, a, b

integers

c, d, e

integer, rational, or floating-point numbers

i

An identifier or a local variable (DOM_VAR) of a procedure

Return Values

Expression sequence of type "_exprseq" or the void object of type DOM_NULL.

Overloaded By

a..b,  c..d,  e,  f,  i,  n,  object
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See Also

MuPAD Functions
_exprseq | null
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,, _exprseq
Expression sequences

Syntax
object1, object2, ...

_exprseq(object1, object2, …)

Description

The function call _exprseq(object1, object2, ...) is the internal representation
of the expression sequence object1, object2, ....

In MuPAD, “sequences” are ordered collections of objects separated by commas. You may
think of the comma as an operator that concatenates sequences. Internally, sequences
are represented as function calls _exprseq(object1, object2, ...). On the screen,
sequences are printed as object1, object2, ....

_exprseq() and the equivalent call null() yield the void object of type DOM_NULL.

When evaluating an expression sequence, all void objects of type DOM_NULL are removed
from it, automatically.

The $ operator is a useful tool for generating sequences.

When a MuPAD function or procedure is called with more than one argument, the
parameters are passed as an expression sequence.

Examples

Example 1

A sequence is generated by “concatenating” objects with commas. The resulting object is
of type "_exprseq":
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a, b, sin(x)

op(%, 0), type(%)

On the screen, _exprseq just returns its argument sequence:

_exprseq(1, 2, x^2 + 5) = (1, 2, x^2 + 5)

Example 2

The object of domain DOM_NULL (the “empty sequence”) is automatically removed from
expression sequences:

1, 2, null(), 3

Expression sequences are flattened. The following sequence does not have 2 operands,
where the second operand is a sequence. Instead, it is flattened to a sequence with 3
operands:

x := 1: y := 2, 3: x, y

delete x, y:

Example 3

Sequences are used to build sets and lists. Sequences can also be passed to functions that
accept several arguments:
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s := 1, 2, 3: {s}, [s], f(s)

delete s:

Parameters

object1, object2, …

Arbitrary MuPAD objects

Return Values

Expression of type "_exprseq" or the void object of type DOM_NULL.

See Also

MuPAD Functions
_stmtseq | null
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%if
Conditional creation of code by the parser

Syntax
%if condition1
then casetrue1
   elif condition2 then casetrue2
   elif condition3 then casetrue3
   ...

   else casefalse

 end_if

Description
%if controls the creation of code by the parser depending on a condition.

This statement is one of the more esoteric features of MuPAD. It is not executed at run
time by the MuPAD interpreter. It controls the creation of code for the interpreter by the
parser.

%if may be used to create different versions of a library which share a common code
basis, or to insert debugging code which should not appear in the release version.

The first condition is executed by the parser in a Boolean context and must yield one of
the Boolean values TRUE or FALSE:

• If the condition yields TRUE, the statement sequence casetrue is the code that is
created by the parser for the %if-statement. The rest of the statement is ignored by
the parser, no code is created for it.

• If the condition yields FALSE, then the condition of the next elif-part if evaluated
and the parser continues as before.

• If all conditions evaluate to FALSE and no more elif-parts exist, the parser inserts
the code of the statement sequence casefalse as the code for the %if-statement. If
no casefalse exists, NIL is produced.

The whole statement sequence is read by the parser and must be syntactically correct.
Also the parts that do not result in code must be syntactically correct.
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Note that instead of end_if, one may also simply use the keyword end.

In case of an empty statement sequence, the parser creates NIL as code.

Note: The conditions are parsed in the lexical context where they occur, but are
evaluated by the parser in the context where the parser is executed. This is the case
because the environment where the conditions are exically bound simply does not exist
during parsing. Thus, one must ensure that names in the conditions do not conflict with
names of local variables or arguments in the surrounding lexical context. The parser does
not check this!

No function exists in the interpreter which can execute the %if-statement. The reason is
that the statement is implemented by the parser, not by the interpreter.

Examples

Example 1

In the following example, we create debugging code in a procedure depending on the
value of the global identifier DEBUG.

Note that this example is somewhat academic, as the function prog::trace is a much
more elegant way to trace a procedure during debugging.

DEBUG := TRUE:

p := proc(x) begin

     %if DEBUG = TRUE then

         print("entering p") 

     end;

     x^2

end_proc:

p(2)
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When we look at p, we see that only the print command was inserted by the parser:

expose(p)

proc(x)

  name p;

begin

  print("entering p");

  x^2

end_proc

Now we set DEBUG to FALSE and parse the procedure again to create the release version.
No debug output is printed:

DEBUG := FALSE:

p := proc(x) begin

     %if DEBUG = TRUE then

         print("entering p")

     end;

     x^2

end_proc:

p(2)

If we look at the procedure we see that NIL was inserted for the %if-statement:

expose(p)

proc(x)

  name p;

begin

  NIL;

  x^2

end_proc

Parameters

condition

A Boolean expression
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casetrue

A statement sequence

casefalse

A statement sequence

Algorithms

This statement may remind C programmers of conditional compilation. In C, this is
implemented by a pre-processor which is run before the parser. In MuPAD, such a pre-
processor does not exist. The %if-statement is part of the parsing process.

See Also

MuPAD Functions
if
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;, :, _stmtseq
Statement sequences

Syntax
object1; object2; ...

object1: object2: ...

_stmtseq(object1, object2, …)

Description

The function call _stmtseq (object1, object2, ...) is equivalent to the
statement sequence (object1; object2; ...).

The function call _stmtseq (object1, object2, ...) evaluates the statements
(object1; object2; ...) from left to right.

_stmtseq () returns the void object of type DOM_NULL.

Examples

Example 1

Usually, statements are entered imperatively:

x := 2; x := x^2 + 17; sin(x + 1)

1-101



1 The Standard Library

This sequence of statements is turned into a single command (a “statement sequence”) by
enclosing it in brackets. Now, only the result of the “statement sequence” is printed. It is
the result of the last statement inside the sequence:

(x := 2; x := x^2 + 17; sin(x + 1))

Alternatively, the statement sequence can be entered via _stmtseq. For syntactical
reasons, the assignments have to be enclosed in brackets when using them as arguments
for _stmtseq. Only the return value of the statement sequence (the return value of the
last statement) is printed:

_stmtseq((x := 2), (x := x^2 + 17),  sin(x + 1))

Statement sequences can be iterated:

x := 1: (x := x + 1; x := x^2; print(i, x)) $ i = 1..4

delete x:

Parameters

object1, object2, …

Arbitrary MuPAD objects and statements
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 ;, :, _stmtseq

Return Values

Return value of the last statement in the sequence.

See Also

MuPAD Functions
_exprseq
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abs

Absolute value of a real or complex number

Syntax

abs(z)

abs(L)

Description

abs(z) returns the absolute value of the number z.

For many constant expressions, abs returns the absolute value as an explicit number or
expression. Cf. “Example 1” on page 1-105.

A symbolic call of abs is returned if the absolute value cannot be determined
(e.g., because the argument involves identifiers). The result is subject to certain
simplifications. In particular, abs extracts constant factors. Properties of identifiers are
taken into account. See “Example 2” on page 1-105 and “Example 3” on page 1-106.

The expand function rewrites the absolute value of a product to a product of absolute
values. E.g., expand(abs(x*y)) yields abs(x)*abs(y). Cf. “Example 4” on page
1-106.

The symbolic constants CATALAN, E, EULER, and PI are processed by abs. Cf. “Example
5” on page 1-106.

The absolute value of symbolic function calls can be defined via the slot "abs" of function
environments. Cf. “Example 7” on page 1-107.

In the same way, the absolute value of domain elements can be defined via overloading.
Cf. “Example 8” on page 1-107.

This function is automatically mapped to all entries of container objects such as arrays,
lists, matrices, polynomials, sets, and tables.
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Environment Interactions

abs respects properties of identifiers.

Examples

Example 1

For many constant expressions, the absolute value can be computed explicitly:

abs(1.2), abs(-8/3), abs(3 + I), abs(sqrt(-3))

abs(sin(42)), abs(PI^2 - 10), abs(exp(3) - tan(157/100))

abs(exp(3 + I) - sqrt(2))

Example 2

Symbolic calls are returned if the argument contains identifiers without properties:

abs(x), abs(x + 1), abs(sin(x + y))

The result is subject to some simplifications. In particular, abs splits off constant factors
in products:

abs(PI*x*y), abs((1 + I)*x), abs(sin(4)*(x + sqrt(3)))
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Example 3

abs is sensitive to properties of identifiers:

assume(x < 0):  abs(3*x), abs(PI - x), abs(I*x)

unassume(x):

Example 4

The expand function produces products of abs calls:

abs(x*(y + 1)), expand(abs(x*(y + 1)))

Example 5

The absolute value of the symbolic constants PI, EULER, etc. are known:

abs(PI), abs(EULER + CATALAN^2)

Example 6

Expressions containing abs can be differentiated:

diff(abs(x), x),  diff(abs(x), x, x)
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Example 7

The slot "abs" of a function environment f defines the absolute value of symbolic calls of
f:

abs(f(x))

f := funcenv(f):

f::abs := x -> f(x)/sign(f(x)):

abs(f(x))

delete f:

Example 8

The slot "abs" of a domain d defines the absolute value of its elements:

d := newDomain("d"):

e1 := new(d, 2):

e2 := new(d, x):

d::abs := x -> abs(extop(x, 1)):

abs(e1), abs(e2)

delete d, e1, e2:

Parameters

z

An arithmetical expression
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L

A container object: an array, an hfarray, a list, a matrix, a polynomial, a set, or a table.

Return Values

arithmetical expression or a container object containing such expressions

Overloaded By

z

See Also

MuPAD Functions
conjugate | Im | norm | Re | sign
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airyAi

Airy function of the first kind

Syntax

airyAi(z)

airyAi(z, n)

Description

airyAi(z) represents the Airy function of the first kind. The Airy functions of the
first and second kind are linearly independent solutions of the differential equation

.

airyAi(z, n) represents the n-th derivative of airyAi(z) with respect to z.

airyAi(z) is equivalent to airyAi(z, 0).

For n ≥ 2, derivatives of the Airy functions are automatically expressed in terms of the
Airy functions and their first derivative. See “Example 1” on page 1-110.

airyAi returns special values for z = 0 and z = ±∞. For all other symbolic values of z,
unevaluated function calls are returned. See “Example 2” on page 1-110.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Second and higher derivatives of Airy functions are rewritten in terms of Airy functions
and their first derivatives:

airyAi(x), airyAi(x, 1), airyAi(sin(x), 3)

Example 2

For z = 0, special values are returned:

airyAi(0), airyAi(0, 1), airyAi(0, 27)

For n = 0, n = 1 and any symbolic z ≠ 0, z ≠ ±∞, a symbolic call is returned:

airyAi(-1), airyAi(x, 1)

Floating-point values are returned for floating-point arguments:

airyAi(0.0), airyAi(-3.24819, 1), airyAi(-3.45 + 2.75*I)

Example 3

diff, float, limit, series, and other functions handle expressions involving the Airy
functions:
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diff(airyAi(x^2), x)

float(airyAi(PI))

limit(airyAi(-x), x = infinity)

series(airyAi(x, 1), x = infinity)

Parameters

z

Arithmetical expression

n

Arithmetical expression representing a nonnegative integer

Return Values

Arithmetical expression.

1-111



1 The Standard Library

Overloaded By

z

See Also

MuPAD Functions
airyBi | besselI | besselJ | besselK
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airyBi

Airy function of the second kind

Syntax

airyBi(z)

airyBi(z, n)

Description

airyBi(z) represents the Airy function of the second kind. The Airy functions of the
first and second kind are linearly independent solutions of the differential equation

.

airyBi(z, n) represents the n-th derivative of airyBi(z) with respect to z.

airyBi(z) is equivalent to airyBi(z, 0).

For n ≥ 2, derivatives of the Airy functions are automatically expressed in terms of the
Airy functions and their first derivative. See “Example 1” on page 1-114.

airyBi returns special values for z = 0 and z = ±∞. For all other symbolic values of z,
unevaluated function calls are returned. See “Example 2” on page 1-114.

Environment Interactions

When called with floating-point arguments, this functions is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Second and higher derivatives of Airy functions are rewritten in terms of Airy functions
and their first derivatives:

airyBi(x), airyBi(x, 1), airyBi(sin(x), 3)

Example 2

For z = 0, special values are returned:

airyBi(0), airyBi(0, 1), airyBi(0, 27)

For n = 0, n = 1 and any symbolic z ≠ 0, z ≠ ±∞, a symbolic call is returned:

airyBi(-1), airyBi(x, 1)

Floating-point values are returned for floating-point arguments:

airyBi(0.0), airyBi(-3.24819, 1), airyBi(-3.45 + 2.75*I)

Example 3

diff, float, limit, series, and other functions handle expressions involving the Airy
functions:
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diff(airyBi(x^2), x)

float(airyBi(PI))

limit(airyBi(-x), x = infinity)

series(airyBi(x, 1), x = infinity)

Parameters

z

Arithmetical expression

n

Arithmetical expression representing a nonnegative integer

Return Values

Arithmetical expression.
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Overloaded By

z

See Also

MuPAD Functions
airyAi | besselI | besselJ | besselK
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alias
Creates an alias

Syntax
alias(x1 = object1, x2 = object2, …, <Global>)

alias(<Global>)

Description

alias(x = object) defines x as an abbreviation for object. It changes the
configuration of the parser, replacing identifierx by object in the input, and then
replacing object by x in the output.

alias(f(y1,y2,...) = object) defines f to be a macro. It changes the configuration
of the parser so that a function call of the form f(a1, a2, ...), where a1,a2,... is
a sequence of arbitrary objects of the same length as y1,y2,..., is replaced by object
with a1 substituted for y1, a2 substituted for y2, and so on. No substitution takes
place if the number of parameters y1,y2,... differs from the number of arguments
a1,a2,.... No substitution takes place in the output.

You can define a macro without any arguments via alias(f()=object).

alias does not evaluate its arguments. Hence it has no effect if the aliased identifier has
a value, and alias creates an alias for the right side of the alias definition and not for its
evaluation. See “Example 2” on page 1-120.

An alias definition causes a substitution similar to the effect of subs, not just a textual
replacement. See “Example 3” on page 1-121.

alias does not flatten its arguments. Thu, an expression sequence is a valid right side of
an alias definition. See “Example 5” on page 1-122.

An alias is in effect from the time when the call to alias has been evaluated. It affects
exactly those inputs that are parsed after that moment. See “Example 9” on page
1-124. In particular, an alias definition inside a procedure does not affect the rest of
the procedure.
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You can create several alias definitions in a single call. Abbreviations and macros can be
mixed.

alias() displays all currently defined aliases and macros as a sequence of equations.
For an abbreviation defined via alias(x = object), the equation x = object is
printed. For a macro defined via alias(f(y1, y2, ...) = object), the equation
f(y1, y2, ...) = object is printed. See “Example 11” on page 1-125.

Each identifier can be aliased to only one object. Each object can be abbreviated in only
one way. Otherwise alias throws an error.

By default, back-substitution of aliases in the output happens only for abbreviations and
not for macros. After a command of the form alias(x = object), both the unevaluated
object object and its evaluation are replaced by the unevaluated identifier x in the
output. See “Example 2” on page 1-120.

You can control the behavior of the back-substitution in the output with the function
Pref::alias; see the corresponding help page for details.

Substitutions in the output only happen for the results of computations at interactive
level. The behavior of the functions fprint, print, expr2text, or write is not
affected.

Alias substitutions are performed in parallel, both in the input and in the output. Thus it
is not possible to define nested aliases. See “Example 10” on page 1-124.

Note: If you use an identifier as an abbreviation, you cannot use that same identifier
directly. You must use unalias before you can define another abbreviation or macro for
the same identifier. See “Example 4” on page 1-121.

If a macro f(y1,y2,...,yn) with n arguments is defined, you cannot call f with n
arguments in its literal meaning any longer. However, you can still call f with a different
number of arguments. See “Example 5” on page 1-122.

You can define macros with different numbers of arguments at the same time. See
“Example 4” on page 1-121.

An alias definition affects all kinds of input: interactive input on the command line,
input via the function input, input from a file using finput, fread, or read (for the
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latter two only if option Plain is not set), and input from a string using text2expr. See
“Example 8” on page 1-124.

An alias definition has no effect on the identifier used as an alias. In particular, that
identifier retains its value and its properties. The alias and the aliased object are still
distinguished by the evaluator. See “Example 6” on page 1-123.

Assigning a value to one of the identifiers on the left side of an alias definition, or
deleting its value does not affect the alias substitution, neither in the input nor in the
output. See “Example 7” on page 1-123.

Environment Interactions

alias with at least one argument changes the parser configuration in the way described
in the “Details” section.

Examples

Example 1

Define d as a shortcut for diff:

delete f, g, x, y: alias(d = diff):

d(sin(x), x) = diff(sin(x), x);

d(f(x, y), x) = diff(f(x, y), x)

Define a macro Dx(f) for diff(f(x), x). Note that hold does not prevent alias
substitution:

alias(Dx(f) = diff(f(x), x)):

Dx(sin); Dx(f + g); hold(Dx(f + g))

1-119



1 The Standard Library

After the call unalias(d, Dx), no alias substitutions happen any longer:

unalias(d, Dx):

d(sin(x), x), diff(sin(x), x), d(f(x, y), x), diff(f(x, y), x);

Dx(sin), Dx(f + g)

Example 2

Suppose you want to avoid typing longhardtotypeident and therefore define an
abbreviation a for it:

longhardtotypeident := 10;  alias(a = longhardtotypeident):

Since alias does not evaluate its arguments, a is now an abbreviation for
longhardtotypeident and not for the number 10:

type(a), type(hold(a))

a + 1, hold(a) + 1, eval(hold(a) + 1)
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longhardtotypeident := 2:

a + 1, hold(a) + 1, eval(hold(a) + 1)

However, by default alias back-substitution in the output happens for both the identifier
and its current value:

2, 10, longhardtotypeident, hold(longhardtotypeident)

The command Pref::alias(FALSE) switches alias re-substitution off:

p := Pref::alias(FALSE):

a, hold(a), 2, longhardtotypeident, hold(longhardtotypeident);

Pref::alias(p): unalias(a):

Example 3

Aliases are substituted and not just replaced textually. In the following example,
3*succ(u) is replaced by 3*(u+1), and not by 3*u+1, which a search-and-replace
function in a text editor would produce:

alias(succ(x) = x + 1): 3*succ(u);

unalias(succ):

Example 4

Define a to be an abbreviation for b. Then the next alias definition is really an alias
definition for b:

delete a, b:
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alias(a = b): alias(a = 2): type(a), type(b); unalias(b):

Use unalias first before defining another alias for the identifier a:

unalias(a): alias(a = 2): type(a), type(b); unalias(a):

A macro definition can be added if the newly defined macro has a different number of
arguments. unalias(a) removes all macros defined for a:

alias(a(x)=sin(x^2)): a(y); alias(a(x)=cos(x^2)):

Error: The operand is invalid. [_power]

  Evaluating: alias

alias(a(x, y) = sin(x + y)): 

a(u, v); 

alias(): 

unalias(a):

a(x)   = sin(x^2)

a(x, y) = sin(x + y)

Example 5

A macro definition has no effect when called with the wrong number of arguments, and
the sequence of arguments is not flattened:

alias(plus(x, y) = x + y):

plus(1), plus(3, 2), plus((3, 2));
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unalias(plus):

Expression sequences can appear on the right side of an alias definition, but they have to
be enclosed in parenthesis:

alias(x = (1, 2)): f := 0, 1, 2, x;

nops(f); unalias(x):

Example 6

An identifier used as an abbreviation can still exist in its literal meaning inside
expressions that were entered before the alias definition:

delete x: f := [x, 1]: alias(x = 1): f;

map(f, type); unalias(x):

Example 7

An identifier used as an alias does not have to have a value:

a := 5: alias(a = 7): 7, 5; print(a); unalias(a):
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delete a:

Example 8

Alias definitions also apply to input from files or strings:

alias(a = 3): type(text2expr("a")); unalias(a)

Example 9

An alias is valid for all input that is parsed after executing alias. A statement in a
command line is not parsed before the previous commands in that command line have
been executed. In the following example, the alias is already in effect for the second
statement:

alias(a = 3): type(a); unalias(a)

This can be changed by entering additional parentheses:

(alias(a = 3): type(a)); unalias(a)

Example 10

Define b to be an alias for c, which in turn is defined to be an alias for 2. It is
recommended to avoid such chains of alias definitions because of probably unwanted
effects.

alias(b=c): alias(c=2):

Now each b in the input is replaced by c, but no additional substitution step is taken to
replace this again by 2:

print(b)
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On the other hand, the number 2 is replaced by c in every output and that c is then
replaced by b:

2

unalias(c): unalias(b):

Example 11

When called without arguments, alias just displays all currently defined aliases:

alias(a = 5, F(x) = sin(x^2)):

alias(); unalias(F, a):

F(x) = sin(x^2)

a   = 5

Parameters

x1, x2,…

Identifiers or symbolic expressions of the form f(y1, y2,…), with identifiers f, y1,
y2,...

object1, object2,…

Any MuPAD objects

Options

Global

Definition of an alias in the global parser context.
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When an alias is defined in a library or package source file, it will be deleted
automatically after reading the file. With the option Global, the alias is not active in the
file being read, but in the interactive level after reading of the file is finished.

Return Values

Both alias and unalias return the void object of type DOM_NULL.

Algorithms

Aliases are stored in the parser configuration table displayed by _parser_config().
Note that by default, alias back-substitution happens for the right sides of the equations
in this table, but not for the indices. Use print(_parser_config()) to display this
table without alias back-substitution.

Aliases are not used while a file is read using read or fread with the option Plain.
Conversely, if an alias is defined in a file which is read with the option Plain, the alias is
only used until the file has been read completely.

See Also

MuPAD Functions
:= | finput | fprint | fread | input | Pref::alias | print | proc | read |
subs | text2expr | unalias | write
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unalias
Deletes an alias

Syntax
unalias(x1, x2, …, <Global>)

unalias(<Global>)

Description

unalias(x) deletes the abbreviation or macro x. To delete a macro defined by
alias(f(y1, y2, ...) = object), use unalias(f). If no alias for x or f is defined,
then the call is ignored.

unalias() deletes all abbreviations and macros.

Multiple alias definitions may be deleted by a single call of unalias. The call
unalias() deletes all currently defined aliases.

unalias does not evaluate its arguments.

Note: If you use an identifier as an abbreviation, you cannot use that same identifier
directly. You must use unalias before you can define another abbreviation or macro for
the same identifier. See “Example 2” on page 1-129.

Assigning a value to one of the identifiers on the left side of an alias definition, or
deleting its value does not affect the alias substitution, neither in the input nor in the
output.

Environment Interactions

alias with at least one argument and unalias change the parser configuration in the
way described in the “Details” section.
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Examples

Example 1

Define d as a shortcut for diff:

delete f, g, x, y: alias(d = diff):

d(sin(x), x) = diff(sin(x), x);

d(f(x, y), x) = diff(f(x, y), x)

Define a macro Dx(f) for diff(f(x), x). Note that hold does not prevent alias
substitution:

alias(Dx(f) = diff(f(x), x)):

Dx(sin); Dx(f + g); hold(Dx(f + g))

After the call unalias(d, Dx), no alias substitutions happen any longer:

unalias(d, Dx):

d(sin(x), x), diff(sin(x), x), d(f(x, y), x), diff(f(x, y), x);

Dx(sin), Dx(f + g)
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Example 2

Define a to be an abbreviation for b. Then the next alias definition is really an alias
definition for b:

delete a, b:

alias(a = b): alias(a = 2): type(a), type(b); unalias(b):

Use unalias first before defining another alias for the identifier a:

unalias(a): alias(a = 2): type(a), type(b); unalias(a):

A macro definition, however, can be added if the newly defined macro has a different
number of arguments. unalias(a) removes all macros defined for a:

alias(a(x)=sin(x^2)): a(y); alias(a(x)=cos(x^2)):

Error: The operand is invalid. [_power]

  Evaluating: alias

alias(a(x, y) = sin(x + y)): 

a(u, v); 

alias(): 

unalias(a):

a(x)   = sin(x^2)

a(x, y) = sin(x + y)

Example 3

When called without arguments, alias just displays all currently used aliases:
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alias(a = 5, F(x) = sin(x^2)):

alias();

unalias(F, a):

F(x) = sin(x^2)

a   = 5

Parameters

x1, x2,…

Identifiers or symbolic expressions of the form f(y1, y2,…), with identifiers f, y1,
y2,...

object1, object2,…

Any MuPAD objects

Options

Global

Definition of an alias in the global parser context.

When an alias is defined in a library or package source file, it will be deleted
automatically after reading the file. With option Global the alias is not active in the file
being read, but in the interactive level after reading of the file is finished.

Return Values

Both alias and unalias return the void object of type DOM_NULL.

Algorithms

The aliases are stored in the parser configuration table displayed by
_parser_config(). Note that by default, alias back-substitution happens
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for the right sides of the equations in this table, but not for the indices. Use
print(_parser_config()) to display this table without alias back-substitution.

Aliases are not used while a file is read using read or fread with the option Plain.
Conversely, if an alias is defined in a file which is read with option the Plain, the alias is
only used until the file has been read completely.

See Also

MuPAD Functions
:= | alias | finput | fprint | fread | input | Pref::alias | print | proc |
read | subs | text2expr | write
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anames
Identifiers that have values or properties

Syntax

anames(<All>, <User>)

anames(<Properties>, <User>)

anames(<Protected>, <User>)

anames(d, <User>)

Description

anames(All) returns all identifiers that have values.

anames(Properties) returns all identifiers that have properties.

anames(Protected) returns all identifiers that are protected.

anames(d) returns all identifiers that have values from the given domain d.

The result returned by anames is a set of unevaluated identifiers.

anames does not take into account slots of function environments or domains. Moreover,
functions of a MuPAD library are considered only if they are exported.

Examples

Example 1

anames(All, User) returns all user-defined identifiers:

a := b:  b := 2:  c := {2, 3}:

1-132



 anames

anames(All, User)

If the first argument is a domain, only identifiers with values from that domain are
returned. These may differ from the identifiers whose evaluation belongs to the domain:

a, b;

anames(DOM_IDENT, User);

anames(DOM_INT, User)

Example 2

anames(Properties) returns all identifiers that have been attached properties via
assume:

assume(x > y): anames(Properties)

Example 3

anames(Protected) returns all identifiers that are protected via protect; since all
system functions are protected, we use anames(Protected, User):

protect(a): anames(Protected, User)
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Parameters

d

A domain

Options

All

Get all identifiers that have values

Properties

Get all identifiers that have properties

Protected

Get all identifiers that are protected

User

Exclude all system variables

If the option User is given, only those identifiers are returned that have been assigned a
value or a property, respectively, by the user.

Return Values

set of identifiers.

See Also

MuPAD Domains
DOM_IDENT

MuPAD Functions
:= | _assign | assume
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and, _and
Logical “and”

Syntax
b1 and b2

_and(b1, b2, …)

Description

b1 and b2 represents the logical and of the Boolean expressions b1, b2.

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.
These are processed as follows:

and TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Boolean expressions can be composed of these constants as well as of arbitrary
arithmetical expressions. Typically, equations, such as x = y, and inequalities, such as x
<> y, x < y, and x <= y, are used to construct Boolean expressions.

_and(b1, b2, ...) is equivalent to b1 and b2 and .... This expression represents
TRUE if every single expression evaluates to TRUE. It represents FALSE if at least
one expression evaluates to FALSE. It represents UNKNOWN if at least one expression
evaluates to UNKNOWN and all others evaluate to TRUE.

_and() returns TRUE.

Combinations of the constants TRUE, FALSE, UNKNOWN inside a Boolean expression are
simplified automatically. However, symbolic Boolean subexpressions, equalities, and
inequalities are not evaluated and simplified by logical operators. Use bool to evaluate
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such expressions to one of the Boolean constants. Note, however, that bool can evaluate
inequalities x < y, x <= y and so on only if they are composed of numbers of type
Type::Real. See “Example 2” on page 1-137.

Use simplify with the option logic to simplify expressions involving symbolic Boolean
subexpressions. See “Example 3” on page 1-138.

The precedences of the logical operators are as follows. If in doubt, use parentheses to
ensure that the expression is parsed as desired.

• The operator not is stronger binding than and, that is, not b1 and b2 = (not b1)
and b2.

• The operator and is stronger binding than xor, that is, b1 and b2 or b3 = (b1
and b2) xor b3.

• The operator xor is stronger binding than or, that is, b1 xor b2 or b3 = (b1 xor
b2) or b3.

• The operator or is stronger binding than ==>, that is, b1 or b2 ==> b3 = (b1 or
b2) ==> b3.

• The operator ==> is stronger binding than <=>, that is, b1 ==> b2 <=> b3 = (b1
==> b2) <=> b3.

In the conditional context of if, repeat, and while statements, Boolean expressions
are evaluated via “lazy evaluation” (see _lazy_and, _lazy_or). In any other context, all
operands are evaluated.

Examples

Example 1

Combinations of the Boolean constants TRUE, FALSE, and UNKNOWN are simplified
automatically to one of the constants:

TRUE and not (FALSE or TRUE)

FALSE and UNKNOWN, TRUE and UNKNOWN
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Example 2

Logical operators simplify subexpressions that evaluate to the constants TRUE, FALSE,
UNKNOWN.

b1 or b2 and TRUE

FALSE or ((not b1) and TRUE)

b1 and (b2 or FALSE) and UNKNOWN

FALSE or (b1 and UNKNOWN) or x < 1

TRUE and ((b1 and FALSE) or (b1 and TRUE))

However, equalities and inequalities are not evaluated:

(x = x) and (1 < 2) and (2 < 3) and (3 < 4)

Boolean evaluation is enforced via bool:

bool(%)
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Example 3

Expressions involving symbolic Boolean subexpressions are not simplified by and, or,
not. Simplification has to be requested explicitly via the function simplify:

(b1 and b2) or (b1 and (not b2)) and (1 < 2)

simplify(%, logic)

Example 4

The Boolean functions _and and _or accept arbitrary sequences of Boolean expressions.
The following call uses isprime to check whether all elements of the given set are prime:

set := {1987, 1993, 1997, 1999, 2001}: 

_and(isprime(i) $ i in set)

The following call checks whether at least one of the numbers is prime:

_or(isprime(i) $ i in set)

delete set:

Parameters

b1, b2, …

Boolean expressions
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Return Values

Boolean expression.

Overloaded By

b, b_1, b_2

See Also

MuPAD Functions
<=> | ==> | _lazy_and | _lazy_or | bool | FALSE | is | not | or | TRUE |
UNKNOWN | xor
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or, _or
Logical “or”

Syntax
b1 or b2

_or(b1, b2, …)

Description

b1 or b2 represents the non-exclusive logical or of the Boolean expressions b1, b2.

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.
These are processed as follows:

or TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

Boolean expressions can be composed of these constants as well as of arbitrary
arithmetical expressions. Typically, equations, such as x = y, and inequalities, such as x
<> y, x < y, and x <= y, are used to construct Boolean expressions.

_or(b1, b2, ...) is equivalent to b1 or b2 or .... This expression represents
FALSE if every single expression evaluates to FALSE. It represents TRUE if at least one
expression evaluates to TRUE. It represents UNKNOWN if at least one expression evaluates
to UNKNOWN and all others evaluate to FALSE.

_or() returns FALSE.

Combinations of the constants TRUE, FALSE, UNKNOWN inside a Boolean expression are
simplified automatically. However, symbolic Boolean subexpressions, equalities, and
inequalities are not evaluated and simplified by logical operators. Use bool to evaluate
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such expressions to one of the Boolean constants. Note, however, that bool can evaluate
inequalities x < y, x <= y, and so on only if they are composed of numbers of type
Type::Real. See “Example 2” on page 1-142.

Use simplify with the option logic to simplify expressions involving symbolic Boolean
subexpressions. See “Example 3” on page 1-143.

The precedences of the logical operators are as follows. If in doubt, use parentheses to
ensure that the expression is parsed as desired.

• The operator not is stronger binding than and, that is, not b1 and b2 = (not b1)
and b2.

• The operator and is stronger binding than xor, that is, b1 and b2 or b3 = (b1
and b2) xor b3.

• The operator xor is stronger binding than or, that is, b1 xor b2 or b3 = (b1 xor
b2) or b3.

• The operator or is stronger binding than ==>, that is, b1 or b2 ==> b3 = (b1 or
b2) ==> b3.

• The operator ==> is stronger binding than <=>, that is, b1 ==> b2 <=> b3 = (b1
==> b2) <=> b3.

In the conditional context of if, repeat, and while statements, Boolean expressions
are evaluated via “lazy evaluation” (see _lazy_and, _lazy_or). In any other context, all
operands are evaluated.

Examples

Example 1

Combinations of the Boolean constants TRUE, FALSE, and UNKNOWN are simplified
automatically to one of these constants:

TRUE and not (FALSE or TRUE)

FALSE or UNKNOWN, TRUE or UNKNOWN
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Example 2

Logical operators simplify subexpressions that evaluate to the constants TRUE, FALSE,
UNKNOWN.

b1 or b2 and TRUE

FALSE or ((not b1) and TRUE)

b1 and (b2 or FALSE) and UNKNOWN

FALSE or (b1 and UNKNOWN) or x < 1

TRUE and ((b1 and FALSE) or (b1 and TRUE))

However, equalities and inequalities are not evaluated:

(x = x) and (1 < 2) and (2 < 3) or (3 < 4)

Boolean evaluation is enforced via bool:

bool(%)
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Example 3

Expressions involving symbolic Boolean subexpressions are not simplified by and, or,
not. Simplification has to be requested explicitly via the function simplify:

(b1 and b2) or (b1 and (not b2)) and (1 < 2)

simplify(%, logic)

Example 4

The Boolean functions _and and _or accept arbitrary sequences of Boolean expressions.
The following call uses isprime to check whether at least one of the numbers is prime:

set := {1987, 1993, 1997, 1999, 2001}: 

_or(isprime(i) $ i in set)

delete set:

Parameters

b1, b2, …

Boolean expressions

Return Values

Boolean expression.
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Overloaded By

b, b_1, b_2

See Also

MuPAD Functions
<=> | ==> | _lazy_and | _lazy_or | and | bool | FALSE | is | not | TRUE |
UNKNOWN | xor
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not, _not
Logical negation

Syntax
not b

_not(b)

Description

not b represents the logical negation of the Boolean expression b.

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.
These are processed as follows:

• not TRUE = FALSE

• not FALSE = TRUE

• not UNKNOWN = UNKNOWN

_not(b) is equivalent to not b.

Boolean expressions can be composed of these constants as well as of arbitrary
arithmetical expressions. Typically, equations, such as x = y, and inequalities, such as x
<> y, x < y, and x <= y, are used to construct Boolean expressions.

Combinations of the constants TRUE, FALSE, UNKNOWN inside a Boolean expression are
simplified automatically. However, symbolic Boolean subexpressions, equalities, and
inequalities are not evaluated and simplified by logical operators. Use bool to evaluate
such expressions to one of the Boolean constants. Note, however, that bool can evaluate
inequalities x < y, x <= y and so on only if they are composed of numbers of type
Type::Real. See “Example 2” on page 1-146.

Use simplify with the option logic to simplify expressions involving symbolic Boolean
subexpressions. See “Example 3” on page 1-147.

The precedences of the logical operators are as follows. If in doubt, use brackets to make
sure that the expression is parsed as desired.
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• The operator not is stronger binding than and, that is, not b1 and b2 = (not b1)
and b2.

• The operator and is stronger binding than xor, that is, b1 and b2 or b3 = (b1
and b2) xor b3.

• The operator xor is stronger binding than or, that is, b1 xor b2 or b3 = (b1 xor
b2) or b3.

• The operator or is stronger binding than ==>, that is, b1 or b2 ==> b3 = (b1 or
b2) ==> b3.

• The operator ==> is stronger binding than <=>, that is, b1 ==> b2 <=> b3 = (b1
==> b2) <=> b3.

In the conditional context of if, repeat, and while statements, Boolean expressions
are evaluated via “lazy evaluation” (see _lazy_and, _lazy_or). In any other context, all
operands are evaluated.

Examples

Example 1

Combinations of the Boolean constants TRUE, FALSE, and UNKNOWN are simplified
automatically to one of these constants:

TRUE and not (FALSE or TRUE)

not UNKNOWN

Example 2

Logical operators simplify subexpressions that evaluate to the constants TRUE, FALSE,
UNKNOWN.

b1 or b2 and (not FALSE)
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FALSE or ((not b1) and TRUE)

b1 and (b2 or FALSE) and (not UNKNOWN)

However, equalities and inequalities are not evaluated:

not(x = x) and (1 < 2) and (2 < 3) and (3 > 4)

Boolean evaluation is enforced via bool:

bool(%)

Example 3

Expressions involving symbolic Boolean subexpressions are not simplified by and, or,
not. Simplification has to be requested explicitly via the function simplify:

(b1 and b2) or (b1 and (not b2)) and (1 < 2)

simplify(%, logic)
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Parameters

b

Boolean expressions

Return Values

Boolean expression.

Overloaded By

b, b_1, b_2

See Also

MuPAD Functions
<=> | ==> | _lazy_and | _lazy_or | and | bool | FALSE | is | or | TRUE |
UNKNOWN | xor
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xor, _xor
Logical exclusive-or

Syntax
b1 xor b2

_xor(b1, b2, …)

Description

b1 xor b2 represents the exclusive logical or of the Boolean expressions b1, b2.

xor is defined as follows: a xor b is equivalent to (a or b) and not (a and b).

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.
These are processed as follows:

or TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN UNKNOWN

Boolean expressions can be composed of these constants as well as of arbitrary
arithmetical expressions. Typically, equations, such as x = y, and inequalities, such as x
<> y, x < y, x <= y, are used to construct Boolean expressions.

_xor(b1, b2, ...) is equivalent to b1 xor b2 xor .... This expression represents
TRUE if an odd number of operands evaluate to TRUE and the others evaluate to FALSE.
It represents FALSE if an even number of operands evaluate to TRUE and the others
evaluate to FALSE. It represents UNKNOWN if at least one operand evaluates to UNKNOWN.

Combinations of the constants TRUE, FALSE, UNKNOWN inside a Boolean expression are
simplified automatically. However, symbolic Boolean subexpressions, equalities, and
inequalities are not evaluated and simplified by logical operators. Use bool to evaluate
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such expressions to one of the Boolean constants. Note, however, that bool can evaluate
inequalities x < y, x <= y, and so on only if they are composed of numbers of type
Type::Real. See “Example 2” on page 1-151.

Use simplify with the option logic to simplify expressions involving symbolic Boolean
subexpressions. See “Example 3” on page 1-152.

The precedences of the logical operators are as follows. If in doubt, use parentheses to
ensure that the expression is parsed as desired.

• The operator not is stronger binding than and, that is, not b1 and b2 = (not b1)
and b2.

• The operator and is stronger binding than xor, that is, b1 and b2 or b3 = (b1
and b2) xor b3.

• The operator xor is stronger binding than or, that is, b1 xor b2 or b3 = (b1 xor
b2) or b3.

• The operator or is stronger binding than ==>, that is, b1 or b2 ==> b3 = (b1 or
b2) ==> b3.

• The operator ==> is stronger binding than <=>, that is, b1 ==> b2 <=> b3 = (b1
==> b2) <=> b3.

In the conditional context of if, repeat, and while statements, Boolean expressions
are evaluated via “lazy evaluation” (see _lazy_and, _lazy_or). In any other context, all
operands are evaluated.

Examples

Example 1

Combinations of the Boolean constants TRUE, FALSE, and UNKNOWN are simplified
automatically to one of these constants:

TRUE and (FALSE xor TRUE)

FALSE xor UNKNOWN, TRUE xor FALSE
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Example 2

Logical operators simplify subexpressions that evaluate to the constants TRUE, FALSE,
UNKNOWN.

b1 xor b2 and TRUE

FALSE xor ((not b1) and TRUE)

b1 and (b2 xor FALSE) and UNKNOWN

FALSE or (b1 and UNKNOWN) xor x < 1

TRUE xor ((b1 and FALSE) or (b1 and TRUE))

However, equalities and inequalities are not evaluated:

(x = x) and (1 < 2) and (2 < 3) xor (3 < 4)

Boolean evaluation is enforced via bool:

bool(%)
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Example 3

Expressions involving symbolic Boolean subexpressions are not simplified by and, or,
not. Simplification has to be requested explicitly via the function simplify:

(b1 and b2) xor (b1 and (not b2)) and (1 < 2)

simplify(%, logic)

Parameters

b1, b2, …

Boolean expressions

Return Values

Boolean expression.

Overloaded By

b, b_1, b_2

See Also

MuPAD Functions
<=> | ==> | _lazy_and | _lazy_or | and | bool | FALSE | is | not | or | TRUE |
UNKNOWN
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==>, _implies
Logical implication

Syntax
b1 ==> b2

_implies(b1, b2)

Description

b1 ==> b2 represents the logical implication of the Boolean expressions b1, b2.

a ==> b is equivalent to not a or b. See “Example 1” on page 1-154.

_implies(a, b) is equivalent to a ==> b.

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.
These are processed as follows:

and TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Boolean expressions can be composed of these constants as well as of arbitrary
arithmetical expressions. Typically, equations, such as x = y, and inequalities, such as x
<> y, x < y, x <= y, are used to construct Boolean expressions.

Combinations of the constants TRUE, FALSE, UNKNOWN inside a Boolean expression are
simplified automatically. However, symbolic Boolean subexpressions, equalities, and
inequalities are not evaluated and simplified by logical operators. Use bool to evaluate
such expressions to one of the Boolean constants. Note, however, that bool can evaluate
inequalities x < y, x <= y, and so on, only if they are composed of numbers of type
Type::Real.
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Use simplify with the option logic to simplify expressions involving symbolic Boolean
subexpressions. See “Example 1” on page 1-154.

The precedences of the logical operators are as follows. If in doubt, use parentheses to
ensure that the expression is parsed as desired.

• The operator not is stronger binding than and, that is, not b1 and b2 = (not b1)
and b2.

• The operator and is stronger binding than xor, that is, b1 and b2 or b3 = (b1
and b2) xor b3.

• The operator xor is stronger binding than or, that is, b1 xor b2 or b3 = (b1 xor
b2) or b3.

• The operator or is stronger binding than ==>, that is, b1 or b2 ==> b3 = (b1 or
b2) ==> b3.

• The operator ==> is stronger binding than <=>, that is, b1 ==> b2 <=> b3 = (b1
==> b2) <=> b3.

In the conditional context of if, repeat, and while statements, Boolean expressions
are evaluated via “lazy evaluation” (see _lazy_and, _lazy_or). In any other context, all
operands are evaluated.

Examples

Example 1

a ==> b is equivalent to not a or b.

simplify((a ==> b), logic)

not a or b
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Parameters

b1, b2

Boolean expressions

Return Values

Boolean expression.

Overloaded By

b, b_1, b_2

See Also

MuPAD Functions
<=> | _lazy_and | _lazy_or | and | bool | FALSE | is | not | or | TRUE |
UNKNOWN | xor
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<=>, _equiv
Logical equivalence

Syntax
b1 <=> b2

_equiv(b1, b2)

Description

b1 <=> b2 represents the logical equivalence of the Boolean expressions b1, b2.

a <=> b is equivalent to (a ==> b) and (b ==> a), where a ==> b is equivalent to
not a or b.

_equiv(a, b) is equivalent to a <=> b.

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.
These are processed as follows:

and TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

UNKNOWN UNKNOWN FALSE UNKNOWN

Boolean expressions can be composed of these constants as well as of arbitrary
arithmetical expressions. Typically, equations, such as x = y, and inequalities, such as x
<> y, x < y, x <= y, are used to construct Boolean expressions.

Combinations of the constants TRUE, FALSE, UNKNOWN inside a Boolean expression are
simplified automatically. However, symbolic Boolean subexpressions, equalities, and
inequalities are not evaluated and simplified by logical operators. Use bool to evaluate
such expressions to one of the Boolean constants. Note, however, that bool can evaluate
inequalities x < y, x <= y and so on, only if they are composed of numbers of type
Type::Real.
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Use simplify with the option logic to simplify expressions involving symbolic Boolean
subexpressions. See “Example 1” on page 1-157.

The precedences of the logical operators are as follows. If in doubt, use parentheses to
ensure that the expression is parsed as desired.

• The operator not is stronger binding than and, that is, not b1 and b2 = (not b1)
and b2.

• The operator and is stronger binding than xor, that is, b1 and b2 or b3 = (b1
and b2) xor b3.

• The operator xor is stronger binding than or, that is, b1 xor b2 or b3 = (b1 xor
b2) or b3.

• The operator or is stronger binding than ==>, that is, b1 or b2 ==> b3 = (b1 or
b2) ==> b3.

• The operator ==> is stronger binding than <=>, that is, b1 ==> b2 <=> b3 = (b1
==> b2) <=> b3.

In the conditional context of if, repeat, and while statements, Boolean expressions
are evaluated via “lazy evaluation” (see _lazy_and, _lazy_or). In any other context, all
operands are evaluated.

Examples

Example 1

a <=> b is equivalent to (a ==> b) and (b ==> a), where a ==> b is equivalent to
not a or b.

simplify((a <=> b), logic)

simplify((a ==> b) and (b ==> a), logic)
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Parameters

b1, b2

Boolean expressions

Return Values

Boolean expression.

Overloaded By

b, b_1, b_2

See Also

MuPAD Functions
==> | _lazy_and | _lazy_or | and | bool | FALSE | is | not | or | TRUE |
UNKNOWN | xor
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append
Add elements to a list

Syntax
append(l, object1, object2, …)

Description

append(l, object) adds object to the list l.

append(l, object1, object2, ...) appends object1, object2, etc. to the list l
and returns the new list as the result.

append(f(x), object1, object2, ...) appends object1, object2, etc. to the
expression f(x) and returns the new expression as the result.

The call append(l) is legal and returns l.

append(l, object1, object2, ...) is equivalent to both [op(l), object1,
object2, ...] and l.[object1, object2, ...]. However, append is more
efficient.

The function append always returns a new object. The first argument remains
unchanged. See “Example 3” on page 1-160.

Examples

Example 1

The function append adds new elements to the end of a list:

append([a, b], c, d)
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If no new elements are given, the first argument is returned unmodified:

l := [a, b]: append(l)

The first argument may be an empty list:

append([ ], c)

Example 2

The function append adds new elements to the end of an expression:

append(f(a, b), c, d)

Expressions can be written in operator notation:

append(a + b, c)

Example 3

The function append always returns a new object. The first argument remains
unchanged:

l := [a, b]: append(l, c, d), l
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Example 4

Users can overload append for their own domains. For illustration, we create a new
domain T and supply it with an "append" slot, which simply adds the remaining
arguments to the internal operands of its first argument:

T := newDomain("T"):

T::append := x -> new(T, extop(x), args(2..args(0))):

If we now call append with an object of domain type T, the slot routine T::append is
invoked:

e := new(T, 1, 2): append(e, 3)

Parameters

l

A list or an expression

object1, object2, …

Arbitrary MuPAD objects

Return Values

Extended list or expression.

Overloaded By

l

See Also

MuPAD Domains
DOM_EXPR | DOM_LIST
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MuPAD Functions
_concat | _index | op
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arcsin
Inverse sine function

Syntax
arcsin(x)

Description

arcsin(x) represents the inverse of the sine function.

The angle returned by this function is measured in radians, not in degrees. For example,
the result π represents an angle of 180o.

arcsin is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for interval arguments. Unevaluated function calls are returned for most
exact arguments.

If the argument is a rational multiple of I, the result is expressed in terms of hyperbolic
functions. See “Example 2” on page 1-164.

The inverse sine function is multivalued. The MuPAD arcsin function returns the value
on the main branch. The branch cuts are the real intervals (- ∞, - 1) and (1, ∞). Thus,

arcsin returns values, such that y = arcsin(x) satisfies - £ ¬ ( ) £
p p

2 2
y  for any finite

complex x.

The sin function returns explicit values for arguments that are certain rational
multiples of π. For these values, arcsin returns an appropriate rational multiple of π on
the main branch. See “Example 3” on page 1-165.

The values jump when the arguments cross a branch cut. See “Example 4” on page
1-165.

The float attributes are kernel functions. Thus, floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, arcsin is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arcsin with the following exact and symbolic input arguments:

arcsin(1), arcsin(1/sqrt(2)), arcsin(5 + I),

arcsin(1/3), arcsin(I), arcsin(sqrt(2))

arcsin(-x), arcsin(x + 1), arcsin(1/x)

Floating-point values are computed for floating-point arguments:

arcsin(0.1234), arcsin(5.6 + 7.8*I), arcsin(1.0/10^20)

Floating-point intervals are computed for interval arguments:

arcsin(-1/2...1/2), arcsin(0...1)

Example 2

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:
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arcsin(5*I), arcsin(5/4*I), arcsin(-3*I)

For other complex arguments unevaluated function calls without simplifications are
returned:

arcsin(1/2^(1/2) + I), arcsin(1 - 3*I)

Example 3

Some special values are implemented:

arcsin(1/sqrt(2)), arcsin((5^(1/2) - 1)/4), arcsin(3^(1/2)/2)

Such simplifications occur for arguments that are trigonometric images of rational
multiples of π:

sin(9/10*PI), arcsin(sin(9/10*PI))

Example 4

The values jump when crossing a branch cut:

arcsin(2.0 + I/10^10), arcsin(2.0 - I/10^10)

On the branch cut, the values of arcsin coincide with the limit “from below” for real
arguments x > 1:
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limit(arcsin(2.0 - I/n), n = infinity);

limit(arcsin(2.0 + I/n), n = infinity);

arcsin(2.0)

The values coincide with the limit “from above” for real x < - 1:

limit(arcsin(-2.0 - I/n), n = infinity);

limit(arcsin(-2.0 + I/n), n = infinity);

arcsin(-2.0)

Example 5

The inverse sine function can be rewritten in terms of the logarithm function with
complex arguments:

rewrite(arcsin(x), ln)

Example 6

diff, float, limit, or taylor, series, and other system functions handle expressions
involving the inverse trigonometric functions:
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diff(arcsin(x^2), x), float(arcsin(3)*arctan(5 + I))

limit(arcsin(1 + sin(x)/x), x = PI)

taylor(arcsin(x), x = 0)

series(arcsin(2 + x), x, 3)

Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression or floating-point interval.

Overloaded By

x

1-167



1 The Standard Library

See Also

MuPAD Functions
arccos | arccot | arccsc | arcsec | arctan | arg | cos | cot | csc | sec | sin |
tan
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arccos
Inverse cosine function

Syntax
arccos(x)

Description

arccos(x) represents the inverse of the cosine function.

The angle returned by this function is measured in radians, not in degrees. For example,
the result π represents an angle of 180o.

arccos is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for interval arguments. Unevaluated function calls are returned for most
exact arguments.

If the argument is a rational multiple of I, the result is expressed in terms of hyperbolic
functions. See “Example 2” on page 1-170.

The inverse cosine function is multivalued. The MuPAD arccos function returns the
value on the main branch. The branch cuts are the real intervals (- ∞, - 1) and (1, ∞).
Thus, arccos returns values, such that y = arccos(x) satisfies 0 £ ¬ ( ) £y p  for any finite
complex x.

The cos function returns explicit values for arguments that are certain rational
multiples of π. For these values, arccos returns an appropriate rational multiple of π on
the main branch. See “Example 3” on page 1-171.

The values jump when the arguments cross a branch cut. See “Example 4” on page
1-171.

The float attributes are kernel functions. Thus, floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, arccos is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arccos with the following exact and symbolic input arguments:

arccos(1), arccos(1/sqrt(2)), arccos(5 + I),

arccos(1/3), arccos(I), arccos(sqrt(2))

arccos(-x), arccos(x + 1), arccos(1/x)

Floating-point values are computed for floating-point arguments:

arccos(0.1234), arccos(5.6 + 7.8*I), arccos(1.0/10^20)

Floating-point intervals are computed for interval arguments:

arccos(-1/2...1/2), arccos(0...1)

Example 2

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:
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arccos(2*I), arccos(-I/2), arccos(-3*I)

For other complex arguments unevaluated function calls without simplifications are
returned:

arccos(1/2^(1/2) + I), arccos(1 - 3*I)

Example 3

Some special values are implemented:

arccos(1/sqrt(2)), arccos((5^(1/2) - 1)/4), arccos(1/2)

Such simplifications occur for arguments that are trigonometric images of rational
multiples of π:

cos(9/10*PI), arccos(cos(9/10*PI))

Example 4

The values jump when crossing a branch cut:

arccos(-2.0 + I/10^10), arccos(-2.0 - I/10^10)
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On the branch cut, the values of arccos coincide with the limit “from below” for real
arguments x > 1:

limit(arccos(2.0 - I/n), n = infinity);

limit(arccos(2.0 + I/n), n = infinity);

arccos(2.0)

The values coincide with the limit “from above” for real x < - 1:

limit(arccos(-2.0 - I/n), n = infinity);

limit(arccos(-2.0 + I/n), n = infinity);

arccos(-2.0)

Example 5

The inverse cosine function can be rewritten in terms of the logarithm function with
complex arguments:

rewrite(arccos(x), ln)
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Example 6

diff, float, limit, taylor, series, and other system functions handle expressions
involving the inverse trigonometric functions:

diff(arccos(x), x), float(arccos(3)*arctan(5 + I))

limit(arccos(1 + sin(x)/x), x = 0)

taylor(arccos(x), x = 0)

series(arccos(2 + x), x, 3)

Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression or floating-point interval.
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Overloaded By

x

See Also

MuPAD Functions
arccot | arccsc | arcsec | arcsin | arctan | arg | cos | cot | csc | sec | sin |
tan
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arctan
Inverse tangent function

Syntax
arctan(x)

arctan(y, x)

Description

arctan(x) represents the inverse of the tangent function.

arctan(y, x) is an alias for arg(x, y).

The angle returned by this function is measured in radians, not in degrees. For example,
the result π represents an angle of 180o.

arctan is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for interval arguments. Unevaluated function calls are returned for most
exact arguments.

If the argument is a rational multiple of I, the result is expressed in terms of hyperbolic
functions. See “Example 2” on page 1-177.

The inverse tangent function is multivalued. The MuPAD arctan function returns
the value on the main branch. The branch cuts are the intervals - • -( ]i i,  and i i, •[ )

on the imaginary axis. Thus, arctan returns values, such that y = arctan(x) satisfies

- < ¬ ( ) <
p p

2 2
y  for any finite complex x.

The tan function returns explicit values for arguments that are certain rational
multiples of π. For these values, arctan returns an appropriate rational multiple of π on
the main branch. See “Example 3” on page 1-177.
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The values jump when the arguments cross a branch cut. See “Example 4” on page
1-178.

The float attributes are kernel functions. Thus, floating-point evaluation is fast.

If you call arctan with two arguments, y and x, MuPAD calls the arg function that
computes the polar angle of a complex number x + I*y. See “Example 7” on page
1-179 and the arg help page.

Environment Interactions

When called with a floating-point argument, arctan is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arctan with the following exact and symbolic input arguments:

arctan(-5), arctan(1/sqrt(2)), arctan(5 + I),

arctan(1/3), arctan(0), arctan(1)

arctan(-x), arctan(x + 1), arctan(1/x)

Floating-point values are computed for floating-point arguments:

arctan(0.1234), arctan(5.6 + 7.8*I), arctan(1.0/10^20)
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Floating-point intervals are computed for interval arguments:

arctan(-2...2), arctan(0...10)

Example 2

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

arcsin(5*I), arccos(5/4*I), arctan(-3*I)

For other complex arguments unevaluated function calls without simplifications are
returned:

arcsin(1/2^(1/2) + I), arccos(1 -3*I)

Example 3

Some special values are implemented:

arctan(1), arctan((5 - 2*5^(1/2))^(1/2)), arctan(3^(1/2) - 2)

Such simplifications occur for arguments that are trigonometric images of rational
multiples of π:

tan(9/10*PI), arctan(tan(9/10*PI))
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Example 4

The values jump when crossing a branch cut:

arctan(2.0*I + 10^(-10)), arctan(2.0*I - 10^(-10))

On the branch cut, the values of arctan coincide with the limit “from the right” for
imaginary arguments x = c*i where c > 1:

limit(arctan(2.0*I - 1/n), n = infinity);

limit(arctan(2.0*I + 1/n), n = infinity);

arctan(2.0*I)

The values coincide with the limit “from the left” for imaginary arguments x = c*i
where c < -1:

limit(arctan(-2.0*I - 1/n), n = infinity);

limit(arctan(-2.0*I + 1/n), n = infinity);

arctan(-2.0*I)
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Example 5

The inverse tangent function can be rewritten in terms of the logarithm function with
complex arguments:

rewrite(arctan(x), ln)

Example 6

diff, float, limit, taylor, and other system functions handle expressions involving
the inverse trigonometric functions:

diff(arctan(x), x), float(arccos(3)*arctan(5 + I))

limit(arctan(sin(x)/tan(x)), x = 0)

taylor(arctan(x), x = 0)

Example 7

When you call arctan with two arguments, MuPAD calls the arg function and computes
the polar angle of a complex number:

arctan(y, x)
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Parameters

x

Arithmetical expression or floating-point interval

y, x

Arithmetical expressions representing real numbers

Return Values

Arithmetical expression or floating-point interval.

Overloaded By

x

See Also

MuPAD Functions
arccos | arccot | arccsc | arcsec | arcsin | arg | cos | cot | csc | sec | sin |
tan
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arccsc
Inverse cosecant function

Syntax
arccsc(x)

Description

arccsc(x) represents the inverse of the cosecant function.

The angle returned by this function is measured in radians, not in degrees. For example,
the result π represents an angle of 180o.

arccsc is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for interval arguments. Unevaluated function calls are returned for most
exact arguments.

If the argument is a rational multiple of I, the result is expressed in terms of hyperbolic
functions. See “Example 2” on page 1-183.

MuPAD rewrites arccsc as arccsc(x) = arcsin(1/x).

The inverse cosecant functions is multivalued. The MuPAD arccsc function returns
values on the main branch. The branch cut is the real interval (- 1, 1). Thus, arccsc

returns values, such that y = arccsc(x) satisfies - £ ¬ ( ) £ π
p p

2 2
0y y,  for any finite

complex x.

The arccsc function returns explicit values for arguments that are certain rational
multiples of π. For these values, the inverse functions return an appropriate rational
multiple of π on the main branch. See “Example 3” on page 1-183.

The values jump when the arguments cross a branch cut. See “Example 4” on page
1-184.
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The float attributes are kernel functions. Thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, arccsc is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arccsc with the following exact and symbolic input arguments:

arccsc(1), arccsc(1/sqrt(2)), arccsc(5 + I),

arccsc(1/3), arccsc(I), arccsc(-1)

arccsc(-x), arccsc(x + 1), arccsc(1/x)

Floating-point values are computed for floating-point arguments:

arccsc(0.1234), arccsc(5.6 + 7.8*I), arccsc(1.0/10^20)

Floating-point intervals are computed for interval arguments:

arccsc(-2...-1), arccsc(1...5)
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Note that certain types of input lead to severe overestimation, sometimes returning the
whole image set of the function in question:

arccsc(-2...2);

csc(arccsc(-2...2))

Example 2

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

arccsc(5*I), arccsc(5/4*I), arccsc(-3*I)

For other complex arguments unevaluated function calls without simplifications are
returned:

arccsc(1/2^(1/2) + I), arccsc(1 - 3*I)

Example 3

Some special values are implemented:

arccsc(sqrt(2)), arccsc(4/(5^(1/2) - 1)), arccsc(2/3^(1/2))
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Such simplifications occur for arguments that are trigonometric images of rational
multiples of π:

csc(9/10*PI), arccsc(csc(9/10*PI))

Example 4

The values jump when crossing a branch cut:

arccsc(0.5 + I/10^10), arccsc(0.5 - I/10^10)

On the branch cut, the values of arccsc coincide with the limit “from above” for real
arguments 0 < x < 1:

limit(arccsc(0.5 - I/n), n = infinity);

limit(arccsc(0.5 + I/n), n = infinity);

arccsc(0.5)

The values coincide with the limit “from below” for real -1 < x < 0:

limit(arccsc(-0.5 - I/n), n = infinity);

limit(arccsc(-0.5 + I/n), n = infinity);

arccsc(-0.5)
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Example 5

The inverse cosecant function can be rewritten in terms of the logarithm function with
complex arguments:

rewrite(arccsc(x), ln)

Example 6

diff, float, limit, taylor, series, and other system functions handle expressions
involving the inverse trigonometric functions:

diff(arccsc(x^2), x), float(arccsc(3)*arctan(5 + I))

limit(arccsc(1 + sin(x)/x), x = 0)

taylor(arccsc(1/x), x = 0)

series(arccsc(x), x = 0, Right)
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Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression or floating-point interval.

Overloaded By

x

See Also

MuPAD Functions
arccos | arccot | arcsec | arcsin | arctan | arg | cos | cot | csc | sec | sin |
tan
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arcsec
Inverse secant function

Syntax
arcsec(x)

Description

arcsec(x) represents the inverse of the secant function.

The angle returned by this function is measured in radians, not in degrees. For example,
the result π represents an angle of 180o.

arcsec is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for interval arguments. Unevaluated function calls are returned for most
exact arguments.

If the argument is a rational multiple of I, the result is expressed in terms of hyperbolic
functions. See “Example 2” on page 1-189.

MuPAD rewrites arcsec as arcsec(x) = arccos(1/x).

The inverse secant function is multivalued. The MuPAD arcsec function returns values
on the main branch. The branch cut is the real interval (- 1, 1). Thus, arcsec returns

values, such that y = arcsec(x) satisfies 0
2

£ ¬ ( ) £ πy yp
p

,  for any finite complex x.

The arcsec function returns explicit values for arguments that are certain rational
multiples of π. For these values, the inverse functions return an appropriate rational
multiple of π on the main branch. See “Example 3” on page 1-189.

The values jump when the arguments cross a branch cut. See “Example 4” on page
1-190.
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The float attributes are kernel functions. Thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, arcsec is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arcsec with the following exact and symbolic input arguments:

arcsec(-1), arcsec(1/sqrt(2)), arcsec(5 + I),

arcsec(1/3), arcsec(I), arcsec(1)

arcsec(-x), arcsec(x + 1), arcsec(1/x)

Floating-point values are computed for floating-point arguments:

arcsec(0.1234), arcsec(5.6 + 7.8*I), arcsec(I + 1.0/10^20)

Floating-point intervals are computed for interval arguments:

arcsec(-2...-1), arcsec(2...10)
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Note that certain types of input lead to severe overestimation, sometimes returning the
whole image set of the function in question:

arcsec(-2...2);

sec(arcsec(-2...2))

Example 2

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

arcsec(5*I), arcsec(5/4*I), arcsec(-3*I)

For other complex arguments function calls without simplifications are returned:

arcsec(1/2^(1/2) + I), arcsec(1 - 3*I)

Example 3

Some special values are implemented:

arcsec(sqrt(2)), arcsec(4/(5^(1/2) - 1)), arcsec(2/3^(1/2))
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Such simplifications occur for arguments that are trigonometric images of rational
multiples of π:

sec(9/10*PI), arcsec(sec(9/10*PI))

Example 4

The values jump when crossing a branch cut:

arcsec(-0.5 + I/10^10), arcsec(-0.5 - I/10^10)

On the branch cut, the values of arcsec coincide with the limit “from above” for real
arguments 0 < x < 1:

limit(arcsec(0.5 - I/n), n = infinity);

limit(arcsec(0.5 + I/n), n = infinity);

arcsec(0.5)

The values coincide with the limit “from below” for real -1 < x < 0:

limit(arcsec(-0.5 - I/n), n = infinity);

limit(arcsec(-0.5 + I/n), n = infinity);

arcsec(-0.5)
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Example 5

The inverse secant function can be rewritten in terms of the logarithm function with
complex arguments:

rewrite(arcsec(x), ln)

Example 6

diff, float, limit, taylor, series, and other system functions handle expressions
involving the inverse trigonometric functions:

diff(arcsec(x), x), float(arcsec(3)*arctan(5 + I))

limit(arcsec(1 + sin(x)/x), x = 0)

taylor(arcsec(1/x), x = 0)

series(arcsec(x), x = 0, Right)
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Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression or floating-point interval.

Overloaded By

x

See Also

MuPAD Functions
arccos | arccot | arccsc | arcsin | arctan | arg | cos | cot | csc | sec | sin |
tan
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arccot

Inverse cotangent function

Syntax

arccot(x)

Description

arccot(x) represents the inverse of the cotangent function.

The angle returned by this function is measured in radians, not in degrees. For example,
the result π represents an angle of 180o.

arccot is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for interval arguments. Unevaluated function calls are returned for most
exact arguments.

If the argument is a rational multiple of I, the result is expressed in terms of hyperbolic
functions. See “Example 2” on page 1-195.

The inverse cotangent function is multivalued. The MuPAD arccot function returns the
value on the main branch. The branch cut is the interval [- i, i] on the imaginary axis.

Thus, arccot returns values, such that y = arccot(x) satisfies - < ¬ ( ) £
p p

2 2
y  for any

finite complex x.

The cot function returns explicit values for arguments that are certain rational
multiples of π. For these values, arccot returns an appropriate rational multiple of π on
the main branch. See “Example 3” on page 1-195.

The values jump when the arguments cross a branch cut. See “Example 4” on page
1-196.
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Note: MuPAD defines arccot as arccot(x) = arctan(1/x), although arccot can
return an unevaluated function call and does not rewrite itself in terms of arctan. As
a consequence of this definition, the real line crosses the branch cut, and arccot has a
jump discontinuity at the origin.

The float attributes are kernel functions. Thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, arccot is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arccot with the following exact and symbolic input arguments:

arccot(1), arccot(1/sqrt(2)), arccot(5 + I),

arccot(1/3), arccot(0), arccot(I/2)

arccot(-x), arccot(x + 1), arccot(1/x)

Floating-point values are computed for floating-point arguments:

arccot(0.1234), arccot(5.6 + 7.8*I), arccot(1.0/10^20)

Floating-point intervals are computed for interval arguments:
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arccot(-4...4), arccot(0...1)

Example 2

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

arccot(5*I), arccot(5/4*I), arccot(-3*I)

For other complex arguments unevaluated function calls without simplifications are
returned:

arccot(1/2^(1/2) + I), arccot(1 - 3*I)

Example 3

Some special values are implemented:

arccot(1), arccot((5 - 2*5^(1/2))^(1/2)), arccot(3^(1/2) - 2)

Such simplifications occur for arguments that are trigonometric images of rational
multiples of π:

cot(9/10*PI), arccot(cot(9/10*PI))
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Example 4

The values jump when crossing a branch cut:

arccot(0.5*I + 10^(-10)), arccot(0.5*I - 10^(-10))

On the branch cut, the values of arccot coincide with the limit “from the right” for
imaginary arguments x = c*i where 0 < c < 1:

limit(arccot(0.5*I - 1/n), n = infinity);

limit(arccot(0.5*I + 1/n), n = infinity);

arccot(0.5*I)

The values coincide with the limit “from the left” for imaginary arguments x = c*i
where -1 < c < 0:

limit(arccot(-0.5*I - 1/n), n = infinity);

limit(arccot(-0.5*I + 1/n), n = infinity);

arccot(-0.5*I)

Example 5

The inverse cotangent function can be rewritten in terms of the logarithm function with
complex arguments:
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rewrite(arccot(x), ln)

Example 6

diff, float, limit, taylor, series, and other system functions handle expressions
involving the inverse trigonometric functions:

diff(arccot(x^2), x), float(arccos(3)*arccot(5 + I))

limit(arccot(1 - sin(x)/x), x = 0)

taylor(arccot(1/x), x = 0)

series(arccot(x), x = 0)

Parameters

x

Arithmetical expression or floating-point interval

1-197



1 The Standard Library

Return Values

Arithmetical expression or floating-point interval.

Overloaded By

x

See Also

MuPAD Functions
arccos | arccsc | arcsec | arcsin | arctan | arg | cos | cot | csc | sec | sin |
tan
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arcsinh

Inverse of the hyperbolic sine function

Syntax

arcsinh(x)

Description

arcsinh(x) represents the inverse of the hyperbolic sine function.

arcsinh is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The following special value is implemented: arcsinh(0) = 0.

The inverse hyperbolic sine function is multivalued. The MuPAD implementation returns
values on the main branch defined by the following restriction of the imaginary part. For

any finite complex x, - £ ¡ ( )( ) £
p p

2 2
arcsinh x .

The inverse hyperbolic sine function is implemented according to the following relation to
the logarithm function: arcsinh(x) = ln(x + sqrt(x^2 + 1)). See “Example 2” on
page 1-200.

Consequently, the branch cuts are the intervals - • -( )i i,  and i i, •( )  on the imaginary
axis. The values jump when the argument crosses a branch cut. See “Example 3” on page
1-201.

The float attributes are kernel functions, and floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, arcsinh is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arcsinh with the following exact and symbolic input arguments:

arcsinh(1), arcsinh(-1/sqrt(3)), arcsinh(5 + I),

arcsinh(1/3), arcsinh(I), arcsinh(2)

arcsinh(-x), arcsinh(x + 1), arcsinh(1/x)

Floating-point values are computed for floating-point arguments:

arcsinh(0.1234), arcsinh(5.6 + 7.8*I), arcsinh(1.0/10^20)

Floating-point intervals are computed for interval arguments:

arcsinh(-0.5...1.5), arcsinh(0.1234...0.12345)

Example 2

The inverse hyperbolic sine function can be rewritten in terms of the logarithm function:
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rewrite(arcsinh(x), ln)

Example 3

The values jump when crossing a branch cut:

arcsinh(2.0*I + 10^(-10)), arcsinh(2.0*I - 10^(-10))

On the branch cut i i, •( ) , the values of arcsinh coincide with the limit “from the right”
for imaginary arguments:

limit(arcsinh(2.0*I - 1/n), n = infinity);

limit(arcsinh(2.0*I + 1/n), n = infinity);

arcsinh(2.0*I)

On the branch cut - • -( )i i, , the values of arcsinh coincide with the limit “from the left”
for imaginary arguments:

limit(arcsinh(-2.0*I - 1/n), n = infinity);

limit(arcsinh(-2.0*I + 1/n), n = infinity);

arcsinh(-2.0*I)
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Example 4

diff, float, limit, taylor, series, and other system functions handle expressions
involving the inverse hyperbolic functions:

diff(arcsinh(x^2), x), float(arcsinh(3)*arctanh(5 + I))

limit(arcsinh(x)/x, x = 0)

taylor(arcsinh(x), x = 0)

series(arcsinh(1/x), x = 0, Right)

Parameters

x

Arithmetical expression or floating-point interval

1-202



 arcsinh

Return Values

Arithmetical expression or floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsech | arctanh | cosh | coth | csch | sech |
sinh | tanh
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arccosh

Inverse of the hyperbolic cosine function

Syntax

arccosh(x)

Description

arccosh(x) represents the inverse of the hyperbolic cosine function.

arccosh is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The following special values are implemented:

arccosh , arccosh , arccosh-( ) = ( ) = ( ) =1 0
2

1 0i
i

p
p .

The inverse hyperbolic cosine function is multivalued. The MuPAD implementation
returns values on the main branch defined by the following restriction of the imaginary
part. For any finite complex x, - < ¡ ( )( ) £p parccosh x .

The inverse hyperbolic cosine function is implemented according to the following relation
to the logarithm function: arccosh(x) = ln(x + (x-1)^(1/2)*(x+1)^(1/2)). See
“Example 2” on page 1-205.

Consequently, the branch cuts are the real interval (-∞, 1) and the imaginary axis. The
values jump when the argument crosses a branch cut. See “Example 3” on page 1-206.

The float attributes are kernel functions, and floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, arccosh is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arccosh with the following exact and symbolic input arguments:

arccosh(2), arccosh(1/sqrt(3)), arccosh(5 + I),

arccosh(1/3), arccosh(I), arccosh(2 - I)

arccosh(-x), arccosh(x + 1), arccosh(1/x)

Floating-point values are computed for floating-point arguments:

arccosh(1.1234), arccosh(2.0), arccosh(5.6 + 7.8*I)

Floating-point intervals are computed for interval arguments:

arccosh(1.1...5.5), arccosh(1.1234...1.12345)

Example 2

The inverse hyperbolic cosine function can be rewritten in terms of the logarithm
function:
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rewrite(arccosh(x), ln)

Example 3

The values jump when crossing a branch cut:

arccosh(0.5 + I/10^10), arccosh(0.5 - I/10^10)

On the branch cut, the values of arccosh coincide with the limit “from below” for real
arguments x < 0:

limit(arccosh(-0.5 - I/n), n = infinity);

limit(arccosh(-0.5 + I/n), n = infinity);

arccosh(-0.5)

The values coincide with the limit “from above” for real 0 < x < 1:

limit(arccosh(0.5 - I/n), n = infinity);

limit(arccosh(0.5 + I/n), n = infinity);

arccosh(0.5)
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Example 4

diff, float, limit, series, and other system functions handle expressions involving
the inverse hyperbolic functions:

diff(arccosh(x^2), x), float(arccosh(3)*arctanh(5 + I))

limit(arccosh(x)/x, x = infinity)

series(arccosh(1/x), x = 0, 3)

Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression or floating-point interval

Overloaded By

x
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See Also

MuPAD Functions
arccoth | arccsch | arcsech | arcsinh | arctanh | cosh | coth | csch | sech |
sinh | tanh
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arctanh
Inverse of the hyperbolic tangent function

Syntax
arctanh(x)

Description
arctanh(x) represents the inverse of the hyperbolic tangent function.

arctanh is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The following special value is implemented: arctanh(0) = 0.

The inverse hyperbolic tangent function is multivalued. The MuPAD implementation
returns values on the main branch defined by the following restriction of the imaginary

part. For any finite complex x, - < ¡ ( )( ) <
p p

2 2
arctanh x .

The inverse hyperbolic tangent function is implemented according to the following
relation to the logarithm function: arctanh(x) = (ln(1 + x) - ln(1 - x))/2. See
“Example 2” on page 1-211.

Consequently, the branch cuts are the real intervals -• -( ], 1  and 1,•[ ) . The values jump
when the argument crosses a branch cut. See “Example 3” on page 1-211.

The float attributes are kernel functions, and floating-point evaluation is fast.

Environment Interactions
When called with a floating-point argument, arctanh is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call arctanh with the following exact and symbolic input arguments:

arctanh(-1/2), arctanh(1/sqrt(3)), arctanh(5 + I),

arctanh(1/3), arctanh(I), arctanh(2)

arctanh(-x), arctanh(x + 1), arctanh(1/x)

Floating-point values are computed for floating-point arguments:

arctanh(0.1234), arctanh(-0.5), arctanh(5.6 + 7.8*I)

Floating-point intervals are computed for interval arguments:

arctanh(-0.7...0.7), arctanh(0.1234...0.12345)

The inverse of the hyperbolic tangent function has real values only in the interval (- 1, 1):

arctanh(-2...-1), arctanh(2...3)
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Example 2

The inverse hyperbolic tangent function can be rewritten in terms of the logarithm
function:

rewrite(arctanh(x), ln)

Example 3

The values jump when crossing a branch cut:

arctanh(2.0 + I/10^10), arctanh(2.0 - I/10^10)

On the branch cut, the values of arctanh coincide with the limit “from below” for real
arguments x > 1:

limit(arctanh(2.0 - I/n), n = infinity);

limit(arctanh(2.0 + I/n), n = infinity);

arctanh(2.0)

The values coincide with the limit “from above” for real x < -1:

limit(arctanh(-2.0 - I/n), n = infinity);

limit(arctanh(-2.0 + I/n), n = infinity);

arctanh(-2.0)
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Example 4

diff, float, limit, taylor, series, and other system functions handle expressions
involving the inverse hyperbolic functions:

diff(arctanh(x^2), x), float(arccosh(3)*arctanh(5 + I))

limit(arcsinh(x)/arctanh(x), x = 0)

taylor(arctanh(x), x = 0)

series(arctanh(1/x), x = 0)

Parameters

x

Arithmetical expression or floating-point interval
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Return Values

Arithmetical expression or floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsech | arcsinh | cosh | coth | csch | sech |
sinh | tanh
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arccsch
Inverse of the hyperbolic cosecant function

Syntax
arccsch(x)

Description

arccsch(x) represents the inverse of the hyperbolic cosecant function.

arccsch is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The inverse hyperbolic cosecant function is multivalued. MuPAD rewrites arccsch as
arccsch(x) = arcsinh(1/x). The MuPAD implementation for arcsinh returns
values on the main branch defined by the following restriction of the imaginary part. For

any finite complex x, - £ ¡ ( )( ) £
p p

2 2
arcsinh x

The inverse hyperbolic cosecant function is implemented according to the following
relation to the logarithm function: arccsch(x) = ln(1/x + sqrt(1/x^2 + 1)). See
“Example 2” on page 1-215.

Consequently, the branch cut is the interval (-i, i) on the imaginary axis. The values
jump when the argument crosses a branch cut. See “Example 3” on page 1-216.

The float attributes are kernel functions, and floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, arccsch is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call arccsch with the following exact and symbolic input arguments:

arccsch(-1), arccsch(1/sqrt(3)), arccsch(5 + I),

arccsch(1/3), arccsch(I), arccsch(2)

arccsch(-x), arccsch(x + 1), arccsch(1/x)

Floating-point values are computed for floating-point arguments:

arccsch(0.1234), arccsch(5.6 + 7.8*I), arccsch(1.0/10^20)

Floating-point intervals are computed for interval arguments:

arccsch(-1.5...-0.5), arccsch(0.1234...0.12345)

Example 2

The inverse hyperbolic cosecant function can be rewritten in terms of the logarithm
function:

rewrite(arccsch(x), ln)
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Example 3

The values jump when crossing a branch cut:

arccsch(0.5*I + 1/10^10), arccsch(0.5*I - 1/10^10)

On the branch cut, the values of arccsch coincide with the limit “from the left” for
imaginary arguments x = c*i where -1 < c < 0:

limit(arccsch(0.5*I - 1/n), n = infinity);

limit(arccsch(0.5*I + 1/n), n = infinity);

arccsch(0.5*I)

The values coincide with the limit “from the right” for imaginary arguments x = c*i
where 0 < c < 1:

limit(arccsch(-0.5*I - 1/n), n = infinity);

limit(arccsch(-0.5*I + 1/n), n = infinity);

arccsch(-0.5*I)
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Example 4

diff, float, limit, taylor, series, and other system functions handle expressions
involving the inverse hyperbolic functions:

diff(arccsch(x^2), x), float(arccsch(3)*arctanh(5 + I))

limit(x/arccsch(1/x), x = 0)

1

taylor(arccsch(1/x), x = 0)

series(arccsch(x), x = 0, Right)

Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression or floating-point interval
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Overloaded By

x

See Also

MuPAD Functions
arccosh | arccoth | arcsech | arcsinh | arctanh | cosh | coth | csch | sech |
sinh | tanh
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arcsech

Inverse of the hyperbolic secant function

Syntax

arcsech(x)

Description

arcsech(x) represents the inverse of the hyperbolic secant function.

arcsech is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The inverse hyperbolic secant function is multivalued. MuPAD rewrites arcsech as
arcsech(x) = arccosh(1/x). The MuPAD implementation for arccosh returns
values on the main branch defined by the following restriction of the imaginary part. For
any finite complex x, - < ¡ ( )( ) £p parccosh x .

The inverse hyperbolic secant function is implemented according to the following relation
to the logarithm function: arcsech(x) = ln(1/x + (1/x - 1)^(1/2)*(1/x +
1)^(1/2)). See “Example 2” on page 1-220.

Consequently, the branch cuts are the real intervals (-∞, 0) and (1, ∞) together with the
imaginary axis.

The values jump when the argument crosses a branch cut. See “Example 3” on page
1-221.

The float attributes are kernel functions, and floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, arcsech is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arcsech with the following exact and symbolic input arguments:

arcsech(1), arcsech(1/sqrt(3)), arcsech(5 + I),

arcsech(1/3), arcsech(I), arcsech(2)

arcsech(-x), arcsech(x + 1), arcsech(1/x)

Floating-point values are computed for floating-point arguments:

arcsech(0.1234), arcsech(5.6 + 7.8*I), arcsech(1.0/10^20)

Floating-point intervals are computed for interval arguments:

arcsech(0.5...1), arcsech(0.1234...0.12345)

Example 2

The inverse hyperbolic functions can be rewritten in terms of the logarithm function:
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rewrite(arcsech(x), ln)

Example 3

The values jump when crossing a branch cut:

arcsech(2.0 + I/10^10), arcsech(2.0 - I/10^10)

On the branch cut, the values of arcsech coincide with the limit “from below” for real
arguments x > 1:

limit(arcsech(2.0 - I/n), n = infinity);

limit(arcsech(2.0 + I/n), n = infinity);

arcsech(2.0)

The values coincide with the limit “from above” for real x < 0:

limit(arcsech(-2.0 - I/n), n = infinity);

limit(arcsech(-2.0 + I/n), n = infinity);

arcsech(-2.0)
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Example 4

diff, float, limit, series, and other system functions handle expressions involving
the inverse hyperbolic functions:

diff(arcsech(x), x), float(arcsech(3)*arctanh(5 + I))

limit(x/arcsech(x), x = 0)

series(arcsech(x), x = 0, 3)

Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression or floating-point interval

Overloaded By

x
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See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsinh | arctanh | cosh | coth | csch | sech |
sinh | tanh
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arccoth
Inverse of the hyperbolic cotangent function

Syntax
arccoth(x)

Description

arccoth(x) represents the inverse of the hyperbolic cotangent function.

arccoth is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The following special value is implemented: arccoth 0
2

( ) =
ip .

The inverse hyperbolic cotangent function is multivalued. The MuPAD implementation
returns values on the main branch defined by the following restriction of the imaginary

part. For any finite complex x, - < ¡ ( )( ) £
p p

2 2
arccoth x .

arccoth is defined by arccoth(x) = arctanh(1/x). However, MuPAD does not
automatically rewrite it in terms of arctanh.

The inverse hyperbolic tangent function is implemented according to the following
relation to the logarithm function: arccoth(x) = (ln(1 + 1/x) - ln(1 - 1/
x))/2. See “Example 2” on page 1-225.

Consequently, the branch cut is the real interval [-1, 1]. The values jump when the
argument crosses a branch cut. See “Example 3” on page 1-226.

The float attributes are kernel functions, thus, floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, arccoth is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call arccoth with the following exact and symbolic input arguments:

arccoth(-3), arccoth(3/sqrt(3)), arccoth(5 + I),

arccoth(1/3), arccoth(I), arccoth(2)

arccoth(-x), arccoth(x + 1), arccoth(1/x)

Floating-point values are computed for floating-point arguments:

arccoth(-1.1234), arccoth(5.6 + 7.8*I), arccoth(1.0/10^20)

Floating-point intervals are computed for interval arguments:

arccoth(-1.5...-1.1), arccoth(1.1234...1.12345)

Example 2

The inverse hyperbolic cotangent function can be rewritten in terms of the logarithm
function:
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rewrite(arccoth(x), ln)

Example 3

The values jump when crossing a branch cut:

arccoth(0.5 + I/10^10), arccoth(0.5 - I/10^10)

On the branch cut, the values of arccoth coincide with the limit “from above” for real
arguments 0 < x < 1:

limit(arccoth(0.5 - I/n), n = infinity);

limit(arccoth(0.5 + I/n), n = infinity);

arccoth(0.5)

The values coincide with the limit “from below” for real -1 < x < 0:

limit(arccoth(-0.5 - I/n), n = infinity);

limit(arccoth(-0.5 + I/n), n = infinity);

arccoth(-0.5)
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Example 4

diff, float, limit, taylor, series, and other system functions handle expressions
involving the inverse hyperbolic functions:

diff(arccoth(x^2), x), float(arccosh(3)*arccoth(5 + I))

limit(1/arccoth(sin(x)/x), x = 0)

taylor(arccoth(1/x), x = 0)

series(arccoth(x), x = 0)

Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression or floating-point interval
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Overloaded By

x

See Also

MuPAD Functions
arccosh | arccsch | arcsech | arcsinh | arctanh | cosh | coth | csch | sech |
sinh | tanh
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arg
Argument (polar angle) of a complex number

Syntax
arg(z)

arg(x, y)

Description

arg(z) returns the argument of the complex number z.

arg(x, y) returns the argument of the complex number with real part x and imaginary
part y.

This function is also known as atan2 in other mathematical languages.

The argument of a non-zero complex number z = x + i y = |z| ei ϕ is its real polar angle ϕ.
arg(x,y) represents the principal value . For x ≠ 0, y ≠ 0, it is given by

An error occurs if arg is called with two arguments and either one of the arguments x, y
is a non-real numerical value. Symbolic arguments are assumed to be real.

On the other hand, if arg is called with only one argument x + I*y, it is not assumed
that x and y are real.

A floating-point number is returned if one argument is given which is a floating-point
number; or if two arguments are given, both of them are numerical and at least one of
them is a floating-point number.

If the sign of the arguments can be determined, then the result is expressed in terms of
arctan. Cf. “Example 2” on page 1-231. Otherwise, a symbolic call of arg is returned.
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Numerical factors are eliminated from the first argument. Cf. “Example 3” on page
1-231.

A symbolic call to arg returned has only one argument.

The call arg(0,0), or equivalently arg(0), returns 0.

An alternative representation is . Cf. “Example 4”

on page 1-232.

Environment Interactions

When called with floating-point arguments, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision. Properties of
identifiers are taken into account.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

arg(2, 3), arg(x, 4), arg(4, y), arg(x, y), arg(10, y + PI)

If arg is called with two arguments, the arguments are implicitly assumed to be real,
which allows some additional simplifications compared to a call with only one argument:

arg(1, y), arg(1 + I*y)

arg(x, infinity), arg(-infinity, 3), arg(-infinity, -3)
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Floating point values are computed for floating-point arguments:

arg(2.0, 3), arg(2, 3.0), arg(10.0^100, 10.0^(-100))

Example 2

arg reacts to properties of identifiers set via assume:

assume(x > 0): assume(y < 0): arg(x, y)

assume(x < 0): assume(y > 0): arg(x, y)

assume(x <> 0): arg(x, 3)

unassume(x), unassume(y):

Example 3

Certain simplifications may occur in unevaluated calls. In particular, numerical factors
are eliminated from the first argument:

arg(3*x, 9*y), arg(-12*sqrt(2)*x, 12*y)
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Example 4

Use rewrite to convert symbolic calls of arg to the logarithmic representation:

rewrite(arg(x, y), ln)

Example 5

System functions such as float, limit, or series handle expressions involving arg:

limit(arg(x, x^2/(1+x)), x = infinity)

series(arg(x, x^2), x = 1, 4, Real)

Parameters

z

arithmetical expression

x, y

arithmetical expressions representing real numbers

Return Values

Arithmetical expression.
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Overloaded By

x,  z

See Also

MuPAD Functions
arctan | Im | Re | rectform
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args

Access procedure parameters

Syntax

args()

args(0)

args(i)

args(i .. j)

Description

args(0) returns the number of parameters of the current procedure.

args(i) returns the value of the ith parameter of the current procedure.

args accesses the actual parameters of a procedure and can only be used in procedures.
It is mainly intended for procedures with a variable number of arguments, since
otherwise parameters can simply be accessed by their names.

args() returns an expression sequence of all actual parameters.

args(i..j) returns an expression sequence containing the ith up to the jth parameter.

In procedures with option hold, args returns the parameters without further
evaluation. Use context or eval to enforce a subsequent evaluation. See “Example 2”
on page 1-236.

procname ( args()) returns a symbolic function call of the current procedure with
evaluated arguments.

Assigning values to formal parameters of a procedure changes the result of args. Cf.
“Example 4” on page 1-236. args(0) remains unchanged.
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Examples

Example 1

This example demonstrates the various ways of using args:

f := proc() begin

  print(Unquoted, "number of arguments" = args(0)):

  print(Unquoted, "sequence of all arguments" = args()):

  if args(0) > 0 then

    print(Unquoted, "first argument" = args(1)):

  end_if:

  if args(0) >= 3 then

    print(Unquoted, "second, third argument" = args(2..3)):

  end_if:

end_proc:

f():

number of arguments = 0

sequence of all arguments =

f(42):

number of arguments = 1

sequence of all arguments = 42

first argument = 42

f(a, b, c, d):

number of arguments = 4

sequence of all arguments = (a, b, c, d)
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first argument = a

second, third argument = (b, c)

Example 2

args does not evaluate the returned parameters in procedures with the option hold. Use
context to achieve this:

f := proc()

  option hold;

begin

  args(1), context(args(1))

end_proc:

delete x, y: x := y: y := 2: f(x)

Example 3

We use args to access parameters of a procedure with an arbitrary number of
arguments:

f := proc() begin

  args(1) * _plus(args(2..args(0)))

end_proc:

f(2, 3), f(2, 3, 4)

Example 4

Assigning values to formal parameters affects the behavior of args. In the following
example, args returns the value 4, which is assigned inside the procedure, and not the
value 1, which is the argument of the procedure call:

f := proc(a) begin a := 4; args() end_proc:

f(1)
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Parameters

i, j

Positive integers

Return Values

args(0) returns a nonnegative integer. All other calls return an arbitrary MuPAD
object or a sequence of such objects.

See Also

MuPAD Domains
DOM_PROC | DOM_VAR

MuPAD Functions
context | Pref::typeCheck | proc | procname | testargs
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array
Create an array

Compatibility

For arrays in MATLAB, see “Matrices and Arrays”.

Syntax
array(m1 .. n1, <m2 .. n2, …>)

array(m1 .. n1, <m2 .. n2, …>, index1 = entry1, index2 = entry2, …)

array(m1 .. n1, <m2 .. n2, …>, List)

array(<m1 .. n1, m2 .. n2, …>, ListOfLists)

Description

array(...) creates an array, which is an n-dimensional rectangular structure holding
arbitrary data.

array(m_1..n_1, m_2..n_2, ...) creates an array with uninitialized entries, where
the first index runs from m1 to n1, the second index runs from m2 to n2, and so on.

array( m_1..n_1, m_2..n_2 , ..., List) creates an array with entries
initialized from List.

array(ListOfLists) creates an array with entries initialized from ListOfLists. The
dimension of the array is the same as the dimension of ListOfLists.

Arrays are container objects for storing data. In contrast to tables, the indices must be
sequences of integers. While tables can grow in size dynamically, the number of entries
in an array created by array is fixed.

Arrays created by array are of domain type DOM_ARRAY. They may contain arbitrary
MuPAD objects as entries.
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For an array A of type DOM_ARRAY or DOM_HFARRAY and a sequence of integers index
forming a valid array index, an indexed call A[index] returns the corresponding entry.
If the entry of an array of type DOM_ARRAY is uninitialized, then the indexed expression
A[index] is returned. See “Example 1” on page 1-240 and “Example 5” on page
1-243.

An indexed assignment of the form A[index] := entry initializes or overwrites the
entry corresponding to index. See “Example 1” on page 1-240 and “Example 5” on
page 1-243.

The index boundaries must satisfy m1 ≤ n1, m2 ≤ n2, and so on. The dimension of the
resulting array is the number of given range arguments; at least one range argument
must be specified. The total number of entries of the resulting array is (n1 - m1 + 1) (n2 -
m2 + 1) ….

If only index range arguments are given, then array creates an array with uninitialized
entries. Entries are automatically set to 0.0 if no values are specified. See “Example 1” on
page 1-240.

If equations of the form index = entry are present, then the array entry corresponding
to index is initialized with entry. This is useful for selectively initializing some
particular array entries.

Each index must be a valid array index of the form i1 for one-dimensional arrays and
(i1, i2, …) for higher-dimensional arrays, where i1, i2, … are integers within valid
boundaries, satisfying m1 ≤ i1 ≤ n1, m2 ≤ i2 ≤ n2, and so on, and the number of integers in
index matches the dimension of the array.

If you use the argument List, then the resulting array is initialized with the entries
from List. This is useful for initializing all array entries at once. List must have (n1 -
m1 + 1) (n2 - m2 + 1) … elements, each becoming an operand of the array to be created. In
case of two-dimensional arrays, regarded as matrices, the list contains the entries row
after row.

The argument ListOfLists must be a nested list matching the structure of the array
exactly. The nesting depth of the list must be greater or equal to the dimension of the
array. The number of list entries at the k-th nesting level must be equal to the size of the
k-th index range, that is, nk - mk + 1. See “Example 7” on page 1-244.

delete A[index] deletes the entry corresponding to index, so that it becomes
uninitialized. See “Example 5” on page 1-243.
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Note: Internally, uninitialized entries of an array of domain type DOM_ARRAY have
the value NIL. Thus assigning NIL to an array entry has the same effect as deleting it
via delete. Afterwards, an indexed call of the form A[index] returns the symbolic
expression A[index], and not NIL. See “Example 5” on page 1-243.

A one-dimensional array is printed as a row vector. The index corresponds to the column
number.

A two-dimensional array is printed as a matrix. The first index corresponds to the row
number, and the second index corresponds to the column number.

Big arrays that exceed the maximal output width TEXTWIDTH are printed in the
form array( m_1..n_1, m_2..n_2, dots, index_1 = entry_1, index_2 =
entry_2, dots ). See “Example 6” on page 1-244, “Example 7” on page 1-244, and
“Example 10” on page 1-246.

Arithmetic operations are not defined for arrays of domain type DOM_ARRAY. Use matrix
to create one-dimensional vectors or two-dimensional matrices in the mathematical
sense.

Note the following special feature of arrays of domain type DOM_ARRAY:

Note: If an array is evaluated, it is only returned. The evaluation does not map
recursively on the array entries! This is due to performance reasons. You have to map the
function eval explicitly on the array in order to fully evaluate its entries. See “Example
8” on page 1-245

Examples

Example 1

Create an uninitialized one-dimensional array with indices ranging from 2 to 4:

A := array(2..4)
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The NILs in the output indicate that the array entries are not initialized. Set the middle
entry to 5 and last entry to "MuPAD":

A[3] := 5: A[4] := "MuPAD": A

You can access array entries by using indexed calls. Because the entry A[2] is not
initialized, the symbolic expression A[2] is returned:

A[2], A[3], A[4]

You can initialize an array already when creating it by passing initialization equations to
array:

A := array(2..4, 3 = 5, 4 = "MuPAD")

You can initialize all entries of an array when creating it by passing a list of initial
values to array:

array(2..4, [PI, 5, "MuPAD"])

Example 2

Array boundaries can be specified by negative integers:

A := array(-1..1, [2, sin(x), FAIL])

A[-1], A[0], A[1]
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delete A:

Example 3

If the dimension and size of the array are not specified explicitly, then both values are
taken from the given list:

array([[1,2],[3,4],[5,6]]) = array(1..3, 1..2, [[1,2],[3,4],[5,6]]);

bool(%)

Note that all subfields of one dimension must have the same size and dimension.
Therefore, the following input leads to an error:

array([[1],[3,4],[5,6]])

Error: The argument is invalid. [array]

Example 4

You can use the $ operator to create a sequence of initialization equations:

array(1..8, i = i^2 $ i = 1..8)

Equivalently, you can use the $ operator to create an initialization list:

array(1..8, [i^2 $ i = 1..8])
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Example 5

Create a 2×2 matrix as a two-dimensional array:

A := array(1..2, 1..2, (1, 2) = 42, (2, 1) = 1 + I)

Internally, array entries are stored in a linearized form. They can be accessed in this
form via op. Uninitialized entries internally have the value NIL:

op(A, 1), op(A, 2), op(A, 3), op(A, 4)

Note the difference to the indexed access:

A[1, 1], A[1, 2], A[2, 1], A[2, 2]

Modify an array entry by an indexed assignment:

A[1, 1] := 0: A[1, 2] := 5:

A

Delete the value of an array entry via delete. Afterwards, it is uninitialized again:

delete A[2, 1]: A[2, 1], op(A, 3)

Assigning NIL to an array entry has the same effect as deleting it:

A[1, 2] := NIL: A[1, 2], op(A, 2)
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Example 6

Define a three-dimensional array with index values between 1 and 8 in each of the three
dimensions. Initialize two of the entries via initialization equations:

A := array(1..8, 1..8, 1..8, (1, 1, 1) = 111, (8, 8, 8) = 888)

A[1, 1, 1], A[1, 1, 2]

delete A

Example 7

You can use a nested list to initialize a two-dimensional array. The inner lists are the
rows of the created matrix:

array(1..2, 1..3, [[1, 2, 3], [4, 5, 6]])

Create a three-dimensional array and initialize it from a nested list of depth three. The
outer list has two entries for the first dimension. Each of these entries is a list with three
entries for the second dimension. Finally, the innermost lists each have one entry for the
third dimension:

array(2..3, 1..3, 1..1,
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      [

        [ [1], [2], [3] ],

        [ [4], [5], [6] ]

      ])

Example 8

If an array is evaluated, it is only returned. The evaluation does not map recursively on
the array entries. Here, the entries a and b are not evaluated:

A := array(1..2, [a, b]):

a := 1:  b := 2:

A, eval(A)

Due to the special evaluation of arrays the index operator evaluates array entries after
extracting them from the array:

A[1], A[2]

To fully evaluate its entries, map the function eval explicitly on the array:

map(A, eval)

1-245



1 The Standard Library

Example 10

A two-dimensional array is usually printed in a matrix form:

A := array(1..4, 1..4, (1, 1) = 11, (4, 4) = 44)

If the output does not fit into TEXTWIDTH, a more compact output is used in print:

PRETTYPRINT := FALSE:

TEXTWIDTH := 20:

print(Plain, A)

array(1..4, 1..4, (\

1, 1) = 11, (4, 4) \

= 44)

PRETTYPRINT := TRUE:

delete A, TEXTWIDTH

Parameters

m1, n1, m2, n2, …

The index boundaries: integers

index1, index2, …

A sequence of integers defining a valid array index

entry1, entry2, …

Arbitrary objects

List

A plain list of entries for initializing the array
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ListOfLists

A nested list (of lists of lists of …) of entries for initializing the array

Return Values

Object of type DOM_ARRAY.

See Also

MuPAD Domains
DOM_ARRAY | DOM_HFARRAY | DOM_LIST | DOM_TABLE

MuPAD Functions
_assign | _index | assignElements | delete | hfarray | indexval | matrix |
table
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hfarray
Create an array of hardware floating-point values

Syntax
hfarray(m1 .. n1, <m2 .. n2, …>)

hfarray(m1 .. n1, <m2 .. n2, …>, index1 = number1, index2 = number2, …)

hfarray(m1 .. n1, <m2 .. n2, …>, List)

hfarray(<m1 .. n1, m2 .. n2, …>, ListOfLists)

Description

hfarray(...) creates an array specialized to hold hardware floating-point values.
These values do not react to DIGITS, and no symbolic expressions can be placed into an
hfarray. The values can be real or complex. If you pass symbolic objects to hfarray, it
throws an error.

hfarray(m_1..n_1, m_2..n_2, ...) creates an array of floating-point zeroes, where
the first index runs from m1 to n1, the second index runs from m2 to n2, and so on.

hfarray(m_1..n_1, m_2..n_2, ..., List) creates an array of floating-point
numbers with entries initialized from List.

hfarray(ListOfLists) creates an array of floating-point numbers with entries
initialized from ListOfLists. The dimension of the hfarray is the same as the
dimension of ListOfLists.

Arrays are container objects for storing data. In contrast to tables, the indices must be
sequences of integers. While tables can grow in size dynamically, the number of entries
in an array created by hfarray is fixed.

Arrays created via hfarray are of domain type DOM_HFARRAY. They can only contain
floating-point numbers as entries. Internally, these floating-point numbers are stored as
hardware floating values with about 15 significant decimal digits (“double precision”).
This data type serves for storing large amounts of numerical data. For example, an
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array of floating-point values with 15 significant decimal digits created via array (using
DIGITS = 15) takes nearly 10 times as much storage space as the corresponding array
created by hfarray.

On input, the entries passed to hfarray can be MuPAD floating-point numbers, integers
or rational numbers, or exact numerical expressions such as PI + sin(sqrt(2)) that
can be converted to floating-point numbers. Exact input data are automatically converted
to hardware floating-point values of double precision. This conversion does not depend on
the current value of DIGITS!

Note: Entries of absolute value smaller than about 10- 308 are stored as 0.0 by hfarray!

For an array A of type DOM_HFARRAY and a sequence of integers index forming a valid
array index, an indexed call A[index] returns the corresponding entry. See “Example 1”
on page 1-250 and “Example 5” on page 1-253.

An indexed assignment of the form A[index] := entry initializes or overwrites the
entry corresponding to index. See “Example 1” on page 1-250 and “Example 5” on
page 1-253.

The index boundaries must satisfy m1 ≤ n1, m2 ≤ n2, and so on. The dimension of the
resulting array is the number of given range arguments; at least one range argument
must be specified. The total number of entries of the resulting array is (n1 - m1 + 1) (n2 -
m2 + 1) ….

Arrays created by hfarray cannot have uninitialized entries. Entries are automatically
set to 0.0 if no values are specified. See “Example 1” on page 1-250.

If equations of the form index = entry are present, then the array entry corresponding
to index is initialized with entry. This is useful for selectively initializing some
particular array entries.

Each index must be a valid array index of the form i1 for one-dimensional arrays and
(i1, i2, …) for higher-dimensional arrays, where i1, i2, … are integers within
the valid boundaries, satisfying m1 ≤ i1 ≤ n1, m2 ≤ i2 ≤ n2, and so on, and the number of
integers in index matches the dimension of the array.

If you use the argument List, then the resulting array is initialized with the entries
from List. This is useful for initializing all array entries at once. The list must have (n1
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- m1 + 1) (n2 - m2 + 1) … elements, each becoming an operand of the array to be created.
In case of two-dimensional arrays, regarded as a matrix, the list contains the entries row
after row.

The argument ListOfLists must be a nested list matching the structure of the array
exactly. The nesting depth of the list must be greater or equal to the dimension of the
array. The number of list entries at the k-th nesting level must be equal to the size of the
k-th index range, that is, nk - mk + 1. See “Example 7” on page 1-254.

A one-dimensional array is printed as a row vector. The index corresponds to the column
number.

A two-dimensional array is printed as a matrix. The first index corresponds to the row
number, and the second index corresponds to the column number.

Arrays of dimension greater than two are printed in the form hfarray(m_1..n_1,
m_2..n_2, dots, index_1 = entry_1, index_2 = entry_2, ...). See
“Example 6” on page 1-253 and “Example 7” on page 1-254.

Arithmetic operations are not defined for arrays of domain type DOM_ARRAY. Use matrix
to create 1-dimensional vectors or 2-dimensional matrices in the mathematical sense.

Arithmetic operations are defined for arrays of domain type DOM_HFARRAY. For example,
linear combination of arrays A, B can be computed via a*A + b*B if A, B have the
same format and if the scalar factors a, b are numbers (floating-point values, integers,
or rationals). Two-dimensional hfarrays A, B are processed like matrices: operations,
such as matrix multiplication A*B, matrix powers A^n, or matrix inversion 1/A, are
possible wherever this is meaningful mathematically. See “Example 8” on page 1-254.

Examples

Example 1

Hardware float arrays do not have uninitialized entries. If no initialization value is
given, the corresponding entry is set to 0.0:

hfarray(-1..5)
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Set one of the entries to the floating-point approximation of PI and another entry to the
floating-point approximation of sqrt(2)*exp(2):

hfarray(-1..5, 2 = PI, 4 = sqrt(2)*exp(2))

Use a list of random values to specify entries of the array:

hfarray(-1..5, [frandom() $ i = -1..5])

Use a nested list to specify entries of an array:

hfarray(1..2, 1..3, [[1, 2, 3], [4, 5, 6]])

Alternatively, use a flat list:

hfarray(1..2, 1..3, [1, 2, 3, 4, 5, 6])

Example 2

Array boundaries may be negative integers as well:

A := hfarray(-1..2, -3..-1, [[-1, -1, -1],

                             [ 0,  0,  0],

                             [ 1,  1,  1],

                             [ 2,  2,  2]])
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A[-1, -2], A[0, -3], A[2, -3]

delete A:

Example 3

If the dimension and size of the hfarray are not specified explicitly, then both values are
taken from the given list:

hfarray([1.0,2.0,3.0,4.0,5.0]) = hfarray(1..5, [1.0,2.0,3.0,4.0,5.0]);

bool(%)

Note that all subfields of one dimension must have the same size and dimension.
Therefore, the following input leads to an error:

hfarray([[1],[3,4],[5,6]])

Error: The argument is invalid. [hfarray]

Example 4

You can use the $ operator to create a sequence of initialization equations:

hfarray(1..4, 1..4, (i, i) = 1 $ i = 1..4)

Equivalently, you can use the $ operator to create an initialization list:

hfarray(1..8, [i*PI $ i = 1..8])
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Example 5

Create a 2×2 matrix as a 2-dimensional array:

A := hfarray(1..2, 1..2, (1, 1) = 1.0, (2, 2) = 1.0)

Internally, array entries are stored in a linearized form. They can be accessed in this
form via op or via indexed access:

op(A, 1), op(A, 2), op(A, 3), op(A, 4)

A[1, 1], A[1, 2], A[2, 1], A[2, 2]

Modify an array entry by an indexed assignment:

A[2, 2] := PI:

A[1, 2] := 5:

A

delete A:

Example 6

Create a 3-dimensional hfarray:

A := hfarray(1..2, 2..3, 3..4, (1, 2, 3) = 123, (2, 3, 4) = 234)
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hfarray(1..2, 2..3, 3..4, [123.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 234.0])

delete A:

Example 7

You can use a nested list to initialize a two-dimensional hfarray. The inner lists are the
rows of the created matrix:

hfarray(1..2, 1..3, [[1, 2, 3], [4, 5, 6]])

Create a three-dimensional hfarray and initialize it from a nested list of depth three. The
outer list has two entries for the first dimension. Each of these entries is a list with three
entries for the second dimension. Finally, the innermost lists each have one entry for the
third dimension:

hfarray(2..3, 1..3, 1..1,

        [

          [ [1], [2], [3] ],

          [ [4], [5], [6] ]

        ])

hfarray(2..3, 1..3, 1..1, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0])

Example 8

Basic arithmetic is available for arrays of domain type DOM_HFARRAY:

A := hfarray(1..5, [1, 2, 3, 4, 5]):

B := hfarray(1..5, [5, 4, 3, 2, 1]):

A + B

2*A
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2*A - 3* B

Two-dimensional arrays of type DOM_HFARRAY are regarded as matrices. They can be
multiplied accordingly:

A := hfarray(1..3, 1..3, [frandom() $ i = 1..9]):

B := hfarray(1..3, 1..2, [frandom() $ i = 1..6]):

A, B, A * B, A^10 * B

The following command computes the matrix inverse of A:

1/A

Some functions, such as norm, accept hfarrays:

norm(A)

Parameters

m1, n1, m2, n2, …

The index boundaries: integers
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index1, index2, …

A sequence of integers defining a valid array index

number1, number2, …

Real or complex floating-point numbers or numerical expressions that can be converted
to real or complex floating-point numbers

List

A plain list of entries for initializing the array

ListOfLists

A nested list (of lists of lists of …) of entries for initializing the array

Return Values

Object of type DOM_ARRAY or DOM_HFARRAY, respectively.

See Also

MuPAD Domains
DOM_ARRAY | DOM_HFARRAY | DOM_LIST | DOM_TABLE

MuPAD Functions
_assign | _index | array | assignElements | delete | indexval | matrix |
table
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assert
Assertions for debugging

Syntax
assert(cond)

Description

The statement assert(cond) declares that the condition cond holds true at the
moment when the statement is evaluated. By default, MuPAD does not care about
assertions. After setting testargs(TRUE), however, MuPAD checks every assertion and
stops with an error if boolean evaluation of cond does not give TRUE.

Assertions are a major debugging tool for programmers: by stating frequently what they
think to have achieved, programmers make it easy for themselves to detect the first
unintended intermediate result.

Examples

Example 1

Suppose we want to write a function f that takes an integer as its argument and returns
0 if that integer is a multiple of 3, and 1 otherwise. One idea how to code this could be the
following: given an integer n, n modulo 3 must be equal to one of - 1, 1, or 0. In any case,
abs(n mod 3) should do what we want:

f := proc(n: DOM_INT): DOM_INT

local k: DOM_INT;

begin

  k := n mod 3;

  assert(k = 1 or k = -1 or k = 0);

  abs(k)

end_proc
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Checking assertions is switched on or off using testargs:

oldtestargs := testargs(): testargs(FALSE): f(5)

The result does not equal 1. For debugging purposes, we switch on assertion checking:

testargs(TRUE): f(5)

Error: Assertion 'k = 1 or k = -1 or k = 0' has failed. [f]

This shows that the local variable k must have gotten a wrong value. Indeed, when
writing our program we overlooked the difference between mod and the symmetric
remainder given by mods.

testargs(oldtestargs):

Parameters

cond

A boolean expression

Return Values

assert returns TRUE or raises an error.

See Also

MuPAD Functions
testargs
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assign
Perform assignments given as equations

Syntax
assign(L)

assign(L, S)

Description

For each equation in a list, a set, or a table of equations L, assign(L) evaluates both
sides of the equation and assigns the evaluated right hand side to the evaluated left hand
side.

assign(L, S) does the same, but only for those equations whose left hand side is in the
set S.

Since the arguments of assign are evaluated, the evaluation of the left hand side of each
equation in L must be an admissible left hand side for an assignment. See the help page
of the assignment operator := for details.

Several assignments are performed from left to right. See “Example 4” on page 1-261.

assign can be conveniently used after a call to solve to assign a particular solution of a
system of equations to the unknowns. See “Example 5” on page 1-261.

Examples

Example 1

We assign values to the three identifiers B1,B2,B3:

delete B1, B2, B3:

assign([B1 = 42, B2 = 13, B3 = 666]): B1, B2, B3
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We specify a second argument to carry out only those assignments with left hand side B1:

delete B1, B2, B3:

assign([B1 = 42, B2 = 13, B3 = 666], {B1}): B1, B2, B3

The first argument may also be a table of equations:

delete B1, B2, B3:

assign(table(B1 = 42, B2 = 13, B3 = 666)): B1, B2, B3

Example 2

Unlike _assign, assign evaluates the left hand sides:

delete a, b: a := b: assign({a = 3}): a, b

delete a, b: a := b: a := 3: a, b

Example 3

The object assigned may also be a sequence:

assign([X=(2,7)])

X
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Example 4

The assignments are carried out one after another, from left to right. Since the right
hand side is evaluated, the identifier C gets the value 3 in the following example:

assign([B=3, C=B])

level(C,1)

Example 5

When called for an algebraic system, solve often returns a set of lists of assignments.
assign can then be used to assign the solutions to the variables of the system:

sys:={x^2+y^2=2, x+y=5}:

S:= solve(sys)

We want to check whether the first solution is really a solution:

assign(S[1]): sys

Things become clearer if we use floating-point evaluation:

float(sys)

1-261



1 The Standard Library

Parameters

L

A list, a set, or a table of equations

S

A set

Return Values

L.

See Also

MuPAD Functions
:= | _assign | assignElements | delete | evalassign
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assignElements

Assign values to entries of an array, a list, or a table

Syntax

assignElements(L, [index1] = value1, [index2] = value2, …)

assignElements(L, [[index1], value1], [[index2], value2], …)

Description

assignElements(L, [index1] = value1, [index2] = value2, ...) returns a
copy of L with value1 stored at index1, value2 stored at index2, etc.

R:= assignElements(L,[index1]=value1,[index2]=value2,...) has
the same effect as the sequence of assignments R:=L: R[index1]:=value1:
R[index2]:=value2: ... R, but is more efficient.

assignElements returns a modified copy of its first argument, which remains
unchanged. See “Example 1” on page 1-264.

The second variant of the assignElements call, with lists instead of equations, is
equivalent to the first variant. In fact, both equations and lists may be mixed in a single
call. See “Example 1” on page 1-264.

All assignments are performed simultaneously, i.e., the order of the arguments is
irrelevant. See “Example 3” on page 1-265.

All rules for indexed assignments apply, in particular with respect to the validity of
indices. If L is a list, the indices must be positive integers not exceeding the length of L.
If L is an array, the indices must be (sequences of) integers matching the dimension and
lying within the valid ranges of the array. If L is a table, the indices may be arbitrary
objects.
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Examples

Example 1

Assignments may given as equations or lists, and both forms may be mixed in a single
call:

L := array(1..3, [3, 4, 5]);

assignElements(L, [1] = one, [2] = two, [3] = three);

assignElements(L, [[1], one], [[2], two], [[3], three]);

assignElements(L, [1] = one, [[2], two], [3] = three);

The array L itself is not modified by assignElements:

L

Example 2

Sequences, too, may be assigned as values to array elements, but they must be put in
parentheses:

R := assignElements(array(1..2), [1] = (1, 7), [2] = PI);

[R[1]], [R[2]]
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Example 3

The sequence generator $ is useful to create sequences of assignments:

L := [i $ i = 1..10];

assignElements(L, [i] = L[i] + L[i + 1] $ i = 1..9)

The order of the arguments is irrelevant:

assignElements(L, [10 - i] = L[10 - i] + L[11 - i] $ i = 1..9)

Example 4

The indices of a table may be arbitrary objects, for example, strings:

assignElements(table(), [expr2text(i)] = i^2 $ i = 1..4)

Example 5

For arrays of dimension greater than one, the indices are sequences of as many integers
as determined by the dimension of the array:

assignElements(array(1..3, 1..3),

  ([i, j] = i + j $ i = 1..3) $ j = 1..3)
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Parameters

L

An array, an hfarray, a list, or a table

index1, index2, …

Valid indices for L

value1, value2, …

Any MuPAD objects

Return Values

Object of the same type as L.

See Also

MuPAD Domains
DOM_ARRAY | DOM_HFARRAY | DOM_LIST | DOM_TABLE

MuPAD Functions
:= | _assign | _index | array | assign | delete | evalassign | table
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assume
Set permanent assumption

Syntax
assume(condition)

assume(expr, set)

Description

assume(condition) sets the assumption that condition condition is true for all
further calculations. This call removes all previous assumptions containing identifiers
used in condition.

assume(expr, set) attaches the property set to the identifier or expression expr.
This call overwrites all previous assumptions containing identifiers used in expr.

Assumptions are mathematical conditions that are assumed to hold true for all
calculations. By default, all MuPAD identifiers are independent of each other and can
take any value in the complex plane. For example, sign(1 + x^2) cannot be simplified
any more because MuPAD assumes that x is a complex number. If you set an assumption
that x is a real number, then MuPAD can simplify sign(1 + x^2) to 1.

For this reason, many MuPAD functions return very general or piecewise-defined results
that depend on further conditions. For example, solve or int can return piecewise
results.

Many mathematical theorems hold only under certain conditions. For example, x^b*y^b
= (x*y)^b holds if b is an integer. But this equation is not true for all combinations of
x, y, and b. For example, it is not true if x = y = -1, b = 1/2. In such cases, you can
use assumptions to get more specific results.

If you use assume inside a function or procedure, MuPAD uses the new assumption and
ignores existing assumptions only inside the function or procedure. After the function or
procedure call, MuPAD removes the new assumption and restores the assumptions that
were set before the function or procedure call.
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If condition is a relation (for example, x < y), then MuPAD implicitly assumes that
both sides of the relation are real. See “Example 4” on page 1-270.

To delete assumptions previously set on x, use unassume(x) or delete x.

When you assign a value to an identifier with assumptions, the assigned value can
be inconsistent with existing assumptions. Assignments overwrite all assumptions
previously set on an identifier. See “Example 5” on page 1-271.

assume accepts any condition and Boolean combinations of conditions. See
“Example 7” on page 1-273.

If expr is a list, vector, or matrix, use the syntax assume(expr, set). Here set
must be specified as one of C_, R_, Q_, Z_, N_, or an expression constructed with the set
operations, such as union, intersect, or minus. set also can be a function of the Type
library, for example, Type::Real, Type::Integer, Type::PosInt, and so on.

Do not use the syntaxes assume(expr in set) and assume(condition) for
nonscalar expr.

Examples

Example 1

Set an assumption that identifier n is an integer. Here, assume(n, Type::Integer) is
equivalent to assume(n in Z_) because n is a scalar.

assume(n, Type::Integer):

assume(n in Z_):

getprop(n);

Check if n^2 is a nonnegative integer. MuPAD uses the assumption that you set on n.

is(n^2, Type::NonNegInt)
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Other system functions take this assumption into account:

abs(n^2 + 1);

simplify(sin(2*n*PI))

For further computations, delete the identifier n:

delete n

Example 2

To keep the existing assumptions and combine them with the new ones, use
assumeAlso:

assume(n, Type::Integer):

getprop(n);

assumeAlso(n, Type::Positive):

getprop(n);

For further computations, delete the identifier n:

delete n

Alternatively, set multiple assumptions in one function call:

assume(n, Type::Integer and Type::Positive):

getprop(n);
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For further computations, delete the identifier n:

delete n

Example 3

You can set separate assumptions on the real and imaginary parts of an identifier:

assume(Re(z) > 0);

assumeAlso(Im(z) < 0):

abs(Re(z));

sign(Im(z))

is(z, Type::Real), is(z > 0)

For further computations, delete the identifier z:

delete z

Example 4

Using assume, set the assumption x > y. Assumptions set as relations affect the
properties of both identifiers.

assume(x > y)

To see the assumptions set on identifiers, use getprop:

getprop(x);

getprop(y);
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To keep an existing assumption on y and add a new one, use assumeAlso. For example,
add the new assumption that y is greater than 0 while keeping the assumption that y is
less than x:

assumeAlso(y > 0)

is(x^2 >= y^2)

Relations, such as x > y, imply that the involved identifiers are real:

is(x, Type::Real), is(y, Type::Real)

You also can set a relational assumption where one side is not an identifier, but an
expression:

assume(x > 1/y)

getprop(x);

getprop(y)

For further computations, delete the identifiers x and y:

delete x, y

Example 5

_assign and := do not check if an identifier has any assumptions. The assignment
operation overwrites all assumptions:
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assume(a > 0):

a := -2:

a, getprop(a)

For further computations, delete the identifier a:

delete a

Example 6

Set the assumption that x is positive and find the absolute value of x, the sign of x,
and the real and imaginary parts of x. These system functions take assumptions set on
identifiers into account:

assume(x > 0):

abs(x), sign(x), Re(x), Im(x)

Try expanding the expression ln(z1*z2) without additional assumptions. It does not
expand because ln(z1*z2) = ln(z1) + ln(z2) is not true for arbitrary z1, z2 in the
complex plane:

expand(ln(z1*z2))

Now, set the assumption that one number is real and positive. Expand the same
expression:

assume(z1 > 0): expand(ln(z1*z2))

For further computations, remove the assumptions on x and z1:

unassume(x); unassume(z1)
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Example 7

Set these two assumptions on the identifier a. To combine the assumptions, use the
Boolean operator and:

assume(a > 0 and a in Z_):

is(a = 0);

is(a = 1/2);

is(a = 2);

Parameters

expr

Identifier, mathematical expression, list, vector, or matrix containing identifiers.

If expr is a list, vector, or matrix, then only the syntax assume(expr, set) is valid.

set

Property representing a set of numbers or a set returned by solve.

For example, this set can be an element of Dom::Interval, Dom::ImageSet,
piecewise, or one of C_, R_, Q_, Z_, N_. It also can be an expression constructed with
the set operations, such as union,, intersect or minus. For more examples, see
“Properties”.

condition

Equality, inequality, element of relation, or Boolean combination (with the operators and
or or).
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Return Values

Void object null() of type DOM_NULL.

See Also

MuPAD Functions
assumeAlso | assuming | assumingAlso | getprop | is | property::hasprop |
property::showprops | unassume
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assumeAlso
Add permanent assumption

Syntax
assumeAlso(condition)

assumeAlso(expr, set)

Description

assumeAlso(condition) adds the assumption that condition is true for all further
calculations. It does not remove previous assumptions containing identifiers used in
condition.

assumeAlso(expr, set) attaches the property set to the identifier or expression x. It
does not remove previous assumptions containing identifiers used in expr.

Assumptions are mathematical conditions that are assumed to hold true for all
calculations. By default, all MuPAD identifiers are independent of each other and
can take any value in the complex plane. For example, sign(1 + x^2) cannot be
simplified any more because x MuPAD assumes that x is a complex number. If you set an
assumption that x is a real number, then MuPAD can simplify sign(1 + x^2) to 1.

For this reason, many MuPAD functions return very general or piecewise-defined results
depending on further conditions. For example, solve or int can return piecewise
results.

Many mathematical theorems hold only under certain conditions. For example,
x^b*y^b=(x*y)^b holds if b is an integer. But this equation is not true for all
combinations of x, y, and b. For example, it is not true if x = y = -1, b = 1/2. In
such cases, you can use assumptions to get more specific results.

If you use assumeAlso inside a function or procedure, MuPAD uses that assumption
only inside the function or procedure. After the function or procedure call, MuPAD
removes that assumption and only keeps the assumptions that were set before the
function or procedure call.
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If condition is a relation (for example, x < y), then MuPAD implicitly assumes that
both sides of the relation are real. See “Example 4” on page 1-278.

To delete assumptions previously set on x, use unassume(x) or delete x.

When assigning a value to an identifier with assumptions, the assigned value can
be inconsistent with existing assumptions. Assignments overwrite all assumptions
previously set on an identifier. See “Example 5” on page 1-280.

assumeAlso accepts any condition and Boolean combinations of conditions. See
“Example 7” on page 1-280.

If expr is a list, vector, or matrix, use the syntax assumeAlso(expr, set). Here, set
must be specified as one of C_, R_, Q_, Z_, N_, or an expression constructed with the set
operations, such as union, intersect, or minus. set also can be a function of the Type
library, for example, Type::Real, Type::Integer, Type::PosInt, and so on.

Do not use the syntaxes assumeAlso(expr in set) and assumeAlso(condition)
for nonscalar expr.

Examples

Example 1

Solve this equation without any assumptions on the variable x:

solve(x^5 - x, x)

Suppose, your computations deal with real numbers only. In this case, use the assume
function to set the permanent assumption that x is real:

assume(x in R_)

If you solve the same equation now, you will get three real solutions:

solve(x^5 - x, x)
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If you also want to get only nonzero solutions, use assumeAlso to add the corresponding
assumption:

assumeAlso(x <> 0);

solve(x^5 - x, x)

MuPAD keeps both assumptions for further computations:

getprop(x)

For further computations, delete the identifier x:

delete x

Example 2

When you use assumeAlso, MuPAD does not remove existing assumptions. Instead, it
combines them with new assumptions. For example, assume that n is an integer:

assume(n, Type::Integer):

getprop(n);

Add the assumption that n is positive:

assumeAlso(n, Type::Positive):

getprop(n);

For further computations, delete the identifier n:

delete n
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Alternatively, set multiple assumptions in one function call using the Boolean operator
and:

assume(n, Type::Integer and Type::Positive):

getprop(n);

For further computations, delete the identifier n:

delete n

Example 3

You can set separate assumptions on the real and imaginary parts of an identifier:

assume(Re(z) > 0);

assumeAlso(Im(z) < 0):

abs(Re(z));

sign(Im(z))

For further computations, delete the identifier z:

delete z

Example 4

Using assume, set the assumption x > y. Assumptions set as relations affect the
properties of both identifiers.

assume(x > y)

To see the assumptions set on identifiers, use getprop:

getprop(x);
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getprop(y);

To keep an existing assumption on y and add a new one, use assumeAlso. For example,
add the new assumption that y is greater than 0 while keeping the assumption that y is
less than x:

assumeAlso(y > 0)

is(x^2 >= y^2)

Relations, such as x > y, imply that the involved identifiers are real:

is(x, Type::Real), is(y, Type::Real)

delete x, y:

You also can add a relational assumption where one side is not an identifier, but an
expression:

assumeAlso(x > 1/y)

getprop(x);

getprop(y)

For further computations, delete the identifiers x and y:

delete x, y
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Example 5

_assign and := do not check if an identifier has any assumptions. The assignment
operation overwrites all assumptions:

assume(a > 0):

a := -2:

a, getprop(a)

For further computations, delete the identifier a:

delete a

Example 7

Use assume to set the assumption that the identifier a is positive:

assume(a > 0)

Now, add two new assumptions using one call to assumeAlso. To combine the
assumptions, use the Boolean operator and:

assumeAlso(a in Z_ and a < 5):

is(a = 0);

is(a = 1/2);

is(a = 2);

is(a = 6);
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Parameters

expr

Identifier, mathematical expression, list, vector, or matrix containing identifiers.

If expr is a list, vector, or matrix, then only the syntax assumeAlso(expr, set) is
valid.

set

Property representing a set of numbers or a set returned by solve. This set can be an
element of Dom::Interval, Dom::ImageSet, piecewise, or one of C_, R_, Q_, Z_,
N_. It also can be an expression constructed with the set operations, such as union,
intersect or minus. For more examples, see “Properties”.

condition

Equality, inequality, element of relation, or Boolean combination (with the operators and
or or).

Return Values

Void object null() of type DOM_NULL.

See Also

MuPAD Functions
assume | assuming | assumingAlso | getprop | is | property::hasprop |
property::showprops | unassume
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assuming, _assuming
Set temporary assumption

Syntax
calculation assuming condition

calculation assuming (expr, set)

_assuming(calculation, condition)

_assuming(calculation, (expr, set))

Description
calculation assuming condition evaluates calculation under the assumption
that condition is true for that calculation.

calculation assuming(expr, set) temporarily attaches the property set to the
identifier or expression expr and evaluates calculation. This call ignores all previous
assumptions containing identifiers used in expr.

calculation assuming condition is equivalent to _assuming(calculation,
condition).

calculation assuming (expr, set) is equivalent to _assuming(calculation,
(expr, set)).

assuming sets temporary assumptions. Temporary assumptions hold true only while
the argument calculation is evaluated. After this evaluation, MuPAD removes these
assumptions. Therefore, they do not affect further computations. MuPAD also removes
temporary assumptions if the evaluation stops with an error.

assuming temporarily overwrites existing assumptions. If you have permanent
assumptions, MuPAD ignores them while evaluating calculation. Instead, it uses
temporary assumptions set by assuming.

If assumptions contain linear equations with one variable, assuming solves these
equations. Then the command inserts the solutions into calculation and evaluates the
result. See “Example 6” on page 1-285.
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If expr is a list, vector, or matrix, use the syntaxes calculation assuming(expr,
set) and _assuming(calculation, (expr, set)). Here, set is specified as one of
C_, R_, Q_, Z_, N_, or an expression constructed with the set operations, such as union,
intersect, or minus. set also can be a function of the Type library, for example,
Type::Real, Type::Integer, Type::PosInt, and so on.

Do not use the syntaxes calculation assuming (expr in set) (or its equivalent
_assuming(calculation, expr in set)) and calculation assuming
condition (or its equivalent _assuming(calculation, condition)) for nonscalar
expr.

Examples

Example 1

Find the sign of the expression x^2 + 1 assuming that the identifier x represents a real
number:

sign(x^2+1) assuming (x, Type::Real)

Example 2

Simplify this sine function assuming that n is an integer:

simplify(sin(n*PI)) assuming n in Z_

Example 3

Additional assumptions let you simplify some expressions. For example, compute the
right limit of xp:

limit(x^p, x = 0, Right)
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Compute the right limit of the same expression for negative, positive, and zero values of
p:

limit(x^p, x = 0, Right) assuming p < 0

limit(x^p, x = 0, Right) assuming p > 0

limit(x^p, x = 0, Right) assuming p = 0

Example 4

Assumptions set by assuming are temporary. They do not affect any previous or future
computations:

getprop(a);

getprop(a) assuming a > 0;

getprop(a)
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Example 5

If you already use a permanent assumption and want to add a temporary assumption
on the same object, do not use assuming. It temporarily overwrites the permanent
assumption:

assume(x in Z_):

solve(x^3 - (44*x^2)/3 + (148*x)/3 - 80/3 = 0, x) assuming x < 5

Instead, use assumingAlso:

solve(x^3 - (44*x^2)/3 + (148*x)/3 - 80/3 = 0, x) assumingAlso x < 5

Example 6

If assumptions contain linear equations with one variable, assuming solves the
equations, inserts the solutions into the expression, and then evaluates the expression:

a^2 + 1 assuming a - 2 = 1;

assume and assumeAlso do not solve equations:

assume(a - 2 = 1) ;

a^2 + 1
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Parameters

calculation

Any MuPAD command or expression that you want to evaluate under the temporary
assumption.

condition

Equality, inequality, element of relation, or Boolean combination (with the operators and
or or).

expr

Identifier, mathematical expression, list, vector, or matrix containing identifiers.

If expr is a list, vector, or matrix, then only the syntaxes calculation
assuming(expr, set) and _assuming(calculation, (expr, set)) are valid.

set

Property representing a set of numbers or a set returned by solve.

For example, this set can be an element of Dom::Interval, Dom::ImageSet,
piecewise, or one of C_, R_, Q_, Z_, N_. It also can be an expression constructed with
the set operations, such as union, intersect or minus. For more examples, see
“Properties”.

Return Values

assuming returns the result of evaluating calculation.

See Also

MuPAD Functions
assume | assumeAlso | assumingAlso | getprop | is | property::hasprop |
property::showprops | unassume
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assumingAlso, _assumingAlso
Add temporary assumption

Syntax
calculation assumingAlso condition

calculation assumingAlso (expr, set)

_assumingAlso(calculation, condition)

_assumingAlso(calculation, (expr, set))

Description

calculation assumingAlso condition evaluates calculation under all existing
assumptions along with the new assumption that condition is true for that calculation.

calculation assumingAlso(expr, set) temporarily attaches the property set
to the identifier or expression expr and evaluates calculation. This call takes into
account all previous assumptions containing identifiers used in expr.

calculation assumingAlso condition is equivalent to
_assumingAlso(calculation, condition).

calculation assumingAlso (expr, set) is equivalent to
_assumingAlso(calculation, (expr, set)).

assumingAlso sets temporary assumptions in addition to existing permanent
assumptions. Here, condition holds true only while the argument calculation is
evaluated. After this evaluation, condition is removed. Therefore, it does not affect
further computations. condition is also removed if the evaluation stops with an error.

If assumptions contain linear equations with one variable, assumingAlso solves these
equations. Then the command inserts the solutions into calculation and evaluates the
result. See “Example 3” on page 1-289.

If expr is a list, vector, or matrix, use the syntaxes calculation
assumingAlso(expr, set) and _assumingAlso(calculation, (expr, set)).
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Here, set is specified as one of C_, R_, Q_, Z_, N_, or an expression constructed with the
set operations, such as union, intersect, or minus. set also can be a function of the
Type library, for example, Type::Real, Type::Integer, Type::PosInt, and so on.

Do not use the syntaxes calculation assumingAlso (expr in set) (or its
equivalent _assumingAlso(calculation, expr in set)) and calculation
assumingAlso condition (or its equivalent _assumingAlso(calculation,
condition)) for nonscalar expr.

Examples

Example 1

Solve this equation without any assumptions on the variable x:

solve(x^5 - x, x)

Suppose your computations deal with real numbers only. In this case, use the assume
function to set the permanent assumption that x is real:

assume(x in R_)

If you solve the same equation now, you will get three real solutions:

solve(x^5 - x, x)

To get only nonzero solutions for this particular equation, use assumingAlso to
temporarily add the corresponding assumption:

solve(x^5 - x, x) assumingAlso x <> 0

After solving this equation, MuPAD discards the temporary assumption, but keeps the
permanent one:
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getprop(x)

Example 2

If you already use a permanent assumption and want to add a temporary assumption
on the same object, do not use assuming. It temporarily overwrites the permanent
assumption:

assume(x in Z_):

solve(x^3 - (44*x^2)/3 + (148*x)/3 - 80/3 = 0, x) assuming x < 5

Instead, use assumingAlso:

solve(x^3 - (44*x^2)/3 + (148*x)/3 - 80/3 = 0, x) assumingAlso x < 5

Example 3

If assumptions contain linear equations with one variable, assumingAlso solves the
equations, inserts the solutions into the expression, and then evaluates the expression:

a^2 + 1 assumingAlso a - 2 = 1;

assume and assumeAlso do not solve equations:

assumeAlso(a - 2 = 1) ;

a^2 + 1
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Parameters

calculation

Any MuPAD command or expression that you want to evaluate under the temporary
assumption.

condition

Equality, inequality, element of relation, or Boolean combination (with the operators and
or or).

expr

Identifier, mathematical expression, list, vector, or matrix containing identifiers.

If expr is a list, vector, or matrix, then only the syntaxes calculation
assumingAlso(expr, set) and _assumingAlso(calculation, (expr, set)) are
valid.

set

Property representing a set of numbers or a set returned by solve. This set can be an
element of Dom::Interval, Dom::ImageSet, piecewise, or one of C_, R_, Q_, Z_,
N_. It also can be an expression constructed with the set operations, such as union,
intersect or minus. For more examples, see “Properties”.

Return Values

assumingAlso returns the result of evaluating calculation.

See Also

MuPAD Functions
assume | assumeAlso | assuming | getprop | is | property::hasprop |
property::showprops | unassume
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asympt

Compute an asymptotic series expansion

Syntax

asympt(f, x)

asympt(f, x, <order>, <dir>)

asympt(f, x = x0, <order>, <Left | Right>)

Description

asympt(f, x) computes the first terms of an asymptotic series expansion of f with
respect to the variable x around the point infinity.

asympt is used to compute an asymptotic expansion of f when x tends to x0. If such
an expansion can be computed, a series object of domain type Series::gseries or
Series::Puiseux is returned.

In contrast to the default behavior of series, asympt computes directed expansions that
may be valid along the real line only.

asympt can compute more general types of asymptotic expansions than the related
function series. Cf. “Example 5” on page 1-294.

If x0 is a regular point of f, a pole, or an algebraic branch point, then asympt returns
a Puiseux expansion. In this case it is recommended to use the faster function series
instead.

If asympt cannot compute an asymptotic expansion, then a symbolic expression of type
"asympt" is returned. Cf. “Example 4” on page 1-294.

The number of requested terms for the expansion is order if specified. Otherwise, the
value of the environment variable ORDER is used. You can change the default value 6 by
assigning a new value to ORDER.
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The number of terms is counted from the lowest degree term on for finite expansion
points, and from the highest degree term on for expansions around infinity, i.e., “order”
has to be regarded as a “relative truncation order”.

Note: The actual number of terms in the resulting series expansion may differ from the
requested number of terms. See series for details.

The function asympt returns an object of domain type Series::gseries or
Series::Puiseux. It can be manipulated via the standard arithmetic operations and
various system functions. For example, coeff returns the coefficients; expr converts
the series to an expression, removing the error term; lmonomial returns the leading
monomial; lterm returns the leading term; lcoeff returns the leading coefficient; map
applies a function to the coefficients; nthcoeff returns the n-th coefficient, nthterm the
n-th term, and nthmonomial the n-th monomial.

Environment Interactions

The function is sensitive to the environment variable ORDER, which determines the
default number of terms in series computations.

Examples

Example 1

We compute an asymptotic expansion for :

s := asympt(sin(1/x + exp(-x)) - sin(1/x), x)

The leading term and the third term are extracted:

lmonomial(s), nthterm(s, 3)
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In the following call, only 2 terms of the expansion are requested:

asympt(

  exp(sin(1/x + exp(-exp(x)))) - exp(sin(1/x)), x, 2

)

delete s:

Example 2

We compute a expansion around a finite real point. By default, the expansion is valid “to
the right” of the expansion point:

asympt(abs(x/(1+x)), x = 0)

A different expansion is valid “to the left” of the expansion point:

asympt(abs(x)/(1 + x), x = 0, Left)

Example 3

The following expansion is exact. Therefore, it has no “error term”:

asympt(exp(x), x = infinity)
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Example 4

Here is an example where asympt cannot compute an asymptotic series expansion:

asympt(cos(gamma(x*s))/s, x = infinity)

Example 5

If we apply the function series to the following expression, it essentially returns the
expression itself:

series((ln(ln(x)+ln(ln(x))) - ln(ln(x))) / 

       ln(ln(x)+ln(ln(ln(x))))*ln(x), x = infinity)

In this example, asympt computes a more detailed series expansion:

asympt((ln(ln(x)+ln(ln(x))) - ln(ln(x))) / 

       ln(ln(x)+ln(ln(ln(x))))*ln(x), x = infinity)
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Parameters

f

An arithmetical expression representing a function in x

x

An identifier

x0

The expansion point: an arithmetical expression; if not specified, the default expansion
point infinity is used

order

The number of terms to be computed: a nonnegative integer; the default order is given by
the environment variable ORDER (default value 6)

Options

Left, Right

With Left, the expansion is valid for real x < x0; with Right, it is valid for x > x0. For
finite expansion points x0, the default is Right.

Return Values

Object of domain type Series::gseries or Series::Puiseux, or an expression of
type "asympt".

Overloaded By

f
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See Also

MuPAD Functions
limit | mtaylor | O | ORDER | series | Series::gseries | Series::Puiseux |
taylor | Type::Series
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bernoulli
Bernoulli numbers and polynomials

Syntax
bernoulli(n)

bernoulli(n, x)

Description

bernoulli(n) returns the n-th Bernoulli number.

bernoulli(n, x) returns the n-th Bernoulli polynomial in x.

The Bernoulli polynomials are defined by the generating function

.

The Bernoulli numbers are defined by bernoulli(n) = bernoulli(n,0).

An error occurs if n is a numerical value not representing a nonnegative integer.

If n is an integer larger than the value returned by Pref::autoExpansionLimit(),
then the call bernoulli(n) is returned symbolically. Use expand(bernoulli(n)) to
get an explicit numerical result for large integers n.

If n contains non-numerical symbolic identifiers, then the call bernoulli(n) is returned
symbolically. In most cases, the same holds true for calls bernoulli(n, x). Some
simplifications are implemented for special numerical values such as x = 0, x = 1/2, x
= 1 etc. for symbolic n . Cf. “Example 3” on page 1-299.

Note: Note that floating-point evaluation for high degree polynomials may be
numerically unstable. Cf. “Example 4” on page 1-300.
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The floating-point evaluation on the standard interval x ∈ [0, 1] is numerically stable for
arbitrary n.

Environment Interactions

When called with a floating-point value x, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

The first Bernoulli numbers are:

bernoulli(n) $ n = 0..11

The first Bernoulli polynomials:

bernoulli(n, x) $ n = 0..4

If n is symbolic, then a symbolic call is returned:

bernoulli(n, x), bernoulli(n + 3/2, x), bernoulli(n + 5*I, x)

Example 2

If x is not an indeterminate, then the evaluation of the Bernoulli polynomial at the point
x is returned:
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bernoulli(50, 1 + I)

bernoulli(3, 1 - y), expand(bernoulli(3, 1 - y))

Example 3

Certain simplifications occur for some special numerical values of x, even if n is symbolic:

bernoulli(n, 0), bernoulli(n, 1/2), bernoulli(n, 1)

Calls with numerical arguments between  and 1 are automatically rewritten in terms of

calls with arguments between 0 and :

bernoulli(n, 2/3), bernoulli(n, 0.7)

Calls with negative numerical arguments are automatially rewritten in terms of calls
with positive arguments:

bernoulli(n, -2)

bernoulli(n, -12.345)
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Example 4

Float evaluation of high degree polynomials may be numerically unstable:

exact := bernoulli(50, 1 + I): float(exact);

bernoulli(50, float(1 + I))

DIGITS := 40: bernoulli(50, float(1 + I))

delete exact, DIGITS:

Example 5

Some system functions such as diff or expand handle symbolic calls of bernoulli:

Some system functions such as diff or expand handle symbolic calls of bernoulli:

diff(bernoulli(n, f(x)), x)

expand(bernoulli(n, x + 2))

expand(bernoulli(n, -x))
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expand(bernoulli(n, 3*x))

Parameters

n

An arithmetical expression representing a nonnegative integer

x

An arithmetical expression

Return Values

Arithmetical expression.

References

M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions”, Dover
Publications Inc., New York (1965).

See Also

MuPAD Functions
euler
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bernstein

Bernstein polynomials

Syntax

bernstein(f, n, t)

bernstein(g, <var>, n, t)

Description

bernstein(n, f, t) with a univariate function f returns the nth-order Bernstein
polynomial sum(binomial(n,k)*t^k*(1-t)^(n-k)*f(k/n),k = 0..n) evaluated
at the point t. This polynomial is an approximation of f over the interval [0,1]. See
“Example 1” on page 1-302.

bernstein(g, <var>, n, t) with a symbolic expression g returns the nth-order
Bernstein polynomial approximation of g, evaluated at the point t. This syntax regards g
as a univariate function of the variable var. You can omit specifying the variable var if
the expression g is univariate. If it is multivariate, you must specify var. See “Example
2” on page 1-303 and “Example 3” on page 1-304.

The Bernstein representation of a polynomial is numerically stable when substituting
numerical values between 0 and 1 for t. Nevertheless, if you simplify a Bernstein
polynomial, the result can be unstable when substituting numerical values for t. See
“Example 4” on page 1-305.

Examples

Example 1

Define the function representing a linear ramp as a MuPAD function:

f := t -> triangularPulse(1/4, 3/4, infinity, t):

1-302



 bernstein

Approximate f by the fifth-order Bernstein polynomials in the variable t:

b5 := bernstein(f, 5, t)

Example 2

Approximate the sine function sin(2*PI*t) by the 10th- and 100th-degree Bernstein
polynomials:

b10 := bernstein(sin(2*PI*t), 10, t):

b100 := bernstein(sin(2*PI*t), 100, t):

Plot sin(2*pi*t) and its approximations:

p1 := plot::Function2d(sin(2*PI*t), t = 0..1,

                      LegendText = "sine function",

                      Color = RGB::Red):

p2 := plot::Function2d(b10, t = 0..1,

                      LegendText = "10th degree polynomial",

                      Color = RGB::Green):

p3 := plot::Function2d(b100, t = 0..1,

                      LegendText = "100th degree polynomial",

                      Color = RGB::Blue):

plot(p1, p2, p3, LegendVisible = TRUE)

1-303



1 The Standard Library

Example 3

Approximate the exponential function by the second-order Bernstein polynomial in the
variable t:

bernstein(exp(x), 2, t)

Approximate the multivariate exponential function y*exp(x*y). You must specify the
variable because this expression contains more than one variable. bernstein regards
the expression as a univariate function of that variable. For example, to treat this
expression as a univariate function of x, enter:

bernstein(y*exp(x*y), x, 2, t)

To treat this expression as a univariate function of y, enter:
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bernstein(y*exp(x*y), y, 2, t)

Example 4

When you simplify a high-order symbolic Bernstein polynomial, the result often cannot
be evaluated in a numerically stable way.

Approximate this rectangular pulse function by the 100th-degree Bernstein polynomial,
and then simplify the result:

f := rectangularPulse(1/4,3/4,t):

f1 := bernstein(f, 100, t):

f2 := simplify(f1):

Compare the plot of the original rectangular pulse function f, its numerically stable
Bernstein representation f1, and its simplified version f2. The simplified version shows
a region of numerical instability.

plot(f, f1, f2, t = 0..1)
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Parameters

n

Nonnegative integer.

f

Function accepting one input parameter and returning an arithmetical expression.

g

Arithmetical expression.

t

Arithmetical expression.

var

Indeterminate, specified as an identifier or indexed identifier.

Return Values

Arithmetical expression.

Algorithms

A Bernstein polynomial of degree n is defined as follows:

Here

k = 0,...,n
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are the Bernstein basis polynomials, and

is a binomial coefficient.

The coefficients

are called Bernstein coefficients or Bezier coefficients.

If f is a continuous function on the interval [0, 1] and

is the approximating Bernstein polynomial, then

uniformly in t on the interval [0, 1].

See Also

MuPAD Functions
bernsteinMatrix | binomial | fact | sum
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bernsteinMatrix
Bernstein matrix

Syntax
bernsteinMatrix(n, t)

Description

bernsteinMatrix(n, t), where t is a vector of length m, returns the m-by-(n+1)
Bernstein matrix M, such that M(i,k+1) = binomial(n,k)*t[i]^k*(1-t[i])^(n-
k). Here, the index i runs from 1 to m, and the index k runs from 0 to n. See “Example 2”
on page 1-303 and “Example 3” on page 1-304.

The Bernstein matrix is also called the Bezier matrix.

Use Bernstein matrices to construct Bezier curves:

bezierCurve = bernsteinMatrix(n, t)*P

Here, the rows of matrix P specify the control points of the Bezier curve. For example, to
construct the second-order 3-D Bezier curve, specify the control points as:

P = [p0x, p0y, p0z;  p1x, p1y, p1z;  p2x, p2y, p2z]

Examples

Example 1

Plot the fourth-order 2-D Bezier curve specified by the control points p0 = [0, 1], p1
= [4, 3], p2 = [6, 2], p3 = [3, 0], p4 = [2, 4]. Create a matrix with each row
representing a control point:

P := matrix([[0, 1], [4, 3], [6, 2], [3, 0], [2, 4]]):

Construct the fourth-order Bernstein matrix B:
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B := bernsteinMatrix(4, t)

Construct the Bezier curve:

bezierCurve := simplify(B*P)

Plot the curve and control points:

plot(plot::PointList2d(P),

        plot::Curve2d(bezierCurve, t = 0..a, a = 0..1))

Example 2

Construct the third-order 3-D Bezier curve specified by the 3-by-3 matrix P of control
points. Each control point corresponds to a row of matrix P.
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P := matrix([[0, 0, 0], [2, 2, 2], [2, -1, 1], [6, 1, 3]]):

Construct the Bernstein matrix:

B := bernsteinMatrix(3, t)

Construct the Bezier curve:

bezierCurve := simplify(B*P)

Plot the control points and Bezier curve:

plot(plot::PointList3d(P),

        plot::Curve3d(bezierCurve, t = 0..a, a = 0..1))
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Parameters

n

Nonnegative integer.

t

Arithmetical expression, a list of expressions, or a vector of expressions. In MuPAD, a
1⨉m or an m⨉1 matrix represents a row or column vector, respectively.

Return Values

nops(t)⨉(n+1) matrix of the domain type Dom::Matrix().

Algorithms

A Bernstein polynomial of degree n is defined as follows:

Here,

k = 0,...,n

are the Bernstein basis polynomials, and

is a binomial coefficient.

The coefficients

are called Bernstein coefficients or Bezier coefficients.
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The Bernstein polynomial is given by the matrix multiplication of the Bernstein matrix
and the vector of coefficients:

See Also

MuPAD Functions
bernstein | binomial | fact | sum
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besselI

Modified Bessel functions of the first kind

Syntax

besselI(v, z)

Description

besselI(v, z) represents the modified Bessel functions of the first kind:

.

The Bessel functions are defined for complex arguments v and z.

A floating-point value is returned if either of the arguments is a floating-point number
and the other argument is numerical. For most exact arguments the Bessel functions
return an unevaluated function call. Special values at index v = 0 and/or argument z = 0
are implemented. Explicit symbolic expressions are returned, when the index v is a half
integer. See “Example 2” on page 1-314.

For nonnegative integer indices v some of the Bessel functions have a branch cut along
the negative real axis. A jump occurs when crossing this cut. See “Example 3” on page
1-314.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Unevaluated calls are returned for exact or symbolic arguments:

besselI(2, 1 + I), besselI(0, x), besselI(v, x)

Floating point values are returned for floating-point arguments:

besselI(2, 5.0), besselI(3.2 + I, 10000.0)

Example 2

Bessel functions can be expressed in terms of elementary functions if the index is an odd
integer multiple of :

besselI(1/2, x), besselI(3/2, x)

besselI(7/2, x), besselI(-7/2, x)

Example 3

The negative real axis is a branch cut of the Bessel functions for non-integer indices v. A
jump occurs when crossing this cut:
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besselI(-3/4, -1.2),

besselI(-3/4, -1.2 + I/10^10),

besselI(-3/4, -1.2 - I/10^10)

Example 4

The functions diff, float, limit, and series handle expressions involving the Bessel
functions:

diff(besselI(0, x), x, x), float(ln(3 + besselI(17, sqrt(PI))))

limit(1/besselI(2, x^2 + 1)*sqrt(x), x = infinity)

series(besselI(3, x)/x, x = infinity, 3)

Parameters

v, z

arithmetical expressions

Return Values

Arithmetical expression.
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Overloaded By

z

Algorithms

The modified Bessel functions Iv(z) and Kv(z) satisfy the modified Bessel equation:

.

When the index v is an integer, the modified Bessel functions of the first kind are
governed by reflection formulas:

.

See Also

MuPAD Functions
besselJ | besselK | besselY
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besselJ
Bessel functions of the first kind

Syntax
besselJ(v, z)

Description
besselJ(v, z) represents the Bessel functions of the first kind:

.

The Bessel functions are defined for complex arguments v and z.

A floating-point value is returned if either of the arguments is a floating-point number
and the other argument is numerical. For most exact arguments the Bessel functions
return an unevaluated function call. Special values at index v = 0 and/or argument z = 0
are implemented. Explicit symbolic expressions are returned, when the index v is a half
integer. See “Example 2” on page 1-318.

For nonnegative integer indices v some of the Bessel functions have a branch cut along
the negative real axis. A jump occurs when crossing this cut. See “Example 3” on page
1-318.

If floating-point approximations are desired for arguments that are exact numerical
expressions, then we recommend to use besselJ(v, float(x)) rather than
float(besselJ(v, x)). In particular, for half integer indices the symbolic result
besselJ(v,x) is costly to compute. Further, floating-point evaluation of the resulting
symbolic expression may be numerically unstable. See “Example 4” on page 1-319.

Environment Interactions
When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Unevaluated calls are returned for exact or symbolic arguments:

besselJ(2, 1 + I), besselJ(0, x), besselJ(v, x)

Floating point values are returned for floating-point arguments:

besselJ(2, 5.0), besselJ(3.2 + I, 10000.0)

Example 2

Bessel functions can be expressed in terms of elementary functions if the index is an odd
integer multiple of :

besselJ(1/2, x), besselJ(3/2, x)

besselJ(5/2, x), besselJ(-5/2, x)

Example 3

The negative real axis is a branch cut of the Bessel functions for non-integer indices v. A
jump occurs when crossing this cut:
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besselJ(-3/4, -1.2),

besselJ(-3/4, -1.2 + I/10^10),

besselJ(-3/4, -1.2 - I/10^10)

Example 4

The symbolic expressions returned by Bessel functions with half integer indices can be
unsuitable for floating-point evaluation:

y := besselJ(51/2, PI)

Floating point evaluation of this exact result is subject to numerical cancellation. The
following result is dominated by round-off:

float(y)

The numerical working precision has to be increased to obtain a more accurate result:

DIGITS:= 39: float(y)

Direct floating-point evaluation via the Bessel function yields a correct result within
working precision:

DIGITS := 5: besselJ(51/2, float(PI))
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delete y, DIGITS:

Example 5

The functions diff, float, limit, and series handle expressions involving the Bessel
functions:

diff(besselJ(0, x), x, x), float(ln(3 + besselJ(17, sqrt(PI))))

limit(besselJ(2, x^2 + 1)*sqrt(x), x = infinity)

series(besselJ(1, x), x = infinity, 3)

Parameters

v, z

arithmetical expressions

Return Values

Arithmetical expression.

Overloaded By

z
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Algorithms

The Bessel functions are regular (holomorphic) functions of z throughout the z-plane cut
along the negative real axis, and for fixed z ≠ 0, each is an entire (integral) function of v.

Jv (z) and Yv (z) satisfy Bessel's equation in w(v, z):

.

When the index v is an integer, the Bessel functions of the first kind are governed by
reflection formulas:

.

See Also

MuPAD Functions
besselI | besselK | besselY
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besselK
Modified Bessel functions of the second kind

Syntax
besselK(v, z)

Description
besselK(v, z) represents the modified Bessel functions of the second kind:

.

Here Iν(z) are the modified Bessel functions of the first kind:

.

The Bessel functions are defined for complex arguments v and z.

A floating-point value is returned if either of the arguments is a floating-point number
and the other argument is numerical. For most exact arguments the Bessel functions
return an unevaluated function call. Special values at index v = 0 and/or argument z = 0
are implemented. Explicit symbolic expressions are returned, when the index v is a half
integer. See “Example 2” on page 1-323.

For nonnegative integer indices v some of the Bessel functions have a branch cut along
the negative real axis. A jump occurs when crossing this cut. See “Example 3” on page
1-323.

Environment Interactions
When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

1-322



 besselK

Examples

Example 1

Unevaluated calls are returned for exact or symbolic arguments:

besselK(2, 1 + I), besselK(0, x), besselK(v, x)

Floating point values are returned for floating-point arguments:

besselK(2, 5.0), besselK(3.2 + I, 10000.0)

Example 2

Bessel functions can be expressed in terms of elementary functions if the index is an odd
integer multiple of :

besselK(1/2, x), besselK(3/2, x)

besselK(7/2, x), besselK(-7/2, x)

Example 3

The negative real axis is a branch cut of the Bessel functions for non-integer indices v. A
jump occurs when crossing this cut:
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besselK(-3/4, -1.2),

besselK(-3/4, -1.2 + I/10^10),

besselK(-3/4, -1.2 - I/10^10)

Example 4

The functions diff, float, limit, and series handle expressions involving the Bessel
functions:

diff(besselK(0, x), x, x), float(ln(3 + besselK(17, sqrt(PI))))

limit(besselK(2, x^2 + 1)*sqrt(x), x = infinity)

series(besselK(3, x), x = infinity, 3)

Parameters

v, z

arithmetical expressions

Return Values

Arithmetical expression.
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Overloaded By

z

Algorithms

The modified Bessel functions Iv(z) and Kv(z) satisfy the modified Bessel equation:

.

When the index v is an integer, the modified Bessel functions of the second kind are
governed by reflection formula:

.

See Also

MuPAD Functions
besselI | besselJ | besselY
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besselY

Bessel functions of the second kind

Syntax

besselY(v, z)

Description

besselJ(v, z) represent the Bessel functions of the second kind:

.

Here Jν(z) are the Bessel functions of the first kind:

.

The Bessel functions are defined for complex arguments v and z.

A floating-point value is returned if either of the arguments is a floating-point number
and the other argument is numerical. For most exact arguments the Bessel functions
return an unevaluated function call. Special values at index v = 0 and/or argument z = 0
are implemented. Explicit symbolic expressions are returned, when the index v is a half
integer. See “Example 2” on page 1-327.

For nonnegative integer indices v some of the Bessel functions have a branch cut along
the negative real axis. A jump occurs when crossing this cut. See “Example 3” on page
1-328.
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Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Unevaluated calls are returned for exact or symbolic arguments:

besselY(2, 1 + I), besselY(0, x), besselY(v, x)

Floating point values are returned for floating-point arguments:

besselY(2, 5.0), besselY(3.2 + I, 10000.0)

Example 2

Bessel functions can be expressed in terms of elementary functions if the index is an odd
integer multiple of :

besselY(1/2, x), besselY(3/2, x)

besselY(5/2, x), besselY(-5/2, x)
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Example 3

The negative real axis is a branch cut of the Bessel functions for non-integer indices v. A
jump occurs when crossing this cut:

besselY(-3/4, -1.2),

besselY(-3/4, -1.2 + I/10^10),

besselY(-3/4, -1.2 - I/10^10)

Example 4

The functions diff, float, limit, and series handle expressions involving the Bessel
functions:

diff(besselY(0, x), x, x), float(ln(3 + besselY(17, sqrt(PI))))

limit(besselY(2, x^2 + 1)*sqrt(x), x = infinity)

series(besselY(3, x), x = infinity, 3)
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Parameters

v, z

arithmetical expressions

Return Values

Arithmetical expression.

Overloaded By

z

Algorithms

The Bessel functions are regular (holomorphic) functions of z throughout the z-plane cut
along the negative real axis, and for fixed z ≠ 0, each is an entire (integral) function of v.

Jv (z) and Yv (z) satisfy Bessel's equation in w(v, z):

.

When the index v is an integer, the Bessel functions of the second kind are governed by
reflection formulas:

.

See Also

MuPAD Functions
besselI | besselJ | besselK
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beta
Beta function

Syntax
beta(x, y)

Description

beta(x, y) represents the beta function .

The beta function is defined for complex arguments x and y.

The result is expressed by calls to the gamma function if both arguments are of type
Type::Numeric. Note that the beta function may have a regular value, even if Γ(x) or
Γ(y) and Γ(x + y) are singular. In such cases beta returns the limit of the quotients of the
singular terms.

A floating-point value is returned if both arguments are numerical and at least one of
them is a floating-point value.

An unevaluated call of beta is returned, if none of the arguments vanishes and at least
one of the arguments does not evaluate to a number of type Type::Numeric.

Environment Interactions

When called with floating-point arguments, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:
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beta(1, 5), beta(I, 3/2), beta(1, y + 1), beta(x, y)

Floating point values are computed for floating-point arguments:

beta(3.5, sqrt(2)), beta(sqrt(2), 2.0 + 10.0*I)

Example 2

The gamma function is singular if its argument is a nonpositive integer. Nevertheless,
beta has a regular value for the following arguments:

beta(-3, 2)

Example 3

The functions diff, expand and float handle expressions involving beta:

diff(beta(x^2, x), x)

expand(beta(x - 1, y + 1))

float(beta(100, 1000))
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Example 4

The functions diff and series can handle beta:

diff(beta(x, y), x);

diff(beta(x, y), y);

normal(series(beta(x, y), y = 0, 3))

series(beta(x, x), x = infinity, 4)

Parameters

x, y

arithmetical expressions or floating-point intervals

Return Values

Arithmetical expression or a floating-point interval.
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Overloaded By

x

See Also

MuPAD Functions
binomial | fact | gamma | psi
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binomial

Binomial coefficients

Syntax

binomial(n, k)

Description

binomial(n, k) represents the binomial coefficient .

Binomial coefficients are defined for complex arguments via the gamma function:

.

With , this coincides with the usual binomial coefficients for integer
arguments satisfying 0 ≤ k ≤ n.

A symbolic function call is returned if one of the arguments cannot be evaluated to a
number of type Type::Numeric. However, for k = 0, k = 1, k = n - 1, and k = n, simplified
results are returned for any n.

Let n be a number of type Type::Numerical. If k evaluates to a nonnegative integer,
then  is returned. If n - k evaluates to a nonnegative integer, then

 is returned. If k or n - k evaluates to a negative integer, then 0 is

returned. If k evaluates to a floating-point number, then a floating-point value is
returned. In all other cases, a symbolic call of binomial is returned.

A floating-point value is returned if both arguments are numerical and at least one of
them is a floating-point value.
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Environment Interactions

When called with floating-point arguments, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

binomial(10, k) $ k=-2..12

binomial(-23/12, 3), binomial(1 + I, 3)

binomial(n, k), binomial(n, 1), binomial(n, 4)

Floating point values are computed for floating-point arguments:

binomial(-235/123, 3.0), binomial(3.0, 1 + I)

Example 2

The expand function handles expressions involving binomial:

binomial(n, 3) = expand(binomial(n, 3))
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binomial(2, k) = expand(binomial(2, k))

The float attribute handles binomial if all arguments can be converted to floating-
point numbers:

binomial(sin(3), 5/4), float(binomial(sin(3), 5/4))

Example 3

The functions diff and series can handle binomial:

diff(binomial(n, k), n);

diff(binomial(n, k), k);

normal(series(binomial(n, k), k = 0, 3))
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series(binomial(2*n, n), n = infinity, 4)

Parameters

n, k

arithmetical expressions

Return Values

Arithmetical expression.

See Also

MuPAD Functions
beta | fact | gamma | psi
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block

Create an object protected against evaluation

Syntax

block(a)

Description

block(a) creates a block — an object of special type that contains an unevaluated copy
of a. It is treated as atomic and remains unchanged by evaluation.

block and domains derived thereof form a hierarchy of data types designed to provide
control over the evaluation of certain subexpressions. Any object can be put as content
into any type of block.

block is a domain If d is any block domain, d(a) creates a block belonging to that
domain, with content a.

block(a) puts its argument into a block, without evaluating it. In order to evaluate a
normally before putting it into a block, use eval(hold(block)(a)).

Blocks are invariant under evaluation.

Blocks of type block are atomic: the only operand of a block is the block itself.

Sequences can also be put into blocks. In the case of block, they are not flattened. See
“Example 2” on page 1-339.

You can create further block domains using inheritance. This particularly useful for
creating own evaluate or testtype methods. See “Example 4” on page 1-340.

In case of nested blocks, expr and unblock remove only the outermost block.
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Examples

Example 1

A block is a sort of container that protects its content against evaluation:

y := 1:

bl:= block(1 + y)

Blocks are atomic; thus y and 1 are not visible as operands:

op(bl), nops(bl)

Although blocks are not arithmetical expressions, some basic arithmetical operations are
defined for them:

collect(x + bl + x*bl, bl)

delete y, bl

Example 2

A block can also contain a sequence; flattening is suppressed:

block((x, y),z)

Example 3

The content of a block can be extracted and evaluated using unblock:
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y := 1:

unblock(block(y))

delete y

Example 4

Create blocks that represent arithmetical expressions. To do this, you need your own
block domain that overloads testtype:

domain myblock 

  inherits block; 

  category  Cat::BaseCategory;

  testtype:= (bl, T) -> if T = Type::Arithmetical or T = dom then 

                          TRUE 

                        else

                          block::testtype(bl, T) 

                        end_if;

end_domain:

This lets you to make the number zero invisible for the evaluator by enclosing it into a
block, but to retain the option to plug it into special functions:

f := sin(x+myblock(0))

Now you can manipulate this expression, without being disturbed by automatic
simplification:

expand(f)

 eval(unblock(%))
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Parameters

a

Any object or sequence of objects

Return Values

block creates objects of its own type.

See Also

MuPAD Functions
blockIdents | blockTransparent | freeze | hold | unblock
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blockIdents
Create a block with some identifiers protected against evaluation

Syntax
blockIdents(S)(a)

Description
blockIdents(S)(a) creates a transparent block which is evaluated like a, except that
the identifiers in S are not substituted by their values, and their properties are not used.

blockIdents is a parametrized family of domains, depending on a set S If d is any block
domain, d(a) creates a block belonging to that domain, with content a.

blockIdents(S)(a) replaces all identifiers in a that belong to S by newly
created identifiers, evaluates the result and substitutes back; the final result is
put into a block. In order to evaluate a normally before putting it into a block,
useeval(hold(blockIdents(S))(a)).

Blocks of type blockIdents(S) are evaluated in the same way as their contents at the
time of creation.

Blocks of type blockIndents(S) have the same operands as their content.

Sequences can also be put into blocks.

The call expr(b) replaces all transparent blocks in b by their content, without
evaluating that content.

In case of nested blocks, expr and unblock remove only the outermost block.

Examples

Example 1

A block is a sort of container that protects its content against evaluation. With
blockIdents, you can suppress evaluation for particular identifiers:
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bl := blockIdents({x,y})(x + y + a):

[a,x,y] := [1,2,3]:

bl

delete x, y:

Example 2

You can extract and evaluate the content of a block using unblock:

bl := blockIdents({y})(x + y):

y := 1:

bl

unblock(bl)

delete y

Parameters

a

Any object or sequence of objects

S

Set of identifiers

Return Values

blockIdents creates objects of its own type.
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See Also

MuPAD Functions
block | blockTransparent | freeze | hold | unblock
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blockTransparent
Create a transparent block protected against evaluation

Syntax
blockTransparent(a)

Description

blockTransparent(a) creates a transparent block, which is left unchanged by
evaluation, but treated as expression with the same operands as a.

blockTransparent is a domain. If d is any block domain, d(a) creates a block
belonging to that domain, with content a.

blockTransparent(a) puts its argument into a block, without evaluating it.
In order to evaluate a normally before putting it into a block of some kind, use
eval(hold(blockTransparent)(a)).

Transparent blocks are invariant under evaluation, but such blocks have the same
operands as their content.

Sequences can also be put into block. In the case of blockTransparent, they are not
flattened. See “Example 2” on page 1-346.

The call expr(b) replaces all transparent blocks in b by their content, without
evaluating that content. Thus, expr(blockTransparent(a)) is similar to hold(a).

In case of nested blocks, only the outermost block is removed by both expr and unblock.

Examples

Example 1

A block, including transparent blocks, is a sort of container that protects its content
against evaluation:
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y := 2:

bl := blockTransparent(x + y + z)

Transparent block allow access to the operands of its content:

op(bl,1), subs(bl, hold(y) = y)

delete bl, y

Example 2

A block can also contain a sequence; flattening is suppressed:

blockTransparent((x, y),z)

Example 3

The content of a block can be extracted and evaluated using unblock:

bl := blockTransparent(x + y):

[x, y] := [1, 2]:

bl

unblock(bl)

delete y
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Parameters

a

Any object or sequence of objects

Return Values

blockTransparent creates objects of its own type.

See Also

MuPAD Functions
block | blockIdents | freeze | hold | unblock
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unblock
Replace blocks by their contents

Syntax
unblock(b, <blockdomain, <Recurse>>)

Description

unblock(b) replaces all blocks that appear as subexpressions in b by their contents.

unblock(b) replaces all blocks in b by the result of evaluating their content. Thus,
unblock(block(a)) should in most cases be equivalent to a. The behavior of unblock
may be controlled by additional arguments. If a second argument blockdomain is given,
only blocks belonging to a domain that inherits from blockdomain are replaced by their
content. If FALSE is provided as a third argument, only b is replaced by its content if it is
a block of suitable type itself.

The call expr(b) replaces all transparent blocks in b by their content, without
evaluating that content. Thus, expr(blockTransparent(a)) is similar to hold(a).

In case of nested blocks, only the outermost block is removed by both expr and unblock.

Examples

Example 1

A block is a sort of container that protects its content against evaluation:

y := 1:

bl:= block(1 + y)

Blocks are atomic; thus y and 1 are not visible as operands:
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op(bl), nops(bl)

The content of a block may be extracted and evaluated using unblock:

unblock(bl)

delete y

Parameters

b

Any object

blockdomain

Any domain that inherits from block

Recurse

TRUE or FALSE

Return Values

In most cases, the object b.

See Also

MuPAD Functions
block | blockIdents | blockTransparent | freeze | hold
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bool
Boolean evaluation

Syntax
bool(b)

Description

bool(b) evaluates the Boolean expression b.

The function bool serves for reducing Boolean expressions to one of the Boolean
constants TRUE, FALSE, or UNKNOWN.

Boolean expressions are expressions that are composed of equalities, inequalities,
elementhood relations, and these constants, combined via the logical operators and, or,
not.

The function bool evaluates all equalities and inequalities inside a Boolean expression
to either TRUE or FALSE. The resulting logical combination of the Boolean constants is
reduced according to the rules of the MuPAD three state logic (see and, or, not).

Note: Equations x = y and inequalities x <> y are evaluated syntactically by bool. It
does not test equality in any mathematical sense.

Note: Inequalities x < y, x <= y etc. can be evaluated by bool if and only if x and y
are real numbers of type Type::Real. Otherwise, an error occurs.

bool evaluates all subexpressions of a Boolean expression before simplifying the result.
The functions _lazy_and, _lazy_or provide an alternative: “lazy Boolean evaluation”.

There is no need to use bool in the conditional part of if, repeat, and while
statements. Internally, these statements enforce Boolean evaluation by _lazy_and and
_lazy_or. Cf. “Example 5” on page 1-353.
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Use simplify with the option logic to simplify expressions involving symbolic Boolean
subexpressions. Cf. “Example 7” on page 1-354.

bool is overloadable not only for domains, but also for function environments. This
means that, if f evaluates to a function environment, then bool(f(x1, …, xn))
returns f::bool( x1, …, xn ), or an error if no slot f::bool exists.

The call bool(x ~= y) serves for comparing numerical values x and y. If both x and
y can be converted to non-zero real or complex floating-point numbers, it is checked
whether float((x - y)/x)| < 10^(-DIGITS) is satisfied. Thus, TRUE is returned if
x and y coincide within the relative numerical precision set by DIGITS. For x = 0, the
criterion is |float(y)| < 10^(-DIGITS). For y = 0, the criterion is |float(x)| <
10^(-DIGITS). If either x or y contains a symbolic object that cannot be converted to a
real or complex floating point number, the function bool returns the value UNKNOWN.

Examples

Example 1

MuPAD realizes that 1 is less than 2:

1 < 2 = bool(1 < 2)

Note that bool can fail to compare real numbers expressed symbolically:

bool(sqrt(14) <= sqrt(2)*sqrt(7))

Error: Cannot evaluate to Boolean. [_leequal]

You can compare floating-point approximations. Alternatively, you can use is:

bool(float(sqrt(14)) <= float(sqrt(2)*sqrt(7))),

is(sqrt(14) <= sqrt(2)*sqrt(7))
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Example 2

The Boolean operators and, or, not do not evaluate equations and inequalities logically,
and return a symbolic Boolean expression. Boolean evaluation and simplification is
enforced by bool:

a = a and 3 < 4

bool(a = a and 3 < 4)

Example 3

bool handles the special Boolean constant UNKNOWN:

bool(UNKNOWN and 1 < 2), bool(UNKNOWN or 1 < 2),

bool(UNKNOWN and 1 > 2), bool(UNKNOWN or 1 > 2)

Example 4

bool must be able to reduce all parts of a composite Boolean expression to one of the
Boolean constants. No symbolic Boolean subexpressions may be involved:

b := b1 and b2 or b3: bool(b)

Error: Cannot evaluate to Boolean. [bool]

b1 := 1 < 2: b2 := x = x: b3 := FALSE: bool(b)

delete b, b1, b2, b3:
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Example 5

There is no need to use bool explicitly in the conditional parts of if, repeat, and while
statements. Note, however, that these structures internally use “lazy evaluation” via
_lazy_and and _lazy_or rather than “complete Boolean evaluation” via bool:

x := 0: if x <> 0 and sin(1/x) = 0 then 1 else 2 end

In contrast to “lazy evaluation”, bool evaluates all conditions. Consequently, a division
by zero occurs in the evaluation of sin(1/x) = 0:

bool(x <> 0 and sin(1/x) = 0)

Error: Division by zero. [_invert]

delete x:

Example 6

Note that bool does not operate recursively. The following calls are completely
different, the first one comparing the expression TRUE = TRUE and the constant TRUE
(syntactically), the second one comparing the result of another bool-call with TRUE:

bool((TRUE = TRUE) = TRUE);

bool(bool(TRUE = TRUE) = TRUE)

Since if, while and similar constructs use the same Boolean evaluation internally, this
also effects conditions in such clauses:

if (is(a < b) = TRUE) or (3 = 3) then YES else NO end;

if (is(a < b) or (3 = 3)) = TRUE then YES else NO end
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Example 7

Expressions involving symbolic Boolean subexpressions cannot be processed by bool.
However, simplify with the option logic can be used for simplification:

(b1 and b2) or (b1 and (not b2)) and (1 < 2)

simplify(%, logic)

Parameters

b

A Boolean expression

Return Values

TRUE, FALSE, or UNKNOWN.

Overloaded By

b

See Also

MuPAD Functions
_lazy_and | _lazy_or | FALSE | if | is | repeat | TRUE | UNKNOWN | while

1-354



 break, _break

break, _break
Terminate a loop or a Case switch prematurely

Syntax
break

_break()

Description

break terminates for, repeat, while loops, and case statements.

The break statement is equivalent to the function call _break(). The return value is
the void object of type DOM_NULL.

Inside for, repeat, while, and case statements, the break statement exits from the
loop/switch. Execution proceeds with the next statement after the end clause of the loop/
switch.

In nested loops, only the innermost loop is terminated by break.

break also terminates a statement sequence _stmtseq(..., break, ...).

Outside for, repeat, while, case, and _stmtseq, the break statement has no effect.

Examples

Example 1

Loops are exited prematurely by break:

for i from 1 to 10 do

  print(i);

  if i = 2 then break end_if

end_for
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delete i:

Example 2

In a case statement, all commands starting with the first matching branch are executed:

x := 2:

case x

 of 1 do print(1); x^2;

 of 2 do print(2); x^2;

 of 3 do print(3); x^2;

 otherwise print(UNKNOWN)

end_case:

In the next version, break ensures that only the statements in the matching branch are
evaluated:

case x

 of 1 do print(1); x^2; break;

 of 2 do print(2); x^2; break;

 of 3 do print(3); x^2; break;

 otherwise print(UNKNOWN)

end_case:

delete x:
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See Also

MuPAD Functions
case | for | next | repeat | return | while
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buildnumber
The Build number of

Syntax
buildnumber()

Description

buildnumber() returns the “build number” of the MuPAD library.

buildnumber is a natural number increasing over time which enables the MuPAD
developers to exactly identify the version of the library used. Its primary use is for
cooperating partners with access to development versions.

Examples

Example 1

At the time of this writing, the MuPAD build number was 42703:

buildnumber()

Return Values

Integer.

See Also

MuPAD Functions
Pref::kernel | version
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bytes
Memory used by the current session

Syntax
bytes()

Description

bytes() returns the current memory consumption.

bytes returns the following three numbers:

• The number of bytes used logically; this is the amount of memory which is actually
used for storing MuPAD data.

• The number of bytes physically allocated by the memory management; this is the
amount of memory MuPAD has allocated from the operating system. The difference
between the physical and the logical bytes is the amount of memory which has
already been reserved for future calculations.

• The maximum number of bytes ever allocated from the operating system during the
current session. This value never decreases, not even on a call to reset.

Examples

Example 1

In a freshly started MuPAD session, bytes may return the following data on the memory
consumption of the session:

bytes()

Each computation increases the memory usage:
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sin(PI): bytes()

solve(x-1=0, x): bytes()

Return Values

Sequence of three integers.

See Also

MuPAD Functions
rtime | time
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card
Cardinality of a set

Syntax
card(set)

card(d)

Description

card(set) returns the cardinality of set.

If set is a DOM_SET, the number of operands is returned; card does not attempt
to investigate whether the members of set really represent pairwise different
mathematical objects.

card does not distinguish different infinite cardinals; it just returns infinity if set is
infinite.

card returns a symbolic call to itself if it cannot determine the cardinality.

If applied to a domain d, card returns the domain entry d::size. A domain that does
not have this entry is not regarded as a set.

Examples

Example 1

The cardinality of a finite set equals the number of its operands:

card({1, 2, 3})
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This holds true even if there exist two operands of the set that represent the same
mathematical object:

card({1, 1.0})

Example 2

card does not distinguish different sizes of infinite sets:

card(R_), card(Z_)

Example 3

Set-theoretic expressions containing symbols are legal input, but usually card will not be
able to determine their cardinality:

card(S union {3})

Example 4

Domains that have a "size" entry are regarded as sets:

card(Dom::IntegerMod(7))

Parameters

set

A set of type DOM_SET, or a set-theoretic expression
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d

A domain representing a set

Return Values

Nonnegative integer, or infinity.

Overloaded By

d, set

See Also

MuPAD Functions
nops
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case, of, otherwise, end_case, _case

Switch statement

Compatibility

For switch-case in MATLAB, see switch.

Syntax

case x

  of match1 do

    statements1

  of match2 do

    statements2

  ...

  otherwise

    otherstatements

end_case

case x

  of match1 do

    statements1

  of match2 do

    statements2

  ...

end_case

_case(x, match1, statements1, match2, statements2, , …, <otherstatements>)

Description

A case-end_case statement allows to switch between various branches in a program.

The case statement is a control structure that extends the functionality of the if
statement. In a case statement, an object is compared with a number of given values
and one or more statement sequences are executed.
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If the value of x equals one of the values match1, match2 etc., the first matching branch
and all its following branches (including otherwise) are executed, until the execution is
terminated by a break or a return statement, or the end_case.

If the value of x does not equal any of the values match1, match2, ..., only the
otherwise branch is executed. If no otherwise branch exists, the case statement
terminates and returns the void object of type DOM_NULL.

The keyword end_case may be replaced by the keyword end.

Examples

Example 1

All statements after the first match are executed:

x := 2:

case x

  of 1 do print(1)

  of 2 do print(4) 

  of 3 do print(9)

  otherwise print("otherwise")

end_case:

break may be used to ensure that only one matching branch is executed:

case x

  of 1 do print(1); 1; break

  of 2 do print(4); 4; break

  of 3 do print(9); 9; break
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  otherwise print("otherwise")

end_case:

delete x:

Example 2

The functionality of the case statement allows to share code that is to be used in several
branches. The following function uses the statement print(x, "is a real number")
for the three branches that correspond to real MuPAD numbers:

isReal := proc(x)

begin

   case domtype(x) 

     of DOM_INT do

     of DOM_RAT do

     of DOM_FLOAT do print(x, "is a real number"); break

     of DOM_COMPLEX do print(x, "is not a real number"); break

     otherwise print(x, "cannot decide");

   end_case

end_proc:

isReal(3), isReal(3/7), isReal(1.23), isReal(3 + I), isReal(z)
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delete isReal:

Example 3

The correspondence between the functional and the imperative form of the case
statement is demonstrated:

hold(_case(x, match1, (1; break), match2, (4; break),

           print("otherwise")))

case x

  of match1 do

    1;

    break

  of match2 do

    4;

    break

  otherwise

    print("otherwise")

end_case

hold(_case(x, match1, (1; break), match2, (4; break)))

case x

  of match1 do

    1;

    break

  of match2 do

    4;

    break

end_case

Parameters

x, match1, match2, …

Arbitrary MuPAD objects

statements1, otherstatements, …

Arbitrary sequences of statements
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Return Values

Result of the last command executed inside the case statement. The void object of type
DOM_NULL is returned if no matching branch was found and no otherwise branch
exists. NIL is returned if a matching branch was encountered, but no command was
executed inside this branch.

Algorithms

The functionality of the case statement corresponds to the switch statement of the C
programming language.

See Also

MuPAD Functions
break | if | return
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ceil
Round up to the next integer

Compatibility

For the ceil function in MATLAB, see ceil.

Syntax
ceil(x)

Description

ceil rounds a number to the next larger integer.

For complex arguments, ceil rounds the real and the imaginary parts separately.

For real numbers and exact expressions representing real numbers, ceil returns
integers.

For arguments that contain symbolic identifiers, ceil returns unevaluated function
calls.

For floating-point intervals, ceil returns floating-point intervals containing all the
results of applying ceil to the real or complex numbers inside the interval.

Note: If the argument is a floating-point number of absolute value larger than 10DIGITS,
the resulting integer is affected by internal non-significant digits. See “Example 2” on
page 1-370.

Note: Internally, exact numerical expressions that are neither integers nor rational
numbers are approximated by floating-point numbers before rounding. Thus, the
resulting integer depends on the current DIGITS setting. See “Example 3” on page
1-371.
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Environment Interactions

The functions are sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

Round the following real and complex numbers:

ceil(3.5), ceil(-7/2), ceil(3 + 5/2*I)

Round the following symbolic expression representing a number:

ceil(PI*I + 7*sin(exp(2)))

Rounding of expressions with symbolic identifiers produces unevaluated function calls:

 ceil(x)

Example 2

Rounding floating-point numbers of large absolute value is affected by internal non-
significant digits:

x := 10^30/3.0
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Note that only the first 10 decimal digits are “significant”. Further digits are subject
to round-off effects caused by the internal binary representation. These “insignificant”
digits are part of the integer produced by rounding:

ceil(x)

delete x:

Example 3

Exact numerical expressions are internally converted to floating-point numbers before
rounding. Consequently, the current setting of DIGITS can affect the result:

x := 10^30 - exp(30)^ln(10)

Note that the exact value of this number is 0. Floating-point evaluation is subject to
severe cancellations:

DIGITS := 10:

float(x), ceil(x)

The floating-point result is more accurate when calculated with a higher precision. The
rounded values change accordingly:

DIGITS := 20:

float(x), ceil(x)

DIGITS := 30:

float(x), ceil(x)
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delete x, DIGITS:

Example 4

On floating-point intervals, ceil behaves as follows:

ceil(3.5...6.7)

This interval containa the results of ceil(x) for all .

Because there are finite numbers represented as RD_INF and RD_NINF, respectively,
ceil returns very small or large representable numbers in certain cases:

ceil(RD_NINF...RD_NINF)

Parameters

x

An arithmetical expression or floating-point interval

Return Values

Arithmetical expression.

Overloaded By

x
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See Also

MuPAD Functions
floor | frac | round | trunc

1-373



1 The Standard Library

floor
Round down to the next integer

Compatibility

For the floor function in MATLAB, see floor.

Syntax
floor(x)

Description

floor rounds a number to the next smaller integer.

For complex arguments, floor rounds the real and the imaginary parts separately.

For real numbers and exact expressions representing real numbers, floor returns
integers.

For arguments that contain symbolic identifiers, floor returns unevaluated function
calls.

For floating-point intervals, floor returns floating-point intervals containing all the
results of applying floor to the real or complex numbers inside the interval.

Note: If the argument is a floating-point number of absolute value larger than 10DIGITS,
the resulting integer is affected by internal non-significant digits. See “Example 2” on
page 1-375.

Note: Internally, exact numerical expressions that are neither integers nor rational
numbers are approximated by floating-point numbers before rounding. Thus, the
resulting integer depends on the current DIGITS setting. See “Example 3” on page
1-376.
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Environment Interactions

The functions are sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

Round the following real and complex numbers:

floor(3.5), floor(-7/2), floor(4.3 + 7*I)

Round the following symbolic expression representing a number:

floor(PI*I + 7*sin(exp(2)))

Rounding of expressions with symbolic identifiers produces unevaluated function calls:

floor(x - 1)

Example 2

Rounding floating-point numbers of large absolute value is affected by internal non-
significant digits:

x := 10^30/3.0
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Note that only the first 10 decimal digits are “significant”. Further digits are subject
to round-off effects caused by the internal binary representation. These “insignificant”
digits are part of the integer produced by rounding:

floor(x)

delete x:

Example 3

Exact numerical expressions are internally converted to floating point numbers before
rounding. Consequently, the current setting of DIGITS can affect the result:

x := 10^30 - exp(30)^ln(10)

Note that the exact value of this number is 0. Floating-point evaluation is subject to
severe cancellations:

DIGITS := 10:

float(x), floor(x)

The floating-point result is more accurate when calculated with a higher precision. The
rounded values change accordingly:

DIGITS := 20:

float(x), floor(x)

DIGITS := 30:

float(x), floor(x)
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delete x, DIGITS:

Example 4

On floating-point intervals, floor behaves as follows:

floor(3.5...6.7)

This interval contains the results of floor(x) for all .

Because there are finite numbers represented as RD_INF and RD_NINF, respectively,
floor returns very small or large representable numbers in certain cases:

ceil(RD_NINF...RD_NINF)

Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression.

Overloaded By

x
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See Also

MuPAD Functions
ceil | frac | round | trunc
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round

Rounding to the nearest integer

Syntax

round(x, <n>)

Description

round rounds a number to the nearest integer.

For complex arguments, round rounds the real and the imaginary parts separately.

For arguments that contain symbolic identifiers, round returns unevaluated function
calls.

For floating-point intervals, round returns floating-point intervals containing all the
results of applying round to the real or complex numbers inside the interval.

round(x,n) returns a floating-point number with the rounded n-th decimal digit after
the decimal point and sets all further digits to zero. If n is a negative integer, then round
rounds the corresponding digit to the left of the decimal point. See “Example 2” on page
1-380.

Note: If the argument is a floating-point number of absolute value larger than 10DIGITS,
the resulting integer is affected by internal non-significant digits. See “Example 3” on
page 1-381.

Note: Internally, exact numerical expressions that are neither integers nor rational
numbers are approximated by floating-point numbers before rounding. Thus, the
resulting integer depends on the current DIGITSsetting. See “Example 4” on page
1-381.
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Environment Interactions

The functions are sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

Round the following real and complex numbers:

round(3.5), round(-7/2), round(I/2)

Round the following symbolic expression representing a number:

round(PI*I + 7*sin(exp(2)))

Rounding of expressions with symbolic identifiers produces unevaluated function calls:

round(x + 1)

Example 2

round(x, n) rounds the n-th decimal digit of the floating-point representation of x:

round(123.456, 1), round(123.456, 2), round(123.456, 3),

round(123.456, 4), round(123.456, 5)

float(exp(5)*PI), round(exp(5)*PI, 3)
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If second argument is a negative integer, round rounds the digits to the left of the
decimal point:

round(123.45, 1), round(123.45, 0), round(123.45, -1),

round(123.45, -2), round(123.45, -3)

Example 3

Rounding floating-point numbers of large absolute value is affected by internal non-
significant digits:

x := 10^30/3.0

Note that only the first 10 decimal digits are “significant”. Further digits are subject
to round-off effects caused by the internal binary representation. These “insignificant”
digits are part of the integer produced by rounding:

round(x)

delete x:

Example 4

Exact numerical expressions are internally converted to floating-point numbers before
rounding. Consequently, the current setting of DIGITS can affect the result:

x := 10^30 - exp(30)^ln(10)
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Note that the exact value of this number is 0. Floating-point evaluation is subject to
severe cancellations:

DIGITS := 10:

float(x), round(x)

The floating-point result is more accurate when calculated with a higher precision. The
rounded values change accordingly:

DIGITS := 20:

float(x), round(x)

DIGITS := 30:

float(x), round(x)

delete x, DIGITS:

Example 5

On floating-point intervals, round behaves as follows:

round(3.5...6.7)

This interval contains the results of round(x) for all .

Because there are finite numbers represented as RD_INF and RD_NINF, respectively,
round returns very small or large representable numbers in certain cases:

round(RD_NINF...RD_NINF)
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Parameters

x

Arithmetical expression or floating-point interval

n

Integer. If n is positive, the n-th digit after the decimal point is rounded. If n is negative,
the |n|-th digit before the decimal point is rounded.

Return Values

Arithmetical expression.

Overloaded By

x

See Also

MuPAD Functions
ceil | floor | frac | trunc
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trunc

Rounding towards zero

Syntax

trunc(x)

Description

trunc rounds a number to the next integer in the direction of 0.

For complex arguments, trunc rounds the real and the imaginary parts separately.

For real numbers and exact expressions representing real numbers, trunc returns
integers.

For arguments that contain symbolic identifiers, trunc returns unevaluated function
calls.

For floating-point intervals, trunc returns floating-point intervals containing all the
results of applying trunc to the real or complex numbers inside the interval.

If x is a floating-point number, then trunc(x) truncates the digits after the decimal
point. Thus, trunc coincides with floor for real positive arguments and with ceil for
real negative arguments.

Note: If the argument is a floating-point number of absolute value larger than 10DIGITS,
the resulting integer is affected by internal non-significant digits. See “Example 2” on
page 1-385.

Note: Internally, exact numerical expressions that are neither integers nor rational
numbers are approximated by floating-point numbers before rounding. Thus, the
resulting integer depends on the current DIGITS setting. See “Example 3” on page
1-386.
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Environment Interactions

The functions are sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

Round the following real and complex numbers:

trunc(3.5), trunc(-7/2), trunc(I/2)

Round the following symbolic expression representing a number:

trunc(PI*I + 7*sin(exp(2)))

Rounding of expressions with symbolic identifiers produces unevaluated function calls:

trunc(x^2 + 3)

Example 2

Rounding floating-point numbers of large absolute value is affected by internal non-
significant digits:

x := 10^30/3.0
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Note that only the first 10 decimal digits are “significant”. Further digits are subject
to round-off effects caused by the internal binary representation. These “insignificant”
digits are part of the integer produced by rounding:

trunc(x)

delete x:

Example 3

Exact numerical expressions are internally converted to floating-point numbers before
rounding. Consequently, the current setting of DIGITS can affect the result:

x := 10^30 - exp(30)^ln(10)

Note that the exact value of this number is 0. Floating-point evaluation is subject to
severe cancellations:

DIGITS := 10:

float(x), trunc(x)

The floating-point result is more accurate when a higher precision is used. The rounded
values change accordingly:

DIGITS := 20:

float(x), trunc(x)

DIGITS := 30:

float(x), trunc(x)
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delete x, DIGITS:

Example 4

On floating-point intervals, trunc behaves as follows:

round(3.5...6.7)

This interval contains the results of trnc(x) for all .

Because there are finite numbers represented as RD_INF and RD_NINF, respectively,
trunc returns very small or large representable numbers in certain cases:

ceil(RD_NINF...RD_NINF)

Parameters

x

Arithmetical expression or floating-point interval

Return Values

Arithmetical expression.

Overloaded By

x
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See Also

MuPAD Functions
ceil | floor | frac | round
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Ci
Cosine integral function

Syntax
Ci(x)

Description

Ci(x) represents the cosine integral EULER ln
cos

+ ( ) +
( ) -

Úx
t

t
dt

x
1

0

.

If x is a floating-point number, then Ci(x) returns floating-point results. The special
values Ci(∞) = 0 and Ci(-∞) = iπ are implemented. For all other arguments, Ci
returns symbolic function calls.

The float attribute of Ci is a kernel function, thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments return themselves unevaluated:

Ci(1), Ci(sqrt(2)), Ci(x + 1), Ci(infinity), Ci(-infinity)
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To approximate exact results with floating-point numbers, use float:

float(Ci(1)), float(Ci(sqrt(2)))

Alternatively, use a floating-point value as an argument:

Ci(1.0), Ci(2.0 + 10.0*I)

Example 2

Ci is singular at the origin:

Ci(0)

Error: Singularity. [Ci]

The negative real axis is a branch cut of Ci. A jump of height 2 π i occurs when crossing
this cut:

Ci(-1.0), Ci(-1.0 + 10^(-10)*I), Ci(-1.0 - 10^(-10)*I)

Example 3

diff, float, series, and other functions handle expressions involving Ci:

diff(Ci(x), x, x, x), float(ln(3 + Ci(sqrt(PI))))

series(Ci(x), x = 0)
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series(Ci(x), x = infinity, 5)

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

Algorithms

The functions Ci(x)-ln(x) and Chi(x)-ln(x) are entire functions. Thus, Ci and Chi
have a logarithmic singularity at the origin and a branch cut along the negative real axis.
The values on the negative real axis coincide with the limit “from above”:

for real x < 0.

Ci and Chi are related by Ci(x) - ln(x) = Chi(i x) - ln(i x) for all x in the complex plane.
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References

[1] Abramowitz, M. and I. Stegun, “Handbook of Mathematical Functions”, Dover
Publications Inc., New York (1965).

See Also

MuPAD Functions
Chi | cos | Ei | int | Shi | Si | Ssi
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Chi
Hyperbolic cosine integral function

Syntax
Chi(x)

Description

Chi(x) represents the hyperbolic cosine integral EULER ln
cosh

+ ( ) +
( ) -

Úx
t

t
dt

x
1

0

.

If x is a floating-point number, then Chi(x) returns floating-point results. The special
values Chi(∞) = ∞, Chi(-∞) = ∞ + iπ, Chi(i∞) = iπ/2, and Chi(-i∞) = -iπ/2
are implemented. For all other arguments Chi returns symbolic function calls.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments return themselves unevaluated:

Chi(1), Chi(sqrt(2)), Chi(x + 1), Chi(I*infinity), Chi(-I*infinity)
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To approximate exact results with floating-point numbers, use float:

float(Chi(1)), float(Chi(sqrt(2)))

Alternatively, use a floating-point value as an argument:

Chi(1.0), Chi(2.0 + 10.0*I)

Example 2

Chi is singular at the origin:

Chi(0)

Error: Singularity. [Chi]

The negative real axis is a branch cut of Chi. A jump of height 2 π i occurs when crossing
this cut:

Chi(-1.0), Chi(-1.0 + 10^(-10)*I), Chi(-1.0 - 10^(-10)*I)

Example 3

diff, float, series, and other functions handle expressions involving Chi:

diff(Chi(x), x, x, x), float(ln(3 + Chi(sqrt(PI))))

series(Chi(x), x = 0)
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series(Chi(x), x = infinity, 3);

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

Algorithms

The functions Ci(x)-ln(x) and Chi(x)-ln(x) are entire functions. Thus, Ci and Chi
have a logarithmic singularity at the origin and a branch cut along the negative real axis.
The values on the negative real axis coincide with the limit “from above”:

for real x < 0.

Ci and Chi are related by Ci(x) - ln(x) = Chi(i x) - ln(i x) for all x in the complex plane.
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References

[1] Abramowitz, M. and I. Stegun, “Handbook of Mathematical Functions”, Dover
Publications Inc., New York (1965).

See Also

MuPAD Functions
Ci | cos | Ei | int | Shi | Si | Ssi
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coeff
Coefficients of a polynomial

Syntax
coeff(p, <All>)

coeff(p, <x>, n, <All>)

coeff(p, <[x, …]>, [n, …], <All>)

coeff(f, <vars>, <All>)

coeff(f, <vars>, <x>, n, <All>)

coeff(f, <vars>, <[x, …]>, [n, …], <All>)

Description

coeff(p) returns a sequence of all nonzero coefficients of the polynomial p.

coeff(p, x, n) regards p as a univariate polynomial in x and returns the coefficient of
the term x^n.

coeff(p, [x,...], [n,...]) regards p as a multivariate polynomial in x,... and
returns the coefficient of the term x^n,....

If the first argument f is not element of a polynomial domain, then coeff converts
the expression internally to a polynomial of type DOM_POLY via poly(f). If a list of
indeterminates is specified, the polynomial poly(f, vars) is considered.

Coefficients of polynomial expressions f are returned as arithmetical expressions.

There are various ways to call coeff with a polynomial p of type DOM_POLY:

• coeff(p) returns a sequence of all nonzero coefficients of p. They are ordered
according to the lexicographical term ordering. The order in descending.

The returned coefficients are elements of the coefficient ring of p.
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• coeff(p, x, n) regards p as a univariate polynomial in the variable x and returns
the coefficient of the term x^n.

For univariate polynomials, the returned coefficients are elements of the coefficient
ring of p.

For multivariate polynomials, the coefficients are returned as polynomials of type
DOM_POLY in the “remaining” variables.

• coeff(p, n) is equivalent to coeff(p, x, n), where x is the “main variable” of p.
This variable is the first element of the list of indeterminates op(p, 2).

• coeff(p, [x1,x2,...], [n1,n2,...]) regards p as a multivariate polynomial
in the variables x1,x2,... and returns the coefficient of the term x1^n1*x2^n2....
Variable and exponent lists must have the same length.

The returned coefficients are either elements of the coefficient ring of p or polynomials
of type DOM_POLY in the “remaining” variables.

• coeff(p, [n1,n2,...]) is equivalent to coeff(p, [x1,x2,...],
[n1,n2,...]), where the variables x1,x2,... are the “main variables” of p, i.e.,
the leading elements of the list of indeterminates op(p, 2).

• coeff(p, All) returns a sequence of coefficients of p including those equal to zero.
The function returns the result in ascending lexicographical order. For univariate
polynomial p, the call coeff(p, All) is equivalent to coeff(p, i) $ i = 0 ..
degree(p).

coeff returns 0 or a zero polynomial if the polynomial does not contain a term
corresponding to the specified powers. In particular, this happens for a univariate
polynomial if n is larger than the degree of the polynomial.

coeff returns FAIL if an expression cannot be regarded as a polynomial.

The result of coeff is not fully evaluated. Evaluation can be enforced by the function
eval. See “Example 5” on page 1-401.

Examples

Example 1

coeff(f) returns a sequence of all non-zero coefficients:
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f := 10*x^10 + 5*x^5 + 2*x^2: coeff(f)

coeff(f, i) returns a single coefficient:

coeff(f, i) $ i = 0..15

delete f:

Example 2

We demonstrate how the indeterminates influence the result:

f := 3*x^3 + x^2*y^2 + 17*x + 23*y + 2

coeff(f); coeff(f, [x, y]); coeff(f, [y, x])

delete f:

Example 3

The coefficients of f are selected with respect to the main variable x which is the first
entry of the list of indeterminates:

f := 3*x^3 + x^2*y^2 + 2: coeff(f, [x, y], i) $ i = 0..3
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The coefficients of f can be selected with respect to another main variable (in this case,
y):

coeff(f, [y, x], i) $ i = 0..2

Alternatively:

coeff(f, y, i) $ i = 0..2

The coefficients of f can also be selected with respect to a multivariate term:

coeff(f, [x,y], [3,0]),

coeff(f, [x,y], [2,2]),

coeff(f, [x,y], [0,0])

delete f:

Example 4

In the same way, coeff can be applied to polynomials of type DOM_POLY:

p := poly(3*x^3 + x, [x], Dom::IntegerMod(7)):

coeff(p)

coeff(p, i) $ i = 0..3
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For multivariate polynomials, the coefficients with respect to an indeterminate are
polynomials in the other indeterminates:

p := poly(3*x^3 + x^2*y^2 + 2, [x, y]):

coeff(p, y, 0), coeff(p, y, 1), coeff(p, y, 2);

coeff(p, x, 0), coeff(p, x, 1), coeff(p, x, 2)

Note that the indeterminates passed to coeff will be used, even if the polynomial
provides different indeterminates :

coeff(p, z, 0), coeff(p, z, 1), coeff(p, z, 2)

delete p:

Example 5

The result of coeff is not fully evaluated:

p := poly(27*x^2 + a*x, [x]): a := 5:

coeff(p, x, 1), eval(coeff(p, x, 1))

delete p, a:

Example 6

To return all coefficients of a polynomial, use the All option:

p := poly(a*x^3 + b*x^2 + c*x + d, [x, y]):
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coefficients := coeff(p, All)

To revert the order of the resulting sequence, use the revert function. This function
does not operate on sequences. To convert a sequence to a list, call revert for this list,
and convert the result back to a sequence:

op(revert([coefficients]))

The All option also works for polynomial expressions:

p_expr := 2*x^5 + 5*x^2 + 10*x + 3:

coeff(p_expr, All)

You can use the coeff function with the All option to compute scalar products of
polynomials. For example, the following procedure computes a scalar product of two
polynomials in an orthonormal basis. The coeff function extracts the coefficients of the
polynomials and returns two lists of coefficients. The zip function multiplies the entries
of these lists pairwise and returns a list. The op function accesses the entries of that list.
Finally, the _plus function computes the sum of all products:

scalarProduct := proc(p, q)

  local lp, lq;

begin

  lp := [coeff(p, All)];

  lq := [coeff(conjugate(q), All)];

_plus(op(zip(lp, lq, _mult)));

end_proc:

The following polynomials are orthogonal:

scalarProduct(poly(x^2 + 2), poly(x^3 + 2*x^2 - 1))
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Example 7

coeff(p, All) also works for multivariate polynomials and polynomial expressions:

p := poly(2*x^2*y + PI*x + y^2 - 2, [x, y]):

coeff(p, All)

For a multivariate polynomial or polynomial expression, the order in which coeff
returns the coefficients is such that the coefficient of the exponent vector [e1, e2, …]
appears at position e1 d1 + e2 d2 + … + 1. For example, represent the coefficients returned
for bivariate polynomial as a matrix:

A := matrix(degree(p, x) + 1, degree(p, y) + 1, [coeff(p, All)])

Parameters

p

A polynomial of type DOM_POLY

x

An indeterminate

n

A power: a nonnegative integer

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers
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Options

All

The coeff function with this option returns all the coefficients of a polynomial or a
polynomial expression including those equal to zero. The function returns the result in
ascending lexicographical order. See “Example 6” on page 1-401 and “Example 7” on
page 1-403.

Return Values

One or more coefficients of the coefficient ring of the polynomial, or a polynomial, or
FAIL.

Overloaded By

f, p

See Also

MuPAD Functions
collect | content | degree | degreevec | ground | icontent | lcoeff |
ldegree | lmonomial | lterm | monomials | nterms | nthcoeff | nthmonomial |
nthterm | poly | poly2list | tcoeff
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coerce

Type conversion

Syntax

coerce(object, T)

Description

coerce(object, T) tries to convert object into an element of the domain T.

If this is not possible or not implemented, then FAIL is returned.

Domains usually implement the two methods "convert" and "convert_to" for
conversion tasks.

coerce uses these methods in the following way: It first calls T::convert(object)
to perform the conversion. If this call yields FAIL, then the result of the call
object::dom::convert_to(object, T) is returned, which again may be the value
FAIL.

To find out the possible conversions for the object or which conversions are provided
by the domain T, please read the description of the method "coerce" or "convert",
respectively, that can be found on the help page of the domain T, and the description of
the method "convert_to" on the help page of the domain of object.

Only few basic domains currently implement the methods "convert" and
"convert_to".

Use the function expr to convert an object into an element of a basic domain.

Note that often a conversion can also be achieved by a call of the constructor of the
domain T. See “Example 3” on page 1-408.
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Examples

Example 1

We start with the conversion of an array into a list of domain type DOM_LIST:

a := array(1..2, 1..3, [[1, 2, 3], [4, 5, 6]])

coerce(a, DOM_LIST)

We convert the array into an hfarray of type DOM_HFARRAY:

coerce(a, DOM_HFARRAY)

The conversion of an array into a polynomial is not implemented, and thus coerce
returns FAIL:

coerce(a, DOM_POLY)

One can convert a one- or two-dimensional array into a matrix, and vice versa. An
example:

A := coerce(a, matrix); domtype(A)
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The conversion of a matrix into a list is also possible. The result is then a list of inner
lists, where the inner lists represent the rows of the matrix:

coerce(A, DOM_LIST)

coerce([1, 2, 3, 2], DOM_SET)

Any MuPAD object can be converted into a string, such as the arithmetical expression
2*x + sin(x^2):

coerce(2*x + sin(x^2), DOM_STRING)

Example 2

The function factor computes a factorization of a polynomial expression and returns an
object of the library domain Factored:

f := factor(x^2 + 2*x + 1);

domtype(f)

This domain implements the conversion routine "convert_to", which we can call
directly to convert the factorization into a list (see factor for details):

Factored::convert_to(f, DOM_LIST)
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However, it is more convenient to use coerce, which internally calls the slot routine
Factored::convert_to:

coerce(f, DOM_LIST)

Example 3

Note that often a conversion can also be achieved by a call of the constructor of a domain
T. For example, the following call converts an array into a matrix of the domain type
Dom::Matrix(Dom::Rational):

a := array(1..2, 1..2, [[1, 2], [3, 4]]):

MatQ := Dom::Matrix(Dom::Rational):

MatQ(a)

The call MatQ(a) implies the call of the method "new" of the domain MatQ, which in fact
calls the method "convert" of the domain MatQ to convert the array into a matrix.

Here, the same can be achieved with the use of coerce:

A := coerce(a, MatQ);

domtype(A)

Note that the constructor of a domain T is supposed to create objects, not to convert
objects of other domains into the domain type T. The constructor often allows more than
one argument which allows to implement various user-friendly ways to create the objects
(e.g., see the several possibilities for creating matrices offered by matrix).

1-408



 coerce

Parameters

object

Any object

T

Any domain

Return Values

Object of the domain T, or the value FAIL.

Overloaded By

T

See Also

MuPAD Functions
domtype | expr | testtype | type
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collect
Collect terms with the same powers

Syntax
collect(p, g, <f>)

collect(p, [g1, g2, …], <f>)

Description

collect(p, g) groups terms with the same powers of g in an expression p.

collect(p, [g1, g2, ...]) groups terms with the same powers of g1, g2, … in a
multivariate expression p.

If you pass a function name f as a third argument to collect, the procedure collects the
powers of g (g1, g2, … for multivariate expression). Then it applies the function f to the
coefficients.

collect(p, g) presents p as a sum a gi
i

n
i

=

Â
0

. The coefficients ai are not polynomials in

g. These coefficients can contain some terms with g, for example, sin(g) or e
g .

collect returns a modified copy of a polynomial. The function does not change the
polynomial itself. See “Example 1” on page 1-411.

If p is a rational expression in g, collect handles the numerator and denominator
separately.

If p is a multivariate expression, collect(p, [g1, g2, …]) returns an expression in the
following form:

a g gi i
i i

i i
1 2

1 2

1 2

1 2, º

º

º( )Â
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The coefficients ai1, i2, … are not polynomials in g. These coefficients can contain some

terms with g1, g2, …, for example, sin( )g e
g

1
2 .

If p is a rational expression in g1, g2, …, the collect command handles the numerator
and denominator separately.

For polynomial expressions, collect internally calls two functions: poly and then
expr. The function poly converts an expression p into a polynomial in the given
unknowns. This function returns a polynomial with the terms collected by the same
powers. Then expr converts this polynomial into a polynomial expression. See poly
for more information and examples. When applied to a rational expression, collect
handles the numerator and denominator separately.

You can use arbitrary expressions as indeterminates. See “Example 2” on page 1-412.

You can specify a function name instead of a variable. In this case, collect treats all
calls of the function with different arguments as different variables. See “Example 4” on
page 1-413.

collect does not recursively collect the operands of nonpolynomial subexpressions of p.
See “Example 2” on page 1-412.

If p is not a polynomial expression, collect can return the unchanged expression p. See
“Example 5” on page 1-414.

Examples

Example 1

You can define a polynomial expression p and collect terms with the same powers of x
and y:

p := x*y + z*x*y + y*x^2 - z*y*x^2 + x + z*x;

collect(p, [x, y])
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collect does not modify the original expression:

p

You can collect terms with same powers of x:

collect(p, [x])

If an expression contains only one indeterminate, you can omit the square brackets in the
second argument of the function call:

collect(p, x)

To factor coefficients in a resulting expression, pass factor as a third argument to
collect:

collect(p, x, factor)

Example 2

collect does not modify nonpolynomial subexpressions even if they contain a given
indeterminate. In particular, collect does not recursively handle the operands of a
nonpolynomial subexpression:

collect(sin((x + 1)^2)*(x + 1) + 5*sin((x + 1)^2) + x, x)

collect accepts nonpolynomial subexpressions as indeterminates:
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collect(sin((x + 1)^2)*(x + 1) + 5*sin((x + 1)^2) + x,

        sin((x + 1)^2))

Example 3

collect normalizes a rational expression, and then handles the numerator and
denominator separately:

collect(z/(x+y) + 3*z/(x+z), z)

Example 4

If you specify the name of a function as an indeterminate, collect handles functions
calls with different arguments as different indeterminates:

collect(a*f(1) + c*f(1) + f(2) + d*f(2), f)

collect(a*sin(x) + b*sin(x) + c*sin(y) + d*sin(y), sin)

p:= diff(besselJ(0, x), x $ 4);

collect(p, besselJ);

collect(p, besselJ, expand);
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Example 5

If p is not a polynomial expression, collect can return the unchanged expression p:

p :=  y^2*sin(x) + y*sin(x) + y^2*cos(x) + y*cos(x);

collect(p, x)

The expression p is a polynomial expression in y. You can group the terms with the same
powers in this variable:

collect(p, y)

Parameters

p

An arithmetical expression.

x, x1, x2, …

The indeterminates: typically, identifiers or indexed identifiers.
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f

A function.

Return Values

arithmetical expression.

Overloaded By

p

See Also

MuPAD Functions
coeff | combine | expand | factor | indets | normal | poly | rectform |
rewrite | simplify

More About
• “Manipulate Expressions”
• “Choose Simplification Functions”
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combine
Combine terms of same algebraic structure

Syntax
combine(f, <IgnoreAnalyticConstraints>)

combine(f, target, <IgnoreAnalyticConstraints>)

combine(f, [target1, target2, …], <IgnoreAnalyticConstraints>)

Description

combine(f) rewrites products of powers in the expression f as a single power.

combine(f, target) combines several calls to the target function(s) in the expression
f to a single call.

combine(f) applies these rewriting rules to products of powers occurring as
subexpressions in an arithmetical expression f:

•
,

•
,

•
.

The last two rules are only valid under certain additional restrictions, such as when
b is an integer. Except for the third rule, this behavior of combine is the inverse
functionality of expand. See “Example 1” on page 1-419.

Note: In certain cases, the MuPAD internal simplifier automatically applies these rules
in the reverse direction, and combine sometimes has no effect. See “Example 2” on page
1-420.
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combine(f, target) applies rewriting rules applicable to the target function(s) to
an arithmetical expression f. Some of the rules are only valid under certain additional
restrictions. For most of the rules, combine implements the inverse functionality of
expand. This list shows the rewriting rules for the targets.

• target = arctan:

for -1 < x < 1  and -1 < y < 1 .
• target = exp (see “Example 4” on page 1-420):

•
,

•
,

where valid, reacting to properties.
• target = int (see “Example 5” on page 1-421):

•
a f x dx af x dx( ) = ( )ÚÚ .

•
f x dx g x dx f x g x dx( ) + ( ) = ( ) + ( )Ú Ú Ú .

•
f x dx g x dx f x g x dx

a

b

a

b

a

b
( ) + ( ) = ( ) + ( )Ú Ú Ú .

•
f x dx g y dy f y g y dy

a

b

a

b

a

b
( ) + ( ) = ( ) + ( )Ú Ú Ú .

•
yf x dx xg y dy yf c xf c dc

a

b

a

b

a

b
( ) + ( ) = ( ) + ( )Ú Ú Ú .

• target = gamma (see “Example 6” on page 1-421):

•
,
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•

,
•

,
•

,
•

,

for positive integers n.
• target = ln (see “Example 7” on page 1-422):

•
,

•
,

if b is less than N. By default, N = 1000. You can change the number N using the
Pref::autoExpansionLimit command. See “Example 8” on page 1-422.

The rules do not hold for arbitrary complex values of a, b. Specify appropriate
properties for a or b to enable these rewriting rules. These rules are only applied to
natural logarithms.

• target = sincos (see “Example 3” on page 1-420):

•

,

where similar rules apply to sin(x) cos(y) and cos(x) cos(y):
•

.
• target = sinhcosh:
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•

,

where similar rules apply to sinh(x) cosh(y) and cosh(x) cosh(y).
• These rules apply recursively to powers of sinh and cosh with positive integral

exponents.

combine works recursively on the subexpressions of f.

If the second argument is a list of targets, then combine is applied to f subsequently for
each of the targets in the list. See “Example 10” on page 1-424.

If f is an array, a list, or a set, combine is applied to all entries of f. See “Example 11”
on page 1-424. If f is a polynomial or a series expansion, of type Series::Puiseux
or Series::gseries, combine is applied to each coefficient. See “Example 12” on page
1-424.

Environment Interactions

combine reacts to properties of identifiers appearing in the input.

Examples

Example 1

Combine powers of the same base using combine.

combine(sin(x) + x*y*x^(exp(1)))

combine also combines powers with the same exponent in certain cases:

combine(sqrt(2)*sqrt(3))
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Example 2

In most cases, however, combine does not combine powers with the same exponent:

combine(y^5*x^5)

Example 3

Rewrite products of sines and cosines as a sum of sines and cosines by setting the second
argument to sincos:

combine(sin(a)*cos(b) + sin(b)^2, sincos)

Rewrite sums of sines and cosines by setting the second argument to sincos:

combine(cos(a) + sin(a), sincos)

Powers of sines or cosines with negative integer exponents are not rewritten:

combine(sin(b)^(-2), sincos)

Example 4

Combine terms with the exponential function by specifying the second argument as exp.

combine(exp(3)*exp(2), exp)
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combine(exp(a)^2, exp)

Example 5

Rewrite integrals by setting the second argument to int.

combine(int(f(x),x)+int(g(x),x),int)

combine combines a constant term with the integral.

combine(a*int(f(x),x),int)

combine combines integrals with the same limits.

combine(int(f(x),x=a..b)+int(g(y),y=a..b),int)

Example 6

Combine calls to gamma by specifying the target as gamma. The combine function
simplifies quotients of gammas to rational expressions.

combine(gamma(n+3)*gamma(n+4/3) / gamma(n+1) / gamma(n+10/3), gamma)
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Example 7

This example shows the application of rules for the logarithm, and their dependence on
properties of the identifiers appearing in the input. In the complex plane, the logarithm
of a product does not always equal the sum of the logarithms of its factors. For real
positive numbers, however, this rule can apply.

Try to combine terms with calls to ln by specifying the target as ln.

combine(ln(a) + ln(b), ln)

combine does not combine the terms. Set the appropriate assumptions to combine the
terms.

assume(a > 0): assume(b > 0):

combine(ln(a) + ln(b), ln)

unassume(a): unassume(b):

Example 8

If a and b are integer or rational numbers and b is less than 1000, combine returns
logarithms.

combine(3*ln(2), ln)

If b is greater than or equal to 1000, combine returns results as :
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combine(1234*ln(5), ln)

You can change the limit on the number b by using the Pref::autoExpansionLimit
function. For example, when you use the default value N = 1000, combine returns the
following result for this logarithm:

combine(12*ln(12), ln)

If you set the value of Pref::autoExpansionLimit to 10, combine returns this
logarithm in its original form:

Pref::autoExpansionLimit(10):

combine(12*ln(12), ln)

For further computations, restore the default value of Pref::autoExpansionLimit:

Pref::autoExpansionLimit(NIL):

Example 9

The IgnoreAnalyticConstraints option applies a set of purely algebraic
simplifications including the equality of sum of logarithms and a logarithm of a product.
Using the IgnoreAnalyticConstraints option, you get a simpler result, but one that
might be incorrect for some of the values of a.

Combine logarithms using the IgnoreAnalyticConstraints option.

combine(ln(a^5) - ln(a^4), ln, IgnoreAnalyticConstraints)

Without using this option, you get a mathematically correct, but long result:

combine(ln(a^5) - ln(a^4), ln)
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Example 10

The second argument also can be a list of targets. Then the rewriting rules for each of the
targets in the list are applied.

Rewrite ln and sincos terms in the expression.

combine(ln(2) + ln(3) + sin(a)*cos(a), [ln, sincos])

Example 11

combine maps to sets:

combine({sqrt(2)*sqrt(5), sqrt(2)*sqrt(11)})

Example 12

combine maps to the coefficients of polynomials:

combine(poly(sin(x)*cos(x)*y, [y]), sincos)

However, it does not touch the polynomial's indeterminates:

combine(poly(sin(x)*cos(x)), sincos)
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Parameters

f

An arithmetical expression, an array, a list, a polynomial, or a set

target

One of the identifiers: arctan, exp, int, gamma, ln, sincos, or sinhcosh

Options

IgnoreAnalyticConstraints

Apply purely algebraic simplifications to an expression. For more information see the
options for the Simplify command.

Return Values

Object of the same type as the input object f.

Overloaded By

f

Algorithms

Advanced users can extend the functionality of combine by implementing additional
rewriting rules for other target functions. To extend functionality, define a new slot
target of combine. To define a new slot, you need to first unprotect the identifier
combine using unprotect. Afterwards, the command combine(f, target) leads to the
call combine::target(f) of the corresponding slot routine.

By default, combine handles a subexpression g(x1,x2,...) of f by calling itself
recursively for the operands x1, x2, etc. Users can change this behavior for their own
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mathematical function given by a function environment g by implementing a combine
slot of g. To handle the subexpression g(x1,x2,...), combine then calls the slot
routine g::combine with the argument sequence x1,x2,... of g.

See Also

MuPAD Functions
denom | expand | factor | normal | numer | radsimp | rectform | rewrite |
simplify

Introduced in R2007b
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complexInfinity
Complex infinity

Syntax
complexInfinity

Description

complexInfinity represents the only non-complex point of the one-point
compactification of the complex numbers.

Mathematically, complexInfinity is the north pole of the Riemann sphere, with the
unit circle as equator and the point 0 at the south pole.

With respect to arithmetic, complexInfinity behaves like “1/0”. In particular,
non-zero complex numbers may be multiplied or divided by complexInfinity or
1/ complexInfinity. Adding complexInfinity to a finite number yields again
complexInfinity.

With respect to arithmetical operations, complexInfinity is incompatible with the real
infinity.

Examples

Example 1

complexInfinity can be used in arithmetical operations with complex numbers. The
result in multiplications or divisions is either complexInfinity, 0, or undefined:

3*complexInfinity, I*complexInfinity, 0*complexInfinity;

3/complexInfinity, I/complexInfinity, 0/complexInfinity;

complexInfinity/3, complexInfinity/I;

complexInfinity*complexInfinity, complexInfinity/complexInfinity;
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The result in additions is undefined if one of the operands is infinite, and
complexInfinity otherwise:

complexInfinity + complexInfinity, infinity + complexInfinity;

3 + complexInfinity, I + complexInfinity, PI + complexInfinity

Symbolic expressions in arithmetical operations involving complexInfinity are
implicitly assumed to be different from both 0 and complexInfinity:

delete x:

x*complexInfinity, x/complexInfinity, complexInfinity/x,

x + complexInfinity

Algorithms

complexInfinity is the only element of the domain stdlib::CInfinity.

See Also

MuPAD Functions
infinity
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conjugate
Complex conjugation

Syntax
conjugate(z)

conjugate(L)

Description

conjugate(z) computes the conjugate ℜ(z) - i ℑ(z) of a complex number z = ℜ(z) + i ℑ(z).

For numbers of type DOM_INT, DOM_RAT, DOM_FLOAT, or DOM_COMPLEX, the conjugate is
computed directly and very efficiently.

conjugate can handle symbolic expressions. Properties of identifiers are taken into
account (see assume). An identifier z without any property is assumed to be complex,
and the symbolic call conjugate(z) is returned. See “Example 2” on page 1-430.

conjugate knows how to handle special mathematical functions, such as:

_mult   _plus   _power  abs     cos     cosh    cot

coth    csc     csch    erf     erfc    exp     gamma

igamma  sec     sech    sin     sinh    tan     tanh

See “Example 1” on page 1-430.

If conjugate does not know how to handle a special mathematical function, then a
symbolic conjugate call is returned. See “Example 3” on page 1-430.

This function is automatically mapped to all entries of container objects such as arrays,
lists, matrices, polynomials, sets, and tables.

Environment Interactions

conjugate is sensitive to properties of identifiers set via assume.
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Examples

Example 1

conjugate knows how to handle sums, products, the exponential function and the sine
function:

conjugate((1 + I)*exp(2 - 3*I))

delete z: conjugate(z + 2*sin(3 - 5*I))

Example 2

conjugate reacts to properties of identifiers:

delete x, y: assume(x, Type::Real):

conjugate(x), conjugate(y)

Example 3

If the input contains a function that the system does not know, then a symbolic
conjugate call is returned:

delete f, z: conjugate(f(z) + I)

Now suppose that f is some user-defined mathematical function, and that f z f z( ) = ( )

holds for all complex numbers z. To extend the functionality of conjugate to f, we
embed it into a function environment and suitably define its "conjugate" slot:
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f := funcenv(f):

f::conjugate := u -> f(conjugate(u)):

Now, whenever conjugate is called with an argument of the form f(u), it calls
f::conjugate(u), which in turn returns f(conjugate(u)):

conjugate(f(z) + I), conjugate(f(I))

Parameters

z

An arithmetical expression

L

A container object: an array, an hfarray, a list, a matrix, a polynomial, a set, or a table.

Return Values

arithmetical expression or a container object containing such expressions

Overloaded By

z

Algorithms

If a subexpression of the form f(u,...) occurs in z and f is a function environment,
then conjugate attempts to call the slot "conjugate" of f to determine the conjugate
of f(u,...). In this way, you can extend the functionality of conjugate to your own
special mathematical functions.

The slot "conjugate" is called with the arguments u,... of f.
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If f has no slot "conjugate", then the subexpression f(u,...) is replaced by the
symbolic call conjugate(f(u,...)) in the returned expression.

See “Example 3” on page 1-430.

Similarly, if an element d of a library domainT occurs as a subexpression of z, then
conjugate attempts to call the slot "conjugate" of that domain with d as argument to
compute the conjugate of d.

If T does not have a slot "conjugate", then d is replaced by the symbolic call
conjugate(d) in the returned expression.

See Also

MuPAD Functions
abs | assume | Im | Re | rectform | sign
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contains
Test if an entry exists in a container

Syntax
contains(s, object)

contains(l, object, <i>)

contains(t, object)

Description

contains(s, object) tests if object is an element of the set s.

contains(l, object) returns the index of object in the list l.

contains(t, object) tests if the array, table, or domain t has an entry corresponding
to the index object.

contains is a fast membership test for the MuPAD basic container data types. For lists
and sets, contains searches the elements for the given object. However, for arrays,
tables, and domains, contains searches the indices.

contains works syntactically, i.e., mathematically equivalent objects are considered
to be equal only if they are syntactically identical. contains does not represent
elementhood in the mathematical sense. See “Example 2” on page 1-434.

contains does not descend recursively into subexpressions; use has to achieve this. See
“Example 3” on page 1-435.

contains(s, object) returns TRUE if object is an element of the set s. Otherwise, it
returns FALSE.

contains(l, object) returns the position of object in the list l as a positive integer
if object is an entry of l. Otherwise, the return value is 0. If more than one entry of l is
equal to object, then the index of the first occurrence is returned.
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By passing a third argument i to contains, you can specify a position in the list where
the search is to start. Then, entries with index less than i are not taken into account. If i
is out of range, then the return value is 0.

See “Example 4” on page 1-435 and “Example 5” on page 1-435.

contains(t, object) returns TRUE if the array, table, or domain t has an entry
corresponding to the index object. Otherwise, it returns FALSE. Cf. “Example 6” on
page 1-436.

Examples

Example 1

contains may be used to test if a set contains a given element:

contains({a, b, c}, a), contains({a, b, c}, 2)

Example 2

contains works syntactically, i.e., mathematically equivalent objects are considered
to be equal only if they are syntactically identical. In this example contains returns
FALSE since y*(x + 1) and y*x + y are different representations of the same
mathematical expression:

contains({y*(x + 1)}, y*x + y)

Elementhood in the mathematical sense is represented by the operator in:

simplify(y*x + y in {y*(x+1)}, condition)
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Example 3

contains does not descend recursively into the operands of its first argument. In the
following example, c is not an element of the set, and therefore FALSE is returned:

contains({a, b, c + d}, c)

If you want to test whether a given expression is contained somewhere inside a complex
expression, please use has:

has({a, b, c + d}, c)

Example 4

contains applied to a list returns the position of the specified object in the list:

contains([a, b, c], b)

If the list does not contain the object, 0 is returned:

contains([a, b, c], d)

Example 5

contains returns the position of the first occurrence of the given object in the list if it
occurs more than once:

l := [a, b, a, b]: contains(l, b)
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A starting position for the search may be given as optional third argument:

contains(l, b, 1), contains(l, b, 2),

contains(l, b, 3), contains(l, b, 4)

If the third argument is out of range, then the return value is 0:

contains(l, b, -1), contains(l, b, 0), contains(l, b, 5)

Example 6

For tables, contains returns TRUE if the second argument is a valid index in the table.
The entries stored in the table are not considered:

t := table(13 = value): contains(t, 13), contains(t, value)

Similarly, contains tests if an array has a value for a given index. The array a has a
value corresponding to the index (1, 1), but none for the index (1, 2):

a := array(1..3, 1..2, (1, 1) = x, (2, 1) = PI):

contains(a, (1, 1)), contains(a, (1, 2))

contains is not intended for testing if an array contains a given value:

contains(a, PI)
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Error: Index dimension mismatch. [array]

Even if the dimensions match, the index must not be out of range:

contains(a, (4, 4))

Error: The argument is invalid. [array]

Example 7

contains may be used to test, whether a domain has the specified slot:

T := newDomain("T"):  T::index := value:

contains(T, index), contains(T, value)

There is no entry corresponding to the slot index in T. Please keep in mind that the
syntax T::index is equivalent to slot(T, "index" ):

contains(T, "index")

Example 8

Users can overloadcontains for their own domains. For illustration, we create a new
domain T and supply it with an "contains" slot, which tests is the set of entries of an
element contains the given value idx:

T := newDomain("T"):

T::contains := (e, idx) -> contains({extop(e)}, idx):

If we now call contains with an object of domain type T, the slot routine T::contains
is invoked:

e := new(T, 1, 2): contains(e, 2), contains(e, 3)
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Parameters

s

A set

l

A list

t

An array of type DOM_ARRAY, a table, or a domain

object

An arbitrary MuPAD object

i

An integer

Return Values

For sets, arrays, tables, or domains, contains returns one of the Boolean values TRUE or
FALSE. For lists, the return value is a nonnegative integer.

Overloaded By

l, s,  t

See Also

MuPAD Functions
_index | has | in | op | slot
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content

Content of a polynomial

Syntax

content(p)

content(f, <vars>)

Description

content(p) computes the content of the polynomial p or polynomial expression, i.e., the
greatest common divisor of its coefficients.

If p is the zero polynomial, then content returns 0.

If p is a non-zero polynomial with coefficient ring IntMod(n) and n is a prime number,
then content returns 1. If n is not a prime number, an error message is issued.

If p is a polynomial with a library domain R as coefficient ring, the gcd of its coefficients
is computed using the slot gcd of R. If no such slot exists, then content returns FAIL.

If p is a polynomial with coefficient ring Expr, then content does the following.

If all coefficients of p are either integers or rational numbers, content(p) is equivalent
to gcd(coeff(p)), and the return value is a positive integer or rational number. See
“Example 1” on page 1-440.

If at least one coefficient is a floating point number or a complex number and all other
coefficients are numbers, then content returns 1. See “Example 2” on page 1-441.

If at least one coefficient is not a number and all coefficients of p can be converted into
polynomials via poly, then content(p) is equivalent to gcd(coeff(p)). See “Example
3” on page 1-441.

Otherwise, content returns 1.
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A polynomial expression f is converted into a polynomial with coefficient ring Expr
via p :=poly(f, vars), and then content is applied to p. See “Example 1” on page
1-440.

Use icontent for polynomials that are known to have integer or rational coefficients,
since it is much faster than content.

Dividing the coefficients of p by its content gives its primitive part. This one can also be
obtained directly using polylib::primpart.

Examples

Example 1

If p is a polynomial with integer or rational coefficients, the result is the same as for
icontent:

content(poly(6*x^3*y + 3*x*y + 9*y, [x, y]))

The following call, where the first argument is a polynomial expression and not a
polynomial, is equivalent to the one above:

content(6*x^3*y + 3*x*y + 9*y, [x, y])

If no list of indeterminates is specified, then poly converts the expression into a
polynomial with respect to all occurring indeterminates, and we obtain yet another
equivalent call:

content(6*x^3*y + 3*x*y + 9*y)

Above, we considered the polynomial as a bivariate polynomial with integer coefficients.
We can also consider the same expression as a univariate polynomial in x, whose
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coefficients contain a parameter y. Then the coefficients and their gcd—the content—are
polynomial expressions in y:

content(poly(6*x^3*y + 3*x*y + 9*y, [x]))

Here is another example where the coefficients and the content are again polynomial
expressions:

content(poly(4*x*y + 6*x^3 + 6*x*y^2 + 9*x^3*y, [x]))

The following call is equivalent to the previous one:

content(4*x*y + 6*x^3 + 6*x*y^2 + 9*x^3*y, [x])

Example 2

If a polynomial or polynomial expression has numeric coefficients and at least one
floating-point number is among them, its content is 1:

content(2.0*x+2.0)

Example 3

If not all of the coefficients are numbers, the gcd of the coefficients is returned:

content(poly(x^2*y+x, [y]))
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Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

Return Values

an object of the same type as the coefficients of the polynomial or the value FAIL.

Overloaded By

p

See Also

MuPAD Functions
coeff | factor | gcd | icontent | ifactor | igcd | ilcm | lcm | poly |
polylib::primpart
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context
Evaluate an object in the enclosing context

Syntax
context(object)

Description

Within a procedure, context(object) evaluates object in the context of the calling
procedure.

Most MuPAD procedures evaluate their arguments before executing the body of the
procedure. However, if the procedure is declared with option hold, then the arguments
are passed to the procedure unevaluated. context serves to evaluate such arguments a
posteriori from within the procedure.

Like most MuPAD procedures, context first evaluates its argument object as usual in
the context of the current procedure. Then the result is evaluated again in the dynamical
context that was valid before the current procedure was called. The enclosing context is
either the interactive level or the procedure that called the current procedure.

"func_call"-methods of domains never evaluate their arguments, whether the option
hold is used or not. See “Example 2” on page 1-445.

context is sensitive to the value of the environment variable LEVEL, which determines
the maximal depth of the recursive process that replaces an identifier by its value during
evaluation. The evaluation of the argument takes place with the value of LEVEL that
is valid in the current procedure, which is 1 by default. The second evaluation uses the
value of LEVEL that is valid in the enclosing context, which is usually 1 if the enclosing
context is also a procedure, while it is 100 by default if the enclosing context is the
interactive level. See “Example 3” on page 1-445.

Note: The function context must not be called at interactive level, and context calls
must not be nested. Thus it is not possible to evaluate an object in higher levels of the
dynamical call stack. See “Example 4” on page 1-446.
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Environment Interactions

context is sensitive to the value of the environment variable LEVEL, which determines
the maximal substitution depth for identifiers.

Examples

Example 1

We define a procedure f with option hold. If this procedure is called with an identifier
as argument, such as a below, the identifier itself is the actual argument inside of f.
context may be used to get the value of a in the outer context:

a := 2:

f := proc(i)

       option hold;

     begin

       print(i, context(i), i^2 + 2, context(i^2 + 2));

     end_proc:

f(a):

If a procedure with option hold is called from another procedure you will see strange
effects if the procedure with option hold does not evaluate its formal parameters with
context. Here, the value of the formal parameter j in g is the variable i which
is defined in the context of procedure f and not its value 4. When you want to access
the value of this variable you have to use context, otherwise you see the output
DOM_VAR(0,2) which is the variable i of f which has lost its scope:

f := proc()

       local i;

     begin

       i := 4:

       g(i);

     end_proc:

g := proc(j)

       option hold;

     begin
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       print(j, eval(j), context(j));

       print(j + 1)

     end_proc:

f()

Example 2

The "func_call" method of a domain is implicitly declared with option hold. We
define a "func_call" method for the domain DOM_STRING of MuPAD strings. The slot
routine converts its remaining arguments into strings and appends them to the first
argument, which coincides with the string that is the 0th operand of the function call:

unprotect(DOM_STRING):

DOM_STRING::func_call := 

  string -> _concat(string, map(args(2..args(0)), expr2text)):

a := 1:  "abc"(1, a, x)

You see that the identifier a was added to the string, and not its value 1. Use context to
access the value that a has before the "func_call" method is invoked:

DOM_STRING::func_call := 

  string -> _concat(string, map(context(args(2..args(0))), 

                                expr2text)):

"abc"(1, a, x);

delete DOM_STRING::func_call:  protect(DOM_STRING, Error):

Example 3

This example shows the influence of the environment variable LEVEL on the evaluation
of context and the differences to the functions eval and level. p is a function with
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option hold. x is a formal parameter of this procedure. When evaluating their arguments
context, eval and level all replace x first by its value a. Then eval evaluates a in
the current context with LEVEL = 1 and yields the value b. context evaluates a in the
enclosing context (which is the interactive level) with LEVEL = 100 and yields c. level
always returns the result of the first evaluation step, which is a.

When the LEVEL of the interactive level is 1, context returns b like eval since the
second evaluation is performed with LEVEL = 1 like in eval.

The local variable b of p does not influence the evaluation in context, eval and level
since it is only a locally declared variable of type DOM_VAR which has nothing to do with
the identifier b, which is the value of a:

delete a, b, c:  a := b:  b := c: 

p := proc(x) 

       option hold;

       local b;

     begin 

       b := 2;

       eval(x), context(x), level(x), level(x,2);

     end: 

p(a);

LEVEL := 1: p(a);

delete LEVEL:

Example 4

The function context must not be called at interactive level:

context(x)

Error: The function call is not allowed on the interactive level. [context]

 Error: Function call not

allowed on interactive level. [context] 

1-446



 context

Parameters

object

Any MuPAD object

Return Values

Evaluated object.

See Also

MuPAD Domains
DOM_PROC

MuPAD Functions
eval | freeze | hold | LEVEL | level | MAXLEVEL | proc
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contfrac

Domain of continued fractions

Syntax

contfrac(r, <n>)

contfrac(f, x, <m>)

contfrac(f, x = x0, <m>)

Description

contfrac(r) creates a continued fraction approximation of the real number r.

contfrac(f, x = x0) creates a continued fraction approximation of the expression f
as a function of x around x = x0.

The continued fraction expansion contfrac(r n ) of a real number or numerical
expression r is an expansion of the form

where a1 is the integer floor(r) and a2, a3, ... are positive integers.

The continued fraction is computed by numlib::contfrac(r < n >); the expansion
returned by contfrac is of domain type numlib::contfrac.

See the documentation of numlib::contfrac for further details.

A continued fraction expansion contfrac(f, x = x0) of a symbolic expression f in the
indeterminate x is an expansion of the form
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where

• a1, …, ak are arithmetical expressions not containing powers of x - x0. The coefficients
a2, …, ak are non-zero.

• e1 is a rational number and e2, …, ek are positive rational numbers. If a1 ≠ 0, then e1 is
positive as well.

If  or x0 = complexInfinity, the terms (x - x0)ei have to be replaced by .

For symbolic expressions f, contfrac(f, x = x0) returns an expansion of domain
type contfrac.

One may also call contfrac(f) without specifying an identifier x. In this case,
contfrac extracts the indeterminates in f automatically via indets. FAIL is returned
if more than one indeterminate is found.

If m is not specified, the default value m = ORDER is used.

contfrac uses the function Series::Puiseux::contfrac to compute the continued
fraction in the symbolic case. If f is a rational function with respect to the expansion
variable x, and the `truncation order' m is not specified, then contfrac returns an exact
continued fraction expansion of f. Cf. “Example 3” on page 1-451.

Environment Interactions

When called with an irrational numerical value r, the function is sensitive to the
environment variable DIGITS which determines the numerical working precision. For
symbolic expressions f, the function is sensitive to the environment variable ORDER
which determines the number of terms in truncated series expansions.
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Examples

Example 1

We compute some continued fraction expansions of real numbers:

contfrac(27/31), contfrac(PI, 5)

They can also be computed by direct calls to numlib::contfrac:

numlib::contfrac(27/31), numlib::contfrac(PI, 5)

Example 2

We compute symbolic continued fractions of functions:

contfrac(exp(x), x = 0), contfrac(exp(-3*x^2), x = 0)

If no expansion variable is specified, the symbolic expression to be expanded must be
univariate:
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contfrac(exp(x*y))

Error: The first argument must be a univariate expression. [contfrac::function]

Symbolic parameters are accepted if the expansion variable is specified:

contfrac(exp(x*y), x)

In the next call, we specify the expansion point x = 1 and request a specific `number of
terms' by the third argument:

contfrac(exp(x*y), x = 1, 3);

Example 3

For rational functions, exact representations are returned when no specific `number of
terms' is requested. The method "rational" returns the rational expression equivalent
to the continued fraction:

cf := contfrac((x - y)/(x^3 + y^3), x, 2):

cf, contfrac::rational(cf);

cf := contfrac((x - y)/(x^3 + y^3), x):

cf, contfrac::rational(cf);

1-451



1 The Standard Library

Example 4

The coefficients and expansion terms of a continued fraction can be accessed by the
functions nthcoeff and nthterm:

cf := contfrac(sin(1/x), x = infinity, 4)

nthcoeff(cf, 1), nthcoeff(cf, 2), nthcoeff(cf, 3), nthcoeff(cf, 4);

nthterm(cf, 1), nthterm(cf, 2), nthterm(cf, 3)

delete cf:

Example 5

We can compute a series expansion of a continued fraction via series:

cf := contfrac(sin(x)/(x - PI) - 1, x = PI)
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If no further arguments are given in series, the default expansion variable is op(cf, 3);
the default expansion point is op(cf, 4):

op(cf, 3), op(cf, 4)

series(cf)

Both the series variable as well as the expansion point may be passed explicitly to
series.

series(cf, x = PI)

However, the values must coincide with the values used to compute the continued
fraction: In the following call, the default expansion point x = 0 is used by series. This
clashes with the expansion point x = PI of the continued fraction:

series(cf, x)

Error: The expansion point 'PI' of the continued fraction does not coincide with the requested expansion point '0' of the series. [contfrac::series]

delete cf:

Parameters

r

A real number or a numerical expression that can be converted to a real floating-point
number
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n

The number of significant decimal digits: a positive integer. The default value is n =
DIGITS.

f

An arithmetical expression interpreted as a function of x

x

An identifier

x0

The expansion point: an arithmetical expression,  or complexInfinity. The default
value is 0.

m

The `number of terms': a positive integer. The default value is m = ORDER.

Return Values

Call contfrac(r n ) with a numerical value r returns an object of type
numlib::contfrac. The call contfrac(f, x = x0 m ) with a symbolic expression f
returns an object of type contfrac. FAIL is returned if no series expansion of f around
x0 could be computed.

Methods

Mathematical Methods

series — Serie of a continued fraction

series(cf, <m>)

series(cf, <x>, <m>)
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series(cf, <x = x0>, <m>)

If x is not specified, the default series variable is op(cf, 3). If x0 is not specified, the
default expansion point is op(cf, 4). If no `number of terms' m is specified, m = ORDER
is used.

This method overloads the function series.

Access Methods

op — Operand of the continued fraction

op(cf, <n>)

See Also

MuPAD Functions
numlib::contfrac | series
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copyClosure
Copies the lexical closure of a procedure

Syntax
copyClosure(f)

Description

copyClosure(f) copies the lexical closure of a procedure or procedure environment f.

Usually, when a procedure is copied, for example by assigning it to an identifier, the
lexical closure of the procedure is not copied. Via the copied procedure one can change the
lexical closure of the original procedure. Thus, the lexical closure of a procedure shows
the so-called reference effect.

copyClosure may be used to copy the lexical closure of a procedure. Changes in the
closure of the copy no longer affect the original procedure's closure.

Closures are implemented by procedure environments (kernel type DOM_PROC_ENV) in
MuPAD. copyClosure works by copying all lexically enclosing procedure environments
of a procedure.

copyClosure may also be used to copy a procedure environment and all its lexically
enclosing environments only.

Examples

Example 1

Procedure closures show the reference effect: The procedure f generated by gen changes
its closure via the variable i. A “normal” copy g of f changes the variable in the same
closure, as is seen by repeatedly calling f versus g.

gen:= proc()
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    option escape;

    local i;

begin

    i := 0;

    proc() begin i := i+1 end

end:

f := gen():

g := f:

f(), g(), f(), g()

If one now generates f again by calling gen, but copies g by calling copyClosure, then g
has its own closure and now longer changes the variable i in the closure of f.

f := gen():

g := copyClosure(f):

f(), g(), f(), g()

Parameters

f

A procedure or procedure environment to be copied

Return Values

Copied procedure or procedure environment

See Also

MuPAD Functions
_assign
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curl
Curl of a vector field

Syntax
curl(v, x)

curl(v, x, ogCoord, <c>)

Description

curl(v, x) computes the curl of the three-dimensional vector field  with respect to
the three-dimensional vector  in Cartesian coordinates. This is the vector field

.

curl(v, x, ogCoord) computes the curl of v with respect to x in the orthogonally
curvilinear coordinate system specified by ogCoord.

ogCoord can be the name of a three-dimensional orthogonal coordinate system
predefined in the table linalg::ogCoordTab. See “Example 2” on page 1-459.

Alternatively, ogCoord can be a list of vector of algebraic expressions representing the
scale factors of the coordinate system. See example “Example 3” on page 1-459. For
details, see the description of the Scales option on the linalg::ogCoordTab page.

If v is a vector then the component ring of v must be a field (a domain of category
Cat::Field) for which differentiation with respect to x is defined.

curl returns a vector of the domain Dom::Matrix().
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Examples

Example 1

Compute the curl of the vector field  in Cartesian coordinates:

delete x, y, z:

curl([x*y, 2*y, z], [x, y, z])

Example 2

Compute the curl of the vector field , (0 ≤ ϕ < 2 π) in cylindrical
coordinates:

delete r, phi, z: V := matrix([r, cos(phi), z]):

curl(V, [r, phi, z], Cylindrical)

The following relations between Cartesian and cylindrical coordinates hold:

.

Other predefined orthogonal coordinate systems can be found in the table
linalg::ogCoordTab.

Example 3

Compute the curl of a vector field in spherical coordinates r, θ,ϕ given by
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with 0 ≤ θ ≤ π, 0 ≤ ϕ < 2 π. The vectors

form an orthogonal system of unit vectors corresponding to the spherical coordinates.
The scaling factors of the coordinate transformation (see linalg::ogCoordTab) are

, , , which we use in the following example to

compute the curl of the vector field  = :

delete r, Theta, phi:

curl([0, 0, r^2], [r, Theta, phi], [1, r, r*sin(Theta)])

These are the coefficients of the curl of  in the bases given by the vectors , , ,

that is, the curl of  is given by the vector field .
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The spherical coordinates are already defined in linalg::ogCoordTab. The last
result can also be achieved with the input curl([0, 0, r^2], [r, Theta, phi],
Spherical).

curl([0, 0, r^2], [r, Theta, phi], Spherical)

Parameters

v

A list of three arithmetical expressions, or a three-dimensional vector (a 3×1 or 1 ×3
matrix of a domain of category Cat::Matrix)

x

A list of three (indexed) identifiers

ogCoord

The name of a three-dimensional orthogonal coordinate system predefined in the table
linalg::ogCoordTab, or a list of algebraic expressions representing the scale factors of
an orthogonal coordinate system.

c

The parameter of the coordinate systems EllipticCylindrical and Torus, respectively: an
arithmetical expression. The default value is c = 1.

Return Values

Column vector.
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See Also

MuPAD Functions
divergence | gradient | laplacian | linalg::ogCoordTab | potential |
vectorPotential
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', D
Differential operator for functions

Syntax
f '

D(f)

D([n1, n2, …], f)

Description

D(f) or, alternatively, f' computes the derivative of the univariate function f.

D([n1, n2, ...], f) computes the partial derivative  of the

multivariate function f(x1, x2, …).

MuPAD has two functions for differentiation: diff and D. D represents the differential
operator that may be applied to functions; diff is used to differentiate arithmetical
expressions. Mathematically, D(f)(x) coincides with diff(f(x), x); D([1, 2], f)
(x, y) coincides with diff(f(x, y), x, y). Symbolic calls of D and diff can be
converted to one another via rewrite. Cf. “Example 8” on page 1-468.

D(f) returns the derivative  of the univariate functionf. f' is shorthand for D(f).

If f is a multivariate function and  denotes the partial derivative of f with respect
to its n-th argument, then D([n1, n2, ...], f) computes the partial derivative

. Cf. “Example 5” on page 1-467. In particular, D([ ], f) returns f itself.

Note: It is assumed that partial derivatives commute. Internally, D([n1, n2, ...],
f) is converted to D([m1, m2, ...], f), where [m1, m2, ...] = sort([n1,
n2, ...]).
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f may be any object which can represent a function. In particular, f may be a functional
expression built from simple functions by means of arithmetic operators (+, -, *, /,
^, @, @@). Any identifier different from CATALAN, EULER, and PI is regarded as
an “unknown” function; the same holds for elements of kernel domains not explicitly
mentioned on this page. Cf. “Example 1” on page 1-465. Any number and each of the
three constant identifiers above is regarded as a constant function. Cf. “Example 2” on
page 1-465.

If f is a list, a set, a table, or an array, then D is applied to each entry of f. Cf. “Example
3” on page 1-466.

A polynomial f of type DOM_POLY is regarded as polynomial function, the indeterminates
being the arguments of the function. Cf. “Example 6” on page 1-467.

If f is a function environment, a procedure, then D can compute the derivative in some
cases; see the “Background” section below. If this is not possible, a symbolic D call is
returned.

Higher partial derivatives D([n1], D([n2], f)) are simplified to D([n1, n2], f).
Cf. “Example 7” on page 1-468.

The derivative of a univariate function f —denoted by D(f)— is syntactically
distinguished from the partial derivative D([1], f) with respect to the first variable,
even if f represents a univariate function.

The usual rules of differentiation are implemented:

• D(f + g) = D(f) + D(g),
• D(f * g) = f * D(g) + g * D(f),
• D(1/f) = -D(f) / f^2,
• D(f @ g) = D(f) @ g * D(g).

Note that the composition of functions is written as f@g and not as f(g).

In order to express the n-th derivative of a univariate function for symbolic n, you can
use the “repeated composition operator” @@. Cf. “Example 9” on page 1-469.

Environment Interactions

D uses option remember.
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Examples

Example 1

D(f) computes the derivative of the function f:

D(sin), D(x -> x^2), D(id)

D also works for more complex functional expressions:

D(sin @ exp + 2*(x -> x*ln(x)) + id^2)

If f is an identifier without a value, a symbolic D call is returned:

delete f: D(f + sin)

The same holds for objects of kernel type that cannot be regarded as functions:

D(NIL)

f' is shorthand for D(f):

(f + sin)', (x -> x^2)', id'

Example 2

Constants are regarded as constant functions:
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PI', 3', (1/2)'

Example 3

The usual rules of differentiation are implemented. Note that lists and sets may also be
taken as input; in this case, D is applied to each element of the list or set:

delete f, g: D([f+g, f*g]); D({1/f, f@g})

Example 4

The derivatives of most special functions of the library can be computed. Again, id
denotes the identity function:

D(tan); D(sin*cos); D(1/sin); D(sin@cos); D(2*sin + ln)
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Example 5

D can also compute derivatives of procedures:

f := x -> x^2:

g := proc(x) begin tan(ln(x)) end:

D(f), D(g)

We differentiate a function of two arguments by passing a list of indices as first
argument to D. In the example below, we first differentiate with respect to the second
argument and then differentiate the result with respect to the first argument:

D([1, 2], (x, y) -> sin(x*y))

The order of the partial derivatives is not relevant:

D([2, 1], (x, y) -> sin(x*y))

delete f, g:

Example 6

A polynomial is regarded as a polynomial function:

D(poly(x^2 + 3*x + 2, [x]))
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We differentiate the following bivariate polynomial f twice with respect to its second
variable y and once with respect to its first variable x:

f := poly(x^3*y^3, [x, y]):

D([1, 2, 2], f) = diff(f, y, y, x)

delete f:

Example 7

Nested calls to D are flattened:

D([1], D([2], f))

However, this does not hold for calls with only one argument, since D(f) and D([1], f)
are not considered to be the same:

D(D(f))

Example 8

D may only be applied to functions whereas diff makes only sense for expressions:

D(sin), diff(sin(x), x)

Applying D to expressions and diff to functions makes no sense:

D(sin(x)), diff(sin, x)
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rewrite allows to rewrite expressions with D into diff-expression:

rewrite(D(f)(y), diff), rewrite(D(D(f))(y), diff)

The reverse conversion is possible as well:

map(%, rewrite, D)

Example 9

Sometimes you may need the n-th derivative of a function, where n is unknown. This
can be achieved using the repeated composition operator. For example, let us write a
function that computes the k-th Taylor polynomial of a function f at a point x0 and uses x
as variable for that polynomial:

kthtaylorpoly:=

(f, k, x, x0) -> _plus(((D@@n)(f)(x0) * (x - x0)^n / n!) $ n = 0..k):

kthtaylorpoly(sin, 7, x, 0)

delete kthtaylorpoly:

Example 10

Advanced users can extend D to their own special mathematical functions (see
“Background” section below). To this end, embed your mathematical function f, say, into
a function environmentf and implement the behavior of D for this function as the "D"
slot of the function environment. The slot must handle two cases: it may be either called
with only one argument which equals f, or with two arguments where the second one
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equals f. In the latter case, the first argument is a list of arbitrary many indices; that is,
the slot must be able to handle higher partial derivatives also.

Suppose, for example, that we are given a function f(t, x, y), and that we do not know
anything about f except that it is differentiable infinitely often and satisfies the partial
differential equation . To make MuPAD eliminate derivatives with

respect to t, we can do the following:

f := funcenv(f):

f::D :=

proc(indexlist, ff)

  local

    n        : DOM_INT,   // Number of t-derivatives.

    list_2_3 : DOM_LIST;  // List of indices of 2's and 3's.

                          // These remain unchanged.

begin

  if args(0) <> 2 then

    error("Wrong number of arguments")

  end_if;

  n        :=  nops(select(indexlist, _equal, 1));

  list_2_3 :=  select(indexlist, _unequal, 1);

  // rewrite (d/dt)^n = (d^2/dx^2 + d^2/dy^2)^n

  _plus(binomial(n, k) *

        hold(D)(sort([2 $ 2*(n-k), 3 $ 2*k].list_2_3), ff)

        $ k = 0..n)

end_proc:

Now, partial derivatives with respect to the first argument t are rewritten by derivatives
with respect to the second and third argument:

D([1], f^2)(t, x, y)

D([1, 2, 1], f)

delete f:
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Parameters

f

A function or a functional expression, an array, a list, a polynomial, a set, or a table

n1, n2, …

Indices: positive integers

Return Values

function or a functional expression. If f is an array or a list etc., a corresponding object
containing the derivatives of the entries is returned.

Overloaded By

f

Algorithms

If f is a domain or a function environment with a slot"D", this slot is called to compute
the derivative. The slot procedure has the same calling syntax as D. In particular —
and in contrast to the slot"diff"— the slot must be able to compute higher partial
derivatives because the list of indices may have length greater than one. Cf. “Example
10” on page 1-469.

If f is a procedure, a function environment without a "D" slot, then f is called with
auxiliary identifiers as arguments. The result of the call is then differentiated using
the function diff. If the result of diff yields an expression which can be regarded
as function in the auxiliary identifers, then this function is returned, otherwise an
unevaluated call of D is returned.

Let us take the function environmentsin as an example. It has no "D" slot, thus the
procedure op(sin, 1), which is responsible for evaluating the sine function, is used to
compute D(sin), as follows. This procedure is applied to an auxiliary identifier, say x,
and differentiated with respect to this identifier via diff. The result is diff(sin(x),
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x) = cos(x). Via fp::expr_unapply and fp::unapply, the function cos is
computed as the derivative of sin.

See Also

MuPAD Functions
diff | int | poly
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dawson
Dawson's integral

Syntax
dawson(x)

Description

dawson(x) represents Dawson's integral, which is defined as .

dawson(x) returns special values for x = 0 and . For all other symbolic values of x,
unevaluated function calls are returned. Cf. “Example 1” on page 1-473.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

For the following arguments, special values are returned:

dawson(0), dawson(infinity), dawson(-infinity)

For other symbolic arguments, a symbolic call is returned:

dawson(1), dawson(5+I)
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Floating point values are returned for floating-point arguments:

dawson(0.0), dawson(1.0), dawson(-3.4 + 0.2*I)

Example 2

The functions diff, float, limit, and series handle expressions involving the
dawson function:

diff(dawson(x^2), x), float(dawson(7))

limit(x*dawson(x), x = infinity)

series(dawson(x), x = infinity, 4)

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.
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Overloaded By

x

See Also

MuPAD Functions
erf | erfc
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debug
Execute a procedure in single-step mode

Syntax
debug()

debug(statement)

Description

debug(statement) starts the MuPAD debugger, allowing to execute statement step
by step.

debug called with an argument switches the state of the MuPAD kernel to debug mode
and, if statement contains procedure calls that can be debugged, enters the interactive
MuPAD debugger for controlled single-step execution of statement.

If debug is called without arguments, the current state is returned without changing the
state. If the debugger is on, the return value is TRUE, otherwise FALSE.

In a MuPAD version with a graphical user interface, a separate debugger window pops
up. In the UNIX® terminal version, the text interface of the command line debugger is
activated.

The debugger features single stepping, inspection of variables and stack frames,
breakpoints, etc. Read the online help of the debugger window for a description.

Debugging is possible only for procedures written in the MuPAD language that do not
have the option noDebug. In particular, debugging of kernel functions is not possible.

After calling Pref::ignoreNoDebug(TRUE), the procedure option noDebug is ignored.

You can also debug a sequence of statements separated by semicolons if the sequence is
enclosed in parentheses.

debug(statement) returns the same result as statement, if the execution is not
aborted within the debugger by the user.
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Examples

Example 1

debug() is called to check whether the kernel is in debug mode:

debug()

 

                           FALSE 

To switch on the debugger mode, debug(1) is called:

debug(1)

  

Activating debugger...   For those library functions which are already

loaded, the format of the source code  displayed by the debugger 

may differ from that of the original source code file. To avoid this,

restart the kernel in debug mode. Execution completed.           

                      1 

debug()

Example 2

We start the debugger for stepwise execution of the statement int(cos(x),x), which
integrates the cosine function:

debug(int(cos(x), x)):

Parameters

statement

Any MuPAD object; typically a function call
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Return Values

Return value of statement or TRUE or FALSE.

Algorithms

In debug mode, the MuPAD parser is re-configured. When a procedure is read from
a file, the parser inserts additional debug nodes containing file identifications and
line numbers into procedures. These debug nodes allow the debugger to associate the
currently executed piece of MuPAD code with the corresponding source text file.

If the debug mode is activated and MuPAD encounters a procedure without debug nodes,
it will write the procedure to a temporary file and add debug nodes on the fly. This allows
interactively entered procedures to be debugged in the same way as procedures read from
files. The temporary debug file is deleted at the end of the session.

Since this also applies to procedures that were read before debug mode was switched on,
it is recommended to start the kernel in debug mode (see below) when bigger applications
are to be debugged.

If the MuPAD kernel was not started in debug mode, this mode is turned on at the first
execution of debug. It remains activated until the end of the session.

It is possible to start the kernel in debug mode. In the MuPAD Notebook app, this can be
configured by choosing “Configure …” in the “View” menu (“Preferences…” on the Apple
Macintosh) and then clicking on “Kernel”. Enter “-g” in the text field “Arguments:”.

See Also

MuPAD Functions
Pref::ignoreNoDebug | prog::check | prog::profile | prog::trace
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dedekindEta
The Dedekind eta function

Syntax
dedekindEta(z)

Description

dedekindEta(z) represents the Dedekind eta function .

The Dedekind eta function is defined for all complex numbers z with positive imaginary
part.

Floating-point results are computed for floating-point arguments. For all other
arguments, the function returns symbolically.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

The Dedekind eta function takes on small values near the real axis:

dedekindEta(1 + 0.001*I)
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Example 2

A symbolic call is returned if the argument is not a floating-point number:

dedekindEta(I), dedekindEta(x)

Parameters

z

An arithmetical expression

Return Values

Arithmetical expression

See Also

MuPAD Functions
theta
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degree
Degree of a polynomial

Syntax
degree(p)

degree(p, x)

degree(f, <vars>)

degree(f, <vars>, x)

Description

degree(p) returns the total degree of the polynomial p.

degree(p, x) returns the degree of p with respect to the variable x.

If the first argument f is not element of a polynomial domain, then degree converts
the expression internally to a polynomial of type DOM_POLY via poly(f). If a list of
indeterminates is specified, the polynomial poly(f, vars) is considered.

degree(f, vars, x) returns 0 if x is not an element of the list vars.

The degree of the zero polynomial is defined as 0.

Examples

Example 1

The total degree of the terms in the following polynomial expression is computed:

degree(x^3 + x^2*y^2 + 2)
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Example 2

degree may be applied to polynomials of type DOM_POLY:

degree(poly(x^2*z + x*z^3 + 1, [x, z]))

Example 3

The next expression is regarded as a bi-variate polynomial in x and z. The degree with
respect to z is computed:

degree(x^2*z + x*z^3 + 1, [x, z], z)

Example 4

The degree of the zero polynomial is defined as 0:

degree(0, [x, y])

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers
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x

An indeterminate

Return Values

Nonnegative number. FAIL is returned if the input cannot be converted to a polynomial.

Overloaded By

f, p

See Also

MuPAD Functions
coeff | degreevec | ground | lcoeff | ldegree | lmonomial | lterm |
monomials | nterms | nthcoeff | nthmonomial | nthterm | poly | poly2list |
tcoeff
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degreevec
Exponents of the leading term of a polynomial

Syntax
degreevec(p, <order>)

degreevec(f, <vars>, <order>)

Description

degreevec(p) returns a list with the exponents of the leading term of the polynomial p.

For a polynomial in the variables x1, x2, …, xn with the leading term x1
e1 x2

e2 … xn
en, the

exponent vector [e1, e2, …, en] is returned.

degreevec returns a list of zeroes for the zero polynomial.

If the first argument f is not element of a polynomial domain, then degreevec converts
the expression internally to a polynomial of type DOM_POLY via poly(f). If a list of
indeterminates is specified, the polynomial poly(f, vars) is considered. FAIL is
returned if f cannot be converted to a polynomial.

Examples

Example 1

The leading term of the following polynomial expression (with respect to the main
variable x) is x4:

degreevec(x^4 + x^2*y^3 + 2, [x, y])
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With the main variable y, the leading term is x2 y3:

degreevec(x^4 + x^2*y^3 + 2, [y, x])

For polynomials of type DOM_POLY, the indeterminates are an integral part of the data
type:

degreevec(poly(x^4 + x^2*y^3 + 2, [x, y])),

degreevec(poly(x^4 + x^2*y^3 + 2, [y, x]))

Example 2

For a univariate polynomial, the standard term orderings regard the same term as
“leading”:

degreevec(poly(x^2*z + x*z^3 + 1, [x]), LexOrder), 

degreevec(poly(x^2*z + x*z^3 + 1, [x]), DegreeOrder),

degreevec(poly(x^2*z + x*z^3 + 1, [x]), DegInvLexOrder)

In the multivariate case, different polynomial orderings may yield different leading
exponent vectors:

degreevec(poly(x^2*z + x*z^3 + 1, [x, z])),

degreevec(poly(x^2*z + x*z^3 + 1, [x, z]), DegreeOrder)

degreevec(x^3 + x*y^2*z - 5*y^4, [x, y, z], LexOrder),

degreevec(x^3 + x*y^2*z - 5*y^4, [x, y, z], DegreeOrder),

degreevec(x^3 + x*y^2*z - 5*y^4, [x, y, z], DegInvLexOrder)
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Example 3

The exponent vector of the zero polynomial is a list of zeroes:

degreevec(0, [x, y, z])

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

order

The term ordering: either LexOrder, or DegreeOrder, or DegInvLexOrder, or a user-
defined term ordering of type Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder.

Return Values

List of nonnegative integers. FAIL is returned if the input cannot be converted to a
polynomial.

Overloaded By

f, p
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See Also

MuPAD Functions
coeff | degree | ground | lcoeff | ldegree | lmonomial | lterm | monomials |
nterms | nthcoeff | nthmonomial | nthterm | poly | poly2list | tcoeff
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delete, _delete
Delete the value of an identifier

Syntax
delete x1, x2, …

_delete(x1, x2, …)

Description

The statement delete x deletes the value of the identifier x.

For many computations, symbolic variables are needed. E.g., solving an equation for
an unknown x requires an identifier x that does not have a value. If x has a value, the
statement delete x deletes the value and x can be used as a symbolic variable.

The statement delete x1, x2, ... is equivalent to the function call _delete(x1,
x2, ...). The values of all specified identifiers are deleted.

The statement delete x[j] deletes the entry j of a list, an array, an hfarray, or a table
named x. Deletion of elements or entries reduces the size of lists and tables, respectively.

If x is an identifier carrying properties set via assume, then delete x detaches all
properties from x, i.e., delete x has the same effect as unassume(x). Cf. “Example 3”
on page 1-490.

Examples

Example 1

The identifiers x, y are assigned values. After deletion, the identifiers have no values any
longer:

x := 42: y := 7: delete x: x, y
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delete y: x, y

More than one identifier can be deleted by one call:

a := b := c := 42: a, b, c

delete a, b, c: a, b, c

Example 2

delete can also be used to delete specific elements of lists, arrays, hfarrays, and tables:

L := [7, 13, 42]

delete L[2]: L

A := array(1..3, [7, 13, 42])

delete A[2]: A, A[2]

T := table(1 = 7, 2 = 13, 3 = 42)
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delete T[2]: T

Note that delete does not evaluate the objects that are to be deleted. In the following,
an element of the list U is deleted. The original value of U (the list L) is not changed:

U := L: delete U[1]: U, L

Finally, all assigned values are deleted:

delete U, L, A, T: U, L, A, T

Example 3

delete can also be used to delete properties of identifiers set via assume. With the
assumption “x > 1”, the expression ln(x) has the property “ln(x) > 0”, i.e., its sign is
1:

assume(x > 1): sign(ln(x))

Without a property of x, the function sign cannot determine the sign of ln(x):

delete x: sign(ln(x))
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Parameters

x1, x2, …

identifiers or indexed identifiers

Return Values

Void object of type DOM_NULL.

See Also

MuPAD Functions
:= | _assign | assign | assignElements | evalassign
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denom
Denominator of a rational expression

Syntax
denom(f)

Description

denom(f) returns the denominator of the expression f.

denom regards the input as a rational expression: non-rational subexpressions such as
sin(x), x^(1/2) etc. are internally replaced by “temporary variables”. The denominator
of this rationalized expression is computed, the temporary variables are finally replaced
by the original subexpressions.

Note: Numerator and denominator are not necessarily cancelled: the denominator
returned by denom may have a non-trivial gcd with the numerator returned by numer.
Pre-process the expression by normal to enforce cancellation of common factors. Cf.
“Example 2” on page 1-493.

Examples

Example 1

We compute the denominators of some expressions:

denom(-3/4)

denom(x + 1/(2/3*x -2/x))
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denom((cos(x)^2 -1)/(cos(x) -1))

Example 2

denom performs no cancellations if the rational expression is of the form “numerator/
denominator”:

r := (x^2 - 1)/(x^3 - x^2 + x - 1): denom(r)

This denominator has a common factor with the numerator of r; normal enforces
cancellation of common factors:

denom(normal(r))

However, automatic normalization occurs if the input expression is a sum:

denom(r + x/(x + 1) + 1/(x + 1) - 1)

delete r:

Parameters

f

An arithmetical expression
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Return Values

Arithmetical expression.

Overloaded By

f

See Also

MuPAD Functions
factor | gcd | normal | numer
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densematrix
Create a matrix or a vector

Syntax
densematrix(Array)

densematrix(List)

densematrix(ListOfRows)

densematrix(Matrix)

densematrix(m, n)

densematrix(m, n, Array)

densematrix(m, n, List)

densematrix(m, n, ListOfRows)

densematrix(m, n, f)

densematrix(m, n, List, Diagonal)

densematrix(m, n, g, Diagonal)

densematrix(m, n, List, Banded)

densematrix(1, n, Array)

densematrix(1, n, List)

densematrix(m, 1, Array)

densematrix(m, 1, List)

Description

densematrix(m, n, [[a11, a12, ...], [a21, a22, ...], ...]) returns the
m×n matrix
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.

densematrix(n, 1, [a1, a2, ...]) returns the n×1 column vector

.

densematrix(1, n, [a1, a2, ...]) returns the 1×n row vector

.

densematrix creates matrices and vectors. A vector with n entries is either an n×1
matrix (a column vector) or a 1×n matrix (a row vector).

Matrix and vector components must be arithmetical expressions. For specific component
domains, refer to the help page of Dom::DenseMatrix.

Arithmetical operations with matrices can be performed by using the standard
arithmetical operators of MuPAD.

E.g., if A and B are two matrices defined by densematrix, then A + B computes the sum
and A * B computes the product of the two matrices, provided that the dimensions are
correct.

Similarly, A^(-1) or 1/A computes the inverse of a square matrix A if it exists.
Otherwise, FAIL is returned.

See “Example 1” on page 1-499.

Many system functions accept matrices as input, such as map, subs, has, zip,
conjugate to compute the complex conjugate of a matrix, norm to compute matrix
norms, or even exp to compute the exponential of a matrix. See “Example 4” on page
1-502.

1-496



 densematrix

Most of the functions in the MuPAD linear algebra package linalg work with matrices.
For example, the command linalg::gaussJordan(A) performs Gauss-Jordan
elimination on A to transform A to its reduced row echelon form. See “Example 2” on page
1-500.

See the help page of linalg for a list of available functions of this package.

densematrix is an abbreviation for the domain Dom::DenseMatrix(). You find more
information about this data type for matrices on the corresponding help page.

Matrix components can be extracted by the usual index operator [ ], which also works
for lists, arrays, hfarrays, and tables. The call A[i, j] extracts the matrix component in
the ith row and the jth column.

Assignments to matrix components are performed similarly. The call A[i, j] := c
replaces the matrix component in the ith row and the jth column of A by c.

If one of the indices is not in its valid range, then an error message is issued.

The index operator also extracts submatrices. The call A[r1..r2, c1..c2] creates
the submatrix of A comprising the rows with the indices r1, r1 + 1, …, r2 and the columns
with the indices c1, c1 + 1, …, c2 of A.

See  “Example 3” on page 1-501 and “Example 5” on page 1-504.

densematrix(Array) or densematrix(Matrix) create a new matrix with the same
dimension and the components of Array or Matrix, respectively. The array must not
contain any uninitialized entries. If Array is one-dimensional, then the result is a
column vector. Cf. “Example 7” on page 1-506.

densematrix(List) creates an m×1 column vector with components taken from the
nonempty list, where m is the number of entries of List. See “Example 5” on page
1-504.

densematrix(ListOfRows) creates an m×n matrix with components taken from the
nested listListOfRows, where m is the number of inner lists of ListOfRows, and n is
the maximal number of elements of an inner list. Each inner list corresponds to a row of
the matrix. Both m and n must be non-zero.

If an inner list has less than n entries, then the remaining components in the
corresponding row of the matrix are set to zero. See “Example 6” on page 1-505.
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It might be a good idea first to create a two-dimensional array from that list before
calling densematrix. This is due to the fact that creating a matrix from an array is
the fastest way one can achieve. However, in this case the sublists must have the same
number of elements.

The call densematrix(m, n) returns the m×n zero matrix.

The call densematrix(m, n, Array) creates an m×n matrix with components taken
from Array, which must be an array or an hfarray. Array must have m n operands. The
first m operands define the first row, the next m operands define the second row, etc.
The formatting of the array is irrelevant. E.g., any array with 6 elements can be used to
create matrices of dimension 1 ×6, or 2×3, or 3×2, or 6 ×1.

densematrix(m, n, List) creates an m×n matrix with components taken row after
row from the non-empty list. The list must contain m n entries. Cf. “Example 6” on page
1-505.

densematrix(m, n, ListOfRows) creates an m×n matrix with components taken
from the list ListOfRows.

If m ≥ 2 and n ≥ 2, then ListOfRows must consist of at most m inner lists, each having at
most n entries. The inner lists correspond to the rows of the returned matrix.

If an inner list has less than n entries, then the remaining components of the
corresponding row of the matrix are set to zero. If there are less than m inner lists, then
the remaining lower rows of the matrix are filled with zeroes. See “Example 6” on page
1-505.

densematrix(m, n, f) returns the matrix whose (i, j)th component is f(i,j). The
row index i runs from 1 to m and the column index j from 1 to n. See “Example 8” on page
1-508.

densematrix(m, 1, Array) returns the m×1 column vector with components taken
from Array. The array or hfarray Array must have m entries.

densematrix(m, 1, List) returns the m×1 column vector with components taken
from List. The list List must have at most m entries. If there are fewer entries, then the
remaining vector components are set to zero. See “Example 5” on page 1-504.

densematrix(1, n, Array) returns the 1 ×n row vector with components taken from
Array. The array or hfarray Array must have n entries.
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densematrix(1, n, List) returns the 1 ×n row vector with components taken from
List. The list List must have at most n entries. If there are fewer entries, then the
remaining vector components are set to zero. See “Example 5” on page 1-504.

Note: The components of a matrix are no longer evaluated after the creation of the
matrix, i.e., if they contain free identifiers they will not be replaced by their values.

Examples

Example 1

We create the 2×2 matrix

by passing a list of two rows to densematrix, where each row is a list of two elements,
as follows:

A := densematrix([[1, 5], [2, 3]])

In the same way, we generate the following 2 ×3 matrix:

B := densematrix([[-1, 5/2, 3], [1/3, 0, 2/5]])

We can do matrix arithmetic using the standard arithmetical operators of MuPAD. For
example, the matrix product A B, the 4th power of A, and the scalar multiplication of A
by  are given by:

A * B, A^4, 1/3 * A
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Since the dimensions of the matrices A and B differ, the sum of A and B is not defined
and MuPAD returns an error message:

A + B

Error: The dimensions do not match. [(Dom::DenseMatrix(Dom::ExpressionField()))::_plus]

To compute the inverse of A, enter:

1/A

If a matrix is not invertible, then the result of this operation is FAIL:

C := densematrix([[2, 0], [0, 0]])

C^(-1)

Example 2

In addition to standard matrix arithmetic, the library linalg offers a lot of functions
handling matrices. For example, the function linalg::rank determines the rank of a
matrix:

A := densematrix([[1, 5], [2, 3]])
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linalg::rank(A)

The function linalg::eigenvectors computes the eigenvalues and the eigenvectors of
A:

linalg::eigenvectors(A)

To determine the dimension of a matrix use the function linalg::matdim:

linalg::matdim(A)

The result is a list of two positive integers, the row and column number of the matrix.

Use info(linalg) to obtain a list of available functions, or enter ?linalg for details
about this library.

Example 3

Matrix entries can be accessed with the index operator [ ]:

A := densematrix([[1, 2, 3, 4], [2, 0, 4, 1], [-1, 0, 5, 2]])

A[2, 1] * A[1, 2] - A[3, 1] * A[1, 3]
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You can redefine a matrix entry by assigning a value to it:

A[1, 2] := a^2: A

The index operator can also be used to extract submatrices. The following call creates a
copy of the submatrix of A comprising the second and the third row and the first three
columns of A:

A[2..3, 1..3]

The index operator does not allow to replace a submatrix of a given matrix by another
matrix. Use linalg::substitute to achieve this.

Example 4

Some system functions can be applied to matrices. For example, if you have a matrix
with symbolic entries and want to have all entries in expanded form, simply apply the
function expand:

delete a, b: 

A := densematrix([

  [(a - b)^2, a^2 + b^2], 

  [a^2 + b^2, (a - b)*(a + b)]

])

expand(A)
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You can differentiate all matrix components with respect to some indeterminate:

diff(A, a)

The following command evaluates all matrix components at a given point:

subs(A, a = 1, b = -1)

Note that the function subs does not evaluate the result of the substitution. For
example, we define the following matrix:

A := densematrix([[sin(x), x], [x, cos(x)]])

Then we substitute x = 0 in each matrix component:

B := subs(A, x = 0)

You see that the matrix components are not evaluated completely: for example, if you
enter sin(0) directly, it evaluates to zero.

The function eval can be used to evaluate the result of the function subs. However,
eval does not operate on matrices directly, and you must use the function map to apply
the function eval to each matrix component:
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map(B, eval)

The function zip can be applied to matrices. The following call combines two matrices A
and B by dividing each component of A by the corresponding component of B:

A := densematrix([[4, 2], [9, 3]]):

B := densematrix([[2, 1], [3, -1]]):

zip(A, B, `/`)

Example 5

A vector is either an m×1 matrix (a column vector) or a 1×n matrix (a row vector). To
create a vector with densematrix, pass the dimension of the vector and a list of vector
components as argument to densematrix:

row_vector    := densematrix(1, 3, [1, 2, 3]); 

column_vector := densematrix(3, 1, [1, 2, 3])

If the only argument of densematrix is a non-nested list or a one-dimensional array,
then the result is a column vector:

densematrix([1, 2, 3])
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For a row vector r, the calls r[1, i] and r[i] both return the ith vector component
of r. Similarly, for a column vector c, the calls c[i, 1] and c[i] both return the ith
vector component of c.

For example, to extract the second component of the vectors row_vector and
column_vector, we enter:

row_vector[2], column_vector[2]

Use the function linalg::vecdim to determine the number of components of a vector:

linalg::vecdim(row_vector), linalg::vecdim(column_vector)

The number of components of a vector can also be determined directly by the call
nops(vector).

The dimension of a vector can be determined as described above in the case of matrices:

linalg::matdim(row_vector),

linalg::matdim(column_vector)

See the linalg package for functions working with vectors, and the help page of norm for
computing vector norms.

Example 6

In the following examples, we illustrate various calls of densematrix as described
above. We start by passing a nested list to densematrix, where each inner list
corresponds to a row of the matrix:

densematrix([[1, 2], [2]])
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The number of rows of the created matrix is the number of inner lists, namely m = 2.
The number of columns is determined by the maximal number of entries of an inner list.
In the example above, the first list is the longest one, and hence n = 2. The second list
has only one element, and therefore the second entry in the second row of the returned
matrix was set to zero.

In the following call, we use the same nested list, but in addition pass two dimension
parameters to create a 4×4 matrix:

densematrix(4, 4, [[1, 2], [2]])

In this case, the dimension of the matrix is given by the dimension parameters. As
before, missing entries in an inner list correspond to zero, and in addition missing rows
are treated as zero rows.

If the dimension m×n of the matrix is stated explicitly, the entries may also be specified
by a plain list with m n elements. The matrix is filled with these elements row by row:

densematrix(2, 3, [1, 2, 3, 4, 5, 6])

densematrix(3, 2, [1, 2, 3, 4, 5, 6])

Example 7

A one- or two-dimensional array of arithmetical expressions, such as:

a := array(1..3, 2..4, [[ 1,  1/3 ,  0 ], 

                        [-2,  3/5 , 1/2], 
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                        [-3/2, 0 ,  -1 ]])

can be converted into a matrix as follows:

A := densematrix(a)

Arrays serve, for example, as an efficient structured data type for programming.
However, arrays do not have any algebraic meaning, and no mathematical operations are
defined for them. If you convert an array into a matrix, you can use the full functionality
defined for matrices as described above. For example, let us compute the matrix 2 A - A2

and the Frobenius norm of A:

2*A - A^2, norm(A, Frobenius)

Note that an array may contain uninitialized entries:

b := array(1..4): b[1] := 2: b[4] := 0: b
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densematrix cannot handle arrays that have uninitialized entries, and responds with
an error message:

densematrix(b)

Error: Cannot define a matrix over 'Dom::ExpressionField()'. [(Dom::DenseMatrix(Dom::ExpressionField()))::new]

We initialize the remaining entries of the array b and convert it into a matrix, or more
precisely, into a column vector:

b[2] := 0: b[3] := -1: densematrix(b)

Example 8

We show how to create a matrix whose components are defined by a function of the row
and the column index. The entry in the ith row and the jth column of a Hilbert matrix
(see also linalg::hilbert) is . Thus the following command creates a 2×2

Hilbert matrix:

densematrix(2, 2, (i, j) -> 1/(i + j - 1))

The following two calls produce different results. In the first call, x is regarded as an
unknown function, while it is a constant in the second call:

delete x:

densematrix(2, 2, x), densematrix(2, 2, (i, j) -> x)
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Example 9

Diagonal matrices can be created by passing the option Diagonal and a list of diagonal
entries:

densematrix(3, 4, [1, 2, 3], Diagonal)

Hence, you can generate the 3×3 identity matrix as follows:

densematrix(3, 3, [1 $ 3], Diagonal)

Equivalently, you can use a function of one argument:

densematrix(3, 3, i -> 1, Diagonal)

Since the integer 1 also represents a constant function, the following shorter call creates
the same matrix:

densematrix(3, 3, 1, Diagonal)

Example 10

Banded Toeplitz matrices (see above) can be created with the option Banded. The
following command creates a matrix of bandwidth 3 with all main diagonal entries equal
to 2 and all entries on the first sub- and superdiagonal equal to - 1:

1-509



1 The Standard Library

densematrix(4, 4, [-1, 2, -1], Banded)

Parameters

Array

A one- or two-dimensional array of type DOM_ARRAY or DOM_HFARRAY

List

A list of arithmetical expressions

ListOfRows

A nested list of rows, each row being a list of arithmetical expressions

Matrix

A matrix, i.e., an object of a data type of category Cat::Matrix

m

The number of rows: a positive integer

n

The number of columns: a positive integer

f

A function or a functional expression of two arguments

g

A function or a functional expression of one argument
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Options

Diagonal

Create a diagonal matrix

With the option Diagonal, diagonal matrices can be created with diagonal elements
taken from a list, or computed by a function or a functional expression.

densematrix(m, n, List, Diagonal) creates the m×n diagonal matrix whose
diagonal elements are the entries of List. See “Example 9” on page 1-509.

List must have at most min(m, n) entries. If it has fewer elements, then the remaining
diagonal elements are set to zero.

densematrix(m, n, g, Diagonal) returns the matrix whose ith diagonal element is
g(i, i), where the index i runs from 1 to min(m, n). See “Example 9” on page 1-509.

Banded

Create a banded Toeplitz matrix

A banded matrix has all entries zero outside the main diagonal and some of the adjacent
sub- and superdiagonals.

densematrix(m, n, List, Banded) creates an m×n banded Toeplitz matrix with the
elements of List as entries. The number of entries of List must be odd, say 2 h + 1, and
must not exceed n. The bandwidth of the resulting matrix is at most h.

All elements of the main diagonal of the created matrix are initialized with the middle
element of List. All elements of the ith subdiagonal are initialized with the (h + 1 - i)th
element of List. All elements of the ith superdiagonal are initialized with the (h + 1 +
i)th element of List. All entries on the remaining sub- and superdiagonals are set to
zero.

See “Example 10” on page 1-509.

Return Values

Matrix of the domain typeDom::DenseMatrix().
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See Also

MuPAD Domains
Dom::DenseMatrix | Dom::Matrix | DOM_ARRAY | DOM_HFARRAY

MuPAD Functions
array | hfarray | matrix
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det

Determinant of a matrix

Syntax

det(A, options)

Description

det(A) returns the determinant of the matrix A.

If the input matrix is an array of domain type DOM_ARRAY, then numeric::det(A,
Symbolic) is called to compute the result.

The determinant of hfarrays of domain type DOM_HFARRAY is internally computed via
numeric::det(A).

If the argument does not evaluate to a matrix of one of the types mentioned above, a
symbolic call det(A) is returned.

The MinorExpansion option is useful for small matrices (typically, matrices of
dimension up to 10) containing many symbolic entries. By default, det tries to recognize
matrices that can benefit from using MinorExpansion, and uses this option when
computing their determinants. Nevertheless, det does not always recognize these
matrices. Also, identifying that a matrix is small enough and contains many symbolic
entries takes time. To improve performance, use the MinorExpansion option explicitly.

By default, det calls normal before returning results. This additional internal call
ensures that the final result is normalized. This call can be computationally expensive.
It also affects the result returned by det only if a matrix contains variables or exact
expressions, such as sqrt(5) or sin(PI/7).

To avoid this additional call, specify Normal = FALSE. In this case, det also can return
normalized results, but does not guarantee such normalization. See “Example 3” on page
1-515 and “Example 4” on page 1-515.
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Examples

Example 1

We compute the determinant of a matrix given by various data types:

A := array(1..2, 1..2, [[1, 2], [3, PI]]);

det(A)

B := hfarray(1..2, 1..2, [[1, 2], [3, PI]]);

det(B)

C := matrix(2, 2, [[1, 2], [3, PI]]);

det(C)

delete A, B, C:

Example 2

If the input does not evaluate to a matrix, then symbolic calls are returned:
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delete A, B:

det(A + 2*B)

Example 3

If you use the Normal option, det calls the normal function for final results. This call
ensures that det returns results in normalized form:

det(matrix([[x, x^2], [x/(x + 2), 1/x]]))

If you specify Normal = FALSE, det does not call normal for the final result:

det(matrix([[x, x^2], [x/(x + 2), 1/x]]), Normal = FALSE)

Example 4

Using Normal can significantly decrease performance of det. For example, computing
the determinant of this matrix takes a long time:

n := 5:

det5 := det(matrix([[(x[i*j]^(i + j) + x[i+j]^j)/(i + j) $

                                               j = 1..n] $

                                               i = 1..n])):

For better performance, specify Normal = FALSE:

n := 5:

det5 := det(matrix([[(x[i*j]^(i + j) + x[i+j]^j)/(i + j) $

                                               j = 1..n] $

                                               i = 1..n]),
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                                          Normal = FALSE):

Parameters

A

Square matrix: either a two-dimensional array, a two-dimensional hfarray, or an
object of the category Cat::Matrix

Options

MinorExpansion

Compute the determinant by a recursive minor expansion along the first column.

Normal

Option, specified as Normal = b

Return normalized results. The value b must be TRUE or FALSE. By default, Normal =
TRUE, meaning that det guarantees normalization of the returned results. Normalizing
results can be computationally expensive.

Return Values

Arithmetical expression.

Overloaded By

A

See Also

MuPAD Functions
numeric::det
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More About
• “Compute Determinants and Traces of Square Matrices”
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diff
Differentiate an expression or a polynomial

Syntax
diff(f)

diff(f, x)

diff(f, x1, x2, …)

Description

diff(f, x) computes the derivative  of the function f with respect to the variable

x.

diff(f, x) computes the partial derivative of the arithmetical expression (or
polynomial) f with respect to the indeterminate x.

diff(f) computes the 0th derivative of f. Since the 0th derivative of f is f itself,
diff(f) returns its evaluated argument.

diff(f, x1, x2, ...) is equivalent to diff(...diff(diff(f, x1), x2)...).
In both cases, MuPAD first differentiates f with respect to x1, then differentiates the
result with respect to x2, and so on. The result is the partial derivative . See

“Example 2” on page 1-520.

If you use nested diff calls, the system internally converts them into a single diff call
with multiple arguments. See “Example 3” on page 1-520.

When computing the second and higher derivatives, use the sequence operator as a
shortcut. If n is a nonnegative integer, diff(f, x $ n) returns the nth derivative of f
with respect to x. See “Example 4” on page 1-521.

The indeterminates x, x1, x2, ... must be identifiers of domain type DOM_IDENT or
indexed identifiers of the form x[n] where x is an identifier and n is an integer. If any
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indeterminate comes in any other form, MuPAD returns an unresolved diff call. See
“Example 5” on page 1-521.

If f is an arithmetical expression, diff returns an arithmetical expression. If f is a
polynomial, diff returns a polynomial. See “Example 6” on page 1-521.

If the system cannot compute the derivative, it returns an unresolved diff call. See
“Example 7” on page 1-521.

MuPAD assumes that partial derivatives with respect to different indeterminates
commute. The function calls diff(f, x1, x2) and diff(f, x2, x1) produce the
same result diff(f, y1, y2). Here [y1, y2] = sort([x1, x2]). See “Example 8”
on page 1-522.

MuPAD provides two functions, diff and D, for computing derivatives. Use the
differential operator D to compute the derivatives of functions. Use the diff function to
compute the derivatives of arithmetical expressions. Mathematically, D(f)(x) coincides
with diff(f(x), x) and D([1, 2], f)(x, y) coincides with diff(f(x, y),
x, y). You can convert symbolic calls of D to the calls of diff and vice versa by using
rewrite. See “Example 10” on page 1-522.

You can extend the functionality of diff for your own special mathematical functions via
overloading. This approach works by turning the corresponding function into a function
environment and implementing the differentiation rule for the function as the "diff"
slot of the function environment.

If a subexpression of the form g(..) occurs in f, and g is a function environment, then
diff(f, x) attempts to call the "diff" slot of g to determine the derivative of g(..).

The system calls the "diff" slot with the arguments g(..), x.

If g does not have a "diff" slot, then the system function diff returns the symbolic
expression diff(g(..), x) for the derivative of the subexpression.

The system always calls the "diff" slot with exactly two arguments. If you call
the diff function with more indeterminates (for example, if you compute a higher
derivative), then MuPAD calls the "diff" slot several times. Each call computes the
derivative with respect to one indeterminate. The system caches the results of the calls of
"diff" slots in diff in order to prevent redundant function calls. See “Example 11” on
page 1-523.

Similarly, if an element d of a library domain T occurs as a subexpression of f, then
diff(f, x) calls the slot T::diff(d, x) to compute the derivative of d.
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If the domain T does not have a "diff" slot, then diff considers this object as a
constant and returns 0 for the corresponding subexpression.

If you differentiate an expression or function containing abs or sign, ensure that the
arguments are real values. For complex arguments of abs and sign, the diff function
formally computes the derivative, but this result is not generally valid because abs and
sign are not differentiable over complex numbers.

Examples

Example 1

Compute the derivative of x2 with respect to x:

diff(x^2, x)

Example 2

You can differentiate with respect to multiple variables within a single diff call. For
example, differentiate this expression with respect to x, and then with differentiate the
result with respect to y:

diff(x^2*sin(y), x, y) = diff(diff(x^2*sin(y), x), y)

Example 3

MuPAD internally converts nested diff calls into a single diff call with multiple
arguments:

diff(diff(f(x, y), x), y)
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Example 4

Use the sequence operator $ as a shortcut to compute the third derivative of this
expression with respect to x:

diff(sin(x)*cos(x), x $ 3)

Example 5

You can differentiate with respect to an indexed identifier. For example, differentiate
this expression with respect to x[1]:

diff(x[1]*y + x[1]*x[r], x[1])

Example 6

You can differentiate polynomials with respect to the polynomial indeterminates or the
parameters in the coefficients. For example, differentiate this polynomial with respect to
the indeterminate x:

diff(poly(sin(a)*x^3 + 2*x, [x]), x)

Now differentiate the same polynomial with respect to its symbolic parameter a:

diff(poly(sin(a)*x^3 + 2*x, [x]), a)

Example 7

MuPAD returns the derivative of an unknown function as an unresolved diff call:
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diff(f(x) + x, x)

Example 8

MuPAD assumes that all partial derivatives with respect to different indeterminates
commute. Therefore, the system can change the order of indeterminates:

diff(f(x, y), x, y) = diff(f(x, y), y, x);

Example 9

You can use diff to differentiate symbolic integrals. For example, compute the second
derivative of this indefinite integral:

F1 := int(f(x), x):

diff(F1, x, x)

Now compute the derivative of the definite integral:

F2 := int(f(t, x), t = x..x^2):

diff(F2, x)

Example 10

Use the operator D to compute the derivatives of functions. Use the diff function to
compute the derivatives of expressions:
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D(sin), diff(sin(x), x)

Applying D to expressions and diff to functions makes no sense:

D(sin(x)), diff(sin, x)

Use the rewrite function to rewrite an expression replacing the operator D with the
diff function:

rewrite(D(f)(x), diff), rewrite(D(D(f))(x), diff)

Also, use rewrite to rewrite an expression replacing diff with D:

diff(f(x, x), x) = rewrite(diff(f(x, x), x), D)

Example 11

You can extend diff to your own special functions. To do so, embed your function, f, into
a function environment, g, and implement the behavior of diff for this function as the
"diff" slot of the function environment.

If a subexpression of the form g(..) occurs in an expression f, then diff(f, x) calls
g::diff(g(..), x) to determine the derivative of the subexpression g(..).

This example demonstrates extending diff to the exponential function. Since the
function environment exp already has a "diff" slot, call the new function environment
Exp to avoid overwriting the existing system function exp.

Here, the "diff" slot implements the chain rule for the exponential function. The
derivative is the product of the original function call and the derivative of the argument:
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Exp := funcenv(Exp):

Exp::diff := proc(f, x)

begin

   // f = Exp(something), i.e., something = op(f, 1)

   f*diff(op(f, 1), x):

end_proc:

diff(Exp(x^2), x)

The report created by prog::trace shows one call to Exp::diff with two arguments.
Instead of calling Exp::diff twice, the system reads the required result of the second
call from an internal cache for intermediate results in diff:

prog::trace(Exp::diff):

diff(Exp(x^2), x, x)

enter Exp::diff(Exp(x^2), x)

computed 2*x*Exp(x^2)

prog::untrace(Exp::diff):  delete f, Exp:

Parameters

f

An arithmetical expression or a polynomial of type DOM_POLY

x, x1, x2, …

Indeterminates: identifiers or indexed identifiers

Return Values

arithmetical expression or a polynomial
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Overloaded By

f

See Also

MuPAD Functions
D | int | limit | poly | taylor
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DIGITS
Significant digits of floating-point numbers

Description

The environment variable DIGITS determines the number of significant decimal digits in
floating-point numbers. The default value is DIGITS = 10.

Possible values: a positive integer larger than 1 and smaller than 229 + 1.

Floating point numbers are created by applying the function float to exact numbers or
numerical expressions. Elementary objects are approximated by the resulting floats with
a relative precision of 10^(-DIGITS), i.e., the first DIGITS decimal digits are correct.
See “Example 1” on page 1-527.

In arithmetical operations with floating-point numbers, only the first DIGITS decimal
digits are taken into account. The numerical error propagates and may grow in the
course of computations. See “Example 2” on page 1-528.

If a real floating-point number is entered directly (e.g., by x := 1.234), a number with
at least DIGITS internal decimal digits is created.

If a real float is entered with more than DIGITS digits, the internal representation stores
the extra digits. However, they are not taken into account in arithmetical operations,
unless DIGITS is increased accordingly. See “Example 3” on page 1-528.

In particular, complex floating-point numbers are created by adding the real and
imaginary part. This addition truncates extra decimal places in the real and imaginary
part.

The value of DIGITS may be changed at any time during a computation. If DIGITS is
decreased, only the leading digits of existing floating numbers are taken into account
in the following arithmetical operations. If DIGITS is increased, existing floating-point
numbers are internally padded with trailing binary zeroes. See “Example 4” on page
1-529.

Depending on DIGITS, certain functions such as the trigonometric functions may
give wrong results if floats as arguments are too inaccurate. See “Example 5” on page
1-529.
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Depending on DIGITS, only significant digits of floating-point numbers are displayed on
the screen. The preferences Pref::floatFormat and Pref::trailingZeroes can be
used to modify the screen output. See “Example 4” on page 1-529.

At least one digit after the decimal point is displayed; if it is insignificant, it is replaced
by zero. See “Example 6” on page 1-530.

Internally, floating-point numbers are created and stored with some extra “guard digits.”
These are also taken into account by the basic arithmetical operations.

For example, for DIGITS = 10, the function float converts exact numbers to floats with
some more decimal digits. The number of guard digits depends on DIGITS.

At least 2 internal guard digits are available for any value of DIGITS.

See “Example 4” on page 1-529 and “Example 7” on page 1-530.

Environment variables such as DIGITS are global variables. Upon return from a
procedure that changes DIGITS, the new value is valid outside the context of the
procedure as well! Use save DIGITS to restrict the modified value of DIGITS to the
procedure. See “Example 8” on page 1-531.

The default value of DIGITS is 10; DIGITS has this value after starting or resetting the
system via reset. Also the command delete DIGITS; restores the default value.

See the helppage of float for further information.

Examples

Example 1

We convert some exact numbers and numerical expressions to floating point
approximations:

DIGITS := 10: 

float(PI), float(1/7), float(sqrt(2) + exp(3)), float(exp(-20))

DIGITS := 20:
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float(PI), float(1/7), float(sqrt(2) + exp(3)), float(exp(-20))

delete DIGITS:

Example 2

We illustrate error propagation in numerical computations. The following rational
number approximates exp(2) to 17 decimal digits:

r := 738905609893065023/100000000000000000:

The following float call converts exp(2) and r to floating point approximations. The
approximation errors propagate and are amplified in the following numerical expression:

DIGITS := 6: float(10^20*(r - exp(2)))

None of the digits in this result is correct. A better result is obtained by increasing
DIGITS:

DIGITS := 20: float(10^20*(r - exp(2)))

delete r, DIGITS:

Example 3

In the following, only 10 of the entered 30 digits are regarded as significant. The extra
digits are stored internally, anyway:

DIGITS := 10:

a := 1.23456789666666666666666666666;

b := 1.23456789444444444444444444444
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We increase DIGITS. Because the internal representation of a and b is correct to 30
decimal place, the difference can be computed correctly to 20 decimal places:

DIGITS := 30: a - b

delete a, b, DIGITS:

Example 4

We compute a floating-point number with a precision of 10 digits. Internally, this number
is stored with some guard digits. Increasing DIGITS to 30, the correct guard digits
become visible. With the the call Pref::trailingZeroes(TRUE), trailing zeroes of the
decimal representation become visible:

DIGITS := 10: a := float(1/9)

Pref::trailingZeroes(TRUE): DIGITS := 100: a

0.1111111111111111110147375846679551614215597510337829589843750000000000000000000000000000000000000000

Pref::trailingZeroes(FALSE): delete a, DIGITS:

Example 5

For the float evaluation of the sine function, the argument is reduced to the standard
interval [0, 2 π]. For this reduction, the argument must be known to some digits after the
decimal point. For small DIGITS, the digits after the decimal point are pure round-off if
the argument is a large floating-point number:
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DIGITS := 10: sin(float(2*10^30))

Increasing DIGITS to 50, the argument of the the sine function has about 30 correct
digits after the decimal point. The first 30 digits of the following result are reliable:

DIGITS := 50: sin(float(2*10^30))

delete DIGITS:

Example 6

At least one digit after the decimal point is always displayed. In the following example,
the number 39.9 is displayed as 40.0 because “40.” is not be a valid MuPAD input:

DIGITS := 2: float(10*PI), 39.9, -30.2

delete DIGITS:

Example 7

We compute float(10^40*8/9) with various values of DIGITS. Rounding takes into
account all guard digits, i.e., the resulting integer makes all guard digits visible:

for DIGITS in [7, 8, 9, 17, 18, 19, 26, 27, 28] do

    print("DIGITS" = DIGITS, round(float(10^40*8/9)))

end_for:
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Example 8

The following procedure allows to compute numerical approximations with a specified
precision without changing DIGITS as a global variable. Internally, DIGITS is set to the
desired precision and the float approximation is computed. Because of save DIGITS, the
value of DIGITS is not changed outside the procedure:

myfloat := proc(x, digits) 

           save DIGITS;

           begin

             DIGITS := digits:

             float(x);

           end_proc:

The float approximation of the following value x suffers from numerical cancellation. The
procedure myloat is used to approximate x with 30 digits. The result is displayed with
only 7 digits because of the value DIGITS = 7 valid outside the procedure. However, all
displayed digits are correct:

x := PI^7 - exp(8013109200945801/1000000000000000):

DIGITS := 7: 
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float(x), myfloat(x, 30)

delete myfloat, x, DIGITS:

Algorithms

If a floating-point number x has been created with high precision, and the computation
is to continue at a lower precision, the easiest method to get rid of memory-consuming
insignificant digits is x := x + 0.0.

See Also

MuPAD Functions
float | Pref::floatFormat | Pref::outputDigits | Pref::trailingZeroes
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dilog
Dilogarithm function

Syntax
dilog(x)

Description

dilog(x) represents the dilogarithm function .

If x is a floating-point number, then dilog(x) returns the numerical value of the
dilogarithm function. The special values:

dilog(-1) = ,

dilog(0) = ,

dilog(1/2) = ,

dilog(1) = 0,

dilog(2) = ,

dilog(I) = ,

dilog(-I)= ,

dilog(1+I) = ,

dilog(1-I) = ,
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dilog(infinity) = -infinity

are implemented. For all other arguments, dilog returns a symbolic function call.

Functional identities are used to rewrite the result for exact numerical arguments of
Type::Numeric that have a negative real part or are of absolute value larger than 1. Cf.
“Example 2” on page 1-534.

dilog(x) coincides with polylog(2, 1-x).

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

dilog(0), dilog(2/3), dilog(sqrt(2)), dilog(1 + I), dilog(x)

Floating point values are computed for floating-point arguments:

dilog(-1.2), dilog(3.4 - 5.6*I)

Example 2

Arguments built from integers and rational numbers are rewritten, if they lie in the left
half of the complex plane or are of absolute value larger than 1. The following arguments
have a negative real part:
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dilog(-400/3), dilog(-1/2 + I)

The following arguments have an absolute value larger than 1:

dilog(31/30), dilog(1 + 2/3*I)

Example 3

The negative real axis is a branch cut of dilog. A jump of height 2 π i ln(1 - x) occurs
when crossing this cut at the real point x < 0:

dilog(-1.2), dilog(-1.2 + I/10^100), dilog(-1.2 - I/10^100)

Example 4

The functions diff, float, limit, and series handle expressions involving dilog:

diff(dilog(x), x, x, x), float(ln(3 + dilog(sqrt(PI))))
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limit(dilog(x^10 + 1)/x, x = infinity)

series(dilog(x + 1/x)/x, x = -infinity, 3)

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

Algorithms

dilog(x) coincides with  for |x| < 1.

dilog has a branch cut along the negative real axis. The value at a point x on the cut
coincides with the limit “from above”:

.
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References

L. Lewin (ed.), “Structural Properties of Polylogarithms”, Mathematical Surveys and
Monographs Vol. 37, American Mathematical Society, Providence (1991).

See Also

MuPAD Functions
ln | polylog
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dirac
The Dirac delta distribution

Syntax
dirac(x)

dirac(x, n)

Description

dirac(x) represents the Dirac delta distribution.

dirac(x, n) represents the n-th derivative of the delta distribution.

The calls dirac(x, 0) and dirac(x) are equivalent.

If the argument x represents a non-zero number, then 0 is returned. If x is a non-real
number of domain type DOM_COMPLEX, then undefined is returned. For all other
arguments, a symbolic function call is returned.

dirac does not have a predefined value at the origin. Use

unprotect(dirac): dirac(0) := myValue:

and

dirac(float(0)) := myFloatValue: protect(dirac):

to assign a value (e.g., infinity).

For univariate linear expressions, the simplification rule

is implemented for real numerical values a.
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The integration function int treats dirac as the usual delta distribution. Cf. “Example
3” on page 1-540.

Environment Interactions

dirac reacts to properties of identifiers.

Examples

Example 1

dirac returns 0 for arguments representing non-zero real numbers:

dirac(-3), dirac(3/2), dirac(2.1, 1), 

dirac(3*PI), dirac(sqrt(3), 3)

Arguments of domain type DOM_COMPLEX yield undefined:

dirac(1 + I), dirac(2/3 + 7*I), dirac(0.1*I, 1), dirac(ln(-5))

A symbolic call is returned for other arguments:

dirac(0), dirac(x), dirac(x + I, 2), dirac(x, n)

dirac(2*x - 1, n)

A natural value for dirac(0) is infinity:
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unprotect(dirac): dirac(0) := infinity: dirac(0)

delete dirac(0): protect(dirac): dirac(0)

Example 2

dirac reacts to assumptions set by assume:

assume(x < 0): dirac(x)

assume(x, Type::Real): assume(x <> 0, _and): dirac(x)

unassume(x):

Example 3

The symbolic integration function int treats dirac as the delta distribution:

int(f(x)*dirac(x - y^2), x = -infinity..infinity)

int(int(f(x, y)*dirac(x - y^2), x = -infinity..infinity),

    y = -1..1)
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The indefinite integral of dirac involves the sign function:

int(f(x)*dirac(x), x), int(f(x)*dirac(x, 1), x)

int can handle the distribution only if the argument of dirac is linear in the integration
variable:

int(f(x)*dirac(2*x - 3), x = -10..10),

int(f(x)*dirac(x^2), x = -10..10)

Also note that dirac should not be used for numerical integration, since the numerical
algorithm will typically fail to detect the delta peak:

numeric::int(dirac(x - 3), x = -10..10)

Parameters

x

An arithmetical expression

n

An arithmetical expression representing a nonnegative integer

Return Values

Arithmetical expression.
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Overloaded By

x

See Also

MuPAD Functions
heaviside
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discont
Discontinuities of a function

Syntax
discont(f, x)

discont(f, x, <Undefined>)

discont(f, x, <Real>)

discont(f, x = a .. b)

discont(f, x = a .. b, <Undefined>)

discont(f, x = a .. b, <Real>)

Description

discont(f, x) computes the set of all discontinuities of the function f(x).

discont(f, x = a..b) computes the set of all discontinuities of f(x) lying in the
interval [a, b].

discont(f, x) returns a set of numbers containing all discontinuities of f when f is
regarded as a function of x on the set of all complex numbers that may be attained by x
as values, as specified by the assumptions on x. Please note that a real number that is a
discontinuity of a complex function need not be a discontinuity of the restriction of that
function to the set of real numbers: consider, for example, a function that has its branch
cut on the real axis, as in “Example 2” on page 1-544 below.

Discontinuities include points where the function is not defined as well as points where
the function is defined but not continuous. If the option Undefined is used, only points
where the function is not defined are returned.

If the option Real is used, it is assumed that f and all of its subexpressions represent
real numbers.

If a range a..b is given, it is assumed that x can take on values only in the interval [a,
b].
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The set returned by discont may contain numbers that are not discontinuities of f. See
“Example 7” on page 1-546.

If discont is unable to compute the discontinuities, then a symbolic discont call is
returned; see “Example 8” on page 1-546.

discont can be extended to user-defined mathematical functions via overloading. To
this end, embed the mathematical function in a function environment and assign the set
of real discontinuities to its "realDiscont" slot, the set of its complex discontinuities
to its "complexDiscont" slot, and the set of points where the function is not defined to
its "undefined" slot. See solve for an overview of the various types of sets. See also
“Example 8” on page 1-546 below.

Environment Interactions

discont reacts to properties of free parameters both in f as well as in a and b. discont
sometimes reacts to properties of x.

Examples

Example 1

The gamma function has poles at all integers less or equal to zero. Hence x ->
gamma(x/2) has poles at all even integers less or equal to zero:

discont(gamma(x/2), x)

Example 2

The logarithm has a branch cut on the negative real axis; hence, it is not continuous
there. However, its restriction to the real numbers is continuous at every point except
zero:

discont(ln(x), x), discont(ln(x), x, Real)
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Example 3

The function sign is defined everywhere; it is not continous at zero:

discont(sign(x), x), discont(sign(x), x, Undefined)

Example 4

If a range is given, only the discontinuities in that range are returned.

discont(1/x/(x - 1), x = 0..1/2)

Example 5

A range may have arbitrary arithmetical expressions as boundaries. discont implicitly
assumes that the right boundary is greater or equal to the left boundary:

discont(1/x, x = a..b)

Example 6

As can be seen from the previous example, discont reacts to properties of free
parameters (because piecewise does). The result also depends on the properties of x: it
may omit values that x cannot take on anyway because of its properties.

assume(x > 0):

discont(1/x, x)
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delete x:

Example 7

Sometimes, discont returns a proper superset of the set of discontinuities:

discont(piecewise([x<>0, x*sin(1/x)], [x=0, 0]), x)

Example 8

A symbolic discont call is returned if the system does not know how to determine the
discontinuities of a given function:

delete f: discont(f(x), x)

You can provide the necessary information by adding slots to f. For example, assume
that f is not continuous at 1 but everywhere else; and that also its restriction to the real
numbers remains discontinuous at 1. After adding the corresponding slots, discont
takes care to handle f correctly also if it appears in a more complicated expression:

f:= funcenv(x->procname(x)): 

f::realDiscont:= {1}: 

f::complexDiscont:= {1}:

discont(f(sin(x)), x=-4..34)

Example 9

We define a function that implements the logarithm to base 2. For simplicity, we let
it always return the unevaluated function call. The logarithm has a branch cut on the
negative real axis; its restriction to the reals is continuous everywhere except at zero:
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binlog := funcenv(x -> procname(x)):

binlog::realDiscont := {0}:

binlog::undefined := {0}:

binlog::complexDiscont := Dom::Interval(-infinity, [0]):

discont(binlog(x), x);

discont(binlog(x), x=-2..2, Real);

discont(binlog(x), x=-2..2, Undefined)

Parameters

f

An arithmetical expression representing a function in x

x

An identifier

a, b

Interval boundaries: arithmetical expressions

Options

Undefined

Return only those points where f is not defined (and not just discontinous).

Real

Assume that all subexpressions of f are real.
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Return Values

Set—see the help page for solve for an overview of all types of sets—or a symbolic
discont call.

Overloaded By

f

See Also

MuPAD Functions
limit | solve
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div, _div
Integer part of a quotient

Syntax
m div n

_div(x, m)

Description

x div m represents the integer q satisfying x = q m + r with 0 ≤ r < |m|.

For positive x and m, q = x div m is the integer part of the quotient x/m, i.e., q =
trunc(x/m).

x div m is equivalent to the function call _div(x, m).

An integer is returned if both x and m evaluate to integers. A symbolic expression of type
"_div" is returned if either x or m does not evaluate to a number. An error is raised if x
or m evaluates to a number that is not an integer.

div does not operate on polynomials. Use divide.

Examples

Example 1

With the default setting for mod, the identity (x div m) * m + (x mod m) = x holds
for integer numbers x and m:

43 div 13 = trunc(43/13), 43 mod 13 = frac(43/13) * 13
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(43 div 13) * 13 + (43 mod 13) = 43

Example 2

Symbolic expressions of type "_div" are returned, if either x or m does not evaluate to a
number:

43 div m, x div 13, x div m

type(x div m)

If x or m are numbers, they must be integer numbers:

1/2 div 2

Error: The argument is invalid. [div]

x div 2.0

Error: The argument is invalid. [div]

Parameters

x, m

Integers or symbolic arithmetical expressions; m must not be zero.

Return Values

Integer or an arithmetical expression of type "_div".
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Overloaded By

m, x

See Also

MuPAD Functions
/ | divide | mod | mod | modp | mods
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divergence

Divergence of a vector field

Syntax

divergence(v, x)

divergence(v, x, ogCoord, <c>)

Description

divergence(v, x) computes the divergence of the vector field  with respect to  in
Cartesian coordinates. This is the sum .

ogCoord can be the name of a three-dimensional orthogonal coordinate system
predefined in the table linalg::ogCoordTab. See “Example 2” on page 1-553.

Alternatively, ogCoord can be a list of vector of algebraic expressions representing the
scale factors of the coordinate system. See example “Example 3” on page 1-553. For
details, see the description of the Scales option on the linalg::ogCoordTab page.

If v is a vector then the component ring of v must be a field (a domain of category
Cat::Field) for which differentiation with respect to x is defined.

Examples

Example 1

Compute the divergence of the vector field  in Cartesian
coordinates:

delete x, y, z:
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v := matrix([x^2, 2*y, z])

divergence(v, [x, y, z])

Example 2

Compute the divergence of the vector field  (0 ≤ ϕ < 2 π) in
cylindrical coordinates:

delete r, phi, z:

divergence([r, sin(phi), z], [r, phi, z], Cylindrical)

The following relations between Cartesian and cylindrical coordinates hold:

.

Other predefined orthogonal coordinate systems can be found in the table
linalg::ogCoordTab.

Example 3

Compute the divergence of a vector field in spherical coordinates r, θ, ϕ given by
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with 0 ≤ θ ≤ π, 0 ≤ ϕ < 2 π. The vectors

form an orthogonal system of unit vectors corresponding to the spherical coordinates.
The scaling factors of the coordinate transformation (see linalg::ogCoordTab) are

, , , which we use in the following example to

compute the divergence of the vector field  = :

delete r, Theta, phi:

divergence([r^2, 0, 0], [r, Theta, phi], [1, r, r*sin(Theta)])

Note that the spherical coordinates are already defined in linalg::ogCoordTab.
The last result can also be achieved with the input divergence([r^2, 0, 0], [r,
Theta, phi], Spherical):

divergence([r^2, 0, 0], [r, Theta, phi], Spherical)

Parameters

v

A list of arithmetical expressions, or a vector (i.e., an n×1 or 1 ×n matrix of a domain of
category Cat::Matrix)
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x

A list of identifiers or indexed identifiers

ogCoord

The name of a 3 dimensional orthogonal coordinate system predefined in the table
linalg::ogCoordTab, or a list of algebraic expressions representing the scale factors of
an orthogonal coordinate system.

c

The parameter of the coordinate systems EllipticCylindrical and Torus, respectively: an
arithmetical expression. The default value is c = 1.

Return Values

Arithmetical expression, or an element of the component ring of v.

See Also

MuPAD Functions
curl | gradient | laplacian | linalg::ogCoordTab | potential |
vectorPotential

1-555



1 The Standard Library

divide
Divide polynomials

Syntax
divide(p, q, <[x]>, <order>, options)

divide(p, q, <[x1, x2, …]>, <order>, options)

divide(p, q1, q2, …, <order>, options)

Description

divide(p, q) divides polynomials or polynomial expressions p and q. By default, the
function returns the quotient s and the remainder r, such that p = s q + r. Here degree(r)
< degree(q).

divide(p, q1, q2, q3, …, qn) divides a polynomial or a polynomial expression p by
polynomials or polynomial expressions q1, q2, q3, …, qn. The function returns the
quotients s1, s2, s3, …, sn and the remainder r, such that p = s1 q1 + s2 q2 + s3 q3 + … +
s4 q4 + r. Here the leading coefficient of the remainder r cannot be divided by the leading
coefficients of any of divisors q1, q2, q3, …, qn.

divide(p, q) divides the polynomial or polynomial expression p by the polynomial or
polynomial expression q. Use the Quo option to return the quotient only. Use the Rem
option to return the remainder only.

The divide function operates on polynomials or polynomial expressions.

Polynomials must be of the same type: their variables and coefficient rings must be
identical.

When you call divide for polynomial expressions, MuPAD internally converts
these expressions to polynomials. See the poly function. If you do not specify the
list of indeterminates, divide treats all symbolic variables in the expressions as
indeterminates. If the expressions cannot be converted to polynomials, the divide
function returns FAIL. See “Example 1” on page 1-557.
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If you call divide for polynomials, it returns polynomials. If you call divide for
polynomial expressions, the function returns polynomial expressions. See “Example 2” on
page 1-558.

If you divide polynomial expressions that contain more than one variable, you can specify
particular variables to be treated as variables. The divide function treats all other
variables as symbolic parameters. By default, divide assumes that all variables in
polynomial expressions are variables, and none of them is a symbolic parameter. See
“Example 3” on page 1-558.

divide(p, q1, q2, q3, …, qn) divides a polynomial or a polynomial expression p by
polynomials or polynomial expressions q1, q2, q3, …, qn. The function returns quotients
s1, s2, s3, …, sn and remainder r, such that p = s1 q1 + s2 q2 + s3 q3 + … + s4 q4 + r. Here the
leading coefficient of the remainder r cannot be divided by the leading coefficients of any
of the divisors q1, q2, q3, …, qn. See “Example 6” on page 1-560.

When dividing a polynomial by one or more polynomials, you can select the term
ordering. The ordering accepts the following values:

• LexOrder sets the lexicographical ordering.
• DegreeOrder sets the total degree ordering. When using this ordering, MuPAD sorts

the terms of a polynomial according to the total degree of each term (the sum of the
exponents of the variables).

• DegInvLexOrder sets the total degree inverse lexicographic ordering. When using
this ordering, MuPAD sorts the terms of a polynomial according to the total degree of
each term (the sum of the exponents of the variables). If the several terms have equal
total degrees, MuPAD sorts them using the inverse lexicographic ordering.

• your custom term ordering of type Dom::MonomOrdering.

The coefficient ring of the polynomials must implement the "_divide" method. MuPAD
uses this method internally to divide coefficients. If the coefficients cannot be divided,
this method must return FAIL.

Examples

Example 1

For polynomial expressions, divide internally calls the poly function, which converts
an expression to a polynomial. If you do not specify the indeterminate of an expression,
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MuPAD assumes that all variables are indeterminates. For example, The divide
function cannot divide the following polynomial expressions because it assumes that both
x and y are indeterminates:

divide(x/y, x)

If you specify that only x is an indeterminate, the result is:

divide(x/y, x, [x])

Example 2

The divide divides polynomials or polynomial expressions. When you divide
polynomials, the function returns polynomials:

divide(poly(x^3 + x + 1, [x]), poly(x^2 + x + 1, [x]))

When you divide polynomial expressions, MuPAD internally converts these expressions
to polynomials, divides these polynomials, and then converts the result of division to
polynomial expressions:

divide(x^3 + x + 1, x^2 + x + 1)

Example 3

When dividing multivariate polynomials, you can specify the list of variables. The
divide function assumes all other variables are symbolic parameters. For example,
divide the following two polynomial expressions specifying that both x and y are
variables:
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divide(x^2 - 2*x - y, y*x - 1, [x, y])

Divide the same polynomial expressions specifying that only x is a variable. MuPAD
assumes that y is a symbolic parameter:

divide(x^2 - 2*x - y, y*x - 1, [x])

Now, divide these expressions specifying that only y is a variable. MuPAD assumes that
x is a symbolic parameter:

divide(x^2 - 2*x - y, y*x - 1, [y])

By default, the divide function treats polynomial expressions with more than one
variable as multivariate polynomial expressions. The function does not assume that any
of the variables are symbolic parameters:

divide(x^2 - 2*x - y, y*x - 1)

Example 4

By default, divide returns the quotient and the remainder of the division of
polynomials:

divide(x^3 + x + 1, x^2 + x + 1)
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To return the quotient only, use the Quo option:

divide(x^3 + x + 1, x^2 + x + 1, Quo)

To return the remainder only, use the Rem option:

divide(x^3 + x + 1, x^2 + x + 1, Rem)

Example 5

Suppose, you want to get the result of the division only when the exact division is
possible. To return the quotient s of the exact division of polynomials or polynomial
expressions, use the Exact option:

divide(x^4 + 12*x^3 + 28*x^2 + 204*x + 187, x + 11, Exact)

When exact division without remainder is impossible, the divide function with the
Exact option returns FAIL:

divide(x^4 + 12*x^3 + 28*x^2 + 204*x + 187, x + 12, Exact)

Example 6

The divide function allows you to divide a polynomial (or polynomial expression) by
multiple polynomials (or polynomial expressions):

divide(4*x^4 + 2*x^2 + 1, x^3 - x + 1, x - 1)
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When dividing a polynomial by multiple polynomials, you can select the term ordering:

divide(x^2+y^3+1, x-y^2, y, LexOrder)

divide(x^2+y^3+1, x-y^2, y, DegreeOrder)

Parameters

p, q

Univariate or multivariate polynomials or polynomial expressions.

p, q1, q2, …

Univariate or multivariate polynomials or polynomial expressions.

x

The indeterminate of the polynomial: typically, an identifier or an indexed identifier.
divide treats the expressions as univariate polynomials in the indeterminate x.

x1, x2, …

The indeterminates of the polynomial: typically, identifiers or indexed identifiers.
divide treats multivariate expressions as multivariate polynomials in these
indeterminates.

order

The term ordering when dividing one multivariate polynomial by one or more
multivariate polynomials: LexOrder, DegreeOrder, DegInvLexOrder, or a custom
term ordering of type Dom::MonomOrdering. The default is the lexicographical ordering
LexOrder.
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Options

Exact

Return the quotient s of the exact division of multivariate polynomials. If no exact
division without remainder is possible, return FAIL.

Quo, Rem

Return the quotient s or the remainder r. By default, the divide function returns both
the quotient and the remainder.

Return Values

Polynomial, a polynomial expression, a sequence of polynomials or polynomial
expressions, or the value FAIL.

Overloaded By

p, q

See Also

MuPAD Functions
/ | content | degree | div | factor | gcd | gcdex | groebner::normalf |
ground | lcoeff | mod | multcoeffs | pdivide | poly | powermod
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domtype
Data type of an object

Syntax
domtype(object)

Description

domtype(object) returns the domain type (the data type) of the object.

For most data types, the domain type as returned by domtype coincides with the type
returned by the function type. Only for expressions of domain type DOM_EXPR, the
function type yields a distinction according to the 0-th operand. Cf. “Example 2” on page
1-564.

In contrast to most other functions, domtype does not flatten arguments that are
expression sequences.

Examples

Example 1

Real floating-point numbers are of domain type DOM_FLOAT:

domtype(12.345)

Complex numbers are of domain type DOM_COMPLEX. The operands may be integers
(DOM_INT), rational numbers (DOM_RAT), or floating-point numbers (DOM_FLOAT). The
operands can be accessed via op:

domtype(1 - 2*I), op(1 - 2*I);

domtype(1/2 - I), op(1/2 - I);
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domtype(2.0 - 3.0*I), op(2.0 - 3.0*I)

Example 2

Expressions are objects of the domain type DOM_EXPR. The type of expressions can be
queried further with the function type:

domtype(x + y), type(x + y);

domtype(x - 1.0*I), type(x - 1.0*I);

domtype(x*I), type(x*I);

domtype(x^y), type(x^y);

domtype(x[i]), type(x[i])

Example 3

domtype evaluates its argument. In this example, the assignment is first evaluated and
domtype is applied to the return value of the assignment. This is the right hand side of
the assignment, i.e., 5:
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domtype((a := 5))

delete a:

Example 4

Here the identifier a is first evaluated to the expression sequence3, 4. Its domain
type is DOM_EXPR, its type is "_exprseq":

a := 3, 4: domtype(a), type(a)

delete a:

Example 5

factor creates objects of the domain type Factored:

domtype(factor(x^2 - x))

Example 6

matrix creates objects of the domain type Dom::Matrix():

domtype(matrix([[1, 2], [3, 4]]))

Example 7

Domains are of the domain type DOM_DOMAIN:

domtype(DOM_INT), domtype(DOM_DOMAIN)
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Example 8

domtype is overloadable, i.e., a domain can pretend to be of another domain type. The
special slot"dom" always gives the actual domain:

d := newDomain("d"): d::domtype := x -> "domain type d":

e := new(d, 1): e::dom, type(e), domtype(e)

delete d, e:

Parameters

object

Any MuPAD object

Return Values

Data type, i.e., an object of type DOM_DOMAIN.

Overloaded By

object

See Also

MuPAD Domains
DOM_DOMAIN

MuPAD Functions
coerce | hastype | testtype | type
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doprint

Print large matrices

Syntax

doprint(object1, object2, …)

Description

doprint serves for displaying large matrices on the screen. In fact, doprint(object)
displays any MuPAD object like print(object). The only difference is that large
matrices contained in the object are printed, too.

Matrices of type matrix or of the more general type Dom::Matrix(R) with some
coefficient ring R are not willing to print themselves on the screen if they are large.

An m×n matrix A is printed like a formatted two-dimensional array only if
m n ≤ printMaxSize, where the default value of printMaxSize is 500. (You
can change the printMaxSize value to any other integer value m by calling
A::dom::setPrintMaxSize(m)).

For larger matrices, a warning is issued and some symbolic dummy object without the
matrix entries is printed.

This serves to avoid output problems when printing is invoked accidentally (the output
for large formatted arrays is very expensive concerning time and memory).

If you do insist on printing large matrices on the screen, the function doprint can be
used to create a sparse table like output of the matrix.

Note: With doprint, only non-zero entries of large matrices are printed!

doprint allows to print arbitrary MuPAD objects. It behaves like print for all objects
apart from matrices contained in the object.
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For small matrices, it switches off the formatted array like output and replaces it by
a sparse table like output. For large matrices, it suppresses warnings such as "This
matrix is too large for display. ..." and prints matrices using the sparse
table like output.

See “Example 1” on page 1-568 and “Example 2” on page 1-569.

Environment Interactions

doprint is sensitive to the environment variables DIGITS, PRETTYPRINT, and
TEXTWIDTH, and to the output preferences Pref::floatFormat, Pref::keepOrder,
and Pref::trailingZeroes.

Examples

Example 1

Small matrices are printed like formatted arrays:

A := matrix(5, 5, [i $ i = 1..30], Diagonal)

Calling doprint, this matrix is printed in a different way:

doprint(A)

We create a larger diagonal matrix of dimension 30 ×30:

A := matrix(30, 30, [i $ i = 1..30], Diagonal):

If we had not suppressed the output by the colon terminating the command above, the
following warning would have been issued by the output system:
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A

Warning: This matrix is too large for display. To see all nonzero entries of a matrix A, use 'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print]

 Warning: This matrix is too

large for display. If you want to see all nonzero entries of a matrix,

say A, then call 'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print] 

 Warning: This matrix is too large for display.

If you want to see all nonzero entries of a matrix, say A, then call

'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print] 

Since the matrix is extremely sparse, it does make sense to print the matrix. Calling
doprint, we obtain a print output of all non-zero elements:

doprint(A)

delete A:

Example 2

We compute a numerical QR factorization of a zero matrix of dimension 30×30. Since the
command is not terminated by a colon, the output system tries to print the list with the
factors Q and R. Both matrices send a warning:

[Q, R] := numeric::factorQR(matrix(30, 30, [])):

Q, R
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Warning: This matrix is too large for display. To see all nonzero entries of a matrix A, use 'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print]

Warning: This matrix is too large for display. To see all nonzero entries of a matrix A, use 'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print]

 Warning: This matrix is too

large for display. If you want to see all nonzero entries of a matrix,

say A, then call 'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print] 

 Warning: This matrix is too large for display.

If you want to see all nonzero entries of a matrix, say A, then call

'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print] 

 Warning: This matrix is too large for display.

If you want to see all nonzero entries of a matrix, say A, then call

'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print] 

 Warning: This matrix is too large for display.

If you want to see all nonzero entries of a matrix, say A, then call

'A::dom::doprint(A)'. [(Dom::Matrix(Dom::ExpressionField()))::print] 

We can enforce a sparse output via doprint. The matrix factor Q is the identity matrix,
the matrix factor R is zero:

doprint([Q, R])

delete Q, R:
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Parameters

object1, object2, …

Any MuPAD objects

Return Values

doprint returns the void object null() of type DOM_NULL.

Overloaded By

See Also

MuPAD Functions
DIGITS | expose | expr2text | fprint | Pref::floatFormat | Pref::keepOrder
| Pref::trailingZeroes | PRETTYPRINT | print | protocol | strprint |
TEXTWIDTH | write
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Ei
Exponential integral function

Syntax
Ei(x)

Ei(n, x)

Description

Ei(x) represents the exponential integral .

Ei(n, x) represents the exponential integral .

If x is a floating-point number, then Ei(x) returns the numerical value of the
exponential integral. The special values Ei(∞) = ∞ and Ei(- ∞) = 0 are implemented. For
all other arguments, Ei(x) returns a symbolic function call.

If both n and x are numerical values and if at least one of them is a floating-point
number, then Ei(n, x) returns a floating-point value.

The special values Ei(n, ∞) = 0 and Ei(n, - ∞) = - ∞ are implemented for arbitrary n.

If n is a non-positive integer not larger than Pref::autoExpansionLimit(), then
Ei(n, x) returns an explicit expression of the form exp(-x)*p(1/x), where p is a
polynomial of degree 1 - n. E.g.:

.

Use expand if such representations are also desired for |n| larger than
Pref::autoExpansionLimit().

If x is a positive constant, Ei(1, x) returns - Ei(-x). For a negative constant x,
Ei(1, x) returns - Ei(-x) - π i.
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For all other arguments Ei(n, x) returns a symbolic function call.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

Ei(1), Ei(sqrt(2)), Ei(x + 1), Ei(infinity), Ei(-infinity)

Ei(sqrt(2), PI), Ei(2, x + 1), Ei(3, infinity), Ei(I, -infinity)

If the first argument is a non-positive integer, an explicit expresssion is returned:

Ei(-5, x)

Floating point values are computed for floating-point arguments:

Ei(-1000.0), Ei(1.0), Ei(12.3), Ei(2.0 + 10.0*I)

Ei(3, -1000.0), Ei(1 + I, 1.0), Ei(-2, 12.3), Ei(1.0 + I, 2 + 10*I)
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For a positive constant x, Ei(1, x) returns - Ei(-x). For a negative constant x,
Ei(1, x) returns - Ei(-x) - π i:

Ei(1, 3), Ei(1, -3)

Example 2

The 1-argument function Ei(x) is singular at the origin:

Ei(0)

Error: Singularity. [Ei]

The negative real axis is a branch cut. A jump of height 2 π i occurs when crossing this
cut:

Ei(-1.0), Ei(-1.0 + 10^(-10)*I), Ei(-1.0 - 10^(-10)*I)

Example 3

System functions such as diff, float, limit, expand, and series handle expressions
involving Ei:

diff(Ei(x), x, x, x), float(ln(3 + Ei(sqrt(PI))))

diff(Ei(3, x), x, x, x), float(ln(3 + Ei(I, sqrt(PI))))
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limit(Ei(2*x^2/(1+x)), x = infinity)

expand(Ei(3, x))

series(Ei(3, x), x = 0, 3)

series(Ei(7/2, x), x = infinity, 3)

Parameters

n, x

arithmetical expressions

Return Values

Arithmetical expression.
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Overloaded By

n, x

Algorithms

If n is a non-positive integer, then Ei(n, x) is an analytic function of x throughout
the complex plane apart from a pole at the origin. For all other values of n, the function
Ei(n, x) has a branch cut along the negative real semi axis, where the values coincide
with the limit “from above”:

for real x < 0.

The 1-argument function Ei(x) is related to the 2-argument function by

.

It has a logarithmic singularity at the origin and a branch cut along the negative real
axis. Unlike the 2-argument function Ei(n, x) the 1-argument function Ei(x) is not
continuous from either above or below along the branch cut.

The functions Ei(n, x) are related to the incomplete gamma function igamma by
.

The functions Ei(x) and Ei(n, x) correspond to the exponential integral functions
Ei(x) and En(x) considered in M. Abramowitz and I. Stegun, “Handbook of Mathematical
Functions”, Dover Publications Inc., New York (1965).

See Also

MuPAD Functions
Chi | Ci | exp | igamma | int | Li | Shi | Si | Ssi

1-576



 ellipticK

ellipticK
Complete elliptic integral of the first kind

Syntax
ellipticK(m)

Description

ellipticK(m) represents the complete elliptic integral of the first kind K m( )  which is
defined as

K m F m
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The complete elliptic integral of the first kind is defined for a complex argument m.

For floating-point values m, ellipticK(m) returns floating-point results. For most exact
arguments, it returns unevaluated symbolic calls. You can approximate such results with
floating-point numbers using the float function.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments return themselves unevaluated. To approximate such
values with floating-point numbers, use float:
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ellipticK(PI/4);

float(ellipticK(PI/4))

Alternatively, use a floating-point value as an argument:

ellipticK(1/2);

ellipticK(0.5)

ellipticK(0) has a special value:

ellipticK(0)

Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.
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See Also

MuPAD Functions
ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticF | ellipticPi
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ellipticCK
Complementary complete elliptic integral of the first kind

Syntax
ellipticCK(m)

Description
ellipticCK(m) represents the complementary complete elliptic integral of the first
kind ¢( ) = -( )K m K m1 , where K m( )  is the complete elliptic integral of the first kind:
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The complementary complete elliptic integral of the first kind is defined for a complex
argument m.

For floating-point values m, ellipticCK(m) returns floating-point results. For most
exact arguments, it returns unevaluated symbolic calls. You can approximate such
results with floating-point numbers using the float function.

Environment Interactions
When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments return themselves unevaluated. To approximate such
values with floating-point numbers, use float:
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ellipticCK(PI/4);

float(ellipticCK(PI/4))

Alternatively, use a floating-point value as an argument:

ellipticCK(1/2);

ellipticCK(0.5)

ellipticCK(1) has a special value:

ellipticCK(1)

Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.
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See Also

MuPAD Functions
ellipticCE | ellipticCPi | ellipticE | ellipticF | ellipticK | ellipticPi
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ellipticF

Incomplete elliptic integral of the first kind

Syntax

ellipticF(φ, m)

Description

ellipticF(φ,m) represents the incomplete elliptic integral of the first kind F mj( )
which is defined as

F m
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The incomplete elliptic integral of the first kind is defined for complex arguments ϕ and
m.

If all arguments are numerical and at least one is a floating-point value, ellipticF
returns floating-point results. For most exact arguments, it returns unevaluated
symbolic calls. You can approximate such results with floating-point numbers using the
float function.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Most calls with exact arguments return themselves unevaluated. To approximate such
values with floating-point numbers, use float:

ellipticF(PI/4, I);

float(ellipticF(PI/4, I))

Alternatively, use floating-point values as arguments. If one argument is a floating-point
value and the others can be converted to a floating-point values, then a floating-point
result will be returned:

ellipticE(1/4, I);

ellipticE(0.25, I)

Some special arguments return explicit symbolic representations:

ellipticF(0, m),

ellipticF(p, 0)

Parameters

m

An arithmetical expression specifying the parameter.
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φ

An arithmetical expression specifying the amplitude.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticK | ellipticPi
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ellipticE
Complete and incomplete elliptic integrals of the second kind

Syntax
ellipticE(<ϕ>, m)

Description

ellipticE(m) represents the complete elliptic integral of the second kind E m( )  which
is defined as
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ellipticE(φ,m) represents the incomplete elliptic integral of the second kind E mj( )
which is defined as
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The elliptic integrals of the second kind are defined for complex arguments ϕ and m.

If all arguments are numerical and at least one is a floating-point value, ellipticE
returns floating-point results. For most exact arguments, it returns unevaluated
symbolic calls. You can approximate such results with floating-point numbers using the
float function.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Most calls with exact arguments return themselves unevaluated. To approximate such
values with floating-point numbers, use float:

ellipticE(-PI/4),

ellipticE(PI/4, I);

float(ellipticE(-PI/4)),

float(ellipticE(PI/4, I))

Alternatively, use floating-point values as arguments. If one argument is a floating-point
value and the others can be converted to a floating-point values, then a floating-point
result will be returned:

ellipticE(1/2),

ellipticE(1/4, I);

ellipticE(0.5),

ellipticE(0.25, I)

Some special arguments return explicit symbolic representations:

ellipticE(0),

ellipticE(1),

ellipticE(0, m),

ellipticE(p, 0)

1-587



1 The Standard Library

Parameters

m

An arithmetical expression specifying the parameter.

φ

An arithmetical expression specifying the amplitude. The default is p

2
.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCE | ellipticCK | ellipticCPi | ellipticF | ellipticK | ellipticPi
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ellipticCE
Complementary complete elliptic integral of the second kind

Syntax
ellipticCE(m)

Description
ellipticCE(m) represents the complementary complete elliptic integral of the second
kind ¢( ) = -( )E m E m1 , where E m( )  is the complete elliptic integral of the second kind:
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The complementary complete elliptic integral of the second kind is defined for a complex
argument m.

For floating-point values m, ellipticCE(m) returns floating-point results. For most
exact arguments, it returns unevaluated symbolic calls. You can approximate such
results with floating-point numbers using the float function.

Environment Interactions
When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments return themselves unevaluated. To approximate such
values with floating-point numbers, use float:
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ellipticCE(PI/4);

float(ellipticCE(PI/4))

Alternatively, use a floating-point value as an argument:

ellipticCE(1/2);

ellipticCE(0.5)

ellipticCE(0) and ellipticCE(1) have special values:

ellipticCE(0)

ellipticCE(1)

Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.
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See Also

MuPAD Functions
ellipticCK | ellipticCPi | ellipticE | ellipticF | ellipticK | ellipticPi
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ellipticPi

Complete and incomplete elliptic integrals of the third kind

Syntax

ellipticPi(n,<φ>,m)

Description

ellipticPi(n,m) represents the complete elliptic integral of the third kind
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ellipticPi(n,φ,m) represents the incomplete elliptic integral of the third kind
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The elliptic integrals of the third kind are defined for complex arguments m, ϕ, and n.

If all arguments are numerical and at least one is a floating-point value,
ellipticPi(n,<φ>,m) returns floating-point results. For most exact arguments, it
returns unevaluated symbolic calls. You can approximate such results with floating-point
numbers using the float function.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Most calls with exact arguments return themselves unevaluated. To approximate such
values with floating-point numbers, use float:

ellipticPi(PI/4, I);

float(ellipticPi(PI/4, I))

Alternatively, use a floating-point value as an argument:

ellipticPi(1/2, 1, 1/4);

ellipticPi(0.5, 1, 1/4)

Some special arguments return explicit symbolic representations:

ellipticPi(n, 0);

ellipticPi(0, m);

ellipticPi(0, p, m);

ellipticPi(1, p, m)
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Parameters

m

An arithmetical expression specifying the parameter.

φ

An arithmetical expression specifying the amplitude. The default is p

2
.

n

An arithmetical expression specifying the characteristic.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCE | ellipticCK | ellipticCPi | ellipticE | ellipticF | ellipticK
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ellipticCPi

Complementary complete elliptic integral of the third kind

Syntax

ellipticCPi(n,m)

Description

ellipticCPi(n,m) represents the complementary complete elliptic integral of the third
kind ¢( ) = -( )P Pn m n m1 , where P n m( )  is the complete elliptic integral of the third
kind:
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The complementary complete elliptic integral of the third kind is defined for complex
arguments m and n.

If all arguments are numerical and at least one is a floating-point value,
ellipticCPi(n,m) returns floating-point results. For most exact arguments, it returns
unevaluated symbolic calls. You can approximate such results with floating-point
numbers using the float function.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Most calls with exact arguments return themselves unevaluated. To approximate such
values with floating-point numbers, use float:

ellipticCPi(-1, PI/4);

float(ellipticCPi(-1, PI/4))

Alternatively, use floating-point values as arguments. If one argument is a floating-point
value and the others can be converted to a floating-point values, then a floating-point
result will be returned:

ellipticCPi(1/2, 1/4);

ellipticCPi(0.5, 1/4)

Some special arguments return explicit symbolic representations:

ellipticCPi(0, m);

ellipticCPi(n, 1)
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Parameters

m

An arithmetical expression specifying the parameter.

n

An arithmetical expression specifying the characteristic.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCE | ellipticCK | ellipticE | ellipticF | ellipticK | ellipticPi
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ellipticNome
Elliptic nome

Syntax
ellipticNome(m)

Description

ellipticNome(m) represents the elliptic nome q which is defined as

q m e

K m

K m( ) =
-

¢( )
( )

p

The elliptic nome q m( )  is defined for complex arguments m.

q m( ) £ 1  holds for all m Œ£ .

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

For most exact arguments, ellipticNome returns unevaluated:

ellipticNome(1/3),

ellipticNome(2),

ellipticNome(I)
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To approximate such values with floating-point numbers, use float:

float(ellipticNome(3/4))

Alternatively, use a floating-point value as an argument:

ellipticNome(0.5)

For m = 0, m = 1/2, and m = 1, ellipticNome returns explicit results:

ellipticNome(0),

ellipticNome(1/2),

ellipticNome(1)

Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticK
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end
Close a block statement

Description

end is a keyword which, depending on the context, is parsed as one of the following
keywords:

• end_case

• end_for

• end_if

• end_proc

• end_repeat

• end_while

Examples

Example 1

Each of the keywords proc, case, if, for, repeat, and while starts some block
construct in the MuPAD language. Each block can be closed with end or with the
corresponding special keyword end_proc, end_case etc.:

f :=

proc(a, b)

  local i;

begin

  for i from a to b do

    if isprime(i) then

       print(Unquoted, expr2text(i)." is a prime")

    end

  end

end:

f(20, 30):
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23 is a prime

29 is a prime

The parser translates end to the appropriate keyword matching the type of the block:

expose(f)

proc(a, b)

  name f;

  local i;

begin

  for i from a to b do

    if isprime(i) then

      print(Unquoted, expr2text(i)." is a prime")

    end_if

  end_for

end_proc

delete f:

See Also

MuPAD Functions
end_case | end_for | end_if | end_proc | end_repeat | end_while
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erf
Error function

Syntax
erf(x)

Description

erf(x) represents the error function 2 2

0
p

e dt
t

x

-Ú .

This function is defined for all complex arguments x. For floating-point arguments, erf
returns floating-point results.

The implemented exact values are: erf(0) = 0, erf(∞) = 1, erf(-∞) = -1, erf(i
 ∞) = i ∞, and erf(-i ∞) = -i ∞. For all other arguments, the error function
returns symbolic function calls.

For the function call erf(x) = 1 - erfc(x) with floating-point arguments of large
absolute value, internal numerical underflow or overflow can happen. If a call to erfc
causes underflow or overflow, this function returns:

• The result truncated to 0.0 if x is a large positive real number
• The result rounded to 2.0 if x is a large negative real number
• RD_NAN if x is a large complex number and MuPAD cannot approximate the function

value

The error function erf(x) = 1 - erfc(x) returns corresponding values for large
arguments. See “Example 2” on page 1-604.

MuPAD can simplify expressions that contain error functions and their inverses. For real
values x, the system applies the following simplification rules:

• inverf(erf(x)) = inverf(1 - erfc(x)) = inverfc(1 - erf(x)) =

inverfc(erfc(x)) = x
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• inverf(-erf(x)) = inverf(erfc(x) - 1) = inverfc(1 + erf(x)) =

inverfc(2 - erfc(x)) = -x

For any value x, the system applies the following simplification rules:

• inverf(-x) = -inverf(x)

• inverfc(2 - x) = -inverfc(x)

• erf(inverf(x)) = erfc(inverfc(x)) = x

• erf(inverfc(x)) = erfc(inverf(x)) = 1 - x

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS, which determines the numerical working precision.

Examples

Example 1

You can call the error function with exact and symbolic arguments:

erf(0), erf(3/2), erf(sqrt(2)), erf(infinity)

To approximate exact results with floating-point numbers, use float:

float(erf(3/2)), float(erf(sqrt(2)))

Alternatively, use a floating-point value as an argument:

erf(-7.2), erf(2.0 + 3.5*I), erfc(3.0, 4), erf(5.5 + 1.0*I)
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Example 2

For large complex arguments, the error function can return :

erf(38000.0 + 3801.0*I)

Example 3

diff, float, limit, series, and other functions handle expressions involving the error
function:

diff(erf(x), x, x, x)

limit(x/(1 + x)*erf(x), x = infinity)

series(erf(x), x = infinity, 3)

Parameters

x

Arithmetical expression
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Return Values

Arithmetical expression

Algorithms

erf, erfc, and erfi are entire functions.

See Also

MuPAD Functions
erfc | erfi | inverf | inverfc | stats::normalQuantile

More About
• “Error Functions and Fresnel Functions”

1-605



1 The Standard Library

erfc
Complementary error function

Syntax
erfc(x)

erfc(x, n)

Description

erfc erfx x e dt
t

x

( ) = - ( ) = -
•

Ú1
2 2

p
 computes the complementary error function.

erfc , erfc ,x n t n dt

x

( ) = -( )
•

Ú 1  with erfc(x, 0) = erfc(x) and erfc x e x
, -( ) =

-
1

2 2

p

returns the iterated integrals of the complementary error function. The calls erfc(x)
and erfc(x, 0) are equivalent.

erfc is defined for all complex arguments x. For floating-point arguments, erfc returns
floating-point results.

The implemented exact values are:

• erfc(0) = 1, erfc(∞) = 0, erfc(-∞) = 2, erfc(i∞) = 1 - i∞, erfc(-i∞) =
1 + i∞

•
erfc ,0

1

2
2

1

n

n
n

( ) =
+Ê

Ë
Á

ˆ
¯
˜G

, 
erfc(∞,n)

 = 0, erfc(-
∞,
 n) = 

∞

For all other arguments, the error function returns symbolic function calls.

If a numerical value of n is not an integer or if n < -1, the function call erfc(x, n)
returns an error. The function also accepts symbolic values of n.
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If n is a numerical value, you can use expand(erfc(x, n)) to apply the following
rules. See “Example 3” on page 1-609.

•
The recurrence erfc ,

erfc , erfc ,
x n

x n

n

x x n

n

( ) =
-( )

-
-( )2

2

1

•
The reflection rule erfc , erfc ,

H ,

!
-( ) = -( ) ( ) +

( )+

-
x n x n

n ix

i n

n

n n
1

2

1

1
, where H(n,ix) is the n-

th degree Hermite polynomial at the point ix. See orthpoly::hermite.

For the function erfc with floating-point arguments of large absolute value, internal
numerical underflow or overflow can happen. See “Example 2” on page 1-608. If a call
to erfc causes underflow or overflow, this function returns:

• The result truncated to 0.0 if x is a large positive real number
• The result rounded to 2.0 if x is a large negative real number
• RD_NAN if x is a large complex number and MuPAD cannot approximate the function

value

MuPAD can simplify expressions that contain error functions and their inverses. For real
values x, the system applies the following simplification rules:

• inverf(erf(x)) = inverf(1 - erfc(x)) = inverfc(1 - erf(x)) =

inverfc(erfc(x)) = x

• inverf(-erf(x)) = inverf(erfc(x) - 1) = inverfc(1 + erf(x)) =

inverfc(2 - erfc(x)) = -x

For any value x, the system applies the following simplification rules:

• inverf(-x) = -inverf(x)

• inverfc(2 - x) = -inverfc(x)

• erf(inverf(x)) = erfc(inverfc(x)) = x

• erf(inverfc(x)) = erfc(inverf(x)) = 1 - x

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS, which determines the numerical working precision.
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Examples

Example 1

You can call the complementary error function with exact and symbolic arguments:

erfc(0), erfc(x + 1), erfc(-infinity), erfc(3/2), erfc(sqrt(2))

erfc(0, n), erfc(x + 1, -1), erfc(-infinity, 5)

To approximate exact results with floating-point numbers, use float:

float(erfc(3/2)), float(erfc(sqrt(2)))

Alternatively, use floating-points value as arguments:

erfc(-7.2), erfc(2.0 + 3.5*I), erfc(3.0, 4)

Example 2

For large complex arguments, the complementary error function can return :

erfc(38000.0 + 3801.0*I)
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For large floating-point arguments with positive real parts, erfc can return values
truncated to 0.0:

erfc(27281.1), erfc(27281.2)

Example 3

diff, float, limit, expand, rewrite, series, and other functions handle expressions
involving the complementary error function:

diff(erfc(x, 3), x, x)

limit(x/(1 + x)*(1 - erfc(x)), x = infinity)

expand(erfc(x, 3))

rewrite(erfc(x), erf),

rewrite(erfc(x), erfi)

series(erfc(x), x = infinity, 3)
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Parameters

x

Arithmetical expression

n

Arithmetical expression representing an integer larger than or equal to -1.

Return Values

Arithmetical expression

Algorithms

erf, erfc, and erfi are entire functions.

See Also

MuPAD Functions
erf | erfi | inverf | inverfc | stats::normalQuantile

More About
• “Error Functions and Fresnel Functions”
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erfi
Imaginary error function

Syntax
erfi(x)

Description

erfi erfx i ix e dt
t

x

( ) = - ( ) = Ú
2 2

0
p

 computes the imaginary error function.

This function is defined for all complex arguments x. For floating-point arguments, erfi
returns floating-point results.

The implemented exact values are: erfi(0) = 0, erfi(∞) = ∞, erfi(-∞) = -∞,
erfi(i∞) = i, and erfi(-i∞) = -i. For all other arguments, the error function
returns symbolic function calls.

For the function call erfi(x) = -i*erf(i*x) = i*(erfc(i*x) - 1) with floating-
point arguments of large absolute value, internal numerical underflow or overflow can
happen. If a call to erfc causes underflow or overflow, this function returns:

• The result truncated to 0.0 if x is a large positive real number
• The result rounded to 2.0 if x is a large negative real number
• RD_NAN if x is a large complex number and MuPAD cannot approximate the function

value

The imaginary error function erfi(x) = i*(erfc(i*x) - 1) returns corresponding
values for large arguments. See “Example 2” on page 1-613.

MuPAD can simplify expressions that contain error functions and their inverses. For real
values x, the system applies the following simplification rules:

• inverf(erf(x)) = inverf(1 - erfc(x)) = inverfc(1 - erf(x)) =

inverfc(erfc(x)) = x
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• inverf(-erf(x)) = inverf(erfc(x) - 1) = inverfc(1 + erf(x)) =

inverfc(2 - erfc(x)) = -x

For any value x, the system applies the following simplification rules:

• inverf(-x) = -inverf(x)

• inverfc(2 - x) = -inverfc(x)

• erf(inverf(x)) = erfc(inverfc(x)) = x

• erf(inverfc(x)) = erfc(inverf(x)) = 1 - x

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS, which determines the numerical working precision.

Examples

Example 1

You can call the imaginary error function with exact and symbolic arguments:

erfi(0), erfi(x + 1), erfi(-infinity), erfi(3/2), erfi(sqrt(2))

To approximate exact results with floating-point numbers, use float:

float(erfi(3/2)), float(erfi(sqrt(2)))

Alternatively, use floating-points value as arguments:

erfi(0.2), erfi(2.0 + 3.5*I), erfi(5.5 + 1.0*I)
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Example 2

For large complex arguments, the imaginary error function can return :

erfi(38000.0 + 3801.0*I)

Example 3

diff, float, limit, expand, rewrite, and series handle expressions involving the
error functions:

diff(erfi(x), x, x, x)

float(ln(3 + erfi(sqrt(PI)*I)))

limit(x/(1 + x)*erfi(I*x)*I, x = infinity)

rewrite(erfi(x), erfc)

series(erfi(x), x = I*infinity, 3)
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Parameters

x

Arithmetical expression

Return Values

Arithmetical expression

Algorithms

erf, erfc, and erfi are entire functions.

See Also

MuPAD Functions
erf | erfc | inverf | inverfc | stats::normalQuantile

More About
• “Error Functions and Fresnel Functions”
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inverf

Inverse of the error function

Syntax

inverf(x)

Description

inverf(x) computes the inverse of the error function. This function is defined for all
complex arguments x.

The inverse function inverf is singular at the points x = -1 and x = 1.

The inverses of the error functions return floating-point values only for floating-point
arguments that belong to a particular interval. Thus, the inverse of the error function
inverf(x) returns floating-point values for real values x from the interval [-1, 1].
The implemented exact values are: inverf(-1) = -∞, inverf(0) = 0, inverf(1) =
∞. For all other arguments, the error functions return symbolic function calls.

MuPAD can simplify expressions that contain error functions and their inverses. For real
values x, the system applies the following simplification rules:

• inverf(erf(x)) = inverf(1 - erfc(x)) = inverfc(1 - erf(x)) =

inverfc(erfc(x)) = x

• inverf(-erf(x)) = inverf(erfc(x) - 1) = inverfc(1 + erf(x)) =

inverfc(2 - erfc(x)) = -x

For any value x, the system applies the following simplification rules:

• inverf(-x) = -inverf(x)

• inverfc(2 - x) = -inverfc(x)

• erf(inverf(x)) = erfc(inverfc(x)) = x

• erf(inverfc(x)) = erfc(inverf(x)) = 1 - x
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Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS, which determines the numerical working precision.

Examples

Example 1

You can call the inverse of the error function with exact and symbolic arguments:

inverf(-1), inverf(0), inverf(1), inverf(x + 1), inverf(1/5), inverf(1/sqrt(2))

To approximate exact results with floating-point numbers, use float:

float(inverf(1/5)), float(inverf(1/sqrt(2)))

Alternatively, use floating-points value as arguments:

inverf(0.2), inverf(1/sqrt(2.0))

For floating-point arguments x from the interval [-1, 1], inverf returns floating-
point values:

inverf(-0.5), inverf(0.85)

For floating-point arguments outside of this interval, inverf returns symbolic function
calls:
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inverf(-5.3), inverf(10.0)

Example 2

diff, float, limit, rewrite, series, and other functions handle expressions
involving the inverse of the error function:

diff(inverf(x), x)

float(ln(3 + inverf(1/sqrt(PI))))

limit(1/inverf(x), x = 0, Right);

limit(1/inverf(x), x = 0, Left)

rewrite(inverfc(x), inverf)

series(inverf(x), x = 0)
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Parameters

x

Arithmetical expression

Return Values

Arithmetical expression

See Also

MuPAD Functions
erf | erfc | erfi | inverfc | stats::normalQuantile

More About
• “Error Functions and Fresnel Functions”
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inverfc
Inverse of the complementary error function

Syntax
inverfc(x)

Description

inverfc(x) = inverf(1 - x) computes the inverse of the complementary error
function. This function is defined for all complex arguments x.

The inverse function inverfc is singular at the points x = 0 and x = 2.

The inverses of the error functions return floating-point values only for floating-point
arguments that belong to a particular interval. Thus, the inverse of the complementary
error function inverfc(x) returns floating-point values for real values x from the
interval [0, 2]. The implemented exact values are: inverfc(0) = ∞, inverfc(1)
= 0, inverfc(2) = -∞. For all other arguments, the error functions return symbolic
function calls.

MuPAD can simplify expressions that contain error functions and their inverses. For real
values x, the system applies the following simplification rules:

• inverf(erf(x)) = inverf(1 - erfc(x)) = inverfc(1 - erf(x)) =

inverfc(erfc(x)) = x

• inverf(-erf(x)) = inverf(erfc(x) - 1) = inverfc(1 + erf(x)) =

inverfc(2 - erfc(x)) = -x

For any value x, the system applies the following simplification rules:

• inverf(-x) = -inverf(x)

• inverfc(2 - x) = -inverfc(x)

• erf(inverf(x)) = erfc(inverfc(x)) = x

• erf(inverfc(x)) = erfc(inverf(x)) = 1 - x
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Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS, which determines the numerical working precision.

Examples

Example 1

You can call the inverse of the complementary error function with exact and symbolic
arguments:

inverfc(0), inverfc(1), inverfc(2), inverfc(15), inverfc(x/5), inverfc(1/5), inverfc(sqrt(2))

To approximate exact results with floating-point numbers, use float:

float(inverfc(1/5)), float(inverfc(sqrt(2)))

Alternatively, use floating-points value as arguments:

inverfc(0.2), inverfc(sqrt(2.0))

For floating-point arguments x from the interval [0, 2], inverfc returns floating-
point values:

inverfc(0.5), inverfc(1.25)

For floating-point arguments outside of this interval, inverfc returns symbolic function
calls:
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inverfc(-1.25), inverfc(2.5)

Example 2

diff, float, limit, rewrite, series, and other functions handle expressions
involving the inverse of the complementary error function:

diff(inverfc(x), x)

float(ln(3 + inverfc(sqrt(PI))))

limit(1/inverfc(x), x = 1, Right);

limit(1/inverfc(x), x = 1, Left)

rewrite(inverfc(x), inverf)

series(inverfc(x), x = 1)
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Parameters

x

Arithmetical expression

Return Values

Arithmetical expression

See Also

MuPAD Functions
erf | erfc | erfi | inverf | stats::normalQuantile

More About
• “Error Functions and Fresnel Functions”
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error
Raise a user-specified exception

Syntax
error(message)

Description

error(message) aborts the current procedure, returns to the interactive level, and
displays the error message message.

If the error is not caught via traperror by a procedure that has directly or indirectly
called the current procedure, control is returned to the interactive level, and the string
message is printed as an error message.

The printed error message has the form Error: message [name], where name is the
name of the procedure containing the call to error. See the examples.

Errors can be caught by the function traperror. If an error occurs while the arguments
of traperror are evaluated, control is returned to the procedure containing the call
to traperror and not to the interactive level. No error message is printed. The return
value of traperror is 1028 when it catches an error raised by error; see “Example 2”
on page 1-624.

The function error is useful to raise an error in the type checking part of a user-defined
procedure, when this procedure is called with invalid arguments.

Examples

Example 1

If the divisor of the following simple division routine is 0, then an error is raised:

mydivide := proc(n, d) begin
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  if iszero(d) then

    error("Division by 0")

  end_if;

  n/d

end_proc:

mydivide(2, 0)

Error: Division by 0 [mydivide]

Example 2

When the error is raised in the following procedure p, control is returned to the
interactive level immediately. The second call to print is never executed. Note that the
procedure's name is printed in the error message:

p := proc() begin

  print("entering procedure p");

  error("oops");

  print("leaving procedure p")

end_proc:

p()

Error: oops [p]

The following procedure q calls the procedure p and catches any error that is raised
within p:

q := proc() begin

  print("entering procedure q");

  print("caught error: ", traperror(p()));

  print("leaving procedure q")

end_proc:

q()
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Parameters

message

The error message: a string

See Also

MuPAD Functions
getlasterror | lasterror | traperror | warning
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euler
Euler numbers and polynomials

Syntax
euler(n)

euler(n, x)

Description

euler(n) returns the n-th Euler number.

euler(n, x) returns the n-th Euler polynomial in x.

The Euler polynomials are defined by the generating function

.

The Euler numbers are defined by euler(n) = 2^n*euler(n,1/2).

An error occurs if n is a numerical value not representing a nonnegative integer.

If n is an integer larger than the value returned by Pref::autoExpansionLimit(),
then the call euler(n) is returned symbolically. Use expand(euler(n)) to get an
explicit numerical result for large integers n.

If n contains non-numerical symbolic identifiers, then the call euler(n) is returned
symbolically. In most cases, the same holds true for calls euler(n, x). Some
simplifications are implemented for special numerical values such as x = 0, x = 1/2, x
= 1 etc. for symbolic n . Cf. “Example 3” on page 1-628.

Note: Note that floating-point evaluation for high degree polynomials may be
numerically unstable. See “Example 4” on page 1-629.
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The floating-point evaluation on the standard interval x ∈ [0, 1] is numerically stable for
arbitrary n.

To use the Euler constant, call E or exp(1). To use the Euler-Mascheroni constant, call
EULER. See “Mathematical Constants Available in MuPAD”. You can approximate these
constants with floating-point numbers by using float.

Environment Interactions

When called with a floating-point value x, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

The first Euler numbers are:

euler(n) $ n = 0..11

The first Euler polynomials:

euler(n, x) $ n = 0..4

If n is symbolic, then a symbolic call is returned:

euler(n, x), euler(n + 3/2, x), euler(n + 5*I, x)
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Example 2

If x is not an indeterminate, then the evaluation of the Euler polynomial at the point x is
returned:

euler(50, 1 + I)

euler(3, 1 - y) = expand(euler(3, 1 - y))

Example 3

Certain simplifications occur for some special numerical values of x, even if n is symbolic:

euler(n, 0), euler(n, 1/2), euler(n, 1)

Calls with numerical arguments between  and 1 are automatically rewritten in terms of

calls with arguments between 0 and :

euler(n, 2/3), euler(n, 0.7)

Calls with negative numerical arguments are automatially rewritten in terms of calls
with positive arguments:

euler(n, -2)
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euler(n, -12.345)

Example 4

Float evaluation of high degree polynomials may be numerically unstable:

exact := euler(50, 1 + I): float(exact);

euler(50, float(1 + I))

DIGITS := 40: euler(50, float(1 + I))

delete exact, DIGITS:

Example 5

Some system functions such as diff or expand handle symbolic calls of euler:

diff(euler(n, f(x)), x)

expand(euler(n, x + 2))
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expand(euler(n, -x))

expand(euler(n, 3*x))

Parameters

n

An arithmetical expression representing a nonnegative integer

x

An arithmetical expression

Return Values

Arithmetical expression.

References

M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions”, Dover
Publications Inc., New York (1965).

See Also

MuPAD Functions
bernoulli
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eval
Evaluate an object

Syntax
eval(object)

Description

eval(object) evaluates its argument object by recursively replacing the identifiers
occurring in it by their values and executing function calls, and then evaluates the result
again.

eval serves to request the evaluation of unevaluated or partially evaluated objects.
Evaluation means that identifiers are replaced by their values and function calls are
executed.

Usually, every system function automatically evaluates its arguments and returns a fully
evaluated object, and using eval is only necessary in exceptional cases. For example,
the functions map, op, and subs may return objects that are not fully evaluated. See
“Example 1” on page 1-633.

Like most other MuPAD functions, eval first evaluates its argument. Then it evaluates
the result again. At interactive level, the second evaluation usually has no effect, but
this is different within procedures. See “Example 3” on page 1-633 and “Example 4” on
page 1-635.

eval is sensitive to the value of the environment variable LEVEL, which determines the
maximal depth of the recursive process that replaces an identifier by its value during
evaluation. The evaluation of the argument and the subsequent evaluation of the result
both take place with substitution depth LEVEL. See “Example 3” on page 1-633.

If a local variable or a formal parameter, of type DOM_VAR, of a procedure occurs in
object, then it is always replaced by its value when eval evaluates its argument,
independent of the value of LEVEL. At the subsequent second evaluation, the value of the
local variable is evaluated with substitution depth given by LEVEL, which usually is 1.
Cf. “Example 4” on page 1-635.
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The behavior of eval within a procedure may sometimes not be what you expect, since
the default substitution depth within procedures is 1 and eval evaluates with this
substitution depth. Use level to request a complete evaluation within a procedure; see
the corresponding help page for details.

eval enforces the evaluation of expressions of the form hold(x): eval(hold(x)) is
equivalent to x. Cf. “Example 2” on page 1-633.

eval accepts expression sequences as arguments. See “Example 3” on page 1-633. In
particular, the call eval() returns the empty sequence null().

eval does not recursively descend into arrays. Use the call map(object, eval) to
evaluate the entries of an array. Cf. “Example 5” on page 1-636.

eval does not recursively descend into tables. Use the call map(object, eval) to
evaluate the entries of a table.

However, it is not possible to evaluate the indices of a given table. If you want to do this,
create a new table with the evaluated operands of the old one. Cf. “Example 6” on page
1-636.

Polynomials are not further evaluated by eval. Use evalp to substitute values for
the indeterminates of a polynomial, and use the call mapcoeffs(object, eval) to
evaluate all coefficients. Cf. “Example 7” on page 1-637.

The evaluation of elements of a user-defined domain depends on the implementation
of the domain. Usually, domain elements remain unevaluated. If the domain has a
slot "evaluate", the corresponding slot routine is called with the domain element as
argument at each evaluation, and hence it is called twice when eval is invoked. Cf.
“Example 8” on page 1-638.

Environment Interactions

eval is sensitive to the value of the environment variable LEVEL, which determines the
maximal substitution depth for identifiers.
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Examples

Example 1

subs performs a substitution, but does not evaluate the result:

subs(ln(x), x = 1)

An explicit call of eval is necessary to evaluate the result:

eval(subs(ln(x), x = 1))

text2expr does not evaluate its result either:

a := c:

text2expr("a + a"), eval(text2expr("a + a"))

Example 2

The function hold prevents the evaluation of its argument. A later evaluation can be
forced with eval:

hold(1 + 1);  eval(%)

Example 3

When an object is evaluated, identifiers are replaced by their values recursively. The
maximal recursion depth of this process is given by the environment variable LEVEL:
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delete a0, a1, a2, a3, a4:

a0 := a1:  a1 := a2 + 2:  a2 := a3 + a4:  a3 := a4^2:  a4 := 5:

LEVEL := 1:  a0, a0 + a2;

LEVEL := 2:  a0, a0 + a2;

LEVEL := 3:  a0, a0 + a2;

LEVEL := 4:  a0, a0 + a2;

LEVEL := 5:  a0, a0 + a2;

eval first evaluates its argument and then evaluates the result again. Both evaluations
happen with substitution depth given by LEVEL:

LEVEL := 1:  eval(a0, a0 + a2);

LEVEL := 2:  eval(a0, a0 + a2);

LEVEL := 3:  eval(a0, a0 + a2);

Since the default value of LEVEL is 100, eval usually has no effect at interactive level:

delete LEVEL:
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a0, eval(a0), a0 + a2, eval(a0 + a2)

Example 4

This example shows the difference between the evaluation of identifiers and local
variables. By default, the value of LEVEL is 1 within a procedure, i.e., a global identifier
is replaced by its value when evaluated, but there is no further recursive evaluation. This
changes when LEVEL is assigned a bigger value inside the procedure:

delete a0, a1, a2, a3:

a0 := a1 + a2:  a1 := a2 + a3:  a2 := a3^2 - 1:  a3 := 5:

p := proc() 

       save LEVEL; 

     begin

       print(a0, eval(a0)):

       LEVEL := 2:

       print(a0, eval(a0)):

     end_proc:

p()

In contrast, evaluation of a local variable replaces it by its value, without further
evaluation. When eval is applied to an object containing a local variable, then the effect
is an evaluation of the value of the local variable with substitution depth LEVEL:

q := proc()

       save LEVEL;

       local x;

     begin

       x := a0:

       print(x, eval(x)):

       LEVEL := 2:

       print(x, eval(x)):
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     end_proc:

q()

The command x:=a0 assigns the value of the identifier a0, namely the unevaluated
expression a1+a2, to the local variable x, and x is replaced by this value every time it is
evaluated, independent of the value of LEVEL:

Example 5

In contrast to lists and sets, evaluation of an array does not evaluate its entries. Thus
eval has no effect for arrays either. Use map to evaluate all entries of an array:

delete a, b:

L := [a, b]:  A := array(1..2, L):  a := 1:   b := 2:

L, A, eval(A), map(A, eval)

The call map(A, gamma) does not evaluate the entries of the array A before applying the
function gamma. Map the function gamma@eval to enforce the evaluation:

map(A, gamma), map(A, gamma@eval)

Example 6

Similarly, evaluation of a table does not evaluate its entries, and you can use map to
achieve this. However, this does not affect the indices:

delete a, b:

T := table(a = b):  a := 1:  b := 2:

T, eval(T), map(T, eval)
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If you want a table with evaluated indices as well, create a new table from the evaluated
operands of the old table. Using eval is necessary here since the operand function op
does not evaluate the returned operands:

op(T), table(eval(op(T)))

Example 7

Polynomials are inert when evaluated, and also eval has no effect:

delete a, x:  p := poly(a*x, [x]):  a := 2:  x := 3:

p, eval(p), map(p, eval)

Use mapcoeffs to evaluate all coefficients:

mapcoeffs(p, eval)

If you want to substitute a value for the indeterminate x, use evalp:

delete x:  evalp(p, x = 3)

As you can see, the result of an evalp call may contain unevaluated identifiers, and you
can evaluate them by an application of eval:

eval(evalp(p, x = 3))
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Example 8

The evaluation of an element of a user-defined domains depends on the implementation
of the domain. Usually, it is not evaluated further:

delete a:  T := newDomain("T"):

e := new(T, a):  a := 1:

e, eval(e), map(e, eval), val(e)

If the slot "evaluate" exists, the corresponding slot routine is called for a domain
element each time it is evaluated. We implement the routine T::evaluate, which
simply evaluates all internal operands of its argument, for our domain T. The
unevaluated domain element can still be accessed via val:

T::evaluate := x -> new(T, eval(extop(x))):

e, eval(e), map(e, eval), val(e)

Parameters

object

Any MuPAD object

Return Values

Evaluated object.

See Also

MuPAD Functions
context | evalassign | evalp | freeze | hold | indexval | LEVEL | level |
MAXDEPTH | MAXLEVEL | val
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More About
• “Evaluations in Symbolic Computations”
• “Level of Evaluation”
• “Actual and Displayed Results of Evaluations”
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evalassign

Assignment with evaluation of the left hand side

Syntax

evalassign(x, value, i)

evalassign(x, value)

Description

evalassign(x, value, i) evaluates x with substitution depth i and assigns value
to the result of the evaluation.

evalassign(x, value, i) evaluates value, as usual. Then it evaluates x with
substitution depth i, and finally it assigns the evaluation of value to the evaluation of x.

The difference between evalassign and the assignment operator := is that the latter
does not evaluate its left hand side at all.

As usual, the evaluation of value takes place with substitution depth given by LEVEL.
By default, it is 1 within a procedure.

See the help pages of LEVEL and level for the notion of substitution depth and for
details about evaluation.

The third argument is optional. The calls evalassign(x, value), evalassign(x,
value, 0), x := value, and _assign(x, value) are all equivalent.

The result of the evaluation of x must be a valid left hand side for an assignment. See the
help page of := for details.

The second argument is not flattened. Hence it may also be a sequence. Cf. “Example 2”
on page 1-641.
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Examples

Example 1

evalassign can be used in situations such as the following. Suppose that an identifiera
has another identifier b as its value, and that we want to assign something to this value
of a, not to a itself:

delete a, b: a := b:

evalassign(a, 100, 1): level(a, 1), a, b

This would not have worked with the assignment operator :=, which does not evaluate
its left hand side:

delete a, b: a := b:

a := 100: level(a, 1), a, b

Example 2

The second argument may also be a sequence:

a := b:

evalassign(a, (3,5), 1):

b

Parameters

x

An object that evaluates to a valid left hand side of an assignment
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value

Any MuPAD object

i

A nonnegative integer less than 231

Return Values

value.

Algorithms

The function level is used for the evaluation of x. Hence i may exceed the value of
LEVEL.

All special rules for _assign apply: see there on further details on indexed assignments,
assignments to slots, and the protect mechanism.

See Also

MuPAD Functions
:= | _assign | assign | assignElements | delete | eval | LEVEL | level
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|, evalAt
Insert a value (evaluate at a point)

Syntax
 f | x = v

evalAt(f, x = v)

f | ( x1= v1, x2= v2, … )

evalAt(f, x1 = v1, x2 = v2, …)

evalAt(f, x1 = v1, x2 = v2, …)

f | [x1= v1, x2= v2, …] 

evalAt(f, [x1 = v1, x2 = v2, …])

f | {x1= v1, x2= v2, …} 

evalAt(f, {x1 = v1, x2 = v2, …})

Description

evalAt(f, x = v) substitutes x = v in the object f and evaluates.

The MuPAD statement f | x = v serves as a shortcut for calling evalAt(f, x = v).

evalAt(f, x = v) evaluates the object f at the point x = v. Essentially, it is the
same as eval ( subs(f, x = v)), but limited to free (as opposed to bound) variables.

Several substitutions of indeterminates by values can be done by evalAt(f, x1 = v1,
x2 = v2, ...). This is equivalent to evalAt(... (evalAt(evalAt(f, x1 = v1),
x2 = v2), ...), ...), i.e., x1 = v1 is substituted in f, then x2 = v2 is substituted
in the result etc. E.g., evalAt(x, x = y, y = 1) yields 1.

Note that the three (equivalent) calls evalAt(f, (x1 = v1, x2 = v2, ...)),
evalAt(f, [x1 = v1, x2 = v2, ...]), evalAt(f, {x1 = v1, x2 =
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v2, ...}) do parallel substitutions, i.e., the substitutions x1 = v1, x2 = v2 are all
performed on f simultaneously. Consequently, evalAt(x, [x = y, y = 1]) yields y,
not 1!

The operator | provides a shortcut for calling evalAt:

The command f | x = v is equivalent to calling evalAt(f, x = v).

Similarly, f | (x1=v1, x2=v2, ...) is equivalent to evalAt(f, (x1=v1,
x2=v2, ...)), f | [x1=v1, x2=v2, ...] is equivalent to evalAt(f, [x1=v1,
x2=v2, ...]), f | [x1=v1, x2=v2, ...} is equivalent to evalAt(f, {x1=v1,
x2=v2, ...}).

Note: The sequential substitution evalAt(f, x1 = v1, x2 = v2, ...) cannot be
done via f | x1 = v1, x2 = v2, ...: this produces the sequence evalAt(f, x1 =
v1), x2 = v2, .... Use f | x1 = v1 | x2 = v2 | ... for sequential substitution. E.g.,
the statement x | x = y | y = 1 yields 1.

Examples

Example 1

Calls to evalAt and corresponding statements using the operator | are equivalent:

evalAt(x^2 + sin(x), x = 1);

x^2 + sin(x) | x = 1

We use the operator | to evaluate an expression f representing a function of x at several
points:

f := x + exp(x):

f | x = 3;

f | x = 5.0;
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f | x = y;

We create a matrix with symbolic entries and evaluate the matrix with various values for
the symbols:

A := matrix([[x, sin(PI*x)], [2, y]]);

A | x = a;

A | [x = a, y = b]

delete f, A:

Example 2

We do several substitutions simultaneously:

f := cos(y) + sin(x) + x*y;

f | (x = 1, y = 2);

f | [x = 1, y = 2];

f | {x = 1, y = 2};
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delete f:

Parameters

f

An arbitrary MuPAD object.

x, x1, x2, …

indeterminates or indexed indeterminates.

v, v1, v2, …

The values for x, x1, x2, ….

Return Values

Copy of the input object f with replaced operands.

Overloaded By

f

See Also

MuPAD Functions
evalp | subs | subsex | subsop
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evalp
Evaluate a polynomial at a point

Syntax
evalp(p, x = v, …)

evalp(p, [x = v, …])

evalp(f, <vars>, x = v, …)

evalp(f, <vars>, [x = v, …])

Description

evalp(p, x = v) evaluates the polynomial p in the variable x at the point v.

An error occurs if x is not an indeterminate of p. The value v may be any object that
could also be used as coefficient. The result is an element of the coefficient ring of p if p is
univariate. If p is multivariate, the result is a polynomial in the remaining variables.

If several evaluation points are given, the evaluations take place in succession from left
to right. Each evaluation follows the rules above.

For a polynomial p in the variables x1,x2,..., the syntax p(v1,v2,...) can be used
instead of evalp(p, x1 = v1, x2 = v2, ...).

evalp(f, vars, x = v, ...) first converts the polynomial expression f to a
polynomial with the variables given by vars. If no variables are given, they are searched
for in f. See poly about details of the conversion. FAIL is returned if f cannot be
converted to a polynomial. A successfully converted polynomial is evaluated as above.
The result is converted to an expression.

Horner's rule is used to evaluate the polynomial. The evaluation of variables at the point
0 is most efficient and should take place first. After that, the remaining main variable
should be evaluated first.

The result of evalp is not evaluated further. One may use eval to fully evaluate the
result.
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Instead of evalp(p, x1 = v1, x2 = v2, ...) one may also use the equivalent form
evalp(p, [x1 = v1, x2 = v2, ...]).

Examples

Example 1

evalp is used to evaluate the polynomial expression x2 + 2 x + 3 at the point x = a + 2.
The form of the resulting expression reflects the fact that Horner's rule was used:

evalp(x^2 + 2*x + 3, x = a + 2)

Example 2

evalp is used to evaluate a polynomial in the indeterminates x and y at the point x = 3.
The result is a polynomial in the remaining indeterminate y:

p := poly(x^2 + x*y + 2, [x, y]): evalp(p, x = 3)

delete p:

Example 3

Polynomials may be called like functions in order to evaluate all variables:

p := poly(x^2 + x*y, [x, y]): evalp(p, x = 3, y = 2) = p(3, 2)

delete p:
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Example 4

If not all variables are replaced by values, the result is a polynomial in the remaining
variables:

evalp(poly(x*y*z + x^2 + y^2 + z^2, [x, y, z]), x = 1, y = 1)

Example 5

The result of evalp is not evaluated further. We first define a polynomial p with
coefficient a and then change the value of a. The change is not reflected by p, because
polynomials do not evaluate their coefficients implicitly. One must map the function
eval onto the coefficients in order to enforce evaluation:

p := poly(x^2 + a*y + 1, [x,y]): a := 2:

p, mapcoeffs(p, eval)

If we use evalp to evaluate p at the point x = 1, the result is not fully evaluated. One
must use eval to get fully evaluated coefficients:

r := evalp(p, x = 1):

r, mapcoeffs(r, eval)

delete p, a, r:

Parameters

p

A polynomial of type DOM_POLY
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x

An indeterminate

v

The value for x: an element of the coefficient ring of the polynomial

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

Return Values

Element of the coefficient ring, or a polynomial, or a polynomial expression, or FAIL

Overloaded By

f, p

See Also

MuPAD Functions
eval | evalAt | poly
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exp
Exponential function

Compatibility
For the exp function in MATLAB, see exp.

Syntax
exp(x)

Description
exp(x) represents the value of the exponential function at the point x.

The exponential function is defined for all complex arguments.

For most exact arguments, an unevaluated function call is returned subject to some
simplifications:

• Calls of the form  with integer or rational q are rewritten such that q lies in the
interval . Explicit results are returned if the denominator of q is 1, 2, 3, 4, 5, 6, 8,
10, or 12.

• Further, the following special values are implemented: , , .
• A call of the form  with an unevaluated ln(y) and a constant c (i.e., of type

Type::Constant) yields the result yc.
• The call  yields the result , if f is lambertW.

Floating point results are computed, when the argument is a floating-point number.

Note: Numerical exceptions may happen, when the absolute value of the real part of
a floating-point argument x is large. If ℜ(x) < - 7.4 108, then exp(x) may return the
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truncated result 0.0 (protection against underflow). If ℜ(x) > 7.4 108, then exp(x) may
return the floating-point equivalent RD_INF of infinity. See “Example 2” on page
1-653.

For arguments of type DOM_INTERVAL, the return value is another interval containing
the image set of the exponential function over the input interval. See “Example 4” on
page 1-654.

The protected identifier E is an alias for exp(1).

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

exp(1), exp(2), exp(-3), exp(1/4), exp(1 + I), exp(x^2)

Floating point values are computed for floating-point arguments:

exp(1.23), exp(4.5 + 6.7*I), exp(1.0/10^20), exp(123456.7)

Some special symbolic simplifications are implemented:

exp(I*PI), exp(x - 22*PI*I), exp(3 + I*PI)
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exp(ln(-2)), exp(ln(x)*PI), exp(lambertW(5))

Example 2

The truncated result 0.0 may be returned for floating-point arguments with negative
real parts. This prevents numerical underflow:

exp(-742261118.6)

exp(-744261118.7)

exp(-742261118.6 + 10.0^10*I), exp(-744261118.7 + 10.0^10*I)

When internal numerical overflow occurs, the floating-point equivalent RD_INF of
infinity is returned:

exp(744261117.2)

exp(744261117.3)
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Example 3

System functions such as limit, series, expand, combine etc. handle expressions
involving exp:

limit(x*exp(-x), x = infinity), series(exp(x/(x + 1)), x = 0)

expand(exp(x + y + (sqrt(2) + 5)*PI*I))

combine(%, exp)

Example 4

exp transforms intervals (of type DOM_INTERVAL) to intervals:

exp(-1 ... 1)

Note that the MuPAD floating-point numbers cannot be arbitrarily large. In the context
of floating-point intervals, all values larger than a machine-dependent constant are
regarded as “infinite”:

exp(1 ... 1e1000)

Finally, we would like to mention that you can also use exp on disjunct unions of
intervals:
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exp((1 ... PI) union (10 ... 20))

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

See Also

MuPAD Functions
ln | log
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expand

Expand an expression

Syntax

expand(f, options)

expand(f, g1, g2, …, options)

Description

expand(f) expands the arithmetical expression f.

The most important use of expand is the application of the distributivity law to rewrite
products of sums as sums of products. In this respect, expand is the inverse function of
factor.

The numerator of a fraction is expanded, and then the fraction is rewritten as a sum of
fractions with simpler numerators; see “Example 1” on page 1-657. In a certain sense,
this is the inverse functionality of normal. Use partfrac for a more powerful way to
rewrite a fraction as a sum of simpler fractions.

expand(f) applies the following rules when rewriting powers occurring as
subexpressions in f:

• xa + b = xa xb.
• If b is an integer, or x ≥ 0 or y ≥ 0, then (x y)b = xb yb.
• If b is an integer, then (xa)b = xa b.

Except for the third rule, this behavior of expand is the inverse functionality of
combine. See “Example 2” on page 1-658.

expand works recursively on the subexpressions of an expression f. If f is of the
container type array or table, expand only returns f and does not map on the entries.
To expand all entries of one of the containers, use map. See “Example 3” on page 1-658.
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If optional arguments g1, g2, ... are present, then any subexpression of f that is
equal to one of these additional arguments is not expanded; see “Example 4” on page
1-659. See section “Background” for a description how this works.

Properties of identifiers are taken into account (see assume). Identifiers without any
properties are assumed to be complex. See “Example 9” on page 1-662.

expand also handles various types of special mathematical functions. It rewrites a single
call of a special function with a complicated argument as a sum or a product of several
calls of the same function or related functions with simpler arguments. In this respect,
expand is the inverse function of combine.

In particular, expand implements the functional equations of the exponential function
and the logarithm, the gamma function and the polygamma function, and the addition
theorems for the trigonometric functions and the hyperbolic functions. See “Example 10”
on page 1-663.

Environment Interactions

expand is sensitive to properties of identifiers set via assume.

Examples

Example 1

expand expands products of sums by multiplying out:

expand((x + 1)*(y + z)^2)

After expansion of the numerator, a fraction is rewritten as a sum of fractions:

expand((x + 1)^2*y/(y + z)^2)
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Example 2

A power with a sum in the exponent is rewritten as a product of powers:

expand(x^(y + z + 2))

Example 3

expand works in a recursive fashion. In the following example, the power (x + y)z + 2 is
first expanded into a product of two powers. Then the power (x + y)2 is expanded into a
sum. Finally, the product of the latter sum and the remaining power (x + y)z is multiplied
out:

expand((x + y)^(z + 2))

Here is another example:

expand(2^((x + y)^2))

expand maps on the entries of lists, sets, and matrices:

expand([(a + b)^2, (a - b)^2]);

expand({(a + b)^2, (a - b)^2});

expand(matrix([[(a + b)^2, 0],[0, (a - b)^2]]))
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expand does not map on the entries of tables or arrays:

expand(table((a + b)^2=(c + 1)^2)),

expand(array(1..1, [(a + b)^2]))

Use map in order to expand all entries of a container:

map(table((a + b)^2=(c + 1)^2), expand),

map(array(1..1, [(a + b)^2]), expand)

Note that this call expands only the entries in a table, not the keys. In the (rare) case that
you want the keys expanded as well, transform the table to a list or set of equations first:

T := table((a + b)^2=(c + 1)^2):

table(expand([op(T)]))

Example 4

If additional arguments are provided, expand performs only a partial expansion. These
additional expressions, such as x + 1 in the following example, are not expanded:

expand((x + 1)*(y + z))
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expand((x + 1)*(y + z), x + 1)

Example 5

By default, expand works on all subexpressions including trigonometric subexpressions:

e := (sin(2*x) + 1)*(1 - cos(2*x)):

expand(e)

To prevent expansion of subexpressions, use the ArithmeticOnly option:

expand(e, ArithmeticOnly)

The option does not prevent expansion of powers and roots:

expand((sin(2*x) + 1)^3, ArithmeticOnly)

To keep subexpressions with integer powers unexpanded, use the MaxExponent option.

Example 6

The IgnoreAnalyticConstraints option applies a set of purely algebraic
simplifications including the equality of sum of logarithms and a logarithm of a product.
Using the IgnoreAnalyticConstraints option, you get a simpler result, but one that
might be incorrect for some of the values of variables:

expand(ln(a*b*c*d), IgnoreAnalyticConstraints)
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Without using this option, you get a mathematically correct result:

expand(ln(a*b*c*d))

Example 7

If the additional MaxExponent provided, expand performs only a partial expansion.
Powers with an integer exponent larger than the given bound, are not expanded:

expand((a + b)^3, MaxExponent = 2)

If the exponent is smaller or equal the given bound, the power is expanded:

expand((a + b)^2, MaxExponent = 2)

Example 8

The expand function can accept several options simultaneously. Suppose you want to
expand the following expression:

e := (sin(2*x) + 1)*(x + 1)^3

expand without any options works recursively. The function expands all subexpressions
including trigonometric functions and powers:

expand(e)
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The ArithmeticOnly option prevents the expansion of the term sin(2x). The
MaxExponent option prevents the expansion of (x + 1)3:

expand(e, ArithmeticOnly);

expand(e, MaxExponent = 2)

Combining these options in one call of the expand function, you apply both restrictions
for the expansion:

expand(e, MaxExponent = 2, ArithmeticOnly)

Example 9

The following expansions are not valid for all values a, b from the complex plane.
Therefore, MuPAD does not expand these expressions:

expand(ln(a^2)), expand(ln(a*b)), expand((a*b)^n)

The expansions are valid under the assumption that a is a positive real number:

assume(a > 0):  expand(ln(a^2)), expand(ln(a*b)), expand((a*b)^n)

Clear the assumption for further computations:

unassume(a):

Alternatively, to get the expanded result for the third expression, assume that n is an
integer:
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expand((a*b)^n) assuming n in Z_

Use the IgnoreAnalyticConstraints option to expand these expressions without
explicitly specified assumptions:

expand(ln(a^2), IgnoreAnalyticConstraints),

expand(ln(a*b), IgnoreAnalyticConstraints),

expand((a*b)^n, IgnoreAnalyticConstraints)

Example 10

The addition theorems of trigonometry are implemented by "expand"-slots of the
trigonometric functions sin and cos:

expand(sin(a + b)), expand(sin(2*a))

The same is true for the hyperbolic functions sinh and cosh:

expand(cosh(a + b)), expand(cosh(2*a))

The exponential function with a sum as argument is expanded via exp::expand:

expand(exp(a + b))

Here are some more expansion examples for the functions sum, fact, abs, coth, sign,
binomial, beta, gamma, cot, tan, exp and psi:
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sum(f(x) + g(x),x);  expand(%)

fact(x + 1);  expand(%)

abs(a*b);  expand(%)

coth(a + b);  expand(%)

coth(a*b);  expand(%)
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sign(a*b);  expand(%)

binomial(n, m);  expand(%)

beta(n, m);  expand(%)

gamma(x + 1);  expand(%)

tan(a + b); expand(%)

1-665



1 The Standard Library

cot(a + b); expand(%)

exp(x + y);  expand(%)

psi(x + 2);  expand(%)

In contrast to previous versions of MuPAD, expand does not rewrite tan in terms of sin
and cos:

expand(tan(a))
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Example 11

This example illustrates how to extend the functionality of expand to user-defined
mathematical functions. As an example, we consider the sine function. (Of course, the
system function sin already has an "expand" slot; see “Example 10” on page 1-663.)

We first embed our function into a function environment, which we call Sin, in order not
to overwrite the system function sin. Then we implement the addition theorem sin(x +
y) = sin(x) cos(y) + sin(y) cos(x) in the "expand" slot of the function environment, i.e., the
slot routine Sin::expand:

Sin := funcenv(Sin):

Sin::expand := proc(u) // compute expand(Sin(u))

  local x, y;

begin

  // recursively expand the argument u

  u := expand(op(u));

   if type(u) = "_plus" then // u is a sum

    x := op(u, 1); // the first term

    y := u - x;    // the remaining terms

    // apply the addition theorem and

    // expand the result again

    expand(Sin(x)*cos(y) + cos(x)*Sin(y))

  else

    Sin(u)

  end_if

end_proc:

Now, if expand encounters a subexpression of the form Sin(u), it calls
Sin::expand(u) to expand Sin(u). The following command first expands the
argument a*(b+c) via the recursive call in Sin::expand, then applies the addition
theorem, and finally expand itself expands the product of the result with z:

expand(z*Sin(a*(b + c)))

The expansion after the application of the addition theorem in Sin::expand is
necessary to handle the case when u is a sum with more than two terms: then y is again
a sum, and cos(y) and Sin(y) are expanded recursively:
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expand(Sin(a + b + c))

Parameters

f, g1, g2, …

arithmetical expressions

Options

ArithmeticOnly

Expand arithmetic part of an expression without expanding trigonometric, hyperbolic,
logarithmic and special functions.

This option does not prevent expansion of powers and roots. Technically, the option omits
overloading the expand function for each term of the original expression. See “Example
5” on page 1-660.

IgnoreAnalyticConstraints

With this option expand applies the following rules when expanding expressions:

• ln(a) + ln(b) = ln(a b) for all values of a and b. In particular:

 for all values of a, b, and c
• ln(ab) = b ln(a) for all values of a and b. In particular:

 for all values of a, b, and c
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x. In Particular:

•

• arcsin(sin(x)) = x, arccos(cos(x)) = x, arctan(tan(x)) = x
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• arcsinh(sinh(x)) = x, arccosh(cosh(x)) = x, arctanh(tanh(x)) = x
•  for all values of k

Using the option can give you simpler results for the expressions for which the
default call to expand returns complicated results. With this option the function does
not guarantee the equality of the initial expression and the result for all symbolic
parameters. See “Example 6” on page 1-660.

MaxExponent

Option, specified as MaxExponent = n

Do not expand powers with integer exponents larger than n.

If you call expand with this option, the function expands does not expand powers with
integer exponents larger than n. See “Example 7” on page 1-661.

Return Values

arithmetical expression.

Overloaded By

f

Algorithms

With optional arguments g1, g2, ..., the expansion of certain subexpressions of f can
be prevented. This works as follows: every occurrence of g1, g2, ... in f is replaced
by an auxiliary variable before the expansion, and afterwards the auxiliary variables are
replaced by the original subexpressions.

Users can extend the functionality of expand to their own special mathematical
functions via overloading. To this end, embed your function into a function environment
g and implement the behavior of expand for this function in the "expand" slot of the
function environment.
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Whenever expand encounters a subexpression of the form g(u,..), it issues the call
g::expand(g(u,..)) to the slot routine to expand the subexpression, passing the not
yet expanded arguments g(u,..) as arguments. The result of this call is not expanded
any further by expand. See “Example 11” on page 1-667 above.

Similarly, an "expand" slot can be defined for a user-defined library domainT. Whenever
expand encounters a subexpression d of domain typeT, it issues the call T::expand(d)
to the slot routine to expand d. The result of this call is not expanded any further by
expand. If T has no "expand" slot, then d remains unchanged.

See Also

MuPAD Functions
collect | combine | denom | factor | normal | numer | partfrac | rationalize
| rectform | rewrite | simplify
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expose
Display the source code of a procedure or the entries of a domain

Syntax
expose(f)

Description

expose(f) displays the source code of the MuPAD procedure f or the entries of the
domain f.

Usually, procedures and domains are printed in abbreviated form. expose serves to
display the complete source code of a procedure and all entries of a domain, respectively.
However, you cannot use expose to look at the source code of kernel functions.

If f is a domain, then expose returns a symbolic newDomain call. The arguments of
the call are equations of the form index = value, where value equals the value of
f::index. expose is not recursively applied to f::index; hence, the source code of
domain methods is not displayed.

Although expose returns a syntactically valid MuPAD object, this return value is
intended for screen output only, and further processing of it is deprecated.

Examples

Example 1

Using expose, you can inspect the source code of procedures of the MuPAD library:

sin

expose(%)
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proc(x)   name sin;   local f, y;   option

noDebug; begin   if args(0) = 0 then     error("no arguments given")

  else   ... end_proc 

Example 2

When applied to a domain, expose shows the entries of that domain:

expose(DOM_NULL)

domain DOM_NULL

  new := proc new() ... end;

  new_extelement := proc new_extelement(d) ... end;

  Content := proc DOM_NULL::Content(Out, x) ... end;

  TeX := "";

end_domain

Example 3

Applying expose to other objects is legal but generally useless:

expose(3)

Parameters

f

Any object; typically, a procedure, a function environment, or a domain

Overloaded By

f

1-672



 expose

Algorithms

In addition to the usual overloading mechanism for domain elements, a domain method
overloading expose must handle the following case: it will be called with zero arguments
when the domain itself is to be exposed.

If f is a procedure, then expose returns an object of the domain stdlib::Exposed. The
only purpose of this domain is its "print" method; manipulating its elements should never
be necessary. Therefore it remains undocumented.

See Also

MuPAD Functions
print
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expr
Convert into an element of a basic domain

Syntax
expr(object)

Description

expr(object) converts object into an element of a basic domain, such that all sub-
objects are elements of basic domains as well.

expr is a type conversion function, for converting an element of a more complex library
domain, such as a polynomial or a matrix, into an element of a basic kernel domain.

expr proceeds recursively, such that all sub-objects of the returned object are elements
of basic domains, or infinities, or undefined. See “Example 1” on page 1-675 and
“Example 2” on page 1-675.

The two special objects infinity and complexInfinity are translated into identifiers
with the same name by expr. Evaluating these identifiers yields the original objects. See
“Example 1” on page 1-675.

If object already belongs to a basic domain other than DOM_POLY, then expr is only
applied recursively to the operands of object, if any.

If object is a polynomial of domain typeDOM_POLY, then expr is applied recursively to
the coefficients of object, and afterwards the result is converted into an identifier, a
number, or an expression. See “Example 1” on page 1-675.

If object belongs to a library domain T with an "expr" slot, then the corresponding slot
routine T::expr is called with object as argument, and the result is returned.

This can be used to extend the functionality of expr to elements of user-defined
domains. If the slot routine is unable to perform the conversion, it must return FAIL. See
“Example 6” on page 1-677.

If the domain T does not have an "expr" slot, then expr returns FAIL.
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The result of expr is not evaluated further. Use eval to evaluate it. See “Example 4” on
page 1-676.

Examples

Example 1

expr converts a polynomial into an expression, an identifier, or a number:

expr(poly(x^2 + y, [x])), expr(poly(x)), expr(poly(2, [x]));

map(%, domtype)

expr also works with the objects infinity, complexInfinity, and undefined:

expr(infinity), expr(complexInfinity), expr(undefined);

map(%, domtype)

Example 2

This example shows that expr works recursively on expressions. All subexpressions
which are domain elements are converted into expressions. The construction with
hold(_plus)(..) is necessary since x + i(1) would evaluate to FAIL:

i := Dom::IntegerMod(7):

hold(_plus)(x, i(1));  expr(%)
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Example 3

The function series returns an element of the domain Series::Puiseux, which is not
a basic domain:

s := series(sin(x), x);

domtype(s)

Use expr to convert the result into an element of domain type DOM_EXPR:

e := expr(s); domtype(e)

Note that the information about the order term is lost after the conversion.

Example 4

expr does not evaluate its result. In this example the polynomial p has a parameter
a and the global variable a has a value. expr applied on the polynomial p returns an
expression containing a. If you want to insert the value of a use the function eval:

p := poly(a*x, [x]):  a := 2:  expr(p);  eval(%)
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Example 5

A is an element of type Dom::Matrix(Dom::Integer):

A := Dom::Matrix(Dom::Integer)([[1, 2], [3, 2]]);  

domtype(A)

In this case, expr converts A into an element of type DOM_ARRAY:

a := expr(A); domtype(a)

However, it is not guaranteed that the result is of type DOM_ARRAY in future versions of
MuPAD as well. For example, the internal representation of matrices might change in
the future. Use coerce to request the conversion into a particular data type:

coerce(A, DOM_ARRAY)

A nested list is an alternative representation for a matrix:

coerce(A, DOM_LIST)

Example 6

If a sub-object belongs to a domain without an "expr" slot, then expr returns FAIL:
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T := newDomain("T"):

d := new(T, 1, 2);

expr(d)

You can extend the functionality of expr to your own domains. We demonstrate this for
the domain T by implementing an "expr" slot, which returns a list with the internal
operands of its argument:

T::expr := x -> [extop(x)]:

If now expr encounters a sub-object of type T during the recursive process, it calls the
slot routine T::expr with the sub-object as argument:

expr(d), expr([d, 3])

Parameters

object

An arbitrary object

Return Values

Element of a basic domain.

Overloaded By

object
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See Also

MuPAD Functions
coerce | domtype | eval | testtype | type

1-679



1 The Standard Library

expr2text
Convert objects into character strings

Syntax
expr2text(object)

Description

expr2text(object) converts object into a character string. The result usually
corresponds to the screen output of object when PRETTYPRINT is set to FALSE.

If the function is called without arguments, then an empty character string is created.
If more than one argument is given, the arguments are interpreted as an expression
sequence and are converted into a single character string.

Like most other MuPAD function, expr2text evaluates its arguments before the
conversion.

If strings occur in object, they will be quoted in the result.

Examples

Example 1

Expressions are converted into character strings:

expr2text(a + b)

expr2text quotes strings. Note that the quotation marks are preceded by a backslash
when they are printed on the screen:

expr2text(["text", 2])
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Example 2

If more than one argument is given, the arguments are treated as a single expression
sequence:

expr2text(a, b, c)

If no argument is given, an empty string is generated:

expr2text()

Example 3

expr2text evaluates its arguments:

a := b: c := d: expr2text(a, c)

Use hold to prevent evaluation:

expr2text(hold(a, c));

delete a, c:

Here is another example:

expr2text((a := b; c := d));

delete a, c:
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e := expr2text(hold((a := b; c := d)))

The last string contains a newline character “\n”. Use print with option Unquoted to
expand this into a new line:

print(Unquoted, e):

(a := b;

c := d)

Example 4

expr2text is overloadable. It uses a default output for elements of a domain if the
domain has neither a "print"slot nor an "expr2text"slot:

T := newDomain("T"): e := new(T, 1):

e;

print(e):

expr2text(e)

If a "print" slot exists, it will be called by expr2text to generate the output:

T::print := proc(x) begin

  _concat("foo: ", expr2text(extop(x)))

end_proc:

e;

print(e):

expr2text(e)
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If you want expr2text to generate an output differing from the usual output generated
by print, you can supply an "expr2text" method:

T::expr2text := proc(x) begin

  _concat("bar: ", expr2text(extop(x)))

end_proc:

e;

print(e):

expr2text(e)

Parameters

object

Any MuPAD object

Return Values

string.

Overloaded By

object
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Algorithms

When processing a domain element e, expr2text first tries to call the "expr2text"
method of the corresponding domain T. If it exists, T::expr2text(e) is called and
the result is returned. If no "expr2text" method exists, expr2text tries to call the
"print" method in the same way. If no "print" method exists either, expr2text will
generate a default output. Cf. “Example 4” on page 1-682.

An "expr2text" method or a "print" method may return an arbitrary MuPAD object,
which will be processed recursively by expr2text.

Note: The returned object must not contain the domain element e as a sub-object.
Otherwise, the MuPAD kernel runs into infinite recursion and emits an error message.

For expressions, the result returned by expr2text always coincides with the output
produced by print. If the 0th operand of the expression is a function environment, the
result of expr2text is computed by the second operand of the function environment.

See Also

MuPAD Functions
coerce | fprint | int2text | print | tbl2text | text2expr | text2int |
text2list | text2tbl
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extnops
Number of operands of the internal representation a domain element

Syntax
extnops(object)

Description

extnops(object) returns the number of operands of the object's internal
representation.

For objects of a basic data type such as expressions, sets, lists, tables, arrays, hfarrays
etc., extnops yields the same result as the function nops. The only difference to the
function nops is that extnops cannot be overloaded by domains implemented in the
MuPAD language.

Internally, a domain element may consist of an arbitrary number of data objects;
extnops returns the actual number of internal operands. Since every domain should
provide interface methods, extnops should only be used from inside these methods.
“From the outside”, the function nops should be used.

Examples

Example 1

extnops returns the number of entries of a domain element:

d := newDomain("demo"): e := new(d, 1, 2, 3, 4): extnops(e)

delete d, e:
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Example 2

For kernel domains, extnops is equivalent to nops:

extnops([1, 2, 3, 4]), nops([1, 2, 3, 4])

Example 3

We define a domain of lists. Its internal representation is a single object (a list of kernel
type DOM_LIST):

myList := newDomain("lists"): 

myList::new := proc(l : DOM_LIST) begin new(myList, l) end_proc:

We want the functionality of nops for this domain to be the same as for the kernel type
DOM_LIST. To achieve this, we overload the function nops. The internal list is accessed
via extop(l, 1):

myList::nops := l -> nops(extop(l, 1)):

We create an element of this domain:

mylist := myList([1, 2, 3])

Since nops was overloaded, extnops provides the only way of determining the number
of operands of the internal representation of mylist. In contrast to nops, extnops
always returns 1, because the internal representation consists of exactly one list:

nops(mylist), extnops(mylist)

delete myList, mylist:
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Parameters

object

An arbitrary MuPAD object

Return Values

Nonnegative integer.

See Also

MuPAD Domains
DOM_DOMAIN

MuPAD Functions
extop | extsubsop | new | nops | op | subsop
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extop
Internal operands of a domain element

Syntax
extop(object)

extop(object, i)

extop(object, i .. j)

Description

extop(object) returns all operands of the domain element object.

extop(object, i) returns the i-th operand.

extop(object, i..j) returns the i-th to j-th operand.

For objects of a basic data type such as expressions, sets, lists, tables, arrays, hfarrays
etc., extop yields the same operands as the function op. See the corresponding
documentation for details on operands. The main difference to the function op is that
extop cannot be overloaded. Therefore, it guarantees direct access to the operands of the
internal representation of elements of a library domain. Typically, extop is used in the
implementation of the "op" method of a library domain that overloads the system's op
function.

A domain element consists of a reference to the corresponding domain and a sequence of
values representing its contents. The function extop allows access to the domain and the
operands of this internal data sequence.

extop(object) returns a sequence of all internal operands except the 0-th one. This
call is equivalent to extop(object, 1..extnops(object)).

extop(object, i) returns the i-th internal operand. In particular, the domain of the
object is returned by extop(object, 0) if object is an element of a library domain. If
object is an element of a kernel domain, the call extop(object, 0) is equivalent to
op(object, 0).

1-688



 extop

extop(object, i..j) returns the i-th to j-th internal operands of object as an
expression sequence; i and j must be nonnegative integers with i smaller or equal to j.
This sequence is equivalent to extop(object, k) $k = i..j.

extop returns FAIL if a specified operand does not exist. Cf. “Example 4” on page
1-691.

The operands of an expression sequence are its elements. Note that such sequences are
not flattened by extop.

Examples

Example 1

We create a new domain d and use the function new to create an element of this type. Its
internal data representation is the sequence of arguments passed to new:

d := newDomain("demo"): e := new(d, 1, 2, 3): extop(e)

Individual operands can be selected:

extop(e, 2)

Ranges of operands can be selected:

extop(e, 1..2)

The 0-th operand of a domain element is its domain:

extop(e, 0)
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delete d, e:

Example 2

First, a new domain d is defined via newDomain. The "new" method serves for creating
elements of this type. The internal representation of the domain is a sequence of all
arguments of this "new" method:

d := newDomain("d"): d::new := () -> new(dom, args()):

The system's op function is overloaded by the following "op" method of this domain.
It is to return the elements of a sorted copy of the internal data sequence. In the
implementation of the "op" method, the function extop is used to access the internal
data:

d::op := proc(x, i = null())

         local internalData;

         begin internalData := extop(x);

               op(sort([internalData]), i)

         end_proc:

Due to this overloading, op returns different operands than extop:

e := d(3, 7, 1): op(e); extop(e)

delete d, e:

Example 3

For kernel data types such as sets, lists etc., extop always returns the same operands as
op:

extop([a, b, c]) = op([a, b, c])
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Expressions are of kernel data type DOM_EXPR, thus extop(sin(x), 0) is equivalent to
op(sin(x), 0):

domtype(sin(x)), extop(sin(x), 0) = op(sin(x), 0)

Expression sequences are not flattened:

extop((1, 2, 3), 0), extop((1, 2, 3))

Example 4

Non-existing operands are returned as FAIL:

extop([1, 2], 4),  extop([1, 2], 1..4)

Parameters

object

An arbitrary MuPAD object

i, j

Nonnegative integers

Return Values

sequence of operands or the specified operand. FAIL is returned if no corresponding
operand exists.
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See Also

MuPAD Domains
DOM_DOMAIN

MuPAD Functions
extnops | extsubsop | new | nops | op | subsop
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extsubsop
Substitute operands of a domain element

Syntax
extsubsop(d, i1 = new1, i2 = new2, …)

Description

extsubsop(d, i = new) returns a copy of the domain element d with the i-th operand
of the internal representation replaced by new.

Internally, a domain element may consist of an arbitrary number of objects. extsubsop
replaces one or more of these objects, without checking whether the substitution is
meaningful.

Note: The operands of elements of domains of the MuPAD library must meet certain
(undocumented) conditions; use extsubsop only for your own domains. It is good
programming style to use extsubsop only inside low-level domain methods.

extsubsop returns a modified copy of the object, but does not change the object itself.

The numbering of operands is the same as the one used by extop.

If the 0-th operand is to be replaced, the corresponding new value must be a domain of
type DOM_DOMAIN; extsubsop then replaces the domain of d by this new domain.

When trying to replace the i-th operand with i exceeding the actual number of operands,
extsubsop first increases the number of operands by appending as many NIL's as
necessary and then performs the substitution. Cf. “Example 3” on page 1-695.

When the i-th operand is replaced by an expression sequence of k elements, each of
these elements becomes an individual operand of the result, indexed from i to i+k-1.
The remaining operands of d are shifted to the right accordingly. This new numbering
is already in effect for the remaining substitutions in the same call to extsubsop. Cf.
“Example 4” on page 1-695.

1-693



1 The Standard Library

The void object null() becomes an operand of the result when it is substituted into an
object.

After performing the substitution, extsubsop does not evaluate the result once more. Cf.
“Example 5” on page 1-695.

In contrast to the function subsop, extsubsop cannot be overloaded.

Like extop and extnops, extsubsop can be applied to objects of a kernel domain. In
this case extsubsop behaves like subsop.

Examples

Example 1

We create a domain element and then replace its first operand:

d := newDomain("1st"): e := new(d, 1, 2, 3): extsubsop(e, 1 = 5)

This does not change the value of e:

e

delete d, e:

Example 2

The domain type of an element can be changed by replacing its 0-th operand:

d := newDomain("some_domain"): e := new(d, 2): 

extsubsop(e, 0 = Dom::IntegerMod(5))
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delete d, e:

Example 3

We substitute the sixth operand of a domain element that has less than six operands. In
such cases, an appropriate number of NIL's is inserted:

d := newDomain("example"): e := new(d, 1, 2, 3, 4):

extsubsop(e, 6 = 8)

delete d, e:

Example 4

We substitute the first operand of a domain element e by a sequence with three
elements. These become the first three operands of the result; the second operand of e
becomes the fourth operand of the result, and so on. This new numbering is already in
effect when the second substitution is carried out:

d := newDomain("example"): e := new(d, 1, 2, 3, 4):

extsubsop(e, 1 = (11, 13, 17), 2 = (29, 99))

delete d, e:

Example 5

We define a domain with its own evaluation method. This method prints out its
argument such that we can see whether it is called. Then we define an element of our
domain.

d := newDomain("anotherExample"): 

d::evaluate := x -> (print("Argument:", x); x):

e := new(d, 3)
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We can now watch all evaluations that happen: extsubsop evaluates its arguments,
performs the desired substitution, but does not evaluate the result of the substitution:

extsubsop(e, 1 = 0)

delete d, e:

Example 6

extsubsop applied to an object from a kernel type yields the same result as subsop:

extsubsop([1,2,3], 2=4), subsop([1,2,3], 2=4)

Parameters

d

Arbitrary MuPAD object

i1, i2, …

Nonnegative integers

new1, new2, …

Arbitrary MuPAD objects

Return Values

Input object with replaced operands.
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See Also

MuPAD Domains
DOM_DOMAIN

MuPAD Functions
extnops | extop | new | nops | op | subs | subsex | subsop
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!, fact
Factorial function

Syntax
n !

fact(n)

Description

fact(n) represents the factorial  of an integer.

The short hand call n! is equivalent to fact(n).

If n is a nonnegative integer smaller than the value returned by
Pref::autoExpansionLimit(), then an integer is returned. If n is a numerical value
that is not an integer, then an error occurs. If n is a symbolic expression, then a symbolic
call of fact is returned.

Use expand(n!) to compute an explicit result for large integers n equal to or larger than
Pref::autoExpansionLimit().

The gamma function generalizes the factorial function to arbitrary complex arguments. It
satisfies gamma(n+1) = n! for nonnegative integers n. Expressions involving symbolic
fact calls can be rewritten by rewrite(expression, gamma). Cf. “Example 3” on
page 1-699.

The operator ! can also be used in prefix notation with an entirely different meaning: !
command is equivalent to system("command").

Examples

Example 1

Integer numbers are produced if the argument is a nonnegative integer:

1-698



 !, fact

fact(0), fact(5), fact(2^5)

A symbolic call is returned if the argument is a symbolic expression:

fact(n), fact(n - sin(x)), fact(3.0*n + I)

The calls fact(n) and n! are equivalent:

5! = fact(5), fact(n^2 + 3)

Example 2

Use gamma(float(n+1)) rather than float(fact(n)) for floating-point
approximations of large factorials. This avoids the costs of computing large integer
numbers:

float(fact(2^13)) = gamma(float(2^13 + 1))

Example 3

The functions expand, limit, rewrite and series handle expressions involving fact:

expand(fact(n^2 + 4))

limit(fact(n)/exp(n), n = infinity)
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rewrite(fact(2*n^2 + 1)/fact(n - 1), gamma)

The Stirling formula is obtained as an asymptotic series:

series(fact(n), n = infinity, 3)

Parameters

n

An arithmetical expression representing a nonnegative integer

Return Values

Arithmetical expression.

Overloaded By

n

See Also

MuPAD Functions
beta | binomial | gamma | igamma | pochhammer | psi
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!!, fact2
Double factorial function

Syntax
n !!

fact2(n)

Description

fact2(n) represents the double factorial of an integer. The double factorial is defined as
 for even positive integers and  for odd positive integers.

The short hand call n!! is equivalent to fact2(n).

0!! and (-1)!! both return 1.

If n is an integer greater or equal to -1 and smaller than the value given by
Pref::autoExpansionLimit(), then an integer is returned. If n is an integer smaller
than -1 or a non-integer numerical value then an error occurs. If n is a symbolic
expression, then a symbolic call of fact2 is returned.

Use expand(n!!) to compute an explicit result for large integers n equal to or larger
than Pref::autoExpansionLimit().

Expressions involving symbolic calls of fact2 can be rewritten in terms of the gamma
function by rewrite(expression, gamma). Cf. “Example 2” on page 1-702.

Note that the double factorial n!! does not equal the iterated factorial (n!)!.

Examples

Example 1

Integer numbers are produced if the argument is an integer greater than or equal to - 1:
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fact2(-1), fact2(0), fact2(5), fact2(16)

A symbolic call is returned if the argument is a symbolic expression:

fact2(n), fact2(4.7*I*n)

The calls fact2(n) and n!! are equivalent:

5!! = fact2(5), fact2(n^2 + 3)

Example 2

The function rewrite can be used to rewrite expressions involving fact2 in terms of the
gamma function. In most cases, Simplify has to be used to obtain a simple result:

rewrite(n!!, gamma)

rewrite(fact2(2*n)/fact2(2*n - 1), gamma)

assume(n, Type::Integer): Simplify(%2)
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Example 3

For efficiency, the double factorial should be rewritten in terms of gamma if a floating-
point evaluation for large arguments is desired. The following call produces a huge exact
integer that is finally converted to a float:

float(fact2(2^17))

The following call is much faster because no exact intermediate result is computed:

float(subs(rewrite(fact2(n), gamma), n = 2^17))

Parameters

n

An arithmetical expression representing an integer greater than or equal to - 1.

Return Values

Arithmetical expression.

Overloaded By

n

See Also

MuPAD Functions
beta | binomial | fact | gamma | igamma | psi
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factor
Factor a polynomial into irreducible polynomials

Syntax
factor(f, <Adjoin = adjoin>, <MaxDegree = n>)

factor(f, F | Domain = F | Full)

Description

factor(f) computes a factorization f = u f1
e1 … fr

er of the polynomial f, where u is the
content of f, f1, …, fr are the distinct primitive irreducible factors of f, and e1, …, er are
positive integers.

factor rewrites its argument as a product of as many terms as possible. In a certain
sense, it is the complementary function of expand, which rewrites its argument as a sum
of as many terms as possible.

If f is a polynomial whose coefficient ring is not Expr, then f is factored over its
coefficient ring. See “Example 10” on page 1-712.

If f is a polynomial with coefficient ring Expr, then f is factored over the smallest
ring containing the coefficients. Mathematically, this implied coefficient ring always
contains the ring ℤ of integers. See “Example 4” on page 1-709. If the coefficient ring
R of f is not Expr, then we say that the implied coefficient ring is R. Elements of the
implied coefficient ring are considered to be constants and are not factored any further.
In particular, the content u is an element of the implied coefficient ring.

With the option Adjoin, the elements of adjoin are also adjoined to the coefficient ring.

If the second argument F or, alternatively, Domain = Fis given, then f is factored over
the real numbers ℝ or the complex numbers ℂ. Factorization over ℝ or ℂ is performed
using numerical calculations and the results will contain floating-point numbers. See
“Example 5” on page 1-710.

If f is an arithmetical expression but not a number, it is considered as a rational
expression. Non-rational subexpressions such as sin(x), exp(1), x^(1/3) etc., but
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not constant algebraic subexpressions such as I and (sqrt(2)+1)^3, are replaced by
auxiliary variables before factoring. Algebraic dependencies of the subexpressions, such
as the equation cos(x)2 = 1 - sin(x)2, are not necessarily taken into account. See “Example
7” on page 1-711.

The resulting expression is then written as a quotient of two polynomial expressions
in the original and the auxiliary indeterminates. The numerator and the denominator
are converted into polynomials with coefficient ring Expr via poly, and the implied
coefficient ring is the smallest ring containing the coefficients of the numerator
polynomial and the denominator polynomial. Usually, this is the ring of integers. Then
both polynomials are factored over the implied coefficient ring, and the multiplicities ei
corresponding to factors of the denominator are negative integers; see “Example 3” on
page 1-709. After the factorization, the auxiliary variables are replaced by the original
subexpressions. See “Example 6” on page 1-710.

If f is an integer, then it is decomposed into a product of primes, and the result is
the same as for ifactor. If f is a rational number, then both the numerator and the
denominator are decomposed into a product of primes. In this case, the multiplicities ei
corresponding to factors of the denominator are negative integers. See “Example 2” on
page 1-708.

If f is a floating point number or a complex number, then factor returns a factorization
with the single factor f.

The result of factor is an object of the domain type Factored. Let g:=factor(f) be
such an object.

It is represented internally by the list[u, f1, e1, ..., fr, er] of odd length
2 r + 1. Here, f1 through fr are of the same type as the input (either polynomials or
expressions); e1 through er are integers; and u is an arithmetical expression.

One may extract the content u and the terms fi
ei by the ordinary index operator [ ], i.e.,

g[1] = f1^e1, g[2] = e1^e2, ... if u = 1 and g[1] = u, g[2] = f1^e1, g[3]
= e1^e2, ..., respectively, if u ≠ 1.

The call Factored::factors(g) yields the list [f1, f2, ...] of factors, the call
Factored::exponents(g) returns the list [e1, e2, ...] of exponents.

The call coerce(g,DOM_LIST) returns the internal representation of a factored object,
i.e., the list [u, f1, e1, f2, e2, ...].
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Note that the result of factor is printed as an expression, and it is implicitly converted
into an expression whenever it is processed further by other MuPAD functions. As an
example, the result of q:=factor(x^2+2*x+1) is printed as (x+1)^2, which is an
expression of type "_power".

See “Example 1” on page 1-706 for illustrations, and the help page of Factored for
details.

If f is not a number, then each of the polynomials p1, …, pr is primitive, i.e., the greatest
common divisor of its coefficients (see content and gcd) over the implied coefficient ring
(see above for a definition) is one.

Currently, factoring polynomials is possible over the following implied coefficient
rings: integers, real numbers, complex numbers and rational numbers, finite fields—
represented by IntMod(n) or Dom::IntegerMod(n) for a prime number n, or by a
Dom::GaloisField—, and rings obtained from these basic rings by taking polynomial
rings (see Dom::DistributedPolynomial, Dom::MultivariatePolynomial,
Dom::Polynomial, and Dom::UnivariatePolynomial), fields of fractions (see
Dom::Fraction), and algebraic extensions (see Dom::AlgebraicExtension).

If the input f is an arithmetical expression that is not a number, all occurring floating-
point numbers are replaced by continued fraction approximations. The result is sensitive
to the environment variable DIGITS, see numeric::rationalize for details.

Examples

Example 1

To factor the polynomial x3 + x, enter:

g := factor(x^3+x)

Usually, expressions are factored over the ring of integers, and factors with non-integral
coefficients, such as x - I in the example above, are not considered.

One can access the internal representation of this factorization with the ordinary index
operator:
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g[1], g[2]

The internal representation of g, as described above, is given by the following command:

coerce(g, DOM_LIST)

The result of the factorization is an object of domain type Factored:

domtype(g)

Some of the functionality of this domain is described in what follows.

One may extract the factors and exponents of the factorization also in the following way:

Factored::factors(g), Factored::exponents(g)

One can ask for the type of factorization:

Factored::getType(g)

This output means that all fi are irreducible. Other possible types are "squarefree"
(see polylib::sqrfree) or "unknown".

One may multiply factored objects, which preserves the factored form:

g2 := factor(x^2 + 2*x + 1)
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g * g2

It is important to note that one can apply (almost) any function working with
arithmetical expressions to an object of type Factored. However, the result is then
usually not of domain type Factored:

expand(g);

domtype(%)

For a detailed description of these objects, please refer to the help page of the domain
Factored.

Example 2

factor splits an integer into a product of prime factors:

factor(8)

For rational numbers, both the numerator and the denominator are factored:

factor(10/33)

Note that, in contrast, constant polynomials are not factored:

factor(poly(8, [x]))
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Example 3

Factors of the denominator are indicated by negative multiplicities:

factor((z^2 - 1)/z^2)

Factored::factors(%), Factored::exponents(%)

Example 4

If some coefficients are irrational but algebraic, the factorization takes place over the
smallest field extension of the rationals that contains all of them. Hence, x^2+1 is
considered irreducible while its I-fold is considered reducible:

factor(x^2 + 1), factor(I*x^2 + I)

MuPAD does not automatically factor over the field of algebraic numbers; only the
coefficients of the input are adjoined to the rationals:

factor(sqrt(2)*x^4 - sqrt(2)*x^2 - sqrt(2)*2)

factor(I*x^4 - I*x^2 - I*2)

factor(sqrt(2)*I*x^4 - sqrt(2)*I*x^2 - sqrt(2)*I*2)
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Example 5

With the option Adjoin, additional elements can be adjoined to the implied coefficient
ring:

factor(x^2 + 1, Adjoin = [I])

factor( x^2-2, Adjoin = {sqrt(2)} )

With the option Full, a complete factorization into linear factors can be computed.

factor( x^2-2, Full)

If the argument R_ or C_ is given, factorization is done over the real or complex numbers
using numeric calculations:

factor( x^2-2, R_ )

factor(x^2 + 1, C_)

Example 6

Transcendental objects are treated as indeterminates:

delete x:

factor(7*(cos(x)^2 - 1)*sin(1)^3)
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Factored::factors(%), Factored::exponents(%)

Example 7

factor regards transcendental subexpressions as algebraically independent of each
other. Sometimes, the dependence is recognized:

factor(x + 2*sqrt(x) + 1)

In many cases, however, the algebraic dependence is not recognized:

factor(x^2 + (2^y*3^y + 6^y)* x + (6^y)^2)

Example 8

factor replaces floating-point numbers by continued fraction approximations, factors
the resulting polynomial, and finally applies float to the coefficients of the factors:

factor(x^2 + 2.0*x - 8.0)

Example 9

factor with the option Full can use RootOf to symbolically represent the roots of a
polynomial:

factor(x^5 + x^2 + 1, Full)
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Example 10

Polynomials with a coefficient ring other than Expr are factored over their coefficient
ring. We factor the following polynomial modulo 17:

R := Dom::IntegerMod(17): f:= poly(x^3 + x + 1, R):

factor(f)

For every p, the expression IntMod(p) may be used instead of Dom::IntegerMod(p):

R := IntMod(17): f:= poly(x^3 + x + 1, R):

factor(f)

Example 11

More complex domains are allowed as coefficient rings, provided they can be obtained
from the rational numbers or from a finite field by iterated construction of algebraic
extensions, polynomial rings, and fields of fractions. In the following example, we factor
the univariate polynomial u2 - x3 in u over the coefficient field :

Q := Dom::Rational:

Qx := Dom::Fraction(Dom::DistributedPolynomial([x], Q)):

F := Dom::AlgebraicExtension(Qx, poly(z^2 - x, [z])):

f := poly(u^2 - x^3, [u], F)

1-712



 factor

factor(f)

Parameters

f

A polynomial or an arithmetical expression

F

R_ or C_

Options

MaxDegree

Option, specified as MaxDegree = n

Only algebraic numbers of a maximum degree n will be adjoined to the rational numbers.
If not specified, all coefficients up to degree 2 are adjoined. n must be a positive integer.

Adjoin

Option, specified as Adjoin = adjoin

In addition to the coefficients of f, the elements of adjoin are adjoined to the rational
numbers. Elements of algebraic degree larger than the value of the option MaxDegree
are not adjoined. adjoin must be a set or list.
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Domain

Option, specified as Domain = F

Compute a numerical factorization over  or , respectively.

Full

Compute the full factorization of f into linear factors. This option has no effect on
multivariate polynomials.

Return Values

Object of the domain type Factored.

Overloaded By

f

Algorithms

The factoring algorithms are collected in a separate library domain faclib; it should not
be necessary to call these routines directly.

The implemented algorithms include Cantor-Zassenhaus (over finite fields) and Hensel
lifting (over the rational numbers and in the multivariate case).

See Also

MuPAD Functions
collect | content | denom | div | divide | expand | Factored | gcd |
icontent | ifactor | igcd | ilcm | indets | irreducible | isprime | lcm
| normal | numer | partfrac | polylib::decompose | polylib::divisors |
polylib::primpart | polylib::sqrfree | rationalize | simplify
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factorout
Factor out a given expression

Syntax
factorout(x, f, <list>)

Description

factorout(x,f) factors out a given expression f from the expression x.

The result is a product of the form .

If the optional parameter list is set to TRUE, a list of the factors is returned. See
“Example 2” on page 1-716

Examples

Example 1

factorout(2*x+4, 2)

factorout(a+a*2, a)

factorout(a+a*3, 2)

factorout(a*b + b*c, b)
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factorout(a*sin(b) + c*sin(b), sin(b))

factorout(sqrt(50)*x^2+5*x-sqrt(10)*x-sqrt(10), sqrt(5))

factorout((a*b + b*c)/(d*c+c), b/c)

Example 2

With the optional parameter 'list' set to true, a list of all factors is returned:

factorout(a*b + b*c, b, TRUE)

Parameters

x

An expression.

f

The expression to be factored out.

list

A boolean value. If list is TRUE, then a list is returned. By default, an expression is
returned.
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Return Values

Expression or a list.
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FAIL
Indicate a failed computation

Syntax
FAIL

Description

FAIL is a keyword of the MuPAD language. Many functions of the library use the return
value FAIL to indicate failed computations or non-existing elements.

FAIL is the only element of the domain DOM_FAIL.

FAIL is used as the return value for computations that failed. Also, requesting non-
existing slots of domains or function environments yields FAIL. Due to this behavior,
library functions can try computations without provoking errors.

A function should return FAIL or an error if at least one of its inputs is FAIL.

Examples

Example 1

The following attempt to convert sqrt(3) to an integer of a residue class ring must fail:

poly(sqrt(3)*x, [x], Dom::IntegerMod(3))

The following matrix is not invertible. You can try to invert it without producing an
error:

A := matrix([[1, 1], [1, 1]]): 1/A
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The "inverse" slot of a function environment yields the inverse of the function. The
inverse of the sine function is implemented, but MuPAD does not know the inverse of the
dilogarithm function:

sin::inverse, dilog::inverse

delete A:

Example 2

Most functions return FAIL or an error on input of FAIL:

poly(FAIL)

sin(FAIL)

Error: An arithmetical expression is expected. [sin]

Example 3

FAIL evaluates to itself:

FAIL, eval(FAIL), level(FAIL, 5)

See Also

MuPAD Functions
error | NIL | null
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fclose

Close a file

Syntax

fclose(n)

Description

fclose(n) closes the file specified by the file descriptor n.

The file must have been opened with fopen. The call to fopen yields the file descriptor n
representing the file.

Only a limited number of file descriptors is available. The user should use fclose to
close a file which is no longer needed because this releases the file descriptor. The exact
number of file descriptors available depends on the used operating system.

Examples

Example 1

We open a file test for writing. This yields the file descriptor n:

fid := fopen(TempFile, Write, Text):

file := fname(fid):

n := fopen(file, Write):

We close the file:

fclose(n):

delete n:
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Parameters

n

A file descriptor returned by fopen: a positive integer

Return Values

Void object of type DOM_NULL.

See Also

MuPAD Functions
FILEPATH | finput | fname | fopen | fprint | fread | ftextinput |
import::readbitmap | import::readdata | pathname | print | protocol | read
| readbytes | READPATH | write | writebytes | WRITEPATH
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FILEPATH
Pathname of a file that is currently loaded

Description

FILEPATH is a variable containing the path of a currently read file.

Possible values: String

The variable FILEPATH represents the pathname of a file. It only has a value while
reading a file via read or fread and corresponds to the path specified in read or fread.
It can only be accessed from inside the file that is currently read. Using this variable, the
read file can access its own pathname and read other files via absolute pathnames, even
if it only knows their relative locations with respect to itself.

The value of FILEPATH is a string containing the operating system dependent path to
the file that is currently read. The path string terminates with a path separator and,
under Windows®, starts with the name of the current volume if this was specified in the
read/fread command. Cf. “Example 1” on page 1-722.

Examples

Example 1

Assume that the file C:\TEMP\file.mu contains the following lines of code. It queries
its own location via FILEPATH (= C:\TEMP) and reads two files installed relative to the
location of file.mu via their absolute pathnames C:\TEMP\SubFolder\file1.mu and
C:\TEMP\SubFolder\file2.mu, respectively:

print(Unquoted, "FILEPATH" = FILEPATH):

read(FILEPATH.pathname("SubFolder")."file1.mu"):

read(FILEPATH.pathname("SubFolder")."file2.mu"):

When reading the file file.mu, the part C:\TEMP\ of the specified path is accessed by
file.mu via FILEPATH. It finds the files file1.mu and file2.mu if they were installed
correctly relative to the path of file.mu:
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read("C:".pathname(Root, "TEMP"), "file.mu")

 FILEPATH = C:\TEMP\ 

It is good programming style to use platform independent path strings. For this reason,
we used the function pathname rather than a mere string concatenation to append
appropriate path delimiters.

See Also

MuPAD Functions
fclose | fopen | fread | pathname | read | READPATH
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finput
Read objects from file

Syntax
finput(filename | n, <Encoding = "encodingValue">)

finput(filename | n, <Encoding = "encodingValue">, x1, x2, …)

Description

finput(filename, x) reads a MuPAD object from a file and assigns it to the identifier
x.

finput(n, x) reads from the file associated with the file descriptor n.

finput can read MuPAD binary files as well as ASCII text files. finput recognizes the
format of the file automatically.

finput(..., Encoding = "encodingValue", ...) uses the specified encoding. For
supported encodings, see “Options” on page 1-729. You can use this option with any of
the previously specified syntaxes.

Binary files may be created via fprint or write. Text files can also be created in a
MuPAD session via these functions (using the Text option; see the corresponding help
pages for details). Alternatively, text files can be created and edited directly using your
favorite text editor. The file must consist of syntactically correct MuPAD objects or
statements, separated by semicolons or colons. An object may extend over more than one
line.

finput(filename) reads the first object in the file and returns it to the MuPAD
session.

finput(filename, x1, x2, ...) reads the contents of a file object by object. The i-
th object is assigned to the identifier xi. The identifiers are not evaluated while executing
finput; previously assigned values are overwritten. The objects are not evaluated.
Evaluation can be enforced with the function eval. Cf. “Example 2” on page 1-726.
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Instead of a file name, also a file descriptor n of a file opened via fopen can be used.
The functionality is as described above. However, there is one difference: With a file
name, the file is closed automatically after the data were read. A subsequent call to
finput starts at the beginning of the file. With a file descriptor, the file remains open
(use fclose to close the file). The next time data are read from this file, the reading
continues at the current position. Consequently, a file descriptor should be used if the
individual objects in the file are to be read via several subsequent calls of finput. Cf.
“Example 3” on page 1-727.

Files in gzip compressed format with a filename ending in “.gz” are automatically and
transparently decompressed while reading.

If the number of identifiers specified in the finput call is larger than the number of
objects in the file, the additional identifiers are assigned the value null().

finput interprets the file name as a pathname relative to the “working folder.”

Note that the meaning of “working folder” depends on the operating system. On Windows
systems and on Mac OS X systems, the “working folder” is the folder where MATLAB
is installed. On UNIX systems, it is the current working folder in which MATLAB was
started. When started from a menu or desktop item, this is typically the user's home
folder.

Also absolute path names are processed by finput.

Expression sequences are not flattened by finput and cannot be used to pass several
identifiers to finput. Cf. “Example 4” on page 1-728.

Examples

Example 1

Create a new file in the system's temporary folder. The name of the temporary folder
varies for different platforms. The fopen command with the TempFile option creates a
file in any system's temporary folder (if such folder exists):

fid := fopen(TempFile, Write, Text):

Write the numbers 11, 22, 33 and 44 into a file:
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fprint(fid, 11, 22, 33, 44):

Use fname to return the name of the temporary file you created:

file := fname(fid):

Read this file with finput:

finput(file, x1, x2, x3, x4)

x1, x2, x3, x4

If you try to read more objects than stored in the file, finput returns the void object of
type DOM_NULL:

finput(file, x1, x2, x3, x4, x5); domtype(%)

delete x1, x2, x3, x4, x5:

Example 2

Objects read from a file are not evaluated:

fid := fopen(TempFile, Write, Text):

file := fname(fid):

fprint(file, x1):

x1 := 23:

finput(file)

eval(%)
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delete x1:

Example 3

Read some data from a file using several calls of finput. You have to use a file
descriptor for reading from the file. The file is opened for reading with fopen:

fid := fopen(TempFile, Write, Text):

fprint(fid, 11, 22, 33, 44):

file := fname(fid):

n := fopen(file):

The file descriptor returned by fopen can be passed to finput for reading the data:

finput(n, x1, x2): x1, x2

finput(n, x3, x4):

x3, x4

Close the file and delete the identifiers:

fclose(n):

delete n, x1, x2, x3, x4:

Alternatively, the contents of a file can be read into a MuPAD session in the following
way:

n := fopen(file):

for i from 1 to 4 do

   x.i := finput(n)

end_for:

x1, x2, x3, x4

fclose(n):
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delete n, i, x1, x2, x3, x4:

Example 4

Expression sequences are not flattened by finput and cannot be used to pass identifiers
to finput:

fid := fopen(TempFile, Write, Text):

fprint(fid, 11, 22, 33):

file := fname(fid):

finput(file, (x1, x2), x3)

Error: The argument is invalid. [finput]

The following call does not lead to an error because the identifier x12 is not evaluated.
Consequently, only one object is read from the file and assigned to x12:

x12 := x1, x2:

finput(file, x12):

x1, x2, x12

delete x1, x2, x12:

Example 5

To specify the encoding to write data, use Encoding. The Encoding option applies
only to text files that are opened using a file name and not a file descriptor. Create a
temporary file and store the values "abcäöü", 11 and 22 in the encoding “UTF-8”:

fprint(Text, Encoding="UTF-8", "finput_test", "abcäöü", 11, 22):

Specify the encoding to read the stored values correctly:

finput("finput_test", Encoding="UTF-8", x1, x2, x3):

x1, x2, x3
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If you do not specify an encoding, the default system encoding is used. Thus, your output
might vary from that shown next. Characters unrecognized by the default system
encoding are replaced by the default substitution character for that encoding:

finput("finput_test", x1, x2, x3):

x1, x2, x3

Parameters

filename

The name of a file: a character string

n

A file descriptor provided by fopen: a positive integer

x1, x2, …

identifiers

Options

Encoding

This option lets you specify the character encoding to use. The allowed encodings are:

"Big5" "ISO-8859-1" "windows-932"

"EUC-JP" "ISO-8859-2" "windows-936"

"GBK" "ISO-8859-3" "windows-949"

"KSC_5601" "ISO-8859-4" "windows-950"

"Macintosh" "ISO-8859-9" "windows-1250"

"Shift_JIS" "ISO-8859-13" "windows-1251"

"US-ASCII" "ISO-8859-15" "windows-1252"
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"UTF-8"   "windows-1253"

    "windows-1254"

    "windows-1257"

The default encoding is system dependent. If you specify the encoding incorrectly,
characters might read incorrectly. Characters unrecognized by the encoding are replaced
by the default substitution character for the specified encoding.

Encodings not listed here can be specified but might not produce correct results.

Return Values

Last object that was read from the file.

See Also

MuPAD Functions
fclose | fname | fopen | fprint | fread | ftextinput | input | pathname |
print | protocol | read | READPATH | textinput | write | WRITEPATH
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float
Convert to a floating-point number

Syntax
float(object)

float(object, n)

Description

float(object) converts the object or numerical subexpressions of the object to floating-
point numbers.

float converts numbers and numerical expressions such as sqrt(sin(2)) or sqrt(3)
+ sin(PI/17)*I to real or complex floating-point numbers of type DOM_FLOAT
or DOM_COMPLEX, respectively. If symbolic objects other than the special constants
CATALAN, E, EULER, and PI are present, only numerical subexpressions are converted
to floats. In particular, identifiers and indexed identifiers are returned unchanged by
float. Cf. “Example 1” on page 1-733.

A float call is mapped recursively to the operands of an expression. When numbers (or
constants such as PI) are found, they are converted to floating-point approximations. The
number of significant decimal digits is given by the environment variable DIGITS; the
default value is 10. The converted operands are combined by arithmetical operations or
function calls according to the structure of the expression. E.g., a call such as float(PI
- 314/100) may be regarded as a sequence of numerical operations:

   t1 := float(PI); t2 := float(314/100); result := t1 - t2

Consequently, float evaluation via float may be subject to error propagation. Cf.
“Example 2” on page 1-733.

The second argument n in float(object, n) temporarily overwrites the current
setting for DIGITS. See “Example 3” on page 1-734.

float is automatically mapped to the elements of sets and lists. However, it is not
automatically mapped to the entries of arrays, hfarrays, tables, and operands of function
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calls. Use map(object, float) for a fast floating-point conversion of all entries of an
array or a table. Use mapcoeffs(p, float) to convert the coefficients of a polynomial
p of type DOM_POLY. To control the behavior of float on a function call, use a function
environment providing a "float" slot. Cf. “Example 4” on page 1-735 and “Example
5” on page 1-736.

The preferences Pref::floatFormat and Pref::trailingZeroes can be used to
modify the screen output of floating-point numbers.

Rational approximations of floating-point numbers may be computed by the function
numeric::rationalize.

MuPAD special functions such as sin, exp, besselJ etc. are implemented as function
environments. Via overloading, the "float" attribute (slot) of a function environment f,
say, is called for the float evaluation of symbolic calls f(x1, x2, ...) contained in an
expression.

The user may extend the functionality of the system function float to his own functions.
For this, the function f to be processed must be declared as a function environment
via funcenv. A "float" attribute must be written, which is called by the system
function float in the form f::float(x1, x2, ...) whenever a symbolic call f(x1,
x2, ...) inside an expression is found. The arguments passed to f::float are
not converted to floats, neither is the return value of the slot subject to any further
float evaluation. Thus, the float conversion of symbolic functions calls of f is entirely
determined by the slot routine. Cf. “Example 5” on page 1-736.

Also a domain d, say, written in the MuPAD language, can overload float to define the
float evaluation of its elements. A slot d::float must be implemented. If an element
x, say, of this domain is subject to a float evaluation, the slot is called in the form
d::float(x). As for function environments, neither x nor the return value of the slot
are subject to any further float evaluation.

If a domain does not have a "float" slot, the system function float returns its
elements unchanged.

Note that MuPAD floating-point numbers are restricted in size. On 32 bit architectures,
an overflow/underflow occurs if numbers of absolute size larger/smaller than
about  are encountered. On 64 bit architectures, the limits are about

.

See the documentation for DIGITS for further information.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We convert some numbers and numerical expressions to floats:

float(17), float(PI/7 + I/4), float(4^(1/3) + sin(7))

float is sensitive to DIGITS:

DIGITS := 20:

float(17), float(PI/7 + I/4), float(4^(1/3) + sin(7))

Symbolic objects such as identifiers are returned unchanged:

DIGITS := 10: float(2*x + sin(3))

Example 2

We illustrate error propagation in numerical computations. The following rational
number approximates exp(2) to 17 decimal digits:

r := 738905609893065023/100000000000000000:

The following float call converts exp(2) and r to floating-point approximations. The
approximation errors propagate and are amplified in the following numerical expression:

1-733



1 The Standard Library

DIGITS := 10: float(10^20*(r - exp(2)))

None of the digits in this result is correct! To obtain a better result, use the second
argument in float to increase the number of digits for this particular function call:

float(10^20*(r - exp(2)), 20)

For further calculations, free the variable r:

delete r:

Example 3

The second argument in float lets you temporarily overwrite the current setting for the
number of significant decimal digits. For example, compute the following expression with
10 and 30 significant decimal digits. To display floating-point numbers with the number
of digits that MuPAD used to compute them, set the value of Pref::outputDigits to
InternalPrecision:

Pref::outputDigits(InternalPrecision):

Compute the following expression with the default value of DIGITS = 10:

x := 10^8:

float(sqrt(x^2 + 1) - x)

Compute the same expression with 30 significant decimal digits:

float(sqrt(x^2 + 1) - x, 30)

After evaluating float, MuPAD restores the value of DIGITS:
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DIGITS

For further calculations, restore the output precision and free the variable x:

Pref::outputDigits(UseDigits):

delete x

Example 4

float is mapped to the elements of sets and lists:

float([PI, 1/7, [1/4, 2], {sin(1), 7/2}])

For tables and arrays, the function map must be used to forward float to the entries:

T := table("a" = 4/3, 3 = PI): 

float(T), map(T, float)

A := array(1..2, [1/7, PI]): 

float(A), map(A, float)

Matrix domains overload the function float. In contrast to arrays, float works directly
on a matrix:

float(matrix(A))
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Use mapcoeffs to apply float to the coefficients of a polynomial generated by poly:

p := poly(9/4*x^2 + PI, [x]): float(p), mapcoeffs(p, float)

delete A, T, p:

Example 5

We demonstrate overloading of float by a function environment. The following
function Sin is to represent the sine function. In contrast to the sin function in
MuPAD, Sin measures its argument in degrees rather than in radians (i.e., Sin(x) =
sin(PI/180*x)). The only functionality of Sin is to produce floating point values if the
argument is a real float. For all other kinds of arguments, a symbolic function call is to be
returned:

Sin := proc(x)

begin

  if domtype(x) = DOM_FLOAT then

    return(Sin::float(x));

  else return(procname(args()))

  end_if;

end_proc:

The function is turned into a function environment via funcenv:

Sin := funcenv(Sin):

Finally, the "float" attribute is implemented. If the argument can be converted to
a real floating-point number, a floating-point result is produced. In all other cases, a
symbolic call of Sin is returned:

Sin::float := proc(x)

begin

  x := float(x):

  if domtype(x) = DOM_FLOAT then

    return(float(sin(PI/180*x)));

  else return(Sin(x))

  end_if;

end_proc:
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Now, float evaluation of arbitrary expressions involving Sin is possible:

Sin(x), Sin(x + 0.3), Sin(120)

Sin(120.0), float(Sin(120)), float(Sin(x + 120))

float(sqrt(2) + Sin(120 + sqrt(3)))

delete Sin:

Parameters

object

Any MuPAD object

n

An integer greater than 1

Return Values

Floating point number of type DOM_FLOAT or DOM_COMPLEX, or the input object with
exact numbers replaced by floating-point numbers.

Overloaded By

object
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See Also

MuPAD Functions
DIGITS | isolate | Pref::floatFormat | Pref::outputDigits |
Pref::trailingZeroes

1-738



 fname

fname
Get a file's name

Syntax
fname(n)

Description

fname(n) returns the name of the file specified by the file descriptor n.

The file must have been opened with fopen. The call to fopen yields the file descriptor n
representing the file.

The special file descriptor 0 represents no file but output to the user interface instead;
fname(0) returns NIL.

Examples

Example 1

We open a temporary file for writing. This yields the file descriptor n:

n := fopen(TempFile);

We get the file's name. Note that the name depends on the operating system:

fname(n);
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Parameters

n

A file descriptor returned by fopen: a positive integer

Return Values

the name of the file: a character string of type DOM_STRING, or NIL.

See Also

MuPAD Functions
fclose | finput | fopen | fprint | fread | ftextinput
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fopen
Open file

Syntax
fopen(filename | TempFile, <Read | Write | Append>, <Bin | Text | Raw>, <Encoding = "encodingValue">)

Description

fopen(filename, format) opens an existing file for reading in the specified format.
An error is raised if no file with the specified name is found or the format of the file does
not coincide with the specified format. If the file is in gzip-compressed format and its
name ends in “.gz”, it will be transparently uncompressed upon reading.

fopen(filename) opens an existing file for reading. The file must hold data in text or
MuPAD binary format (optionally compressed), fopen automatically identifies the file
format in this case. The file must not be used as raw file.

fopen(filename, mode, format) opens the file for writing in the specified format if
the mode is given as Read or Append. If no file with the specified name exists, a new file
is created. If the filename ends in “.gz”, all data written to the file will be transparently
compressed in gzip compatible format.

fopen(TempFile, format) creates and opens a temporary file for writing in the
specified format. The option Read and Append are not allowed in this case. If no format
is given, Bin is used. Use fname to query the actual name and location of the temporary
file. Cf. “Example 3” on page 1-744.

fopen(..., Encoding = "encodingValue") uses the specified encoding. For
supported encodings, see “Options” on page 1-745. You can use this option with the
previously specified syntaxes for text files.

In write mode (using one of the options Write or Append), the environment variable
WRITEPATH is considered if no temporary file is created. If it has a value, a new file is
created (or an existing file is searched for) in the corresponding folder. Otherwise, it is
created/searched for in the “working folder.”
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Note that the meaning of “working folder” depends on the operating system. On Windows
systems and on Mac OS X systems, the “working folder” is the folder where MATLAB
is installed. On UNIX systems, it is the current working folder in which MATLAB was
started. When started from a menu or desktop item, this is typically the user's home
folder.

Note: In read mode, fopen does not search for files in the folders given by the library
path.

A temporary file is created in a special folder. This folder and the name of the file are
system dependent.

Also absolute path names are processed by fopen.

The file descriptor returned by fopen can be used by various functions such as fname,
fclose, fread, fprint, read, write etc.

A file opened by fopen should be closed by fclose after use. This holds also for
temporary files.

fopen accepts its arguments in any order, not only in the order used above.

Environment Interactions

The function is sensitive to the environment variable WRITEPATH when creating files
that are not temporary (temporary files are created via TempFile). If WRITEPATH has
a value, in write mode (using the options Write or Append), the file is created in the
corresponding folder. Otherwise, the file is created in the “working folder.” A temporary
file is created in a special folder.

When using Write or Append, fopen creates a new file if no file under the given name
exists.
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Examples

Example 1

Open the file test for writing. With the option Write, it is not necessary that the file
test exists. By default, the file is opened as a binary file:

fid := fopen("test", Write):

Write a string to the file and close it:

fprint(fid, "a string"):

fclose(fid):

Append another string to the file:

fid := fopen("test", Append):

fprint(fid, "another string"):

fclose(fid):

The binary file cannot be opened as a text file for appending data:

fid := fopen("test", Append, Text)

However, it may be opened as a text file with the option Write. The existing binary file is
overwritten with a text file:

fid := fopen("test", Write, Text):

fclose(fid):

delete fid:

Example 2

fopen fails to open non-existing files for reading. Here, assume the file “xyz” does not
exist:

n := fopen("xyz")
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Assume the file “test” created in “Example 1” on page 1-743 exists. It can be opened
for reading successfully:

n := fopen("test")

fclose(n):

delete n:

Example 3

Open a temporary file, write 10 binary data bytes into it and close it. fname is used to
query the name of the file:

fd := fopen(TempFile, Raw):

writebytes(fd, [i $ i=1..10]):

fn := fname(fd):

fclose(fd):

fn

Re-open the file and read the data:

fd := fopen(fn, Read, Raw):

readbytes(fd);

fclose(fd):

delete fd, fn:

Example 4

To specify the encoding to read and write data, use Encoding. The Encoding option
applies only to text files that are opened using a file name and not a file descriptor.
Create a temporary file and write the string "abcäöü" in the encoding “UTF-8”:

fid := fopen(TempFile, Text, Write, Encoding="UTF-8"):

file := fname(fid):

fprint(Unquoted, fid, "abcäöü"):
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fclose(fid):

Use ftextinput to read the data with the specified encoding:

ftextinput(file, Encoding="UTF-8")

If you do not specify an encoding, the default system encoding is used. Thus, your output
might vary from that shown next. Characters unrecognized by the default system
encoding are replaced by the default substitution character for that encoding:

fid := fopen(TempFile, Text, Write):

file := fname(fid):

fprint(Unquoted, fid, "abcäöü"):

fclose(fid):

ftextinput(file)

Parameters

filename

The name of a file: a character string or the flag TempFile

Options

TempFile

fopen creates a temporary file in the systems “temp” folder. The name of this file can be
queried using fname.

Append, Read, Write

With Read, the file is opened for reading; with Write or Append, it is opened for writing.
If a file opened for writing does not yet exist, it is created. With Write, existing files are
overwritten. With Append, new data may be appended to an existing file. Note that in
the Append mode, the specified format must coincide with the format of the existing file;
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otherwise, the file cannot be opened and fopen returns FAIL. If the flag TempFile is
given, the default mode is Write. Otherwise, the default mode is Read.

Bin, Raw, Text

With Bin, the data is stored in MuPAD internal binary format. With Text, the data
may be strings or MuPAD objects stored as text. Newlines are handled according to the
conventions of the operating system at hand. With Raw, the data is interpreted as binary
machine numbers. See the functions readbytes and writebytes.

If the mode is Read or Append, the default is the format of the data in the existing file. If
the mode is Write, the default is Bin.

Encoding

This option lets you specify the character encoding to use. The allowed encodings are:

"Big5" "ISO-8859-1" "windows-932"

"EUC-JP" "ISO-8859-2" "windows-936"

"GBK" "ISO-8859-3" "windows-949"

"KSC_5601" "ISO-8859-4" "windows-950"

"Macintosh" "ISO-8859-9" "windows-1250"

"Shift_JIS" "ISO-8859-13" "windows-1251"

"US-ASCII" "ISO-8859-15" "windows-1252"

"UTF-8"   "windows-1253"

    "windows-1254"

    "windows-1257"

The default encoding is system dependent. If you specify the encoding incorrectly,
characters might read incorrectly. Characters unrecognized by the encoding are replaced
by the default substitution character for the specified encoding.

Encodings not listed here can be specified but might not produce correct results.

Return Values

a positive integer: the file descriptor. FAIL is returned if the file cannot be opened.
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See Also

MuPAD Functions
fclose | FILEPATH | finput | fname | fprint | fread | ftextinput |
import::readbitmap | import::readdata | pathname | print | protocol | read
| readbytes | READPATH | write | writebytes | WRITEPATH
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for, from, to, step, end_for, _for_in, downto,
_for_downto

For loop (MuPAD)

Compatibility

To use the for loop in MATLAB, see for.

Syntax

for i from start to stop do

  body

end_for

for i from start to stop step stepwidth do

  body

end_for

_for(i, start, stop, stepwidth, body)

for i from start downto stop do

  body

end_for

for i from start downto stop step stepwidth do

  body

end_for

_for_down(i, start, stop, stepwidth, body)

for x in object do

  body

end_for

_for_in(x, object, body)
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Description

for - end_for is a repetition statement providing a loop for automatic iteration over a
range of numbers or objects.

When entering an incrementing loop

for i from start to stop step stepwidth do body end_for,

the assignment i := start is made. The body is executed with this value of i (the body
may reassign a new value to i). After all statements inside the body are executed, the
loop returns to the beginning of the body, increments i := i + stepwidth and checks
the stopping criterion i > stop. If FALSE, the body is executed again with the new
value of i. If TRUE, the loop is terminated immediately without executing the body again.

The decrementing loop

for i from start downto stop step stepwidth do body end_for

implements a corresponding behavior. The only difference is that upon return to the
beginning of the body, the loop variable is decremented by i := i - stepwidth before
the stopping criterion i < stop is checked.

The loop for x in object do body end_for iterates x over all operands of the
object. This loop is equivalent to

           for i from 1 to nops(object) do

          x := op(object, i);           body         end_for     

   

Typically, object may be a list, an expression sequence, an array or an hfarray. Note
that other container objects such as finite sets or tables do not have a natural internal
ordering, i.e., care must be taken, if the loop expects a certain ordering of the iterative
steps.

The body of a loop may consist of any number of statements which must be separated
either by a colon : or a semicolon ;. The last evaluated result inside the body is
printed on the screen as the return value of the loop. Use print inside the loop to see
intermediate results.

The loop variable i, respectively x, may have a value before the loop starts. After the loop
is terminated, it has the value that was assigned in the last step of the loop. Typically,
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in an incrementing or decrementing loop with integer values of start, stop, and
stepwidth, this is i = stop plus or minus stepwidth.

The arguments start, stop, stepwidth, and object are evaluated only once at the
beginning of the loop and not after every iteration. E.g., if object is changed in a step of
the loop, x still runs through all operands of the original object.

Loops can be exited prematurely using the break statement. Steps of a loop can be
skipped using the next statement. Cf. “Example 2” on page 1-752.

The keyword end_for may be replaced by the keyword end. Cf. “Example 3” on page
1-753.

Instead of the the imperative loop statements, the equivalent calls of the functions _for,
_for_down, or _for_in may be used. Cf. “Example 4” on page 1-753.

The $-operator is often a more elegant notation for for-loops.

_for, _for_down and _for_in are functions of the system kernel.

Examples

Example 1

The body of the following loop consists of several statements. The value of the loop
variable i is overwritten when the loop is entered:

i := 20:

for i from 1 to 3 do

  a := i; 

  b := i^2;

  print(a, b)

end_for:
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The loop variable now has the value that satisfied the stopping criterion i > 3:

i

The iteration range is not restricted to integers:

for i from 2.2 downto 1 step 0.5 do

  print(i)

end_for:

The following loop sums up all elements in a list. The return value of the loop is the final
sum. It can be assigned to a variable:

s := 0: S := for x in [c, 1, d, 2] do s := s + x end_for

Note that for sets, the internal ordering is not necessarily the same as printed on the
screen:

S := {c, d, 1}

for x in S do print(x) end_for:
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delete a, b, i, s, S, x:

Example 2

Loops can be exited prematurely using the break statement:

for i from 1 to 3 do

  print(i);

  if i = 2 then break end_if

end_for:

With the next statement, the execution of commands in a step can be skipped. The
evaluation continues at the beginning of the body with the incremented value of the loop
variable:

a := 0:

for i from 1 to 3 do

  a := a + 1;

  if i = 2 then next end_if;

  print(i, a)

end_for:
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delete i, a:

Example 3

Loops can be closed with the keyword end instead of end_for. The parser recognizes the
scope of end statements automatically.

s:= 0:

for i from 1 to 3 do 

  for j from 1 to 3 do 

    s := i + j;

    if i + j > 4 then

      break;

    end

  end

end

delete s, i, j:

Example 4

This example demonstrates the correspondence between the functional and the
imperative form of for loops:

hold(

  _for(i, start, stop, stepwidth, (statement1; statement2))

)

for i from start to stop step stepwidth do

  statement1;

  statement2

end_for

The optional step clause is omitted by specifying the value NIL for the step width:

hold(

  _for_down(i, 10, 1, NIL, (x := i^2; x := x - 1))

)
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for i from 10 downto 1 do

  x := i^2;

  x := x - 1

end_for

hold(

  _for_in(x, object, body)

)

for x in object do

  body

end_for

Parameters

i, x

The loop variable: an identifier or a local variable (DOM_VAR) of a procedure

start

The starting value for i: a real number. This may be an integer, a rational number, or a
floating point number.

stop

The stopping value for i: a real number. This may be an integer, a rational number, or a
floating point number.

stepwidth

The step width: a positive real number. This may be an integer, a rational number, or a
floating-point number. The default value is 1.

object

An arbitrary MuPAD object

body

The body of the loop: an arbitrary sequence of statements
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Return Values

Value of the last command executed in the body of the loop. If no command was executed,
the value NIL is returned. If the iteration range is empty, the void object of type
DOM_NULL is returned.

See Also

MuPAD Functions
$ | break | next | repeat | while

More About
• “Loops”
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forceGarbageCollection
Force a garbage collection

Syntax
forceGarbageCollection()

Description

forceGarbageCollection() forces a garbage collection to be performed. This function
serves a highly technical purpose. Usually, there should be no need for a user to call this
function.

Each time the interactive level is reached, the garbage collection routine is called. A
heuristic algorithmn decides whether a garbage collection is really performed. After a call
to forceGarbageCollection, a garbage collection will be forced on the next call of the
garbage collection routine.

Note: forceGarbageCollection does not cause an immediate garbage collection; it
is only executed on returning to the interactive level. Therefore, it cannot be used in
procedures to release memory during a longer computation.

Examples

Example 1

When the interactive level is reached, a garbage collection is performed:

forceGarbageCollection()

Return Values

Void object of type DOM_NULL.
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See Also

MuPAD Functions
bytes
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forget
Clear the remember table of a procedure

Syntax
forget(f)

Description

forget(f) clears the remember table of a procedure f. The forget function clears only
remember tables created by the option remember.

The forget function clears only remember tables created by the option remember. The
function does not affect the remember tables created by prog::remember.

Do not call the forget function for predefined MuPAD functions. Many predefined
MuPAD functions have special values stored in their remember tables. The forget
function does not throw an error when you call it for a predefined MuPAD function.

The forget function does not work recursively. If an inner procedure in a nested
procedure uses the option remember, the forget function does not clear the remember
table created for the inner procedure.

Examples

Example 1

If you use the option remember in a procedure, MuPAD stores all input arguments you
used in the procedure calls as indices of the remember table, and the corresponding
results as values of these entries. For example, create the following procedure f as
a wrapper for the MuPAD sign function. Use the option remember to enable the
remember mechanism for the procedure f:

f := proc(x)

option remember;
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begin

  sign(x)

end:

Now compute the sign function for the values -1, 0, and 1:

f(-1), f(0), f(1)

You can define a different value for sign(0). First use the unprotect function to be
able to overwrite the value of sign. Then assign the new value to sign(0):

unprotect(sign):

sign(0):= 1/2:

Although you specified the new value for sign(0), MuPAD does not recalculate the
result of the function call f(0). Instead, the system returns the result stored in the
remember table:

f(0)

To clear a remember table created by the option remember, use the forget function:

forget(f):

f(0)

If you assign a value to a function call, calling the forget function also clears that value:

f(2) := 1/3:

f(2)

forget(f):

f(2)
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For further computations, restore the sign function to its default definition. Use the
protect function with the ProtectLevelError option to prevent further changes to
sign. Also, delete the procedure f:

sign(0):= 0:

protect(sign, ProtectLevelError):

delete f

Parameters

f

A procedure or function environment

Return Values

Void object of domain type DOM_NULL

See Also

MuPAD Functions
proc | prog::remember

More About
• “Clear Remember Tables”
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fourier

Fourier transform

Syntax

fourier(f, t, w)

Description

fourier(f, t, w) computes the Fourier transform of the expression f = f(t) with
respect to the variable t at the point w and is defined as follows:

.

c and s are parameters of the Fourier transform. By default, c = 1 and s = -1.

To change the parameters c and s of the Fourier transform, use
Pref::fourierParameters. See “Example 3” on page 1-763. Common choices for the
parameter c are 1, , or . Common choices for the parameter s are -1, 1, - 2 π, or 2

 π.

If fourier cannot find an explicit representation of the transform, it returns an
unevaluated function call. See “Example 4” on page 1-763.

If f is a matrix, fourier applies the Fourier transform to all components of the matrix.

To compute the inverse Fourier transform, use ifourier.

To compute the discrete Fourier transform, use numeric::fft.
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Environment Interactions

Results returned by fourier depend on the current Pref::fourierParameters
settings.

Examples

Example 1

Compute the Fourier transform of this expression with respect to the variable t:

fourier(exp(-t^2), t, w)

Example 2

Compute the Fourier transform of this expression with respect to the variable t for
positive values of the parameter w0:

assume(w_0 > 0):

F := fourier(t*exp(-w_0^2*t^2), t, w)

Evaluate the Fourier transform of the expression at the points w = 2 w0 and w = 5. You
can evaluate the resulting expression F using | (or its functional form evalAt):

F | w = 2*w_0
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Also, you can evaluate the Fourier transform at a particular point directly:

fourier(t*exp(-w_0^2*t^2), t, 5)

Example 3

The default parameters of the Fourier transform are c = 1 and s = -1.

fourier(t*exp(-t^2), t, w)

To change these parameters, use Pref::fourierParameters before calling fourier:

Pref::fourierParameters(1, 1):

Evaluate the transform of the same expression with the new parameters:

fourier(t*exp(-t^2), t, w)

For further computations, restore the default values of the Fourier transform
parameters:

Pref::fourierParameters(NIL):

Example 4

If fourier cannot find an explicit representation of the transform, it returns an
unevaluated call:
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fourier(besselJ(1, 1/(1 + t^2)), t, w)

ifourier returns the original expression:

ifourier(%, w, t)

Example 5

Compute the following Fourier transforms that involve the Dirac and the Heaviside
functions:

fourier(t^3, t, w)

fourier(heaviside(t - t_0), t, w)

Example 6

The Fourier transform of a function is related to the Fourier transform of its derivative:

fourier(diff(f(t), t), t, w)
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Parameters

f

Arithmetical expression or unevaluated function call of type fourier. If the first
argument is a matrix, the result is returned as a matrix.

t

Identifier or indexed identifier representing the transformation variable

w

Arithmetical expression representing the evaluation point

Return Values

Arithmetical expression or matrix of such expressions

Overloaded By

f

References

F. Oberhettinger, “Tables of Fourier Transforms and Fourier Transforms of
Distributions”, Springer, 1990.

See Also

MuPAD Functions
fourier::addpattern | ifourier | ifourier::addpattern | numeric::fft |
numeric::invfft | Pref::fourierParameters
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fourier::addpattern
Add patterns for the Fourier transform

Syntax
fourier::addpattern(pat, t, w, res, <vars, <conds>>)

Description

fourier::addpattern(pat, t, w, res) teaches fourier to return res for the
expression pat.

The fourier function uses a set of patterns for computing Fourier transforms.
You can extend the set by adding your own patterns. To add a new pattern to the
pattern matcher, use fourier::addpattern. MuPAD does not save custom patterns
permanently. The new patterns are available in the current MuPAD session only.

After the call fourier::addpattern(pat, t, w, res), the fourier
function returns res for the expression pat. Note that the Fourier transform
is defined as , where c and s are the parameters specified by

Pref::fourierParameters. If you add a new pattern, and then change the Fourier
transform parameters, the result returned by fourier(pat, t, w) will also change.
See “Example 2” on page 1-768.

Variable names that you use when calling fourier::addpattern can differ from the
names that you use when calling fourier. See “Example 3” on page 1-768.

You can include a list of free parameters and a list of conditions on these parameters.
These conditions and the result are protected from premature evaluation. This means
that you can use not   iszero(a^2 - b) instead of hold( _not @ iszero )(a^2
- b).

The following conditions treat assumptions on identifiers differently:

• a^2 - b <> 0 takes into account assumptions on identifiers.
• not   iszero(a^2 - b) disregards assumptions on identifiers.
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See “Example 4” on page 1-768 and “Example 5” on page 1-769.

Environment Interactions

The Fourier pair (pat, res) holds only for the current values of the Fourier transform
parameters specified by Pref::fourierParameters.

Calling fourier::addpattern can change the expressions returned by future calls to
fourier and ifourier in the current MuPAD session.

Examples

Example 1

Compute the Fourier transform of the function foo. By default, MuPAD does not have a
pattern for this function:

fourier(foo(t), t, w)

Add a pattern for the Fourier transform of foo using fourier::addpattern:

fourier::addpattern(foo(t), t, w, bar(w)):

Now fourier returns the Fourier transform of foo:

fourier(foo(t), t, w)

After you add a new transform pattern, MuPAD can use that pattern indirectly:

fourier(t^3 + a*foo(2*t - 4), t, w)
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Example 2

Add this new Fourier transform pattern for the function foo:

fourier::addpattern(foo(t), t, w, bar(w)):

fourier(foo(t), t, w)

Now change the Fourier transform parameters using Pref::fourierParameters:

Pref::fourierParameters(a, b):

Evaluate the transform with the new parameters:

fourier(foo(t), t, w)

For further computations, restore the default values of the Fourier transform
parameters:

Pref::fourierParameters(NIL):

Example 3

Define the Fourier transform of foo(x) using the variables x and y as parameters:

fourier::addpattern(foo(x), x, y, bar(y)):

The fourier function recognizes the added pattern even if you use other variables as
parameters:

fourier(foo(t), t, w)

Example 4

Use assumptions when adding the following pattern for the Fourier transform:
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fourier::addpattern(foo(x, t), t, w, bar(x, w), [x], [abs(x) < 1]):

fourier(foo(x, t), t, w) assuming -1 < x < 1

If |x| ≥ 1, you cannot apply this pattern:

fourier(foo(x, t), t, w) assuming x > 1

If MuPAD cannot determine whether the conditions are satisfied, it returns a
piecewise object:

fourier(foo(x, t), t, w)

Example 5

Add this pattern for the Fourier transform of f:

fourier::addpattern(f(a, t), t, w, g(a, w)/a):

fourier(f(a, T), T, W)

This pattern holds only when the first argument of f is the symbolic parameter a. If you
use any other value of this parameter, fourier ignores the pattern:

fourier(f(b, T), T, W);

fourier(f(2, T), T, W)

1-769



1 The Standard Library

To use the pattern for arbitrary values of the parameter, declare the parameter a as an
additional pattern variable:

fourier::addpattern(f(a, t), t, w, g(a, w)/a, [a]):

Now fourier applies the specified pattern for an arbitrary value of a:

fourier(f(2, T), T, W)

fourier(f(a^2 + 1, T), T, W)

Note that the resulting expression g(a, w)/a defining the Fourier transform of f(a,
t) implicitly assumes that the value of a is not zero. A strict definition of the pattern is:

fourier::addpattern(f(a, t), t, w, g(a, w)/a, [a], [a <> 0]):

For this particular pattern, you can omit specifying the assumption a <> 0 explicitly. If
a = 0, MuPAD throws an internal “Division by zero.” error and ignores the pattern:

fourier(f(0, T), T, W)

Parameters

pat

Arithmetical expression in the variable t representing the pattern to match

t

Identifier or indexed identifier used as a variable in the pattern
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w

Identifier or indexed identifier used as a variable in the result

res

Arithmetical expression in the variable w representing the pattern for the result of the
transform

vars

List of identifiers or indexed identifiers used as “pattern variables” (placeholders in
pat and res). You can use pattern variables as placeholders for almost any MuPAD
expressions not containing t or w. You can restrict them by conditions given in the
optional parameter conds.

conds

List of conditions on the pattern variables

Return Values

Object of type DOM_NULL

See Also

MuPAD Functions
fourier | ifourier | ifourier::addpattern
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fprint

Write data to file

Syntax

fprint(<Unquoted | NoNL>, <Bin | Text>, <Encoding = "encodingValue">, filename, <object1, object2, …>)

fprint(<Unquoted | NoNL>, <Encoding = "encodingValue">, n, <object1, object2, …>)

Description

fprint(f, objects) writes MuPAD objects to the file f. The objects are evaluated, the
results are stored in the file. These data can be read into another MuPAD session via the
functions finput and ftextinput, respectively.

fprint(Encoding = "encodingValue", f, objects) uses the specified encoding.
For supported encodings, see “Options” on page 1-777.

The file may be specified directly by its name. In this case, fprint creates a new file or
overwrites an existing file. fprint opens and closes the file automatically.

If WRITEPATH does not have a value, fprint interprets the file name as a path name
relative to the “working folder.”

Note that the meaning of “working folder” depends on the operating system. On Windows
systems and on Mac OS X systems, the “working folder” is the folder where MATLAB
is installed. On UNIX systems, it is the current working folder in which MATLAB was
started; when started from a menu or desktop item, this is typically the user's home
folder.

Also absolute path names are processed by fprint.

If the filename given ends in “.gz”, MuPAD automatically writes a compressed file in
gzip format. These files are transparently uncompressed when read in again by MuPAD.
The gzip format is supported by many other programs as well. See “Example 5” on page
1-776.
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Instead of a file name, also a file descriptor of a file opened via fopen can be used. See
“Example 2” on page 1-774. In this case, the data written by fprint are appended to
the corresponding file. The file is not closed automatically by fprint and must be closed
by a subsequent call to fclose.

Note that fopen(filename) opens the file in read-only mode. A subsequent fprint
command to this file causes an error. Use the Write or Append option of fopen to open
the file for writing.

Note:   The file descriptor 0 represents the screen. See “Example 4” on page 1-775.

Text output occurs without the Pretty-Printer. A call to fprint writes all specified
objects into a single line of the text file. A newline character is appended to this line,
unless the option NoNL is used. By default, the written objects are separated by colons
without any further white space. The resulting text data consists of syntactically correct
MuPAD code and can be read again using finput. With the options Unquoted and
NoNL, neither white space no colons are inserted to separate the objects. The resulting
text data cannot be read again using finput. See “Example 3” on page 1-774.

Environment Interactions

The function is sensitive to the environment variable WRITEPATH. If this variable has a
value, the file is created in the corresponding folder. Otherwise, the file is created in the
“working folder”.

Examples

Example 1

Write some data to the file “test”. By default, this file is created as a binary file:

fid := fopen(TempFile, Write, Text):

d := 5:

fprint(fid, d, d*3):

file := fname(fid):

fclose(fid)
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The file is read into the MuPAD session:

finput(file, e, f): d, e, f;

delete d, e, f:

Example 2

Use a file descriptor to access the file test. Several calls to fprint append data to the
file:

n := fopen(file, Write): 

fprint(n, (d := 5), d*3): 

fprint(n, "more data"):

Using a file descriptor, call fclose to close the file:

fclose(n):

The file is read into the MuPAD session, assigning the stored values to the identifiers e,
f, and g:

finput(file, e, f, g ): e, f, g;

delete n, d, e, f, g:

Example 3

With the option Unquoted, character strings are written without quotation marks:

fid1 := fopen(TempFile):

fid2 := fopen(TempFile):

file1 := fname(fid1):

file2 := fname(fid2):

fprint(Text, file1, "Hello World!", MuPAD + 1):

fprint(Unquoted, Text, file2, "Hello World!", MuPAD + 1):
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Creates temporary files have the following content:

"Hello World!":MuPAD + 1:

Hello World!MuPAD + 1

Use finput or ftextinput to read the data from the file:

finput(file1, a, b):

a, b;

ftextinput(file2, c): c

delete a, b, c:

Example 4

Typically, the print function serves for displaying objects on screen. If the object
produces a line that is longer than the TEXTWIDTH setting, print breaks that line
into shorter lines and inserts the line continuation characters. To avoid inserting line
continuation characters, display long objects on screen by using the fprint function
with the file descriptor 0. For example, convert the following expression to a TeX
formatted string. When you use the print function, the resulting string contains the line
continuation character (\):

print(Unquoted, generate::TeX(diff(1/ln(1/x), x$4)))

\frac{22}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^3} - \frac{6}{x^4\, {\ln\

\!\left(\frac{1}{x}\right)}^2} - \frac{36}{x^4\, {\ln\!\left(\frac{1}{x}\

\right)}^4} + \frac{24}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^5}

If you want to use the generated string in TeX, you must remove these additional
characters. Also, you can generate the string without these characters by using the
fprint function:
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fprint(Unquoted, 0, generate::TeX(diff(1/ln(1/x), x$4)))

\frac{22}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^3} - \frac{6}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^2} - \frac{36}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^4} + \frac{24}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^5}

Another way to avoid line continuation characters is to increase the TEXTWIDTH setting:

defaultWidth := TEXTWIDTH:

TEXTWIDTH := 250:

print(Unquoted, generate::TeX(diff(1/ln(1/x), x$4)));

TEXTWIDTH := defaultWidth:

\frac{22}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^3} - \frac{6}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^2} - \frac{36}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^4} + \frac{24}{x^4\, {\ln\!\left(\frac{1}{x}\right)}^5}

Example 5

When writing to a file with a name ending in “.gz”, MuPAD creates a compressed file
automatically. On a UNIX system, the file command can be used to verify this:

fprint(Text, "test.gz", "test"):

system("file test.gz"):

test.gz: gzip compressed data, from Unix

Reading the file from MuPAD does not show a difference, because gzip-compressed files
are automatically uncompressed in memory by MuPAD:

ftextinput("test.gz")

Example 6

To specify the encoding to write data, use Encoding. The Encoding option applies only
to text files that are opened using a file name and not a file descriptor. Create a file and
write the string "abcäöü" in the encoding “UTF-8”:

fprint(Unquoted, Text, Encoding="UTF-8", "fprint_test", "abcäöü"):

Use ftextinput to read the data with the specified encoding:
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ftextinput("fprint_test", Encoding="UTF-8")

If you do not specify an encoding, the default system encoding is used. Thus, your output
might vary from that shown next. Characters unrecognized by the default system
encoding are replaced by the default substitution character for that encoding:

fprint(Unquoted, Text, "fprint_test", "abcäöü"):

ftextinput("fprint_test")

Parameters

filename

The name of a file: a character string

object1, object2, …

Arbitrary MuPAD objects

n

A file descriptor provided by fopen: a nonnegative integer

Options

Unquoted

With this option, character strings are displayed without quotation marks. Moreover,
the control characters '\n' (or '\r\n' in Windows), '\t', and '\\' in strings are
expanded into a new line, a tabulator skip, and a single backslash \, respectively.
Furthermore, no colons are inserted between the objects. A newline character is
appended to the line written by fprint.
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This option is relevant for text files only. It is useful for writing user-formatted text files.
Data written with this option cannot be read again via finput.

NoNL

This option has the same functionality as Unquoted, with the only difference that no
newline character is appended to the line written by fprint.

Bin, Text

With Bin, the data is stored in MuPAD binary format. With Text, standard ASCII
format is used. The default is Bin.

Encoding

This option lets you specify the character encoding to use. The allowed encodings are:

"Big5" "ISO-8859-1" "windows-932"

"EUC-JP" "ISO-8859-2" "windows-936"

"GBK" "ISO-8859-3" "windows-949"

"KSC_5601" "ISO-8859-4" "windows-950"

"Macintosh" "ISO-8859-9" "windows-1250"

"Shift_JIS" "ISO-8859-13" "windows-1251"

"US-ASCII" "ISO-8859-15" "windows-1252"

"UTF-8"   "windows-1253"

    "windows-1254"

    "windows-1257"

The default encoding is system dependent. If you specify the encoding incorrectly,
characters might read incorrectly. Characters unrecognized by the encoding are replaced
by the default substitution character for the specified encoding.

Encodings not listed here can be specified but might not produce correct results.

Return Values

Void object of type DOM_NULL.
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See Also

MuPAD Functions
doprint | expr2text | fclose | finput | fname | fopen | fread | ftextinput |
import::readbitmap | import::readdata | pathname | print | protocol | read
| READPATH | write | WRITEPATH
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frac
Fractional part of a number

Syntax
frac(x)

Description

frac(x) represents the “fractional part” x-floor(x) of the number x.

For complex arguments, frac is applied separately to the real and imaginary part.

For real numbers, the value x-floor(x) represented by frac(x) is a number from the
interval . For positive arguments, you may think of frac as truncating all digits
before the decimal point.

For integer arguments, 0 is returned. For rational arguments, a rational number is
returned. For arguments that contain symbolic identifiers, symbolic function calls are
returned. For floating-point arguments or non-rational exact expressions, floating-point
values are returned.

Note: If the argument is a floating-point number of absolute value larger than 10DIGITS,
then the result is affected by internal non-significant digits! Cf. “Example 2” on page
1-781.

Note: Exact numerical data that are neither integers nor rational numbers are
approximated by floating-point numbers. For such arguments, the result depends on the
present value of DIGITS! Cf. “Example 3” on page 1-782.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We demonstrate the fractional part of real and complex numbers:

frac(1234), frac(123/4), frac(1.234)

frac(-1234), frac(-123/4), frac(-1.234)

frac(3/2 + 7/4*I), frac(4/3 + 1.234*I)

The fractional part of a symbolic numerical expression is returned as a floating-point
value:

frac(exp(123)), frac(3/4*sin(1) + I*tan(3))

Expressions with symbolic identifiers produce symbolic function calls:

frac(x), frac(sin(1) + x^2), frac(exp(-x))

Example 2

Care should be taken when computing the fractional part of floating-point numbers of
large absolute value:
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10^13/3.0

Note that only the first 10 decimal digits are “significant”. Further digits are subject
to round-off effects caused by the internal binary representation. These “insignificant”
digits can enter the fractional part:

frac(10^13/3.0)

The mantissa of the next floating-point number does not have enough digits to store
“digits after the decimal point”:

floor(10^25/9.0), ceil(10^25/9.0), frac(10^25/9.0)

Example 3

Exact numerical expressions are converted to floating-point numbers. Consequently, the
present setting of DIGITS affects the result:

x := 10^30 - exp(30)^ln(10) + 1/3

Note that the exact value of this number is . Floating-point evaluation can be subject to

severe cancellation:

DIGITS := 24: frac(x)

The floating-point result is more accurate when a higher precision used:
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DIGITS := 30: frac(x)

delete x, DIGITS:

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

See Also

MuPAD Functions
floor
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frandom
Generate random floating-point numbers

Syntax
frandom()

frandom(seed)

Description

frandom() returns a pseudo-random floating point number from the interval .

frandom(seed) returns a generator of pseudo-random floating-point numbers from the
interval .

The calls frandom() produce uniformly distributed floating-point numbers from the
interval .

r := frandom(seed) produces a random number generator r. Subsequent calls r()
return uniformly distributed floating-point numbers from the interval .

Different generators created with the same integer seed generate the same sequences of
numbers. See “Example 3” on page 1-786 and “Example 4” on page 1-786.

Generators created with CurrentTime use the time (in milliseconds) at their creation as
their seed values. Generators created shortly after one another may thus return the same
numbers.

Generators created in separate calls to frandom do not influence one another.

As for all functions returning floating point numbers, frandom reacts to DIGITS and
returns numbers with the precision set by this variable.

Each time MuPAD is started or re-initialized with the reset function, random
generators not using CurrentTime produce the same sequence of numbers.
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frandom is the recommended function for generating uniform random floating-point
numbers. It is much faster than the function random which produces uniform integer
numbers.

Note: In contrast to random, frandom does not react to the environment variable SEED.

The function stats::uniformRandom allows to produce uniformly distributed floating-
point numbers on arbitrary finite intervals. The stats library also provides random
generators with various other distributions.

Environment Interactions

frandom and the procedures returned by frandom are sensitive to the environment
variable DIGITS which determines the numerical working precision.

frandom changes its internal state when generating a number and will thus produce a
different number on the next call.

Examples

Example 1

The following call produces a sequence of pseudo-random numbers. Note that an index
variable i must be used in the construction of the sequence. A call such as frandom()
$8 would produce 8 copies of the same random value:

frandom() $ i = 1..8

Example 2

frandom reacts to DIGITS, producing numbers which are equally random in the later
digits as in the beginning ones:
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DIGITS := 200: frandom(), frandom()

delete DIGITS:

Example 3

frandom(seed), for some integer value of seed, returns a generator of floating-point
numbers. For different generators created with the same seed, the sequences of numbers
will be identical (apart from the digits cut off when producing numbers at lower settings
of DIGITS):

r1 := frandom(42):

r2 := frandom(42):

r3 := frandom(42):

r1() $ i=1..4;

r2() $ i=1..4;

DIGITS := 20:

r3() $ i=1..4;

delete r1, r2, r3, DIGITS:

Example 4

Usually, frandom is used to generate experimental input or “random” examples. In these
cases, reproducibility is a good thing. However, on occasion a “more random” sequence is
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desirable. The usual way to get a random seed in a program is to use the current system
time, which can be done by using CurrentTime as the value of seed:

r := frandom(CurrentTime):

r(), r(), r(), r()

Parameters

seed

An initialization value for the generator: an integer or the option CurrentTime

Return Values

frandom() returns a floating point number; frandom(seed) returns a procedure (a
pseudo-random number generator).

Algorithms

frandom uses a linear congruence generator to directly manipulate the internal
representation of a DOM_FLOAT.

See Also

MuPAD Functions
random | stats::uniformRandom
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fread
Read and execute file

Syntax
fread(filename | n, <Quiet>, <Plain>, <Encoding = "encodingValue">)

Description

fread(file) reads and executes a MuPAD file.

fread(filename) reads the file and evaluates each MuPAD statement in the file. If the
filename ends in “.gz” and the file is in gzip-compressed format, it will be transparently
uncompressed upon reading. fread automatically opens the file, performs the read
operation, and closes the file.

fread(..., Encoding = "encodingValue") uses the specified encoding. For
supported encodings, see “Options” on page 1-792. You can use this option with the
previously specified syntaxes.

fread is similar to read. The only difference is that fread does not search for files in
the folders given by READPATH and by the library path; fread only searches for the file
relative to the “working folder.”

Note that the meaning of “working folder” depends on the operating system. On Windows
systems and on Mac OS X systems, the “working folder” is the folder where MATLAB
is installed. On UNIX systems, it is the current working folder in which MATLAB was
started. When started from a menu or desktop item, this is typically the user's home
folder.

Also absolute path names are processed by fread.

fread can read MuPAD binary files (created via fprint or write) as well as ASCII text
files. fread recognizes the format of the file automatically.

Instead of a file name, a file descriptor of a file opened via fopen can also be used.
See “Example 3” on page 1-791. When a file descriptor is used, fread does not
automatically open and close the file. fclose must be used to close the file.

1-788



 fread

When a file is read with fread, the variable FILEPATH contains the path of the file.

Examples

Example 1

Create a new file in the system's temporary folder. The name of the temporary folder
varies for different platforms. The fopen command with the TempFile option creates a
file in any system's temporary folder (if such folder exists):

fid := fopen(TempFile, Write, Text): 

fprint(Unquoted, fid, "a := 3; b := 5; a + b;"):

Use fname to return the name of the temporary file you created. Use fclose to close the
file:

file := fname(fid):

fclose(fid)

When reading the file, MuPAD executes the statements. Each produces a print output.
The second 8 below is the return value of fread:

delete a, b:

fread(file);

Now, the variables a and b have the values assigned inside the file:

a, b
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With the option Quiet, only the return value of fread is printed:

delete a, b:

fread(file, Quiet)

delete a, b:

Example 2

The next example demonstrates the option Plain. First, an appropriate input file is
created:

fid := fopen(TempFile, Write, Text): 

fprint(Unquoted, fid,

       "f := proc(x) begin x^2 end_proc:",

       "a := f(3): b := f(4):"):

file := fname(fid):

fclose(fid)

Define an alias for f:

alias(f = "some text"):

An error occurs if you try to read the file without the option Plain. In the parser context
of the MuPAD session, the alias replaces f by the corresponding string in the assignment
f := .... However, strings cannot be assigned a value:

fread(file)

Error: Invalid left-hand side. [_assign]

  Reading File: /tmp/mupad.351omQ

With the option Plain, no such error arises: the alias for f is ignored by fread:

fread(file, Plain):

a, b
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unalias(f):

delete f, a, b:

Example 3

You use write to save the value of the identifier a in a temporary file:

a := PI + 1:

fid := fopen(TempFile, Write, Text): 

file := fname(fid):

write(file, a):

delete a:

This file is opened for reading with fopen:

n := fopen(file):

The file descriptor returned by fopen can be passed to fread. Reading the file restores
the value of a:

fread(n):

a

fclose(n):

delete a:

Example 4

To specify the encoding for reading data, use Encoding. The Encoding option applies
only to text files that are opened using a file name and not a file descriptor. Open a
temporary file and write the statement str := "abcäöü" in the encoding “UTF-8”:

fprint(Unquoted, Text, Encoding="UTF-8",

                       "fread_test",

                       "str := \"abcäöü\"")

Specify the encoding to read the file. fread executes the statement:
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fread("fread_test", Encoding="UTF-8"):

If you do not specify an encoding, the default system encoding is used. Thus, your output
might vary from that shown next. Characters unrecognized by the default system
encoding are replaced by the default substitution character for that encoding:

fread("fread_test"):

Parameters

filename

The name of a file: a character string

n

A file descriptor provided by fopen: a positive integer

Options

Plain

Makes fread use its own parser context

With this option, the file is read in a new parser context. This means that the history,
as returned by the command history, is not modified by the statements in the file.
Further, abbreviations set outside the file via alias or user-defined operators are
ignored during the execution of the file. This option is useful for reading initialization
files in a clean environment.

Quiet

Suppresses output during execution of fread
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With this option, output is suppressed while reading and executing the file. However,
warnings and error messages as well as the output of print commands are still visible.

Encoding

This option lets you specify the character encoding to use. The allowed encodings are:

"Big5" "ISO-8859-1" "windows-932"

"EUC-JP" "ISO-8859-2" "windows-936"

"GBK" "ISO-8859-3" "windows-949"

"KSC_5601" "ISO-8859-4" "windows-950"

"Macintosh" "ISO-8859-9" "windows-1250"

"Shift_JIS" "ISO-8859-13" "windows-1251"

"US-ASCII" "ISO-8859-15" "windows-1252"

"UTF-8"   "windows-1253"

    "windows-1254"

    "windows-1257"

The default encoding is system dependent. If you specify the encoding incorrectly,
characters might read incorrectly. Characters unrecognized by the encoding are replaced
by the default substitution character for the specified encoding.

Encodings not listed here can be specified but might not produce correct results.

Return Values

Return value of the last statement of the file.

See Also

MuPAD Functions
fclose | FILEPATH | finput | fname | fopen | fprint | ftextinput |
import::readbitmap | import::readdata | input | pathname | print |
protocol | read | READPATH | textinput | write | WRITEPATH
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freeIndets
Free indeterminates of an expression

Syntax
freeIndets(object, <All>)

Description

freeIndets(object) returns the free indeterminates of object as a set.

An identifier occurring in object is free if it cannot be replaced by another identifier
without changing the mathematical meaning of object.

By default, freeIndets does not return free identifiers that occur only in the 0th
operand of subexpressions of object.

The special identifiers PI, EULER, CATALAN are not free indeterminates. See “Example 1”
on page 1-794.

If object is a polynomial, a function environment, a procedure, or a built-in kernel
function, then freeIndets returns the empty set. See “Example 3” on page 1-795.

Examples

Example 1

Find free identifiers in the following image set. In this set, PI is a mathematical
constant; therefore, it is not a free identifier. The operand f is a 0th operand. The
variable k is not a free identifier because you can replace it by any other letter like m or n
without changing the mathematical meaning. Therefore, only u is a free identifier:

e:= Dom::ImageSet(k*f(u)+PI, k, Z_)
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freeIndets(e)

To find all identifiers in the same image set, use indets:

indets(e)

Example 2

Use the All option to return free identifiers including the 0th operands of
subexpressions. For example, compare the sets of free identifiers returned by
freeIndets with the All option and without this option:

e := Dom::ImageSet(k*f(u)+PI, k, Z_):

freeIndets(e, All);

freeIndets(e)

Example 3

freeIndets assumes that polynomials and functions do not have free indeterminates:

delete x, y:

freeIndets(poly(x*y, [x, y])),

freeIndets(sin),

freeIndets(x -> x^2+1)
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Parameters

object

An arbitrary object

Options

All

Do not exclude free identifiers that occur in the 0th operand of subexpressions of object.

With this option, freeIndets does not exclude the 0th operand. If the 0th operand of a
subexpression is an indeterminate, such as sin, the freeIndets function includes this
operand in the result. See “Example 2” on page 1-795.

Return Values

set of identifiers.

Overloaded By

object

Algorithms

If object is an element of a library domain T that has a slot "freeIndets", then
MuPAD calls the slot routine T::freeIndets with object as an argument. You can
use this approach to extend the functionality of freeIndets to user-defined domains. If
no such slot exists, then freeIndets regards all identifiers occurring in elements of that
domain as free, with the exception of mathematical constants.

See Also

MuPAD Functions
domtype | indets | op | type | Type::Indeterminate
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freeze
Create an inactive copy of a function

Syntax
freeze(f)

Description

freeze(f) creates an inactive copy of the function f.

ff := freeze(f) returns a function that is an “inactive” copy of the argument f. This
means:

1 ff only evaluates its arguments, but does not compute anything else,
2 ff is printed in the same way as f,
3 symbolic ff calls have the same type as symbolic f calls,
4 if f is a function environment, then ff has all the slots of f.

ff evaluates its incoming parameters even if the function f has the procedure option
hold.

Use freeze when you want to perform many operations with f that require f only in its
symbolic form, but f need not be executed.

Neither eval nor level can enforce the evaluation of an inactive function. See “Example
2” on page 1-798.

Examples

Example 1

Create an inactive form of the function environment int:

_int := freeze(int): F := _int(x*exp(x^2), x = 0..1)

1-797



1 The Standard Library

The inactive form of int keeps all information that is known about the function int, for
example, the output, the type, and the float slot for floating-point evaluation:

F, type(F), float(F)

The original function environment int is not modified by freeze:

int(x*exp(x^2), x = 0..1)

Use unfreeze to reactivate the inactive function _int and evaluate the result:

unfreeze(F), unfreeze(F + 1/2)

Example 2

This example shows the difference between hold and freeze. The result of the
command S := hold(sum)(...) does not contain an inactive version of sum, but the
unevaluated identifiersum:

S := hold(sum)(1/n^2, n = 1..infinity)
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The next time S is evaluated, the identifier sum is replaced by its value, the function
environmentsum, and the procedure computing the value of the infinite sum is invoked:

S

In contrast, evaluation of the result of freeze does not lead to an evaluation of the
inactive function:

S := freeze(sum)(1/n^2, n = 1..infinity)

S

An inactive function does not react to eval:

eval(S)

The only way to undo a freeze is to use unfreeze, which reactivates the inactive
function in S and then evaluates the result:

unfreeze(S)
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Example 3

freeze(f) does not change the object f, but returns a copy of f in an inactive form. This
means that computations with the inactive version of f can contain the original function
f.

For example, if you create an inactive version of the sine function:

Sin := freeze(sin):

and expand the term Sin(x+y), then the result is expressed in terms of the original sine
function sin:

expand(Sin(x + y))

Parameters

f

A procedure or a function environment

Return Values

An object of the same type as f.

See Also

MuPAD Functions
eval | hold | MAXDEPTH | unfreeze
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unfreeze
Create an active copy of a frozen function

Syntax
unfreeze(object)

Description

unfreeze(object) reactivates all inactive functions occurring in object, proceeding
recursively along the structure of object, and then evaluates the result.

unfreeze uses misc::maprec to proceed recursively along the structure of object.
This means that for basic domains such as arrays, tables, lists, or polynomials, the
function unfreeze is applied to each operand of object.

If object is an element of a library domain, then the behavior of unfreeze is specified
by the method maprec that overloads the function misc::maprec. If this method does
not exist, then unfreeze has no effect on object. See “Example 2” on page 1-802.

unfreeze does not operate on the body of procedures. Therefore, it is recommended not
to embed inactive functions inside procedures.

Examples

Example 1

Create an inactive form of the function environment int:

_int := freeze(int): F := _int(x*exp(x^2), x = 0..1)
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The inactive form of int keeps every information that is known about the function int,
for example, the output, the type, and the "float" slot for floating-point evaluation:

F, type(F), float(F)

The original function environment int is not modified by freeze:

int(x*exp(x^2), x = 0..1)

Use unfreeze to reactivate the inactive function _int and evaluate the result:

unfreeze(F), unfreeze(F + 1/2)

Example 2

The function unfreeze uses misc::maprec to operate recursively along the structure of
object. For example, if object is an array containing inactive functions, such as:

a := array(1..2, 

  [freeze(int)(sin(x), x = 0..2*PI), freeze(sum)(k^2, k = 1..n)]

)

then unfreeze(a) operates on the operands of a:

unfreeze(a)
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This means that for library domains, the effect of unfreeze is specified by the method
maprec. If the domain does not implement this method, then unfreeze does not operate
on the objects of this domain. For example, create a domain and an object containing an
inactive function as its operand:

dummy := newDomain("dummy"):

o := new(dummy, freeze(int)(sin(x), x = 0..2*PI))

The function unfreeze applied to the object o has no effect:

unfreeze(o)

If you overload the function misc::maprec in order to operate on the first operand of
objects of the domain dummy, then unfreeze operates on o as expected:

dummy::maprec := 

  x -> extsubsop(x,

    1 = misc::maprec(extop(x,1), args(2..args(0)))

  ):

unfreeze(o)

Parameters

object

Any MuPAD object
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Return Values

Evaluated version of object after reactivating all inactive functions in it.

See Also

MuPAD Functions
eval | freeze | hold | MAXDEPTH
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fresnelC

The Fresnel cosine integral function

Syntax

fresnelC(z)

Description

fresnelC(z) = 
cos

p t
dt

z 2

0
2

Ê

Ë
ÁÁ

ˆ

¯
˜̃Ú

.

The function C = fresnelC is analytic throughout the complex plane. It
satisfies fresnelC(-z) = -fresnelC(z), fresnelC(conjugate(z)) =
conjugate(fresnelC(z)), fresnelC(I*z) = I*fresnelC(z) for all complex
values of z.

fresnelC(z) returns special values for z = 0, z = ±∞, and z = ±i∞. Symbolic
function calls are returned for all other symbolic values of z. In a MuPAD notebook
fresnelC(z) appears in a typeset notation as C z( ) .

For floating-point arguments, fresnelC returns floating-point values.

simplify and Simplify, fresnelC uses the reflection rule fresnelC(-z) = -
fresnelC(z) to create a “normal form” of symbolic function calls. See “Example 3” on
page 1-807.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call the Fresnel cosine integral function with various arguments:

fresnelC(0),

fresnelC(1),

fresnelC(PI + I),

fresnelC(z),

fresnelC(infinity)

For floating-point arguments, fresnelC returns floating-point values:

fresnelC(1.0),

fresnelC(float(PI)),

fresnelC(-3.45 + 0.75*I)

Example 2

diff, float, limit, series, and other functions handle expressions involving the
Fresnel cosine integral function:

diff(fresnelC(x), x)

float(fresnelC(PI))
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limit(fresnelC(x), x = infinity)

series(fresnelC(x), x = 0)

Example 3

simplify uses the reflection rule fresnelC(-z) = -fresnelC(z) to create a “normal
form” of symbolic function calls:

simplify(fresnelC(1 - x)),

Simplify(fresnelC(x - 1))

Parameters

z

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

z

1-807



1 The Standard Library

See Also

MuPAD Functions
fresnelS

1-808



 fresnelS

fresnelS

The Fresnel sine integral function

Syntax

fresnelS(z)

Description

fresnelS(z) = sin
p t

dt

z 2

0
2

Ê

Ë
ÁÁ

ˆ

¯
˜̃Ú .

The function S = fresnelS is analytic throughout the complex plane. It
satisfies fresnelS(-z) = -fresnelS(z), fresnelS(conjugate(z)) =
conjugate(fresnelS(z)), fresnelS(I*z) =-I*fresnelS(z) for all complex
values of z.

fresnelS(z) returns special values for z = 0, z = ±∞, and z = ±i∞. Symbolic
function calls are returned for all other symbolic values of z. In a MuPAD notebook
fresnelC(z) appears in a typeset notation as S z( ) .

For floating-point arguments, fresnelS returns floating-point values.

simplify and Simplify, fresnelS uses the reflection rule fresnelS(-z) = -
fresnelS(z) to create a “normal form” of symbolic function calls. See “Example 3” on
page 1-811.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call the Fresnel sine integral function with various arguments:

fresnelS(0), 

fresnelS(1),

fresnelS(PI + I),

fresnelS(z),

fresnelS(infinity)

For floating-point arguments, fresnelS returns floating-point values:

fresnelS(1.0),

fresnelS(float(PI)),

fresnelS(-3.45 + 0.75*I)

Example 2

diff, float, limit, series, and other functions handle expressions involving the
Fresnel sine integral function:

diff(fresnelS(x), x)

float(fresnelS(-100))
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limit(fresnelS(x), x = -infinity)

series(fresnelS(x), x = infinity, 4)

Example 3

simplify use the reflection rule fresnelS(-z) = -fresnelS(z) to create a “normal
form” of symbolic function calls:

simplify(3*fresnelS(z) + 2*fresnelS(-z))

Parameters

z

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

z
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See Also

MuPAD Functions
fresnelC
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ftextinput
Read text file

Syntax
ftextinput(filename | n, <Encoding = "encodingValue">)

ftextinput(filename | n, x1, x2, …, <Encoding = "encodingValue">)

Description

ftextinput(file, x) reads a line from a text file, interprets the line as a string and
assigns this string to the identifier x.

ftextinput(filename) reads the first line of the text file and returns it as a string to
the MuPAD session. If the file is in gzip-compressed format and its name ends in “.gz”,
it will be transparently uncompressed upon reading.

ftextinput(filename, x1, x2, ...) reads the file line by line. The i-th line is
converted to a character string and assigned to the identifier xi. The identifiers are not
evaluated while executing ftextinput; previously assigned values are overwritten.

fread(..., Encoding = "encodingValue") uses the specified encoding. For the
supported encodings, see “Options” on page 1-817. You can use this option with any of
the previously specified syntaxes.

Instead of a file name, also a file descriptor n of a file opened via fopen can be used. The
functionality is as described above. However, there is one difference: With a file name,
ftextinput automatically opens the file, performs the operation, and closes the file. A
subsequent call to ftextinput starts at the beginning of the file. With a file descriptor,
the file remains open (use fclose to close the file). The next time data are read from this
file, the reading continues at the current position. Consequently, a file descriptor should
be used, if the individual lines in the file are to be read via several subsequent calls of
ftextinput. Cf. “Example 2” on page 1-815.

If the number of identifiers specified in the ftextinput call is larger than the number
of lines in the file, the exceeding identifiers are not assigned any values. In such a case,
ftextinput returns the void object of type DOM_NULL.
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ftextinput interprets the file name as a pathname relative to the “working directory.”

Note that the meaning of “working directory” depends on the operating system. On
Windows systems and on Mac OS X systems, the “working directory” is the folder where
MATLAB is installed. On UNIX systems, it is the current working directory in which
MATLAB was started. When started from a menu or desktop item, this is typically the
user's home directory.

Also absolute path names are processed by ftextinput.

Expression sequences are not flattened by ftextinput and cannot be used to pass
several identifiers to ftextinput. Cf. “Example 3” on page 1-816.

Examples

Example 1

Use fprint to create a text file with three lines:

fid := fopen(TempFile, Write, Text):

fprint(Unquoted, fid, "x + 1\n2nd line\n3rd line"):

file := fname(fid):

Read the first two lines of the file and assign the corresponding strings to the identifiers
x1 and x2:

ftextinput(file, x1, x2):

x1, x2

If you try to read beyond the last line of the file, ftextinput returns the void object of
type DOM_NULL:

ftextinput(file, x1, x2, x3, x4); domtype(%)

x1, x2, x3, x4
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delete x1, x2, x3:

Example 2

Read some lines from a file using several calls of ftextinput. You have to use a file
descriptor for reading from the file. The file is opened for reading with fopen:

fid := fopen(TempFile, Write, Text):

fprint(Unquoted, fid, 

       "x + 1\nx + 2\n3rd line\n4th line"):

file := fname(fid):

n := fopen(file):

The file descriptor returned by fopen can be passed to ftextinput for reading the data:

ftextinput(n, x1, x2):

x1, x2

ftextinput(n, x3, x4):

x3, x4

Finally, close the file and delete the identifiers:

fclose(n):

delete n, x1, x2, x3, x4:

Alternatively, the contents of a file can be read into a MuPAD session in the following
way:

n := fopen(file):

for i from 1 to 4 do

   x.i := ftextinput(n)

end_for:

x1, x2, x3, x4
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fclose(n):

delete n, i, x1, x2, x3, x4:

Example 3

Expression sequences are not flattened by ftextinput and cannot be used to pass
identifiers to ftextinput:

fid := fopen(TempFile, Write, Text):

fprint(Unquoted, fid, "1st line\n2nd line\n3rd line"):

file := fname(fid):

ftextinput(file, (x1, x2), x3)

Error: The argument is invalid. [ftextinput]

The following call does not lead to an error because the identifier x12 is not evaluated.
Consequently, only one line is read from the file and assigned to x12:

x12 := x1, x2:

ftextinput(file, x12):

x1, x2, x12

delete x12:

Example 4

To specify the encoding for reading data, use Encoding. The Encoding option applies
only to text files that are opened using a file name and not a file descriptor. Open a
temporary file and write the string "abcäöü" in the encoding “UTF-8”:

fprint(Unquoted, Text, Encoding = "UTF-8",

                       "ftextinput_test",

                       "abcäöü"):

Specify the encoding to read the file correctly:
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ftextinput("ftextinput_test", Encoding="UTF-8")

If you do not specify an encoding, the default system encoding is used. Thus, your output
might vary from that shown next. Characters unrecognized by the default system
encoding are replaced by the default substitution character for that encoding:

ftextinput("ftextinput_test")

Parameters

filename

The name of a file: a character string

n

A file descriptor provided by fopen: a positive integer

x1, x2, …

identifiers

Options

Encoding

This option lets you specify the character encoding to use. The allowed encodings are:

"Big5" "ISO-8859-1" "windows-932"

"EUC-JP" "ISO-8859-2" "windows-936"

"GBK" "ISO-8859-3" "windows-949"

"KSC_5601" "ISO-8859-4" "windows-950"
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"Macintosh" "ISO-8859-9" "windows-1250"

"Shift_JIS" "ISO-8859-13" "windows-1251"

"US-ASCII" "ISO-8859-15" "windows-1252"

"UTF-8"   "windows-1253"

    "windows-1254"

    "windows-1257"

The default encoding is system dependent. If you specify the encoding incorrectly,
characters might read incorrectly. Characters unrecognized by the encoding are replaced
by the default substitution character for the specified encoding.

Encodings not listed here can be specified but might not produce correct results.

Return Values

Last line that was read from the file: a character string or null().

See Also

MuPAD Functions
fclose | finput | fname | fopen | fprint | fread | import::readbitmap |
import::readdata | input | pathname | print | protocol | read | READPATH |
textinput | write | WRITEPATH
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funcenv
Create a function environment

Syntax
funcenv(f1, <f2>, <slotTable>)

Description

funcenv(f) creates a function environment from f.

funcenv serves for generating a function environment of domain type DOM_FUNC_ENV.

From a user's point of view, function environments are similar to procedures and can be
called like any MuPAD function.

However, in contrast to simple procedures, a function environment allows a tight
integration into the MuPAD system. In particular, standard system functions such as
diff, expand, float etc. can be told how to act on symbolic function calls to a function
environment.

For this, a function environment stores special function attributes (slots) in an internal
table. Whenever an overloadable system function such as diff, expand, float
encounters an object of type DOM_FUNC_ENV, its searches the function environment
for a corresponding slot. If found, it calls the corresponding slot and returns the value
produced by the slot.

Slots can be incorporated into the function environment by creating a table slotTable
and passing this to funcenv, when the function environment is created. Alternatively,
the function slot can be used to add further slots to an existing function environment.

See “Example 1” on page 1-820 below for further information.

The first argument f1 of funcenv determines the evaluation of function calls. With f:=
funcenv(f1), the call f(x) returns the result f1(x). Note that calls of the form f:=
funcenv(f) are possible (and, in fact, typical). This call embeds the procedure f into a
function environment of the same name. The original procedure f is stored internally in
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the function environment f. After this call, further function attributes can be attached to
f via the slot function.

The second argument f2 of funcenv determines the screen output of symbolic function
calls. Consider f:= funcenv(f1, f2). If the call f(x) returns a symbolic function call
f(x) with 0-th operand f, then f2 is called: the return value of f2(f(x)) is used as the
screen output of f(x).

Note: Beware: f2(f(x)) should not produce a result containing a further symbolic call
of f, because this will lead to an infinite recursion, causing an error message.

The third argument slotTable of funcenv is a table containing function attributes
(slots). The table has to use strings as indices to address system functions. E.g.,

 

   slotTable := table("diff" = mydiff, "float" = myfloat):      f

:= funcenv(f1, f2, slotTable): 

attaches the slot functions mydiff and myfloat to f. They are called by the system
functions diff and float, respectively, whenever they encounter a symbolic expression
f(x) with 0-th operand f. The internal slot table can be changed or filled with additional
function attributes via the function slot.

If the first argument f1 of funcenv is itself a function environment, then the return
value is a physical copy of f1.

The documentation of float, print, and slot provides further examples involving
function environments.

Examples

Example 1

We want to introduce a function f that represents a solution of the differential equation
. First, we define a function f, which returns any call f(x)

symbolically:

f := proc(x) begin procname(args()) end_proc: f(x), f(3 + y)
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Because of the differential equation , derivatives of f can be
rewritten in terms of f. How can we tell the MuPAD system to differentiate symbolic
functions calls such as f(x) accordingly? For this, we first have to embed the procedure
f into a function environment:

f := funcenv(f):

The function environment behaves like the original procedure:

f(x), f(3 + y)

System functions such as diff still treat symbolic calls of f as calls to unknown
functions:

diff(f(x + 3), x)

However, as a function environment, f can receive attributes that overload the system
functions. The following slot call attaches a dummy "diff" attribute to f:

f::diff := mydiff:  diff(2*f(x^2) + x, x)

We attach a more meaningful "diff" attribute to f that is based on
. Note that arbitrary calls diff(f(y), x1, x2, ..) have to be

handled by this slot:

fdiff := proc(fcall) local y; begin

    y:= op(fcall, 1);

    (y + sin(y)*f(y))*diff(y, args(2..args(0)))

end_proc:

f := slot(f, "diff", fdiff):

Now, as far as differentiation is concerned, the function f is fully integrated into MuPAD:
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diff(f(x), x), diff(f(x), x, x)

diff(sin(x)*f(x^2), x)

Since Taylor expansion around finite points only needs to evaluate derivatives, also
Taylor expansions of f can be computed:

taylor(f(x^2), x = 0, 9)

delete f, fdiff:

Example 2

Suppose that you have defined a function f that may return itself symbolically, and
you want such symbolic expressions of the form f(x,...) to be printed in a special
way. To this end, embed your proceduref in a function environment and supply an
output procedure as second argument to the corresponding funcenv call. Whenever an
expression of the form f(x,...) is to be printed, the output procedure will be called
with the arguments x,... of the expression:

f := funcenv(f, 

         proc(x) begin 

            if nops(x) = 2 then

              "f does strange things with its arguments ".

              expr2text(op(x, 1))." and ".expr2text(op(x,2))

            else

              FAIL

            end

         end):

delete a, b:

print(f(a, b)/2):

print(f(a, b, c)/2):
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delete f:

Parameters

f1

An arbitrary MuPAD object. Typically, a procedure. It handles the evaluation of a
function call to the function environment.

f2

A procedure handling the screen output of symbolic function calls

slotTable

A table of function attributes (slots)

Return Values

Function environment of type DOM_FUNC_ENV.

Algorithms

Mathematical functions such as exp, ln etc. or abs, Re, Im etc. are implemented as
function environments.

See Also

MuPAD Functions
slot
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More About
• “Integrate Custom Functions into MuPAD”
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funm
General matrix function

Syntax
funm(A,f)

Description

funm(A,f) computes the function f(A) for the square matrix A. For details, see
“Algorithms” on page 1-829.

Examples

Example 1

Find a matrix B, such that B3 = A, where A is the 3-by-3 identity matrix.

To solve B3 = A, compute the cube root of the matrix A using the funm function. Create
the function that computes the cube root of its argument, and use it as the second
argument for funm. The cube root of an identity matrix is the identity matrix itself.

A := matrix::identity(3):

f := x -> surd(x, 3)

funm(A, f)
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Replace one of the 0 elements of matrix A with 1 and compute the matrix cube root again.

A[1, 2] := 1:

A

funm(A, f)

Now, compute the cube root of the upper triangular matrix.

A[1..2, 3] := [1, 1]:

A

B := funm(A, f)

Verify that B3 = A.

B^3 = A
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Example 2

Find the matrix Lambert W function.

Create the 3-by-3 Pascal matrix A.

A := linalg::pascal(3)

To find the Lambert W function (W0 branch) in a matrix sense, call funm using lambertW
as its second argument. Approximate the result with floating-point numbers by using
float.

W0 := funm(float(A), lambertW)

Verify that this result is a solution of the matrix equation A = W0·eW0 within the current
floating-point accuracy.

A = W0*exp(W0)

Now, find the W-1 branch of the Lambert W function for the matrix A. Create the function
f representing the branch W-1 of the Lambert W function.

f := x -> lambertW(-1, x)
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Call funm using f as its second argument. Approximate the result with floating-point
numbers by using float.

Wm1 := funm(float(A), f)

Verify that this result is a solution of the matrix equation A = Wm1·eWm1 within the
current floating-point accuracy.

A = Wm1*exp(Wm1)

Parameters

A

A square array, hfarray, or matrix.

f

A function.

Return Values

An array, hfarray, or matrix.
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Algorithms

Suppose f(x), where x is a scalar, has a Taylor series expansion. Then the matrix
function f(A), where A is a matrix, is defined by the Taylor series of f(A), with addition
and multiplication performed in the matrix sense.

If A can be represented as A = P·D·P-1, where D is a diagonal matrix, such that

then the matrix function f(A) can be computed as follows:

Nondiagonalizable matrices can be represented as A = P·J·P-1, where J is a Jordan
form of the matrix A. (For details, see linalg::jordanForm.) Then, the matrix function
f(A) can be computed by using the following definition on each Jordan block:
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See Also

MuPAD Functions
exp | linalg::jordanForm | linalg::sqrtMatrix | map | numeric::expMatrix
| numeric::fMatrix
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gamma
Gamma function

Syntax
gamma(x)

gamma(iv)

Description

gamma(x) represents the gamma function .

The gamma function is defined for all complex arguments apart from the singular points
0, - 1, - 2, ….

The gamma function is related to the factorial function: gamma(x) = fact(x - 1) =
(x - 1)! for all positive integers x.

If x is a floating-point value, then gamma returns a floating-point value. If x is a floating-
point interval, gamma returns a floating-point interval. If x is a positive integer not
larger than the value given by Pref::autoExpansionLimit(), then an integer is
returned. (Use expand(gamma(x)) to get an integer value for larger integers x.) If
x is a rational number of domain type DOM_RAT not larger than the value given by
Pref::autoExpansionLimit(), then the functional relation Γ(x + 1) = x Γ(x) is applied
to “normalize” the result. (Again, use expand(gamma(x)) to enforce this normalization
for larger rational numbers x.) The functional relation

is applied if  is a rational number of domain type DOM_RAT that is an integer

multiple of  or . The call gamma(1/2) yields sqrt(PI). The call gamma(infinity)

yields infinity. For all other arguments, a symbolic function call is returned.
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The floating-point attribute of gamma is a kernel function, that is, floating-point
evaluation is fast.

The expand attribute rewrites gamma(x) by using the functional equation Γ(x + 1) =
x Γ(x), the reflection formula

,

and the Gauss multiplication formula for Γ(k x) when k is a positive integer. See
“Example 3” on page 1-833. For numerical x, the functional equation is used to shift
the argument to the range 0 < x < 1.

The functional equations for gamma lead to various identities for lngamma which can be
applied via expand. See “Example 3” on page 1-833.

The logarithmic derivative of gamma is implemented by the digamma function psi.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call gamma with exact and symbolic input data:

gamma(15),

gamma(3/2),

gamma(-3/2),

gamma(sqrt(2)),

gamma(x + 1)
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Call gamma with floating-point arguments:

gamma(11.5),

gamma(2.0 + 10.0*I)

Example 2

gamma is singular for nonpositive integers:

gamma(0)

Error: Singularity. [gamma]

Example 3

diff, expand, float, limit, and series handle expressions involving gamma:

diff(gamma(x^2 + 1), x)

float(ln(3 + gamma(sqrt(PI))))

expand(gamma(x + 2))

expand(gamma(2*x))
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expand(gamma(2*x - 1))

limit(1/gamma(x), x = infinity)

limit(gamma(x - 4)/gamma(x - 10), x = 0)

series(gamma(x), x = 0, 3)

The Stirling formula is obtained as an asymptotic series:

series(gamma(x), x = infinity, 4)
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Example 4

The logarithm function ln has a branch cut along the negative real semi axis, where the
values jump by 2 π i when crossing the cut. In the following plot of the imaginary part of
the logarithm of the gamma function the lines in the complex z plane with 
and  are clearly visible as discontinuities:

plotfunc3d(Im(ln(gamma(x + I*y))), x = -10 .. 10, y = -10 .. 10, 

           Submesh = [2, 2], CameraDirection = [0, -1, 1000]):

The function lngamma(z), however, adds suitable integer multiples of 2 π i to
ln(gamma(z)) making the function analytic throughout the complex plane with a
branch cut along the negative real semi axis:

plotfunc3d(Im(lngamma(x + I*y)), x = -10 .. 10, y = -10 .. 10, 

           Submesh = [2, 2], CameraDirection = [0, -1, 1000]):
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Parameters

x

An arithmetical expression

iv

A floating-point interval

Return Values

Arithmetical expression or a floating-point interval.

Overloaded By

x
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See Also

MuPAD Functions
beta | binomial | fact | harmonic | igamma | lngamma | pochhammer | psi
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lngamma
Logarithmic gamma function

Syntax
lngamma(x)

Description

lngamma(x) represents the logarithmic gamma function  for positive
real x.

The logarithmic gamma function is defined for all complex arguments apart from the
singular points 0, - 1, - 2, ….

Along the positive real semi axis, the logarithmic gamma function  coincides
with the logarithm  of the gamma function. For negative or general complex
arguments x,  with some integer-valued function f(x). The
integer multiples of 2 π i are chosen so that lngamma is analytic throughout the complex
plane with a branch cut along the negative real semi axes. See “Example 4” on page
1-841. For negative real x, the value  coincides with the limit “from above”.

If the argument x is a floating-point value, then lngamma(x) returns a floating-point
value. For other values of x, the call lngamma(x) returns ln(gamma(x)) if x is a
positive real number and gamma(x) is not returned as a symbolic call. For negative or
complex values x, lngamma returns a symbolic call lngamma(x).

The functional equations for gamma lead to various identities for lngamma which can be
applied via expand. See “Example 3” on page 1-839.

The logarithmic derivative of gamma is implemented by the digamma function psi.

Environment Interactions
When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call lngamma with exact and symbolic input data:

lngamma(15),

lngamma(3/2),

lngamma(-3/2),

lngamma(sqrt(2)),

lngamma(x + 1)

Call lngamma with floating-point arguments:

lngamma(11.5),

lngamma(2.0 + 10.0*I)

Example 2

lngamma is singular for nonpositive integers:

lngamma(-2)

Error: Singularity. [lngamma]

Example 3

diff, expand, float, limit, and series handle expressions involving lngamma:

diff(lngamma(x^2 + 1), x)
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float(ln(3 + lngamma(sqrt(PI))))

expand(lngamma(x + 2))

expand(lngamma(2*x))

expand(lngamma(2*x - 1))

limit(1/lngamma(x), x = infinity)

limit(lngamma(x - 4) - lngamma(x - 10), x = 0)

series(lngamma(x), x = 0, 3)

The Stirling formula is obtained as an asymptotic series:
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series(lngamma(x), x = infinity, 4)

Example 4

The logarithm function ln has a branch cut along the negative real semi axis, where the
values jump by 2 π i when crossing the cut. In the following plot of the imaginary part of
the logarithm of the gamma function the lines in the complex z plane with 
and  are clearly visible as discontinuities:

plotfunc3d(Im(ln(gamma(x + I*y))), x = -10 .. 10, y = -10 .. 10, 

           Submesh = [2, 2], CameraDirection = [0, -1, 1000]):

The function lngamma(z), however, adds suitable integer multiples of 2 π i to
ln(gamma(z)) making the function analytic throughout the complex plane with a
branch cut along the negative real semi axis:
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plotfunc3d(Im(lngamma(x + I*y)), x = -10 .. 10, y = -10 .. 10, 

           Submesh = [2, 2], CameraDirection = [0, -1, 1000]):

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression or a floating-point interval.

Overloaded By

x
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See Also

MuPAD Functions
beta | binomial | fact | gamma | harmonic | igamma | pochhammer | psi
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gcd

Greatest common divisor of polynomials

Syntax

gcd(p, q, …)

gcd(f, g, …)

Description

gcd(p, q, ...) returns the greatest common divisor of the polynomials p, q, … The
coefficient ring of the polynomials may either be the integers or the rational numbers,
Expr, a residue class ring IntMod(n) with a prime number n, or a domain.

All polynomials must have the same indeterminates and the same coefficient ring.

Polynomial expressions are converted to polynomials. See poly for details.

The return value is of the same type as the input polynomials, i.e., either a polynomial of
type DOM_POLY or a polynomial expression.

gcd returns 0 if all arguments are 0, or if no argument is given. If at least one of the
arguments is - 1 or 1, then gcd returns 1.

Use igcd if all arguments are known to be integers, since it is much faster than gcd.

Examples

Example 1

The greatest common divisor of two polynomial expressions can be computed as follows:

gcd(6*x^3 + 9*x^2*y^2, 2*x + 2*x*y + 3*y^2 + 3*y^3)
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f := (x - sqrt(2))*(x^2 + sqrt(3)*x-1):

g := (x - sqrt(2))*(x - sqrt(3)):

gcd(f, g)

One may also choose polynomials as arguments:

p := poly(2*x^2 - 4*x*y - 2*x + 4*y, [x, y], IntMod(17)):

q := poly(x^2*y - 2*x*y^2, [x, y], IntMod(17)):

gcd(p, q)

delete f, g, p, q:

Parameters

p, q, …

polynomials of type DOM_POLY

f, g, …

polynomial expressions

Return Values

Polynomial or a polynomial expression.

Overloaded By

f,  g, p,  q
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Algorithms

If the arguments are polynomials with coefficients from a domain, then the domain must
have the methods "gcd" and "_divide". The method "gcd" must return the greatest
common divisor of any number of domain elements. The method "_divide" must divide
two domain elements. If domain elements cannot be divided, this method must return
FAIL.

See Also

MuPAD Functions
content | div | divide | factor | gcdex | icontent | ifactor | igcd | igcdex
| ilcm | lcm | mod | poly
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gcdex

Extended Euclidean algorithm for polynomials

Syntax

gcdex(p, q, <x>)

gcdex(f, g, x)

Description

gcdex(p, q, x) regards p and q as univariate polynomials in x and returns their
greatest common divisor as a linear combination of p and q.

gcdex(p, q, x) returns a sequence g, s, t with three elements, where the polynomial
g is the greatest common divisor of p and q. The polynomials s and t satisfy g = s p + t q
and deg(s) < deg(q), deg(t) < deg(p). These data are computed by the extended Euclidean
algorithm.

gcdex only processes univariate polynomials:

• If the indeterminate x is specified, the input polynomials are regarded as univariate
polynomials in x.

• If no indeterminate is specified, the indeterminate of the polynomials is searched for
internally. An error occurs if more than one indeterminate is found.

Note that x must be specified if polynomial expressions are used on input.

Polynomial expressions are converted to polynomials. See poly for details. FAIL is
returned if an argument cannot be converted to a polynomial.

The returned polynomials are polynomial expressions if the input consists of polynomial
expressions. Otherwise, polynomials of type DOM_POLY are returned.

The coefficient ring of the polynomials must provide the method "_divide". This
method must return FAIL if domain elements cannot be divided.
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Note: If the coefficient domain of the polynomial is not a field, then it may not be possible
to represent a greatest common divisor as a linear combination of the input polynomials.
In such a case, an error is raised.

Examples

Example 1

The greatest common divisor of two univariate polynomials in extended form can be
computed as follows:

gcdex(poly(x^3 + 1), poly(x^2 + 2*x + 1))

For multivariate polynomials, an indeterminate must be specified:

gcdex(poly(x^2*y), poly(x + y), x)

gcdex(poly(x^2*y), poly(x + y), y)

gcdex(x^3 + a, x^2 + 1, x)

Parameters

p, q

polynomials of type DOM_POLY
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f, g

polynomial expressions

x

An indeterminate: an identifier or an indexed identifier

Return Values

Sequence of three polynomials, or a sequence of three polynomial expressions, or FAIL.

Overloaded By

p,  q

See Also

MuPAD Functions
div | divide | factor | gcd | ifactor | igcd | igcdex | ilcm | lcm | mod | poly

1-849



1 The Standard Library

genident
Create an unused identifier

Syntax
genident()

genident(S)

Description

genident() creates an identifier not used before in the current session.

genident() creates an identifier with a name of the form Xi, where i is a positive
integer. It is guaranteed that the returned identifier has not been used before in the
current MuPAD session.

If a stringS is given as argument, then genident returns an identifier with a name of
the form Si, where i is a positive integer.

The returned identifier does not have a value.

Examples

Example 1

We create three new identifiers. The second identifier has a different prefix:

genident(), genident("Y"), genident()

In the next example, we assign a value to the identifier X4. Then the next two calls to
genident skip the name X4:
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X4 := 5:

genident(), genident()

Parameters

S

A character string

Return Values

identifier.

See Also

MuPAD Functions
delete | hold
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genpoly

Create a polynomial using b-adic expansion

Syntax

genpoly(n, b, x)

Description

genpoly(n, b, x) creates a polynomial p in the variable x from the b-adic expansion
of n, such that p(b) = n. The integer coefficients of the resulting polynomial are greater
than  and less than or equal to .

The b-adic expansion of an integer n is defined by , such that the ci

are symmetric remainders modulo b, i.e.,  for all i (see mods). From this

expansion the polynomial  is created. The polynomial is defined over the

coefficient ring Expr.

If the first argument of genpoly is a (multivariate) polynomial, then it must be defined
over the coefficient ring Expr and must have only integer coefficients. The third
argument x must not be a variable of the polynomial. In this case each integer coefficient
is converted into a polynomial in x as described above. The result is a polynomial in the
variable x, followed by the variables of the given polynomial. (x is the main variable of
the returned polynomial.)

The first argument n may also be a polynomial expression. In this case, it is converted
into a polynomial using poly, then genpoly is applied as described above, and the result
is again converted into a polynomial expression.

If the first argument is an integer or a polynomial, then the result is a polynomial of
domain type DOM_POLY; otherwise it is a polynomial expression.
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Examples

Example 1

We create a polynomial p in the indeterminate x such that p(7) = 15. The coefficients
of p are between -3 and 3:

p := genpoly(15, 7, x)

p(7)

Here is an example with a polynomial expression as input:

p := genpoly(15*y^2 - 6*y + 3*z, 7, x)

The return value has the same type as the first argument:

p := genpoly(poly(15*y^2 + 8*z, [y, z]), 7, x)

We check the result:

p(7, y, z)

Parameters

n

An integer, a polynomial of type DOM_POLY, or a polynomial expression
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b

An integer greater than 1

x

The indeterminate: an identifier

Return Values

polynomial if the first argument is a polynomial or an integer. Otherwise, a polynomial
expression.

See Also

MuPAD Functions
genident | indets | int2text | interpolate | mods | numlib::g_adic | poly |
text2int
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getlasterror
Retrieve the last error number and text

Syntax
getlasterror()

Description

getlasterror() returns the last error that occurred in the current MuPAD session, as
a list of the error number and the error string.

After an error has occurred (whether visible or caught by traperror), getlasterror
will return both the error number (as returned by traperror) and the error string.

In a MuPAD session where no errors occurred, getlasterror returns the list [0, ""].
This is also true after a call to reset().

Note: Note that the MuPAD library uses traperror itself and that getlasterror()
may return errors that have been caught and properly handled by the library already.
You should not use getlasterror to detect errors, use the return value of traperror
instead!

Examples

Example 1

In a fresh session, getlasterror returns a list indicating “no errors yet”:

getlasterror()
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After an error has been thrown, getlasterror returns the corresponding number and
string:

ln(0)

Error: Singularity. [ln]

getlasterror()

This includes errors not displayed because of traperror:

traperror(solve(a, b, c))

getlasterror()

Return Values

List of an integer and a string

See Also

MuPAD Functions
error | lasterror | traperror
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getpid
Process ID of the running kernel

Syntax
getpid()

Description

getpid() returns the process ID of the running MuPAD kernel.

The process ID may be useful for generating names for temporary files by appending it to
a file basename.

Examples

Example 1

Querying the process ID of the running kernel may produce a result like this:

getpid()

Return Values

Nonnegative integer.

See Also

MuPAD Functions
sysname | system
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getprop
Query properties of expressions

Syntax
getprop(f)

getprop()

Description

getprop(f) returns a set containing all possible values of the expression f.

The property mechanism helps to simplify expressions involving identifiers that carry
“mathematical assumptions”. The function assume allows to set basic assumptions such
as 'x is a real number' or 'x is an odd integer', say. Arithmetical expressions involving x
may inherit such properties. E.g., '1 + x^2 is positive' if 'x is a real number'.

getprop(f) examines the assumptions of all identifiers in the expression f and derives
a superset of all values of f.

Only basic mathematical properties can be represented with the available properties.
Therefore, getprop performs certain simplifications during the derivation of a property
for an expression. Thus it may happen that getprop derives a too large set.

getprop only shows a mathematical (super-)set of all possible values in respect to
the assumptions. The command property::showprops displays a list of all valid
assumptions for a special identifier.

Examples

Example 1

If x is a real number, then x^2 + 1 must be positive:

assume(x, Type::Real):
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getprop(x^2 + 1)

If x represents a number in the interval [1, infinity[, the expression 1 - x has the
following property:

assume(x, Type::Interval([1], infinity)):

getprop(1 - x)

unassume(x):

Example 2

An expression returns the superset C_ or a set if it is constant, or if no properties are
attached to the identifiers involved:

getprop(x), getprop(x + 2*y), getprop(sin(3))

Example 3

The functions abs, Re, and Im have a “minimal property”: they produce real values. In
fact, abs produces nonnegative real values:

delete x:

getprop(abs(x)), getprop(Re(x)), getprop(Im(x))

Parameters

f

An arithmetical expression
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Return Values

getprop(f) returns a (super-)set containig all possible values of the expression f.

See Also

MuPAD Functions
assume | is | property::hasprop | property::showprops | Type::Property |
unassume
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gradient
Vector gradient

Syntax
gradient(f, x)

gradient(f, x, ogCoord, <c>)

Description

gradient(f, x) computes the vector gradient of the scalar function  with respect
to  in Cartesian coordinates. This is the vector .

ogCoord can be the name of a three-dimensional orthogonal coordinate system
predefined in the table linalg::ogCoordTab. See “Example 2” on page 1-862.

Alternatively, ogCoord can be a list of vector of algebraic expressions representing the
scale factors of the coordinate system. See example “Example 3” on page 1-862. For
details, see the description of the Scales option on the linalg::ogCoordTab page.

Examples

Example 1

Compute the vector gradient of the scalar function f(x, y) = x2 + y in Cartesian
coordinates:

delete x, y:

gradient(x^2 + y, [x, y])
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Example 2

Compute the gradient of the function f(r, ϕ, z) = r cos(ϕ) z (0 ≤ ϕ < 2π) in cylindrical
coordinates:

delete r, z, phi:

gradient(r*cos(phi)*z, [r, phi, z], Cylindrical)

Example 3

Compute the gradient of the function f(r, ϕ, θ) = r sin(ϕ) cos(θ) in spherical coordinates
given by

with 0 ≤ θ ≤ π, 0 ≤ ϕ < 2 π.

The vectors

form an orthogonal system in spherical coordinates.
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The scaling factors of the corresponding coordinate transformation (see
linalg::ogCoordTab) are: , which

we use in the following example to compute the gradient of the function f in spherical
coordinates:

delete r, Theta, phi:

gradient(r*sin(phi)*cos(Theta), [r, Theta, phi],

                           [1, r, r*sin(Theta)])

The spherical coordinates are already defined in linalg::ogCoordTab. The last
result can also be achieved with the input gradient(r*sin(phi)*cos(Theta), [r,
Theta, phi], Spherical):

gradient(r*sin(phi)*cos(Theta),

               [r, Theta, phi],

                    Spherical)

Parameters

f

An arithmetical expression in the variables given in x

x

A list of (indexed) identifiers
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ogCoord

The name of a 3 dimensional orthogonal coordinate system predefined in the table
linalg::ogCoordTab, or a list of algebraic expressions representing the scale factors of
an orthogonal coordinate system.

c

The parameter of the coordinate systems EllipticCylindrical and Torus, respectively: an
arithmetical expression. The default value is c = 1.

Return Values

Column vector of the domain Dom::Matrix().

See Also

MuPAD Functions
curl | divergence | laplacian | linalg::ogCoordTab | potential |
vectorPotential
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ground
Ground term (constant coefficient) of a polynomial

Syntax
ground(p)

ground(f)

ground(f, vars)

Description

ground(p) returns the constant coefficient p(0, 0, …) of the polynomial p.

The first argument can either be a polynomial expression, or a polynomial generated by
poly, or an element of some polynomial domain overloading ground.

If the first argument f is not element of a polynomial domain, then ground converts the
expression to a polynomial via poly(f). If a list of indeterminates is specified, then the
polynomial poly(f, vars) is considered.

The constant coefficient is returned as an arithmetical expression.

The result of ground is not fully evaluated. Evaluation can be enforced by the function
eval. Cf. “Example 2” on page 1-866.

ground returns FAIL if f cannot be converted to a polynomial in the specified
indeterminates. Cf. “Example 3” on page 1-867.

Examples

Example 1

We demonstrate how the indeterminates influence the result:
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f := 2*x^2 + 3*y + 1:

ground(f), ground(f, [x]), ground(f, [y]),

ground(poly(f)), ground(poly(f, [x])), ground(poly(f, [y]))

The result is the evaluation at the origin:

subs(f, x = 0, y = 0), subs(f, x = 0), subs(f, y = 0)

Note the difference between ground and tcoeff:

g := 2*x^2 + 3*y:

ground(g), ground(g, [x]);

tcoeff(g), tcoeff(g, [x]);

delete f, g:

Example 2

The result of ground is not fully evaluated:

p := poly(27*x^2 + a, [x]): a := 5:

ground(p), eval(ground(p))

delete p, a:
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Example 3

The following expression is syntactically not a polynomial expression, and ground
returns FAIL:

f := (x^2 - 1)/(x - 1): ground(f)

After cancellation via normal, ground can compute the constant coefficient:

ground(normal(f))

delete f:

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

Return Values

Element of the coefficient ring of p, an arithmetical expression, or FAIL.

Overloaded By

f, p
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See Also

MuPAD Functions
coeff | collect | degree | degreevec | lcoeff | ldegree | lmonomial | lterm
| monomials | nterms | nthcoeff | nthmonomial | nthterm | poly | poly2list |
tcoeff
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harmonic
Harmonic function

Syntax
harmonic(x)

Description

harmonic(x) =  represents the harmonic function.

The harmonic function is defined for all complex arguments x apart from the singular
points - 1, - 2, … (first order poles).

For positive integers x not larger than the value Pref::autoExpansionLimit(),
the harmonic function procudes the harmonic number . Use

expand(harmonic(x)) to compute an explicit result for integers x larger than
Pref::autoExpansionLimit().

If x is a floating-point value, then a floating point value is returned.

Simplifcations are implemented for rational numbers x with |x| ≤
Pref::autoExpansionLimit(). In particular, if x = numer(x)/k with denominators k = 1, 2,
3, 4, or 6, then an explicit result is computed and returned. For other rational numbers
the functional equation  is used to obtain a result with

an argument x from the interval .

For rational numbers x with |x| > Pref::autoExpansionLimit(), these simplifications can
be enforced via expand.

Some explicit formulas are implemented including

,

,
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,

,

.

The special value harmonic(∞) = ∞ is implemented.

For all other arguments, a symbolic function call of harmonic is returned.

The expand attribute uses the functional equation ,

the reflection rule  and the Gauß

multiplication formula for harmonic(k x) with some integer k to rewrite harmonic(x).
See “Example 3” on page 1-871 and “Example 4” on page 1-872.

Environment Interactions

When called with a floating-point value x, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

harmonic(3), harmonic(10), harmonic(3/2), harmonic(25/7)

harmonic(x + sqrt(2)), harmonic(infinity)
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Floating point values are computed for floating-point arguments:

harmonic(-5.2), harmonic(27.0), harmonic(2.0 + 3.0*I)

Example 2

harmonic is singular for negative integers:

harmonic(-2)

Error: Singularity. [harmonic]

Example 3

For positive integers and rational numbers x with denominators 2, 3, 4 and 6,
respectively, the result is expressed in terms of PI and ln, if |x| < 500:

harmonic(-5/2)

harmonic(13/3)

harmonic(101/6)

For larger arguments, the expand attribute can be used to obtain such expressions:

harmonic(1001)
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expand(%)

 

5337003...5042517 / 7128865...3520000  

Example 4

The functions diff, expand, float, limit, and series handle expressions involving
harmonic:

diff(harmonic(x^2 + 1), x), float(ln(3 + harmonic(sqrt(PI))))

expand(harmonic(2*x + 3))

limit((x + 1)*harmonic(x), x = -1), limit(harmonic(x), x = infinity)

series(harmonic(x), x = 0)

series(harmonic(x), x = infinity, 3)

1-872



 harmonic

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

See Also

MuPAD Functions
beta | binomial | fact | gamma | lngamma | zeta
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has

Check if an object occurs in another object

Syntax

has(object1, object2)

has(object1, l)

Description

has(object1, object2) checks, whether object2 occurs syntactically in object1.

has is a fast test for the existence of sub-objects or subexpressions. It works syntactically,
i.e., mathematically equivalent objects are considered to be equal only if they are
syntactically identical. See “Example 2” on page 1-875.

If object1 is an expression, then has(object1, object2) tests whether object1
contains object2 as a subexpression. Only complete subexpressions and objects
occurring in the 0th operand of a subexpression are found (see “Example 1” on page
1-875).

If object1 is a container, then has checks whether object2 occurs in an entry of
object1. See “Example 5” on page 1-877.

In this context, a floating-point interval is considered a container for (an infinite number
of) complex numbers and has checks whether a given number is inside the interval. See
“Example 4” on page 1-876.

If the second argument is a list or a set l, then has returns TRUE if at least one of the
elements in l occurs in object1 (see “Example 3” on page 1-876). In particular, if l is
the empty list or the empty set, then the return value is FALSE.

If object1 is an element of a domain with a "has" slot, then the slot routine is called
with the same arguments, and its result is returned. If the domain does not have such a
slot, then FALSE will be returned. See “Example 7” on page 1-878.
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If has is called with a list or set as second argument, then the "has" slot of the domain
of object1 is called for each object of the list or the set. When the first object is found
that occurs in object1, the evaluation is terminated and TRUE is returned. If none of the
objects occurs in object1, FALSE will be returned.

Examples

Example 1

The given expression has x as an operand:

has(x + y + z, x)

Note that x + y is not a complete subexpression. Only x, y, z and x + y + z are
complete subexpressions:

has(x + y + z, x + y)

However, has also finds objects in the 0th operand of a subexpression:

has(x + sin(x), sin)

Every object occurs in itself:

has(x, x)

Example 2

has works in a purely syntactical fashion. Although the two expressions y*(x + 1) and
y*x + y are mathematically equivalent, they differ syntactically:
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has(sin(y*(x + 1)), y*x + y),

has(sin(y*(x + 1)), y*(x + 1))

Complex numbers are not regarded as atomic objects:

has(2 + 5*I, 2), has(2 + 5*I, 5), has(2 + 5*I, I)

In contrast, rational numbers are considered to be atomic:

has(2/3*x, 2), has(2/3*x, 3), has(2/3*x, 2/3)

Example 3

If the second argument is a list or a set, has checks whether one of the entries occurs in
the first argument:

has((x + y)*z, [x, t])

0th operands of subexpressions are checked as well:

has((a + b)*c, {_plus, _mult})

Example 4

On floating-point intervals, has performs a containment check, not just testing the
borders:
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has(1...3, 1)

has(1...3, 2.7182), has(1...3, exp(1)), has(1...3, PI)

has(1...(3+I), [2, ln(3)])

Example 5

has works for lists, sets, tables, arrays, and hfarrays:

has([sin(f(a) + 2), cos(x), 3], {f, g})

has({a, b, c, d, e}, {a, z})

has(array(1..2, 1..2, [[1, 2], [3, 4]]), 2)

For an array A, the command has(A,NIL) checks whether the array has any
uninitialized entries:

has(array(1..2, 1 = x), NIL),

has(array(1..2, [2, 3]), NIL)
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For tables, has checks indices, entries, as well as the internal operands of a table, given
by equations of the form index=entry:

T := table(a = 1, b = 2, c = 3):

has(T, a), has(T, 2), has(T, b = 2)

Example 6

has works syntactically. Although the variable x does not occur mathematically in the
constant polynomial p in the following example, the identifier x occurs syntactically in p,
namely, in the second operand:

delete x: p := poly(1, [x]):

has(p, x)

Example 7

The second argument may be an arbitrary MuPAD object, even from a user-defined
domain:

T := newDomain("T"):

e := new(T, 1, 2);

f := [e, 3];

has(f, e), has(f, new(T, 1))

If the first argument of has belongs to a domain without a "has" slot, then has always
returns FALSE:
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has(e, 1)

Users can overloadhas for their own domains. For illustration, we supply the domain T
with a "has" slot, which puts the internal operands of its first argument in a list and
calls has for the list:

T::has := (object1, object2) -> has([extop(object1)], object2):

If we now call has with the object e of domain type T, the slot routine T::has is invoked:

has(e, 1), has(e, 3)

The slot routine is also called if an object of domain type T occurs syntactically in the first
argument:

has(f, 1), has(f, 3)

Parameters

object1, object2

Arbitrary MuPAD objects

l

A list or a set

Return Values

Either TRUE or FALSE
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Overloaded By

object1

See Also

MuPAD Functions
_in | _index | contains | hastype | op | subs | subsex
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hastype
Test if an object of a specified type occurs in another object

Syntax
hastype(object, T, <inspect>)

Description

hastype(object, T) tests if an object of type T occurs syntactically in object.

hastype(object, T) tests if a sub-object s of type T occurs in object, i.e., such that
testtype(s, T) returns TRUE.

The type specifier T may be either a domain type such as DOM_INT, DOM_EXPR etc., a
string as returned by the function type, or a Type object. The latter are probably the
most useful predefined values for the argument T.

If T is not a valid type specifier, then hastype returns FALSE.

See “Example 1” on page 1-882.

If object is an expression, then hastype(object, T) tests whether object contains
a subexpression of type T; see “Example 1” on page 1-882.

If object is a container, then hastype checks whether a sub-object of type T occurs in
an entry of object; see “Example 4” on page 1-884.

If the second argument is a list or a set, hastype checks whether a sub-object of one of
the types in T occurs in object. See “Example 1” on page 1-882.

hastype works in a recursive fashion and descends into the following objects:
expressions, arrays, hfarrays, lists, sets, and tables. See “Example 4” on page 1-884.
hastype does not step into the other basic domains, such as rational numbers, complex
numbers, polynomials, or procedures. See “Example 2” on page 1-883.

If the third argument inspect is present, then hastype also steps recursively into sub-
objects of the domain types given in inspect. See “Example 2” on page 1-883.
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Note: hastype looks only for sub-objects that are syntactically of type T. Properties of
identifiers set via assume are not taken into account; see “Example 4” on page 1-884.

Examples

Example 1

In this example, we first test if a given expression has a subexpression of type
DOM_FLOAT:

hastype(1.0 + x, DOM_FLOAT)

hastype(1 + x, DOM_FLOAT)

We may also test if an expressions contains a subexpression of one of the two types
DOM_FLOAT or DOM_INT:

hastype(1.0 + x, {DOM_FLOAT, DOM_INT})

While the first of following two tests returns FALSE, since tan is not a valid type
specifier, the second test yields TRUE, since the given expression contains a subexpression
of type "tan":

hastype(sin(tan(x) + 1/exp(1 - x)), tan),

hastype(sin(tan(x) + 1/exp(1 - x)), "tan")

You can also use type specifiers from the Type library:

hastype([-1, 10, -5, 2*I], Type::PosInt)
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Example 2

We demonstrate the use of the optional third argument. We want to check if a procedure
contains a subexpression of type "float". By default, hastype does not descend
recursively into a procedure:

f := x -> float(x) + 3.0:

hastype(f, "float")

You can use the third argument to request the inspection of procedures explicitly:

hastype(f, "float", {DOM_PROC})

Also, by default, hastype does not descend recursively into the basic domains
DOM_COMPLEX and DOM_RAT:

hastype(1 + I, DOM_INT), hastype(2/3,  DOM_INT)

In order to inspect these data types, one has to use the third argument:

hastype(1 + I, DOM_INT, {DOM_COMPLEX}),

hastype(2/3,  DOM_INT, {DOM_RAT})

Example 3

Since matrices possess a slot enableMaprec, hastype automatically inspects their
entries.
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A := matrix([[1, 1], [1, 0]]):

hastype(A, DOM_INT)

It is also possible to inspect elements of other domains using the third argument. As an
example let us define a permutation and ask for a subexpression of type integer:

G:= Dom::SymmetricGroup(4):

perm:= G([2,4, 3, 1]):

hastype(perm, DOM_INT), hastype(perm, DOM_INT, {G})

Example 4

We demonstrate how hastype effects on container objects. Let us first stress tables:

hastype(table(1 = a), DOM_INT), hastype(table(a = 1), DOM_INT)

As shown, hastype does not inspect the indices of a table, but checks recursively
whether a sub-object of a given type occurs in an entry. This is also true for arrays,
hfarrays, lists and sets:

hastype(array(1..4, [1, 2, 3, 4]), DOM_INT),

hastype(hfarray(1..3, [1.0, 2.0, 3.0*I]), DOM_COMPLEX),

hastype([1, 2, 3, 4], DOM_INT),

hastype({1, 2, 3, 4}, DOM_INT),

hastype([[a, [1]], b, c], DOM_INT)

hastype can only work syntactically, i.e. properties are not taken into account:

assume(a,Type::Integer):

hastype([a, b], Type::Integer), hastype([a, b], DOM_INT)
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delete a:

Parameters

object

An arbitrary MuPAD object

T

A type specifier, or a set or a list of type specifiers

inspect

A set of domain types

Return Values

Either TRUE or FALSE.

Overloaded By

object

See Also

MuPAD Functions
domtype | has | misc::maprec | testtype | type
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heaviside
The Heaviside step function

Syntax
heaviside(x)

Description

heaviside(x) represents the Heaviside step function.

If the argument represents a positive real number, then 1 is returned. If the argument
represents a negative real number, then 0 is returned. If the argument is zero,  is

returned. If the argument is a complex number of domain type DOM_COMPLEX, then
undefined is returned. For all other arguments, an unevaluated function call is
returned.

The derivative of heaviside is the delta distribution dirac.

To change the value of heaviside at the origin, use Pref::heavisideAtOrigin. See
“Example 4” on page 1-888. Common choices for this value are 0, 1, and 1/2.

Examples

Example 1

heaviside returns 1 or 0 for arguments representing positive or negative real numbers,
respectively:

heaviside(-3), heaviside(-sqrt(3)), heaviside(-2.1),

heaviside(PI - exp(1)), heaviside(sqrt(3))
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heaviside returns  if the argument is zero:

heaviside(0), heaviside(0.0)

Arguments of domain type DOM_COMPLEX yield undefined:

heaviside(1 + I), heaviside(2/3 + 7*I), heaviside(0.1*I)

An unevaluated call is returned for other arguments:

heaviside(x), heaviside(ln(-5)), heaviside(x + I)

Example 2

heaviside reacts to assumptions set by assume:

assume(x > 0): heaviside(x)

unassume(x):

Example 3

The derivative of heaviside is the delta distribution dirac:

diff(heaviside(x - 4), x)

The integrator int handles heaviside:
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int(exp(-x)*heaviside(x), x = -infinity..infinity)

We do not recommend to use heaviside in numerical integration. It is much more
efficient to split the quadrature into pieces, each of which having a smooth integrand:

DIGITS := 3: numeric::int(exp(-x)*heaviside(x^2 - 2), x=-3..10)

numeric::int(exp(-x), x = -3..-2^(1/2)) +

numeric::int(exp(-x), x = 2^(1/2)..10)

delete DIGITS:

Example 4

heaviside assumes that the value of the Heaviside function at the origin is 1/2.

heaviside(0)

Other common values for the Heaviside function at the origin are 0 and 1. To change the
value of heaviside at the origin, use Pref::heavisideAtOrigin. Store the previous
value, so that you can restore it later.

oldval := Pref::heavisideAtOrigin(1):

Check the new value of heaviside at 0.

heaviside(0)
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Restore the previous value of heavisideAtOrigin using oldval.

Pref::heavisideAtOrigin(oldval):

Also, you can restore the default value of heavisideAtOrigin by specifying the input
as NIL.

Pref::heavisideAtOrigin(NIL):

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

See Also

MuPAD Functions
dirac | Pref::heavisideAtOrigin
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?, help
Display a help page

Syntax
?word

help("word")

Description

help("word") or ?word displays a help page with information about the keyword word.

When you use help("word") interactively, you can use ?word as a shortcut. The ?
command is not a MuPAD function. You cannot use ? in expressions or in files. Do not
enclose word in quotation marks, and do not terminate it with a semicolon.

Parameters

word

Any keyword

Return Values

Void object null() of type DOM_NULL.

See Also

MuPAD Functions
info
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hessian
Hessian matrix of a scalar function

Syntax
hessian(f, x)

Description

hessian(f, x) computes the Hesse matrix (the Hessian) of the scalar function  in
Cartesian coordinates, i.e., the square matrix of second partial derivatives of .

Examples

Example 1

The Hessian of the function f(x, y, z) = x y + 2 x z is the following matrix:

delete x, y, z:

hessian(x*y + 2*z*x, [x, y, z])

Parameters

f

An arithmetical expression (the scalar function)

x

A list of (indexed) identifiers
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Return Values

Matrix of the domain Dom::Matrix().

Algorithms

For a function , X a subset of , the p×p matrix

is called the Hesse matrix of f.

See Also

MuPAD Functions
diff | gradient | jacobian
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HISTORY
Maximal number of elements in the history table

Description

The environment variable HISTORY determines the maximal number of entries of the
history table at interactive level.

Possible values: Nonnegative integer smaller than 231.

The commands that are entered interactively in a MuPAD session, executed in a
procedure, or read from a file, as well as the resulting MuPAD outputs are stored in
an internal data structure, the history table. Only the most recent entries are kept in
memory.

Entries of the history table can be accessed via history or last.

The default value of HISTORY is 20; HISTORY has this value after starting or resetting
the system via reset. Also the command delete HISTORY restores the default value.

Within a procedure, the maximal number of entries in the local history table of the
procedure is always 3, independent of the value of HISTORY.

Examples

Example 1

In the following example, we set the value of HISTORY to 2. Afterwards, only the two
most recent inputs and outputs are stored in the history table at interactive level:

HISTORY := 2:

a := 1: b := 2: max(a, b):

history(history() - 1), history(history())
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The attempt to access the third last entry in the history table leads to an error:

history(history() - 2)

Error: The argument is invalid. [history]

We use delete to restore the default value of HISTORY:

delete HISTORY: HISTORY

See Also

MuPAD Functions
history | last
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history
Access an entry of the history table

Syntax
history(n)

history()

Description

history(n) returns the nth entry of the history table.

history() returns the index of the most recent entry in the history table.

The commands that are entered interactively in a MuPAD session, executed in a
procedure, or read from a file, as well as the resulting MuPAD outputs are stored in
an internal data structure, the history table. history() returns the index of the most
recent entry in the history table. At interactive level, this is the number of commands
that have been entered since the start of the session or the last restart.

history(n) returns the nth entry in the history table in form of a list with two
elements. The first element of this list is a MuPAD command, and the second element is
the result of this command returned by MuPAD. The order of the entries in the history
table is such that larger indices correspond to more recent entries.

The command last accesses the result entries from the history table. The call last(n)
is equivalent to history ( history() - n + 1) [2] at interactive level.

The environment variable HISTORY determines the maximal number of history entries
that are stored at interactive level. The default value is 20. Only the most recent
entries are kept in memory. Thus valid arguments for history are all integers between
history() - HISTORY + 1 and history(). All other integers lead to an error
message.

The result returned by history is not evaluated again (see example history-eval). Use
the function eval to force a subsequent evaluation.
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Commands and their results are stored in the history table even if the output is
suppressed by a colon. See “Example 1” on page 1-896.

Compound statements, such as for, repeat, and while loops, if and case branching
instructions, and procedure definitions via proc are stored in the history table as a whole
at interactive level. See the help page of last for examples.

Commands appearing on the same input line lead to separate entries in the history table
if they are separated by a colon or a semicolon. In contrast, a statement sequence is
regarded as a single command (see “Example 3” on page 1-898).

Commands that are read from a file via fread or read are stored in the history table,
and at last the fread or read command is stored in the history table (because the
fread or read command is finished foremost after reading the file). However, if the
option Plain is used, then a separate history table is in effect within the file, and the
commands from the file do not appear in the history table of the enclosing context.

Note that every call of history modifies the history table and possibly erases the
earliest history entry.

Every procedure has its own local history table. However, the entries of this table cannot
be accessed via history (see last). The command history always refers to the history
table at interactive level.

Examples

Example 1

The index of the most recent entry in the history table increases by one for each entered
command, also by history(). Note that every command is stored in the history table,
whether its output is suppressed by a colon or not:

history(); sqrt(1764); history(): history()

 3 42 6 

history ( history() ) returns a list with two elements. The first element is the last
command, and the second element is the result returned by MuPAD, which is equal to
last(1) or %:
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int(2*x*exp(x^2), x);

history(history()), last(1)

The following command returns the next to last command and its result:

history(history() - 1)

A restart cleans up the history table:

reset():

history()

4

The output of the command history() above depends on the number of commands in
your MuPAD startup file userinit.mu.

Example 2

First a should be 0:

a := 0:

a

Now 1 is assigned to a:

a := 1:
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a

The command history ( history() -2) refers to the command a after assigning 0 to
a, the return value of history is not the new value of a, because the result returned by
history is not evaluated again:

history(history() - 2)

Example 3

The following commands create two entries in the history table. The command history
( history() -1) returns only the last command b:=a, not both commands:

a := 0: b := a:

history(history() - 1)

If the commands are entered as a statement sequence (enclosed in ( )), they create one
entry. history ( history() ) picks out the last command, that is, the statement
sequence:

(a := 0; b := a;):

history(history())

[(a := 0;

b := a), 0]

The last input

type(op(%, 1))
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Parameters

n

A positive integer

Return Values

history(n) returns a list with two elements, and history() returns a nonnegative
integer.

See Also

MuPAD Functions
fread | HISTORY | last | read
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hold

Delay evaluation

Syntax

hold(object)

Description

hold(object) prevents the evaluation of object.

When a MuPAD object is entered interactively, then the system evaluates it and returns
the evaluated result. When a MuPAD object is passed as an argument to a procedure,
then the procedure usually evaluates the argument before processing it. Evaluation
means that identifiers are replaced by their values and function calls are executed. hold
is intended to prevent such an evaluation when it is undesirable.

A typical application of hold is when a function that can only process numerical
arguments, but not symbolical ones, is to be used as an expression. See “Example 6” on
page 1-905.

Another possible reason for using hold is efficiency. For example, if a function call f(x,
y) with symbolic arguments is passed as argument to another function, but is known
to return itself symbolically, then the possibly costly evaluation of the “inner” function
call can be avoided by passing the expression hold(f) (x, y) as argument to the
“outer” function instead. Then the arguments x, y are evaluated, but the call to f is not
executed. See examples “Example 1” on page 1-901 and “Example 7” on page 1-905.

Since using hold may lead to strange effects, it is recommended to use it only when
absolutely necessary.

hold only delays the evaluation of an object, but cannot completely prevent it on the long
run; see “Example 5” on page 1-904.

You can use freeze to completely prevent the evaluation of a procedure or a function
environment.
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A MuPAD procedure can be declared with the option hold. This has the effect that
arguments are passed to the procedure unevaluatedly. See the help page of proc for
details.

The functions eval or level can be used to force a subsequent evaluation of an
unevaluated object (see example “Example 2” on page 1-902). In procedures with
option hold, use context instead.

Examples

Example 1

In the following two examples, the evaluation of a MuPAD expression is prevented using
hold:

x := 2:

hold(3*0 - 1 + 2^2 + x)

hold(error("not really an error"))

Without hold, the results would be as follows:

x := 2:

3*0 - 1 + 2^2 + x

error("not really an error")

Error: not really an error

The following command prevents the evaluation of the operation _plus, but not the
evaluation of the operands:
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hold(_plus)(3*0, -1, 2^2, x)

Note that in the preceding example, the arguments of the function call are evaluated,
because hold is applied only to the function _plus. In the following example, the
argument of the function call is evaluated, despite that fact that f has the option hold:

f := proc(a)

       option hold;

     begin

       return(a + 1)

     end_proc:

x := 2:

hold(f)(x)

This happens for the following reason. When f is evaluated, the option hold prevents the
evaluation of the argument x of f (see the next example). However, if the evaluation of
f is prevented by hold, then the option hold has no effect, and MuPAD evaluates the
operands, but not the function call.

The following example shows the expected behavior:

f(x), hold(f(x))

The function eval undoes the effect of hold. Note that it yields quite different results,
depending on how it is applied:

eval(f(x)), eval(hold(f)(x)), eval(hold(f(x))), eval(hold(f))(x)

Example 2

Several hold calls can be nested to prevent subsequent evaluations:
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x := 2:

hold(x), hold(hold(x))

The result of hold ( hold(x) ) is the unevaluated operand of the outer call of
hold, that is, hold(x). Applying eval evaluates the result hold(x) and yields the
unevaluated identifier x:

eval(%)

Another application of eval yields the value of x:

eval(%)

delete x, f:

Example 3

The following command prevents the evaluation of the operation _plus, replaces it by
the operation _mult, and then evaluates the result:

eval(subsop(hold(_plus)(2, 3), 0 = _mult))

Example 4

The function domtype evaluates its arguments:

x := 0:

domtype(x), domtype(sin), domtype(x + 2)
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Using hold, the domain type of the unevaluated objects can be determined: x and sin
are identifiers, and x + 2 is an expression:

domtype(hold(x)), domtype(hold(sin)), domtype(hold(x + 2))

Example 5

hold prevents only one evaluation of an object, but it does not prevent evaluation at a
later time. Thus using hold to obtain a a symbol without a value is usually not a good
idea:

x := 2:

y := hold(x);

y

In this example, deleting the value of the identifier x makes it a symbol, and using hold
is not necessary:

delete x:

y := x;

y

However, the best way to obtain a new symbol without a value is to use genident:

y := genident("z");

y
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delete y:

Example 6

Consider the piecewise defined function f(x) that is identically zero on the negative real
axis and equal to  on the positive real axis:

f := x -> if x < 0 then 0 else exp(-x) end_if:

This function cannot be called with a symbolic argument, because the condition x < 0
cannot be decided:

f(x)

Error: Cannot evaluate to Boolean. [_less]

  Evaluating: f

We wish to integrate f numerically. However, the numerical integrator expects the
function as an expression:

numeric::int(f(x), x = -2..2)

Error: Cannot evaluate to Boolean. [_less]

  Evaluating: f

The solution is to suppress premature evaluation of f when passing the function with a
symbolic argument. Inside the numerical integrator, numerical values are substituted for
x before the function is called and evaluated:

numeric::int(hold(f)(x), x = -2..2)

Example 7

The function int is unable to compute a closed form of the following integral and returns
a symbolic int call:
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int(sqrt(x)*sqrt(sqrt(x) + 1), x)

After the change of variablessqrt(x)=t, a closed form can be computed:

t := time():

f := intlib::changevar(int(sqrt(x)*sqrt(sqrt(x) + 1), x), sqrt(x) = y);

time() - t;

eval(f)

Measuring computing times with time shows: Most of the time in the call to
intlib::changevar is spent in re-evaluating the argument. This can be prevented by
using hold:

t := time():

f := intlib::changevar(hold(int)(sqrt(x)*sqrt(sqrt(x) + 1), x),

                       sqrt(x) = y);

time() - t;
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Parameters

object

Any MuPAD object

Return Values

Unevaluated object.

See Also

MuPAD Functions
context | delete | eval | freeze | genident | indexval | level | proc | val

More About
• “Prevent Evaluation”
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..., hull
Convert to a floating-point interval

Syntax
l ... r

hull(object)

Description

hull(object) returns a floating-point interval enclosing object.

l ... r is equivalent to hull(l, r).

hull converts numerical and interval expressions to numerical intervals of type
DOM_INTERVAL. It accepts lists and sets of numerical expressions or intervals as well as
numerical expressions, intervals, and set-theoretic functions of intervals and sets.

Infinities are displayed using RD_INF for infinity and RD_NINF for -infinity.

hull is mapped recursively to the operands of any expression given—but for
subexpressions, lists and sets are not accepted. Identifiers are replaced by intervals,
respecting a certain subset of properties. Cf. “Example 3” on page 1-910. Likewise,
function calls and domain elements not overloading hull are converted to the interval
representing the complex plane.

The output of floating-point intervals is influenced by the same parameters as the output
of floating-point numbers:

DIGITS, Pref::floatFormat, and Pref::trailingZeroes.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Each sub-object of object can be evaluated multiple times and must not have any side-
effects.

Examples

Example 1

hull returns an interval enclosing its arguments. You can also use the operator ...
instead of the function call:

hull(0, PI) = 0 ... PI

Infinities are displayed using RD_NINF for - ∞ and RD_INF for infinity:

hull(-infinity, 9/7), hull({1/4, 9/7, infinity})

Please note that any number whose absolute value is larger than MuPAD can store in a
float is considered infinite:

hull(0, 1e100000000)^4

Example 2

Inversion of intervals may lead to unions of intervals. If these are not required, you may
use hull to unify them:

1/(-1 ... 1); hull(%)

1-909



1 The Standard Library

Example 3

The application of hull to an identifier without a value returns an interval representing
the complex plane:

delete x:  hull(x)

Certain properties are respected during this conversion:

assume(x > 0): hull(x);

delete x:

This way, you can enclose the values of an expression:

hull(sin(abs(x)))

Calls to “unknown” functions are regarded as potentially returning the complex plane:

hull(f(x))

Parameters

l, r, object

Arbitrary MuPAD objects
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Return Values

floating-point interval, the empty set, or FAIL.

Overloaded By

object

See Also

MuPAD Domains
Dom::FloatIV

MuPAD Functions
DIGITS | float | interval | Pref::floatFormat | Pref::trailingZeroes
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hypergeom
Hypergeometric functions

Syntax
hypergeom([a1, a2, …], [b1, b2, …], z)

Description

hypergeom([a1, a2, ...], [b1, b2, ...], z) represents the hypergeometric
function.

The hypergeometric function is defined for complex arguments ai, bj, and z.

With a = [a1, a2, …, ap] and b = [b1, b2, …, bq], the hypergeometric function of order p, q is
defined as

,

where (c)k = c (c + 1) … (c + k - 1), (c)0 = 1 is the usual Pochhammer symbol. The
quantities a and b are called ‘the lists for the upper and lower parameters,’ respectively.

A floating-point value is returned if at least one of the arguments is a floating-point
number and all other arguments can be converted to floating-point numbers.

For most exact arguments, the hypergeometric function returns a symbolic function call.
If an upper parameter coincides with a lower parameter, these values cancel and are
removed from the parameter lists.

The following special values are implemented:

•

•  if the list of upper parameters a contains more zeroes than the list of

lower parameters b.
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• .

If, after cancellation of identical parameters, the upper parameters contain a negative
integer larger than the largest negative integer in the lower parameters, then

 is a polynomial in z. If all upper and lower parameters as well as the

argument z do not contain any symbolic identifiers, a corresponding explicit result
is returned. If the parameters or z contain symbols, expansion to the polynomial
representation is available via simplify. Cf. “Example 2” on page 1-914.

Also empty lists a = [] or b = [] may be passed to hypergeom. The corresponding
functions are:

,

,

.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Symbolic calls are returned for exact or symbolic arguments:

hypergeom([], [2], x),
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hypergeom([1], [2, 3], PI),

hypergeom([1, 1/2], [1/3], x + 3*I)

Floating point values are returned for floating-point arguments:

hypergeom([], [2], 3.0),

hypergeom([1], [2.0], PI),

hypergeom([PI], [2, 3], 4.0),

hypergeom([1, 2], [3, 4, 5, 6], 1.0*I),

hypergeom([1 + I], [1/(2 + I)], 1.0*I)

Example 2

 is equal to :

hypergeom([], [], z)

Because identical values in a and b cancel, the same is true for :

hypergeom([a, b], [a, b], z)

Any hypergeometric function, evaluated at 0, has the value 1:

hypergeom([a, b], [c, d, e], 0)
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If, after cancelling identical parameters, the list of upper parameters contains a zero, the
resulting hypergeometric function is constant with the value 1:

hypergeom([0, 0, 2, 3], [a, 0, 4], z)

If, after cancelling identical parameters, the upper parameters contain a negative integer
larger than the largest negative integer in the lower parameters, the hypergeometric
function is a polynomial. If all parameters as well as the argument z are numerical, a
corresponding explicit value is returned:

hypergeom([-4, -2 , 3], [-3, 1, 4], PI*sqrt(2))

For symbolic parameters or symbolic z, the polynomial representation may be obtained
via simplify or Simplify:

hypergeom([-40, -5], [1, 4], z) =

simplify(hypergeom([-40, -5], [1, 4], z))

hypergeom([-3, a], [b], z) =

Simplify(hypergeom([-3, a], [b], z))

If the largest negative integer in the list of lower parameters is larger than the largest
negative integer in the list of upper parameters, the corresponding hypergeometric
function is not defined (because its definition involves a division by zero):

hypergeom([-40, -5, 3], [-3, 1, 4], z)

Error: Invalid arguments. [hypergeom]
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Example 3

The functions float, diff, and series handle expressions involving the
hypergeometric functions:

float(ln(3 + hypergeom([17], [exp(1), ln(5)], sqrt(PI))))

diff(hypergeom([a, b], [c, d], x), x)

Note that differentiation of a hypergeometric function w.r.t. one of its uppper or lower
parameters does not, in general, lead to hypergeometric functions. Certain peculiar cases
are an exception:

diff(hypergeom([a + 1, b], [a + 2], x), a)

series(hypergeom([1, 2], [3], x), x)

Expansions about infinity are possible:

series(hypergeom([1/2], [1/3], x), x = infinity, 3)

However, there are very few (if any) complete expansions for hypergeometric functions
about any of its upper or lower parameters.

1-916



 hypergeom

Example 4

Often, at particular choices of parameters, the hypergeometric function reduces to
simpler special functions. For example, in the case of , also known as the standard
confluent hypergeometric function, the hypergeometric function can be reduced to
a Bessel function if its (single) lower parameter is exactly twice its (single) upper
parameter. This is verified numerically below:

v:= 1.0 + I: z:= float(PI):

hypergeom([v + 1/2], [2*v + 1], 2*I*z) =

(gamma(1 + v)*exp(I*z)*((z/2)^(-v))*besselJ(v, z))

delete v, z:

In the following example, , which is known as the Gauss hypergeometric function, can
be reduced into a simple elementary function involving logarithms when the parameters
are [1, 1], [2], as verified numerically below:

eq := hypergeom([1, 1], [2], z) = -ln(1 - z)/z:

float(subs(eq, z = 1/3)), float(subs(eq, z = 1/2))

delete eq:

Example 5

The interval  is a branch cut for the hypergeometric function; the sign of the
imaginary part changes when crossing the cut. The branch cut belongs to the lower
branch:

eq := hypergeom([1, 1], [2], z) = -ln(1 - z)/z:

float(subs(eq, z = 2 + I*10^(-DIGITS)))
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float(subs(eq, z = 2 - I*10^(-DIGITS)))

float(subs(eq, z = 2))

Parameters

a1, a2, …

The ‘upper parameters’: arithmetical expressions

b1, b2, …

The ‘lower parameters’: arithmetical expressions

z

The ‘argument’: an arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

z

Algorithms

When no bj in the list b lies in the set {0, - 1, - 2, …}, the series
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converges if one of the following conditions hold:

1 p ≤ q, |z| < ∞;
2 p = q + 1, |z| < 1;
3 p = q + 1, |z| = 1, ℜ(ψq) > 0;
4 ;

5 a contains a zero or a negative integer;

where . The series diverges in the remaining cases. If one

of the parameters in a isequal to zero or a negative integer, then the series terminates,
turning into what is called a hypergeometric polynomial.

The generalized hypergeometric function of order (p, q) is given by the series definition
in the region of convergence, while for p = q + 1, |z| ≥ 1, it is defined as an analytic
continuation of this series.

The function  is symmetric w.r.t. the parameters, i.e., it does not depend on

the order of the arrangement a1, a2, … in a or b1, b2, … in b.

As mentioned above, if some upper parameter is equal to n = 0, - 1, - 2, …, the function
turns into a polynomial of degree n. If we relax the condition stated above for the lower
parameters b and there is some lower parameter equal to m = 0, - 1, - 2, …, the function

 also reduces to a polynomial in z provided n > m. It is undefined if m > n or

if no upper parameter is a nonpositive integer (resulting in division by zero in one of the
series coefficients). The case m = n is handled by the following rule.

If for r values of the upper parameters, there are r values of the lower parameters equal
to them (i.e., a = [a1, …, ap - r, c1, …, cr], b = [b1, …, bq - r, c1, …, cr]), then the order (p, q) of
the function  is reduced to (p - r, q - r):

.
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The above rule applies even if any of the ci happens to be zero or a negative integer (for
details, see Luke in the list of references, p. 42).

 satisfies a differential equation in z:

,

where (δ + a) and (δ + b) stand for  and , respectively.

Thus, the order of this differential equation is max(p, q + 1) and the hypergeometric
function is only one of its solutions. If p < q + 1, this differential equation has a regular
singularity at z = 0 and an irregular singularity at z = ∞. If p = q + 1, the points z = 0, z =
1, and z = ∞ are regular singularities, thus explaining the convergence properties of the
hypergeometric series.

The analytic continuation for p = q + 1, |z| ≥ 1, is defined by selecting the principal
branch of this continuation (also denoted as ) satisfying the condition |arg(1

- z)| < π, the cut along [1, ∞) is drawn in the complex z-plane. In particular, the analytic
continuation can be obtained by means of an integral representation (for details, see
Prudnikov et al. in the references) or by the Meijer G function.

References

[1] Luke, Y.L. “The Special Functions and Their Approximations”, Vol. 1, Academic
Press, New York, 1969.

[2] Prudnikov, A.P., Yu.A. Brychkov, and O.I. Marichev, “Integrals and Series”, Vol. 3:
More Special Functions, Gordon and Breach, 1990.

[3] Abramowitz, M. and I.A. Stegun, “Handbook of Mathematical Functions”, Dover
Publications, New York, 9th printing, 1970.
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icontent
Content of a polynomial with rational coefficients

Syntax
icontent(p)

Description

icontent(p) calculates the content of a polynomial or polynomial expression with
integer or rational coefficients, i.e., the greatest common divisor of the coefficients, such
that p/ icontent(p) has integral coefficients whose greatest common divisor is 1. In
particular, if p is itself an integer or a rational number, then icontent returns abs(p)
(see “Example 1” on page 1-921).

If p is a polynomial or polynomial expression with integer coefficients, then the content
is the greatest common divisor of the coefficients. If p is a polynomial or polynomial
expression with rational coefficients, then the content is the greatest common divisor
of the numerators of the coefficients divided by the least common multiple of the
denominators (see “Example 2” on page 1-922).

If p is a polynomial expression, then it is first converted into a polynomial of domain type
DOM_POLY using poly. If this conversion is not possible, then icontent returns FAIL.

icontent returns an error message if not all coefficients of p are integers or rational
numbers.

Examples

Example 1

The first argument can be a polynomial or a polynomial expression. The following two
calls of icontent are equivalent:

p := 6*x*y - 9*y^2 + 21:
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icontent(poly(p)), icontent(p)

The result of icontent is always nonnegative:

icontent(2*x - 4), icontent(-2*x + 4)

The content of a constant polynomial is its absolute value:

icontent(0), icontent(-2), icontent(poly(-2, [x]))

Example 2

The content of a polynomial with rational coefficients is a rational number in general:

q := 6/7*x*y - 9/4*y + 12:

icontent(poly(q)), icontent(q)

The polynomial divided by its content has integral coefficients whose greatest common
divisor is 1:

q/icontent(q)

icontent(%)
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Parameters

p

A polynomial or polynomial expression with integer or rational number coefficients

Return Values

Nonnegative integer or rational number, or FAIL

See Also

MuPAD Functions
coeff | content | factor | gcd | ifactor | igcd | ilcm | lcm | poly |
polylib::primpart
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id
Identity map

Syntax
id(x)

id(x1, x2, …)

Description

id(x) evaluates and returns x; id(x1, x2, ...) returns the evaluated arguments as
an expression sequence; id() returns the void object null().

Examples

Example 1

id returns the evaluated arguments:

a := 2: id(a + 2)

id(a, b, 4 + 2)

id() returns null():

domtype(id())
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delete a:

Example 2

id is useful when working with functional expressions:

f := 3*id + sin + 5*id^2 + exp@(-id^2):

f(x)

f'(x)

delete f:

Parameters

x, x1, x2, …

Arbitrary MuPAD objects

Return Values

Sequence of the input parameters.
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if, then, elif, else, end_if, _if
If-statement (conditional branch in a program)

Compatibility

For the if statement in MATLAB, see if.

Syntax
if condition1
then casetrue1
   elif condition2 then casetrue2
   elif condition3 then casetrue3
   ...

   else casefalse

 end_if

_if(condition1, casetrue1, casefalse)

Description

if-then-else-end_if allows conditional branching in a program.

If the Boolean expression condition1 can be evaluated to TRUE, the branch casetrue1
is executed and its result is returned. Otherwise, if condition2 evaluates to TRUE,
the branch casetrue2 is executed and its result is returned etc. If all of the conditions
evaluate to FALSE, the branch casefalse is executed and its result is returned.

All conditions that are evaluated during the execution of the if statement must be
reducible to either TRUE or FALSE. Conditions may be given by equations or inequalities,
combined with the logical operators and, or, not. There is no need to enforce Boolean
evaluation of equations and inequalities via bool. Implicitly, the if statement enforces
“lazy” Boolean evaluation via the functions _lazy_and or _lazy_or, respectively. A
condition leads to a runtime error if it cannot be evaluated to TRUE or FALSE by these
functions. Cf. “Example 3” on page 1-929.
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The keyword end_if may be replaced by the keyword end.

The statement if condition then casetrue else casefalse end_if is
equivalent to the function call _if(condition, casetrue, casefalse).

Examples

Example 1

The if statement operates as demonstrated below:

if TRUE then YES else NO end_if,

if FALSE then YES else NO end_if

The else branch is optional:

if FALSE then YES end_if

if FALSE

  then if TRUE 

         then NO_YES

         else NO_NO

       end_if

  else if FALSE

         then YES_NO

         else YES_YES

       end_if

end_if

Typically, the Boolean conditions are given by equations, inequalities or Boolean
constants produced by system functions such as isprime:

for i from 100 to 600 do

  if 105 < i and i^2 <= 17000 and isprime(i) then 

     print(expr2text(i)." is a prime")

  end_if;
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  if i < 128 then

     if isprime(2^i - 1) then

        print("2^".expr2text(i)." - 1 is a prime")

     end_if

  end_if

end_for:

Example 2

Instead of using nested if-then-else statements, the elif statement can make the
source code more readable. However, internally the parser converts such statements into
equivalent if-then-else statements:

hold(if FALSE then NO elif TRUE then YES_YES else YES_NO end_if)

if FALSE then

  NO

else

  if TRUE then

    YES_YES

  else

    YES_NO

  end_if

end_if
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Example 3

If the condition cannot be evaluated to either TRUE or FALSE, then a runtime error
is raised. In the following call, is(x > 0) produces UNKNOWN if no corresponding
properties was attached to x via assume:

if is(x > 0) then

  1

else

  2

end_if

Error: Cannot evaluate to Boolean. [if]

Note that Boolean conditions using <, <=, >, >= may fail if they involve symbolic
expressions:

if 1 < sqrt(2) then print("1 < sqrt(2)"); end_if

if 10812186006/7645370045 < sqrt(2)

  then print("10812186006/7645370045 < sqrt(2)");

end_if

if is(10812186006/7645370045 < sqrt(2)) = TRUE

  then print("10812186006/7645370045 < sqrt(2)");

end_if

Example 4

This example demonstrates the correspondence between the functional and the
imperative use of the if statement:

condition := 1 > 0: _if(condition, casetrue, casefalse)
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condition := 1 > 2: _if(condition, casetrue, casefalse)

delete condition:

Parameters

condition1, condition2, …

Boolean expressions

casetrue1, casetrue2, casefalse, …

Arbitrary sequences of statements

Return Values

Result of the last command executed inside the if statement. The empty sequence,
null() is returned if no command was executed.

See Also

MuPAD Functions
case | piecewise

More About
• “Conditional Control”
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ifactor
Factor an integer into primes

Syntax
ifactor(n, <UsePrimeTab>)

ifactor(<PrimeLimit>)

Description

ifactor(n) computes the prime factorization n = s p1
e1 … pr

er of the integer n, where s
is the sign of n, p1, …, pr are the distinct positive prime divisors of n, and e1, …, er are
positive integers.

The result of ifactor is an object of domain type Factored. Let f:= ifactor(n) be
such an object. Internally, it is represented by the list[s, p1, e1, ..., pr, er] of
odd length 2 r + 1, where r is the number of distinct prime divisors of n. The pi are not
necessarily sorted by magnitude.

You may extract the sign s and the terms pi
ei by means of the index operator [ ], i.e.,

f[1] = p1^e1, f[2] = p2^e2, ... for positive n and f[1] = s, f[2] = p1^e1,
f[3] = p2^e2, ... for negative n.

The call Factored::factors(f) yields a list of the factors [p1, p2, ...], while
Factored::exponents(f) returns a list of the exponents [e1, e2, ...] with 1 ≤ i ≤
r.

The factorization of 0, 1, and - 1 yields the single factor 0, 1, and - 1, respectively. In
these cases, the internal representation is the list [0], [1], and [-1], respectively.

The call coerce(f,DOM_LIST) returns the internal representation of a factored object,
i.e., the list [s, p1, e1, p2, e2, ...].

Note that the result of ifactor is printed as an expression, and it is implicitly converted
into an expression whenever it is processed further by other MuPAD functions. For
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example, the result of ifactor(12) is printed as 2^2*3, which is an expression of type
"_mult".

See “Example 1” on page 1-932 for illustrations, and the help page of Factored for
more details.

If you do not need the prime factorization of n, but only want to know whether it is
composite or prime, use isprime instead, which is much faster.

ifactor returns an error when the argument is a number but not an integer. A symbolic
ifactor call is returned if the argument is not a number.

Examples

Example 1

To get the prime factorization of 120, enter:

f := ifactor(120)

You can access the terms of this factorization using the index operator:

f[1], f[2], f[3]

The internal representation of f, namely the list as described above, is returned by the
following command:

coerce(f, DOM_LIST)

The result of ifactor is an object of domain type Factored:
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domtype(f)

This domain implements some features for handling such objects. Some of them are
described below.

You may extract the factors and exponents of the factorization also in the following way:

Factored::factors(f), Factored::exponents(f)

You can ask for the type of the factorization:

Factored::getType(f)

This output means that all factors pi are prime. Other possible types are "squarefree"
(see polylib::sqrfree) or "unknown".

Multiplying factored objects preserves the factored form:

f2 := ifactor(12)

f*f2

It is important to note that you can apply nearly any function operating on arithmetical
expressions to an object of domain type Factored. The result is usually not of this
domain type:

expand(f);
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domtype(%)

For a detailed description of these objects, please refer to the help page of the domain
Factored.

Example 2

The factorizations of 0, 1, and -1 each have exactly one factor:

ifactor(0), ifactor(1), ifactor(-1)

map(%, coerce, DOM_LIST)

The internal representation of the factorization of a prime number p is the list [1, p,
1]:

coerce(ifactor(5), DOM_LIST)

Example 3

The bound on the prime number table is:

ifactor(PrimeLimit)
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We assign a large prime number to p:

p := nextprime(10^10);

q := nextprime(10^12)

Completely factoring the 36 digit number 6*p^3 takes some time; the second output line
shows the time in seconds:

t := time():

f := ifactor(p^3*q^4);

(time() - t)/1000.0

10000000019^3*1000000000039^4

2.5

Factored::getType(f)

"irreducible"

delete f

Extracting only the prime factors in the prime table is much faster, but it does not yield
the complete factorization; the factor p3 remains undecomposed:

t := time():

f := ifactor(p^3*q^4, UsePrimeTab);

(time() - t)/1000.0

1000000005856000011728326008600735477170193366706178119695352530650045867891819

0.015625

Factored::getType(f)

"unknown"

delete f
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Parameters

n

An arithmetical expression representing an integer

Options

UsePrimeTab

Internally, MuPAD has stored a pre-computed table of all prime numbers up to a certain
bound. ifactor(n, UsePrimeTab) looks only for prime factors that are stored in
this internal prime number table, extracts them from n, and returns the undecomposed
product of all other prime factors as a single factor. This is usually much faster than
without the option UsePrimeTab, but it does not necessarily yield the complete prime
factorization of n. See “Example 2” on page 1-934.

PrimeLimit

ifactor(PrimeLimit) returns an integer, namely a bound on the size of prime
numbers in the internal prime number table. The table contains all primes below this
bound. The default values are: 1000000 on UNIX systems and 300000 on Mac OS
platforms and Windows platforms.

The size of this table can be changed via the MuPAD command line flag -L.

Return Values

Object of domain type Factored, or a symbolic ifactor call.

Algorithms

ifactor uses the elliptic curve method.

ifactor is an interface to the kernel function stdlib::ifactor. It calls
stdlib::ifactor with the given arguments and convert its result, which is the list
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[s, p1, e1, ..., pr, er] as described above, into an object of the domain type
Factored.

You may directly call the kernel function stdlib::ifactor inside your routines, in
order to avoid this conversion and to decrease the running time.

See Also

MuPAD Functions
content | factor | Factored | icontent | igcd | ilcm | isprime | ithprime |
nextprime | numlib::divisors | numlib::primedivisors | prevprime
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ifourier
Inverse Fourier transform

Syntax
ifourier(F, w, t)

Description

ifourier(F, w, t) computes the inverse Fourier transform of the expression F =
F(w) with respect to the variable w at the point t.

The inverse Fourier transform of the expression F = F(w) with respect to the variable w
at the point t is defined as follows:

.

c and s are parameters of the Fourier transform. By default, c = 1 and s = -1.

To change the parameters c and s of the Fourier transform, use
Pref::fourierParameters. See “Example 3” on page 1-940. Common choices for the
parameter c are 1, , or . Common choices for the parameter s are -1, 1, - 2 π, or 2

 π.

If F is a matrix, ifourier applies the inverse Fourier transform to all components of the
matrix.

MuPAD computes ifourier(F, w, t) as

.
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If ifourier cannot find an explicit representation of the inverse Fourier transform,
it returns results in terms of the direct Fourier transform. See “Example 4” on page
1-941.

To compute the direct Fourier transform, use fourier.

To compute the inverse discrete Fourier transform, use numeric::invfft.

Environment Interactions

Results returned by ifourier depend on the current Pref::fourierParameters
settings.

Examples

Example 1

Compute the inverse Fourier transform of this expression with respect to the variable w:

ifourier(sqrt(PI)*exp(-w^2/4), w, t)

Example 2

Compute the inverse Fourier transform of this expression with respect to the variable w
for positive values of the parameter t0:

assume(t_0 > 0):

f := ifourier(-(PI^(1/2)*w*exp(-w^2*t_0^2/4)*I)*t_0^3/2, w, t)
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Evaluate the inverse Fourier transform of the expression at the points t = - 2 t0 and t = 1.
You can evaluate the resulting expression f using | (or its functional form evalAt):

f | t = -2*t_0

Also, you can evaluate the inverse Fourier transform at a particular point directly:

ifourier(-(PI^(1/2)*w*exp(-w^2*t_0^2/4)*I)*t_0^3/2, w, 1)

Example 3

The default parameters of the Fourier and inverse Fourier transforms are c = 1 and
s = -1:

ifourier(-(sqrt(PI)*w*exp(-w^2/4)*I)/2, w, t)

To change these parameters, use Pref::fourierParameters before calling ifourier:

Pref::fourierParameters(1, 1):

Evaluate the transform of the same expression with the new parameters:

ifourier(-(sqrt(PI)*w*exp(-w^2/4)*I)/2, w, t)

For further computations, restore the default values of the Fourier transform
parameters:

Pref::fourierParameters(NIL):
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Example 4

If ifourier cannot find an explicit representation of the transform, it returns results in
terms of the direct Fourier transform:

ifourier(exp(-w^4), w, t)

Example 5

Compute the following inverse Fourier transforms that involve the Dirac and the
Heaviside functions:

ifourier(dirac(w), w, t)

ifourier(heaviside(w + 5), w, t)

Parameters

F

Arithmetical expression or matrix of such expressions

w

Identifier or indexed identifier representing the transformation variable

1-941



1 The Standard Library

t

Arithmetical expression representing the evaluation point

Return Values

Arithmetical expression or an expression containing an unevaluated function call of type
fourier. If the first argument is a matrix, then the result is returned as a matrix.

Overloaded By

F

References

F. Oberhettinger, “Tables of Fourier Transforms and Fourier Transforms of
Distributions”, Springer, 1990.

See Also

MuPAD Functions
fourier | fourier::addpattern | ifourier::addpattern | numeric::fft |
numeric::invfft | Pref::fourierParameters
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ifourier::addpattern
Add patterns for the inverse Fourier transform

Syntax
ifourier::addpattern(pat, w, t, res, <vars, <conds>>)

Description

ifourier::addpattern(pat, w, t, res) teaches ifourier to return res for the
expression pat.

The ifourier function uses a set of patterns for computing inverse Fourier transforms.
You can extend the set by adding your own patterns. To add a new pattern to the
pattern matcher, use ifourier::addpattern. MuPAD does not save custom patterns
permanently. The new patterns are available in the current MuPAD session only.

After the call ifourier::addpattern(pat, w, t, res), the ifourier function
returns res for the expression pat. Note that the inverse Fourier transform is
defined as , where c and s are the parameters specified by

Pref::fourierParameters. If you add a new pattern, and then change the Fourier
transform parameters, the result returned by ifourier(pat, w, t) will also change.
See “Example 2” on page 1-945.

Variable names that you use when calling ifourier::addpattern can differ from the
names that you use when calling ifourier. See “Example 3” on page 1-945.

You can include a list of free parameters and a list of conditions on these parameters.
These conditions and the result are protected from premature evaluation. That means
you can use not   iszero(a^2-b) instead of hold( _not @ iszero )(a^2-b).

The following conditions treat assumptions on identifiers differently:

• a^2-b <> 0 takes into account assumptions on identifiers.
• not   iszero(a^2-b) disregards assumptions on identifiers.
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See “Example 4” on page 1-946 and “Example 5” on page 1-946.

Environment Interactions

The Fourier pair (pat, res) holds only for the current values of the Fourier transform
parameters specified by Pref::fourierParameters.

Calling ifourier::addpattern can change the expressions returned by future calls to
fourier and ifourier in the current MuPAD session.

Examples

Example 1

Compute the inverse Fourier transform of the function bar. By default, MuPAD does not
have a pattern for this function:

ifourier(bar(w), w, t)

Add a pattern for the inverse Fourier transform of bar using ifourier::addpattern:

ifourier::addpattern(bar(w), w, t, foo(t)):

Now ifourier returns the Fourier transform of bar:

ifourier(bar(w), w, t)

After you add a new transform pattern, MuPAD can use that pattern indirectly:

ifourier(exp(-a*I*s)*bar(2*s + 10), s, t)
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Example 2

Add this pattern for the inverse Fourier transform of the function bar:

ifourier::addpattern(bar(w), w, t, foo(t)):

ifourier(bar(w), w, t)

Now change the Fourier transform parameters using Pref::fourierParameters:

Pref::fourierParameters(a, b):

Evaluate the transform with the new parameters:

ifourier(bar(w), w, t)

For further computations, restore the default values of the Fourier transform
parameters:

Pref::fourierParameters(NIL):

Example 3

Define the inverse Fourier transform of bar(y) using variables y and x as parameters:

ifourier::addpattern(bar(y), y, x, foo(x)):

The ifourier function recognizes the added pattern even if you use other variables as
parameters:

ifourier(bar(w), w, t)
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Example 4

Use assumptions when adding the following pattern for the inverse Fourier transform:

ifourier::addpattern(bar(x, w), w, t, foo(x, t), [x], [abs(x) < 1]):

ifourier(bar(x, w), w, t) assuming abs(x) < 1/2

If |x| ≥ 1, you cannot apply these patterns:

ifourier(bar(x, w), w, t) assuming x < -1

If MuPAD cannot determine whether the conditions are satisfied, it returns a
piecewise object:

ifourier(bar(x, w), w, t)

Example 5

Add this pattern for the inverse Fourier transform of g:

ifourier::addpattern(g(a, w), w, t, f(a, t)/a):

ifourier(g(a, W), W, T)

This pattern holds only when the first argument of g is the symbolic parameter a. If you
use any other value of this parameter, ifourier ignores the pattern:
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ifourier(g(b, W), W, T);

ifourier(g(2, W), W, T)

To use the pattern for arbitrary values of the parameter, declare the parameter a as an
additional pattern variable:

ifourier::addpattern(g(a, w), w, t, f(a, t)/a, [a]):

Now ifourier applies the specified pattern for an arbitrary value of a:

ifourier(g(2, W), W, T)

ifourier(g(a^2 + 1, W), W, T)

Note that the resulting expression f(a, t)/a defining the Fourier transform of g(a,
w) implicitly assumes that the value of a is not zero. A strict definition of the pattern is:

ifourier::addpattern(g(a, w), w, t, f(a, t)/a, [a], [a <> 0]):

For this particular pattern, you can omit specifying the assumption a <> 0 explicitly. If
a = 0, MuPAD throws an internal “Division by zero.” error and ignores the pattern:

ifourier(f(0, W), W, T)
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Parameters

pat

Arithmetical expression in the variable w representing the pattern to match

w

Identifier or indexed identifier used as a variable in the pattern

t

Identifier or indexed identifier used as a variable in the result

res

Arithmetical expression in the variable t representing a pattern for the result

vars

List of identifiers or indexed identifiers used as “pattern variables” (placeholders in pat
and res). You can use pattern variables as placeholders for almost arbitrary MuPAD
expressions not containing w or t. You can restrict them by conditions given in the
optional parameter conds.

conds

List of conditions on the pattern variables

Return Values

Object of type DOM_NULL

See Also

MuPAD Functions
fourier | fourier::addpattern | ifourier

1-948



 igamma

igamma
Incomplete gamma function

Syntax
igamma(a, x)

Description

igamma(a, x) returns the upper incomplete gamma function .

Note: The MATLAB gammainc function returns the regularized lower incomplete
gamma function: igamma(a, x) = gamma(a)(1 - gammainc(x, a)). See the gamma
and gammainc function reference pages in the MATLAB documentation.

To find the lower incomplete gamma function for arguments a and x, subtract
igamma(a, x) from gamma(a).

A floating-point value is returned if at least one of the arguments is a floating-point value
and both values are numerical. Otherwise, symbolic calls of igamma and/or other special
functions may be returned.

The following simplifications and rewriting rules are implemented: ,
, , .

For real numerical values of a of Type::Real satisfying |a| ≤
Pref::autoExpansionLimit(), the functional relation

is used recursively to shift the first argument to the interval 0 ≤ a ≤ 1. Thus rewriting
in terms of Ei, erfc, and exp occurs if a is an integer multiple of . Cf. “Example
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1” on page 1-950. Use expand if these transformations are also desired for |a| >
Pref::autoExpansionLimit().

The special value igamma(a, infinity) = 0 for  is implemented.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

igamma(2, 3), igamma(1/7, x), igamma(sqrt(2), 3)

igamma(a, 4), igamma(1 + I, x^2 + 1), igamma(a, infinity)

If the first argument a is a real numerical value with |a| ≤ Pref::autoExpansionLimit(),
the functional relations are used recursively until igamma is called with a first argument
from the the interval 0 ≤ a ≤ 1:

igamma(-1/10, 1), igamma(7/4, 1)

If the first argument is an integer multiple of , then complete rewriting in terms of Ei,

erfc, and exp occurs:
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igamma(-3, x), igamma(-5/2, x), igamma(8, x), igamma(13/2, 4)

Floating point values are computed for floating-point arguments:

igamma(0.1, 4.0), igamma(7, 0.5), igamma(100, 100.0)

Example 2

The functional relation between igamma with different first arguments is used to
“normalize” the returned expressions:

igamma(-8, x), igamma(7/3, x)

Parameters

a, x

arithmetical expressions
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Return Values

Arithmetical expression.

Overloaded By

a, x

See Also

MuPAD Functions
Ei | erfc | exp | fact | gamma | int
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igcd
Greatest common divisor of integers and complex numbers with integer real and
imaginary parts

Syntax
igcd(i1, i2, …)

Description

igcd(i1, i2, ...) computes the greatest common divisor of the integers i1, i2, …

igcd computes the greatest common nonnegative divisor of a sequence of integers. If an
argument of igcd is a single integer number, the function returns the absolute value of
that argument.

igcd also computes the greatest common divisor of a sequence of complex numbers of the
domain DOM_COMPLEX. Both the real and the imaginary parts of all complex numbers in
a sequence must be integers. The greatest common divisor is a complex number with a
positive real part and a nonnegative imaginary part.

If all arguments are 0, igcd returns 0.

If there are no arguments, igcd also returns 0.

If one argument is a number, but is neither an integer nor a complex number with
integer real and imaginary parts, then igcd returns an error message.

If at least one of the arguments is 1 or -1, igcd returns 1. Otherwise, if one argument is
not a number, the igcd function returns a symbolic igcd call.

Examples

Example 1

Compute the greatest common divisor of the following integers:
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igcd(-10, 6), igcd(6, 10, 15)

a := 4420, 128, 8984, 488:

igcd(a), igcd(a, 64)

Example 2

Compute the greatest common divisor of the following complex numbers:

igcd(-10*I, 6), igcd(10 - 5*I, 20 - 10*I, 30 - 15*I)

Example 3

The following example shows some special cases:

igcd(), igcd(0), igcd(1), igcd(-1), igcd(2)

Example 4

If one argument is not a number, then the result is a symbolic igcd call. However, if at
least one of the arguments is 1 or -1, the greatest common divisor is always 1:

delete x:

igcd(a, x), igcd(1, x), igcd(-1, x)

type(igcd(a, x))
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Parameters

i1, i2, …

arithmetical expressions representing integers or arithmetical expressions representing
complex numbers of the domain DOM_COMPLEX, of which both the real part and the
imaginary part are integers.

Return Values

Nonnegative integer, a complex number both the real and imaginary parts of which are
integers, or a symbolic igcd call.

See Also

MuPAD Functions
content | div | divide | factor | gcd | gcdex | icontent | ifactor | igcdex |
ilcm | lcm | mod
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igcdex
Extended Euclidean algorithm for two integers

Syntax
igcdex(x, y)

Description

igcdex(x, y) computes the nonnegative greatest common divisor g of the integers x
and y and integers s and t such that g = sx + ty.

igcdex(x, y) returns an expression sequence g, s, t with three elements, where g is
the nonnegative greatest common divisor of x and y and s, t are integers such that g = sx
+ ty. These data are computed by the extended Euclidean algorithm for integers.

igcdex(0, 0) returns the sequence 0, 1, 0. If x is non-zero, then igcdex(0, x) and
igcdex(x, 0) return abs(x), 0, sign(x) and abs(x), sign(x), 0, respectively.

If both x and y are non-zero integers, then the numbers s,t satisfy the inequalities
 and .

If one of the arguments is a number but not an integer, then igcdex returns an error
message. If some argument is not a number, then igcdex returns a symbolic igcdex
call.

The function numlib::igcdmult is an extension of igcdex for more than two
arguments.

Examples

Example 1

We compute the greatest common divisor of some integers:
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igcdex(-10, 6)

igcdex(3839882200, 654365735423132432848652680)

The returned numbers satisfy the described equation:

[g, s, t] := [igcdex(9, 15)];

g = s*9 + t*15

If one argument is not a number, the result is the a symbolic igcdex call:

delete x:

igcdex(4, x)

Parameters

x, y

arithmetical expressions representing integers

Return Values

Sequence of three integers, or a symbolic igcdex call.
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See Also

MuPAD Functions
div | divide | factor | gcd | gcdex | ifactor | igcd | ilcm | lcm | mod |
numlib::igcdmult
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ilaplace
Inverse Laplace transform

Syntax
ilaplace(F, s, t)

Description

ilaplace(F, s, t) computes the inverse Laplace transform of the expression F =
F(s) with respect to the variable s at the point t.

The inverse Laplace transform can be defined by a contour integral in the complex plane:

,

where c is a suitable complex number.

If ilaplace cannot find an explicit representation of the transform, it returns an
unevaluated function call. See “Example 3” on page 1-961.

If F is a matrix, ilaplace applies the inverse Laplace transform to all components of the
matrix.

To compute the direct Laplace transform, use laplace.

Examples

Example 1

Compute the inverse Laplace transforms of these expressions with respect to the variable
s:
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ilaplace(1/(a + s), s, t)

ilaplace(1/(s^3 + s^5), s, t)

ilaplace(exp(-2*s)/(s^2 + 1) + s/(s^3 + 1), s, t)

Example 2

Compute the inverse Laplace transform of this expression with respect to the variable s:

f := ilaplace(1/(1 + s)^2, s, t)

Evaluate the inverse Laplace transform of the expression at the points t = - 2 t0 and t = 1.
You can evaluate the resulting expression f using | (or its functional form evalAt):

f | t = -2*t_0

Also, you can evaluate the inverse Laplace transform at a particular point directly:

ilaplace(1/(1 + s)^2, s, 1)
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Example 3

If laplace cannot find an explicit representation of the transform, it returns an
unevaluated call:

ilaplace(1/(1 + sqrt(t)), t, s)

laplace returns the original expression:

laplace(%, s, t)

Example 4

Compute this inverse Laplace transform. The result is the Dirac function:

ilaplace(1, s, t)

Parameters

F

Arithmetical expression or matrix of such expressions

s

Identifier or indexed identifier representing the transformation variable

t

Arithmetical expression representing the evaluation point
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Return Values

Arithmetical expression or unevaluated function call of type ilaplace. If the first
argument is a matrix, then the result is returned as a matrix.

Overloaded By

F

See Also

MuPAD Functions
ilaplace::addpattern | laplace | laplace::addpattern
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ilaplace::addpattern
Add patterns for the inverse Laplace transform

Syntax
ilaplace::addpattern(pat, s, t, res, <vars, <conds>>)

Description

ilaplace::addpattern(pat, s, t, res) teaches ilaplace to return ilaplace(pat,
s, t) = res.

The ilaplace function uses a set of patterns for computing inverse Laplace transforms.
You can extend the set by adding your own patterns. To add a new pattern to the
pattern matcher, use ilaplace::addpattern. MuPAD does not save custom patterns
permanently. The new patterns are available in the current MuPAD session only.

Variable names that you use when calling ilaplace::addpattern can differ from the
names that you use when calling ilaplace. See “Example 2” on page 1-964.

You can include a list of free parameters and a list of conditions on these parameters.
These conditions and the result are protected from premature evaluation. This means
that you can use not   iszero(a^2 - b) instead of hold( _not @ iszero )(a^2
- b).

The following conditions treat assumptions on identifiers differently:

• a^2 - b <> 0 takes into account assumptions on identifiers.
• not   iszero(a^2 - b) disregards assumptions on identifiers.

See “Example 4” on page 1-966.

Environment Interactions

Calling ilaplace::addpattern changes the expressions returned by future calls to
ilaplace.
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Examples

Example 1

Compute the inverse Laplace transform of the function bar. By default, MuPAD does not
have a pattern for this function:

ilaplace(bar(s), s, t)

Add a pattern for the inverse Laplace transform of bar using ilaplace::addpattern:

ilaplace::addpattern(bar(s), s, t, foo(t)):

Now ilaplace returns the inverse Laplace transform of bar:

ilaplace(bar(s), s, t)

After you add a new transform pattern, MuPAD can use that pattern indirectly:

ilaplace(exp(-s)*bar(s), s, t)

Example 2

Define the inverse Laplace transform of bar(y) using the variables x and y as
parameters:

ilaplace::addpattern(bar(y), y, x, foo(x)):

The ilaplace function recognizes the added pattern even if you use other variables as
parameters:

ilaplace(bar(s), s, t)
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Example 3

Add this pattern for the inverse Laplace transform of F:

ilaplace::addpattern(F(c, S)*G(c, S), S, T, T/(T^4 + 4*c^4)):

ilaplace(F(c, s)*G(c, s), s, t)

This pattern holds only when the first argument of F is the symbolic parameter c. If you
use any other value of this parameter, ilaplace ignores the pattern:

ilaplace(F(A, s)*G(A, s), s, t)

To use the pattern for arbitrary values of the parameter, declare the parameter c as an
additional pattern variable:

ilaplace::addpattern(F(c, S)*G(c, S), S, T, T/(T^4 + 4*c^4), [c]):

Now ilaplace applies the specified pattern for an arbitrary value of c:

ilaplace(F(C, s)*G(C, s), s, t)

You also can declare several parameters as pattern variables. For example, this pattern
has two pattern variables, a and b:

ilaplace::addpattern(f(a*y + b), y, x, g(x/a - b), [a, b]):

ilaplace(f(2*s + B), s, t)
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Example 4

Use assumptions when adding this pattern for the inverse Laplace transform:

ilaplace::addpattern(BAR(x*s), s, t, sin(1/(x - 1/2))*FOO(t),

                                       [x], [abs(x) < 1]):

ilaplace(BAR(x*s), s, t) assuming -1 < x < 1

If |x| ≥ 1, you cannot apply this pattern:

ilaplace(BAR(x*s), s, t) assuming x >= 1

If MuPAD cannot determine whether the conditions are satisfied, it returns a
piecewise object:

ilaplace(BAR(x*s), s, t)

Note that the resulting expression defining the inverse Laplace transform of BAR(x*s)
implicitly assumes that the value of x is not 1/2. A strict definition of the pattern is:

ilaplace::addpattern(BAR(x*t), s, t, sin(1/(x - 1/2))*FOO(t),

                     [x], [abs(x) < 1, x <> 1/2]):

If either the conditions are not satisfied or substituting the values into the result gives an
error, ilaplace ignores the pattern. For this particular pattern, you can omit specifying
the assumption x <> 1/2. If x = 1/2, MuPAD throws an internal “Division by zero.”
error and ignores the pattern:

ilaplace(BAR(s/2), s, t)
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Parameters

pat

Arithmetical expression in the variable s representing the pattern to match.

s

Identifier or indexed identifier used as a variable in the pattern

t

Identifier or indexed identifier used as a variable in the result

res

Arithmetical expression in the variable t representing a pattern for the result

vars

List of identifiers or indexed identifiers used as “pattern variables” (placeholders in pat
and res). You can use pattern variables as placeholders for almost arbitrary MuPAD
expressions not containing s or t. You can restrict them by conditions given in the
optional parameter conds.

conds

List of conditions on the pattern variables

Return Values

Object of type DOM_NULL

See Also

MuPAD Functions
ilaplace | laplace | laplace::addpattern
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ilcm
Least common multiple of integers

Syntax
ilcm(i1, i2, …)

Description

ilcm(i1, i2, ...) computes the least common multiple of the integers i1, i2, …

ilcm computes the least common nonnegative multiple of a sequence of integers. ilcm
with a single numeric argument returns its absolute value. ilcm returns 1 when all
arguments are 1 or -1 or no argument is given.

ilcm returns an error message when one of the arguments is a number but not an
integer. If at least one of the arguments is 0, then ilcm returns 0. Otherwise, if one
argument is not a number, then a symbolic ilcm call is returned.

Examples

Example 1

We compute the least common multiple of some integers:

ilcm(-10, 6), ilcm(6, 10, 15)

a := 4420, 128, 8984, 488:

ilcm(a), ilcm(a, 64)
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The next example shows some special cases:

ilcm(), ilcm(0), ilcm(1), ilcm(-1), ilcm(2)

If one argument is not a number, then the result is a symbolic ilcm call, except in some
special cases:

delete x:

ilcm(a, x), ilcm(0, x)

type(ilcm(a, x))

Parameters

i1i2, …

arithmetical expressions representing integers

Return Values

Nonnegative integer, or a symbolic ilcm call.

See Also

MuPAD Functions
content | factor | gcd | gcdex | icontent | ifactor | igcd | igcdex | lcm
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in, _in
Membership

Syntax
x in set

_in(x, set)

for y in object do body end_for

f(y) $ y in object

Description

x in set is the MuPAD notation for the statement “x is a member of set.”

In conjunction with one of the keywords for or $, the meaning changes to “iterate over
all operands of the object”. See for and $ for details. Cf. “Example 6” on page 1-973.

Apart from the usage with for and $, the statement x in object is equivalent to the
function call _in(x, object).

x in set is just evaluated to itself. expand(x in set) tries to return an equivalent
expression without using the operator in, as described in the following paragraphs.

For sets of type DOM_SET, set unions, differences and intersections, x in set is
expanded to an equivalent Boolean expression of equations and expressions involving in.
Cf. “Example 1” on page 1-971.

If set is a solution set of a single equation in one unknown, given by a symbolic call to
solve, expanding in returns a Boolean condition that is equivalent to x being a solution.
Cf. “Example 2” on page 1-971.

If set is a RootOf expression, expanding in returns a Boolean condition that is
equivalent to x being a root of the corresponding equation. Cf. “Example 3” on page
1-972.
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The function bool and every function that uses boolean evaluation can also handle many
logical expressions involving in. Cf. “Example 4” on page 1-972.

The function is handles various logical statements involving in, including a variety of
types for the parameter set which are not handled by in itself. Cf. “Example 5” on page
1-973 for a few typical cases.

Apart from the usual overloading mechanism by the first argument of an in call,
in can be overloaded by its second argument, too. This argument must define the
slot"set2expr" for this purpose. The slot will be called with the arguments set, x.

Examples

Example 1

x in {1, 2, 3} is expanded into an equivalent statement involving = and or:

expand(x in {1, 2, 3})

The same happens if you replace x by a number, because Boolean expressions are only
evaluated inside certain functions such as bool or is:

expand(1 in {1, 2, 3}), bool(1 in {1, 2, 3}), is(1 in {1, 2, 3})

If only some part of the expression can be simplified this way, the returned expression
can contain unevaluated calls to in:

expand(x in {1, 2, 3} union A)

Example 2

For symbolic calls to solve representing the solution set of a single equation in one
unknown, in can be used to check whether a particular value lies in the solution set:
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solve(cos(x) + x = cos(2) + 2, x);

expand(2 in %), bool(2 in %)

Example 3

in can be used to check whether a value is a member of the solution set represented by a
RootOf expression:

r := RootOf(x^2 - 1, x);

expand(1 in r), bool(1 in r), expand(2 in r), bool(2 in r)

expand((y - 1) in RootOf(x^2 - 1 - y^2 + 2*y, x))

expand(%)

delete r:

Example 4

Expressions with operator in are boolean expressions: they can be used like equations or
inequalities.

if 2 in {2, 3, 5} then "ok" end
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Example 5

The MuPAD function is can investigate membership of objects in infinite sets. It
respects properties of identifiers:

is(123 in Q_), is(2/3 in Q_)

Example 6

In conjunction with for and $, y in object iterates y over all operands of the object:

for y in [1, 2] do

   print(y)

end_for:

y^2 + 1 $ y in a + b*c + d^2

delete y:

Parameters

x

An arbitrary MuPAD object
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set

A set or an object of set-like type

y

An identifier or a local variable (DOM_VAR) of a procedure

object, f(y)

Arbitrary MuPAD objects

Return Values

x in set just returns the input.

Overloaded By

set, x

See Also

MuPAD Functions
_seqin | bool | contains | for | has | is
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indets
Indeterminates of an expression

Syntax
indets(object)

indets(object, <All>)

indets(object, <PolyExpr>)

indets(object, <RatExpr>)

Description

indets(object) returns the indeterminates contained in object.

indets(object) returns the indeterminates of object as a set, i.e., the identifiers
without a value that occur in object, with the exception of those identifiers occurring in
the 0th operand of a subexpression of object (see “Example 1” on page 1-975).

indets regards the special identifiers PI, EULER, CATALAN as indeterminates, although
they represent constant real numbers. If you want to exclude these special identifiers,
use indets(object) minus Type::ConstantIdents (see example “Example 1” on
page 1-975).

If object is a polynomial, a function environment, a procedure, or a built-in
kernelfunction, then indets returns the empty set. See “Example 2” on page 1-977.

Examples

Example 1

Consider the following expression:

delete g, h, u, v, x, y, z:
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e := 1/(x[u] + g^h) - f(1/3) + (sin(y) + 1)^2*PI^3 + z^(-3)*v^(1/2)

indets(e)

Note that the returned set contains x and u and not, as one might expect, x[u], since
internally x[u] is converted into the functional form _index(x, u). Moreover,
the identifier f is not considered an indeterminate, since it is the 0th operand of the
subexpression f(1/3).

Although PI mathematically represents a constant, it is considered an indeterminate by
indets. Use Type::ConstantIdents to circumvent this:

indets(e) minus Type::ConstantIdents

The result of indets is substantially different if one of the two options RatExpr or
PolyExpr is specified:

indets(e, RatExpr)

Indeed, e is a rational expression in the “indeterminates” z, PI, sin(y), g^h,
x[u], v^(1/2): e is built from these atoms and the constant expression f(1/3) by
using only the rational operations + , -, *, /, and ^ with integer exponents. Similarly, e is
built from PI,sin(y),z^(-3),1/(g^h+x[u]),v^(1/2) and the constant expression
f(1/3) using only the polynomial operations +, -, *, and ^ with nonnegative integer
exponents:

indets(e, PolyExpr)
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Example 2

indets also works for various other data types. Polynomials and functions are
considered to have no indeterminates:

delete x, y:

indets(poly(x*y, [x, y])), indets(sin), indets(x -> x^2+1)

For container objects, indets returns the union of the indeterminates of all entries:

indets([x, exp(y)]), indets([x, exp(y)], PolyExpr)

For tables, only the indeterminates of the entries are returned; indeterminates in the
indices are ignored:

indets(table(x = 1 + sin(y), 2 = PI))

Example 3

In the previous examples we saw that the 0th operand of a subexpression is not used for
finding indeterminates. With the option All this is changed:

delete x: e := sin(x):

indets(e, All)

A more complex example:
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delete g, h, u, v, y, z:

e := 1/(x[u] + g^h) - f(1/3) + (sin(y) + 1)^2*PI^3 + z^(-3)*v^(1/2)

indets(e,All)

delete e:

Parameters

object

An arbitrary object

Options

All

Identifiers occurring in the 0th operand of a subexpression of object are also included
in the result.

With this option, the 0th operand of a subexpression is not excluded from the search for
indeterminates of object. So if the 0th operand of a subexpression is a indeterminate
e.g. like sin it is included in the result, Cf. “Example 3” on page 1-977.

PolyExpr

Return a set of arithmetical expressions such that object is a polynomial expression in
the returned expressions

With this option, object is considered as a polynomial expression. Non-polynomial
subexpressions, such as sin(x), x^(1/3), 1/(x+1), or f(a, b), are considered as
indeterminates and are included in the returned set. However, subexpressions such
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as f(2, 3) are considered as constants even when the identifier f has no value. The
philosophy behind this is that the expression is constant because the operands are
constant (see “Example 1” on page 1-975).

If object is an array, a list, a set, or a table, then indets returns a set of arithmetical
expressions such that each entry of object is a polynomial expression in these
expressions. See “Example 2” on page 1-977.

RatExpr

Return a set of arithmetical expressions such that object is a rational expression in the
returned expressions

With this option, object is considered as a rational expression. Similar to PolyExpr,
non-rational subexpressions are considered as indeterminates (see “Example 1” on page
1-975).

Return Values

set of arithmetical expressions.

Overloaded By

object

Algorithms

If object is an element of a library domainT that has a slot "indets", then the slot
routine T::indets is called with object as argument. This can be used to extend the
functionality of indets to user-defined domains. If no such slot exists, then indets
returns the empty set.

See Also

MuPAD Functions
collect | domtype | op | poly | rationalize | type | Type::Indeterminate |
Type::PolyExpr | Type::RatExpr
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[], _index
Indexed access

Syntax
x[ i ]

x[ i1,i2,... ]

x[ i1..i2 ]

x[ [i1,i2,...] ]

x[ [i1,i2,...], [k1,k2,...] ]

_index( x, i )

_index( x, i1,i2,... )

_index( x, i1..i2 )

_index( x, [i1,i2,...] )

_index( x, [i1,i2,...], [k1,k2,...] )

Description

_index is a functional form of the [] operator. The calls x[...] and _index(x,...)
are equivalent.

x[i] returns the entry of x corresponding to the index i. Any MuPAD object x allows an
indexed call of the form x[i]. If x is not a container object (such as sets, lists, vectors,
arrays, hfarrays, tables, matrices), then x[i] returns a symbolic indexed object. In
particular, if x is an identifier, then x[i] returns an “indexed identifier”. In this case,
indices can be arbitrary MuPAD objects. See “Example 1” on page 1-982.

x[i1,i2,...] returns the entries of x corresponding to the indices i1,i2,...,
specified as a sequence. For example, if x is a matrix, then x[2, 3] returns the third
element of the second row of x.
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x[i1..i2] returns the entries of x corresponding to integer indices in the range
[i1..i2], including x[i1] and x[i2]. In particular, this applies to lists, sets,
expression sequences, and strings. See “Example 7” on page 1-985.

x[[i1,i2,...]] returns the entries of x corresponding to the specified indices, given as
a list of integers. Here, x must be a list, matrix, or vector.

• If x is a list, then x[[i1,i2,...]] returns the list [x[i] $ i in [i1,i2,...]].
See “Example 8” on page 1-987.

• If x is a row vector, then x[[i1,i2,...]] returns the row vector matrix(1,
nops([i1,i2,...]), [x[i] $ i in [i1,i2,...]]).

• If x is a column vector, then x[[i1,i2,...]] returns the column vector
matrix(nops([i1,i2,...]), 1, [x[i] $ i in [i1,i2,...]]).

x[[i1,i2,...],[k1,k2,...]] returns the matrix matrix([[x[i,k] $ k in
[k1,k2,...]] $ i in [i1,i2,...]]). Here, x must be a matrix. See “Example 9”
on page 1-987.

Depending on the type of x, these restrictions apply to the indices:

• For lists, finite sets, or expression sequences, the index i can only be an integer from
1 to nops(x), or-nops(x) to -1, or a range of these numbers.

• For arrays and hfarrays, use appropriate indices i or multiple indices i1,i2,...
from the index range defined by array or hfarray. Integers outside this range cause
an error. If any specified index is not an integer (for example, a symbol i), then x[i]
or x[i1,i2,...] is returned symbolically.

• For matrices, use appropriate indices i or double indices i1,i2 from the index range
defined by matrix. Indices outside this range or symbolic indices cause an error.

• For tables, you can use any object as an index. If there is no corresponding entry in
the table, then x[i] or x[i1,i2,...] is returned symbolically.

• For character strings, the index i must be an integer from 1 to length(x).

_index uses the order in which the entries appear on the screen, and op uses the
internal order of the entries. For some container objects, these orders differ. In
particular:

• For lists and sequences, x[i] = op(x,i) for positive indices. For negative indices,
x[i] = op(x, nops(x) + 1 + i).
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• For finite sets, x[i] returns the ith element as printed on the screen. Before
screen output and indexed access, the elements of sets are sorted via the slot
DOM_SET::sort. In general, x[i] <> op(x, i) for finite sets x.

• For one-dimensional arrays x := array(1..n, [...]) or x := hfarray(1..n,
[...]), the entries correspond to the operands, x[i] = op(x,i).

• For a one-dimensional matrix representing a column vector, x[i] = x[i, 1] =
op(x, i). For a one-dimensional matrix representing a row vector, x[i] = x[1,
i] = op(x, i).

The entry returned by an indexed call is fully evaluated. For lists, matrices, arrays, and
tables, you can suppress evaluation in indexed calls by using indexval. See “Example
10” on page 1-987.

Indexed access to expressions and numbers is implemented via library callbacks. Do not
use _index in program files to access the operands of expressions and numbers. Use op
instead for more efficiency.

If x is not a container object (such as sets, lists, vectors, arrays, hfarrays, tables,
matrices), then indexed assignments (such as x[i] := value) implicitly convert x into
a table with a single entry.

Examples

Example 1

Solve these equations specifying variables as indexed identifiers:

n := 4: 

equations := {x[i-1] - 2*x[i] + x[i+1] = 1 $ i = 1..n}:

unknowns := {x[i] $ i = 1..n}:

linsolve(equations, unknowns)

Symbolic indexed objects are of type "_index":

type(x[i])
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delete n, equations, unknowns:

Example 2

Use indices to access the entries of typical container objects, such as lists, arrays,
hardware floating-point arrays, and tables:

L := [1, 2, [3, 4]]:

A := array(1..2, 2..3, [[a12, a13], [a22, a23]]):

B := hfarray(1..2, 2..3, [[12.0, 13.0], [22.0, 23.0]]):

T := table(1 = T1, x = Tx, (1, 2) = T12):

L[1], L[3][2], A[2, 3], B[2, 3], T[1], T[x], T[1, 2]

Use indexed assignments to change the entries:

L[2]:= 22: L[3][2]:= 32: A[2, 3]:= 23: B[2, 3]:= 0: T[x]:= T12: 

L, A, B, T

delete L, A, B, T:

Example 3

For finite sets, an indexed call x[i] returns the ith element as printed on the screen.
This element does not necessarily coincide with the ith (internal) operand returned by
op:

S := {3, 2, 1}
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S[i] $ i = 1..3

op(S, i) $ i = 1..3

delete S:

Example 4

The index operator also operates on character strings. The characters are enumerated
starting from 1:

"ABCDEF"[1], "ABCDEF"[6]

Example 5

The index operator also operates on mathematical expressions containing operators, such
as +, -, *, and so on:

X := a - b + c - 2;

X[2], X[3..-1];

delete X:

For expressions with _plus- and _mult operators, the output of _index corresponds to
the output order of the operands. If an expression with _mult is printed as a fraction,
you can access the nominator and the denominator via indices 1 and 2:

X := ((a/2 + b) * c * 2)/(e-f)/x^2;
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X[1], X[2], X[1][3];

delete X:

Example 6

The index operator also operates on rational and complex numbers. For rational
numbers, index 1 refers to the numerator, and index 2 refers to the denominator:

(2/3)[1], (2/3)[2]

For complex numbers, indices 1 and 2 refer to the real and imaginary parts, respectively:

(3*I)[1], (1-I)[2]

Example 7

You can use a range as an index. For lists, sets, expression sequences, and strings, this
operation returns a “subexpression” consisting of the entries within the range, according
to _index:

L := [1, 2, 3, 4, 5]:

S := {1, 2, 3, 4, 5}:

Str := "abcde":

L[3..4];

S[3..4];

Str[3..4]
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This includes ranges with negative numbers. When you use negative indices i for
container type objects x, such as lists and sets, the call x[i] returns x[nops(x) + 1 +
i]. Thus, you access elements counting indices from the end of x: the index -1 refers to
the last element of x, the index -2 refers to the second element from the end, and so on.

L[3..-1];

S[1..-2]

When you use negative indices i for strings, _index internally replaces Str[i] with
indices op(Str, i + 1 + length(Str)):

Str[3..-1]

You also can use this form of indexing to assign values to elements of lists and strings:

L[2..4] := [234]: L;

Str[3..-1] := " ??": Str;

As seen above, this operation can change the number of elements in a list or the length of
a string. If necessary, new places are filled with NIL or spaces, respectively:
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L[42..42] := [42]: L;

Str[10..11] := "the end.": Str

Example 8

Use the following indexed call to return a permutation of the list L. Here, the index list
perm specifies the permutation.

L := [a, b, c, d, e]:

perm := [5, 3, 1, 2, 4]:

L[perm]

Example 9

Use two lists of indices to pick and return a particular submatrix of a matrix:

A := matrix([[a11, a12, a13], [a21, a22, a23], [a31,a32, a33]]):

l1 := [1,2]: l2 := [2,3]:

A[l1, l2]

Example 10

Indexed calls evaluate the returned entry. Use indexval to suppress full evaluation:

delete a: 

x := [a, b]: a := c:
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x[1] = eval(x[1]), x[1] <> indexval(x, 1)

delete a: 

x := table(1 = a, 2 = b): a := c:

x[1] = eval(x[1]), x[1] <> indexval(x, 1)

delete a: 

x := array(1..2, [a, b]): a := c: 

x[1] = eval(x[1]), x[1] <> indexval(x, 1)

delete a: x := matrix([a, b]): a := c:

x[1] = eval(x[1]), x[1] <> indexval(x, 1)

delete x, a:

Example 11

Indexed access is not implemented for some kernel domains:

12343[3]

Error: The operand is invalid. [_index]

Define a method implementing the indexed access to integer numbers:

unprotect(DOM_INT):

DOM_INT::_index := (n, i) -> text2expr(expr2text(n)[i]):

12343[3];

delete DOM_INT::_index: protect(DOM_INT):

1-988



 [], _index

Parameters

x

An arbitrary MuPAD object. In particular, a container object: a list, a finite set, an array,
an hfarray, a matrix, a table, an expression sequence, an expression in operator notation,
a rational number, a complex number, or a character string.

i

An index. For most container objects x, indices must be integers. If x is a table, you can
use arbitrary MuPAD objects as indices.

i1,i2,...

Multiple indices for matrices and multidimensional arrays. For these containers, the
indices must be integers. For tables, you can also use multiple indices given by arbitrary
MuPAD objects.

i1..i2

Indices, specified as a range.

[i1,i2,...]

Indices, specified as a list of integers. In this case, x must be a list, matrix, or vector. (In
MuPAD, a vector is a 1⨉n or n×1 matrix.)

[i1,i2...], [k1,k2...]

Indices, specified as two lists of integers. In this case, x must be a matrix.

Return Values

Entry of x corresponding to the index. Calls with lists of indices can return a sequence,
a list, a vector, or a matrix of entries corresponding to the indices. If x is not a list, a set,
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an array, or any other container object, then the return value is an indexed object of type
"_index".

Overloaded By

x

See Also

MuPAD Domains
DOM_ARRAY | DOM_HFARRAY | DOM_LIST | DOM_SET | DOM_STRING | DOM_TABLE

MuPAD Functions
:= | _assign | array | contains | hfarray | indexval | op | slot | table |
Type::Indeterminate
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indexval
Indexed access to arrays and tables without evaluation

Syntax
indexval(x, i)

indexval(x, i1, i2, …)

Description

indexval(x, i) and indexval(x, i1, i2, ...) yields the entry of x
corresponding to the indices i and i1, i2, ..., respectively, without evaluation.

The three calls indexval(x, i), _index(x, i), and x[i] all return the element
of index i in the array or hfarray or list or table x. In contrast to _index and the
equivalent index operator [ ], however, indexval returns the corresponding entry
without evaluating it. This is sometimes desirable for efficiency reasons.

The arguments i or i1, i2, ... must be a valid indices of x, otherwise an error message is
printed (see “Example 3” on page 1-993). When several indices i1, i2, ... are given, they
are interpreted as a higher-dimensional index (see “Example 4” on page 1-994).

The first argument x may also be a set, a string, or an expression sequence. However,
in these cases indexval behaves exactly like _index and the index operator [ ]: it
returns the evaluation of the corresponding element. In particular, indexval does not
flatten its first argument.

For all other basic domains, indexval behaves exactly like _index: either an error
occurs, or a symbolic indexval call is returned (see “Example 3” on page 1-993).

Examples

Example 1

indexval works with tables:
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T := table("1" = a, Be = b, `+` = a + b):

a := 1: b := 2:

indexval(T, Be), indexval(T, "1"), indexval(T, `+`)

In contrast _index evaluates returned entries:

_index(T, Be), _index(T, "1"), _index(T, `+`)

The next input line has the same meaning as the last:

T[Be], T["1"], T[`+`]

indexval works with arrays, too. The behavior is the same, but the indices must be
positive integers:

delete a, b:

A := array(1..2, 1..2, [[a, a + b], [a - b, b]]):

a := 1: b := 2:

indexval(A, 2, 2), indexval(A, 1, 1), indexval(A, 1, 2)

_index(A, 2, 2), _index(A, 1, 1), _index(A, 1, 2)

A[2, 2], A[1, 1], A[1, 2]

delete A, T, a, b:
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indexval works lists, too:

delete a, b:

L := [a, b, 2]:

b := 5:

L[2], _index(L, 2), indexval(L, 2), op(L, 2)

Example 2

However, there is no difference between indexval and _index for all other valid
objects, e.g., sets:

delete a, b:

S := {a, b, 2}:

b := 5:

S[2], _index(S, 2), indexval(S, 2), op(S, 2)

Similarly, there is no difference when the first argument is an expression sequence
(which is not flattened by indexval):

delete a, b: S := a, b, 2:

b := 5:

S[2], _index(S, 2), indexval(S, 2), op(S, 2)

delete L, S, a, b:

Example 3

If the second argument is not a valid index, an error occurs:

A := array(1..2, 1..2, [[a, b], [a, b]]):

indexval(A, 3)

1-993



1 The Standard Library

Error: Index dimension mismatch. [array]

indexval(A, 1, 0)

Error: The argument is invalid. [array]

indexval("12345", 6)

Error: The index is invalid. [string]

However, the result of indexval can also be a symbolic indexval call:

T := table(1 = a, 2 = b):

indexval(T, 3)

delete X, i:

indexval(X, i)

delete A, T:

Example 4

For arrays the number of indices must be equal to the number of dimensions of the array:

A := array(1..2, 1..2, [[a, b], [a, b]]):

a := 1: b := 2:

indexval(A, 1, 2), indexval(A, 2, 1)

Otherwise an error occurs:

indexval(A, 1)

Error: Index dimension mismatch. [array]
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Tables can have expression sequences as indices, too:

delete a, b:

T := table((1, 1) = a, (2, 2) = b):

a := 1: b := 2:

indexval(T, 1, 1), indexval(T, 2, 2)

delete A, T, a, b:

Parameters

x

Essentially a table, a list, or an array. Also allowed: a hfarray, a finite set, an expression
sequence, or a character string

i, i1, i2, …

Indices. For most “containers” x, indices must be integers. If x is a table, arbitrary
MuPAD objects can be used as indices.

Return Values

Entry of x corresponding to the index. When x is a table, a list or an array, the returned
entry is not evaluated again.

Overloaded By

x

See Also

MuPAD Domains
DOM_ARRAY | DOM_HFARRAY | DOM_LIST | DOM_SET | DOM_STRING | DOM_TABLE
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MuPAD Functions
:= | _assign | _index | array | contains | op | table
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infinity
Real positive infinity

Syntax
infinity

Description

infinity represents the infinite point on the positive real semi-axis.

infinity is an element of the domain stdlib::Infinity. It may be used in
arithmetical operations. Some system functions accept infinity as a parameter or
return it as a result.

Examples

Example 1

infinity can be used in arithmetical operations with real numbers:

7*infinity + 3, -3.0*infinity, 1/infinity,

infinity*infinity, infinity^2, sqrt(infinity)

Arithmetic with complex numbers or symbolic objects yields symbolic expressions:

I*infinity + b

The arithmetic responds to properties:

assume(a > 0): a*infinity
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assume(a < 0): a*infinity

unassume(a): a*infinity

Cancellation of infinities yields undefined:

infinity - infinity, infinity/infinity

Some system functions accept infinity as a parameter or return it as result:

exp(infinity), sum(1/n, n = 1..infinity),

int(exp(-x^2), x = -infinity..infinity),

limit(x, x = infinity)

See Also

MuPAD Functions
complexInfinity | undefined
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info
Prints short information

Syntax
info(object)

info()

Description

info(object) prints short information about object.

info prints a short descriptive information about object.

If object is a domain, additional information is given about the methods of the domain.

A call to info without arguments prints a reference to a random help page.

Users can add information about their own functions and domains by overloadinginfo.
If object is a user-defined domain or function environment providing a slot"info",
whose value is a string, then the call info(object) prints this string. See “Example 2”
on page 1-1000.

Examples

Example 1

With info(), you obtain a reference to a random help page:

info()

-- Help page of the day:   
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?input

The next example shows information about the library property:

info(property)

Library 'property': properties of identifiers

-- Interface:

property::depends, property::hasprop,      

info prints information about preferences:

info(Pref::autoPlot)

Automatically plot graphical objects instead of typesetting

If no more information is available, a short type description is given:

info(a + b):

info([a, b]):

a + b -- an expression of type "_plus"

[a, b] -- of domain type 'DOM_LIST'

Example 2

info prints information about a function environment:

info(sqrt)

sqrt -- the square root

sqrt is a function environment and has a slot named "info":

domtype(sqrt), sqrt::info
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User-defined procedures can contain short information. By default, info does only
return some general information:

f := x -> x^2:  info(f):

f(x) -- a procedure of domain type 'DOM_PROC'

To improve this, we embed the function f into a function environment and store an
information string in its "info" slot:

f := funcenv(f):

f::info := "f -- the squaring function":

info(f)

f -- the squaring function

delete f:

Parameters

object

Any MuPAD object

Return Values

Void object null() of type DOM_NULL.

Algorithms

If the argument object of info is a domain, then the call info(object) first prints
the entry "info", which must be a string. Then the entry "interface", which must
be a set of identifiers, is used to display all public methods, and the entry "exported",
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which is a set of identifiers created by export::stl, is used to display all exported
methods.

See Also

MuPAD Functions
help | print
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input

Interactive input of objects

Syntax

input(<prompt1>)

input(<prompt1>, x1, <prompt2>, x2, …)

Description

input allows interactive input of MuPAD objects.

input() displays the prompt “Please enter expression:” and waits for input by
the user. The input, terminated by pressing the Return key, is parsed and returned
unevaluatedly.

input(prompt1) uses the character string prompt1 instead of the default prompt
“Please enter expression:”.

input( prompt1 x1) assigns the input to the identifier or local variable x1. The
default prompt is used, if no prompt string is specified.

Several objects can be read with a single input command. Each identifier or variable
in the sequence of arguments makes input return a prompt, waiting for input to be
assigned to it. A character string preceding an identifier or variable in the argument
sequence replaces the default prompt (see “Example 2” on page 1-1005). Arguments that
are neither prompt strings nor identifiers or variables are ignored.

The identifiers or variables x1 etc. may have values. These are overwritten by input.

input only parses the input objects for syntactical correctness. It does not evaluate
them. Use eval to evaluate the results (see “Example 3” on page 1-1005).
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Examples

Example 1

The default prompt is displayed. The input is returned without evaluation:

input()

Please enter expression: << 1 + 2 >> 

A character string is used as a prompt:

input("enter a number: ")

enter a number: << 5

>> 

The input may be assigned to an identifier:

input(x)

Please enter expression: << 5 >> 

x

A user-defined prompt is used, the input is assigned to an identifier:

input("enter a number: ", x)

enter a number: << 6

>> 
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x

delete x:

Example 2

If several objects are to be read, for each object a separate prompt can be defined:

input("enter a matrix: ", A, "enter a vector: ", x)

enter a matrix: << matrix([[a11,

a12], [a21, a22]]) >> 

enter

a vector: << matrix([x1, x2]) >> 

matrix([x1, x2])

A, x

delete A, x:

Example 3

The following procedure asks for an expression and a variable. After interactive input,
the derivative of the expression with respect to the variable is computed:

interactiveDiff :=

  proc() 

    local f, x;

  begin

     f := input("enter an expression: ");

     x := input("enter an identifier: ");

     print(Unquoted, "The derivative of " . expr2text(f) .
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           " with respect to ". expr2text(x) . " is:");

     diff(f, x)

  end_proc:

interactiveDiff()

enter an expression: <<

x^2 + x*y^3 >> 

enter an identifier:

<< x >> 

 The derivative

of x^2 + x*y^3 with respect to x is: 

The function input does not evaluate the input. This leads to the following unexpected
result:

f := x^2 + x*y^3:

z := x:

interactiveDiff()

enter

an expression: << f >> 

enter

an identifier: << z >> 

 The

derivative of f with respect to z is: 

The following modification enforces full evaluation via eval:

interactiveDiff :=

  proc() 

    local f, x;

  begin

     f := eval(input("enter an expression: "));

     x := eval(input("enter an identifier: "));

     print(Unquoted, "The derivative of " . expr2text(f) .
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           " with respect to ". expr2text(x) . " is:");

     diff(f, x)

  end_proc:

interactiveDiff()

enter an expression: <<

f >> 

enter an identifier:

<< z >> 

 The derivative

of x^2 + x*y^3 with respect to x is: 

delete interactiveDiff, f, z:

Parameters

prompt1, prompt2, …

Input prompts: character strings

x1, x2, …

identifiers or local variables

Return Values

Last input

See Also

MuPAD Functions
finput | fprint | fread | ftextinput | import::readbitmap |
import::readdata | print | read | text2expr | textinput | write
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int
Definite and indefinite integrals

Compatibility

For indefinite integration in MATLAB, see the Symbolic Math Toolbox™ int function.
For numerical integration, see the integral function.

Syntax
int(f, x)

int(f, x = a .. b, options)

Description

int(f, x) computes the indefinite integral .

int(f, x = a..b) computes the definite integral .

int(f, x) determines a function F such that . The function F(x) is called

the antiderivative of f(x). Results returned by int do not include integration constants.

For indefinite integrals, int implicitly assumes that the integration variable x is real.
For definite integrals, int restricts the integration variable x to the specified integration
interval [a, b] of the type Type::Interval. If one or both integration bounds a and
b are not numeric, int assumes that a <= b unless you explicitly specify otherwise. By
default, int does not issue warnings about these assumptions. To display the warnings
about using implicit assumptions, set the value of intlib::printWarnings to TRUE.

In general, the result of int is not required to be valid for all complex values of
x. For example, the identity  is only valid for real values of x. Therefore,

 is also valid only for real values of x.
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You can specify your own assumptions of the integration variable. If these assumptions
do not conflict with the default assumption that the variable is real or with the
integration interval, then MuPAD uses your assumptions. Otherwise, the int function
issues a warning and changes the assumptions. Use intlib::printWarnings to enable
or disable the warnings.

If you compute an indefinite integral and specify properties of the integration variable
that describe a subset of the real numbers, MuPAD assumes that the variable is real.
Otherwise, the system uses temporary assumption that the integration variable is
complex. This assumption holds only during this particular integration.

If you compute a definite integral and specify properties that conflict with the integration
interval, int uses the integration interval.

int can return results with discontinuities even if the integrand is continuous.

Integration techniques, such as table lookup or Risch integration for an indefinite
integral, can add new discontinuities during the integration process. These new
discontinuities appear because the antiderivatives can require the introduction of
complex logarithms. Complex logarithms have a jump discontinuity when the argument
crosses the negative real axis, and the integration algorithms sometimes cannot find a
representation where these jumps cancel.

If you compute a definite integral by first computing an indefinite integral and
then substituting the integration boundaries into the result, remember that
indefinite integration can produce discontinuities. If it does, you must investigate the
discontinuities in the integration interval.

If MuPAD cannot find a closed-form solution for the integral and cannot prove that such
form does not exist, it returns an unresolved integral. In this case, you can approximate
the integral numerically or try computing a series expansion of the integral. See
“Example 2” on page 1-1011 and “Example 3” on page 1-1012.

You can approximate a definite integral numerically using numeric::int or float.
Numeric approximation of a definite integral only works when the float function can
convert the boundaries a and b of the integration interval to floating-point numbers. See
“Example 2” on page 1-1011.

int might not find a closed form of a definite integral because of singularities of
the integrand in the interval of integration. If the integral does not exist in a strict
mathematical sense, int returns the value undefined. In this case, try using
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assumptions. Alternatively, use the PrincipalValue option to compute a weaker form
of a definite integral called the Cauchy principal value. This form of an integral can exist
even though the standard integral value is undefined. See “Example 6” on page 1-1014.

In general, the derivative of the result coincides with f on a dense subset of the real
numbers (or, if you use assumptions on the integration variable, the subset of real
numbers specified by these assumptions).

It is not always possible to decide algorithmically if  and f are equivalent. The

reason is the so-called zero equivalence problem, which in general is undecidable.

Environment Interactions

int is sensitive to properties of identifiers set by assume. See “Example 6” on page
1-1014.

Examples

Example 1

Compute the indefinite integrals  and :

int(1/x/ln(x), x)

int(1/(x^2 - 8), x)

Compute the definite integral  over the interval [e, e2]:

int(1/x/ln(x), x = exp(1)..exp(2))
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When computing definite integrals, you can use infinities as the boundaries of the
integration interval:

int(exp(-x^2), x = 0..infinity)

You can compute multiple integrals. For example, compute the following definite
multiple integral:

int(int(int(1, z = 0..c*(1 - x/a - y/b)),

        y = 0..b*(1 - x/a)), x = 0..a)

Example 2

Use int to compute this definite integral. Since int cannot find a closed form of this
integral, it returns an unresolved integral:

S := int(sin(cos(x)), x = 0..1)

Use the float function to approximate the integral numerically:

float(S)

Alternatively, use the numeric::int function, which is faster because it does not
involve any symbolic preprocessing:
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numeric::int(sin(cos(x)), x = 0..1)

Example 3

Use int to compute this indefinite integral. Since int cannot find a closed form of this
integral, it returns an unresolved integral:

int((x^2 + 1)/sqrt(sqrt(x + 1) + 1), x)

Use the series function to compute a series expansion of the integral:

series(%, x = 0)

Alternatively, compute a series expansion of the integrand, and then integrate the result.
This approach is faster because it does not try to integrate the original expression. It
integrates an approximation (the series expansion) of the original expression:

int(series((x^2 + 1)/sqrt(sqrt(x + 1) + 1), x = 0), x)

Example 4

The IgnoreAnalyticConstraints option applies a set of purely algebraic
simplifications including the equality of sum of logarithms and a logarithm of a product.
Using this option, you get a simpler result, but one that might be incorrect for some of
the values of the variables:
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int(ln(x) + ln(y) - ln(x*y), x, IgnoreAnalyticConstraints)

Without using this option, you get the following result, which is valid for all values of the
parameters:

int(ln(x) + ln(y) - ln(x*y), x)

The results obtained with IgnoreAnalyticConstraints might be not generally valid:

f := int(ln(x) + ln(y) - ln(x*y), x):

g := int(ln(x) + ln(y) - ln(x*y), x, IgnoreAnalyticConstraints):

simplify([f, g]) assuming x = -1 and y = -1

Example 5

By default, int returns this integral as a piecewise object where every branch
corresponds to a particular value (or a range of values) of the symbolic parameter t:

int(x^t, x)

To ignore special cases of parameter values, use IgnoreSpecialCases:

int(x^t, x, IgnoreSpecialCases)
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Example 6

Compute this definite integral, where the integrand has a pole in the interior of the
interval of integration. Mathematically, this integral is not defined:

int(1/(x - 1), x = 0..2)

However, the Cauchy principal value of the integral exists. Use the PrincipalValue
option to compute the Cauchy principal value of the integral:

hold(int)(1/(x - 1), x = 0..2, PrincipalValue) =

     int( 1/(x - 1), x = 0..2, PrincipalValue)

For integrands with parameters, int might be unable to decide if the integrand has poles
in the interval of integration. In this case, int returns a piecewise-defined function or an
unresolved integral:

int(1/(x - a), x = 0..2)

int does not call simplification functions for its results. To simplify results returned by
int, use eval, simplify, or Simplify:

Simplify(eval(%))

The resulting piecewise expression has only one branch. If the parameter a does not
satisfy this condition, the integral is undefined.
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Parameters

f

The integrand: an arithmetical expression representing a function in x

x

The integration variable: an identifier

a, b

The boundaries: arithmetical expressions

Options

IgnoreAnalyticConstraints

When you use this option, int applies these simplifications rules to the integrand:

• ln(a) + ln(b) = ln(a b) for all values of a and b. In particular:

 for all values of a, b, and c
• ln(ab) = b ln(a) for all values of a and b. In particular:

 for all values of a, b, and c
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x. In particular:
• •

• arcsin(sin(x)) = x, arccos(cos(x)) = x, arctan(tan(x)) = x
• arcsinh(sinh(x)) = x, arccosh(cosh(x)) = x, arctanh(tanh(x)) = x
•  for all values of k

Using this option, you can get simpler solutions for some integrals for which the direct
call of the integrator returns complicated results. With this option the integrator does not
verify the correctness and completeness of the result. See “Example 4” on page 1-1012.
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IgnoreSpecialCases

If integration requires case analysis, ignore cases that require one or more parameters to
be elements of a comparatively small set, such as a fixed finite set or a set of integers.

With this option, int tries to reduce the number of branches in piecewise objects.
MuPAD finds equations and memberships in comparatively small sets. First, MuPAD
tries to prove such equations and memberships by using the property mechanism. If the
property mechanism proves an equation or a membership is true, MuPAD keeps that
statement. Otherwise, MuPAD can replace that statement with the value FALSE.

For example, if the property mechanism cannot prove that a denominator is equal to
zero, MuPAD regards this denominator as nonzero. This option can significantly reduce
the number of piecewise objects in the result.

See “Example 5” on page 1-1013.

PrincipalValue

Compute the Cauchy principal value of the integral.

If the interior of the integration interval contains poles of the integrand or the
boundaries are a = - ∞ and b = ∞, then the definite integral might not exist in a
strict mathematical sense. However, if the integrand changes sign at all poles in the
integration interval, you can compute a weaker form of a definite integral called the
Cauchy principal value. In this form, the so-called infinite parts of the integral to the
left and to the right of a pole cancel each other. When you use the PrincipalValue
option, int computes the Cauchy principal value. If the definite integral exists in a strict
mathematical sense, it coincides with the Cauchy principal value. See “Example 6” on
page 1-1014.

Return Values

arithmetical expression

Overloaded By

f
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See Also

MuPAD Functions
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int::addpattern
Add patterns for integration

Syntax
int::addpattern(pat, x, res, <[var, …], <[cond, …]>>)

int::addpattern(pat, x = u .. v, res, <[var, …], <[cond, …]>>)

Description
int::addpattern(pat, x, res) teaches int to make use of .

int::addpattern(pat, x=u..v, res) teaches int that .

A large part of a computer algebra system's integration abilities stems from
mathematical pattern matching. The MuPAD pattern matcher can be extended at
runtime with int::addpattern.

Unless further limited by conditions in the fifth argument, pattern variables listed in the
fourth argument represent arbitrary MuPAD expressions not containing the variable of
integration, x.

Any identifier can be used as the variable of integration in a call to int::addpattern,
and any identifier can be used in calls to int. They need not be identical.

For definite integration, each integration bound is either an arithmetical expression
which may contain pattern variables, or an identifier which can be used as a variable in
the result and condition terms.

Users can include additional conditions by giving additional arguments. These
conditions, as well as the result, are protected from premature evaluation, i.e., it is not
necessary to write hold( _not @ iszero )(a^2-b), a simple not iszero(a^2-b)
suffices.

The difference between not iszero(a^2-b) and a^2-b <> 0 when given as
a condition is that the latter takes into account asuumptions on the identifiers
encountered, while the first does not. Cf. “Example 4” on page 1-1021.
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Patterns introduced by int::addpattern are also used in recursive calls of the
integrator and are automatically extended to include simple applications of integration
by change of variables. Cf. “Example 1” on page 1-1019.

Patterns added by int::addpattern are not replaced by later calls, they remain active.
int selects the most simple result found. There is no way to remove patterns once added.
Cf. “Example 5” on page 1-1022.

Environment Interactions

Calling int::addpattern changes the expressions returned by future calls to int.
Additionally, the remembered values of previous calls to int are forgotten.

Examples

Example 1

Not surprisingly, MuPAD does not know how to integrate the function foo:

int(foo(x), x)

We add a pattern for this function:

int::addpattern(foo(x), x, foo(x)^x)

int(foo(x), x)

Note that this pattern is also used indirectly:

int(x*foo(x^2), x)
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intlib::byparts(int(foo(x)*sin(x), x), foo(x))

Example 2

Definite integrals can be added similarly. Note that the result does not depend on the
integration variable:

int::addpattern(wilma(x), x=0..1, fred)

int(wilma(x), x=0..1)

The above pattern will not match integrals with different integration bounds:

int(wilma(x), x=0..2)

Integration bounds may also contain variables occurring in the pattern or result:

int::addpattern(wilma(x, a), x=0..a, fred(a), [a])

int(wilma(x,2), x=0..2)

Example 3

The integration variable in the call to int::addpattern need not be the same as used
in the integration call:

int::addpattern(1/(t^2*(ln(t)+1)), t, -E*Ei(ln(t)+1))
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int(cos(y)/sin(y)^2/(ln(sin(y)) + 1), y)

Example 4

Conditions are checked using is and therefore react to assumptions:

int::addpattern(1/(a+b*tan(x)^2), x,

                x/(a-b) 

                - b/(2*(a-b)*sqrt(-a*b))

                 * ln((b*tan(x)-sqrt(-a*b))

                     /(b*tan(x)+sqrt(-a*b))),

                [a, b],

                [a*b < 0])

int::addpattern(1/(a+b*tan(x)^2), x,

                x/(a-b)

                - b/((a-b)*sqrt(a*b))

                 * arctan(b*tan(x)/

                          sqrt(a*b)),

                [a, b],

                [a*b > 0])

int(1/(3+a*tan(x)^2), x) assuming a > 0

int(1/(3+a*tan(x)^2), x) assuming a < 0

If either the conditions are not satisfied or substituting the values into the result yields
an error, the pattern is ignored. In the patterns above, the case a = b causes a division by
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zero. There is no need to include a condition to guard against this case, though, MuPAD
simply computes the integral as usual:

int(1/(3+3*tan(x)^2), x)

Example 5

Assume we have added the following pattern:

int::addpattern(f(x), x, f(x)^x):

Now, f is a pretty generic name, so we could later regard it as a different function and
attempt to redefine its antiderivative:

int::addpattern(f(x), x, 1/sin(f(x))):

int(f(x), x)

What happened?

As it turns out, int::addpattern has simply added the new pattern, and since f(x)x is
considered “simpler” than , the result of the first pattern added is still returned.

This behavior is reasonable, since there may be multiple ways of representing an
antiderivative and depending on parameter values, one or the other may be preferable:

int::addpattern(f(a, x), x, x*f1(a, x^a), [a]):

int::addpattern(f(a, x), x, x*f2(a, x^(1-a)), [a]):

int(f(0, x), x)

int(f(1, x), x)
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int(f(a, x), x)

Parameters

pat

The pattern to match: an arithmetical expression in x.

x

The variable of integration: an identifier.

u .. v

The interval of integration for a definite integral: arithmetical expressions or identifiers.

res

The antiderivative pattern: an arithmetical expression

[var, …]

“pattern variables”: placeholders in pat and ret, i.e., identifiers that do not
represent themselves but almost arbitrary MuPAD expressions not containing x and
restricted by the conditions in the fifth parameter.

[cond, …]

Conditions on the pattern variables

Return Values

Object of type DOM_NULL
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See Also

MuPAD Functions
int
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int2text
Convert an integer to a character string

Syntax
int2text(n, <b>)

Description

int2text(n, b) converts the integer n to a string that corresponds to the b-adic
representation of n.

The string returned by int2text consists of the first b characters in 0, 1, …, 9, A, B, …,
Z, a, b, …, z. For bases larger than 10, the letters represent the b-adic digits larger than
9: A = 10, B = 11, …, Z = 35, a = 36, b = 37, …, z = 61.

For the bases 2, 8, or 16, int2text provides the conversion from decimal representation
to binary, octal, or hexadecimal representation, respectively.

int2text is the inverse of text2int.

Since the output of the numerical datatypes in MuPAD uses the decimal representation,
strings are used by int2text to represent b-adic numbers. The function
numlib::g_adic provides an alternative representation via lists.

Examples

Example 1

Relative to the default base 10, int2text provides a mere datatype conversion from
DOM_INT to DOM_STRING:

int2text(123), int2text(-45678)
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Example 2

The decimal integer 32 has the following binary representation:

int2text(32, 2)

The decimal integer 109 has the following hexadecimal representation:

int2text(10^9, 16)

... and with the base 62:

int2text(10^9, 62)

Example 3

Negative integers can be converted as well:

int2text(-15, 8)

Parameters

n

An integer

b

The base: an integer between 2 and 62. The default base is 10.
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Return Values

character string.

See Also

MuPAD Functions
coerce | expr2text | genpoly | numlib::g_adic | tbl2text | text2expr |
text2int | text2list | text2tbl
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interpolate
Polynomial interpolation

Syntax
interpolate(xList, yList, X, <F>)

interpolate(nodes, values, ind, <F>)

Description

interpolate computes an interpolating polynomial through data over a rectangular
grid.

The call interpolate(xList, yList, X) with xList = [x1, …, xn] and yList
= [y1, …, yn] returns the polynomial of degree less than n in the variable X which
interpolates the points (x1, y1), …, (xn, yn).

This call with a 1-dimensional grid xList is equivalent to the corresponding ‘multi-
dimensional’ call interpolate([xList], array(1..n, [yList]), [X]).

For d-dimensional interpolation, assume that indeterminates ind = [X1, …, Xd] are
specified. The interpolating polynomial P = poly(…, [X1, …, Xd], F) satisfies

for all points  in the grid. P is the polynomial of minimal degree

satisfying the interpolation conditions, i.e., degree(P, Xi) < ni.

If only interpolating values at concrete numerical points X1 = v1, …, Xd = vd are required,
we recommend not to compute P with symbolic indeterminates ind = [X1, …, Xd] and
then evaluate P(v1, …, vd). It is faster to compute this value directly by interpolate
with ind = [v1, …, vd]. Cf. examples “Example 1” on page 1-1029 and “Example 3” on
page 1-1030.
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Examples

Example 1

We consider a 1-dimensional interpolation problem. To each node xi, a value yi is
associated. The interpolation polynomial P with P(xi) = yi is:

xList := [1, 2, 3]:

yList := [y1, y2, y3]:

P := interpolate(xList, yList, X)

The evaluation of P at the point  is given by:

evalp(P, X = 5/2)

This value can also be computed directly without the symbolic polynomial:

interpolate(xList,  yList, 5/2)

delete xList, yList, P:

Example 2

We demonstrate multi-dimensional interpolation. Consider data over the following 2-
dimensional 2 ×3 grid:

XList := [1, 2]: YList := [1, 2, 3]:

values := array(1..2, 1..3, [[1, 2, 3], [3, 2, 1]]):
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P := interpolate([XList, YList], values, [X, Y])

Next, interpolation over a 3-dimensional 2 ×3×2 grid is demonstrated:

L1 := [1, 2]: L2 := [1, 2, 3]: L3 := [1, 2]:

values := array(1..2, 1..3, 1..2,

   [[[1, 4], [1, 2], [3, 3]], [[1, 4], [1, 3], [4, 0]]]):

interpolate([L1, L2, L3], values, [X, Y, Z])

delete XList, values, P, L1, L2, L3:

Example 3

We interpolate data over a 2-dimensional grid:

n1 := 4: L1 := [i $ i = 1..n1]:

n2 := 5: L2 := [i $ i = 1..n2]:

f := (X, Y) -> 1/(1 + X^2 + Y^2):

values := array(1..n1, 1..n2,

                [[f(L1[i], L2[j]) $ j=1..n2] $ i=1..n1]):

First, we compute the symbolic polynomial:

P := interpolate([L1, L2], values, [X, Y])

Fixing the value Y = 2.5, this yields a polynomial in X.

evalp(P, Y = 2.5)
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It can also be computed directly by using an evaluation point for the indeterminate Y:

interpolate([L1, L2], values, [X, 2.5])

If all indeterminates are replaced by evaluation points, the corresponding interpolation
value is returned:

interpolate([L1, L2], values, [1.2, 2.5])

delete n1, n2, f, values, P:

Example 4

We demonstrate interpolation over a special coefficient field. Consider the following data
over a 2-dimensional 2 ×3 grid:

XList := [3, 4]: YList := [1, 2, 3]:

values := array(1..2, 1..3, [[0, 1, 2], [3, 2, 1]]):

With the following call, these data are converted to integers modulo 7. Arithmetic over
this field is used:

F := Dom::IntegerMod(7):

P := interpolate([XList, YList], values, [X, Y], F)

Evaluation of P at grid points reproduces the associated values converted to the field:

evalp(P, X = XList[2], Y = YList[3]) = F(values[2, 3])
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delete XList, YList, values, F, P:

Parameters

xList

The nodes: a list [x1, x2, …] of distinct arithmetical expressions

yList

The values: a list [y1, y2, …] of arithmetical expressions. This list must have the same
length as xList.

X

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").

nodes

A list [L1, …, Ld] of d lists Li defining a d-dimensional rectangular grid

.

The lists Li may have different lengths ni = |Li|. The elements of each Li must be
distinct.

values

A d-dimensional array(1..n[1],...,1..n[d], [...]) or
hfarray(1..n[1],...,1..n[d], [...]) associating a value with each grid point:

,

ind

A list of d indeterminates or arithmetical expressions. Indeterminates are either
identifiers (of domain type DOM_IDENT) or indexed identifiers (of type "_index").
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F

Either Expr or any field of category Cat::Field

The returned polynomial is of type poly(..., F).

For the default field Expr, all input data may be arbitrary MuPAD expressions.
Standard arithmetic over such expressions is used to compute the polynomial.

For F not being Expr, the grid nodes as well as the entries of values must be elements
of F or must be convertible to such elements. Conversion of the input data to elements of
F is done automatically.

Return Values

Interpolating polynomial P of domain type DOM_POLY in the indeterminates specified
by ind over the coefficient field F is returned. The elements in ind that are not
indeterminates but arithmetical expressions are not used as indeterminates in P, but
enter its coefficients: the polynomial is “evaluated” at these points. If no element of ind
is an indeterminate, the value of the polynomial at the point specified by ind is returned.
This is an element of the field F or an arithmetical expression if F = Expr.

Algorithms

For a d-dimensional rectangular grid

specified by the lists

with associated values

,
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the interpolating polynomial in the indeterminates X1, …, Xd is given by

with the Lagrange polynomials

associated with the k-th node of the j-th coordinate.

See Also

MuPAD Functions
genpoly | numeric::cubicSpline | numeric::cubicSpline2d | poly
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intersect, _intersect
Intersection of sets or intervals or both

Syntax
set1 intersect set2

_intersect(set1, set2, …)

Description

intersect computes the intersection of sets and intervals.

set1 intersect set2 is equivalent to _intersect(set1, set2).

The precedences of intersect, minus, union are as follows. If in doubt, use
parentheses to ensure that the expression is parsed as desired.

• The operator intersect is stronger binding than minus, that is, set1 intersect
set2 minus set3 = (set 1 intersect set2) minus set3.

• The operator minus is stronger binding than union, that is, set1 minus set2
union set3 = (set1 minus set2) union set3.

• set1 minus set2 minus set3 = (set 1 minus set2) minus set3

If sets or intervals are specified by symbolic expressions involving identifiers or indexed
identifiers, then symbolic calls of _intersect are returned. On the screen, they are
represented via the operator notation set1 intersect set2.

Note: On finite sets of type DOM_SET, intersect acts in a purely syntactical way. For
example, {1} intersect {x} simplifies to an empty set {}. Mathematically, this
result can be incorrect in general, because x can represent the value 1.

On intervals of type Dom::Interval, intersect acts in a semantical way. In
particular, properties of identifiers are taken into account.
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_intersect() returns universe (of type stdlib::Universe), which represents the
set of all mathematical objects.

Examples

Example 1

intersect operates on finite sets:

{x, 1, 5} intersect {x, 1, 3, 4}

For symbolic sets, specified as identifiers or indexed identifiers, symbolic calls are
returned:

{1, 2} intersect A intersect {2, 3}

Note that intersect acts on finite sets in a purely syntactical way. In the following call,
x does not match any of the numbers 1, 2, 3 syntactically:

{1, 2, 3} intersect {1, x}

Example 2

intersect is overloaded by the domain Dom::Interval:

Dom::Interval(2, infinity) intersect Dom::Interval([1, 3])

{PI/2, 2, 2.5, 3} intersect Dom::Interval(1,3)
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In contrast to finite sets of type DOM_SET, the interval domain works semantically. It
takes properties into account:

Dom::Interval(-1, 1) intersect {x}

assume(0 < x < 1):

Dom::Interval(-1, 1) intersect {x}

unassume(x):

Example 3

The following list provides a collection of sets:

L := [{a, b}, {1, 2, a, c}, {3, a, b}, {a, c}]:

The functional equivalent _intersect of the intersect operator accepts an arbitrary
number of arguments. Thus, the intersection of all sets in L can be computed as follows:

_intersect(op(L))

delete L:

Example 4

universe represents the set of all mathematical objects:

_intersect()
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Parameters

set1, set2, …

Finite sets of type DOM_SET, or intervals of type Dom::Interval, or arithmetical
expressions

Return Values

Set, an interval, a symbolic expression of type "_intersect", or universe.

Overloaded By

set1, set2

See Also

MuPAD Functions
minus | subset | union | universe
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minus, _minus
Difference of sets or intervals or both

Syntax
set1 minus set2

_minus(set1, set2)

Description

minus computes the difference between sets and intervals.

set1 minus set2 is equivalent to _minus(set1, set2).

The precedences of intersect, minus, union are as follows. If in doubt, use
parentheses to ensure that the expression is parsed as desired.

• The operator intersect is stronger binding than minus, that is, set1 intersect
set2 minus set3 = (set 1 intersect set2) minus set3.

• The operator minus is stronger binding than union, that is, set1 minus set2
union set3 = (set1 minus set2) union set3.

• set1 minus set2 minus set3 = (set 1 minus set2) minus set3

If sets or intervals are specified by symbolic expressions involving identifiers or
indexed identifiers, then symbolic calls of _minus are returned. On the screen, they are
represented via the operator notation set1 minus set2.

Note: On finite sets of type DOM_SET, minus acts in a purely syntactical way. For
example, {1} minus {x} simplifies to {1}. Mathematically, this result can be incorrect
in general, because x can represent the value 1.

On intervals of type Dom::Interval, minus acts in a semantical way. In particular,
properties of identifiers are taken into account.
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Examples

Example 1

minus operates on finite sets:

{x, 1, 5} minus {x, 1, 3, 4}

For symbolic sets, specified as identifiers or indexed identifiers, symbolic calls are
returned:

{1, 2} minus A minus {2, 3}

Note that the set operations act on finite sets in a purely syntactical way. In the following
call, x does not match any of the numbers 1, 2, 3 syntactically:

{1, 2, 3} minus {1, x}

Example 2

minus is overloaded by the domain Dom::Interval:

Dom::Interval(1, PI) minus {2, 3}

In contrast to finite sets of type DOM_SET, the interval domain works semantically. It
takes properties into account:

Dom::Interval(-1, 1) minus {x}
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assume(x > 2):

Dom::Interval(-1, 1) minus {x}

unassume(x):

Parameters

set1, set2, …

Finite sets of type DOM_SET, or intervals of type Dom::Interval, or arithmetical
expressions

Return Values

Set, an interval, a symbolic expression of type "_minus".

Overloaded By

set1, set2

See Also

MuPAD Functions
intersect | subset | union | universe
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union, _union
Union of sets or intervals or both

Syntax
set1 union set2

_union(set1, set2, …)

Description

union computes the union of sets and intervals.

set1 union set2 is equivalent to _union(set1, set2).

The precedences of intersect, minus, union are as follows. If in doubt, use
parentheses to ensure that the expression is parsed as desired.

• The operator intersect is stronger binding than minus, that is, set1 intersect
set2 minus set3 = (set 1 intersect set2) minus set3.

• The operator minus is stronger binding than union, that is, set1 minus set2
union set3 = (set1 minus set2) union set3.

• set1 minus set2 minus set3 = (set 1 minus set2) minus set3

If sets or intervals are specified by symbolic expressions involving identifiers or
indexed identifiers, then symbolic calls of _union are returned. On the screen, they are
represented via the operator notation set1 union set2.

Note: On finite sets of type DOM_SET, union acts in a purely syntactical way. For
eaxmple, {1} union {x} simplifies to {1,x}. Mathematically, this result can be
incorrect in general, because x can represent the value 1.

On intervals of type Dom::Interval, union acts in a semantical way. In particular,
properties of identifiers are taken into account.
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_union() returns the empty set {}.

Examples

Example 1

union operates on finite sets:

{x, 1, 5} union {x, 1, 3, 4}

For symbolic sets, specified as identifiers or indexed identifiers, symbolic calls are
returned:

{1, 2} union A union {2, 3}

Note that the set operations act on finite sets in a purely syntactical way. In the following
call, x does not match any of the numbers 1, 2, 3 syntactically:

{1, 2, 3} union {1, x}

Example 2

union is overloaded by the domain Dom::Interval:

Dom::Interval([0, 1]) union Dom::Interval(1, 4)

Dom::Interval([0, 1]) union Dom::Interval(4, infinity)
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In contrast to finite sets of type DOM_SET, the interval domain works semantically. It
takes properties into account:

Dom::Interval(-1, 1) union {x}

assume(0 < x < 1):

Dom::Interval(-1, 1) union {x}

unassume(x):

Example 3

The following list provides a collection of sets:

L := [{a, b}, {1, 2, a, c}, {3, a, b}, {a, c}]:

The functional equivalent _union of the union operator accepts an arbitrary number of
arguments. Thus, the union of all sets in L can be computed as follows:

_union(op(L))

delete L:

Parameters

set1, set2, …

Finite sets of type DOM_SET, or intervals of type Dom::Interval, or arithmetical
expressions
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Return Values

Set, an interval, a symbolic expression of type "_union".

Overloaded By

set1, set2

See Also

MuPAD Functions
intersect | minus | subset | universe
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interval
Convert constant subexpressions to intervals

Syntax
interval(object)

Description

interval(object) converts all constant subexpressions of object to floating point
intervals.

interval is the analogue of float. While the latter converts exact numbers and
numerical expressions to floating-point approximations, interval converts numbers
and numerical expressions to enclosing floating-point intervals.

If object is an arithmetical expression, interval(object) recursively descends into
the subexpressions of object and replaces all integers,rationals, and floating point
numbers as well as the constants CATALAN, EULER and PI by floating-point intervals
enclosing them. Afterwards, the resulting expression is evaluated via interval arithmetic.

If object is not an arithmetical expression, interval returns the object unchanged.

Examples

Example 1

Only constant expressions such as numbers 1, , 0.123 + 4.5 i etc. and numerical

expressions PI + sqrt(2), sin(PI/24) etc. are converted to floating-point intervals.
Symbolic objects such as identifiers, indexed identifiers etc. are left untouched:

interval(4*x[1] + PI*x[2]^2/sin(1) + 1/4)
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interval(f(g(2 + x) + sin(1)*sqrt(PI)))

Example 2

The special MuPAD constants CATALAN, EULER and PI can be converted to an
enclosing floating-point interval:

interval(CATALAN), interval(EULER), interval(PI)

Parameters

object

An arbitrary MuPAD object

Return Values

MuPAD object

See Also

MuPAD Domains
Dom::FloatIV

MuPAD Functions
float | hull | misc::maprec
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inverse

Inverse of a matrix

Syntax

inverse(A, <Normal>)

Description

inverse(A) returns the inverse of the matrix A.

If the input is a matrix A of category Cat::Matrix, then A^(-1) is called to compute
the result. In contrast to the overloaded arithmetics, the function inverse also operates
on arrays and hfarrays.

If the input matrix is an array of domain type DOM_ARRAY, then
numeric::inverse(A, Symbolic) is called to compute the result.

The inverse of hfarrays of domain type DOM_HFARRAY is internally computed via
numeric::inverse(A).

If the argument does not evaluate to a matrix of one of the types mentioned above, a
symbolic call inverse(A) is returned.

By default, inverse calls normal before returning results. This additional internal call
ensures that the final result is normalized. This call can be computationally expensive. It
also affects the result returned by inverse only if a matrix contains variables or exact
expressions, such as sqrt(5) or sin(PI/7).

To avoid this additional call, specify Normal = FALSE. In this case, inverse also can
return normalized results, but does not guarantee such normalization. See “Example 4”
on page 1-1050.
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Examples

Example 1

Compute the inverse of a matrix given by various data types:

A := array(1..2, 1..2, [[1, 2], [3, PI]]);

inverse(A)

B := hfarray(1..2, 1..2, [[1, 2], [3, PI]]);

inverse(B)

C := matrix(2, 2, [[1, 2], [3, PI]]);

inverse(C)

delete A, B, C:

1-1049



1 The Standard Library

Example 2

The following matrix is not invertible:

inverse(matrix([[1, 2], [3, 6]]))

Example 3

If the input does not evaluate to a matrix, then symbolic calls are returned:

delete A, B:

inverse(A + 2*B)

Example 4

Using Normal can significantly decrease the performance of inverse. For example,
computing the inverse of this matrix takes a long time:

n := 5:

inv5 := inverse(matrix(n, n, [[1/(x[i] + x[j]) $

                                     j = 1..n] $

                                     i = 1..n])):

For better performance, specify Normal = FALSE:

n := 5:

inv5 := inverse(matrix(n, n, [[1/(x[i] + x[j]) $

                                     j = 1..n] $

                                     i = 1..n]),

                                Normal = FALSE):

Parameters
A

Square matrix: either a two-dimensional array, a two-dimensional hfarray, or an
object of the category Cat::Matrix
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Options

Normal

Option, specified as Normal = b

Return normalized results. The value b must be TRUE or FALSE. By default, Normal
= TRUE, meaning that inverse guarantees normalization of the returned results.
Normalizing results can be computationally expensive.

Return Values

The inverse is returned as a matrix of the same type as the input matrix. If the matrix is
not invertible, then FAIL is returned. If the input does not evaluate to a matrix, then a
symbolic call of inverse is returned.

Overloaded By

A

See Also

MuPAD Functions
numeric::inverse
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_invert

Reciprocal of an expression

Syntax

1/ x

_invert(x)

Description

_invert(x) computes the reciprocal 1/x of x.

1/x is equivalent to the function call _invert(x). It represents the inverse of the
element x with respect to multiplication, i.e., x * (1/x) = 1.

The reciprocal of a number of type Type::Numeric is returned as a number.

1/x is overloaded for matrix domains (matrix) and returns the inverse of the matrix x.

If x is not an element of a library domain with an "_invert" method, 1/x is internally
represented as x^(-1) = _power(x, -1).

If x is an element of a domain with a slot"_invert", then this method is used to
compute 1/x. Many library domains overload the / operator by an appropriate
"_invert" slot. Note that a/x calls the overloading slot x::dom::_invert(x) only for
a = 1.

If neither x nor y overload the binary operator / by a "_divide" method, the quotient
x/y is equivalent to x * y^(-1) = _mult(x, _power(y, -1)).

For finite sets, 1/X is the set .
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Examples

Example 1

The reciprocal of an expression is the inverse with respect to *:

_invert(x), x * (1/x) = x * _invert(x)

3 * y * x^2 / 27 / x

Internally, a symbolic expression 1/x is represented as x^(-1) = _power(x, -1):

type(1/x), op(1/x, 0), op(1/x, 1), op(1/x, 2)

Example 2

For finite sets, 1/X is the set :

1/{a, b, c}

Example 3

Various library domains such as matrix domains or residue class domains overload
_invert:

x := Dom::Matrix(Dom::IntegerMod(7))([[2, 3], [3, 4]]):

1-1053



1 The Standard Library

x, 1/x, x * (1/x)

delete x:

Parameters

x

An arithmetical expression or a set

Return Values

Arithmetical expression or a set.

Overloaded By

x

See Also

MuPAD Functions
* | + | - | / | ^ | _divide | _subtract
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irreducible
Test irreducibility of a polynomial

Syntax
irreducible(p)

Description

irreducible(p) tests if the polynomial p is irreducible.

A polynomial  is irreducible over the field k if p is nonconstant and is
not a product of two nonconstant polynomials in .

irreducible returns TRUE if the polynomial is irreducible over the field implied by its
coefficients. Otherwise, FALSE is returned. See the function factor for details on the
coefficient field that is assumed implicitly.

The polynomial may be either a (multivariate) polynomial over the rationals, a
(multivariate) polynomial over a field (such as the residue class ring IntMod(n)
with a prime number n) or a univariate polynomial over an algebraic extension (see
Dom::AlgebraicExtension).

Internally, a polynomial expression is converted to a polynomial of type DOM_POLY before
irreducibility is tested.

Examples

Example 1

With the following call, we test if the polynomial expression x2 - 2 is irreducible.
Implicitly, the coefficient field is assumed to consist of the rational numbers:

irreducible(x^2 - 2)
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factor(x^2 - 2)

Since x2 - 2 factors over a field extension of the rationals containing the radical , the
following irreducibility test is negative:

irreducible(sqrt(2)*(x^2 - 2))

factor(sqrt(2)*(x^2 - 2))

The following calls use polynomials of type DOM_POLY. The coefficient field is given
explicitly by the polynomials:

irreducible(poly(6*x^3 + 4*x^2 + 2*x - 4, IntMod(13)))

factor(poly(6*x^3 + 4*x^2 + 2*x - 4, IntMod(13)))

irreducible(poly(3*x^2 + 5*x + 2, IntMod(13)))

factor(poly(3*x^2 + 5*x + 2, IntMod(13)))
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Parameters

p

A polynomial of type DOM_POLY or a polynomial expression

Return Values

TRUE or FALSE.

Overloaded By

p

See Also

MuPAD Functions
content | factor | gcd | icontent | ifactor | igcd | ilcm | isprime | lcm |
poly | polylib::divisors | polylib::primpart | polylib::sqrfree
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is
Check a mathematical property of an expression

Syntax
is(cond)

is(ex, set)

Description

is(cond) checks whether the condition cond holds for all possible values.

is(ex, set) checks whether the expression ex lies in the set set.

The property mechanism helps to simplify expressions involving expressions that
carry “mathematical properties”. The function assume allows to assume “assumptions”
such as `x is a real number' or `x is an odd integer' to an identifier x, say. Arithmetical
expressions involving x may inherit such properties. E.g., `1 + x^2 is positive' if `x is a
real number'. The function is is the basic tool for querying mathematical properties.

is queries the assumptions of all involved identifiers and checks whether the condition
cond holds for all possible values. If this is the case, then is returns TRUE. If is derives
that cond is not satisfied by any possible value it returns FALSE. Otherwise, is returns
UNKNOWN.

If a relation is given to is, and the operands are complex numbers or identifiers with
this property, is returns FALSE, because a relations holds only with real objects. Cf.
“Example 4” on page 1-1061.

It may happen that is returns UNKNOWN, although the queried property holds
mathematically. Cf. “Example 5” on page 1-1061.

In MuPAD, there also exists the function bool to check a relation y rel z. However,
there are two main differences between bool and is:

1 bool produces an error if it cannot decide whether the relation holds or not; is(y
rel z) returns UNKNOWN in this case.
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2 bool does not take properties into account.

Cf. “Example 3” on page 1-1060.

If bool(y rel z) returns TRUE, then so does is(y rel z). However, is is more
powerful than bool, even when no properties are involved. Cf. “Example 3” on page
1-1060. On the other hand, is is usually much slower than bool.

Note: Be careful when using is in a condition of an if statement or a for, while, or
repeat loop: these constructs cannot handle the value UNKNOWN. Use either is(...) =
TRUE or a case statement. Cf. “Example 6” on page 1-1062.

If is needs to check whether a constant symbolic expression is zero, then it may employ
a heuristic numerical zero test based on floating-point evaluation. Despite internal
numerical stabilization, this zero test may return the wrong answer in exceptional
pathological cases; in such a case, is may return a wrong result as well.

Examples

Example 1

The identifier x is assumed to be an integer:

assume(x, Type::Integer):

is(x, Type::Integer), is(x > 0), is(x^2 >= 0)

The identifier x is assumed to be a positive real number:

assume(x > 0):

is(x > 1), is(x >= 0), is(x < 0)

unassume(x):
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Example 2

is can derive certain facts even when no properties were assumed explicitly:

is(x > x + 1), is(abs(x) >= 0)

is(Re(exp(x)), Type::Real)

Example 3

For relations between numbers, is yields the same answers as bool:

bool(1 > 0), is(1 > 0)

is resolves more constant symbolic expressions than bool:

is(sqrt(14) <= sqrt(2)*sqrt(7)),

is(sin(10^20) > 0),

is(sqrt(2) > 1.41)

bool(sqrt(14) <= sqrt(2)*sqrt(7))

Error: Cannot evaluate to Boolean. [_leequal]

bool(sin(10^20) > 0)

Error: Cannot evaluate to Boolean. [_less]

is(exp(5), Type::Real), is(PI, Type::PosInt)
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Example 4

In the next example a relation with complex objects is given, the returned value is
FALSE:

is(0 < I), is(I + 1 > I), is(1 + 2*I <= 2 + 3*I)

The identifier in the next example is assumed to be complex, but it could be real too:

assume(x, Type::Complex):

is(x > 0)

The next relation is false, either the identifier x is real, then the relation is false, or the
identifiers is not real, then the comparison is illegal:

unassume(x):

is(x + 1 < x)

unassume(x):

Example 5

Here are some examples where the queried property can be derived mathematically.
However, the current implementation of is is not yet strong enough to derive the
property:

assume(x in Z_ and y in Z_ and x^2 + y^2 = 2);

is(x > 1)
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unassume(x):

Example 6

Care must be taken when using is in if statements or for, repeat, while loops:

myabs := proc(x)

         begin

           if is(x >= 0) then

             x

           elif is(x < 0) then

             -x

           else

             procname(x)

           end_if

         end_proc:

assume(x < 0): myabs(1), myabs(-2), myabs(x)

When the call of is returns UNKNOWN, an error occurs because if expects TRUE or FALSE:

unassume(x): myabs(x)

Error: Cannot evaluate to Boolean. [if]

  Evaluating: myabs

The easiest way to achieve the desired functionality is a comparison of the result of is
with TRUE:

myabs := proc(x)

         begin

           if is(x >= 0) = TRUE then

             x

           elif is(x < 0) = TRUE then

             -x

           else

             procname(x)

           end_if

         end_proc:

myabs(x)
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delete myabs:

Example 7

is can handle sets returned by solve. These include intervals of type Dom::Interval
and R_ = solvelib::BasicSet(Dom::Real):

assume(x >= 0 and x <= 1):

is(x in Dom::Interval([0, 1])), is(x in R_)

The following solve command returns the solution as an infinite parameterized set of
type Dom::ImageSet:

unassume(x): solutionset := solve(sin(x) = 0, x)

domtype(solutionset)

is can be used to check whether an expression is contained in this set:

is(20*PI in solutionset), is(PI/2 in solutionset)

delete solutionset:

Parameters

cond

A condition
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ex

arithmetical expression

set

A property representing a set of numbers (e.g., Type::PosInt) or a set returned by
solve; such a set can be an element of Dom::Interval, Dom::ImageSet, piecewise,
or one of C_, R_, Q_, Z_.

Return Values

TRUE, FALSE, or UNKNOWN.

See Also

MuPAD Functions
assume | bool | getprop | unassume
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isolate

Isolate variable or expression from equation

Syntax

isolate(eq, expr)

Description

isolate(eq, expr) rearranges the equation eq so that the expression expr appears
on the left side. The result is similar to solving eq for expr. However, isolate returns
only one solution even if multiple solutions exist. If isolate cannot isolate expr
from eq, it moves all terms containing expr to the left side. You can use the output of
isolate as input to subs to eliminate expr from eq.

If eq has no solution, isolate returns an error. The isolate function also ignores
special cases. If the only solutions to eq are special cases, then isolate ignores those
special cases and returns an error. Additionally, if the solution returned contains
parameters, the parameters might not be valid for special cases.

You cannot specify expr as a mathematical constant such as PI, EULER, and so on.

By default, isolate(eq, expr) returns only solutions consistent with the properties of
expr.

If the input contains floating-point numbers, the solver replaces them by approximate
rational values. The accuracy of these approximate values depends on the environment
variable DIGITS. If isolate finds a solution, MuPAD internally calls the float
function for that solution, and then returns the result.

Environment Interactions

isolate reacts to properties of identifiers.
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Examples

Example 1

Isolate x from the equation a*x^2 + b*x + c = 0.

eqn := a*x^2 + b*x + c = 0:

xSol := isolate(eqn, x)

Even though the equation has multiple solutions, isolate returns only one solution.

Eliminate x from eqn by calling subs to substitute for x using xSol.

subs(eqn, xSol)

You can also isolate expressions. Isolate x(t) from the following equation.

isolate(a*x(t)^2 + b*c = 0, x(t))

Isolate a*x(t) from the same equation.

isolate(a*x(t)^2 + b*c = 0, a*x(t))
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If isolate cannot find a symbolic solution, it returns an error. Because isolate does
not return special cases, it also returns an error if the only solutions are special cases.

Compare isolate with solve for an equation whose only solution is a special case.

solve(x = x+a, x);

isolate(x = x+a, x)

Error: The equation has no solution. [isolate]

solve returns the special case while isolate ignores the special case and returns an
error.

Example 2

For equations with multiple solutions, isolate returns the ‘simplest’ solution.

Isolate x from equations with many solutions to demonstrate this behavior of isolate.

isolate(cos(x) = x, x)

isolate(x^2 = 1, x)

isolate(sin(x) = 0, x)

isolate(sqrt(x) = C, x)
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Example 3

isolate only returns results compatible with assumptions on the variable to be isolated.
For example, assume that x represents a real negative number. Then, isolate it from the
following equation.

assume(x, Type::Negative):

isolate(x^4 = 1, x)

Remove the assumption. isolate chooses a different solution to return.

unassume(x):

isolate(x^4 = 1, x)

Example 4

If the input contains floating-point numbers, MuPAD calls the float function for the
obtained solution.

Isolate x from an equation with floating-point numbers.

isolate(x^3 + 3.0*x + 1 = 0, x)

Example 5

You can isolate an expression in an equation with symbolic parameters. The isolate
function returns a general solution where the parameter values are not guaranteed to
hold for special cases.

Isolate x in the equation.

isolate(a*x^2/(x-a) = 1, x)
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The returned value of x does not hold in the special case that parameter a has value 0.

Parameters

eq

An equation.

expr

The variable or expression to be isolated.

Return Values

isolate(eq, expr) returns an equation where the right side does not contain the
variable or expression to be isolated. isolate does not introduce newly generated
parameters. The returned equation is always a valid input to subs..

See Also

MuPAD Functions
float | lhs | linsolve | numeric::linsolve | numeric::solve | rhs | RootOf
| solve

Introduced in R2015a
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isprime
Primality test

Syntax
isprime(n)

Description

isprime(n) checks whether n is a prime number.

isprime is a fast probabilistic prime number test (Miller-Rabin test). The function
returns TRUE when the positive integern is either a prime number or a strong pseudo-
prime for 10 independently and randomly chosen bases. Otherwise, isprime returns
FALSE.

If n is positive and isprime returns FALSE, then n is guaranteed to be composite. If n is
positive and isprime returns TRUE, then n is prime with a very high probability.

Use numlib::proveprime for a prime number test that always returns the correct
answer. Note, however, that it is usually much slower than isprime.

isprime() and isprime(1) return FALSE. isprime returns always FALSE if n is a
negative integer.

isprime returns an error message if its argument is a number but not an integer.
isprime returns a symbolic isprime call if the argument is not a number.

Examples

Example 1

The number 989999 is prime:

isprime(989999)
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ifactor(989999)

In contrast to ifactor, isprime can handle large numbers:

isprime(2^(2^11) + 1)

isprime() and isprime(1) return FALSE:

isprime(0), isprime(1)

Negative numbers yield FALSE as well:

isprime(-13)

For non-numeric arguments, a symbolic isprime call is returned:

delete n: isprime(n)

Parameters

n

An arithmetical expression representing an integer
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Return Values

Either TRUE or FALSE, or a symbolic isprime call.

References

Reference: Michael O. Rabin, Probabilistic algorithms, in J. F. Traub, ed., Algorithms
and Complexity, Academic Press, New York, 1976, pp. 21–39.

See Also

MuPAD Functions
factor | ifactor | igcd | ilcm | irreducible | ithprime | nextprime |
numlib::primedivisors | numlib::proveprime | prevprime
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isqrt
Integer square root

Syntax
isqrt(n)

Description

isqrt(n) computes an integer approximation to the square root of the integer n.

If n is a perfect square, then isqrt returns the unique nonnegative integer whose
square is n. More generally, if n is a nonnegative integer, then isqrt computes
trunc(sqrt(n)). Thus the approximation error is less than 1.

If n is a negative integer, then isqrt computes trunc(sqrt(-n)) *I.

isqrt returns an error message if its argument is a number but not an integer. isqrt
returns a symbolic isqrt call if the argument is not a number.

Examples

Example 1

We compute some integer square roots:

isqrt(4), isqrt(5)

The approximation error is less than 1:

isqrt(99), float(sqrt(99))
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The integer square root of a negative integer is an integral multiple of I:

isqrt(-4), isqrt(-5)

If the argument is not a number, the result is a symbolic isqrt call:

delete n: isqrt(n)

type(%)

Parameters

n

An arithmetical expression representing an integer

Return Values

Nonnegative integer, an integral multiple of I, or a symbolic isqrt call.

Overloaded By

n

See Also

MuPAD Functions
_power | icontent | ifactor | igcd | ilcm | numlib::ispower | numlib::issqr
| sqrt | trunc
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iszero
Generic zero test

Syntax
iszero(object)

Description

iszero(object) checks whether object is the zero element in the domain of object.

Use the condition iszero(object) instead of object = 0 to decide whether object
is the zero element, because iszero(object) is more general than object = 0. If the
call bool(object = 0) returns TRUE, then iszero(object) returns TRUE as well, but
in general not vice versa (see “Example 1” on page 1-1076).

If object is an element of a basic type, then iszero returns TRUE precisely if one of
the following is true: object is the integer 0 (of domain type DOM_INT), the floating-
point value 0.0 (of domain type DOM_FLOAT), the floating-point interval (of domain type
DOM_INTERVAL) 0...0, or the zero polynomial (of domain type DOM_POLY). In the case
of a polynomial, the result FALSE is guaranteed to be correct only if the coefficients of the
polynomial are in normal form (i.e., if zero has a unique representation in the coefficient
ring). See also Ax::normalRep.

If object is an element of a library domain, then the method "iszero" of the domain is
called and the result is returned. If this method does not exist, then the function iszero
returns FALSE.

iszero performs a purely syntactical zero test. If iszero returns TRUE, then the answer
is always correct. If iszero returns FALSE, however, then it may still be true that
mathematically object represents zero (see “Example 3” on page 1-1077). In such
cases, the MuPAD functions normal or simplify may be able to recognize this.

Note: iszero does not take into account properties of identifiers in object that have
been set via assume. In particular, you should not use iszero in an argument passed to
assume or is; use the form object = 0 instead (see “Example 2” on page 1-1077).
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Note: Do not use iszero in a condition passed to piecewise. In contrast to object
= 0, the command iszero(object) is evaluated immediately, before it is passed to
piecewise, while the evaluation of object = 0 is handled by piecewise itself. Thus
using iszero in a piecewise command usually leads to unwanted effects (see “Example
4” on page 1-1077).

Examples

Example 1

iszero handles the basic data types:

iszero(0), iszero(1/2), iszero(0.0), iszero(I), iszero(-1...1)

iszero works for polynomials:

p:= poly(x^2 + y, [x]):

iszero(p)

iszero(poly(0, [x, y]))

iszero is more general than =:

bool(0 = 0), bool(0.0 = 0), bool(poly(0, [x]) = 0)

iszero(0), iszero(0.0), iszero(poly(0, [x]))
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Example 2

iszero does not react to properties:

assume(a = b): is(a - b = 0)

iszero(a - b)

Example 3

Although iszero returns FALSE in the following example, the expression in question
mathematically represents zero:

iszero(sin(x)^2 + cos(x)^2 - 1)

In this case simplify is able to decide this:

simplify(sin(x)^2 + cos(x)^2 - 1)

Example 4

iszero should not be used in a condition passed to piecewise:

delete x:

piecewise([iszero(x), 0], [x <> 0, 1])

The first branch was discarded because iszero(x) immediately evaluates to FALSE.
Instead, use the condition x = 0, which is passed unevaluated to piecewise:
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piecewise([x = 0, 0], [x <> 0, 1])

Parameters

object

An arbitrary MuPAD object

Return Values

Either TRUE or FALSE

Overloaded By

object

See Also

MuPAD Axioms
Ax::normalRep

MuPAD Functions
_equal | bool | is | normal | sign | simplify
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ithprime
I-th prime number

Syntax
ithprime(i)

ithprime(<PrimeLimit>)

Description

ithprime(i) returns the i-th prime number.

If the argument i is a positive integer, then ithprime returns the i-th prime number.
An unevaluated call is returned, if the argument is not of type Type::Numeric. An error
occurs if the argument is a number that is not a positive integer.

The first prime number ithprime(1) is 2.

If the i-th prime number is contained in the system's internal prime number table (see
the help page for ifactor), then it is returned by a fast kernel function. Otherwise,
MuPAD iteratively calls nextprime, using some suitable pre-computed value of
ithprime as starting point. This is still reasonably fast for i ≤ 1000000. If i exceeds this
value, however, then the run time grows exponentially with the number of digits of i.

Examples

Example 1

The first 10 prime numbers:

ithprime(i) $ i = 1..10
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A larger prime:

ithprime(123456)

Symbolic arguments lead to an unevaluated call:

ithprime(i)

Parameters

i

An arithmetical expression

Options

PrimeLimit

Return the number of primes in the internal prime table

ithprime(PrimeLimit) returns an integer, namely the number of primes in the
internal prime number table. The table contains all primes below some bound which can
be obtained by calling ifactor(PrimeLimit). On UNIX platforms, the size of this table
can be changed via the MuPAD command line flag -L.

Return Values

Prime number or an unevaluated call to ithprime

See Also

MuPAD Functions
ifactor | igcd | ilcm | isprime | nextprime | numlib::pi | prevprime
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iztrans
Inverse Z transform

Syntax
iztrans(F, z, k)

Description

iztrans(F, z, k) computes the inverse Z transform of the expression F = F(z) with
respect to the variable z at the point k.

If R is a positive number, such that the function F(Z) is analytic on and outside the circle
|z| = R, then the inverse Z-transform is defined as follows:

f k
i

F z z dz k

z R

k( ) = ( ) =
=

-Ú
1

2
0 1 2

1

p Ñ
, , , ...

If iztrans cannot find an explicit representation of the transform, it returns an
unevaluated function call. See “Example 3” on page 1-1082.

If F is a matrix, iztrans applies the inverse Z transform to all components of the
matrix.

To compute the direct Z transform, use ztrans.

Examples

Example 1

Compute the inverse Z transform of these expressions:

iztrans(exp(1/z), z, k)
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iztrans((z*sin(1))/(z^2 - 2*cos(1)*z + 1), z, k)

Example 2

Compute the inverse Z transform of this expression with respect to the variable z:

f := iztrans((3*z)/(z - 1) + (2*z)/(z - 1)^2, z, k)

Evaluate the inverse Z transform of the expression at the points k = 2 a + 3 and k = 1 + i.
You can evaluate the resulting expression f using | (or its functional form evalAt):

f | k = 2*a + 3

Also, you can evaluate the inverse Z transform at a particular point directly:

iztrans((3*z)/(z - 1) + (2*z)/(z - 1)^2, z, 1 + I)

Example 3

If iztrans cannot find an explicit representation of the transform, it returns an
unevaluated call:

iztrans(F(z), z, k)
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ztrans returns the original expression:

ztrans(%, k, z)

Example 4

Compute the inverse Z transforms of these expressions. The results involve the
kroneckerDelta function:

iztrans(1/z, z, k)

iztrans((z^3 + 3*z^2 + 6*z + 5)/z^5, z, k)

Example 5

Compute the inverse Z tranform of this expression:

iztrans(z*diff(g(z), z), z, k)

Parameters

F

Arithmetical expression or matrix of such expressions

z

Identifier or indexed identifier
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k

Arithmetical expression representing the evaluation point

Return Values

Arithmetical expression or unevaluated function call of type iztrans. An explicit result
can be a piecewise object. If the first argument is a matrix, then the result is returned
as a matrix.

Overloaded By

F

See Also

MuPAD Functions
iztrans::addpattern | ztrans | ztrans::addpattern

More About
• “Z-Transforms”
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iztrans::addpattern
Add patterns for the inverse Z transform

Syntax
iztrans::addpattern(pat, z, k, res, <vars, <conds>>)

Description

iztrans::addpattern(pat, z, k, res) teaches iztrans to return iztrans(pat, z,
k) = res.

The iztrans function uses a set of patterns for computing inverse Z transforms.
You can extend the set by adding your own patterns. To add a new pattern to the
pattern matcher, use iztrans::addpattern. MuPAD does not save custom patterns
permanently. The new patterns are available in the current MuPAD session only.

Variable names that you use when calling iztrans::addpattern can differ from the
names that you use when calling iztrans. See “Example 2” on page 1-1086.

You can include a list of free parameters and a list of conditions on these parameters.
These conditions and the result are protected from premature evaluation. This means
that you can use not   iszero(a^2 - b) instead of hold( _not @ iszero )(a^2
- b).

The following conditions treat assumptions on identifiers differently:

• a^2 - b <> 0 takes into account assumptions on identifiers.
• not   iszero(a^2 - b) disregards assumptions on identifiers.

See “Example 3” on page 1-1086.

Environment Interactions

Calling iztrans::addpattern changes the expressions returned by future calls to
iztrans.
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Examples

Example 1

Compute the inverse Z transform of the function bar. By default, MuPAD does not have
a pattern for this function:

iztrans(bar(z), z, k)

Add a pattern for the inverse Z transform of bar using iztrans::addpattern:

iztrans::addpattern(bar(z), z, k, foo(k)):

Now iztrans returns the inverse Z transform of bar:

iztrans(bar(z), z, k)

Example 2

Define the inverse Z transform of bar(y) using the variables x and y as parameters:

iztrans::addpattern(bar(y), y, x, foo(x))

The iztrans function recognizes the added pattern even if you use other variables as
parameters:

iztrans(bar(z), z, k)

Example 3

Use assumptions when adding this pattern for the inverse Z transform:

iztrans::addpattern(BAR(x*z), z, k, FOO(k/(x - 1/2))*sin(x),

                                      [x], [abs(x) < 1]):
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iztrans(BAR(x*z), z, k) assuming -1 < x < 1

If |x| ≥ 1, you cannot apply this pattern:

iztrans(BAR(x*z), z, k) assuming x >= 1

If MuPAD cannot determine whether the conditions are satisfied, it returns a
piecewise object:

iztrans(BAR(x*z), z, k)

Note that the resulting expression defining the inverse Z transform of BAR(x*z)
implicitly assumes that the value of x is not 1/2. A strict definition of the pattern is:

ztrans::addpattern(BAR(x*z), z, k, FOO(k/(x - 1/2))*sin(x),

                     [x], [abs(x) < 1, x <> 1/2]):

If either the conditions are not satisfied or substituting the values into the result gives an
error, iztrans ignores the pattern. For this particular pattern, you can omit specifying
the assumption x <> 1/2. If x = 1/2, MuPAD throws an internal “Division by zero.”
error and ignores the pattern:

iztrans(BAR(z/2), z, k)

Parameters

pat

Arithmetical expression in the variable z representing the pattern to match
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z

Identifier used as a variable in the pattern

k

Identifier used as a variable in the result

res

Arithmetical expression in the variable k representing the pattern for the result of the
transformation

vars

List of identifiers or indexed identifiers used as “pattern variables” (placeholders in pat
and res). You can use pattern variables as placeholders for almost arbitrary MuPAD
expressions not containing z or k. You can restrict them by conditions given in the
optional parameter conds.

conds

List of conditions on the pattern variables

Return Values

Object of type DOM_NULL

See Also

MuPAD Functions
iztrans | ztrans | ztrans::addpattern
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jacobiAM

Jacobi amplitude function am

Syntax

jacobiAM(u,m)

Description

jacobiAM(u,m) represents the Jacobi amplitude function which is defined as the
solution  of .

The Jacobi amplitude  is defined for complex arguments u and m.

Exact results are returned for m = 0, m = 1 or u = 0. In all other cases an unevaluated
symbolic call is returned.

A floating-point value is computed if both arguments are numerical and at least one is a
floating-point number.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments are returned evaluated:

jacobiAM(PI/3, 1/2)
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If m = 0, m = 1 or u = 0, an exact result is returned:

jacobiAM(PI/2, 0)

jacobiAM(2, 1)

jacobiAM(0, 1/2)

Parameters

u

An arithmetical expression.

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticF
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jacobiSN
Jacobi elliptic function sn

Syntax
jacobiSN(u,m)

Description
jacobiSN(u,m) represents the Jacobi elliptic function sn.

Let . Then the Jacobi elliptic function SN is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions
When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:
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jacobiSN(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiSN(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiSN(1,-1))

Example 2

For m = 0 and m = 1, the result is expressed using a trigonometric function:

jacobiSN(u,0)

jacobiSN(u,1)

Parameters

m

An arithmetical expression specifying the parameter.
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Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDC | jacobiDN | jacobiDS | jacobiNC | jacobiND | jacobiNS
| jacobiSC | jacobiSD
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jacobiCN
Jacobi elliptic function cn

Syntax
jacobiCN(u,m)

Description
jacobiCN(u,m) represents the Jacobi elliptic function cn.

Let . Then the Jacobi elliptic function cn is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions
When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

For most arguments, the Jacobi elliptic functions return themselves unevaluated:
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jacobiCN(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiCN(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiCN(1,-1))

Example 2

For m = 0 and m = 1, the result is expressed using a trigonometric function:

jacobiCN(u,0)

jacobiCN(u,1)

Parameters

m

An arithmetical expression specifying the parameter.
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Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCS |
jacobiDC | jacobiDN | jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSC
| jacobiSD | jacobiSN
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jacobiDN

Jacobi elliptic function dn

Syntax

jacobiDN(u,m)

Description

jacobiDN(u,m) represents the Jacobi elliptic function dn.

Let . Then the Jacobi elliptic function dn is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiDN(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiDN(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiDN(1,-1))

Example 2

For m = 0, the result is a constant:

jacobiDN(u,0)

For m = 1, the result is expressed using a trigonometric function:

jacobiDN(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDC | jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSC
| jacobiSD | jacobiSN
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jacobiCD

Jacobi elliptic function cd

Syntax

jacobiCD(u,m)

Description

jacobiCD(u,m) represents the Jacobi elliptic function cd.

Let . Then the Jacobi elliptic function cd is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiCD(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiCD(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiCD(1,-1))

Example 2

For m = 0, the result is expressed using a trigonometric function:

jacobiCD(u,0)

For m = 1, the result is a constant:

jacobiCD(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCN | jacobiCS |
jacobiDC | jacobiDN | jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSC
| jacobiSD | jacobiSN
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jacobiSD

Jacobi elliptic function sd

Syntax

jacobiSD(u,m)

Description

jacobiSD(u,m) represents the Jacobi elliptic function sd.

Let . Then the Jacobi function SD is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

1-1103



1 The Standard Library

Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiSD(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiSD(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiSD(1,-1))

Example 2

For m = 0 and m = 1, the result is expressed using a trigonometric function:

jacobiSD(u,0)

jacobiSD(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDC | jacobiDN | jacobiDS | jacobiNC | jacobiND | jacobiNS
| jacobiSC | jacobiSN
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jacobiND

Jacobi elliptic function nd

Syntax

jacobiND(u,m)

Description

jacobiND(u,m) represents the Jacobi elliptic function nd.

Let . Then the Jacobi elliptic function nd is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiND(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiND(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiND(1,-1))

Example 2

For m = 0, the result is a constant:

jacobiND(u,0)

For m = 1, the result is expressed using a trigonometric function:

jacobiND(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDC | jacobiDN | jacobiDS | jacobiNC | jacobiNS | jacobiSC
| jacobiSD | jacobiSN
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jacobiDC

Jacobi elliptic function dc

Syntax

jacobiDC(u,m)

Description

jacobiDC(u,m) represents the Jacobi elliptic function dc.

Let . Then the Jacobi elliptic function dc is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiDC(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiDC(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiDC(1,-1))

Example 2

For m = 0, the result is expressed using a trigonometric function:

jacobiDC(u,0)

For m = 1, the result is a constant:

jacobiDC(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDN | jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSC
| jacobiSD | jacobiSN
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jacobiNC

Jacobi elliptic function nc

Syntax

jacobiNC(u,m)

Description

jacobiNC(u,m) represents the Jacobi elliptic function nc.

Let . Then the Jacobi elliptic function nc is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiNC(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiNC(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiNC(1,-1))

Example 2

For m = 0 and m = 1, the result is expressed using a trigonometric function:

jacobiNC(u,0)

jacobiNC(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDC | jacobiDN | jacobiDS | jacobiND | jacobiNS | jacobiSC
| jacobiSD | jacobiSN
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jacobiSC

Jacobi elliptic function sc

Syntax

jacobiSC(u,m)

Description

jacobiSC(u,m) represents the Jacobi elliptic function sc.

Let . Then the Jacobi elliptic function sc is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiSC(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiSC(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiSC(1,-1))

Example 2

For m = 0 and m = 1, the result is expressed using a trigonometric function:

jacobiSC(u,0)

jacobiSC(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDC | jacobiDN | jacobiDS | jacobiNC | jacobiND | jacobiNS
| jacobiSD | jacobiSN
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jacobiNS

Jacobi elliptic function ns

Syntax

jacobiNS(u,m)

Description

jacobiNS(u,m) represents the Jacobi elliptic function ns.

Let . Then the Jacobi elliptic function ns is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiNS(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiNS(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiNS(1,-1))

Example 2

For m = 0 and m = 1, the result is expressed using a trigonometric function:

jacobiNS(u,0)

jacobiNS(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDC | jacobiDN | jacobiDS | jacobiNC | jacobiND | jacobiSC
| jacobiSD | jacobiSN
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jacobiDS

Jacobi elliptic function ds

Syntax

jacobiDS(u,m)

Description

jacobiDS(u,m) represents the Jacobi elliptic function ds.

Let . Then the Jacobi elliptic function ds is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiDS(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiDS(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiDS(1,-1))

Example 2

For m = 0 and m = 1, the result is expressed using a trigonometric function:

jacobiDS(u,0)

jacobiDS(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiCS | jacobiDC | jacobiDN | jacobiNC | jacobiND | jacobiNS | jacobiSC
| jacobiSD | jacobiSN
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jacobiCS

Jacobi elliptic function cs

Syntax

jacobiCS(u,m)

Description

jacobiCS(u,m) represents the Jacobi elliptic function cs.

Let . Then the Jacobi elliptic function cs is defined as follows:

The Jacobi functions are defined for complex values of u and m.

The Jacobi functions are meromorphic and doubly periodic with periods  and
 with respect to u.

For m = 0 and m = 1, the Jacobi functions reduce to trigonometric or constant functions.

If one argument is a floating-point number, and the other one can be converted to a
floating-point number, then a floating-point number is returned.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For most arguments, the Jacobi functions return themselves unevaluated:

jacobiCS(2,1/2)

Floating-point numbers are returned if at least one of the arguments is a floating-point
number:

jacobiCS(1.5,1/2)

Floating-point evaluation can be enforced by using float:

float(jacobiCS(1,-1))

Example 2

For m = 0 and m = 1, the result is expressed using a trigonometric function:

jacobiCS(u,0)

jacobiCS(u,1)
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Parameters

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
ellipticCK | ellipticF | ellipticK | jacobiAM | jacobiCD | jacobiCN |
jacobiDC | jacobiDN | jacobiDS | jacobiNC | jacobiND | jacobiNS | jacobiSC
| jacobiSD | jacobiSN
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jacobian
Jacobian matrix of a vector function

Syntax
jacobian(v, x)

Description

jacobian(v, x) computes the Jacobian matrix of the vector function  with respect to
.

If v is a vector then the component ring of v must be a field (i.e., a domain of category
Cat::Field) for which differentiation with respect to x is defined.

If v is given as a list of arithmetical expressions, then jacobian returns a matrix with
the standard component ring Dom::ExpressionField().

Examples

Example 1

The Jacobian matrix of the vector function  is:

delete x, y, z:

jacobian([x^3, x*z, y+z], [x, y, z])
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Parameters

v

A list of arithmetical expressions, or a vector (i.e., an n×1 or 1 ×n matrix of a domain of
category Cat::Matrix)

x

A list of (indexed) identifiers

Return Values

Matrix of the domain Dom::Matrix(R), where R is the component ring of v or the
domain Dom::ExpressionField().

Algorithms

For a vector function , where G is a subset of  the matrix

is the Jacobian matrix of .

See Also

MuPAD Functions
gradient | hessian
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jacobiZeta
Jacobi Zeta function

Syntax
jacobiZeta(u, m)

Description

jacobiZeta(u,m) represents the Jacobi Zeta function  which is defined as

.

The Jacobi Zeta function  is defined for complex arguments u and m.

Exact results are returned for m = 0, m = 1 or u = 0. In all other cases an unevaluated
symbolic call is returned.

A floating-point value is computed if both arguments are numerical and at least one is a
floating-point number.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments are returned unevaluated:
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jacobiZeta(2, -1)

If m = 0, m = 1 or u = 0, an exact result is returned:

jacobiZeta(0, 3)

jacobiZeta(1, 0)

jacobiZeta(2, 1)

Parameters

u

An arithmetical expression.

m

An arithmetical expression specifying the parameter.

Return Values

Arithmetical expression.
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kroneckerDelta
Kronecker's delta symbol

Syntax
kroneckerDelta(m, <n>)

Description

kroneckerDelta(m, n) is Kronecker's delta symbol. It represents 1 if m = n and 0 if m
≠ n.

kroneckerDelta(m) represents 1 if m = 0 and 0 if m ≠ 0.

The calls kroneckerDelta(m, n) and kroneckerDelta(m - n) are equivalent.

kroneckerDelta(m, n) yields 1 if the arguments m, n coincide.

It yields 0 if m - n yields a non-zero numerical value.

If either m or n contain symbolic objects and m - n does not yield a numerical value, then
the symbolic call kroneckerDelta(m, n) or the equivalent call kroneckerDelta(n,
m) is returned.

Floating point numbers such as 1.0, 2.0 etc. are treated like integers.

Note that kroneckerDelta(m,n) = kroneckerDelta(n,m) for arbitary arguments m,
n. In symbolic return values, the ordering of the input arguments may be exchanged.

kroneckerDelta is used and processed by sum and ztrans, iztrans.

Examples

Example 1

kroneckerDelta returns 1 or 0, respectively, for arguments that definitely coincide or
do not coincide:
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kroneckerDelta(2, 2), kroneckerDelta(n, n),

kroneckerDelta(2, 3), kroneckerDelta(n - 1, n + 1)

A symbolic call is returned if the system cannot decide whether the arguments coincide:

kroneckerDelta(m, n), kroneckerDelta(m, 3), kroneckerDelta(3, n)

Example 2

kroneckerDelta is processed by sum:

sum(a[n]*kroneckerDelta(n, 3), n = 0..infinity)

sum(a[n]*kroneckerDelta(n, m), n = 0..infinity)

iztrans may produce terms involving kroneckerDelta:

iztrans(1/(z - 1), z, n)

ztrans(%, n, z)
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Parameters

m, n

arithmetical expressions. The default value for n is 0.

Return Values

Arithmetical expression.

Overloaded By

m, n

See Also

MuPAD Functions
iztrans | sum | ztrans
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kummerU
Confluent hypergeometric KummerU function

Syntax
kummerU(a, b, z)

Description

kummerU(a, b, z) represents the KummerU function U(a, b, z), whose integral
representation is given by

for ℜ(a) > 0 and ℜ(z) > 0.

kummerU is defined for complex arguments a, b, and z.

For most parameter values, an unevaluated function call is returned. Cf. “Example 1” on
page 1-1135.

Explicit symbolic expressions are returned for some particular values of the parameters:

• If b = 2 a, the besselK function may appear.
• If a is a negative integer, the result is a polynomial.
• If a = 1 or b = a, the igamma function may appear.

Cf. “Example 2” on page 1-1135.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

1-1134



 kummerU

Examples

Example 1

Unevaluated calls are returned for exact or symbolic arguments:

kummerU(a, b, x), kummerU(1/2, -1, 0)

Floating point values are returned for floating-point arguments:

kummerU(1/3, 2.0, -50), kummerU(1/2, -1, 0.0)

Example 2

Explicit expressions are returned for some specific values of the parameters:

kummerU(1/2, 1, x), kummerU(-2, b, x), 

kummerU(1, 1/3, x), kummerU(a, a, x)

Example 3

The functions diff, float, limit, and series handle expressions involving the
kummerU function

diff(kummerU(a, b, z), z), float(kummerU(1/2, -1, 0))
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limit(kummerU(1/2, -1, x), x), 

series(kummerU(1/2, -1, x), x = infinity, 3)

Parameters

a, b, z

arithmetical expressions

Return Values

Arithmetical expression.

Overloaded By

z

Algorithms

U(a, b, z) satisfies Kummer's differential equation:

,

for which the hypergeometric function  is another solution.

U(a, b, z) is related to the whittakerW function Wa, b(z) by the formula:
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See Also

MuPAD Functions
hypergeom | whittakerM | whittakerW
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laguerreL

Laguerre polynomials and L function

Syntax

laguerreL(n, x)

laguerreL(n, a, x)

Description

laguerreL(n, a, x) represents Laguerre's L function. When n is a nonnegative
integer, this is the classical Laguerre polynomial of degree n.

Laguerre's L function is defined in terms of  hypergeometric functions by

.

For nonnegative integer values of n, the function returns the classical
(generalized) polynomials that are orthogonal with respect to the scalar product

. In particular:

.

The Laguerre's L function is not well defined for all values of the parameters n
and a, because certain restrictions on the parameters exist in the definition of the 
hypergeometric functions . If the Laguerre's L function is not defined for a particular pair
n and a, the call laguerreL(n, a, x) returns 0 or issues an error message.

The calls laguerre(n, x) and laguerre(n, 0, x) are equivalent.
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If n is a nonnegative integer, the function laguerreL returns the explicit form of the
corresponding Laguerre polynomial. The special values 

are implemented for arbitrary values of n and a. If n is a negative integer and a is a
numerical noninteger value satisfying a ≥ - n, then the function laguerreL returns 0. If
n is a negative integer and a is an integer satisfying a < - n, then the function returns an
explicit expression defined by the reflection rule

.

If all arguments are numerical and at least one of the arguments is a floating-point
number, then laguerreL(x) returns a floating-point number. For all other arguments,
laguerreL(n, a, x) returns a symbolic function call.

Environment Interactions

When called with floating-point arguments, the function is sensitive to the environment
variable DIGITS, which determines the numerical working precision.

Examples

Example 1

You can call the laguerreL function with exact and symbolic arguments:

laguerreL(2, a, x), laguerreL(-2, -2, PI)

If the first argument is a nonnegative integer, the function returns a polynomial:

laguerreL(3, x)
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laguerreL(3, a, x)

Floating-point values are computed for floating-point arguments:

laguerreL(2, 3, 4.0), laguerreL(5.0, sqrt(2), PI)

laguerreL(1 + I, 1.0), laguerreL(-2.0, exp(I))

Example 2

The Laguerre function is not defined for all parameter values:

laguerreL(-5/2, -3/2, x)

Error: The function 'laguerreL' is not defined for parameter values '-5/2' and '-3/2'. [laguerreL]

Example 3

System functions such as diff, float, limit, and series handle expressions involving
laguerreL:

diff(laguerreL(n, a, x), x, x, x), float(laguerreL(2, 3, sqrt(PI)))

limit(laguerreL(3, 4, x^2/(1+x)), x = infinity)

limit(laguerreL(4, 3, x^2/(1+x)), x = infinity)
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series(laguerreL(n, a, x), x = 0, 3)

series(laguerreL(3/2, x), x = infinity, 3)

Parameters

n, a, x

arithmetical expressions

Return Values

Arithmetical expression.

Overloaded By

x

See Also

MuPAD Functions
hypergeom | orthpoly::laguerre
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lambertW
The Lambert function

Syntax
lambertW(x)

lambertW(k, x)

Description

For integer k, the values  represent the solutions of the equation y ey = x.

lambertW is the inverse function of .

In the complex plane, the equation y ey = x has a countably infinite number of solutions.
They are represented by lambertW(k, x) with k ranging over the integers.

For all real x ≥ 0, the equation  has exactly one real solution. It is represented by
y=lambertW(x) or, equivalently, y=lambertW(0, x).

For all real x in the range -exp(-1) < x < 0, there are exactly two real solutions. The larger
one is represented by y=lambertW(x), the smaller one by y=lambertW(-1, x).

Exactly one real solution lambertW(0, -exp(-1))= lambertW(-1, -exp(-1))= -1
exists for .

For , lambertW(k, x) takes no real value.

The values lambertW(-1, 0)=- infinity and lambertW(0, 0)=0 are implemented.
Further, the result y is returned for some exact arguments of the form . For
floating-point arguments a floating-point value is returned. For all other arguments,
unevaluated function calls are returned.

The float attributes are kernel functions, i.e., floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

lambertW(-3), lambertW(-1, -5/2), lambertW(1/2),

lambertW(5, I), lambertW(3, 1 + I), lambertW(-1, x + 1)

Some exact values are found:

lambertW(-1, -exp(-1)), lambertW(-1, -2*exp(-2)), 

lambertW(-1, -3/2*exp(-3/2)), lambertW(exp(1)), 

lambertW(2*exp(2)), lambertW(5/2*exp(5/2)),

lambertW(1, (3+4*I)*exp(3+4*I))

Floating point values are computed for floating-point arguments:

lambertW(-1, -0.3), lambertW(2000.0)

lambertW(-3, -0.277), lambertW(1, 2345.6)
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Example 2

The functions diff, float, and series handle expressions involving the Lambert
function:

diff(lambertW(k, x), x)

float(ln(3 + lambertW(sqrt(PI))))

series(lambertW(x), x = 0);

series(lambertW(x), x = -1/exp(1), 3);

series(lambertW(-1, x), x = -1/exp(1), 3);

Parameters

x

An arithmetical expression, the “argument”

k

An arithmetical expression representing an integer, the “branch”
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Return Values

Arithmetical expression.

References

R.M. Corless, D.J. Jeffrey and D.E. Knuth: “A sequence of Series for the Lambert W
Function”, in: Proceedings of ISSAC'97, Maui, Hawaii. W.W. Kuechlin (ed.). New York:
ACM, pp. 197-204, 1997.
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laplace
Laplace transform

Syntax
laplace(f, t, s)

Description

laplace(f, t, s) computes the Laplace transform of the expression f = f(t) with
respect to the variable t at the point s.

The Laplace transform is defined as follows:

.

If laplace cannot find an explicit representation of the transform, it returns an
unevaluated function call. See “Example 3” on page 1-1147.

If f is a matrix, laplace applies the Laplace transform to all components of the matrix.

To compute the inverse Laplace transform, use ilaplace.

Examples

Example 1

Compute the Laplace transforms of these expressions with respect to the variable t:

laplace(exp(-a*t), t, s)
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laplace(1 + exp(-a*t)*sin(b*t), t, s)

Example 2

Compute the Laplace transform of this expression with respect to the variable t:

F := laplace(t^10*exp(-s_0*t), t, s)

Evaluate the Laplace transform of the expression at the points s = - 2 s0 and s = 1 + π.
You can evaluate the resulting expression F using | (or its functional form evalAt):

F | s = -2*s_0

Also, you can evaluate the Laplace transform at a particular point directly:

laplace(t^10*exp(-s_0*t), t, 1 + PI)

Example 3

If laplace cannot find an explicit representation of the transform, it returns an
unevaluated call:

laplace(exp(-t^3), t, s)
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ilaplace returns the original expression:

ilaplace(%, s, t)

Example 4

Compute the folllowing Laplace transforms that involve the Dirac and the Heaviside
functions:

laplace(dirac(t - 3), t, s)

laplace(heaviside(t - PI), t, s)

Example 5

The Laplace transform of a function is related to the Laplace transform of its derivative:

laplace(diff(f(t), t), t, s)

Parameters

f

Arithmetical expression or matrix of such expressions

t

Identifier or indexed identifier representing the transformation variable
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s

Arithmetical expression representing the evaluation point

Return Values

Arithmetical expression or unevaluated function call of type laplace. If the first
argument is a matrix, then the result is returned as a matrix.

Overloaded By

f

See Also

MuPAD Functions
ilaplace | ilaplace::addpattern | laplace::addpattern

More About
• “Integral Transforms”
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laplace::addpattern
Add patterns for the Laplace transform

Syntax
laplace::addpattern(pat, t, s, res, <vars, <conds>>)

Description

laplace::addpattern(pat, t, s, res) teaches laplace to return
.

The laplace function uses a set of patterns for computing Laplace transforms.
You can extend the set by adding your own patterns. To add a new pattern to the
pattern matcher, use laplace::addpattern. MuPAD does not save custom patterns
permanently. The new patterns are available in the current MuPAD session only.

Variable names that you use when calling laplace::addpattern can differ from the
names that you use when calling laplace. See “Example 2” on page 1-1151.

You can include a list of free parameters and a list of conditions on these parameters.
These conditions and the result are protected from premature evaluation. This means
that you can use not   iszero(a^2 - b) instead of hold( _not @ iszero )(a^2
- b).

The following conditions treat assumptions on identifiers differently:

• a^2 - b <> 0 takes into account assumptions on identifiers.
• not   iszero(a^2 - b) disregards assumptions on identifiers.

See “Example 4” on page 1-1152.

Environment Interactions

Calling laplace::addpattern changes the expressions returned by future calls to
laplace.
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Examples

Example 1

Compute the Laplace transform of the function foo. By default, MuPAD does not have a
pattern for this function:

laplace(foo(t), t, s)

Add a pattern for the Laplace transform of foo using laplace::addpattern:

laplace::addpattern(foo(t), t, s, bar(s)):

Now laplace returns the Laplace transform of foo:

laplace(foo(t), t, s)

After you add a new transform pattern, MuPAD can use that pattern indirectly:

laplace(t^3 + exp(2*t)*foo(t), t, s)

Example 2

Define the Laplace transform of foo(x) using the variables x and y as parameters:

laplace::addpattern(foo(x), x, y, bar(y)):

The laplace function recognizes the added pattern even if you use other variables as
parameters:

laplace(foo(t), t, s)
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Example 3

Add this pattern for the Laplace transform of f:

laplace::addpattern(f(a*x)*g(a*x), x, y, y/(y^4 + 4*a^4)):

laplace(f(a*v)*g(a*v), v, w)

This pattern holds only when the first argument of f is the symbolic parameter a. If you
use any other value of this parameter, laplace ignores the pattern:

laplace(f(A*v)*g(A*v), v, w)

To use the pattern for arbitrary values of the parameter, declare the parameter a as an
additional pattern variable:

laplace::addpattern(f(a*x)*g(a*x), x, y, y/(y^4 + 4*a^4), [a]):

Now laplace applies the specified pattern for an arbitrary value of a:

laplace(f(A*v)*g(A*v), v, w)

Example 4

Use assumptions when adding the following pattern for the Laplace transform:

laplace::addpattern(FOO(x*t), t, s, sin(1/(x-1/2))*BAR(s),

                                    [x], [abs(x) < 1]):

laplace(FOO(x*t),t,s) assuming -1 < x < 1
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If |x| ≥ 1, you cannot apply this pattern:

laplace(FOO(x*t),t,s) assuming x >= 1

If MuPAD cannot determine whether the conditions are satisfied, it returns a
piecewise object:

laplace(FOO(x*t), t, s)

Note that the resulting expression defining the Laplace transform of FOO(x*t) implicitly
assumes that the value of x is not 1/2. A strict definition of the pattern is:

laplace::addpattern(FOO(x*t), t, s, sin(1/(x-1/2))*BAR(s),

                    [x], [abs(x) < 1, x <> 1/2]):

If either the conditions are not satisfied or substituting the values into the result gives an
error, laplace ignores the pattern. For this particular pattern, you can omit specifying
the assumption x <> 1/2. If x = 1/2, MuPAD throws an internal “Division by zero.”
error and ignores the pattern:

laplace(FOO(1/2*t), t, s)

Parameters

pat

Arithmetical expression in the variable t representing the pattern to match
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t

Identifier or indexed identifier used as a variable in the pattern

s

Identifier or indexed identifier used as a variable in the result

res

Arithmetical expression in the variable s representing the pattern for the result of the
transformation

vars

List of identifiers or indexed identifiers used as “pattern variables” (placeholders in pat
and res). You can use pattern variables as placeholders for almost arbitrary MuPAD
expressions not containing t or s. You can restrict them by conditions given in the
optional parameter conds.

conds

List of conditions on the pattern variables

Return Values

Object of type DOM_NULL

See Also

MuPAD Functions
ilaplace | ilaplace::addpattern | laplace
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laplacian
The Laplacian

Syntax
laplacian(f, [x1, x2, …])

laplacian(f, [x1, x2, …], ogCoord, <c>)

Description

laplacian(f, [ x1, x2, ...]) computes the Laplacian , i.e.

div(grad(f)), of the function f = f(x1, x2, …) in the Cartesian coordinates x1, x2, ….

The table linalg::ogCoordTab provides some predefined three-dimensional
orthogonal coordinate transformations. Presently, its entries are Cartesian,
Cylindrical, Spherical, Spherical[LeftHanded], EllipticCylindrical,
ParabolicCylindrical, RotationParabolic, and Torus. See
linalg::ogCoordTab for details. For example, the command

laplacian(f(r, Theta, phi), [r, Theta, phi], Spherical)

produces the Laplacian of f in spherical coordinates r, θ, ϕ defined by the transformation

.

Arbitrary orthogonal systems u = (u1, …, un) (in any dimension n) can be used by
passing corresponding “scale parameters” as third argument to laplacian. These
are defined as follows. Let  be Cartesian coordinates, let  be an
orthognal transformation (i.e., the vectors  are orthogonal). The Euclidean lengths

 of the vectors define the “scales”. The list s = [s1, …, sn] can be passed as a

third argument to laplacian. For example, the usual two-dimensional polar coordinates
x = r cos(ϕ), y = r sin(ϕ) lead to scale factors
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.

Thus, laplacian(f(r, phi), [r, phi], [1, r]) produces the Laplacian of f(r, ϕ)
in polar coordinates r and ϕ.

Examples

Example 1

Compute the Laplacian in Cartesian coordinates:

laplacian(f(x[1], x[2]), [x[1], x[2]])

laplacian(x^2*y + c*exp(y) + u*v^2, [x, y, u, v])

Example 2

Compute the Laplacian in cylindrical coordinates (r, ϕ, z) given by

.

expand(laplacian(f(r, phi, z), [r, phi, z], Cylindrical))
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laplacian(r*cos(phi)*z^3, [r, phi, z], Cylindrical)

Passing the name Cylindrical of the orthogonal system predefined in
linalg::ogCoordTab is the simplest way of using cylindrical coordinates.
Alternatively, one may pass appropriate `scale parameters' explicitly. They are stored in
linalg::ogCoordTab and can be called in the following way:

linalg::ogCoordTab[Cylindrical, Scales](r, phi, z)

laplacian(r*cos(phi)*z^3, [r, phi, z], %)

Example 3

Consider Torus coordinates (r, θ, ϕ) introduced by

.

Here, c is a real constant and 0 ≤ r < c, 0 ≤ θ ≤ 2 π, 0 ≤ ϕ ≤ 2 π is assumed. The “scale
parameters” are stored in linalg::ogCoordTab:

linalg::ogCoordTab[Torus, Scales](r, thet, phi, c)

The Laplacian of the function f(r, ϕ, z) = r in these coordinates is:

laplacian(r, [r, thet, phi], %)
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Example 4

You can introduce new orthogonal systems. For example, consider the orthogonal “6-
sphere coordinates” (u, v, w) introduced by

.

This transformation  is not stored in linalg::ogCoordTab,
hence the corresponding “scale factors” of the metric have to be computed first:

.

With these “scales”, the Laplacian can be computed via laplacian:

s := 1/(u^2 + v^2 + w^2):

factor(laplacian(f(u, v, w), [u, v, w], [s, s, s]))
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Since the Laplacian is the divergence of the gradient, you can compute it in the following
way, too:

divergence(gradient(f(u, v, w), [u, v, w], [s, s, s]),

                   [u, v, w], [s, s, s])

expand(% - %2)

delete s:

Parameters

f

An arithmetical expression in the variables x1, x2 etc.

x1, x2, …

identifiers or indexed identifiers

ogCoord

The name of a three-dimensional orthogonal coordinate system predefined in the table
linalg::ogCoordTab, or a list of algebraic expressions representing the scale factors of
an orthogonal coordinate system.
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c

The parameter of the coordinate systems EllipticCylindrical and Torus, respectively: an
arithmetical expression. The default value is c = 1.

Return Values

Arithmetical expression.

Algorithms

Orthogonal coordinates  on ℝ
n are defined by a transformation  to Cartesian

coordinates  on ℝ
n. The metric tensor associated with the coordinates  is given by

.

The Laplacian of a function f is given by the divergence

,

where  are the components of the gradient .

See Also

MuPAD Functions
curl | divergence | gradient | linalg::ogCoordTab | potential |
vectorPotential
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%, last
Access a previously computed object

Syntax
%

% n

last(n)

Description

last() or % returns the result of the last command.

last(n) or %n returns the result of the nth previous command.

By default, MuPAD stores the last 20 commands and their results in an internal history
table. last(n) returns the result entry of the nth element in this table, counted from the
end of the table. Thus last(1) returns the result of the last command, last(2) returns
the result of the next to last one, etc. Instead of last(n) one can also write more briefly
%n. Instead of last(1) or %1, one can use even more briefly %.

The environment variable HISTORY determines the number of previous results that
can be accessed at interactive level, i.e., the number of entries in the history table. In
procedures, the length of this table is always 3, independent of the value of HISTORY.
Thus admissible values for n are the integers between 1 and HISTORY at interactive
level, and the integers 1, 2, 3 inside a procedure.

Use history to access entries of the history table at interactive level directly, including
the command that produced the corresponding result.

The result returned by last or % is not evaluated again. Use the function eval to force a
subsequent evaluation. See “Example 4” on page 1-1164.

Note: last behaves differently at interactive level and in procedures. At interactive
level, compound statements, such as for, repeat, and while loops and if and case
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branching instructions, are stored in the history table as a whole. In procedures, the
statements within a compound statement are stored in a separate history table of this
procedure, but not the compound statement itself. See “Example 5” on page 1-1165.

Commands and their results are stored in the history table even if the output is
suppressed by a colon. Thus the result of last(n) may differ from the nth previous
output that is visible on the screen at interactive level. See “Example 1” on page 1-1162.

Commands appearing on the same input line lead to separate entries in the history table
if they are separated by a colon or a semicolon. In contrast, an expression sequence is
regarded as a single command. See “Example 2” on page 1-1163.

Commands that are read from a file via fread or read are stored in the history table
before the fread or read command itself. If the option Plain is used, then a separate
history table is valid within the file, and the commands from the file do not appear in the
history table of the enclosing context. See the help page of history for examples.

Using last in procedures is generally considered bad programming style and is therefore
deprecated. Future MuPAD releases may no longer support the use of last within
procedures.

If the abbreviated syntax %n is used, then n must be a positive integer literally. If this is
not the case, but n evaluates to a positive integer, use the equivalent functional notation
last(n) (see “Example 3” on page 1-1164).

Examples

Example 1

Here are some examples for using last at interactive level. Note that last(n) refers to
the nth previously computed result, whether it was displayed or not:

a := 42;

last(1), %, %1
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a := 34: b := 56: last(2) = %2

Example 2

Commands appearing on one input line lead to separate entries in the history table:

"First command"; 11: 22; 33:

last(1), last(2);

If a sequence of commands is bracketed, it is regarded as a single command:

"First command"; (11: 22; 33:)

last(1), last(2);

An expression sequence is also regarded as a single command:

"First command"; 11, 22, 33;
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last(1), last(2);

Example 3

Due to the fact that the MuPAD parser expects a number after the % sign, there is a
difference between the use of % and last. last can be called with an expression that
evaluates to a positive integer:

n := 2: a := 35: b := 56: last(n)

If you try the same with %, an error occurs:

n := 2: a := 35: b := 56: %n

Error: Unexpected 'identifier'. [line 1, col 28]

Example 4

The result of last is not evaluated again:

delete a, b:

c := a + b + a: a:= b: %2

Use eval to enforce the evaluation:

eval(%)
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Example 5

We demonstrate the difference between the use of last at interactive level and in
procedures:

1: for i from 1 to 3 do i: print(%): end_for:

Here last(1) refers to the most recent entry in the history table, which is the 1
executed before the for loop. We can also verify this by inspecting the history table after
these commands. The command history returns a list with two elements. The first
entry is a previously entered MuPAD command, and the second entry is the result of this
command returned by MuPAD. You see that the history table contains the whole for
loop as a single command:

history(history() - 1), history(history())

[1, 1], [(for i from 1 to 3 do

  i;

  print(%)

end_for), null()]

However, if the for loop defined above is executed inside a procedure, then we obtain
a different result. In the following example, last(1) refers to the last evaluated
expression, namely the i inside the loop:

f := proc()

begin

  1: for i from 1 to 3 do i: print(last(1)): end_for

end_proc:

f():
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The command history refers only to the interactive inputs and their results:

history(history())

Parameters

n

A positive integer

Return Values

MuPAD object.

See Also

MuPAD Functions
HISTORY | history

More About
• “History Mechanism”
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lasterror
Reproduce the last error

Syntax
lasterror()

Description

lasterror() reproduces the last error that occurred in the current MuPAD session.

Typically, lasterror is used to reproduce errors that were caught by traperror. Cf.
“Example 2” on page 1-1168.

Examples

Example 1

We produce an error:

x := 0: y := 1/x

Error: Division by zero. [_invert]

This error may be reproduced by lasterror:

lasterror()

Error: Division by zero. [_invert]

A further error is produced:

error("my error")
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Error: my error

lasterror()

Error: my error

delete x, y:

Example 2

The following procedure myln computes the ln function of its argument. In case of an
error produced by the system function ln, it prints information on the argument and
reproduces the error:

myln := proc(x)

  local result;

begin

  if traperror((result := ln(x))) = 0 then

     return(result)

  else

     print(Unquoted, "the following error occurred " .

                     "when calling ln(".expr2text(x)."):");

     lasterror()

  end_if:

end:

Indeed, the ln has a singularity at 0 and produces:

myln(0)

the following error occurred when calling ln(0):

Error: Singularity. [ln]

  Evaluating: myln

delete myln:

See Also

MuPAD Functions
error | getlasterror | traperror
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&&, _lazy_and
“short circuit and” of Boolean expressions

Syntax
b1 && b2 && …

_lazy_and(b1, b2, …)

Description

b1 && b2 && ... evaluates the Boolean expression b1 and b2 and ... by “short
circuit evaluation”.

b1 && b2 && ... produces the same result as bool(b1 and b2 and ...), provided
the latter call does not throw an error. The difference between these calls is as follows.
The call bool(b1 and b2 and ...) evaluates all Boolean expressions before
combining them logically via and.

_lazy_and(b1, b2, ...) is equal to b1 && b2 && ....

Note that the result is FALSE if one of b1, b2, and so on evaluates to FALSE. “short circuit
evaluation” is based on this fact: b1 && b2 && ... evaluates the arguments from left
to right. The evaluation stops immediately if one argument evaluates to FALSE. In this
case, _lazy_and returns FALSE without evaluating the remaining Boolean expressions.
If none of the expressions b1, b2, and so on evaluates to FALSE, then all arguments are
evaluated and the corresponding result (TRUE or UNKNOWN) is returned.

_lazy_and is also called “conditional and”.

If any of the considered Boolean expressions b1, b2, and so on cannot be evaluated to
TRUE, FALSE, or UNKNOWN, then _lazy_and throws an error.

_lazy_and is used internally by the if, repeat, and while statements. For example,
the statement if b1 and b2 then ... is equivalent to if b1 && b2 then ....

_lazy_and() returns TRUE.
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Examples

Example 1

This example show the difference between short circuit and complete evaluation of
Boolean conditions. For x = 0, the evaluation of  leads to an error:

x := 0:

bool(x <> 0 and sin(1/x) = 0)

Error: Division by zero. [_invert]

With “short circuit evaluation”, the expression  is not evaluated. This avoids

the previous error:

x <> 0 && sin(1/x) = 0

delete x

Example 2

The following statements do no lead to an error because if uses short circuit evaluation
internally:

for x in [0, PI, 1/PI] do

  if x <> 0 and sin(1/x) = 0 then

     print(x)

  end_if;

end_for:

delete x
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Example 3

_lazy_and can be called without parameters:

_lazy_and()

Parameters

b1, b2, …

Boolean expressions

Return Values

TRUE, FALSE, or UNKNOWN.

Overloaded By

b1, b2

See Also

MuPAD Functions
_lazy_or | and | bool | FALSE | if | is | or | repeat | TRUE | UNKNOWN | while
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||, _lazy_or
“short circuit or” of Boolean expressions

Syntax
b1 || b2 || …

_lazy_or(b1, b2, …)

Description

b1 || b2 || ... evaluates the Boolean expression b1 or b2 or ... by “short
circuit evaluation”.

b1 || b2 || ... produces the same result as bool(b1 or b2 or ...), provided
the latter call does not throw an error. The difference between these calls is as follows.
The call bool(b1 or b2 or ...) evaluates all Boolean expressions before combining
them logically via or.

_lazy_or(b1, b2, ...) is equal to b1 || b2 || ....

The result is TRUE if one of b1, b2, and so on evaluates to TRUE. “short circuit evaluation”
is based on this fact: b1 || b2 || ... evaluates the arguments from left to right. The
evaluation stops immediately if one argument evaluates to TRUE. In this case, _lazy_or
returns TRUE without evaluating the remaining Boolean expressions. If none of the
expressions b1, b2, and so on evaluates to TRUE, then all arguments are evaluated and
the corresponding result FALSE or UNKNOWN is returned.

_lazy_or is also called “conditional or”.

If any of the considered Boolean expressions b1, b2, and so on cannot be evaluated to
TRUE, FALSE, or UNKNOWN, then _lazy_or throws an error.

_lazy_or is used internally by the if, repeat, and while statements. For example, the
statement if b1 or b2 then ... is equivalent to if b1 || b2 then ....

_lazy_or() returns FALSE.
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Examples

Example 1

This example show the difference between short circuit evaluation and complete
evaluation of Boolean conditions. For x = 0, the evaluation of  leads to an error:

x := 0:

bool(x = 0 or sin(1/x) = 0)

Error: Division by zero. [_invert]

With “short circuit evaluation”, the expression  is not evaluated. This avoids

the previous error:

x = 0 || sin(1/x) = 0

delete x:

Example 2

The following statements do no lead to an error because if uses short circuit evaluation
internally:

for x in [0, PI, 1/PI] do

  if x = 0 or sin(1/x) = 0 then

     print(x)

  end_if;

end_for:
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delete x

Example 3

_lazy_or() can be called without parameters:

_lazy_or()

Parameters

b1, b2, …

Boolean expressions

Return Values

TRUE, FALSE, or UNKNOWN.

Overloaded By

b1, b2

See Also

MuPAD Functions
_lazy_and | and | bool | FALSE | if | is | or | repeat | TRUE | UNKNOWN | while
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lcm
Least common multiple of polynomials

Syntax
lcm(p, q, …)

lcm(f, g, …)

Description

lcm(p, q, ...) calculates the least common multiple of any number of polynomials.
The coefficient ring of the polynomials may either be the integers or the rational
numbers, Expr, a residue class ring IntMod(n) with a prime number n, or a domain.

All polynomials must have the same indeterminates and the same coefficient ring.

Polynomial expressions are converted to polynomials. See poly for details. FAIL is
returned if an argument cannot be converted to a polynomial.

The return value is of the same type as the input polynomials, i.e., either a polynomial of
type DOM_POLY or a polynomial expression.

lcm returns 1 if all arguments are 1 or - 1, or if no argument is given. If at least one of
the arguments is 0, then lcm returns 0.

Use ilcm if all arguments are known to be integers, since it is much faster than lcm.

Examples

Example 1

The least common multiple of two polynomial expressions can be computed as follows:

lcm(x^3 - y^3, x^2 - y^2);

1-1175



1 The Standard Library

One may also choose polynomials as arguments:

p := poly(x^2 - y^2, [x, y], IntMod(17)):

q := poly(x^2 - 2*x*y + y^2, [x, y], IntMod(17)):

lcm(p, q)

delete f, g, p, q:

Parameters

pq, …

polynomials of type DOM_POLY

fg, …

polynomial expressions

Return Values

Polynomial, a polynomial expression, or the value FAIL.

Overloaded By

f,  g, p,  q

See Also

MuPAD Functions
content | factor | gcd | gcdex | icontent | ifactor | igcd | igcdex | ilcm |
poly
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lcoeff
Leading coefficient of a polynomial

Syntax
lcoeff(p, <order>)

lcoeff(f, <vars>, <order>)

Description

lcoeff(p) returns the leading coefficient of the polynomial p.

The returned coefficient is “leading” with respect to the lexicographical ordering, unless a
different ordering is specified via the argument order. Cf. “Example 1” on page 1-1177.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. The result is returned as polynomial expression. FAIL is returned if f cannot
be converted to a polynomial. Cf. “Example 3” on page 1-1178.

The result of lcoeff is not fully evaluated. Evaluation can be enforced by the function
eval. Cf. “Example 2” on page 1-1178.

Examples

Example 1

We demonstrate how various orderings influence the result:

p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):

lcoeff(p), lcoeff(p, DegreeOrder), lcoeff(p, DegInvLexOrder)
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The following call uses the reverse lexicographical order on 3 indeterminates:

lcoeff(p, Dom::MonomOrdering(RevLex(3)))

delete p:

Example 2

The result of lcoeff is not fully evaluated:

p := poly(a*x^2 + 27*x, [x]): a := 5:

lcoeff(p), eval(lcoeff(p))

delete p, a:

Example 3

The expression 1/x may not be regarded as polynomial:

lcoeff(1/x)

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression
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vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

order

The term ordering: either LexOrder, or DegreeOrder, or DegInvLexOrder, or a user-
defined term ordering of type Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder.

Return Values

Element of the coefficient domain of the polynomial or FAIL.

Overloaded By

p

See Also

MuPAD Functions
coeff | collect | degree | degreevec | ground | ldegree | lmonomial | lterm
| monomials | nterms | nthcoeff | nthmonomial | nthterm | poly | poly2list |
tcoeff
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ldegree
Lowest degree of the terms in a polynomial

Syntax
ldegree(p)

ldegree(p, x)

ldegree(f, <vars>)

ldegree(f, <vars>, x)

Description

ldegree(p) returns the lowest total degree of the terms of the polynomial p.

ldegree(p, x) returns the lowest degree of the terms in p with respect to the variable
x.

If the first argument f is not element of a polynomial domain, then ldegree converts the
expression to a polynomial via poly(f). If a list of indeterminates is specified, then the
polynomial poly(f, vars) is considered.

ldegree(f, vars, x) returns 0 if x is not an element of vars.

The low degree of the zero polynomial is defined as 0.

Examples

Example 1

The lowest total degree of the terms in the following polynomial is computed:

ldegree(x^3 + x^2*y^2)
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The next call regards the expression as a polynomial in x with a parameter y:

ldegree(x^3 + x^2*y^2, x)

The next expression is regarded as a bi-variate polynomial in x and z with coefficients
containing the parameter y. The total degree with respect to x and z is computed:

ldegree(x^3*z^2 + x^2*y^2*z, [x, z])

We compute the low degree with respect to x:

ldegree(x^3*z^2 + x^2*y^2*z, [x, z], x)

A polynomial in x and z is regarded constant with respect to any other variable, i.e., its
corresponding degree is 0:

ldegree(poly(x^3*z^2 + x^2*y^2*z, [x, z]), y)

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression
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vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

x

An indeterminate

Return Values

Nonnegative number. FAIL is returned if the input cannot be converted to a polynomial.

Overloaded By

f, p

See Also

MuPAD Functions
coeff | degree | degreevec | ground | lcoeff | lmonomial | lterm | monomials
| nterms | nthcoeff | nthmonomial | nthterm | poly | poly2list | tcoeff
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length

The “length” of a object (heuristic complexity)

Syntax

length(object)

Description

length(object) returns an integer indicating the complexity of the object.

The (heuristic) complexity of an object may be useful in algorithms that need to predict
the complexity and time for manipulating objects. E.g., a symbolic Gaussian algorithm
for solving linear equations prefers Pivot elements of small complexity.

The length of an object is determined as follows:

• Objects of domain type DOM_BOOL, DOM_DOMAIN, DOM_EXEC, DOM_FAIL, DOM_FLOAT,
DOM_FUNC_ENV, DOM_IDENT, DOM_NIL, DOM_VAR, and DOM_PROC_ENV are regarded
as “atomic”. They have length 1. In particular, the length of identifiers and real
floating-point numbers is 1.

• The length of an integer is (a close approximation of) the number of decimal digits,
including the sign.

• The length of a string is the number of its characters.
• The length of composite objects such as complex numbers, rational numbers,

arithmetical expressions, lists, sets, arrays, hfarrays, tables etc. is the sum of the
lengths of the operands plus 1.

length() yields 0.

Note: length does not return the number of elements or entries in sets, lists or tables.
Use nops instead!
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Examples

Example 1

Intuitively, the length measures the complexity of an object:

length(1 + x) < length(x^3 + exp(a - b)/ln(45 - t) - 1234*I)

Example 2

We compute the lengths of some simple objects:

length(1.2), length(-1234.5), length(123456), length(-123456)

length(17), length(123), length(17/123)

length(12), length(123), length(12 + 123*I)

length(x), length(x^2), length(x^12345)

length("123"), length("")

length(x), length(a_long_name)
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Example 3

The length of an array is the sum of the lengths of all its elements plus 1:

A := array(1..2, [x, y]): length(A) = length(x) + length(y) + 1

A[1] := 12345: length(A) = length(12345) + length(y) + 1

A := hfarray(1..10, [1.0 $ 10]):

length(A) = 10*length(1.0) + 1

A := hfarray(1..10, [1.0 + 2.0*I $ 10]):

length(A) = 10*length(1.0 + 2.0*I) + 1

Beware: If only one complex number is contained in an hfarray, then all entries are
regarded as complex numbers, even if they are real:

A := hfarray(1..10, [2.0 $ 9, 2.0 + 3.0*I]):

length(A) = 10*length(2.0 + 3.0*I) + 1

delete A:

Example 4

The operands of a table are the equations associating indices and entries. The length of
each operand is the length of the index plus the length of the corresponding entry plus 1:
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T[1] := 45: T

length(T) = length(1 = 45) + 1

delete T:

Parameters

object

An arbitrary MuPAD object

Return Values

Nonnegative integer.

See Also

MuPAD Functions
nops | op
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LEVEL
Substitution depth of identifiers

Description

The environment variable LEVEL determines the maximal substitution depth of
identifiers.

Possible values: a positive integer smaller than 231.

When a MuPAD object is evaluated, identifiers occurring in it are replaced by their
values. This happens recursively, i.e., if the values themselves contain identifiers,
then these are replaced as well. LEVEL determines the maximal recursion depth of this
process.

Technically, evaluation of a MuPAD object works as follows. For a compound object,
usually first the operands are evaluated recursively, and then the object itself is
evaluated. E.g., if the object is a function call with arguments,the arguments are
evaluated first, and then the function is executed with the evaluated arguments.

With respect to the evaluation of identifiers, the current substitution depth is recorded
internally. Initially, this value is zero. If an identifier is encountered during the recursive
evaluation process as described above and the current substitution depth is smaller
than LEVEL, then the identifier is replaced by its value, the current substitution depth
is increased by one, and evaluation proceeds recursively with the value of the identifier.
After the identifier has been evaluated, the current substitution depth is reset to its
previous value. If the current substitution depth equals LEVEL, however, then the
recursion stops and the identifier remains unevaluated.

Note: The default value of LEVEL at interactive level is 100. However, the default value
of LEVEL within a procedure is 1. Then an identifier is only replaced by its value, which
is not evaluated recursively.

The value of LEVEL may be changed within a procedure, but it is reset to 1 each time
a new procedure is entered. After the procedure returns, LEVEL is reset to its previous
value. See “Example 3” on page 1-1190.
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Note: The evaluation of local variables and formal parameters of procedures, of type
DOM_VAR, is not affected by LEVEL: they are always evaluated with substitution depth
1. This means that a local variable or a formal parameter is replaced by its value when
evaluated, but the value is not evaluated further.

See “Example 3” on page 1-1190.

Note:  LEVEL does not affect the evaluation of arrays, tables and polynomials.

See “Example 4” on page 1-1191.

The function eval evaluates its argument with substitution depth given by LEVEL, and
then evaluates the result again with the same substitution depth.

The call level(object, n) evaluates its argument with substitution depth n,
independent of the value of LEVEL.

If, during evaluation, the substitution depth MAXLEVEL, is reached, then the evaluation
is terminated with an error. This is a heuristic for recognizing recursive definitions,
as in the example delete a; a := a + 1; a. Here, a would be replaced by a +
1 infinitely often. Note that this has no effect if MAXLEVEL is greater than LEVEL.
The default value of MAXLEVEL is 100, i.e., it is equal to the default value of LEVEL at
interactive level. However, unlike LEVEL, MAXLEVEL is not changed within a procedure,
and hence recursive definitions are usually not recognized within procedures. See the
help page of MAXLEVEL for examples.

The default value of LEVEL is 100 at interactive level; LEVEL has this value after starting
or resetting the system via reset. Within a procedure, the default value is 1. The
command delete LEVEL restores the default value.

Examples

Example 1

We demonstrate the effect of various values of LEVEL at interactive level:

delete a0, a1, a2, a3, a4, b: b := b + 1:
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a0 := a1: a1 := a2 + 2: a2 := a3 + a4: a3 := a4^2: a4 := 5:

LEVEL := 1: a0, a0 + a2, b;

LEVEL := 2: a0, a0 + a2, b;

LEVEL := 3: a0, a0 + a2, b;

LEVEL := 4: a0, a0 + a2, b;

LEVEL := 5: a0, a0 + a2, b;

LEVEL := 6: a0, a0 + a2, b;

delete LEVEL:

Example 2

In the following calls, the identifier a is fully evaluated:

delete a, b, c:

a := b: b := c: c := 7: a

After assigning the value 2 to LEVEL, a is evaluated only with depth two:

LEVEL := 2: a;

delete LEVEL:
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If we set MAXLEVEL to 2 as well, evaluation of a produces an error, although there is no
recursive definition involved:

LEVEL := 2: MAXLEVEL := 2: a

Error: Recursive definition, the maximal evaluation level is reached.

delete LEVEL, MAXLEVEL:

Example 3

This example shows the difference between the evaluation of identifiers and local
variables. By default, the value of LEVEL is 1 within a procedure, i.e., a global identifier
is replaced by its value when evaluated, but there is no further recursive evaluation. This
changes when LEVEL is assigned a bigger value inside the procedure:

delete a0, a1, a2, a3:

a0 := a1 + a2:  a1 := a2 + a3:  a2 := a3^2 - 1:  a3 := 5:

p := proc() 

       save LEVEL; 

     begin

       print(a0, eval(a0)):

       LEVEL := 2:

       print(a0, eval(a0)):

     end_proc:

p()

In contrast, evaluation of a local variable replaces it by its value, without further
evaluation. When eval is applied to an object containing a local variable, then the effect
is an evaluation of the value of the local variable with substitution depth LEVEL:

q := proc()
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       save LEVEL;

       local x;

     begin

       x := a0:

       print(x, eval(x)):

       LEVEL := 2:

       print(x, eval(x)):

     end_proc:

q()

The command x:=a0 assigns the value of the identifier a0, namely the unevaluated
expression a1+a2, to the local variable x, and x is replaced by this value every time it is
evaluated, independent of the value of LEVEL.

Example 4

LEVEL does not affect on evaluation of polynomials:

delete a, x:  p := poly(a*x, [x]):  a := 2:  x := 3:

p, eval(p);

LEVEL := 1: p, eval(p);

delete LEVEL:

The same is true for arrays and tables:

delete a, b:

A := array(1..2, [a, b]):  T := table(a = b):

a := 1:   b := 2:

A, eval(A), T, eval(T);

LEVEL := 1: A, eval(A), T, eval(T);

delete LEVEL:
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See Also

MuPAD Functions
context | eval | hold | level | MAXDEPTH | MAXLEVEL | val

More About
• “Level of Evaluation”
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level
Evaluate an object with a specified substitution depth

Syntax
level(object)

level(object, n)

Description

level(object, n) evaluates object with substitution depth n.

When a MuPAD object is evaluated, identifiers occurring in it are replaced by their
values. This happens recursively, i.e., if the values themselves contain identifiers, then
these are replaced as well. level serves to evaluate an object with a specified recursion
depth for this substitution process.

With level(object, 0), object is evaluated without replacing any identifier
occurring in it by its value. In most cases, but not always, this equivalent to
hold(object), and object is returned unevaluated. See “Example 3” on page 1-1197.

With level(object, 1), all identifiers occurring in object are replaced by their
values, but not recursively, and then all function calls in the result of the substitution are
executed. This is how objects are evaluated within a procedure by default.

The call level(object) is equivalent to level(object, MAXLEVEL), i.e., identifiers
occurring in object are recursively replaced by their values up to substitution depth
MAXLEVEL - 1, and an error occurs if the substitution depth MAXLEVEL is reached.
Usually, this leads to a complete evaluation of object. See “Example 1” on page
1-1195.

You can use level without a second argument to request the complete evaluation of an
object not containing local variables or formal parameters within a procedure. This may
be necessary since by default, objects are evaluated with substitution depth 1 within
procedures. See “Example 2” on page 1-1196.

Otherwise, it should never be necessary to use level.
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Note: level does not affect the evaluation of local variables and formal parameters, of
type DOM_VAR, in procedures. When such a local variable occurs in object, then it is
always replaced by its value, independent of the value of n, and the value is not further
recursively evaluated. See “Example 2” on page 1-1196.

level works by temporarily setting the value of LEVEL to n, or to 231 - 1 if n is not
given. However, the value of MAXLEVEL remains unchanged. If the substitution depth
MAXLEVEL is reached, then an error message is returned. See LEVEL and MAXLEVEL for
more information on these environment variables.

In contrast to most other functions, level does not flatten its first argument if it is an
expression sequence. See “Example 5” on page 1-1198.

level does not recursively descend into arrays, tables, matrices or polynomials.
Use the call map(object, eval) to evaluate the entries of an array, a table, a matrix
or mapcoeffs(object, eval) to evaluate the coefficients of a polynomial. See
“Example 4” on page 1-1198 and “Example 6” on page 1-1198.

Further information concerning the evaluation of arrays, tables, matrices or polynomials
can be found on the eval help page.

The maximal substitution depth of level depends on the environment variable
MAXLEVEL, while the maximum evaluation depth of the function eval depends on the
environment variable LEVEL. See “Example 7” on page 1-1199.

Because eval evaluates the result again there is a difference between evaluating an
expression with depth n by level in comparison with eval. See “Example 7” on page
1-1199.

As mentioned level does not affect the evaluation of local variables and formal
parameters, of type DOM_VAR, in procedures. Here eval behaves different. See “Example
7” on page 1-1199 and the eval help page for more information.

The result of level(hold(x)) is always x, because a full evaluation of hold(x) leads
to x. The same does not hold for eval(hold(x)), because eval first evaluates its
argument and then evaluates the result again.

The evaluation of elements of a user-defined domain depends on the implementation of
the domain. Usually domain elements remain unevaluated by level. If the domain has
a slot "evaluate", the corresponding slot routine is called with the domain element
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as argument at each evaluation, and hence it is called once when level is invoked. Cf.
“Example 8” on page 1-1200.

Examples

Example 1

We demonstrate the effect of level for various values of the second parameter:

delete a0, a1, a2, a3, a4, b: b := b + 1:

a0 := a1: a1 := a2 + 2: a2 := a3 + a4: a3 := a4^2: a4 := 5:

hold(a0), hold(a0 + a2), hold(b);

level(a0, 0), level(a0 + a2, 0), level(b, 0);

level(a0, 1), level(a0 + a2, 1), level(b, 1);

level(a0, 2), level(a0 + a2, 2), level(b, 2);

level(a0, 3), level(a0 + a2, 3), level(b, 3);

level(a0, 4), level(a0 + a2, 4), level(b, 4);

level(a0, 5), level(a0 + a2, 5), level(b, 5);

level(a0, 6), level(a0 + a2, 6), level(b, 6);
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Evaluating object by just typing object at the command prompt is equivalent to
level(object, LEVEL):

LEVEL := 2: MAXLEVEL := 4: a0, a2, b;

level(a0, LEVEL), level(a2, LEVEL), level(b, LEVEL)

If the second argument is omitted, then this corresponds to a complete evaluation up to
substitution depth MAXLEVEL - 1:

level(a0)

Error: Recursive definition, the maximal evaluation level is reached.

level(a2)

level(b)

Error: Recursive definition, the maximal evaluation level is reached.

delete LEVEL, MAXLEVEL:

Example 2

We demonstrate the behavior of level in procedures:

delete a, b, c: a := b: b := c: c := 42:

p := proc() 

  local x;

begin
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  x := a:

  print(level(x, 0), x, level(x, 2), level(x)):

  print(level(a, 0), a, level(a, 2), level(a)):

end_proc:

p()

Since a is evaluated with the default substitution depth 1, the assignment x:=a sets
the value of the local variable x to the unevaluated identifier b. You can see that any
evaluation of x, whether level is used or not, simply replaces x by its value b, but
no further recursive evaluation happens. In contrast, evaluation of the identifier a
takes place with the default substitution depth 1, and level(a, 2) evaluates it with
substitution depth 2.

Thus level without a second argument can be used to request the complete evaluation
of an object not containing any local variables or formal parameters.

Example 3

There are some rare cases where level(object, 0) and hold(object) behaves
different. This is the case if object is not an identifier, e.g., a nameless function,
because level influences only the evaluation of identifiers:

level((x -> x^2)(2),0), hold((x -> x^2)(2))

For the same reason level(object, 0) and hold(object) behave differently if
object is a local variable of a procedure:

f:=proc() local x; begin 

  x := 42; 

  hold(x), level(x, 0);

end_proc:

f(); 

delete f:
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Example 4

In contrast to lists and sets, evaluation of an array does not evaluate its entries. Thus
level has no effect for arrays either. The same holds for tables and matrices. Use map to
evaluate all entries of an array. On the eval help page further examples can be found:

delete a, b:  

L := [a, b]:  A := array(1..2, L):  a := 1:   b := 2:

L, A, level(A), map(A, level), map(A, eval)

Example 5

The first argument of level may be an expression sequence, which is not flattened.
However, it must be enclosed in parentheses:

delete a, b: a := b: b := 3:

level((a, b), 1);

level(a, b, 1)

Error: The number of arguments is incorrect. [level]

Example 6

Polynomials are inert when evaluated, and so level has no effect:

delete a, x: p := poly(a*x, [x]): a := 2: x := 3:

p, level(p)

Use mapcoeffs and the function eval to evaluate all coefficients:
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mapcoeffs(p, eval)

If you want to substitute a value for the indeterminate x, use evalp:

delete x: evalp(p, x = 3)

As you can see, the result of an evalp call may contain unevaluated identifiers, and
you can evaluate them by an application of eval. It is necessary to use eval instead of
level because level does not evaluate its result:

eval(evalp(p, x = 3))

Example 7

The subtle difference between level and eval is shown. The evaluation depth of eval
is limited by the environment variable LEVEL. level pays no attention to LEVEL, but
rather continues evaluating its argument either as many times as the second argument
implies or until it has been evaluated completely:

delete a0, a1, a2, a3:

a0 := a1 + a2: a1 := a2 + a3: a2 := a3^2 - 1: a3 := 5:

LEVEL := 1:

eval(a0), level(a0);

If the evaluation depth exceeds the value of MAXLEVEL, an error is raised in both cases:

delete LEVEL: 

MAXLEVEL := 3:

level(a0);
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Error: Recursive definition, the maximal evaluation level is reached.

delete LEVEL: 

MAXLEVEL := 3:

eval(a0);

delete MAXLEVEL:

Error: Recursive definition, the maximal evaluation level is reached.

It is not the same evaluating an expression ex with eval and an evaluation depth n and
by level((ex, n)), because eval evaluates its result:

LEVEL := 2: eval(a0), level(a0, 2);

delete LEVEL:

level does not affect the evaluation of local variables of type DOM_VAR while eval
evaluates them with evaluation depth LEVEL, which is one in a procedure:

p := proc()

  local x;

begin

  x := a0:

  print(eval(x), level(x)):

end_proc:

p()

Example 8

The evaluation of an element of a user-defined domain depends on the implementation of
the domain. Usually it is not further evaluated:

delete a: T := newDomain("T"):  

e := new(T, a): a := 1:

e, level(e), map(e, level), val(e)
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If the slot "evaluate" exists, the corresponding slot routine is called for a domain
element each time it is evaluated. We implement the routine T::evaluate, which
simply evaluates all internal operands of its argument, for our domain T. The
unevaluated domain element can still be accessed via val:

T::evaluate := x -> new(T, eval(extop(x))):

e, level(e), map(e, level), val(e);

delete e, T:

Parameters

object

Any MuPAD object

n

A nonnegative integer less than 231

Return Values

Evaluated object.

See Also

MuPAD Functions
context | eval | hold | indexval | LEVEL | MAXLEVEL | val

More About
• “Level of Evaluation”

1-1201



1 The Standard Library

lhs
Left side of equations, inequalities, relations, intervals, ranges and tables

Syntax
lhs(f)

Description

lhs(f) returns the left side of f.

The call lhs(f) is equivalent to the direct call op(f,1), of the operand function op, if f
is not a table.

If t is a table, the call lhs(t) returns the list of keys of the table (left side). Note that
the ith value in rhs(t) corresponds to the ith key in lhs(t).

Examples

Example 1

Extract the left sides of various objects:

lhs(x = sin(2)), lhs(3.14 <> PI), lhs(x + 3 < 2*y)

The operands of an expression depend on its internal representation. In particular, a
“greater” relation is always converted to the corresponding “less” relation:

y > -infinity;

lhs(y > -infinity)
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y >= 4;

lhs(y >= 4)

Example 2

Extract the left sides of the solution of the following system:

s := solve({x + y = 1, 2*x - 3*y = 2})

map(op(s), lhs)

Calls to lhs can be easier to read than the equivalent calls to the operand function op:

map(op(s), op, 1)

However, direct calls to op must be preferred inside procedures for higher efficiency.

delete s:

Example 3

Extract the keys (left side) and values (right side) from a table:

t := table(1=2, 4=PI, 5=5.6, 19=1/2):

l := lhs(t);
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r := rhs(t);

Note that the ith value corresponds to the ith key:

bool(r = map(lhs(t), e->t[e]))

delete t,l,r:

Parameters

f

An equation x = y, an inequality x <> y, a relation x < y, a relation x <= y,
an “is element of”-relation x in y, an interval x...y, a range x..y, or a table
table(x=y,...).

Return Values

arithmetical expression.

Overloaded By

f

See Also

MuPAD Functions
isolate | op | rhs
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rhs
Right side of equations, inequalities, relations, intervals, ranges and tables

Syntax
rhs(f)

Description

rhs(f) returns the right side of f.

The call rhs(f) is equivalent to the direct call op(f,2), of the operand function op, if f
is not a table.

If t is a table, the call rhs(t) returns the list of values of the table (right side). Note that
the ith value in rhs(t) corresponds to the ith key in lhs(t).

Examples

Example 1

Extract the right sides of various objects:

rhs(a <= b), rhs(m-1..n+1)

The operands of an expression depend on its internal representation. In particular, a
“greater” relation is always converted to the corresponding “less” relation:

y > -infinity;

rhs(y > -infinity)
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y >= 4;

rhs(y >= 4)

Example 2

Extract the right sides of the solution of the following system:

s := solve({x + y = 1, 2*x - 3*y = 2})

map(op(s), rhs)

Calls to rhs can be easier to read than the equivalent calls to the operand function op:

map(op(s), op, 2)

However, direct calls to op must be preferred inside procedures for higher efficiency.

delete s:

Example 3

Extract the keys (left side) and values (right side) from a table:

t := table(1=2, 4=PI, 5=5.6, 19=1/2):

l := lhs(t);
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r := rhs(t);

Note that the ith value corresponds to the ith key:

bool(r = map(lhs(t), e->t[e]))

delete t,l,r:

Parameters

f

An equation x = y, an inequality x <> y, a relation x < y, a relation x <= y,
an “is element of”-relation x in y, an interval x...y, a range x..y, or a table
table(x=y,...)

Return Values

arithmetical expression.

Overloaded By

f

See Also

MuPAD Functions
isolate | lhs | op
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Li
Integral logarithm

Syntax
Li(x)

Description

Li(x) represents the integral logarithm .

Note that in some places in the literature, the notation li is used while Li is reserved for
the offset logarithmic integral . The latter may be obtained by entering Li(x)

- Li(2).

Further, do not confuse the integral logarithm Li with the polylogarithms polylog
which are displayed on the screen as Lin (with an index).

If x is a floating-point number, then Li(x) returns the numerical value of the integral
logarithm. The special values Li(0) = 1 and Li(1) = - ∞ are implemented. For all other
arguments, Li returns a symbolic function call.

For all complex numbers z, the identity Li(z) = Ei(ln(z)) holds.

The continuation of Li to the complex plane is chosen such that the resulting function is
analytic with a singularity at 1 and a branch cut on the real axis left to that singularity;
such that conjugate(Li(z)) = Li(conjugate(z)) holds for non-real z; and such
that Li is continuous from above on the negative real axis. Between 0 and 1, Li is real
and thus neither continuous from above nor from below.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

For symbolic arguments, Li returns a symbolic function call in most cases:

Li(I), Li(0), Li(2), Li(x)

Example 2

The integral logarithm of a large real number approximately equals the number of
primes below that number:

numlib::pi(123456789), Li(123456789.0)

Riemann suggested to use the approximation . This

often gives a slightly better result, but it suffices to sum this series up to i=2:

R:= (x, n) -> _plus(float(Li(x^(1/i))) * numlib::moebius(i) $i=1..n):

for j from 1 to 9 do

  print(numlib::pi(10^j), float(Li(10^j)), R(10^j, 2), R(10^j, 50))  

end_for:

delete j, R:
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Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

See Also

MuPAD Functions
Ci | Ei | int | ln | Shi | Si | Ssi
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READPATH
Search path for the command ‘ Read ’

Description

READPATH determines the directories, where the function read searches for files.

Possible values: String or a sequence of strings.

The variable READPATH can represent more than one search directory. This variable can
be assigned a sequence of strings: each element of the sequence represents a directory in
which files are search for.

Note: When concatenated with a file name, the directories given by the path variables
must produce valid path names.

Path names are slightly system dependent. You can separate subdirectories with a / on
all systems. On Windows systems, you may alternatively use a backslash character (\).

Note that in MuPAD, a single backslash inside a character string is created by typing
two backslashes. E.g., the MuPAD string representing the path “C:\Programs\MuPAD”
must be defined by "C:\\Programs\\MuPAD".

The function pathname allows to create path names independent of the current
operating system.

Examples

Example 1

This example shows how to define a READPATH. More than one path may be given.
read will look for files to be opened in the directories given by READPATH. The following
produces a valid READPATH for UNIX and Linux® systems only, since the path separators
are hard coded in the strings:
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READPATH := "math/lib/", "math/local/"

It is good programming style to use platform independent path strings. This can be
achieved with the function pathname:

READPATH := pathname("math", "lib"), 

            pathname("math", "local")

All path variables can be set to their default values by deleting them:

delete READPATH:

Example 2

The path variable WRITEPATH only accepts one path string:

WRITEPATH := "math/lib/", "math/local/"

Error: The argument is invalid. [WRITEPATH]

See Also

MuPAD Functions
fclose | FILEPATH | finput | fopen | fprint | fread | ftextinput |
NOTEBOOKFILE | NOTEBOOKPATH | pathname | print | protocol | read | write |
WRITEPATH
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WRITEPATH
Search path for the command ‘ Write ’ et al.

Description

Possible values: String or a sequence of strings.

WRITEPATH determines the directory, into which the functions fopen, fprint, write,
and protocol write files which are not specified with a full (absolute) pathname. If
WRITEPATH is not defined, then the files are written into the “working directory”.

Note that the “working directory” depends on the operating system. On Windows
systems, it is the folder where MuPAD is installed. On UNIX or Linux systems, the
“working directory” is the directory where MuPAD was started.

Note: When concatenated with a file name, the directories given by the path variables
must produce valid path names.

Path names are slightly system dependent. You can separate subdirectories with a / on
all systems. On Windows systems, you may alternatively use a backslash character (\).

Note that in MuPAD, a single backslash inside a character string is created by typing
two backslashes. E.g., the MuPAD string representing the path "math\lib\" must be
defined by "math\\lib\\".

The function pathname allows to create path names independent of the current
operating system.

Examples

Example 1

This example shows how to define a READPATH. More than one path may be given.
read will look for files to be opened in the directories given by READPATH. The following
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produces a valid READPATH for UNIX and Linux systems only, since the path separators
are hard coded in the strings:

READPATH := "math/lib/", "math/local/"

It is good programming style to use platform independent path strings. This can be
achieved with the function pathname:

READPATH := pathname("math", "lib"), 

            pathname("math", "local")

All path variables can be set to their default values by deleting them:

delete READPATH:

Example 2

The path variable WRITEPATH only accepts one path string:

WRITEPATH := "math/lib/", "math/local/"

Error: The argument is invalid. [WRITEPATH]

See Also

MuPAD Functions
fclose | FILEPATH | finput | fopen | fprint | fread | ftextinput |
NOTEBOOKFILE | NOTEBOOKPATH | pathname | print | protocol | read | READPATH
| write
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limit
Compute a limit

Syntax
limit(f, x, <Left | Right | Real>, <Intervals>, <NoWarning>)

limit(f, x = x0, <Left | Right | Real>, <Intervals>, <NoWarning>)

Description

limit(f, x = x0, Real) computes the bidirectional limit ,

.

limit(f, x = x0, Left | Right) computes the one-sided limit ,

 respectively.

limit(f, x = x0, Intervals) computes a set containing all accumulation points of
, .

limit(f, x = x0, <Real>) computes the bidirectional limit of f when x tends to x0
on the real axis. The limit point x0 may be omitted, in which case limit assumes x0 =
0.

If the limit point x0 is infinity or - ∞, then the limit is taken from the left to infinity or
from the right to - ∞, respectively.

If provably no limit exists, then undefined is returned. See “Example 2” on page
1-1217.

limit(f, x = x0, Left) returns the limit when x tends to x0 from the left.
limit(f, x = x0, Right) returns the limit when x tends to x0 from the right. See
“Example 2” on page 1-1217.
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If it cannot be determined whether a limit exist, or cannot determine its value, then a
symbolic to limit is returned. See “Example 3” on page 1-1217. The same holds, in case
the option Intervals is given, if no information on the set of accumulation points could
be obtained.

If f contains parameters, then limit reacts to properties of those parameters set
by assume. See “Example 5” on page 1-1218. It may also return a case analysis
(piecewise) depending on these parameters.

You can compute the limit of a piecewise function. The conditions you use to define a
piecewise function can depend on the limit variable. See “Example 6” on page 1-1219.

Internally, limit tries to determine the limit from a series expansion of f around x =
x0 computed via series. It may be necessary to increase the value of the environment
variable ORDER in order to find the limit.

Note: limit works on a symbolic level and should not be called with arguments
containing floating point arguments.

Environment Interactions

The function is sensitive to the environment variable ORDER, which determines the
default number of terms in series computations (see series).

Properties of identifiers set by assume are taken into account.

Examples

Example 1

The following command computes :

limit((1 - cos(x))/x^2, x)

1-1216



 limit

A possible definition of e is given by the limit of the sequence  for :

limit((1 + 1/n)^n, n = infinity)

Here is a more complex example:

limit(

  (exp(x*exp(-x)/(exp(-x) + exp(-2*x^2/(x+1)))) - exp(x))/x,

  x = infinity

)

Example 2

The bidirectional limit of  for  does not exist:

limit(1/x, x = 0)

You can compute the one-sided limits from the left and from the right by passing the
options Left and Right, respectively:

limit(1/x, x = 0, Left), 

limit(1/x, x = 0, Right)

Example 3

If limit is not able to compute the limit, then a symbolic limit call is returned:

delete f: limit(f(x), x = infinity)
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Example 4

The function sin(x) oscillates for  between - 1 and 1; no accumulation points
outside that interval exist:

limit(sin(x), x = infinity, Intervals)

In fact, all elements of the interval returned are accumulation points. This need not be
the case in general. In the following example, the limit inferior and the limit superior are
in fact  and , respectively:

limit(sin(1/x) + cos(1/x), x = 0, Intervals)

Example 5

limit is not able to compute the limit of xn for  without additional information
about the parameter n:

assume(n in R_): 

limit(x^n, x = infinity)

We can also assume immediately that n > 0 and get no case analysis then:

assume(n > 0): limit(x^n, x = infinity)
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Similarly, we can assume that n < 0:

assume(n < 0): limit(x^n, x = infinity)

delete n:

Example 6

Compute limit of the piecewise function:

limit(piecewise([x^3 > 10000*x, 1/x],

                [x^3 <= 10000*x, 10]),

                            x = infinity)

Example 7

Compute limits of the incomplete Gamma function:

limit(igamma(z, t), t = infinity);

limit(igamma(z, t), t = 0)

Parameters

f

An arithmetical expression representing a function in x

x

An identifier
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x0

The limit point: an arithmetical expression, possibly infinity or -infinity

Options

Left, Real, Right

This controls the direction of the limit computation. The option Real is the default case
and means the bidirectional limit (i.e., there is no need to specify this option).

Intervals

Either TRUE or FALSE, by default FALSE. If this option is set to TRUE, then a superset
of the set of all accumulation points is returned. If the result contains only one element,
that element is the limit; on the other hand, if it contains more elements, not all of them
are necessarily accumulation points, such that the limit may nevertheless exist.

NoWarning

If this option is set to TRUE, no warning messages are printed on the screen. Default is
FALSE.

Return Values

arithmetical expression. If the option Intervals was given, the result is a (finite or
infinite) set.

Overloaded By

f

Algorithms

limit uses an algorithm based on the thesis of Dominik Gruntz: “On Computing Limits
in a Symbolic Manipulation System”, Swiss Federal Institute of Technology, Zurich,
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Switzerland, 1995. If this fails, it tries to proceed recursively; finally, it attempts a series
expansion.

See Also

MuPAD Functions
asympt | diff | discont | int | O | series | taylor

More About
• “If Limits Do Not Exist”
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linsolve
Solve a system of linear equations

Syntax
linsolve(eqs, options)

linsolve(eqs, vars, options)

Description

linsolve(eqs, vars) solves a system of linear equations with respect to the
unknowns vars.

linsolve(eqs, < vars , < ShowAssumptions >>) solves the linear system eqs
with respect to the unknowns vars. If no unknowns are specified, then linsolve
solves for all indeterminates in eqs; the unknowns are determined internally by
indets(eqs,PolyExpr).

linsolve(eqs, vars, Domain = R) solves the system over the domain R, which
must be a field, i.e., a domain of category Cat::Field.

Note: Note that the return format does not allow to return kernel elements if elements of
the domain R cannot be multiplied with the symbolic unknowns that span the kernel. In
such a case, linsolve issues a warning and returns only a special solution. The kernel
can be computed via linalg::matlinsolve for any field R.

Each element of eqs must be either an equation or an arithmetical expression f, which is
considered to be equivalent to the equation f = 0.

The unknowns in vars need not be identifiers or indexed identifiers; expressions such as
sin(x), f(x), or y^(1/3) are allowed as well. More generally, any expression accepted
as indeterminate by poly is a valid unknown.

If the option ShowAssumptions is not given and the system is solvable, then the
return value is a list of equations of the form var = value, where var is one of the
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unknowns in vars and value is an arithmetical expression that does not involve any of
the unknowns on the left side of a returned equation. Note that if the solution manifold
has dimension greater than zero, then some of the unknowns in vars will occur on the
right side of some returned equations, representing the degrees of freedom. See “Example
2” on page 1-1225.

If vars is a list, then the solved equations are returned in the the same order as the
unknowns in vars.

The function linsolve can only solve systems of linear equations. Use solve for
nonlinear equations.

linsolve is an interface function to the procedures numeric::linsolve
and linalg::matlinsolve. For more details see the numeric::linsolve,
linalg::matlinsolve help pages and the background section of this help page.

The system eqs is checked for linearity. Since such a test can be expensive, it is
recommended to use numeric::linsolve or linalg::matlinsolve directly when you
know that the system is linear.

Note: linsolve does not react to properties of identifiers set by assume.

Examples

Example 1

Equations and variables may be entered as sets or lists:

linsolve({x + y = 1, 2*x + y = 3}, {x, y}),

linsolve({x + y = 1, 2*x + y = 3}, [x, y]),

linsolve([x + y = 1, 2*x + y = 3], {x, y}),

linsolve([x + y = 1, 2*x + y = 3], [x, y])

Also expressions may be used as variables:

linsolve({cos(x) + sin(x) = 1, cos(x) - sin(x) = 0},
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         {cos(x), sin(x)})

Furthermore, indexed identifiers are valid, too:

S := linsolve({2*a[1] + 3*a[2] = 5, 7*a[2] + 11*a[3] = 13,

          17*a[3] + 19*a[1] = 23}, {a[1], a[2], a[3]})

Assign individual solutions to variables using assign. Alternatively, access the solution
by indexing into S:

assign(S):

a[1];

a2_val := S[2][2];

Delete a for use in further computations.

delete a;

Next, we demonstrate the use of option Domain and solve a system over the field ℤ23 with
it:

linsolve([2*x + y = 1, -x - y = 0],

         Domain = Dom::IntegerMod(23))

The following system does not have a solution:

1-1224



 linsolve

linsolve({x + y = 1, 2*x + 2*y = 3}, {x, y})

Example 2

If the solution of the linear system is not unique, then some of the unknowns are used as
“free parameters” spanning the solution space. In the following example the unknown z
is such a parameter. It does not appear on the left side of the solved equations:

eqs := [x + y = z, x + 2*y = 0, 2*x - z = -3*y, y + z = 0]:

vars := [w, x, y, z]:

linsolve(eqs, vars)

Example 3

If you use the Normal option, linsolve calls the normal function for final results. This
call ensures that linsolve returns results in normalized form:

linsolve([x + a*y = a + 1, b*x - y = b - 1], {x, y})

If you specify Normal = FALSE, linsolve does not call normal for the final result:

linsolve([x + a*y = a + 1, b*x - y = b - 1], {x, y}, Normal = FALSE)

Example 4

Solve this system:
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eqs := [x + a*y = b, x + A*y = b]:

linsolve(eqs, [x, y])

Note that more solutions exist for a = A. linsolve omits these solutions because it
makes some additional assumptions on symbolic parameters of this system. To see the
assumptions that linsolve made while solving this system, use the ShowAssumptions
option:

linsolve(eqs, [x, y], ShowAssumptions)

delete eqs:

Parameters

eqs

A list or a set of linear equations or arithmetical expressions

vars

A list or a set of unknowns to solve for: typically identifiers or indexed identifiers

Options

Domain

Option, specified as Domain = R

Solve the system over the field R, which must be a domain of category Cat::Field.

Normal

Option, specified as Normal = b
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Return normalized results. The value b must be TRUE or FALSE. By default, Normal
= TRUE, meaning that linsolve guarantees normalization of the returned results.
Normalizing results can be computationally expensive.

By default, linsolve calls normal before returning results. This option affects the
output only if the solution contains variables or exact expressions, such as sqrt(5) or
sin(PI/7).

To avoid this additional call, specify Normal = FALSE. In this case, linsolve also can
return normalized results, but does not guarantee such normalization. See “Example 3”
on page 1-1225.

ShowAssumptions

Return information about internal assumptions that linsolve made on symbolic
parameters in eqs.

With this option, linsolve returns a list [Solution, Constraints, Pivots].
Solution is a list of solved equations representing the complete solution manifold of
eqs, as described above. The lists Constraints and Pivots contain equations and
inequalities involving symbolic parameters in eqs. Internally, these were assumed to
hold true when solving the system. See “Example 4” on page 1-1225.

When Gaussian elimination produces an equation 0 = c with nonzero c, linsolve
without ShowAssumptions returns FAIL. If c involves symbolic parameters, try using
linsolve with ShowAssumptions to solve such systems. If the system is solvable, you
will get the solution. In this case, an equation 0 = c is returned in the Constraints
list. If the system is not solvable, linsolve with ShowAssumptions returns [FAIL,
[], []].

Return Values

Without the ShowAssumptions option, a list of simplified equations is returned. It
represents the general solution of the system eqs. FAIL is returned if the system is not
solvable.

With ShowAssumptions, a list [Solution, Constraints, Pivots] is returned.
Solution is a list of simplified equations representing the general solution of eqs. The
lists Constraints and Pivots contain equations and inequalities involving symbolic
parameters in eqs. Internally, these were assumed to hold true when solving the system.
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Algorithms

If the option Domain is not present, the system is solved by calling numeric::linsolve
with the option Symbolic.

If the option Domain = R is given and R is either Dom::ExpressionField() or
Dom::Float, then numeric::linsolve is used to compute the solution of the system.
This function uses a sparse representation of the equations.

Otherwise, eqs is first converted into a matrix and then solved by
linalg::matlinsolve. A possibly sparse structure of the input system is not taken
into account.

See Also

MuPAD Functions
isolate | linalg::matlinsolve | numeric::linsolve | solve
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lllint
Compute an LLL-reduced basis of a lattice

Syntax
lllint(A)

Description

lllint(A) applies the LLL algorithm to the list of integer vectors A.

lllint applies the LLL algorithm to the entries of the list A. The entries of A must be
lists of integers, all of the same length; the number of lists need not equal that length.

The return value of lllint has the same form.

The computations are done entirely with integers and are both accurate and quite fast.

Examples

Example 1

We apply the LLL algorithm to a list of two vectors of length three:

A := [[1, 2, 3], [4, 5, 6]]:

lllint(A)

The result is to be interpreted as follows: the two vectors in the output form an LLL-
reduced basis of the lattice genberated by the two vectors in the input.

Example 2

If the input vectors are not linearly independent, FAIL is returned:
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lllint([[1, 2], [2, 4]])

Parameters

A

A list of vectors, each being a list of integers

Return Values

list of lists is returned whose entries form an LLL-reduced basis of the lattice spanned by
the entries of A. If the entries of A are not linearly independent, FAIL is returned.

References

A. K. Lenstra, H. W. Lenstra Jr., and L. Lovasz, Factoring polynomials with rational
coefficients. Math. Ann. 261, 1982, pp. 515–534.

Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra. Cambridge
University Press, 1999, Chapter 16.

George L. Nemhauser and Laurence A. Wolsey, Integer and Combinatorial Optimization.
New York, Wiley, 1988.

A. Schrijver, Theory of Linear and Integer Programming. New York, Wiley, 1986.

See Also

MuPAD Functions
linalg::basis | linalg::factorLU | linalg::factorQR | linalg::gaussElim
| linalg::hermiteForm | linalg::orthog
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lmonomial
Leading monomial of a polynomial

Syntax
lmonomial(p, <order>, <Rem>)

lmonomial(f, <vars>, <order>, <Rem>)

Description

lmonomial(p) returns the leading monomial of the polynomial p.

The returned monomial is “leading” with respect to the lexicographical ordering, unless a
different ordering is specified via the argument order. Cf. “Example 1” on page 1-1231.

The leading monomial of the zero polynomial is the zero polynomial.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. The result is returned as polynomial expression. FAIL is returned if f cannot
be converted to a polynomial. Cf. “Example 4” on page 1-1233.

The result of lmonomial is not fully evaluated. It can be evaluated by the functions
mapcoeffs and eval. Cf. “Example 3” on page 1-1232.

Examples

Example 1

We demonstrate how various orderings influence the result:

p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):

lmonomial(p), lmonomial(p, DegreeOrder),

lmonomial(p, DegInvLexOrder)
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The following call uses the reverse lexicographical order on 3 indeterminates:

lmonomial(p, Dom::MonomOrdering(RevLex(3)))

delete p:

Example 2

We compute the reductum of a polynomial:

p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):

q := lmonomial(p, Rem)

The leading monomial and the reductum add up to the polynomial p:

p = q[1] + q[2]

delete p, q:

Example 3

We demonstrate the evaluation strategy of lmonomial:

p := poly(6*x^6*y^2 + x^2 + 2, [x]): y := 4: lmonomial(p)

Evaluation is enforced by eval:

mapcoeffs(%, eval)
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delete p, y:

Example 4

The expression 1/x may not be regarded as polynomial:

lmonomial(1/x)

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

order

The term ordering: either LexOrder or DegreeOrder or DegInvLexOrder or a user-
defined term ordering of type Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder.

Options

Rem

Makes lmonomial return a list with two polynomials: the leading monomial and the
reductum. The reductum of a polynomial p is p - lmonomial(p).
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Return Values

Polynomial of the same type as p. An expression is returned if an expression is given as
input. FAIL is returned if the input cannot be converted to a polynomial. With Rem, a list
of two polynomials is returned.

Overloaded By

p

See Also

MuPAD Functions
coeff | degree | degreevec | ground | lcoeff | ldegree | lterm | monomials |
nterms | nthcoeff | nthmonomial | nthterm | poly | poly2list | tcoeff
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ln (MuPAD)
Natural logarithm

Compatibility

For the ln function in MATLAB, see log.

Syntax
ln(x)

Description

ln(x) represents the natural logarithm of x.

Natural logarithm is defined for all complex arguments x ≠ 0.

ln applies the following simplification rules to its arguments:

• If x is of the type Type::Numeric, then . Here k is an integer,
such that the imaginary part of the result lies in the interval . Similar
simplifications occur for .

• If x is a negative integer or a negative rational, then ln(x) = i π + ln(- x).
• If x is an integer, then .

• ln uses the following special values:

ln(1) = 0, ln(- 1) = i π, , , ln(∞) = ∞, ln(- ∞) = i π + ∞.

For exact numeric and symbolic arguments, ln typically returns unresolved function
calls.

If an argument is a floating-point value, ln returns a floating-point result. The
imaginary part of the result takes values in the interval . The negative real axis

1-1235



1 The Standard Library

is a branch cut; the imaginary part of the result jumps when crossing the cut. On the
negative real axis, the imaginary part is π according to ln(x) = i π + ln(- x), x < 0. See
“Example 3” on page 1-1237.

If an argument is a floating-point interval of type DOM_INTERVAL, ln returns the results
of type DOM_INTERVAL, properly rounded outwards. This implies that the result contains
only real numbers. See “Example 4” on page 1-1237.

Arithmetical rules such as ln(x y) = ln(x) + ln(y) are not valid throughout the complex
plane. Use properties to mark identifiers as real and apply functions such as expand,
combine or simplify to manipulate expressions involving ln. See “Example 5” on page
1-1238.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Compute the natural logarithms of these numeric and symbolic values:

ln(2), ln(-3), ln(1/4), ln(1 + I), ln(x^2)

For floating-point arguments, ln returns floating-point results:

ln(123.4), ln(5.6 + 7.8*I), ln(1.0/10^20)

ln applies special simplification rules to its arguments:

ln(1), ln(-1), ln(exp(-5)), ln(exp(5 + 27/4*I))
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Example 2

diff, float, limit, series and similar functions handle expressions involving ln:

diff(ln(x^2), x)

float(ln(PI + I))

limit(ln(x)/x, x = infinity)

series(x*ln(sin(x)), x = 0, 10)

Example 3

The negative real axis is a branch cut. The imaginary part of the values returned by ln
jump when crossing this cut:

ln(-2.0), ln(-2.0 + I/10^1000), ln(-2.0 - I/10^1000)

Example 4

The natural logarithm of an interval is the image set of the logarithm function over the
set represented by the interval:
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ln(1 ... 2)

ln(-1 ... 1)

This definition extends to unions of intervals:

ln(1 ... 2 union 3 ... 4)

Example 5

expand, combine, and simplify react to properties set via assume. The following call
does not produce an expanded result, because the arithmetical rule ln(x y) = ln(x) + ln(y)
does not hold for arbitrary complex x, y:

expand(ln(x*y))

If one of the factors is real and positive, the rule is valid:

assume(x > 0): expand(ln(x*y))

combine(%, ln)

simplify(ln(x^3*y) - ln(x))

1-1238



 ln (MuPAD)

For further computations, clear the assumption:

unassume(x):

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression

Overloaded By

x

See Also

MuPAD Functions
dilog | log | log10 | log2 | polylog
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log
Logarithm to arbitrary base

Syntax
log(b, x)

log(x)

Description

Note: The output of syntax log(b, x) has been changed and is rewritten in terms of
natural logarithms as ln(x)/ln(b).

log(b, x) represents the logarithm of x to the base b.

log(x) is an alias for the natural logarithm ln(x).

Mathematically,  coincides with ln(x)/ln(b). When you call log, the result is
rewritten in terms of the natural logarithms.

The logarithm is defined for all complex arguments x ≠ 0. The base b, however, is
assumed to be real, positive and not equal to 1.

Note:   For symbolic b, MuPAD applies simplifications based on these assumptions.

log applies the following simplification rules to its arguments:

•  in the following cases:

• b is a symbolic (indexed) identifier and x is of type Type::Real
• b is numerical and x is integer or rational.

Mathematically, this rule is valid for any real value x.

1-1240



 log

• If x is a negative integer or a negative rational, then .

• If x is an integer, then .

• log uses the following special values:

, , , .

For exact numeric and symbolic arguments, log rewrites the function call in terms of the
natural logarithm.

If both arguments are numerical and at least one of them is a floating-point number,
log returns a floating-point result. The imaginary part of the result takes values in the
interval  if b > 1 and in the interval  if b < 1. The negative

real axis is a branch cut, the imaginary part of the result jumps when crossing the cut.
On the negative real axis, the imaginary part is  according to ,

x < 0. See “Example 3” on page 1-1243.

Arithmetical rules such as  are not valid throughout the complex

plane. Use properties to mark identifiers as real and apply functions such as expand or
simplify to manipulate expressions involving log. See “Example 4” on page 1-1243.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

When computing a logarithm to an arbitrary base, use identifiers, indexed identifiers, or
numbers of type Type::Positive to specify the base of a logarithm:
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log(b, 2), log(b[1], 3), log(2, 5), log(2/3, 4/9), log(0.3, x)

Do not use general arithmetical expressions to specify the base:

log(-PI^2, 2)

Error: The base must be an identifier, an indexed identifier, or a positive real number. [log]

For floating-point arguments, log returns floating-point results:

log(2, 123.4), log(2.0, 5.6 + 7.8*I), log(10.0, 2/10^20)

log applies special simplification rules to its arguments:

log(b, 1), log(b, -1), log(2/3, (4/9)^10), log(b, b^(-5))

Example 2

diff, float, limit, series and similar functions handle expressions involving log:

diff(log(b, x^2), x)

float(log(10, PI + I))

limit(log(10, x)/x, x = infinity)
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series(x*log(x, sin(x)), x = 0)

Example 3

The negative real axis is a branch cut. The imaginary part of the values returned by log
jump when crossing this cut:

log(10, -2.0),

log(10, -2.0 + I/10^1000),

log(10, -2.0 - I/10^1000)

Example 4

expand and simplify react to properties set via assume. The following call does not
produce an expanded result, because the arithmetical rule 
does not hold for arbitrary complex x, y:

expand(log(10, x*y))

If one of the factors is real and positive, the rule is valid:

assume(x > 0): expand(log(b, x*y))
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simplify(log(b, x^3*y) - log(b, x))

For further computations, clear the assumption:

unassume(x):

Parameters

b

An identifier of domain type DOM_IDENT, indexed identifier, real numerical value of
type Type::Positive, or the expression exp(1) that leads to the natural logarithm:
log(exp(1), x) = ln(x).

x

An arithmetical expression

Return Values

Arithmetical expression

Overloaded By

x

See Also

MuPAD Functions
dilog | ln | log10 | log2 | polylog
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log10
Logarithm to base 10

Syntax
log10(x)

Description

log10(x) represents the logarithm of x to the base 10.

Mathematically, log10(x) is equivalent to log(10, x). See “Example 1” on page
1-1245.

The logarithm to the base 10 is defined for all complex arguments x ≠ 0.

log10(x) rewrites logarithms to the base 10 in terms of the natural logarithm:
log10(x) = ln(x)/ln(10). See “Example 2” on page 1-1246.

See the ln help page for details.

Environment Interactions

When called with a floating-point argument, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Compute these logarithms using log10:

log10(10), log10(1000), log10(1)
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Compute the same logarithms using log with 10 as the first argument:

log(10, 10), log(10, 1000), log(10, 1)

Example 2

log10 rewrites logarithms in terms of ln:

log10(x), log10(x^2 - 1)

Example 3

For floating-point values, log10 returns floating-point results:

log10(123.4), log10(5.6 + 7.8*I), log10(-15.45)

Example 4

For floating-point intervals, log10 returns results as floating-point intervals:

log10(2.0...10.15)

Parameters

x

An arithmetical expression
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Return Values

Arithmetical expression

Overloaded By

x

See Also

MuPAD Functions
dilog | ln | log | log2 | polylog
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log2
Logarithm to base 2

Syntax
log2(x)

Description

log2(x) represents the logarithm of x to the base 2.

Mathematically, log2(x) is equivalent to log(2, x). See “Example 1” on page
1-1248.

The logarithm to the base 2 is defined for all complex arguments x ≠ 0.

log2(x) rewrites logarithms to the base 2 in terms of the natural logarithm: log2(x) =
ln(x)/ln(2). See “Example 2” on page 1-1249.

See the ln help page for details.

Environment Interactions

When called with a floating-point argument, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

Compute these logarithms using log2:

log2(2), log2(8), log2(1)
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Compute the same logarithms using log with 2 as the first argument:

log(2, 2), log(2, 8), log(2, 1)

Example 2

log2 rewrites logarithms in terms of ln:

log2(x), log2(x^2 - 1)

Example 3

For floating-point values, log2 returns floating-point results:

log2(123.4), log2(5.6 + 7.8*I), log2(-15.45)

Example 4

For floating-point intervals, log2 returns results as floating-point intervals:

log2(2.0...10.15)

Parameters

x

An arithmetical expression
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Return Values

Arithmetical expression

Overloaded By

x

See Also

MuPAD Functions
dilog | ln | log | log10 | polylog

1-1250



 lterm

lterm
Leading term of a polynomial

Syntax
lterm(p, <order>)

lterm(f, <vars>, <order>)

Description

lterm(p) returns the leading term of the polynomial p.

The returned term is “leading” with respect to the lexicographical ordering, unless a
different ordering is specified via the argument order. Cf. “Example 1” on page 1-1251.

The identity lterm(p)*lcoeff(p) = lmonomial(p) holds.

The leading term of the zero polynomial is the zero polynomial.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. The result is returned as polynomial expression. FAIL is returned if f cannot
be converted to a polynomial. Cf. “Example 3” on page 1-1252.

Examples

Example 1

We demonstrate how various orderings influence the result:

p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):

lterm(p), lterm(p, DegreeOrder), lterm(p, DegInvLexOrder)
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The following call uses the reverse lexicographical order on 3 indeterminates:

lterm(p, Dom::MonomOrdering(RevLex(3)))

delete p:

Example 2

The leading monomial is the product of the leading coefficient and the leading term:

p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):

mapcoeffs(lterm(p),lcoeff(p)) = lmonomial(p)

delete p:

Example 3

The expression 1/x may not be regarded as polynomial:

lterm(1/x)

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression
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vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

order

The term ordering: either LexOrder or DegreeOrder or DegInvLexOrder or a user-
defined term ordering of type Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder.

Return Values

Polynomial of the same type as p. An expression is returned if an expression is given as
input. FAIL is returned if the input cannot be converted to a polynomial.

Overloaded By

p

See Also

MuPAD Functions
coeff | degree | degreevec | ground | lcoeff | ldegree | lmonomial |
monomials | nterms | nthcoeff | nthmonomial | nthterm | poly | poly2list |
tcoeff
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match
Pattern matching

Syntax
match(expression, pattern, options)

Description
match(expression, pattern) checks whether the syntactical structure of
expression matches pattern. If so, the call returns a set of replacement equations
transforming pattern into expression.

match computes a set of replacement equations S for the identifiers occurring in
pattern, such that subs(pattern, S) and expression coincide up to associativity,
commutativity, and neutral elements.

Without additional options, a purely syntactical matching is performed; associativity,
commutativity, or neutral elements are taken into account only for the builtin operators
+ and *, and and or, and union and intersect. In this case, subs(pattern, S)
= expression holds for the set S of replacement equations returned by match if the
matching was successful. Cf. “Example 1” on page 1-1255. You can declare these
properties for operators via the options Associative, Commutative, and Null (see
below). Then subs(pattern, S) and expression need no longer be equal in MuPAD,
but they can be transformed into each other by application of the rules implied by the
options.

Both expression and pattern may be arbitrary MuPAD expressions, i.e., both
atomic expressions such as numbers, Boolean constants, and identifiers, and
compositeexpressions.

Each identifier without a value that occurs in pattern, including the 0th operands, is
regarded as a pattern variable, in the sense that it may be replaced by some expression
in order to transform pattern into expression. Use the option Const (see below) to
declare identifiers as non-replaceable.

With the exception of some automatic simplifications performed by the MuPAD kernel,
distributivity is not taken into account. Cf. “Example 5” on page 1-1257.
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Note: match evaluates its arguments, as usual. This evaluation usually encompasses
a certain amount of simplification, which may change the syntactical structure of both
expression and pattern in an unexpected way. Cf. “Example 6” on page 1-1257.

Even if there are several possible matches, match returns at most one of them. Cf.
“Example 7” on page 1-1258.

If the structure of expression does not match pattern, match returns FAIL.

If expression and pattern are equal, the empty set is returned.

Otherwise, if a match is found and expression and pattern are different, then a set S
of replacement equations is returned. For each pattern variable x occurring in pattern
that is not declared constant via the option Const, S contains exactly one replacement
equation of the form x = y, and y is the expression to be substituted for x in order to
transform pattern into expression.

Examples

Example 1

All identifiers of the following pattern are pattern variables:

match(f(a, b), f(X, Y))

The function f is declared non-replaceable:

match(f(a, b), f(X, Y), Const = {f})

Example 2

The following call contains a condition for the pattern variable X:
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match(f(a, b), f(X, Y), Const = {f}, Cond = {X -> not has(X, a)})

If the function f is declared commutative, the expression matches the given pattern—in
contrast to the preceding example:

match(f(a, b), f(X, Y), Const = {f}, Commutative = {f},

                        Cond = {X -> not has(X, a)})

Example 3

The following expression cannot be matched since the number of arguments of the
expression and the pattern are different:

match(f(a, b, c), f(X, Y), Const = {f})

We declare the function f associative with the option Associative. In this case the
pattern matches the given expression:

match(f(a, b, c), f(X, Y), Const = {f}, Associative = {f})

Example 4

If, however, the function call in the pattern has more arguments than the corresponding
function call in the expression, no match is found:

match(f(a, b), f(X, Y, Z), Const = {f}, Associative = {f})
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If the neutral element with respect to the operator f is known, additional matches are
possible by substituting it for some of the pattern variables:

match(f(a, b), f(X, Y, Z), Const = {f},

     Associative = {f}, Null = {f = 0})

Example 5

Distributivity is not taken into account in general:

match(a*x + a*y, a*(X + Y), Const = {a})

The next call finds a match, but not the expected one:

match(a*(x + y), X + Y)

The following declarations and conditions do not lead to the expected result, either:

match(a*(x + y), a*X + a*Y, Const = {a},

                            Cond = {X -> X <> 0, Y -> Y <> 0})

Example 6

Automatic simplifications can “destroy” the structure of the given expression or pattern:

match(sin(-2), sin(X))
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The result is FAIL, because the first argument sin(-2) is evaluated and rewritten to -
sin(2):

sin(-2)

You can circumvent this problem by using hold:

match(hold(sin(-2)), sin(X))

Example 7

match returns only one possible match:

match(a + b + c + 1, X + Y)

To obtain other solutions, use conditions to exclude the solutions that you already have:

match(a + b + c + 1, X + Y, Cond = {X <> a})

match(a + b + c + 1, X + Y, Cond = {X <> a and Y <> a})

match(a + b + c + 1, X + Y,

      Cond = {X <> a and X <> b and Y <> a})
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Example 8

Every pattern variable can have at most one condition procedure. Simple conditions can
be given by anonymous procedures (->):

match(a + b, X + Y, Cond = {X -> X <> a, Y -> Y <> b})

Several conditions on a pattern variable can be combined in one procedure:

Xcond := proc(X) begin

  if domtype(X) = DOM_IDENT then

    X <> a and X <> b

  else

    X <> 0

  end_if

end_proc:

match(sin(a*b), sin(X*Y), Cond = {Xcond})

match(sin(a*c), sin(X*Y), Cond = {Xcond})

delete Xcond:

Parameters

expression

A MuPAD expression

pattern

The pattern: a MuPAD expression
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option1, option2, …

Optional arguments as listed below

Options

Associative

Option, specified as Associative = {f1, f2, …}

It is assumed that identifiers f1, f2, ... represent associative operators and may
take an arbitrary number of arguments, i.e., expressions such as f1(f1(a, b), c),
f1(a, f1(b, c)), and f1(a, b, c) are considered equal.

No special rules for associative operators with less than two arguments apply. In
particular, f1(a) and a are not considered equal.

Commutative

Option, specified as Commutative = {g1, g2, …}

It is assumed that the identifiers g1, g2, ... represent commutative operators, i.e.,
expressions such as g1(a, b) and g1(b, a) are considered equal.

Cond

Option, specified as Cond = {p1, p2, …}

Only matches satisfying the conditions specified by the procedures p1, p2, ... are
considered. Each procedure must take exactly one argument and represents a condition
on exactly one pattern variable. The name of the procedure's formal argument must
be equal to the name of a pattern variable occurring in pattern that is not declared
constant via the option Const. Each condition procedure must return an expression that
the function bool can evaluate to one of the Boolean values TRUE or FALSE.

Anonymous procedures created via -> can be used to express simple conditions. Cf.
“Example 8” on page 1-1259.

If a possible match is found, given by a set of replacement equations S, then match
checks whether all specified conditions are satisfied by calling bool(p1(y1) and
p2(y2) and ...), where y1 is the expression to be substituted for the pattern variable
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x1 that agrees with the formal argument of the procedure p1, etc. If the return value of
the call is TRUE, then match returns S. Otherwise, the next possible match is tried.

For example, if p1 is a procedure with formal argument x1, where x1 is a pattern
variable occurring in pattern, then a match S = {..., x1 = y1, ...} is considered
valid only if bool(p1(y1)) returns TRUE.

There can be at most one condition procedure for each pattern variable. If necessary,
use the logical operators and and or as well as the control structures if and case to
combine several conditions for the same pattern variable in one condition procedure. Cf.
“Example 8” on page 1-1259.

Const

Option, specified as Const = {c1, c2, …}

The identifiers c1, c2, ... are regarded as constants, i.e., they must match literally
and must not be replaced in order to transform pattern into expression.

Null

Option, specified as Null = {h1 = e1, h2 = e2, …}

It is assumed that e1, e2, ... are the neutral elements with respect to the associative
operations h1, h2, ... i.e., expressions such as h1(a, e1), h1(e1, a), and h1(a)
are considered equal.

This declaration affects only operators that are declared associative via the option
Associative. Moreover, the neutral elements are not implicitly assumed to be
constants.

Return Values

Set of replacement equations, or FAIL.

See Also

MuPAD Functions
simplify | subs | subsex | subsop
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map
Apply a function to all operands of an object

Syntax
map(object, f, <p1, p2, , …>)

map(object, f, <p1, p2, , …>, <Unsimplified>)

Description

map(object, f) returns a copy of object where each operand x has been replaced by
f(x). The object itself is not modified by map (see “Example 2” on page 1-1264).

The second argument f may be a procedure generated via -> or proc (e.g., x -> x^2
+ 1), a function environment (e.g., sin), or a functional expression (e.g., sin@exp +
2*id).

If optional arguments are present, then each operand x of object is replaced by f(x,
p1, p2, ...) (see “Example 1” on page 1-1263).

It is possible to apply an operator, such as + or *, to all operands of object, by using its
functional equivalent, such as _plus or _mult. See “Example 1” on page 1-1263.

In contrast to op, map does not decompose rational numbers and complex numbers
further. Thus, if the argument is a rational number or a complex number, then f is
applied to the number itself and not to the numerator and the denominator or the real
part and the imaginary part, respectively (see “Example 3” on page 1-1264).

If object is a string, then f is applied to the string as a whole and not to the individual
characters (see “Example 3” on page 1-1264).

If object is an expression, then f is applied to the operands of f as returned by op (see
“Example 1” on page 1-1263).

If object is an expression sequence, then this sequence is not flattened by map (see
“Example 4” on page 1-1265).

1-1262



 map

If object is a polynomial, then f is applied to the polynomial itself and not to all of its
coefficients. Use mapcoeffs to achieve the latter (see “Example 3” on page 1-1264).

If object is a list, a set, an array, or an hfarray, then the function f is applied to all
elements of the corresponding data structure.

Note: If object is a table, the function f is applied to all entries of the table, not to the
indices (see “Example 9” on page 1-1268). The entries are the right sides of the operands
of a table.

If object is an element of a library domain, then the slot "map" of the domain is
called and the result is returned. This can be used to extend the functionality of map to
user-defined domains. If no "map" slot exists, then f is applied to the object itself (see
“Example 10” on page 1-1268).

map does not evaluate its result after the replacement; use eval to achieve this.
Nevertheless, internal simplifications occur after the replacement, unless the option
Unsimplified is given (see “Example 8” on page 1-1267).

map does not descend recursively into an object; the function f is only applied to the
operands at first level. Use misc::maprec for a recursive version of map (see “Example
11” on page 1-1269).

The procedure f should be deterministic and should not have side effects (such as
changing and using global variables). The user does not have any control over the
ordering in which the function is applied to the operands of the object!

Examples

Example 1

map works for expressions:

map(a + b + 3, sin)
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The optional arguments of map are passed to the function being mapped:

map(a + b + 3, f, x, y)

In the following example, we add 10 to each element of a list:

map([1, x, 2, y, 3, z], _plus, 10)

Example 2

Like most other MuPAD functions, map does not modify its first argument, but returns a
modified copy:

a := [0, PI/2, PI, 3*PI/2]:

map(a, sin)

The list a still has its original value:

a

Example 3

map does not decompose rational and complex numbers:

map(3/4, _plus, 1), map(3 + 4*I, _plus, 1)
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map does not decompose strings:

map("MuPAD", text2expr)

map does not decompose polynomials:

map(poly(x^2 + x + 1), _plus, 1)

Use mapcoeffs to apply a function to all coefficients of a polynomial:

mapcoeffs(poly(x^2 + x + 1), _plus, 1)

Example 4

The first argument is not flattened:

map((1, 2, 3), _plus, 2)

Example 5

Sometimes a MuPAD function returns a set or a list of big symbolic expressions
containing mathematical constants etc. To get a better intuition about the result, you can
map the function float to all elements, which often drastically reduces the size of the
expressions:

solve(x^4 + x^2 + PI, x)
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map(%, float)

Example 6

In the following example, we delete the values of all global identifiers in the current
MuPAD session. The command anames(All, User) returns a set with the names of all
user-defined global identifiers having a value. Mapping the function _delete to this set
deletes the values of all these identifiers. Since the return value of _delete is the empty
sequence null(), the result of the call is the empty set:

x := 3: y := 5: x + y

map(anames(All, User), _delete)

x + y

Example 7

It is possible to perform arbitrary actions with all elements of a data structure via a
single map call. This works by passing an anonymous procedure as the second argument
f. In the following example, we check that the fact “an integer n ≥ 2 is prime if and only if
φ(n) = n - 1”, where φ denotes Euler's totient function, holds for all integer 2 ≤ n < 10. We
do this by comparing the result of isprime(n) with the truth value of the equation φ(n)
= n - 1 for all elements n of a list containing the integers between 2 and 9:

map([2, 3, 4, 5, 6, 7, 8, 9],
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    n -> bool(isprime(n) = bool(numlib::phi(n) = n - 1)))

Example 8

The result of map is not evaluated further. If desired, you must request evaluation
explicitly by eval:

map(sin(5), float);

eval(%)

delete a:

A := array(1..1, [a]);

a := 0:

map(A, sin);

map(A, eval@sin);

delete a:

Nevertheless, certain internal simplifications take place, such as the calculation of
arithmetical operations with numerical arguments. The following call replaces sqrt(2)
and PI by floating-point approximations, and the system automatically simplifies the
resulting sum:

map(sin(5) + cos(5), float)
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This internal simplification can be avoided by giving the option Unsimplified:

map(sin(5) + cos(5), float, Unsimplified)

Example 9

map applied to a table changes only the right sides (the entries) of each operand of the
table. Assume the entries stand for net prices and the sales tax (16 percent in this case)
must be added:

T := table(1 = 65, 2 = 28, 3 = 42):

map(T, _mult, 1.16)

Example 10

map can be overloaded for elements of library domains, if a slot"map" is defined. In this
example d is a domain, its elements contains two integer numbers: an index and an entry
(like a table). For nice input and printing elements of this domain the slots"new" and
"print" are defined:

d := newDomain("d"):

d::new := () -> new(d, args()):

d::print := object -> _equal(extop(object)):

d(1, 65), d(2, 28), d(3, 42)

Without a slot "map" the function f will be applied to the domain element itself. Because
the domain d has no slot "_mult", the result is the symbolic _mult call:

map(d(1, 65), _mult, 1.16),
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type(map(d(1, 65), _mult, 1.16))

The slot "map" of this domain should map the given function only onto the second
operand of a domain element. The domain d gets a slot "map" and map works properly
(in the authors sense) with elements of this domain:

d::map := proc(obj, f)

          begin

            if args(0) > 2 then

              d(extop(obj, 1), f(extop(obj, 2), args(3..args(0))))

            else

              d(extop(obj, 1), f(extop(obj, 2)))

            end_if

          end_proc:

map(d(1, 65), _mult, 1.16),

map(d(2, 28), _mult, 1.16),

map(d(3, 42), _mult, 1.16)

Example 11

map does not work recursively. Suppose that we want to de-nest a nested list. We use
map to apply the function op, which replaces a list by the sequence of its operands, to all
entries of the list l. However, this only affects the entries at the first level:

l := [1, [2, [3]], [4, [5]]]:

map(l, op)

Use misc::maprec to achieve the desired behavior:

[misc::maprec(l, {DOM_LIST} = op)]
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Parameters

object

An arbitrary MuPAD object

f

A function

p1, p2, …

Any MuPAD objects accepted by f as additional parameters

Options

Unsimplified

The resulting expressions are not further simplified.

Return Values

Copy of object with f applied to all operands.

Overloaded By

object

See Also

MuPAD Functions
eval | mapcoeffs | misc::maprec | op | select | split | subs | subsex |
subsop | zip
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mapcoeffs
Apply a function to the coefficients of a polynomial

Syntax
mapcoeffs(p, F, <a1, a2, …>)

mapcoeffs(f, <vars>, F, <a1, a2, …>)

Description

mapcoeffs(p, F, a1, a2, ...) applies the function F to the polynomial p by
replacing each coefficient c in p by F(c, a1, a2, ...).

For a polynomial p of type DOM_POLY generated by poly, the function F must accept
arguments from the coefficient ring of p and must produce corresponding results.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. FAIL is returned if f cannot be converted to a polynomial. After applying the
function F, the result is converted to an expression.

mapcoeffs evaluates its arguments. Note, however, that polynomials of type DOM_POLY
do not evaluate their coefficients for efficiency reasons. Cf. “Example 4” on page 1-1273.

Examples

Example 1

The function sin is mapped to the coefficients of a polynomial expression in the
indeterminates x and y:

mapcoeffs(3*x^3 + x^2*y^2 + 2, sin)
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The following call makes mapcoeffs regard this expression as a polynomial in x.
Consequently, y is regarded as a parameter that becomes part of the coefficients:

mapcoeffs(3*x^3 + x^2*y^2 + 2, [x], sin)

The system function _plus adds its arguments. In the following call, it is used to add 2
to all coefficients by providing this shift as an additional argument:

mapcoeffs(c1*x^3 + c2*x^2*y^2 + c3, [x, y], _plus, 2)

Example 2

The function sin is mapped to the coefficients of a polynomial in the indeterminates x
and y:

mapcoeffs(poly(3*x^3 + x^2*y^2 + 2, [x, y]), sin)

In the following call, the polynomial has the indeterminate x. Consequently, y is
regarded as a parameter that becomes part of the coefficients:

mapcoeffs(poly(3*x^3 + x^2*y^2 + 2, [x]), sin)

A user-defined function is mapped to a polynomial:

F := (c, a1, a2) -> exp(c + a1 + a2): 

mapcoeffs(poly(x^3 + c*x, [x]), F, a1, a2)

delete F:
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Example 3

We consider a polynomial over the integers modulo 7:

p := poly(x^3 + 2*x*y, [x, y], Dom::IntegerMod(7)):

A function to be applied to the coefficients must produce values in the coefficient ring of
the polynomial:

mapcoeffs(p, c -> c^2)

The following call maps a function which converts its argument to an integer modulo 3.
Such a return value is not a valid coefficient of p:

mapcoeffs(p, c -> Dom::IntegerMod(3)(expr(c)))

delete p:

Example 4

Note that polynomials of type DOM_POLY do not evaluate their arguments:

delete a, x: p := poly(a*x, [x]): a := PI: p

Evaluation can be enforced by the function eval:

mapcoeffs(p, eval)

We map the sine function to the coefficients of p. The polynomial does not evaluate its
coefficient sin(a) to 0:
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mapcoeffs(p, sin)

The composition of sin and eval is mapped to the coefficients of the polynomial:

mapcoeffs(p, eval@sin)

delete p, a:

Parameters

p

A polynomial of type DOM_POLY

F

A procedure

a1, a2, …

Additional parameters for the function F

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

Return Values

Polynomial of type DOM_POLY, or a polynomial expression, or FAIL.
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Overloaded By

f, p

See Also

MuPAD Functions
coeff | degree | degreevec | lcoeff | ldegree | lterm | map | monomials |
nterms | nthcoeff | nthmonomial | nthterm | poly | tcoeff
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maprat
Apply a function to a rationalized expression

Syntax
maprat(object, f, options)

Description

As a first step, maprat(object, f, options) calls rationalize(object,
options), which generates a rational expression. The maprat function uses the
expression returned by rationalize as an input to the function f. As a second
step, maprat replaces all variables generated by rationalize with the original
subexpressions in object.

See the rationalize help page for details.

Examples

Example 1

Find the greatest common divisor (the gcd function) for the following two rationalized
expressions. The first argument of maprat is a sequence of the two expressions p, q,
which gcd takes as two parameters. Note the brackets around the sequence p, q:

p := (x - sqrt(2))*(x^2 + sqrt(3)*x - 1): 

q := (x - sqrt(2))*(x - sqrt(3)):

maprat((p, q), gcd)

Example 2

The maprat function accepts the same options as the rationalize function. For
example, find the least common multiple (the lcm function) for the following two
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rationalized expressions. Use the FindRelations option to detect trigonometric
relations:

p := tan(x)^2 + 1/cos(x)^2: 

q := 1/sin(x)^4 + cot(x)^4:

maprat((p, q), lcm, FindRelations = ["sin"])

Without this option, the result is:

p := tan(x)^2 + 1/cos(x)^2: 

q := 1/sin(x)^4 + cot(x)^4:

maprat((p, q), lcm)

Free the variables for further calculations:

delete p, q:

Parameters

object

An arithmetical expression, or a sequence, or a set, or a list of such expressions

f

A procedure or a functional expression

Options

ApproximateFloats

Approximate floating-point numbers by rational numbers.
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FindRelations

Detect algebraic dependencies for subexpressions of specified types.

DescendInto

If the original expression contains subexpressions, rationalize the specified types of
subexpressions.

ReplaceHardToEval

Replace all subexpressions with limits, sums, and integrals by variables.

ReplaceTypes

Replace all subexpressions of the specified types by variables.

StopOn

Do not rationalize specified types of subexpressions.

StopOnConstants

Do not rationalize numbers, strings, Boolean constants, NIL, FAIL, PI, EULER, and
CATALAN in the set Type::ConstantIdents.

Return Values

Object returned by the function f.

See Also

MuPAD Functions
map | rationalize
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Create a matrix or a vector

Compatibility

For matrices in MATLAB, see “Matrices and Arrays”.

Syntax
matrix(Array)

matrix(List)

matrix(ListOfRows)

matrix(Matrix)

matrix(m, n)

matrix(m, n, Array)

matrix(m, n, List)

matrix(m, n, ListOfRows)

matrix(m, n, Table)

matrix(m, n, [(i1, j1) = value1, (i2, j2) = value2, …])

matrix(m, n, f)

matrix(m, n, List, Diagonal)

matrix(m, n, g, Diagonal)

matrix(m, n, List, Banded)

matrix(1, n, [j1 = value1, j2 = value2, …])

matrix(m, 1, [i1 = value1, i2 = value2, …])
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Description

matrix(m, n, [[a11, a12, ...], [a21, a22, ...], ...]) returns an m×n
matrix of the domain type Dom::Matrix().

matrix(m, n, [a11, a12, ..., a21, a22, ..., a.m.n]) returns an m×n
matrix of the domain type Dom::Matrix().

matrix(m, 1, [a1, a2, ...]) returns an m×1 column vector of the domain type
Dom::Matrix().

matrix(1, n, [a1, a2, ...]) returns an 1 ×n row vector of the domain type
Dom::Matrix().

matrix is equivalent to Dom::Matrix().

matrix creates matrices and vectors. A column vector is represented as an m×1 matrix.
A row vector is represented as a 1×n matrix.

Matrix and vector components must be arithmetical expressions (numbers and/or
symbolic expressions). If matrices over special component rings are desired, use the
domain constructor Dom::Matrix with a suitable component ring.

Arithmetical operations with matrices can be performed by using the standard
arithmetical operators of MuPAD.

E.g., if A and B are two matrices defined by matrix, then A + B computes the sum
and A * B computes the product of the two matrices, provided that the dimensions are
appropriate.

Similarly, A^(-1) or 1/A computes the inverse of a square matrix A if it can be inverted.
Otherwise, FAIL is returned.

Cf. “Example 1” on page 1-1283.

Many system functions accept matrices as input, such as map, subs, has, zip,
conjugate, norm or exp. Cf. “Example 4” on page 1-1287.

Most of the functions in the MuPAD linear algebra package linalg work with matrices.
For example, the command linalg::gaussJordan(A) performs Gauss-Jordan
elimination on A to transform A to its reduced row echelon form.
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For numerical matrix computations, the corresponding functions of the numeric package
accept matrices.

Matrix components can be extracted by the usual index operator [ ], which also works
for lists, arrays, and tables. The call A[i, j] extracts the matrix component in the i-th
row and the j-th column.

Assignments to matrix components are performed similarly. The call A[i, j] := c
replaces the matrix component in the i-th row and the j-th column of A by c.

If one of the indices is not in its valid range, an error message is issued.

The index operator also extracts submatrices. The call A[r1..r2, c1..c2] creates
the submatrix of A comprising the rows with the indices r1, r1 + 1, …, r2 and the columns
with the indices c1, c1 + 1, …, c2 of A.

See “Example 3” on page 1-1286 and “Example 5” on page 1-1289.

matrix(Array) or matrix(Matrix) create a new matrix with the same dimension
and the components of Array or Matrix, respectively. The array must not contain any
uninitialized entries. If Array is one-dimensional, the result is a column vector. Cf.
“Example 8” on page 1-1292.

matrix(List) creates an m×1 column vector with components taken from the non-
empty list, where m is the number of entries of List. Cf. “Example 5” on page 1-1289.

matrix(ListOfRows) creates an m×n matrix with components taken from the nested
list ListOfRows, where m is the number of inner lists of ListOfRows, and n is the
maximal number of elements of an inner list. Each inner list corresponds to a row of the
matrix. Both m and n must be non-zero.

If a row has less than n entries, the remaining entries in the corresponding row of the
matrix are regarded as zero. Cf. “Example 7” on page 1-1291.

The call matrix(m, n) returns the m×n zero matrix.

The call matrix(m, n, Array) creates an m×n matrix with components taken from
Array, which must be an array or an hfarray. Array must have m n operands. The first
m operands define the first row, the next m operands define the second row, etc. The
formatting of the array is irrelevant. E.g., any array with 6 elements can be used to
create matrices of dimension 1 ×6, or 2×3, or 3×2, or 6 ×1.
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matrix(m, n, List) creates an m×n matrix with components taken row after row
from the non-empty list. The list must contain m n entries. Cf. “Example 7” on page
1-1291.

matrix(m, n, ListOfRows) creates an m×n matrix with components taken from the
list ListOfRows.

If m ≥ 2 and n ≥ 2, then ListOfRows must consist of at most m inner lists, each having at
most n entries. The inner lists correspond to the rows of the returned matrix.

If a row has less than n entries, the remaining components of the corresponding row of
the matrix are regarded as zero. If there are less than m rows, the remaining lower rows
of the matrix are filled with zeroes. Cf. “Example 7” on page 1-1291.

matrix(m,n,Table) creates an m×n matrix with components taken from the table
Table. The table entries Table[i,j] with positive integer values of i and j define the
corresponding entries of the matrix. Zero entries need not be specified in the table. This
way, sparse table input can be used to create the matrix.

For large sparse matrices, the fastest way of creation is the generation of an empty table
that is filled by indexed assignments and then passed to matrix. Alternatively, one
may first create an empty sparse matrix via matrix(m, n) and then fill in the non-
zero entries via indexed assignments. Note that the indexed assignment to a matrix is
somewhat slower than the indexed assignment to a table.

matrix(m, n, [(i1, j1) = value1, (i2, j2) = value2, ...]) is a further
way to create a matrix specifying only the non-zero entries A[i1, j1] = value1,
A[i2, j2] = value2 etc. The ordering of the entries in the input list is irrelevant.

matrix(m, n, f) returns the matrix whose (i, j)-th component is the return value of
the function call f(i,j). The row index i runs from 1 to m and the column index j from 1
to n. Cf. “Example 9” on page 1-1293.

matrix(m, 1, Array) returns the m×1 column vector with components taken from
Array. The array or hfarray Array must have m entries.

matrix(m, 1, List) returns the m×1 column vector with components taken from
List. The list List must have no more than m entries. If there are fewer entries, the
remaining vector components are regarded as zero. Cf. “Example 5” on page 1-1289.

matrix(m, 1, Table) returns the m×1 column vector with components taken from
Table. The table Table must have no more than m entries. If there are fewer entries, the
remaining vector components are regarded as zero. Cf. “Example 6” on page 1-1290.
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matrix(m, 1, [i1 = value1, i2 = value2, ...]) provides a way to create a
sparse column vector specifying only the non-zero entries A[i1] = value1, A[i2] =
value2 etc. The ordering of the entries in the input list is irrelevant.

matrix(1, n, Array) returns the 1 ×n row vector with components taken from
Array. The array or hfarray Array must have n entries.

matrix(1, n, List) returns the 1 ×n row vector with components taken from
List. The list List must not have more than n entries. If there are fewer entries, the
remaining vector components are regarded as zero. Cf. “Example 5” on page 1-1289.

matrix(1, n, Table) returns the 1 ×n row vector with components taken from
Table. The table Table must not have more than n entries. If there are fewer entries,
the remaining vector components are regarded as zero. Cf. “Example 6” on page 1-1290.

matrix(1, n, [j1 = value1, j2 = value2, ...]) provides a way to create
a sparse row vector specifying only the non-zero entries A[j1] = value1, A[j2] =
value2 etc. The ordering of the entries in the input list is irrelevant.

Note: The number of rows and columns, respectively, of a matrix must be less than 231.

Note: The components of a matrix are no longer evaluated after the creation of the
matrix, i.e., if they contain free identifiers they will not be replaced by their values.

Examples

Example 1

We create a 2×2 matrix by passing a list of two rows to matrix, where each row is a list
of two elements:

A := matrix([[1, 5], [2, 3]])

In the same way, we generate the following 2 ×3 matrix:
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B := matrix([[-1, 5/2, 3], [1/3, 0, 2/5]])

We can do matrix arithmetic using the standard arithmetical operators of MuPAD. For
example, the matrix product A B, the fourth power of A, and the scalar multiplication of
A by  are given by:

A * B, A^4, 1/3 * A

Since the dimensions of the matrices A and B differ, the sum of A and B is not defined
and MuPAD returns an error message:

A + B

Error: The dimensions do not match. [(Dom::Matrix(Dom::ExpressionField()))::_plus]

To compute the inverse of A, enter:

1/A

If a matrix is not invertible, the result of this operation is FAIL:

C := matrix([[2, 0], [0, 0]])
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C^(-1)

delete A, B, C:

Example 2

In addition to standard matrix arithmetic, the library linalg offers numerous functions
handling matrices. For example, the function linalg::rank determines the rank of a
matrix:

A := matrix([[1, 5], [2, 3]])

linalg::rank(A)

The function linalg::eigenvectors computes the eigenvalues and the eigenvectors of
A:

linalg::eigenvectors(A)

To determine the dimension of a matrix, use the function linalg::matdim:

linalg::matdim(A)

The result is a list of two positive integers, the row and column number of the matrix.
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Use info(linalg) to obtain a list of available functions, or enter ?linalg for details
about this library.

delete A:

Example 3

Matrix entries can be accessed with the index operator [ ]:

A := matrix([[1, 2, 3, 4], [2, 0, 4, 1], [-1, 0, 5, 2]])

A[2, 1] * A[1, 2] - A[3, 1] * A[1, 3]

You can redefine a matrix entry by assigning a value to it:

A[1, 2] := a^2: A

The index operator can also be used to extract submatrices. The following call creates a
copy of the submatrix of A comprising the second and the third row and the first three
columns of A:

A[2..3, 1..3]

The index operator does not allow to replace a submatrix of a given matrix by another
matrix. Use linalg::substitute to achieve this.
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delete A:

Example 4

Some system functions can be applied to matrices. For example, if you have a matrix
with symbolic entries and want to have all entries in expanded form, simply apply the
function expand:

delete a, b: 

A := matrix([

  [(a - b)^2, a^2 + b^2], 

  [a^2 + b^2, (a - b)*(a + b)]

])

expand(A)

You can differentiate all matrix components with respect to some indeterminate:

diff(A, a)

The following command evaluates all matrix components at a given point:

subs(A, a = 1, b = -1)
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Note that the function subs does not evaluate the result of the substitution. For
example, we define the following matrix:

A := matrix([[sin(x), x], [x, cos(x)]])

Then we substitute x = 0 in each matrix component:

B := subs(A, x = 0)

You see that the matrix components are not evaluated completely. For example, if you
enter sin(0) directly, it evaluates to zero.

The function eval can be used to evaluate the result of the function subs. However,
eval does not operate on matrices directly, and you must use the function map to apply
the function eval to each matrix component:

map(B, eval)

The function zip can be applied to matrices. The following call combines two matrices A
and B by dividing each component of A by the corresponding component of B:

A := matrix([[4, 2], [9, 3]]): 

B := matrix([[2, 1], [3, -1]]):

A, B, zip(A, B, `/`)

delete A, B:
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Example 5

A vector is either an m×1 matrix (a column vector) or a 1×n matrix (a row vector).
To create a vector with matrix, pass the dimension of the vector and a list of vector
components as argument to matrix:

row_vector := matrix(1, 3, [1, 2, 3]); 

column_vector := matrix(3, 1, [1, 2, 3])

If the only argument of matrix is a non-nested list or a one-dimensional array, the result
is a column vector:

matrix([1, 2, 3])

For a row vector r, the calls r[1, i] and r[i] both return the i-th vector component
of r. Similarly, for a column vector c, the calls c[i, 1] and c[i] both return the i-th
vector component of c.

We extract the second component of the vectors defined above:

row_vector[2] = row_vector[1, 2],

column_vector[2] = column_vector[2, 1]

Use the function linalg::vecdim to determine the number of components of a vector:

linalg::vecdim(row_vector), linalg::vecdim(column_vector)
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The number of components of a vector can also be determined directly by the call
nops(vector).

The dimension of a vector can be determined as described above in the case of matrices:

linalg::matdim(row_vector),

linalg::matdim(column_vector)

See the linalg package for functions working with vectors, and the help page of norm for
computing vector norms.

delete row_vector, column_vector:

Example 6

A vector is either an m×1 matrix (a column vector) or a 1×n matrix (a row vector). To
create a vector with matrix, one may also pass the dimension of the vector and a table of
vector components as argument to matrix:

delete v1, v2, t1, t2:

t1 := table():

t1[1,1] := 1:

t1[1,2] := 2:

t1[1,3] := 3:

v1 := matrix(1, 3, t1);

t2 := table():

t2[1,1] := 1:

t2[2,1] := 2:

t2[3,1] := 3:

v2 := matrix(3, 1, t2);
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All functions applied to the vectors in the previous example (see above) can can also be
used on these vectors.

delete t1, t2, v1, v2:

Example 7

In the following examples, we illustrate various calls of matrix as described above. We
start by passing a nested list to matrix, where each inner list corresponds to a row of the
matrix:

matrix([[1, 2], [2]])

The number of rows of the created matrix is the number of inner lists, namely m = 2.
The number of columns is determined by the maximal number of entries of an inner list.
In the example above, the first list is the longest one, and hence n = 2. The second list
has only one element and, therefore, the second entry in the second row of the returned
matrix was set to zero.

In the following call, we use the same nested list, but in addition pass two dimension
parameters to create a 4×4 matrix:

matrix(4, 4, [[1, 2], [2]])

In this case, the dimension of the matrix is given by the dimension parameters. As
before, missing entries in an inner list correspond to zero, and in addition missing rows
are treated as zero rows.

If the dimension m×n of the matrix is stated explicitly, the entries may also be specified
by a plain list with m n elements. The matrix is filled with these elements row by row:

matrix(2, 3, [1, 2, 3, 4, 5, 6])
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matrix(3, 2, [1, 2, 3, 4, 5, 6])

Example 8

A one- or two-dimensional array of arithmetical expressions, such as:

a := array(1..3, 2..4, 

  [[1, 1/3, 0], [-2, 3/5, 1/2], [-3/2, 0, -1]] 

)

can be converted into a matrix as follows:

A := matrix(a)

Arrays serve, for example, as an efficient structured data type for programming.
However, arrays do not have any algebraic meaning, and no mathematical operations are
defined for them. If you convert an array into a matrix, you can use the full functionality
defined for matrices as described above. For example, let us compute the matrix 2 A - A2

and the Frobenius norm of A:
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2*A - A^2, norm(A, Frobenius)

Note that an array may contain uninitialized entries:

b := array(1..4): b[1] := 2: b[4] := 0: b

matrix cannot handle arrays that have uninitialized entries, and responds with an error
message:

matrix(b)

Error: Cannot define a matrix over 'Dom::ExpressionField()'. [(Dom::Matrix(Dom::ExpressionField()))::new]

We initialize the remaining entries of the array b and convert it into a matrix, or more
precisely, into a column vector:

b[2] := 0: b[3] := -1: matrix(b)

delete a, A, b:

Example 9

We show how to create a matrix whose components are defined by a function of the row
and the column index. The entry in the i-th row and the j-th column of a Hilbert matrix
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(see also linalg::hilbert) is . Thus the following command creates a 2×2

Hilbert matrix:

matrix(2, 2, (i, j) -> 1/(i + j - 1))

The following two calls produce different results. In the first call, x is regarded as an
unknown function, while it is a constant in the second call:

delete x:

matrix(2, 2, x), matrix(2, 2, (i, j) -> x)

Example 10

Diagonal matrices can be created by passing the option Diagonal and a list of diagonal
entries:

matrix(3, 4, [1, 2, 3], Diagonal)

One can generate the 3×3 identity matrix as follows:

matrix::identity(3)

Here are alternative ways to create this matrix:
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matrix(3, 3, [1 $ 3], Diagonal)

Equivalently, you can use a function of one argument:

matrix(3, 3, i -> 1, Diagonal)

Since the integer 1 also represents a constant function, the following shorter call creates
the same matrix:

matrix(3, 3, 1, Diagonal)

To demonstrate the use of tables for creating (sparse) matrices we can also create the
identity matrix above by the lines:

t := table(): t[1, 1] := 1: t[2, 2] := 1: t[3, 3] := 1:

matrix(3, 3, t)

delete t:

Example 11

Banded Toeplitz matrices can be created with the option Banded. The following
command creates a tri-diagonal matrix with constant bands:

matrix(4, 4, [-1, 2, -1], Banded)
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Example 12

Matrices can also be created by using a table:

t := table():

t[1, 2] := 12:

t[3, 1] := 31:

t[3, 2] := 32:

t

The missing table entries correspond to empty matrix entries:

A := matrix(4, 6, t)

By using tables, one can easily create large (sparse) matrices without being forced to
define all zero entries of the matrix. Note that this is a great advantage over using arrays
where every component has to be initialized before.

delete t, A:

Example 13

The method "doprint" of Dom::Matrix() prints only the non-zero components of a
sparse matrix:
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A := matrix(4, 6):

A[1, 2]:= 12: A[3, 1]:= 31: A[3, 2]:= 32:

print(A::dom::doprint(A)):

delete A:

Parameters

Array

A one- or two-dimensional array or hfarray

List

A list of arithmetical expressions

ListOfRows

A nested list of rows, each row being a list of arithmetical expressions

Matrix

A matrix, i.e., an object of a data type of category Cat::Matrix

Table

A table of matrix components

m

The number of rows: a positive integer

n

The number of columns: a positive integer
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f

A function or a functional expression of two arguments

g

A function or a functional expression of one argument

i1, i2, …

Row indices: integers between 1 and m

j1, j2, …

Column indices: integers between 1 and m

value1, value2, …

Matrix entries: arithmetical expressions

Options

Diagonal

Create a diagonal matrix

With this option, diagonal matrices can be created with diagonal elements taken from a
list, or computed by a function or a functional expression.

matrix(m, n, List, Diagonal) creates the m×n diagonal matrix whose diagonal
elements are the entries of List. Cf. “Example 10” on page 1-1294.

List must have no more than min(m, n) entries. If it has fewer elements, the remaining
diagonal elements are regarded as zero.

matrix(m, n, g, Diagonal) returns the sparse matrix whose i-th diagonal element
is g(i, i), where the index i runs from 1 to min(m, n). Cf. “Example 10” on page
1-1294.

Banded

Create a banded Toeplitz matrix
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A banded matrix has zero entries outside the main diagonal and some of the adjacent
sub- and superdiagonals.

matrix(m, n, List, Banded) creates an m×n banded Toeplitz matrix with the
elements of List as entries. The number of entries of List must be odd, say 2 h + 1,
where h must not exceed n. The bandwidth of the resulting matrix is at most h.

All elements of the main diagonal of the created matrix are initialized with the middle
element of List. All elements of the i-th subdiagonal are initialized with the (h + 1 - i)-th
element of List. All elements of the i-th superdiagonal are initialized with the (h + 1 +
i)-th element of List. All entries on the remaining sub- and superdiagonals are regarded
as zero.

Cf. “Example 11” on page 1-1295.

Return Values

Matrix of the domain type Dom::Matrix().

See Also

MuPAD Domains
Dom::DenseMatrix | Dom::Matrix | DOM_ARRAY | DOM_HFARRAY

MuPAD Functions
array | densematrix | hfarray
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max
Maximum of numbers

Syntax
max(x1, x2, , …)

max({x1, x2, …})

max([x1, x2, …])

max(A)

Description

max(x1, x2, ...) returns the maximum of the numbers x1, x2, ….

If the arguments of max are either integers, rational numbers, or floating-point numbers,
then max returns the numerical maximum of these arguments.

Exact numerical expressions such as PI + sqrt(2) etc. are internally converted to
floating-point intervals using the current value of DIGITS. After comparison, the exact
expression is restored in the return value. If the current value of DIGITS does not suffice
to determine the maximum of several expressions, a symbolic call of max is returned. Cf.
“Example 2” on page 1-1302.

The call max() is illegal and leads to an error message. If there is only one argument x1,
then max evaluates x1 and returns it. Cf. “Example 3” on page 1-1303.

If one of the arguments is infinity, then max returns infinity. If an argument is -
infinity, then it is removed from the argument list. Cf. “Example 4” on page 1-1303.

max returns an error when one of its arguments is a complex number or a floating point
interval with non-zero imaginary part. Cf. “Example 3” on page 1-1303.

If one of the arguments is not a number, then a symbolic max call with the maximum of
the numerical arguments and the remaining evaluated arguments may be returned. Cf.
“Example 1” on page 1-1301.
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Nested max calls with symbolic arguments are rewritten as a single max call, i.e., they
are flattened. Cf. “Example 5” on page 1-1303.

max reacts to a very limited set of properties of identifiers set via assume. Use simplify
to handle more general assumptions. Cf. “Example 5” on page 1-1303.

Environment Interactions

When called with exact numerical expressions such as PI, sqrt(2) etc., the function is
sensitive to the environment variable DIGITS, which determines the numerical working
precision.

Examples

Example 1

max computes the maximum of integers, rational numbers, and floating-point values:

max(-3/2, 7, 1.4)

Floating point intervals are interpreted as “any number within this range” and may thus
cause symbolic max calls to be returned:

max(2...3 union 6...7, 4)

max(2...3, 6...7, 4)

max(2...3, PI)
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If the argument list contains symbolic expressions, then a symbolic max call may be
returned:

delete b:

max(-4, b + 2, 1, 3)

In the following two examples, max is able to determine the maximum despite getting
symbolic arguments (contrast this with <):

max(sqrt(2), 1)

assume(x > 0):

max(exp(x), exp(-x))

Example 2

The following rational number pi approximates π to about 20 decimal places:

pi := 314159265358979323846/10^20:

With the default value DIGITS = 10, the function max cannot distinguish between PI
and pi via floating-point approximations:

max(pi, PI)

With an increased value of DIGITS, the floating-point interval approximation of PI
considered by max allows to decide that PI is larger than pi:

DIGITS := 20:

max(pi, PI)
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delete pi, DIGITS:

Example 3

max with one argument returns the evaluated argument:

delete a:

max(a), max(sin(2*PI)), max(2)

Complex numbers lead to an error message:

max(0, 1, I)

Error: The argument is invalid. [max]

Example 4

infinity is always the maximum of arbitrary arguments:

delete x:

max(100000000000, infinity, x)

-infinity is removed from the argument list:

max(100000000000, -infinity, x)

Example 5

max reacts only to very few properties of identifiers set via assume:
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delete a, b, c:

assume(a > 0 and b > a and c > b):

max(a, max(b, c), 0)

An application of simplify yields the desired result:

simplify(%)

Parameters

x1, x2, …

Arbitrary MuPAD objects

A

An array of domain type DOM_HFARRAY with real entries

Return Values

One of the arguments, a floating-point number, or a symbolic max call.

Overloaded By

See Also

MuPAD Functions
_leequal | _less | min | sort | sysorder
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MAXDEPTH

Prevent infinite recursion during procedure calls

Description

The environment variable MAXDEPTH determines the maximal recursion depth of nested
procedure calls. When this recursion depth is reached, an error occurs.

Possible values: Positive integer; the maximum value depends on the operating system,
see below.

The purpose of MAXDEPTH is to provide a heuristic for recognizing infinite recursion with
respect to procedure calls, like in p := x -> p(x): p(0). If, in this example, the
recursion depth would not be limited, then the procedure p would call itself recursively
infinitely often, and the system would “hang”.

If during the evaluation of an object the recursion depth MAXDEPTH is reached, then the
computation is aborted with an error.

Similarly, the environment variable MAXLEVEL provides a heuristic for recognizing
infinite recursion with respect to the substitution of values for identifiers; see the
corresponding help page for details and examples.

The default value of MAXDEPTH is 500; MAXDEPTH has this value after starting or
resetting the system via reset. Also the command delete MAXDEPTH restores the
default value.

MAXDEPTH is a global variable. Use the statement save MAXDEPTH in a procedure to
confine any changes to MAXDEPTH to this procedure.

The maximum value of MAXDEPTH depends on the operating system. Under Windows
it is 211 = 2048. Under UNIX operating systems the maximum value depends on the
maximum size of the C-stack. With a default stack size of 8 MB the value is 2048, too;
with a bigger stack size it can be bigger (in a bash the stack size can be set with ulimit
-s).
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Examples

Example 1

Evaluation of objects defined by an infinite recursion produces an error:

p := proc() begin p() end_proc: p()

Error: Recursive definition: the maximal depth for nested procedure calls is reached.

  Evaluating: p

This also works for mutually recursive definitions:

p := proc(x) begin q(x + 1)^2 end_proc:

q := proc(y) begin p(x) + 2 end_proc:

p(0)

Error: Recursive definition: the maximal depth for nested procedure calls is reached.

  Evaluating: p

Example 2

If the maximal recursion depth is reached, then this does not necessarily mean that
infinite recursion is involved. The following recursive procedure computes the factorial
of a nonnegative integer. If we set the maximal recursion depth to a smaller value than
necessary to compute , then an error occurs:

factorial := proc(n) begin

  if n = 0 then 1

  else n*factorial(n - 1)

  end_if

end_proc:

MAXDEPTH := 4: factorial(5)

Error: Recursive definition: the maximal depth for nested procedure calls is reached.

  Evaluating: factorial

If we set MAXDEPTH to 5, then the recursion depth is big enough for computing . The
command delete MAXDEPTH resets MAXDEPTH to its default value 500:
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MAXDEPTH := 5: factorial(5); delete MAXDEPTH:

See Also

MuPAD Functions
eval | freeze | LEVEL | level | MAXLEVEL | proc
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MAXEFFORT
Maximum amount of work to spend on the computation

Description
The environment variable MAXEFFORT determines the amount of effort allowed for
heuristical parts of a computation, measured in “working units”. The default value is
MAXEFFORT = 1000000.

Possible values: Non-negative floating-point number; or infinity.

MAXEFFORT determines the maximum number of “working units” that may be spent on
internal heuristics.

One working unit roughly corresponds to 1000 evaluation steps done by an average
kernel function.

Whatever MAXEFFORT is set to, every MuPAD function returns a correct though possibly
unsimplified result; in particular, some functions may return unevaluated. MAXEFFORT
determines the amount of additional time spent on obtaining a better or more simplified
result; a value of infinity means that all built-in heuristics are really tried, a value of
0 means that all heuristics that might take considerable effort are left out.

A function whose result is uniquely specified has no way to react to MAXEFFORT.

Other functions carry out, in any event, all computations necessary to obtain some
correct result; MAXEFFORT only determines the time available for improving that result.
In case of functions that may return unevaluated immediately (e.g., solve or int), or
may return their input immediately (as, e.g., simplify), or may answer a question by
UNKNOWN immediately (as, e.g., is), all of their time consumption is counted to be spent
on heuristics (purely heuristic functions).

Purely heuristic functions will usually return immediately if their input is quite
complicated in relation to the effort allowed. This is also true if the user has provided
that input on the interactive level. In order to pose a difficult problem where a longer
running time is acceptable, MAXEFFORT should be increased.

A simplification achieved by heuristic methods may speed up the deterministic parts,
such that a small value of MAXEFFORT does not necessarily decrease the total computing
time.
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The user may employ MAXEFFORT in his own functions as follows: any function may use
the amount of effort given by MAXEFFORT partly for own overhead, and distribute the
rest on the functions it calls. To do this, the caller has to save the variable MAXEFFORT
and set it to whatever it wants to make available to the called function. Depending on
whether the call is necessary to obtain a correct result at all and whether the called
function is a heuristic one, there are the following cases to handle. If the call is necessary
and the called function is deterministic, MAXEFFORT has no influence. If the call is not
absolutely necessary and as far as the called function is deterministic, the caller has to
subtract the necessary amount as own overhead from MAXEFFORT if enough is available;
otherwise, such call must not take place. As far as the called function works heuristically
(for whatever reason it was called), it has to limit its efforts to the amount given by
MAXEFFORT.

In no event may the value of MAXEFFORT on entering a procedure be different from the
value on leaving it, even not in case of an error. save must be used to ensure this.

No function may distribute and/or use more than the amount it has been given by its
caller. The own overhead should be estimated; if it is supposedly small, MAXEFFORT may
be ignored.

In order to avoid casual, not reproducible effects, e.g., by other programs running on the
same computer, MAXEFFORT should not be used in connection with time measurement
using time or rtime. For example, the running time saved in one recursive call
according to time measurement must not be supplied to another recursive call.

Examples

Example 1

The decomposition of an integer into prime factors is unique; hence the result of ifactor
is uniquely determined, such that ifactor does not react to MAXEFFORT:

MAXEFFORT:= 0:

ifactor(2^10 + 1)
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Example 2

The solve function can return unevaluated. For example, this happens if there is no
effort left to spend on the computation:

MAXEFFORT:= 0:

solve(ln(x) + x = 3, x)

Example 3

Increasing the value of MAXEFFORT can help solve equations, for which the solver
normally returns unevaluated results. The following example uses MAXEFFORT = 100
and x^1000 because running this example for the default value MAXEFFORT = 1000000
and x^10000000 takes many hours.

When you use MAXEFFORT = 100, the solver returns unevaluated result for the
following equation.

MAXEFFORT:= 100:

solve(ln(x) + x^1000 = 3, x)

Setting the MAXEFFORT to 200 allows the solver to return an explicit solution. To display
the solution, delete the colon at the end of the solve command.

MAXEFFORT:= 200:

solve(ln(x) + x^1000 = 3, x):

Warning: Possibly spurious solutions. [solvelib::checkSolutions]

You can set the value of MAXEFFORT to infinity to ensure that the system will try all
built-in heuristics. Note that for some computations, setting MAXEFFORT to infinity
might lead to extremely long computation times.

See Also

MuPAD Functions
prog::ntime | time | traperror
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MAXLEVEL
Prevent infinite recursion during evaluation

Description

The environment variable MAXLEVEL determines the maximal substitution depth of
identifiers. When this substitution depth is reached, an error occurs.

Possible values: integer greater 2; the maximum value depends on the operationg system,
see below.

When a MuPAD object is evaluated, identifiers occurring in it are replaced by their
values. This happens recursively, i.e., if the values themselves contain identifiers, then
these are replaced as well. MAXLEVEL determines the maximal recursion depth of this
process. If the substitution depth MAXLEVEL is reached, then an error occurs.

The purpose of MAXLEVEL is to provide a heuristic for recognizing infinite recursion with
respect to the replacement of identifiers by their values, like in delete a: a := a +
1; a. If, in this example, the substitution depth would not be limited, then a + 1 would
be substituted for a infinitely often, and the system would “hang”.

Similarly, the environment variable MAXDEPTH provides a heuristic for recognizing
infinite recursion with respect to function calls; see the corresponding help page for
details.

There is a close connection between LEVEL and MAXLEVEL. If the substitution depth
LEVEL is reached during the evaluation process, then the recursion stops and any
remaining identifiers remain unevaluated, but no error occurs.

Thus, if MAXLEVEL > LEVEL, then MAXLEVEL has no effect. By default, LEVEL and
MAXLEVEL have the same value 100 at interactive level. However, the default value
of LEVEL within a procedure is 1, and thus usually MAXLEVEL has no effect within
procedures.

There are some notable differences between LEVEL and MAXLEVEL. The value of LEVEL
depends on the context, namely whether the evaluation happens at interactive level or
in a procedure. Moreover, some system functions, such as context and level, do not
respect the current value of LEVEL. In contrast, MAXLEVEL is a global bound. It works as
a last resort when the control of the evaluation via LEVEL fails.
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The default value of MAXLEVEL is 100; MAXLEVEL has this value after starting or
resetting the system via reset. Also the command delete MAXLEVEL restores the
default value.

MAXLEVEL is a global variable. Use the statement save MAXLEVEL in a procedure to
confine any changes to MAXLEVEL to this procedure.

The maximum value of MAXLEVEL depends on the operating system. Under Windows
it is 213 = 8192. Under UNIX operating systems the maximum value depends on the
maximum size of the C-stack. With a default stack size of 8 MB the value is 8192, too;
with a bigger stack size it can be bigger (in a bash the stack size can be set with ulimit
-s).

Examples

Example 1

Evaluation of objects defined by an infinite recursion produces an error:

delete a: a := a + 1: a

Error: Recursive definition, the maximal evaluation level is reached.

This also works for mutually recursive definitions:

delete a, b: a := b^2: b := a + 1: b

Error: Recursive definition, the maximal evaluation level is reached.

Example 2

If MAXLEVEL is smaller or equal to LEVEL, as is the default at interactive level, then
objects are evaluated completely up to depth MAXLEVEL-1, and an error occurs if the
substitution depth MAXLEVEL is reached, whether a recursive definition is involved or
not:

delete a, b, c, d:

a := b: b := c: c := 7: d := d + 1:
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MAXLEVEL := 2: LEVEL := 2: c

a

Error: Recursive definition, the maximal evaluation level is reached.

d

Error: Recursive definition, the maximal evaluation level is reached.

On the other hand, MAXLEVEL has no effect if it exceeds LEVEL. Then any object is
evaluated up to depth at most LEVEL, and the “recursive definition” error does not occur:

MAXLEVEL := 3: a, b, c, d

In particular, MAXLEVEL normally has no effect within procedures, where by default
LEVEL has the value 1:

MAXLEVEL := 2:

p := proc() begin a, d end_proc:

p();

delete MAXLEVEL, LEVEL:

See Also

MuPAD Functions
context | eval | hold | LEVEL | level | MAXDEPTH | val
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meijerG

The Meijer G function

Syntax

meijerG([[a1, …, an], [an + 1, …, ap]], [[b1, …, bm], [bm + 1, …, bq]], z)

meijerG([a1, …, an], [an + 1, …, ap], [b1, …, bm], [bm + 1, …, bq], z)

meijerG(m, n, [a1, …, ap], [b1, …, bq], z)

Description

meijerG( [[ a1, …, an], [ an + 1, …, ap]], [[ b1, …, bm], [ bm + 1, …,

bq]] , z) represents the Meijer G function.

The following calls are equivalent:

meijerG( [ a1, …, an], [ an + 1, …, ap], [ b1, …, bm], [ bm + 1, …, bq] ,

z), and

meijerG(m, n, [ a1, …, an, an + 1, …, ap], [ b1, …, bm, bm + 1, …, bq] ,

z).

meijerG( [[ a1, …, an], [ an + 1, …, ap]], [[ b1, …, bm], [ bm + 1, …,

bq]] , z) represents the Meijer G function . The

function is defined as

,
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where 0 ≤ m ≤ q and 0 ≤ n ≤ p. The parameters ai, bj and the argument z can be complex
numbers. The integral represents an inverse Laplace transform or, more specifically, a
Mellin-Barnes type of integral. See the Algorithms section for more details.

If m = 0, m = q, n = 0, n = p, p = 0, or q = 0, you can pass empty parameter lists to
meijerG: [a1, …, an] = [], [an + 1, …, ap] = [], [b1, …, bm] = [], or [bm + 1, …, bq] = [].

No pair of parameters ai - bj, i = 1, …, n. j = 1, …, m, should differ by a positive integer.
Thus, no pole of  coincides with any pole of . Otherwise, meijerG

returns an error.

Meijer G functions with different parameters can represent the same function:

• The Meijer G function is symmetric with respect to the parameters. Changing the
order inside each of the following lists of parameters does not change the resulting
Meijer G function: [a1, …, an], [an + 1, …, ap], [b1, …, bm], [bm + 1, …, bq].

• If z is not a negative real number, the function satisfies the following identity:
.

• If 0 < n < p and r = a1 - ap is an integer, the function satisfies the following identity:
.

• If 0 < m < q and r = b1 - bq is an integer, the function satisfies the following identity:
.

According to these rules, the meijerG function call can return meijerG with modified
input parameters.

If at least one of the arguments is a floating-point number and all other arguments can
be converted to floating-point numbers, the function returns a floating-point value.

Particular choices of parameters can reduce the Meijer G function to simpler special or
elementary functions. Most special functions can be derived from the Meijer G function.
In many cases, you can rewrite results involving meijerG in terms of more elementary
functions using simplify or Simplify. See “Example 3” on page 1-1317.
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The call meijerG([[], []], [[], []], x) returns 0.

Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS, which determines the numerical working precision.

Examples

Example 1

For exact or symbolic arguments, the meijerG function returns meijerG:

meijerG([[1],[]], [[],[2]],x)

meijerG([[1], [1/2]], [[], [1/2]], PI + I)

For floating-point arguments, meijerG returns floating-point values:

meijerG([[1], []], [[1], [1/2]], 3.0),

meijerG([[PI], [2]], [[], [3]], 4.0),

meijerG([[I+1,2], []], [[1/(I+1), 1/2],[]], 0.5*I)

Example 2

The functions diff and float handle expressions involving the Meijer G function:
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diff(meijerG([[a], [b]], [[c], [d]], x), x)

Differentiating a Meijer G function with respect to one of its parameters a1, …, bq does
not generally result in Meijer G functions. Such derivatives are not implemented:

diff(meijerG([a], [b], [c], [d], z), a)

You can evaluate the expressions involving meierG numerically using float:

meijerG([[1], []], [[2], [sqrt(PI)]], 3) ~= 

  float(meijerG([[1], []], [[2], [sqrt(PI)]], 3))

delete z:

Example 3

Particular choices of parameters can reduce the Meijer G function to simpler special or
elementary functions. Use simplify or Simplify to obtain such a representation:

simplify(meijerG([[], []], [[0], []], z))

simplify(meijerG([[1], []], [[1/2], [0]], z))

simplify(meijerG([[], []], [[1/2, -1/2], []], z))
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You can verify these relations numerically:

z:= float(PI+I):

meijerG([[], []], [[0], []], z) = exp(-z);

meijerG([[1], []], [[1/2], [0]],z) = float(sqrt(PI)*erf(sqrt(z)))

meijerG([[], []], [[1/2, -1/2], []], z) = 2*besselK(1, 2*sqrt(z))

Parameters

a1, …, ap

The 'first list of parameters': arithmetical expressions

b1, …, bq

The 'second list of parameters': arithmetical expressions

z

The 'argument': an arithmetical expression

m, n

Integers satisfying 0 ≤ m ≤ q, 0 ≤ n ≤ p or symbolic expressions.

Return Values

Arithmetical expression.
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Overloaded By

z

Algorithms

involves a complex contour integral with one of the following types of integration paths:

• The contour goes from - i ∞ to i ∞ so that all poles of , j = 1, …, m, lie to

the right of the path, and all poles of , k = 1, …, n, lie to the left of

the path. The integral converges if , |arg(z)| < c π. If |arg(z)|

= c π, c ≥ 0, the integral converges absolutely when p = q and ℜ(ψ) < - 1, where
. When p ≠ q, the integral converges if you choose the

contour so that the contour points near i ∞ and - i ∞ have a real part σ satisfying
.

• The contour is a loop beginning and ending at infinity and encircling all poles of
, j = 1, …, m, moving in the negative direction, but none of the poles of

, k = 1, …, n. The integral converges if q ≥ 1 and either p < q or p = q and
|z| < 1.

• The contour is a loop beginning and ending at - ∞ and encircling all poles of
, k = 1, …, n, moving in the positive direction, but none of the poles of

, j = 1, …, m. The integral converges if p ≥ 1 and either p > q or p = q and

|z| > 1.

For a given set of parameters, the contour chosen in the definition of the Meijer G
function is the one for which the integral converges. To avoid confusion, if the integral
converges for several contours, all contours lead to the same function.
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The Meijer G function satisfies a differential equation of order max(p, q) with respect to a
variable z:

.

If p < q, this differential equation has a regular singularity at z = 0 and an irregular
singularity at z = ∞. If p = q, the points z = 0 and z = ∞ are regular singularities, and
there is an additional regular singularity at z = (- 1)m + n - p.

The Meijer G function represents an analytic continuation of the Hypergeometric
Function (for details, see Luke in the references). For particular choices of parameters,
you can express the Meijer G function through the hypergeometric function. For example,
if no two of the bh terms, h = 1, …, m, differ by an integer or zero, all poles are simple,
and

,

where p < q or p = q and |z| < 1. The symbols Ah, Bh denote

and

.

References
• Y.L. Luke, “The Special Functions and Their Approximations”, Vol. 1, Academic

Press, New York, 1969.
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• A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, “Integrals and Series”, Vol. 3:
More Special Functions, Gordon and Breach, 1990.

• M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, Dover
Publications, New York, 9th printing, 1970.

See Also

MuPAD Functions
hypergeom
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min
Minimum of numbers

Syntax
min(x1, x2, , …)

min({x1, x2, …})

min([x1, x2, …])

min(A)

Description

min(x1, x2, ...) returns the minimum of the numbers x1, x2, ….

If the arguments of min are integers, rational numbers, or floating-point numbers, then
min returns the numerical minimum of these arguments.

The call min() is illegal and leads to an error message. If there is only one argument x1,
then min evaluates x1 and returns it. See “Example 2” on page 1-1324.

If one of the arguments is -infinity, then min returns -infinity. If an argument is
infinity, then it is removed from the argument list (see “Example 3” on page 1-1324).

min returns an error when one of its arguments is a complex number or a floating point
interval with on-zero imaginary part (see “Example 2” on page 1-1324).

If one of the arguments is not a number, then a symbolic min call with the minimum of
the numerical arguments and the remaining evaluated arguments may be returned (see
“Example 1” on page 1-1323).

Nested min calls with symbolic arguments are rewritten as a single min call, i.e., they
are flattened; see “Example 4” on page 1-1324.

min reacts to a very limited set of properties of identifiers set via assume. Use simplify
to handle more general assumptions (see “Example 4” on page 1-1324).
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Examples

Example 1

min computes the minimum of integers, rational numbers, and floating-point values:

min(-3/2, 7, 1.4)

If the argument list contains symbolic expressions, then a symbolic min call is returned:

delete b: min(-4, b + 2, 1, 3)

In the following two examples, min is able to determine the minimum despite getting
symbolic arguments:

min(sqrt(2), 1)

assume(x > 0): min(exp(x), exp(-x))

Floating point intervals are interpreted as “any number within this range” and may thus
cause symbolic min calls to be returned:

min(2...3 union 6...7, 4)

min(2...3, 6...7, 4)
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min(6...7, 4)

Example 2

min with one argument returns the evaluated argument:

delete a:

min(a), min(sin(2*PI)), min(2)

Complex numbers lead to an error message:

min(0, 1, I)

Error: The argument is invalid. [min]

Example 3

-infinity is always the minimum of arbitrary arguments:

delete x:

min(-100000000000, -infinity, x)

infinity is removed from the argument list:

min(-100000000000, infinity, x)

Example 4

min reacts only to very few properties of identifiers set via assume:
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delete a, b, c:

assume(a > 0 and b > a and c > b):

min(a, min(b, c), 0)

An application of simplify yields the desired result:

simplify(%)

Parameters

x1, x2, …

Arbitrary MuPAD objects

A

An array of domain type DOM_HFARRAY with real entries

Return Values

One of the arguments, a floating-point number, or a symbolic min call.

Overloaded By

See Also

MuPAD Functions
_leequal | _less | max | sort | sysorder
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mod, _mod
Modulo operator

Compatibility

For the mod function in MATLAB, see mod.

Syntax
x mod m

_mod(x, m)

Description

If m <> 0, then mod(x, m) returns the value x - n*m where n = floor(x/m). If
x and m have different signs, then mod(x, m) has the same sign as m. If m = 0, then
mod(x, m) returns x. See “Example 1” on page 1-1327.

_mod(x, m) is the functional equivalent of the operator notation x mod m. See
“Example 2” on page 1-1327.

By default, x mod m and _mod(x, m) are both equivalent to modp(x, m). You can
redefine the modulo operator mod and its functional form _mod by using modp and
mods. For example, after the assignment _mod:=mods, both the operator mod and the
equivalent function _mod return remainders of least absolute value. See “Example 3” on
page 1-1328.

All functions return an error when one of the arguments is a floating-point number, a
complex number, or not an arithmetical expression.

If one of the arguments is not a number, then a symbolic function call is returned. See
“Example 4” on page 1-1328.

_mod and modp are kernel functions.
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Examples

Example 1

Find the modulus after division of these integers.

27 mod 4, 27 mod -4, -27 mod 4, -27 mod -4

Find the modulus after division by zero.

9 mod 0, -9 mod 0, 0 mod 0

Find the modulus after division of these rational numbers.

22/3 mod 5, 22 mod 5/3, 22/3 mod 5/4

Example 2

Find the modulus after division of 23 by 5 using the modulo operator and its functional
form. _mod and the operator mod are equivalent.

hold(_mod(23, 5))

23 mod 5 = _mod(23, 5)
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Example 3

By default the binary operator mod and the equivalent function _mod are both equivalent
to modp. You can redefine _mod.

modp(11, 7), mods(11,7);

11 mod 7

_mod := mods:

11 mod 7

For further computations, define _mod as modp.

_mod := modp:

Example 4

If one of the arguments is not a number, then the modulo operator returns a symbolic
function call.

delete x, m:

x mod m, x mod 2, 2 mod m

When called with nonnumeric arguments, the function currently associated with _mod is
printed in the operator notation.

_mod := mods:

modp(x, m), mods(x, m)
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_mod := modp:

modp(x, m), mods(x, m)

Parameters

x

An integer, a rational number, or an arithmetical expression

m

An integer or an arithmetical expression

Return Values

arithmetical expression.

Overloaded By

m, x

See Also

MuPAD Domains
Dom::IntegerMod

MuPAD Functions
/ | div | divide | frac | gcd | gcdex | igcd | igcdex | IntMod | modp | mods |
powermod
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modp
Positive modulo function

Syntax

modp(x, m)

Description

If m <> 0, then modp(x, m) returns the value x - n*m where n = floor(x/m). If
x and m have different signs, then modp(x, m) has the same sign as m. If m = 0, then
modp(x, m) returns x. See “Example 1” on page 1-1330.

By default, x mod m and _mod(x, m) are both equivalent to modp(x, m). You can
redefine the modulo operator mod and its functional form _mod by using modp and
mods. For example, after the assignment _mod:=mods, both the operator mod and the
equivalent function _mod return remainders of least absolute value. See “Example 2” on
page 1-1331.

All functions return an error when one of the arguments is a floating-point number, a
complex number, or not an arithmetical expression.

If one of the arguments is not a number, then a symbolic function call is returned. See
“Example 3” on page 1-1331.

modp is a kernel function.

Examples

Example 1

Find the modulus after division of these integers.

modp(27, 4), modp(27, -4), modp(-27, 4), modp(-27, -4)
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Find the modulus after division by zero.

modp(9, 0), modp(-9, 0), modp(0, 0)

Find the modulus after division of these rational numbers.

modp(22/3, 5), modp(22, 5/3), modp(22/3, 5/4)

Example 2

By default the binary operator mod and the equivalent function _mod are both equivalent
to modp. You can redefine _mod.

modp(11, 7), mods(11,7);

11 mod 7

_mod := mods:

11 mod 7

For further computations, define _mod as modp.

_mod := modp:

Example 3

If one of the arguments is not a number, then modp returns a symbolic function call.
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delete x, m:

modp(x, m), modp(x, 2), modp(2, m)

When called with nonnumeric arguments, the function currently associated with _mod is
printed in the operator notation.

_mod := mods:

modp(x, m), mods(x, m)

_mod := modp:

modp(x, m), mods(x, m)

Parameters

x

An integer, a rational number, or an arithmetical expression

m

An integer or an arithmetical expression

Return Values

arithmetical expression.

Overloaded By

m, x
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See Also

MuPAD Domains
Dom::IntegerMod

MuPAD Functions
/ | div | divide | frac | gcd | gcdex | igcd | igcdex | IntMod | mod | mods |
powermod
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mods
Symmetric modulo function

Syntax
mods(x, m)

Description

If m <> 0, then mods(x, m) returns the value x + n*m where n = round(-x/m). If m
= 0, then mods(x, m) returns x. See “Example 1” on page 1-1334.

By default, x mod m and _mod(x, m) are both equivalent to modp(x, m). You can
redefine the modulo operator mod and its functional form _mod by using modp and
mods. For example, after the assignment _mod:=mods, both the operator mod and the
equivalent function _mod return remainders of least absolute value. See “Example 2” on
page 1-1335.

All functions return an error when one of the arguments is a floating-point number, a
complex number, or not an arithmetical expression.

If one of the arguments is not a number, then a symbolic function call is returned. See
“Example 3” on page 1-1335.

mods is a kernel function.

Examples

Example 1

Use the symmetric modulo function to find the modulus after division of these integers.

mods(27, 4), mods(27, -4), mods(-27, 4), mods(-27, -4)
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Find the modulus after division by zero.

mods(9, 0), mods(-9, 0), mods(0, 0)

Use the symmetric modulo function to find the modulus after division of these rational
numbers.

mods(22/3, 5), mods(22, 5/3), mods(22/3, 5/4)

Example 2

By default the binary operator mod and the equivalent function _mod are both equivalent
to modp. You can redefine _mod.

modp(11, 7), mods(11,7);

11 mod 7

_mod := mods:

11 mod 7;

For further computations, define _mod as modp.

_mod := modp:

Example 3

If one of the arguments is not a number, then the modulo operator returns a symbolic
function call.
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delete x, m:

x mod m, x mod 2, 2 mod m

When called with nonnumeric arguments, the function currently associated with _mod is
printed in the operator notation.

_mod := mods: modp(x, m), mods(x, m)

_mod := modp: modp(x, m), mods(x, m)

Parameters

x

An integer, a rational number, or an arithmetical expression

m

An integer or an arithmetical expression

Return Values

arithmetical expression.

Overloaded By

m, x

1-1336



 mods

See Also

MuPAD Domains
Dom::IntegerMod

MuPAD Functions
/ | div | divide | frac | gcd | gcdex | igcd | igcdex | IntMod | mod | modp |
powermod
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monomials
Sorted list of monomials of a polynomial

Syntax
monomials(p, <order>)

monomials(f, <vars>, <order>)

Description

monomials(p, order) returns the list of non-zero monomials of the polynomial p. The
list is sorted with respect to the term ordering order.

monomials returns a list of all non-trivial monomials of the polynomial given. The
monomials are sorted according to the term ordering given. The list is empty if the
polynomial is zero.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. The result is returned as list of polynomial expressions. FAIL is returned if f
cannot be converted to a polynomial.

The result of monomials is not fully evaluated. It can be evaluated by the functions
mapcoeffs and eval. Cf. “Example 4” on page 1-1340.

Examples

Example 1

We give some self explaining examples:

p := poly(100*x^100 + 49*x^49 + 7*x^7, [x]):

monomials(p)
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monomials(poly(0, [x]))

delete p:

Example 2

We demonstrate the effect of various term orders:

p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):

monomials(p)

monomials(p, DegreeOrder)

monomials(p, DegInvLexOrder)

delete p:

Example 3

This example features a user defined term ordering. Here we use the reverse
lexicographical order on 3 indeterminates:

order := Dom::MonomOrdering(RevLex(3)):

p := poly(5*x^4 + 4*x^3*y*z^2 + 3*x^2*y^3*z + 2, [x, y, z]):

monomials(p, order)
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delete order, p:

Example 4

We demonstrate the evaluation strategy of monomials:

p := poly(3*x^3 + 6*x^2*y^2 + 2, [x]): y := 4:

monomials(p)

Evaluation is enforced by eval:

map(%, mapcoeffs, eval)

delete p, y:

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

order

The term ordering: LexOrder, or DegreeOrder, or DegInvLexOrder, or a user-defined
term ordering of type Dom::MonomOrdering. The default is the lexicographical ordering
LexOrder.
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Return Values

List of polynomials of the same type as p. A list of expressions is returned if an
expression is given. The list is empty if the polynomial is zero.

Overloaded By

p

See Also

MuPAD Functions
coeff | degree | degreevec | ground | lcoeff | ldegree | lmonomial | lterm |
nterms | nthcoeff | nthmonomial | nthterm | poly | poly2list | tcoeff
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mtaylor
Compute a multivariate Taylor series expansion

Syntax
mtaylor(f, x = x0, <order>, <mode>, <weights>, <Mapcoeffs = mc>)

mtaylor(f, x, <order>, <mode>, <weights>, <Mapcoeffs = mc>)

mtaylor(f, x = x0, AbsoluteOrder = order, <weights>, <Mapcoeffs = mc>)

mtaylor(f, x = x0, RelativeOrder = order, <weights>, <Mapcoeffs = mc>)

mtaylor(f, [x = x0, y = y0, …], <order>, <mode>, <weights>, <Mapcoeffs = mc>)

mtaylor(f, [x, y, …], <order>, <mode>, <weights>, <Mapcoeffs = mc>)

mtaylor(f, [x = x0, y = y0, …], <AbsoluteOrder = order>, <weights>, <Mapcoeffs = mc>)

mtaylor(f, [x = x0, y = y0, …], RelativeOrder = order, <weights>, <Mapcoeffs = mc>)

Description

mtaylor(f, [x = x0, y = y0, ...]) computes the first terms of the multivariate
Taylor series of f with respect to the variables x, y etc. around the points x = x0, y =
y0 etc.

With the default mode RelativeOrder, the number of requested terms for the
expansion is determined by order if specified. If no order is specified, the value of the
environment variable ORDER is used. You can change the default value 6 by assigning a
new value to ORDER.

The terms are counted from the lowest total degree on for finite expansion points, and
from the highest total degree term on for expansions around infinity.

If AbsoluteOrder is specified, order represents the truncation order of the series, i.e.,
no terms of total degree order or higher are computed.

For infinite expansion points, the absolute values of the exponents of the corresponding
variables are used to compute the total degree.
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For finite expansion points x0, y0, ..., the computed series with respect to the
variables x, y, ... of weight w1, w2, ... is

taylor(f(x0 + t^w1*(x - x0), y0 + t^w2*(y - y0), dots), t = 0),

evaluated at the point t = 1.

Environment Interactions

The function is sensitive to the environment variable ORDER, which determines the
default number of terms in series computations.

Examples

Example 1

We compute a Taylor series around the origin (default). The expansion contains all terms
through total degree 3:

mtaylor(exp(x^2 - y), [x, y], 4)

We request additional terms of higher order:

mtaylor(exp(x^2 - y), [x, y], 5)

In the example above, the leading term is of total degree 0. In the following example, the
leading term is of total degree 2. Thus, the default mode RelativeOrder produces terms
of total degree smaller than4 + 2 = 6:

mtaylor(x*y*exp(x^2 - y), [x, y], 4)
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We request an absolute truncation order of 4, so that only terms of total degree smaller
than 4 are computed:

mtaylor(x*y*exp(x^2 - y), [x, y], AbsoluteOrder = 4)

Example 2

For infinite expansions points a series in the reciprocal of the variable is returned:

mtaylor(exp(z)/(x - y), [x = infinity, y = 0, z])

We reduce the order in z by giving z a higher weight:

mtaylor(exp(z)/(x - y), [x = infinity, y = 0, z], [1, 1, 2])

Example 3

If a Taylor series expansion does not exist, or if mtaylor cannot find a Taylor series
expansion, then mtaylor throws an error.

Try to find the Taylor series expansion of  around x = 1, y = 1. The Taylor

series expansion does not exist, and mtaylor throws an error:

mtaylor(1/(x*y - 1), [x = 1, y = 1])

Error: Cannot compute a Taylor expansion of '1/(x*y - 1)'. [mtaylor]
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Example 4

This is an example of a directed Taylor expansion along the real axis around x =
infinity:

mtaylor(sqrt(y)*sin(sqrt(y)/x), [x = infinity, y = 0])

In fact, this is even an undirected expansion:

mtaylor(sqrt(y)*sin(sqrt(y)/x), [x = complexInfinity, y = 0])

Example 5

A common problem in symbolic calculations is “expression swell:” Intermediate
expressions which are not or cannot be simplified lead to unnecessarily complicated
results. The following is an example of such behavior:

mtaylor((a+x)^n, x, 4)

In general, applying simplify or Simplify to complicated results is a strategy that
often helps. In this case, however, it would destroy the format of the series:
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simplify(%)

What is required is a way to map a function like simplify to the coefficients of the
series only. Since mtaylor returns an ordinary expression, this must be done in the
mtaylor call itself, using the Mapcoeffs option:

mtaylor((a+x)^n, x, 4, Mapcoeffs=simplify)

Parameters

f

An arithmetical expression representing a function in x, y, ...

x, y, …

identifiers or indexed identifiers

x0, y0, …

The expansion points: arithmetical expressions. Also expressions involving infinity or
complexInfinity are accepted.

If not specified, the default expansion point 0 is used.

order

The truncation order (in conjunction with AbsoluteOrder) or, in conjunction with
RelativeOrder, the number of terms to be computed, respectively. A nonnegative
integer; the default order is given by the environment variable ORDER (default value 6).

The order concept refers to the total degree in the variables (the sum of all exponents).
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mode

One of the flags AbsoluteOrder or RelativeOrder. The default is RelativeOrder.

weights

A list of positive integers determining the number of terms of the computed series. A
variable x with weight w contributes as x^w to the total degree of the terms in the series.
Thus, using weight 2 for x, halves the order in x to which the series is computed.

By default, all variables have the weight 1.

Options

AbsoluteOrder

With this flag, the integer value order is the truncation order of the computed series,
i.e., only terms of total degree less than order are present.

RelativeOrder

With this flag, the terms in the computed series range from some leading total degree
v to the highest total degree v + order - 1 (i.e., the truncation order w.r.t. the total
degree is v + order).

Mapcoeffs

Option, specified as Mapcoeffs = mc

When building the resulting expression, for each coefficient c, insert mc(c) instead.

Return Values

Arithmetical expression.

Overloaded By

f
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See Also

MuPAD Functions
asympt | diff | limit | O | series | Series::Puiseux | taylor | Type::Series

1-1348



 multcoeffs

multcoeffs
Multiply the coefficients of a polynomial with a factor

Syntax
multcoeffs(p, c)

multcoeffs(f, <vars>, c)

Description

multcoeffs(p, c) multiplies all coefficients of the polynomial p with the factor c.

A polynomial expression f is first converted to a polynomial with the variables given
by vars. If no variables are given, they are searched for in f. See poly about details
of the conversion. FAIL is returned if f cannot be converted to a polynomial. After
multiplication with c, the result is converted to an expression.

For a polynomial expression f, the factor c may be any arithmetical expression. For a
polynomial p of type DOM_POLY, the factor c must be convertible to an element of the
coefficient ring of p.

Examples

Example 1

Some simple examples:

multcoeffs(3*x^3 + x^2*y^2 + 2, 5)

multcoeffs(3*x^3 + x^2*y^2 + 2, c)
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multcoeffs(poly(x^3 + 2, [x]), sin(y))

Example 2

Mathematically, multcoeffs(f, c) is the same as f*c. However, multcoeffs
produces an expanded form of the product which depends on the indeterminates:

f := 3*x^3 + x^2*y^2 + 2:

multcoeffs(f, [x], c), multcoeffs(f, [y], c),

multcoeffs(f, [z], c)

delete f:

Parameters

p

A polynomial of type DOM_POLY

c

An arithmetical expression or an element of the coefficient ring of p

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

Return Values

Polynomial of type DOM_POLY, or a polynomial expression, or FAIL.
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Overloaded By

f, p

See Also

MuPAD Functions
coeff | degree | degreevec | lcoeff | ldegree | lterm | monomials | nterms |
nthcoeff | nthmonomial | nthterm | poly | tcoeff
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new
Create a domain element

Syntax
new(T, object1, object2, …)

Description

Within a method of the domain type T, new(T, object1, object2, ...)
creates a new element of the domain T with the internal representation object1,
object2, ....

new is a low-level function for creating elements of library domains.

The internal representation of a domain element comprises a reference to the
corresponding domain and an arbitrary number of MuPAD objects, the internal operands
of the domain element.

new(T, object1, object2, ...) creates a new element of the domain T, whose
internal representation is the sequence of operands object1, object2, ..., and
returns this element.

new(T) creates a new element of the domain T, whose internal representation is an
empty sequence of operands.

Note: new is intended only for programmers implementing their own domains in
MuPAD. You should never use new directly to generate elements of a predefined domain
T; use the corresponding constructor T(...) instead, for the following reasons. The
internal representation of the predefined MuPAD domains may be subject to changes
more often than the interface provided by the constructor. Moreover, in contrast to new,
the constructors usually perform argument checking. Thus using new directly may lead
to invalid internal representations of MuPAD objects.

New domains can be created via newDomain.
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You can access the operands of the internal representation of a domain element via
extop, which, in contrast to op, cannot be overloaded for the domain. The function op is
sometimes overloaded for a domain in order to hide the internal, technical representation
of an object and to provide a more user friendly and intuitive interface.

Similarly, the function extnops returns the number of operands of a domain element
in the internal representation, and extsubsop modifies an operand in the internal
representation. These functions, in contrast to the related functions nops and subsop,
cannot be overloaded for a domain.

You can write a constructor for your own domain T by providing a "new" method. This
method is invoked whenever the user calls T(arg1, arg2, ...). This is recommended
since it provides a more elegant and intuitive user interface than new. The "new"
method usually performs some argument checking and converts the arguments arg1,
arg2, ... into the internal representation of the domain, using new (see “Example 1”
on page 1-1353).

Examples

Example 1

We create a new domain Time for representing clock times. The internal representation
of an object of this domain has two operands: the hour and the minutes. Then we create a
new domain element for the time 12:45:

Time := newDomain("Time"):

a := new(Time, 12, 45)

The domain type of a is Time, the number of operands is 2, and the operands are 12 and
45:

domtype(a), extnops(a)

extop(a)
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We now implement a "new" method for our new domain Time, permitting several input
formats. It expects either two integers, the hour and the minutes, or only one integer
that represents the minutes, or a rational number or a floating-point number, implying
that the integral part is the hour and the fractional part represents a fraction of an hour
corresponding to the minutes, or no arguments, representing midnight. Additionally, the
procedure checks that the arguments are of the correct type:

Time::new := proc(HR = 0, MN = 0)

  local m;

begin

  if args(0) = 2 and domtype(HR) = DOM_INT

     and domtype(MN) = DOM_INT then

    m := HR*60 + MN

  elif args(0) = 1 and domtype(HR) = DOM_INT then

    m := HR

  elif args(0) = 1 and domtype(HR) = DOM_RAT then

    m := trunc(float(HR))*60 + frac(float(HR))*60

  elif args(0) = 1 and domtype(HR) = DOM_FLOAT then

    m := trunc(HR)*60 + frac(HR)*60

  elif args(0) = 0 then

    m := 0

  else

    error("wrong number or type of arguments")

  end_if;

  new(Time, trunc(m/60), trunc(m) mod 60)

end_proc:

Now we can use this method to create new objects of the domain Time, either by calling
Time::new directly, or, preferably, by using the equivalent but shorter call Time(...):

Time::new(12, 45), Time(12, 45), Time(12 + 3/4)

Time(), Time(8.25), Time(1/2)

In order to have a nicer output for objects of the domain Time, we also define a "print"
method (see the help page for print):
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Time::print := proc(TM)

begin

  expr2text(extop(TM, 1)) . ":" .

  stringlib::format(expr2text(extop(TM, 2)), 2, Right, "0")

end_proc:

Time::new(12, 45), Time(12, 45), Time(12 + 3/4)

Time(), Time(8.25), Time(1/2)

Parameters

T

A MuPAD domain

object1, object2, …

Arbitrary MuPAD objects

Return Values

Element of the domain T.

See Also

MuPAD Domains
DOM_DOMAIN

MuPAD Functions
extnops | extop | extsubsop | newDomain | op
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newDomain
Create a new data type (domain)

Syntax
newDomain(k)

newDomain(k, T)

newDomain(k, t)

Description

newDomain(k) creates a new domain with key k.

newDomain(k, T) creates a copy of the domain T with new key k.

newDomain(k, t) creates a new domain with key k and slots from the table t.

Data types in MuPAD are called domains. newDomain is a low-level function for defining
new data types. Cf. the corresponding entry in the Glossary for links to documentation
about domains and more comfortable ways of defining new data types. The help page of
DOM_DOMAIN contains a tutorial example for defining a new domain via newDomain.

Technically, a domain is something like a table. The entries of this table are called slots
or methods. They serve for extending the functionality of standard MuPAD functions,
such as the arithmetic operations + and *, the special mathematical functions exp and
sin, or the symbolic manipulation functions simplify and normal, to objects of a
domain in a modular, object-oriented way, without the need to modify the source code of
the standard function. This is known as overloading.

The function slot and the equivalent operator :: serve for defining and accessing a
specific slot of a domain. The function op returns all slots of a domain.

Each domain has a distinguished slot "key", which is its unique identification. There
can be no two different domains with the same key. Typically, but not necessarily, the
key is a string. However, the key serves mainly for internal and output purposes. Usually
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a domain is assigned to an identifier immediately after its creation, and you access the
domain via this identifier.

If a domain with the given key already exists, newDomain(k) returns that domain; both
other forms of calling newDomain yield an error.

Examples

Example 1

We create new domain with key "my-domain". This key is also used for output, but
without quotes:

T := newDomain("my-domain")

You can create elements of this domain with the function new:

e := new(T, 42);

domtype(e)

With the slot operator ::, you can define a new slot or access an existing one:

op(T)

T::key, T::myslot

T::myslot := 42: op(T)
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T::myslot^2

If a domain with key k already exists, then newDomain(k) does not create a new
domain, but returns the existing domain instead:

T1 := newDomain("my-domain"):

op(T1)

Note that you cannot delete a domain; the command delete T only deletes the value of
the identifier T, but does not destroy the domain with the key "my-domain":

delete T, T1:

T2 := newDomain("my-domain"):

op(T2);

delete T2:

Example 2

There cannot exist different domains with the same key at the same time. Defining a slot
for a domain implicitly changes all identifiers that have this domain as their value:

T := newDomain("1st"): T1 := T:

op(T);

op(T1);
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T1::mySlot := 42:

op(T);

op(T1);

To avoid this, you can create a copy of a domain. You must reserve a new, unused key for
that copy:

T2 := newDomain("2nd", T):

T2::anotherSlot := infinity:

op(T);

op(T2);

delete T, T1, T2:

Example 3

You can provide a domain with slots already when creating it:

T := newDomain("3rd",

  table("myslot" = 42, "anotherSlot" = infinity)):

op(T);

T::myslot, T::anotherSlot

delete T:
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Parameters

k

An arbitrary object; typically a string

T

A domain

t

The slots of the domain: a table

Return Values

Object of type DOM_DOMAIN.

See Also

MuPAD Domains
DOM_DOMAIN

MuPAD Functions
domtype | new | slot

More About
• “Define Your Own Data Types”
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next, _next
Skip a step in a loop

Syntax
next

_next()

Description

next interrupts the current step in for, repeat, and while loops. Execution proceeds
with the next step of the loop.

The next statement is equivalent to the function call _next(). The return value is the
void object of type DOM_NULL.

Inside for, repeat, and while loops, the next statement interrupts the current step of
the loop. In for statements, the loop variable is incremented and execution continues at
the beginning of the loop. Similarly, the control conditions at the beginning of a while
loop and in the until clause of a repeat loop are verified, before execution continues at
the beginning of the loop.

Outside for, repeat, and while loops, the next statement has no effect.

Examples

Example 1

In the following for loop, any step with even i is skipped:

for i from 1 to 5 do

  if testtype(i, Type::Even) then next end_if;

  print(i)

end_for:
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In the following repeat loop, all steps with odd i are skipped:

i := 0:

repeat

  i := i + 1;

  if testtype(i, Type::Odd) then next end_if;

  print(i)

until i >= 5 end_repeat:

delete i:

See Also

MuPAD Functions
break | case | for | repeat | return | while

1-1362



 nextprime

nextprime
Next prime number

Syntax
nextprime(m)

Description

nextprime(m) returns the smallest prime number larger than or equal to m.

If the argument m is an integer, then nextprime returns the smallest prime number
larger than or equal to m. A symbolic call of type "nextprime" is returned, if the
argument is not of type Type::Numeric. An error occurs if the argument is a number
that is not an integer.

The first prime number is 2.

Examples

Example 1

The first prime number is computed:

nextprime(-13)

If the argument of nextprime is a prime number, this number is returned:

nextprime(11)

We compute a large prime:
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nextprime(56475767478567)

Symbolic arguments lead to a symbolic call:

nextprime(x)

Parameters

m

An arithmetical expression

Return Values

Prime number or a symbolic call to nextprime.

Algorithms

nextprime uses a fast probabilistic prime number test (Miller-Rabin test) to decide if
the computed result is a prime number. The result returned by nextprime is either a
prime number or a strong pseudo-prime for 10 randomly chosen bases.

References

Michael O. Rabin, Probabilistic algorithms, in J. F. Traub, ed., Algorithms and
Complexity, Academic Press, New York, 1976, pp. 21-39.

See Also

MuPAD Functions
ifactor | igcd | ilcm | isprime | ithprime | prevprime
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NIL

Singleton element of the domain DOM_NIL

Syntax

NIL

Description

NIL is a keyword of the MuPAD language which represents the singleton element of the
domain DOM_NIL.

The kernel domain DOM_NIL has only one singleton element. NIL is a keyword of the
MuPAD language which represents this element. NIL is not changed by evaluation, see
DOM_NIL.

Most often, NIL is used to represent a “missing” or “void” operand in a data structure.
The “void object” returned by null is not suitable for this, because it is removed from
most containers (like lists, sets or expressions) during evaluation.

When a new array from the kernel domain DOM_ARRAY is created, its elements are
initialized with the value NIL. The function op returns NIL for un-initialized array
elements. Note, however, that an indexed access of an un-initialized array element
returns the indexed expression instead of NIL.

Local variables of procedures defined by proc are initialized with NIL. Nevertheless, a
warning is printed if one accesses a local variable without explicitly initializing its value.

In former versions of MuPAD, NIL was used to delete values of identifiers or entries of
tables, by assigning NIL to the identifier or entry. This is no longer supported. One must
use delete to delete values. NIL now is a valid value of an identifier and a valid entry of
a table.
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Examples

Example 1

Unlike the “void object” returned by null, NIL is not removed from lists and sets:

[1, NIL, 2, NIL], [1, null(), 2, null()], 

{1, NIL, 2, NIL}, {1, null(), 2, null()}

Example 2

NIL is used to represent “missing” entries of procedures. For example, the simplest
procedure imaginable has the following operands:

op(proc() begin end)

The first NIL, for example, represents the empty argument list, the second the void list of
local variables and the third the void set of procedure options.

Example 3

Array elements are initialized with NIL if not defined otherwise. Note, however, that the
indexed access for such elements yields the indexed expression:

A := array(1..2): A[1], op(A,1)

delete A:

Example 4

Local variables in procedures are implicitly initialized with NIL. Still, a warning is
printed if one uses the variable without explicitly initializing it:
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p := proc() local l; begin print(l) end:  p():

Warning: Uninitialized variable 'l' is used.

  Evaluating: p

delete p:

Example 5

NIL may be assigned to an identifier or indexed identifier like any other value. Such an
assignment no longer deletes the value of the identifier:

a := NIL:  b[1] := NIL:  a, b[1]

delete a, b:

See Also

MuPAD Functions
delete | FAIL | null
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nops
Number of operands

Syntax
nops(object)

Description
nops(object) returns the number of operands of the object.

See the help page of op for details on the MuPAD concept of “operands”.

For sets, lists, and tables, the function nops returns the number of elements or entries,
respectively. Note that expressions of type DOM_EXPR, arrays and hfarrays have a 0-
th operand which is not counted by nops. For arrays, also non-initialized elements are
counted by nops.

The void object null() of type DOM_NULL, the empty list[ ], the empty set{ }, and
the empty tabletable() have no operands: nops returns 0. Cf. “Example 1” on page
1-1368.

Integers of domain type DOM_INT, real floating-point numbers of domain type
DOM_FLOAT, Boolean constants of domain type DOM_BOOL, identifiers of domain type
DOM_IDENT, and strings of domain type DOM_STRING are `atomic' objects having only
1 operand: the object itself. Rational numbers of domain type DOM_RAT and complex
numbers of domain type DOM_COMPLEX have 2 operands: the numerator and denominator
and the real part and imaginary part, respectively. Cf. “Example 2” on page 1-1369.

In contrast to most other MuPAD functions, nops does not flattenexpression sequences.
Cf. “Example 3” on page 1-1370.

Examples

Example 1

The following expression has the type "_plus" and the three operands a*b, 3*c, and d:
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nops(a*b + 3*c + d)

For sets and lists, nops returns the number of elements. Note that the sublist [1, 2,
3] and the subset {1, 2} each count as one operand in the following examples:

nops({a, 1, [1, 2, 3], {1, 2}})

nops([[1, 2, 3], 4, 5, {1, 2}])

Empty objects have no operands:

nops(null()), nops([ ]), nops({}), nops(table())

The number of operands of a symbolic function call is the number of arguments:

nops(f(3*x, 4, y + 2)), nops(f())

Example 2

Integers and real floating-point numbers only have one operand:

nops(12), nops(1.41)

The same holds true for strings; use length to query the length of a string:
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nops("MuPAD"), length("MuPAD")

The number of operands of a rational number or a complex number is 2, even if the real
part is zero:

nops(-3/2), nops(1 + I), nops(2*I)

A function environment has 3 and a procedure has 16 operands:

nops(sin), nops(op(sin, 1))

Example 3

Expression sequences are not flattened by nops:

nops((1, 2, 3))

In contrast to the previous call, the following command calls nops with three arguments:

nops(1, 2, 3)

Error: The number of arguments is incorrect. [nops]

Parameters

object

An arbitrary MuPAD object
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Return Values

Nonnegative integer.

Overloaded By

object

See Also

MuPAD Functions
extnops | extop | extsubsop | length | op | subsop
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norm
Compute the norm of a matrix, a vector, or a polynomial

Syntax
norm(M, <1 | 2 | Frobenius | Infinity | Spectral>)

norm(v, <Frobenius | Infinity | kv>)

norm(p, <kp>)

norm(f, <vars>, <kp>)

Description

norm(M, kM) computes the norm of index kM of the matrix M.

norm(v, kv) computes the norm of index kv of the vector v.

norm(p, kp) computes the norm of index kp of the polynomial p.

In MuPAD, there is no difference between matrices and vectors: a vector is a matrix of
dimension 1×n or n×1, respectively.

For an m×n matrix M = (Mij) with min(m, n) > 1, only the 1-norm (maximum column sum)

,

the Frobenius norm

,

the spectral norm
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,

where ϕ is the largest eigenvalue of AH A and the infinity-norm (maximum row sum)

can be computed. The 1-norm and the Infinity-norm are operator norms with respect
to the corresponding norms on the vector spaces the matrix is acting upon.

For vectors v = (vi), represented by matrices of dimension 1×n or n×1, norms with
arbitrary positive integer indices k as well as Infinity can be computed. For integers k
> 1, the vector norms are given by

for column vectors as well as for row vectors.

For indices 1, Infinity, and Frobenius, the vector norms are given by the
corresponding matrix norms. For column vectors, the 1-norm is the sum norm

,

the Infinity-norm is the maximum norm

(this is the limit of the k-norms as k tends to infinity).

Note: For row vectors, the 1-norm is the maximum norm, whilst the Infinity-norm is
the sum norm.
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The Frobenius norm coincides with norm(v, 2) for both column and row vectors.

Cf. “Example 2” on page 1-1376.

Matrices and vectors may contain symbolic entries. No internal float conversion is
applied.

For matrix and vector norms, also refer to the help page of Dom::Matrix (note that the
function matrix generates matrices of type Dom::Matrix()).

For polynomials p with coefficients ci, the norms are given by

.

Also multivariate polynomials are accepted by norm. The coefficients with respect to all
indeterminates are taken into account.

For polynomials, only numerical norms can be computed. The coefficients of the
polynomial must not contain symbolic parameters that cannot be converted to floating-
point numbers. Coefficients containing symbolic numerical expressions such as PI+1,
sqrt(2) etc. are accepted. Internally, they are converted to floating-point numbers. Cf.
“Example 3” on page 1-1376.

For indices k> 1, norm(p, k) always returns a floating-point number. The 1-norm
produces an exact result if all coefficients are integers or rational numbers. The infinity-
norm norm(p) produces an exact result, if the coefficient of largest magnitude is an
integer or a rational number. In all other cases, also the 1-norm and the infinity-norm
produce floating-point numbers. Cf. “Example 3” on page 1-1376.

For polynomials over the coefficient ring IntMod(m), norm produces an error.

If the coefficient ring of the polynomial is a domain, it must implement the method
"norm". This method must return the norm of the coefficients as a number or as a
numerical expression that can be converted to a floating-point number via float. With
the coefficient norms , norm(p) computes the maximum norm ;

norm(p, k) computes .

A polynomial expression f is internally converted to the polynomial poly(f). If a list of
indeterminates is specified, the norm of the polynomial poly(f, vars) is computed.
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For polynomials and polynomial expressions, the norms are computed by a function of
the system kernel.

Examples

Example 1

We compute various norms of a 2×3 matrix:

M := matrix([[2, 5, 8], [-2, 3, 5]]):

norm(M) = norm(M, Infinity),

norm(M, 1),

norm(M, Frobenius),

norm(M, Spectral)

For matrices, norm produces exact symbolic results:

M := matrix([[2/3, 63, PI],[x, y, z]]):

norm(M)

norm(M, 1)

norm(M, Frobenius)

delete M:
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Example 2

A column vector col and a row vector row are considered:

col := matrix([x1, PI]): row := matrix([[x1, PI]]): col, row

norm(col, 2) = norm(row, 2)

norm(col, 3) = norm(row, 3)

Note that the norms of index 1 and Infinity have exchanged meanings for column and
row vectors:

norm(col, 1) = norm(row, Infinity)

norm(col, Infinity) = norm(row, 1)

delete col, row:

Example 3

The norms of some polynomials are computed:

p := poly(3*x^3 + 4*x, [x]): norm(p), norm(p, 1)
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If the coefficients are not integers or rational numbers, automatic conversion to floating-
point numbers occurs:

p := poly(3*x^3 + sqrt(2)*x + PI, [x]): norm(p), norm(p, 1)

Floating point numbers are always produced for indices greater than 1:

p := poly(3*x^3 + 4*x + 1, [x]):

norm(p, 1), norm(p, 2), norm(p, 5), norm(p, 10), norm(p)

delete p:

Example 4

The norms of some polynomial expressions are computed:

norm(x^3 + 1, 1), norm(x^3 + 1, 2), norm(x^3 + PI)

The following call yields an error, because the expression is regarded as a polynomial in
x. Consequently, symbolic coefficients 6 y and 9 y2 are found which are not accepted:

f := 6*x*y + 9*y^2 + 2: norm(f, [x])

Error: The argument is invalid. [norm]

As a bivariate polynomial with the indeterminates x and y, the coefficients are 6, 9, and
2. Now, norms can be computed:

norm(f, [x, y], 1), norm(f, [x, y], 2), norm(f, [x, y])

delete f:
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Parameters

M

A matrix of domain type Dom::Matrix(...)

v

A vector (a 1-dimensional matrix)

kv

A positive integer as index of the vector norm.

p

A polynomial generated by poly

f

A polynomial expression

vars

A list of identifiers or indexed identifiers, interpreted as the indeterminates of f

kp

The index of the norm of the polynomial: a real number greater or equal than 1. If no
index is specified, the maximum norm (of index infinity) is computed.

Options

Frobenius

Computes the Frobenius norm for vectors and matrices.

Infinity

Computes the Infinity norm for vectors and matrices.
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Spectral

Computes the Spectral norm for matrices.

Return Values

Arithmetical expression.

Overloaded By

f, p

See Also

MuPAD Functions
coeff | float | matrix | poly
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normal
Normalize an expression

Syntax
normal(f, options)

normal(object)

Description

normal(f) returns a normal form of the rational expression f. MuPAD regards an
expression as normalized when it is a fraction where both numerator and denominator
are polynomials whose greatest common divisor is 1.

normal(object) replaces the operands of object with their normalized form.

normal and simplifyFraction are equivalent.

If argument f contains irrational subexpressions such as sin(x), x^(-1/3) etc., then
these are replaced by auxiliary variables before normalization. After normalization, these
variables are replaced by the normalization of the original subexpressions. Algebraic
dependencies of the subexpressions are not taken into account. The operands of the non-
rational subexpressions are normalized recursively.

If argument f contains floating-point numbers, then these are replaced by rational
approximants (see numeric::rationalize). In the end, float is applied to the result.

With the Expand option, the normal form is unique for rational expressions: it is the
quotient of expanded polynomials whose greatest common divisor is 1. If f and g are
rational expressions, the following statements are equivalent:

• f and g are mathematically equivalent.
• normal(f, Expand) = normal(g, Expand)

• normal(f - g, Expand) = 0

A normal form generated without the Expand option (which is equivalent to Expand
= FALSE) is the quotient of products of powers of expanded polynomials, where all
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factors of the numerator and the denominator are coprime. MuPAD regards factorized
expressions, such as x (x + 1), and equivalent expanded expressions, such as x2 + x, as
normalized. Therefore, if you do not use Expand, there is no unique normal form of a
rational expression.

If f and g are rational expressions, these statements are equivalent:

• f and g are mathematically equivalent.
• normal(f - g) = 0

For special objects, normal is automatically mapped to its operands. In particular, if
object is a polynomial of domain type DOM_POLY, then its coefficients are normalized.
Further, if object is a set, list, table or array, respectively, then normal is applied to all
entries. Further, the left and right sides of equations (type "_equal"), inequalities (type
"_unequal"), and relations (type "_less" or "_leequal") are normalized. Further,
the operands of ranges (type "_range") are normalized automatically.

Examples

Example 1

Compute the normal form of some rational expressions:

normal(x^2 - (x + 1)*(x - 1))

normal((x^2 - 1)/(x + 1))

normal(1/(x + 1) + 1/(y - 1))
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The following expression must be regarded as a rational expression in the
“indeterminates” y and sin(x):

normal(1/sin(x)^2 + y/sin(x))

Example 2

Normalize the entries of this list:

[(x^2 - 1)/(x + 1), x^2 - (x + 1)*(x - 1)]

normal(%)

Now, normalize the coefficients of polynomials:

poly((x^2-1)/(x+1)*Y^2 + (x^2-(x+1)*(x-1))*Y - 1, [Y])

normal(%)

Example 3

If you use the Expand option, normal returns a fraction with the expanded numerator
and denominator:
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normal(x/(x^6 - 1) + x^2/(x^4 - 1), Expand)

Without Expand, a fraction returned by normal can contain factored expressions:

normal(x/(x^6 - 1) + x^2/(x^4 - 1))

Example 4

If you use the List option, normal returns a list consisting of the numerator and
denominator of the input:

normal((x^2-1)/(x^2+2*x+1), List)

Note that normal(f, List) is not the same as [numer(f), denom(f)]:

[numer, denom]((x^2-1)/(x^2+2*x+1))

Example 5

To skip calculation of common divisors of the numerator and denominator of an
expression, use the NoGcd option:

y := (x^4 - 1)/(x + 1) + 1:

normal(y);

normal(y, NoGcd)
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Example 6

To specify common divisors that you want to cancel out, use the ToCancel option:

y := (x^4 - 1)/(x^2 - 1):

normal(y, ToCancel = {x - 1})

Example 7

By default, normal calls the rationalize function in attempt to rationalize the
input expression. You might speed up computations by using Rationalize = None
in conjunction with the Expand option. This combination of options lets you skip
investigating algebraic dependencies and, therefore, saves some time:

n := exp(u):

a := (n^2 + n)/(n + 1) + 1:

normal(a, Expand, Rationalize = None)

Without Rationalize = None, MuPAD analyzes algebraic dependencies and returns
this result:

normal(a, Expand)
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Example 8

Disable recursive calls to normal for subexpressions by using Recursive = FALSE:

y := sqrt((x^2 + 2*x + 1)/(x + 1)):

normal(y, Recursive = FALSE)

Example 9

Solve this equation, and sum up the fifth powers of the solutions:

solutions := solve(x^3 + x^2 + 1, x, MaxDegree = 3):

f := _plus((solutions[i]^7) $i = 1..3)

Normalizing the result returns:

normal(f)

To limit the number of internally repeated calls to normal due to analysis of algebraic
dependencies, use the Iterations option. The default number of iterations is 5. Use

1-1385



1 The Standard Library

the Iterations option to increase or decrease the number of iterations. For example,
normalize the result using just one iteration:

normal(f, Iterations = 1)

After two iterations, the result becomes shorter:

normal(f, Iterations = 2)

After three iterations, you get the simplest result:

normal(f, Iterations = 3)

Parameters

f

An arithmetical expression

object

A polynomial of type DOM_POLY, list, set, table, array, equation, inequality, or range

Options

Expand

Return the numerator and denominator of the normalized expression in expanded form.
See “Details” for more information. By default, Expand = FALSE.
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List

Return a list consisting of the numerator and denominator of f. By default, List =
FALSE.

NoGcd

Skip computing common divisors of the numerator and denominator of f. By default,
NoGcd = FALSE.

ToCancel

Option, specified as ToCancel = {expr1, expr2, …}

Cancel out only the specified common divisors {expr1, expr2,...}.

Rationalize

Option, specified as Rationalize = None

Perform only basic rationalization of an irrational input expression. Skip investigating
algebraic dependencies. This option works only in conjunction with the Expand option.
Otherwise, normal ignores this option. See “Example 7” on page 1-1384.

Recursive

Recursively normalize subexpressions of an irrational expression. By default, Recursive
= TRUE.

Iterations

Option, specified as Iterations = n

Specify the number of repeated calls to normal. Repeated calls appear when analysis of
algebraic dependencies results in new irrational subexpressions. By default, n = 5.

Return Values

Object of the same type as the input object, or a list of two arithmetical expressions if the
List option is used.
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Overloaded By

object

See Also

MuPAD Functions
collect | combine | denom | expand | factor | gcd | indets | numer | partfrac
| rationalize | rectform | rewrite | simplify | simplifyFraction

More About
• “Manipulate Expressions”
• “Choose Simplification Functions”
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simplifyFraction
Normalize an expression

Syntax
simplifyFraction(f, options)

simplifyFraction(object)

Description

normal and simplifyFraction are equivalent. For details and examples, see normal.
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NOTEBOOKFILE
Notebook file name

Description

The environment variables NOTEBOOKFILE and NOTEBOOKPATH store the absolute
file name and the directory name, respectively, of the current notebook in the MuPAD
Notebook app as a string.

Possible values: String

The environment variable NOTEBOOKFILE stores the name of the current notebook that
is connected to the MuPAD kernel.

The environment variable NOTEBOOKPATH stores the name of the directory where the
current notebook is located.

These variables are useful, for example, when reading files that are located relative to
the notebook.

Both variables only have a value if the notebook has a name, which is generally the case
when an existing notebook has been opened or a new notebook has been saved.

The name given by NOTEBOOKFILE is an absolute file name.

Both variables are read-only and are write-protected. One cannot assign a new value to
NOTEBOOKFILE in order to change the name of the notebook.

NOTEBOOKFILE and NOTEBOOKPATH are only defined in the MuPAD Notebook app. When
using the MuPAD engine from MATLAB, the two variables are just normal identifiers.

Examples

Example 1

In the MuPAD Notebook app, you can specify startup commands for a notebook, which
are executed when the notebook is connected to a kernel.
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In the startup commands you can use NOTEBOOKPATH to read a source file “my_init.mu”
which is stored in the directory of the notebook:

fread(NOTEBOOKPATH."my_init.mu")

See Also

MuPAD Functions
NOTEBOOKPATH | READPATH | WRITEPATH
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NOTEBOOKPATH
Notebook path

Description

The environment variables NOTEBOOKFILE and NOTEBOOKPATH store the absolute
file name and the directory name, respectively, of the current notebook in the MuPAD
Notebook app as a string.

Possible values: String

The environment variable NOTEBOOKFILE stores the name of the current notebook that
is connected to the MuPAD kernel.

The environment variable NOTEBOOKPATH stores the name of the directory where the
current notebook is located.

These variables are useful, for example, when reading files that are located relative to
the notebook.

Both variables only have a value if the notebook has a name, which is generally the case
when an existing notebook has been opened or a new notebook has been saved.

The name given by NOTEBOOKFILE is an absolute file name.

Both variables are read-only and are write-protected. One cannot assign a new value to
NOTEBOOKFILE in order to change the name of the notebook.

NOTEBOOKFILE and NOTEBOOKPATH are only defined in the MuPAD Notebook app. When
using the MuPAD engine from MATLAB, the two variables are just normal identifiers.

Examples

Example 1

In the MuPAD Notebook app, you can specify startup commands for a notebook, which
are executed when the notebook is connected to a kernel.
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In the startup commands. you can use NOTEBOOKPATH to read a source file
“my_init.mu” which is stored in the directory of the notebook:

fread(NOTEBOOKPATH."my_init.mu")

See Also

MuPAD Functions
NOTEBOOKFILE | READPATH | WRITEPATH
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nterms
Number of terms of a polynomial

Syntax
nterms(p)

nterms(f, <vars>)

Description

nterms(p) returns the number of terms of the polynomial p.

If the first argument f is not element of a polynomial domain, then nterms converts the
expression to a polynomial via poly(f). If a list of indeterminates is specified, then the
polynomial poly(f, vars) is considered.

A zero polynomial has no terms: the return value is 0.

Examples

Example 1

We give some self explaining examples:

nterms(x^2*y^2 + x^2 + y + 2, [x, y])

nterms(poly(x^2*y^2 + x^2 + y + 2))

nterms(poly(0, [x]))
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Example 2

The following polynomial expression may be regarded as a polynomial in different ways:

f := x^2*y^2 + x^2 + y + 2:

nterms(f, [x]), nterms(f, [y]), nterms(f, [x, y]),

nterms(f, [z])

delete f:

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

Return Values

Nonnegative number. FAIL is returned if the input cannot be converted to a polynomial.

Overloaded By

p
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See Also

MuPAD Functions
coeff | degree | degreevec | ground | lcoeff | ldegree | lmonomial | lterm |
monomials | nthcoeff | nthmonomial | nthterm | poly | poly2list | tcoeff
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nthcoeff
N-th non-zero coefficient of a polynomial

Syntax
nthcoeff(p, n)

nthcoeff(f, <vars>, n)

Description

nthcoeff(p, n) returns the n-th non-zero coefficient of the polynomial p.

nthcoeff returns the n-th non-zero coefficient with respect to the lexicographical
ordering.

The “first” coefficient is the leading coefficient as returned by lcoeff, the “last”
coefficient is the trailing coefficient as returned by tcoeff.

A zero polynomial has no terms: nthcoeff returns FAIL.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. FAIL is returned if f cannot be converted to a polynomial.

The result of nthcoeff is not fully evaluated. Evaluation can be enforced by the function
eval. Cf. “Example 2” on page 1-1398.

Examples

Example 1

We give some self explaining examples:

p := poly(100*x^100 + 49*x^49 + 7*x^7, [x]):
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nthcoeff(p, 1), nthcoeff(p, 2), nthcoeff(p, 3)

nthcoeff(p, 4)

nthcoeff(poly(0, [x]), 1)

delete p:

Example 2

We demonstrate the evaluation strategy of nthcoeff:

p := poly(3*x^3 + 6*x^2*y^2 + 2, [x]): y := 4: 

nthcoeff(p, 2)

Evaluation is enforced by eval:

eval(%)

delete p, y:

Parameters

p

A polynomial of type DOM_POLY
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f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

n

A positive integer

Return Values

Element of the coefficient domain of the polynomial. An expression is returned if a
polynomial expression is given as input. FAIL is returned if n is larger than the actual
number of terms.

Overloaded By

p

See Also

MuPAD Functions
coeff | collect | degree | degreevec | ground | lcoeff | ldegree | lmonomial
| lterm | monomials | nterms | nthmonomial | nthterm | poly | poly2list |
tcoeff
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nthmonomial
N-th monomial of a polynomial

Syntax
nthmonomial(p, n)

nthmonomial(f, <vars>, n)

Description

nthmonomial(p, n) returns the n-th non-trivial monomial of the polynomial p.

nthmonomial returns the n-th non-trivial monomial with respect to the lexicographical
ordering.

The “first” monomial is the leading monomial as returned by lmonomial.

A zero polynomial has no terms: nthmonomial returns FAIL.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. The result is returned as polynomial expression. FAIL is returned if f cannot
be converted to a polynomial.

The result of nthmonomial is not fully evaluated. It can be evaluated by the functions
mapcoeffs and eval. Cf. “Example 2” on page 1-1401.

Examples

Example 1

We give some self explaining examples:

p := poly(100*x^100 + 49*x^49 + 7*x^7, [x]):
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nthmonomial(p, 1), nthmonomial(p, 2), nthmonomial(p, 3)

nthmonomial(p, 4)

nthmonomial(poly(0, [x]), 1)

delete p:

Example 2

We demonstrate the evaluation strategy of nthmonomial:

p := poly(3*x^3 + 6*x^2*y^2 + 2, [x]): y := 4:

nthmonomial(p, 2)

Evaluation is enforced by eval:

mapcoeffs(%, eval)

delete p, y:

Parameters

p

A polynomial of type DOM_POLY
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f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

n

A positive integer

Return Values

Polynomial of the same type as p. An expression is returned if a polynomial expression
is given as input. FAIL is returned if n is larger than the actual number of terms of the
polynomial.

Overloaded By

p

See Also

MuPAD Functions
coeff | degree | degreevec | ground | lcoeff | ldegree | lmonomial | lterm |
monomials | nterms | nthcoeff | nthterm | poly | poly2list | tcoeff
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nthterm
N-th term of a polynomial

Syntax
nthterm(p, n)

nthterm(f, <vars>, n)

Description

nthterm(p, n) returns the n-th non-zero term of the polynomialp.

nthterm returns the n-th non-zero term with respect to the lexicographical ordering.

The “first” term is the leading term as returned by lterm.

A zero polynomial has no terms: nthterm returns FAIL.

The identity nthterm(p, n) nthcoeff(p, n) = nthmonomial(p, n) holds.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. The result is returned as polynomial expression. FAIL is returned if f cannot
be converted to a polynomial.

Examples

Example 1

We give some self explaining examples:

p := poly(100*x^100 + 49*x^49 + 7*x^7, [x]):

nthterm(p, 1), nthterm(p, 2), nthterm(p, 3)
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nthterm(p, 4)

nthterm(poly(0, [x]), 1)

delete p:

Example 2

The n-th monomial is the product of the n-th coefficient and the n-th term:

p := poly(2*x^2*y + 3*x*y^2 + 6, [x, y]):    

mapcoeffs(nthterm(p, 2), nthcoeff(p, 2)) =

nthmonomial(p, 2)

delete p:

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

n

A positive integer
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Return Values

Polynomial of the same type as p. An expression is returned if a polynomial expression
is given as input. FAIL is returned if n is larger than the actual number of terms of the
polynomial.

Overloaded By

p

See Also

MuPAD Functions
coeff | degree | degreevec | ground | lcoeff | ldegree | lmonomial | lterm |
monomials | nterms | nthcoeff | nthmonomial | poly | poly2list | tcoeff
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null
Generate the void object of type DOM_NULL

Syntax
null()

Description

null() returns the void object of domain type DOM_NULL. It represents an empty
sequence of MuPAD expressions or statements.

The void object does not produce any output on the screen.

Various systems functions such as print or reset return the void object.

The void object is removed from sequences (“flattening”). It can be used to remove
elements from lists or sets. Cf. “Example 2” on page 1-1407.

Examples

Example 1

null() returns the void object which does not produce any screen output:

null()

The resulting object is of domain type DOM_NULL:

domtype(null())

This object represents the empty expression sequence and the empty statement
sequence:
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domtype(_exprseq()), domtype(_stmtseq())

Some system functions such as print return the void object:

print("Hello world!"):

domtype(%)

Example 2

The void object is removed from lists, sets, and expression sequences:

[null(), a, b, null(), c], {null(), a, b, null(), c}, 

f(null(), a, b, null(), c)

a + null() + b = _plus(a, null(), b)

subsop([a, x, b], 2 = null()), subs({a, x, b}, x = null())

However, null() is a valid entry in arrays and tables:

a := array(1..2): a[1] := 1: a[2] := null(): a
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domtype(a[1]), domtype(a[2])

t := table(null() = "void", 1 = 2.5, b = null())

domtype(t[b]), t[]

delete a, t:

Example 3

The void object remains if you delete all elements from an expression sequence:

a := (1, b): delete a[1]: delete a[1]: domtype(a)

The operand function op returns the void object when applied to an object with no
operands:

domtype(op([])), domtype(op({})), domtype(op(f()))

delete a:

Return Values

Void object of domain type DOM_NULL.
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See Also

MuPAD Functions
_exprseq | _stmtseq | FAIL | NIL
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numer
Numerator of a rational expression

Syntax
numer(f)

Description

numer(f) returns the numerator of the expression f.

numer regards the input as a rational expression: non-rational subexpressions such as
sin(x), x^(1/2) etc. are internally replaced by “temporary variables”. The numerator
of this rationalized expression is computed, the temporary variables are finally replaced
by the original subexpressions.

Note: Numerator and denominator are not necessarily cancelled: the numerator
returned by numer may have a non-trivial gcd with the denominator returned by denom.
Preprocess the expression by normal to enforce cancellation of common factors. Cf.
“Example 2” on page 1-1411.

Examples

Example 1

We compute the numerators of some expressions:

numer(-3/4)

numer(x + 1/(2/3*x -2/x))
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numer((cos(x)^2 -1)/(cos(x) -1))

Example 2

numer performs no cancellations if the rational expression is of the form “numerator/
denominator”:

r := (x^2 - 1)/(x^3 - x^2 + x - 1): numer(r)

This numerator has a common factor with the denominator of r; normal enforces
cancellation of common factors:

numer(normal(r))

However, automatic normalization occurs if the input expression is a sum:

numer(r + x/(x + 1) + 1/(x + 1) - 1)

delete r:

Parameters

f

An arithmetical expression
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Return Values

Arithmetical expression.

Overloaded By

f

See Also

MuPAD Functions
denom | factor | gcd | normal
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O
Domain of order terms (Landau symbols)

Syntax
O(f, <x = x0, y = y0, …>)

Description

O(f, x = x0) represents the Landau symbol .

Mathematically, for a function f in the variables (x, y, …), the Landau symbol

is a function in these variables with the following property: there exists a constant c and
a neighborhood of the limit point (x0, y0, …) such that |g| ≤ c |f| for all values (x, y, …) in
that neighborhood.

Note: Typically, Landau symbols are used to denote the order terms (“error terms”)
of series expansions. Note, however, that the series expansions produced by
asympt, series, and taylor represent order terms as a part of the data structures
Series::Puiseux and Series::gseries; they do not use the domain O.

With the equations x = x0, y = y0 etc., f is regarded as a function of the specified
variables. All other identifiers contained in f are regarded as constant parameters.

If no variables and limit points are specified, then all identifiers in f are used as
variables, each tending to the default limit point 0.

Variables tending to 0 are not printed on the screen.

The variables of an order term may be obtained with the function indets. The limit
points may be queried with the function O::points.
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The arithmetical operations +, -, *, /, and ^ are overloaded for order terms.

Automatic simplifications are currently restricted to polynomial expressions f.
Univariate polynomial expressions are reduced to the leading monomial of the expansion
around the limit point. In multivariate polynomial expressions, all terms are discarded
that are divisible by lower order terms. For non-polynomial expressions, only integer
factors are removed.

Examples

Example 1

For polynomial expressions, certain simplifications occur:

O(x^4 + 2*x^2), O(7*x^3), O(x, x = 1)

A zero limit point is not printed on the screen:

O(1), O(1, x = 1), O(x^2/(y + 1), x = 0, y = -1, z = PI)

The arithmetical operations are overloaded for order terms:

7*O(x), O(x^2) + O(x^13), O(x^3) - O(x^3), O(x^2)^2 + O(x^4)

Example 2

For multivariate polynomial expression, higher order terms are discarded if they are
divisible by lower order terms:

O(15*x*y^2 + 3*x^2*y + x^2*y^2)
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O(x + x^2*y) = O(x)*O(1 + x*y)

Example 3

We demonstrate how to access the variables and the limit points of an order term:

a := O(x^2*y^2)

indets(a) = O::indets(a), O::points(a)

delete a:

Parameters

f

An arithmetical expression representing a function in x, y etc.

x, y, …

The variables: identifiers

x0, y0, …

The limit points: arithmetical expressions

Return Values

Element of the domain O.
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See Also

MuPAD Functions
asympt | limit | series | taylor
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ode
Domain of ordinary differential equations

Syntax
ode(eq, y(x))

ode({eq, <inits>}, y(x))

ode({eq1, eq2, , …, <inits>}, {y1(x), y2(x), …})

Description

ode(eq, y(x)) represents an ordinary differential equation (ODE) for the function
y(x).

ode({eq1, eq2, ...}, {y1(x), y2(x), ...}) represents a system of ODEs for
the functions y1(x), y2(x) etc.

In the equations eq, eq1 etc., the unknown functions must be represented by y(x),
y1(x) etc. Derivatives may be represented either by the diff function or by the
differential operator D. Note that the token ' provides a handy shortcut: y'(x) = D(y)
(x) means the same as diff(y(x), x).

The unknown functions must be univariate in the independent variable x. Multivariate
expressions such as y(x, t) are not accepted.

The ode function does not accept piecewise input.

Initial and boundary conditions are defined by sequences of equations involving the
unknown functions or their derivatives on the left hand side. The corresponding values
must be specified on the right hand side of the equations. In particular, the differential
operator D (or the token ') must be used to specify values of derivatives at some point.
E.g.,
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is a valid sequence of boundary conditions for inits.

Boundary conditions of the first and second kind are allowed. Mixed conditions are not
accepted.

The initial/boundary points and the corresponding initial/boundary values may be
symbolic expressions.

For scalar initial value or boundary value problems, use ode({eq, inits}, y(x)) to
specify the conditions.

For systems of ODEs, there must be as many equations as unknown functions.

The main purpose of the ode domain is to provide an environment for overloading the
function solve.

In the case of one single equation (possibly together with initial or boundary conditions),
solve returns a set of explicit solutions or an implicit solution. Each element of the set
represents a solution branch.

In the case of a system of equations, solve returns a set of lists of equations for the
unknown functions. Each list represents a solution branch.

An symbolic solve call is returned if no solution is found.

Examples

Example 1

In the following, we show how to create and solve a scalar ODE. First, we define the ODE
. We use the quote token ' to represent derivatives:

eq := ode(x^2*y'(x) + 3*x*y(x) = sin(x)/x, y(x))

We get an element of the domain ode which we can now solve:
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solve(eq)

delete eq:

Example 2

An initial value problem is defined as a set consisting of the ODE and the initial
conditions:

ivp := ode({f''(t) + 4*f(t) = sin(2*t), 

            f(0) = a, f'(0) = b}, f(t))

solve(ivp)

delete ivp:

Example 3

With some restrictions, it is also possible to solve systems of ODEs. First, define a
system:

sys := {x'(t) - x(t) + y(t) = 0, y'(t) - x(t) - y(t) = 0}

A call to solve yields the general solution with arbitrary parameters:

solution := solve(ode(sys, {x(t), y(t)}))
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To verify the result, substitute it back into the system sys. However, for the substitution,
you must rewrite the system into a notation using the diff function:

eval(subs(rewrite(sys, diff), op(solution)))

delete sys, solution:

If you have a system of differential equations in a matrix form, extract the components of
the matrix to a set of differential equations:

Y:= matrix([x(t), y(t)]):

A:= matrix([[1, 2], [-1, 6]]):

s := ode({op(diff(Y, t) - A*Y)}, {x(t), y(t)})

Now, use the solve function to solve the system:

solve(s)

Example 4

In this example, we point out the various return formats of ode's solve facility. First, we
solve an ODE with an initial condition. The solution involves a symbolic integral:
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solve(ode({y'(x) + x*y(x) = cos(x), y(0) = 3}, y(x)))

For the next equation, we get an implicit solution:

solve(ode((x*y'(x) - y(x))^4*exp(x*y'(x) - y(x)) 

          - ln(x*y'(x) - y(x)), y(x)))

This is an algebraic equation for y. Its solution defines y as a function of x and an
arbitrary parameter C followed by a number automatically generated by MuPAD
(constant of integration). However, the algebraic equation does not have a solution in
closed form.

delete sys, solution:

Example 5

It may happen that MuPAD cannot solve a given equation. In such a case, a symbolic
solve command is returned:

solve(ode(x*diff(y(x),x)-y(x)*(x*ln(x^3/y(x))+2), y(x)))

Example 6

The MuPAD ODE solver contains algebraic algorithms for computing Liouvillian and
non-Liouvillian solutions of linear ordinary differential equations. These algorithms are
based on differential Galois theory and on additional methods for finding solutions of
linear ordinary differential equations given in terms of special functions. For the famous
Kovacic's example
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,

the solution can be found as:

solve(ode(y''(x) + (3/(16*x^2) + 2/(9*(x - 1)^2)

                    - 3/(16*x*(x - 1)))*y(x), y(x)))

MuPAD may find Liouvillian and non-Liouvillian solutions for higher order equations as
well. However, in case of Liouvillian solutions, there is no guarantee that all of them are
found.

MuPAD also finds non-Liouvillian solutions in terms of the Bessel, Airy, and Whittaker
functions:

eq := y'(x) + y(x)^2 + b + a*x

solve(ode(eq, y(x)))
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We check this solution:

simplify(eval(subs(rewrite(eq, diff), y(x) = op(%))))

Example 7

It is also possible to compute the series solutions of an ordinary differential equation (cf.
ode::series for further details):

series(ode(y''(x) + 4*y(x) = sin(w*x), y(x)), x = 0, 8)

Parameters

eq, eq1, eq2, …

Equations or arithmetical expressions in the unknown functions and their derivatives
with respect to x. An arithmetical expression is regarded as an equation with vanishing
right hand side.

y, y1, y2, …

The unknown functions: identifiers

x

The independent variable: an identifier
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inits

The initial or boundary conditions: a sequence of equations

Return Values

Object of type ode.

References
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See Also

MuPAD Domains
Dom::LinearOrdinaryDifferentialOperator

MuPAD Functions
numeric::odesolve | numeric::odesolve2 | ode::series | ode::solve

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d
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op
Operands of an object

Syntax

op(object)

op(object, i)

op(object, i .. j)

op(object, [i1, i2, …])

Description

op(object) returns all operands of the object.

op(object, i) returns the i-th operand.

op(object, i..j) returns the i-th to j-th operands.

MuPAD objects are composed of simpler parts: the “operands”. The function op is the tool
to decompose objects and to extract individual parts. The actual definition of an operand
depends on the type of the object. The 'Background' section below explains the meaning
for some of the basic data types.

op(object) returns a sequence of all operands except the 0-th one. This call is
equivalent to op(object, 1..nops(object)). Cf. “Example 1” on page 1-1426.

op(object, i) returns the i-th operand. Cf. “Example 2” on page 1-1427.

op(object, i..j) returns the i-th to j-th operands as an expression sequence; i and
j must be nonnegative integers with i smaller or equal to j. This sequence is equivalent
to op(object, k) $k = i..j. Cf. “Example 3” on page 1-1427.

op(object, [i1, i2, ...]) is an abbreviation for the recursive call op (... op
( op(object, i1) , i2) , ...) if i1, i2, ... are integers.
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A call such as op(object, [i..j, i2]) with integers i < j corresponds to
map(op(object, i..j), op, i2). Cf. “Example 4” on page 1-1428.

op returns FAIL if the specified operand does not exist. Cf. “Example 5” on page 1-1429.

Expressions of domain type DOM_EXPR, arrays, hfarrays, and floating point intervals
have a 0-th operand.

• For expressions, this is “the operator” connecting the other operands. In particular,
for symbolic function calls, it is the name of the function.

• For array and hfarrays, the 0-th operand is a sequence consisting of an integer (the
dimension of the array) and a range for each array index.

• For a floating-point interval, the value of the 0-th operand depends on the precise
type of the interval: If the interval is a union of rectangles, the 0-th operand is
hold(_union). If the interval is not a union and consists only of real numbers, the
0-th operand is hold(hull). In the remaining case of a rectangle with non-vanishing
imaginary part, the 0-th operand is FAIL.

Other basic data types such as lists or sets do not have a 0-th operand. Cf. “Example 6”
on page 1-1429.

For library domains, op is overloadable. In the "op" method, the internal representation
can be accessed with extop. It is sufficient to handle the cases op(x), op(x, i), and
op(x, i..j) in the overloading method, the call op(x, [i1, i2, ...]) needs not be
considered. Cf. “Example 7” on page 1-1430.

op is not overloadable for kernel domains.

Examples

Example 1

The call op(object) returns all operands:

op([a, b, c, [d, e], x + y])

op(a + b + c^d)
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op(f(x1, x2, x3))

Example 2

The call op(object, i) extracts a single operand:

op([a, b, c, [d, e], x + y], 4)

op(a + b + c^d, 3)

op(f(x1, x2, x3), 2)

Example 3

The call op(object, i..j) extracts a range of operands:

op([a, b, c, [d, e], x + y], 3..5)

op(a + b + c^d, 2..3)
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op(f(x1, x2, x3), 2..3)

A range may include the 0-th operand if it exists:

op(a + b + c^d, 0..2)

op(f(x1, x2, x3), 0..2)

Example 4

The call op(object, [i1, i2, ...]) specifies suboperands:

op([a, b, c, [d, e], x + y], [4, 1])

op(a + b + c^d, [3, 2])

op(f(x1, x2, x3 + 17), [3, 2])

Also ranges of suboperands can be specified:

op([a, b, c, [d, e], x + y], [4..5, 2])
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op(a + b + c^d, [2..3, 1])

op(f(x1, x2, x3 + 17), [2..3, 1])

Example 5

Nonexisting operands are returned as FAIL:

op([a, b, c, [d, e], x + y], 8), op(a + b + c^d, 4),

op(f(x1, x2, x3), 4)

Example 6

For expressions of type DOM_EXPR, the 0-th operand is “the operator” connecting the
other operands:

op(a + b + c, 0), op(a*b*c, 0), op(a^b, 0), op(a[1, 2], 0)

For symbolic function calls, it is the name of the function:

op(f(x1, x2, x3), 0), op(sin(x + y), 0), op(besselJ(0, x), 0)

The 0-th operand of an array is a sequence consisting of the dimension of the array and a
range for each array index:

op(array(3..100), 0)
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op(array(1..2, 1..3, 2..4), 0)

op(hfarray(3..100), 0)

op(hfarray(1..2, 1..3, 2..4), 0)

No 0-th operand exists for other kernel domains:

op([1, 2, 3], 0), op({1, 2, 3}, 0), op(table(1 = y), 0)

Example 7

For library domains, op is overloadable. First, a new domain d is defined via newDomain.
The "new" method serves for creating elements of this type. The internal representation
of the domain is a list of all arguments of this "new" method:

d := newDomain("d"):  d::new := () -> new(dom, [args()]):

The "op" method of this domain is defined. It is to return the elements of a sorted copy
of the internal list which is accessed via extop:

d::op := proc(x, i = null())

           local internalList;

         begin

           internalList := extop(x, 1);

           op(sort(internalList), i)

         end_proc:
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By overloading, this method is called when the operands of an object of type d are
requested via op:

e := d(3, 7, 1):

op(e);

op(e, 2);

op(e, 1..2)

delete d, e:

Example 8

Identifiers, integers, real floating-point numbers, character strings, and the Boolean
constants are “atomic” objects. The only operand is the object itself:

op(x), op(17), op(0.1234), op("Hello World!")

For rational numbers, the operands are the numerator and the denominator:

op(17/3)

For complex numbers, the operands are the real part and the imaginary part:

op(17 - 7/3*I)
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Example 9

For sets, op returns the elements according to the internal order. Note that this order
may differ from the ordering with which sets are printed on the screen:

s := {i^2 $ i = 1..19}

op(s)

Indexed access to set elements uses the ordering visible on the screen:

s[1], s[2], s[3]

Note that access to set elements via op is much faster than indexed calls:

s := {sqrt(i) $ i = 1..500}:

time([op(s)])/time([s[i] $ i = 1..nops(s)]);

delete s:

Example 10

The operands of a list are its entries:

op([a, b, c, [d, e]])

op([[a11, a12], [a21, a22]], [2, 1])
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Example 11

Internally, the operands of arrays and hfarrays form a “linear” sequence containing all
entries:

op(array(1..2, 1..2, [[11, 12], [21, 22]]))

op(hfarray(1..2, 1..2, [[11, 12], [21, 22]]))

Undefined entries are returned as NIL:

op(array(1..2, 1..2))

Example 12

The operands of a table consist of equations relating the indices and the corresponding
entries:

T := table((1, 2) = x + y, "diff(sin)" = cos, a = b)

op(T)
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delete T:

Example 13

Expression sequences are not flattened:

op((a, b, c), 2)

Note, however, that the arguments passed to op are evaluated. In the following call,
evaluation of x flattens this object:

x := hold((1, 2), (3, 4)):  op(x, 1)

Use val to prevent simplification of x:

op(val(x), 1)

delete x:

Parameters

object

An arbitrary MuPAD object

i, j

Nonnegative integers

i1, i2, …

Nonnegative integers or ranges of such integers
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Return Values

sequence of operands or the requested operand. FAIL is returned if no corresponding
operand exists.

Overloaded By

object

Algorithms

We explain the meaning of “operands” for some basic data types:

• Identifiers, integers, real floating-point numbers, character strings, as well as the
Boolean constants are “atomic” objects. They have only one operand: the object itself.
Cf. “Example 8” on page 1-1431.

• A rational number of type DOM_RAT has two operands: the numerator and the
denominator. Cf. “Example 8” on page 1-1431.

• A complex number of type DOM_COMPLEX has two operands: the real part and the
imaginary part. Cf. “Example 8” on page 1-1431.

• The operands of a set are its elements.

Note: Note that the ordering of the elements as printed on the screen does not
necessarily coincide with the internal ordering referred to by op. Cf. “Example 9” on
page 1-1432.

• The operands of a list are its elements. Cf. “Example 10” on page 1-1432.
• The operands of arrays and hfarrays are its entries. Undefined entries are returned as

NIL. Cf. “Example 11” on page 1-1433 and “Example 6” on page 1-1429.
• The operands of tables are the equations associating an index with the corresponding

entry. Cf. “Example 12” on page 1-1433.
• The operands of an expression sequence are its elements. Note that such sequences

are not flattened by op. Cf. “Example 13” on page 1-1434.
• The operands of a symbolic function call such as f(x, y, ...) are the arguments x,

y etc. The function name f is the 0-the operand.
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• In general, the operands of expressions of type DOM_EXPR are given by their internal
representation. There is a 0-th operand (“the operator”) corresponding to the type
of the expression. Internally, the operator is a system function, the expression
corresponds to a function call. E.g., a + b + c has to be interpreted as _plus(a,
b, c), a symbolic indexed call such as A[i, j] corresponds to _index(A, i, j).
The name of the system function is the 0-th operand (i.e., _plus and _index in the
previous examples), the arguments of the function call are the further operands.

See Also

MuPAD Functions
_index | contains | extnops | extop | extsubsop | map | new | nops | select |
split | subs | subsex | subsop | zip
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operator
Define a new operator symbol

Syntax
operator(symb, f, <Prefix | Postfix | Binary | Nary, prio>, <Global>)

operator(symb, Delete, <Global>)

Description

operator(symb, f, T, prio) defines a new operator symbol symb of type T with
priority prio. The function f evaluates expressions using the new operator.

operator(symb, Delete) removes the definition of the operator symbol symb.

operator is used to define new user-defined operator symbols or to delete them.

Given the operator symbol "++", say, with evaluating function f, the following
expressions are built by the parser, depending on the type of the operator:

• Prefix:

The input ++x results in f(x).
• Postfix:

The input x++ results in f(x).
• Binary:

The input x ++ y ++ z results in f(f(x, y), z).
• Nary:

The input x ++ y ++ z results in f(x, y, z).

There may exist operator symbols which are prefixes of other operator symbols. The
scanner reads as many characters as possible and chooses the longest matching operator
symbol. Cf. “Example 3” on page 1-1439.
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It is not possible to define two operators with the same symbol. So one may not define a
unary ++ and a binary ++ at the same time.

The following restrictions exist for the operator symbol string symb:

• It may not be longer than 32 characters.
• It may not start with a white-space.
• It may not start with a \ (backslash) character.

Thus, the strings " @" and "/" are not allowed. Please note that currently operator
does not check these restrictions.

Builtin operators may be redefined.

It is not possible to define out-fix operators like |x| or 3-nary or other types of operators.

The new operator symbol is also used if files are read, with one exception: if a file is
read with the function read using the option Plain, the new operator is not taken into
account. (This option is used if MuPAD library files are read, because otherwise user-
defined operators could change the meaning of the source code in an uncontrolled way.)

If the operator is defined while reading a file with option Plain, the definition will be
used for the remainder of the file and then be deleted automatically. If the operator is
defined with the option Global, this behavior is changed and the operator will not be
active while reading the file, but will exist at the interactive level instead.

Environment Interactions

The new operator symbol symb is known by the parser and may be used to enter
expressions. The new operator symbol will not be used when reading files using the
function read with the option Plain.

The function f corresponding to the new operator will always be converted into a
function environment containing an additional output routine for the operator
output, unless it contained an output routine already.
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Examples

Example 1

This example shows how to define an operator symbol for the bit-shift operation (as in
the language C):

bitshiftleft := (a, b) -> a * 2^b:

operator("<<", bitshiftleft, Binary, 950):

After this call, the symbol << can be used to enter expressions:

2 << 1, x << y

operator("<<", Delete):

Example 2

Identifiers can be used as operator symbols:

operator("x", _vector_product, Binary, 1000):

PRETTYPRINT := FALSE:

print(Plain, a x b x c)

(a x b) x c

PRETTYPRINT := TRUE:

operator("x", Delete):

Example 3

This example shows that the scanner tries to match the longest operator symbol:

operator("~", F, Prefix, 1000):

operator("~>", F1, Prefix, 1000):

operator("~~>", F2, Prefix, 1000):

print(Plain, ~~ x, ~~> x, ~ ~> x, ~~~> x)
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~ ~ x, ~~> x, ~ ~> x, ~ ~~> x

operator("~", Delete):

operator("~>", Delete):

operator("~~>", Delete):

Parameters

symb

The operator symbol: a character string.

f

The function evaluating expressions using the operator.

prio

The priority of the operator: an integer between 1 and 1999. The default is 1300.

Options

Prefix

The operator is regarded as a unary operator with prefix notation. Given the operator
symbol "++" and the evaluation function f, the input ++x is parsed as the expression
f(x).

Postfix

The operator is regarded as a unary operator with postfix notation. Given the operator
symbol "++" and the evaluation function f, the input x++ is parsed as the expression
f(x).

Binary

The operator is regarded as a non-associative binary operator with infix notation. Given
the operator symbol "++" and the evaluation function f, the input x ++ y ++ z is
parsed as the expression f(f(x, y), z), i.e. the operator binds left-to-right.
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Nary

The operator is regarded as an associative n-ary operator with infix notation. Given the
operator symbol "++" and the evaluation function f, the input x ++ y ++ z is parsed
as the expression f(x, y, z).

Delete

The operator with symbol symb is deleted

Global

When defining an operator inside library or package code (technically: inside a file which
is read with the option Plain), the option Global changes the meaning of the operator
definition: Instead of defining an operator for the remainder of the file, it defines an
operator for the interactive level.

Return Values

Void object of type DOM_NULL.

Algorithms

When the scanner reads a new token, it first discards any whitespace and backslash
characters. Then it tries to match user-defined operator symbols. The longest user-
defined operator symbol matching the scanned characters is made the next token. If no
user-defined operator symbol matches, it scans for the built-in tokens.

The parser uses both recursive-descend and a operator precedence parsing. Built-in and
user-defined operators are parsed using operator precedence.
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ORDER
Default number of terms in series expansions

Description

The environment variable ORDER controls the default number of terms that the system
returns when you compute a series expansion.

Possible values: Positive integer less than 231. The default value is 6.

The functions taylor, series, and asympt have an optional third argument specifying
the desired number of terms of the requested series expansion, counting from the
dominant term on (relative order). If this optional argument is missing, then the value of
ORDER is used instead.

ORDER may also affect the results returned by the function limit.

Deletion via the statement “delete ORDER” resets ORDER to its default value 6.
Executing the function reset also restores the default value.

In some cases, the number of terms returned by taylor, series, or asympt may not
agree with the value of ORDER. Cf. “Example 2” on page 1-1443.

Examples

Example 1

In the following example, we compute the first 6 terms of the series expansion of the
function exp(x)/x^2 around the origin:

series(exp(x)/x^2, x = 0)

To obtain the first 10 terms, we specify the third argument of series:
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series(exp(x)/x^2, x = 0, 10)

Alternatively, we increase the value of ORDER. This affects all subsequent calls to series
or any other function returning a series expansion:

ORDER := 10: series(exp(x)/x^2, x = 0)

taylor(x^2/(1 - x), x = 0)

Finally, we reset ORDER to its default value 6:

delete ORDER: taylor(x^2/(1 - x), x = 0)

Example 2

The number of terms returned by series may differ from the value of ORDER when
cancellation or rational exponents occur:

ORDER := 3:

series(exp(x) - 1 - x - x^2/2 - x^3/6, x = 0)

series(1/(1 - sqrt(x)), x = 0)
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delete ORDER:

See Also

MuPAD Functions
asympt | limit | O | series | taylor
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pade
Pade approximation

Syntax
pade(f, x, <[m, n]>)

pade(f, x = x0, <[m, n]>)

Description

pade(f, ...) computes a Pade approximant of the expression f.

The Pade approximant of order [m, n] around x = x0 is a rational expression

approximating f. The parameters p and a0 are given by the leading order term f = a0 (x
- x0)p + O((x - x0)p + 1) of the series expansion of f around x = x0. The parameters a1, …, bn
are chosen such that the series expansion of the Pade approximant coincides with the
series expansion of f to the maximal possible order.

The expansion points infinity, -infinity, and complexInfinity are not allowed.

If no series expansion of f can be computed, then FAIL is returned. Note that series
must be able to produce a Taylor series or a Laurent series of f, i.e., an expansion in
terms of integer powers of x - x0 must exist.

Examples

Example 1

The Pade approximant is a rational approximation of a series expansion:
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f := cos(x)/(1 + x): P := pade(f, x, [2, 2])

For most expressions of leading order 0, the series expansion of the Pade approximant
coincides with the series expansion of the expression through order m + n:

S := series(f, x, 6)

This differs from the expansion of the Pade approximant at order 5:

series(P, x, 6)

The series expansion can be used directly as input to pade:

pade(S, x, [2, 3]), pade(S, x, [3, 2])

Both Pade approximants approximate f through order m + n = 5:

map([%], series, x)

delete f, P, S:
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Example 2

The following expression does not have a Laurent expansion around x = 0:

series(x^(1/3)/(1 - x), x)

Consequently, pade fails:

pade(x^(1/3)/(1 - x), x, [3, 2])

Example 3

Note that the specified orders [m, n] do not necessarily coincide with the orders of the
numerator and the denominator if the series expansion does not start with a constant
term:

pade(x^10*exp(x), x, [2, 2]), pade(x^(-10)*exp(x), x, [2, 2])

Parameters

f

An arithmetical expression or a series of domain type Series::Puiseux generated by
the function series

x

An identifier

1-1447



1 The Standard Library

x0

An arithmetical expression. If x0 is not specified, then x0 = 0 is assumed.

[m, n]

A list of nonnegative integers specifying the order of the approximation. The default
values are [3, 3].

Return Values

Arithmetical expression or FAIL.

See Also

MuPAD Functions
series
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partfrac
Partial fraction decomposition

Syntax
partfrac(f, <x>)

partfrac(f, x, options)

Description

partfrac(f, x) returns the partial fraction decomposition of the rational expression f
with respect to the variable x.

Consider the rational expression  with polynomials g, p, q, such that

degree (p) < degree(q).

Factor of the denominator into non-constant and pair-wise coprime polynomials qi with
integer exponents ei:

The partial fraction decomposition based on this factorization is a representation

where pi, j are polynomials, such that degree(pi,j) < degree(qi). In particular, pi, j
are constants if qi is a linear polynomial.

partfrac uses factors qi found by the factor function. This function finds factorization
over the field implied by the coefficients of the denominator. See “Example 2” on page
1-1451.
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If f has only one indeterminate, and you do not use options, then you can omit the second
argument x in a call to partfrac. Otherwise, specify the indeterminate as a second
parameter.

partfrac can also find partial fraction decomposition with respect to expressions
instead of variables. See “Example 3” on page 1-1451.

The option Full invokes a full factorization of the denominator into linear factors. The
MaxDegree option determines whether partial fraction decomposition is a symbolic
sum of RootOf terms or an expression in radicals. In general, roots belonging to an
irreducible factor of the denominator of degree five or larger cannot be expressed in terms
of radicals. See “Example 6” on page 1-1452.

Examples

Example 1

Find partial fraction decomposition of the following expressions. You can omit specifying
a variable because these rational expressions are univariate.

partfrac(x^2/(x^3 - 3*x + 2))

partfrac(23 + (x^4 + x^3)/(x^3 - 3*x + 2))

partfrac(x^3/(x^2 + 3*I*x - 2))

Find partial fraction decomposition of the following expression containing two variables,
x and y. For multivariate expressions, specify the variable with respect to which you
compute the partial fraction decomposition.
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f := x^2/(x^2 - y^2):

partfrac(f, x), partfrac(f, y)

delete f:

Example 2

Find the partial fraction decomposition of this expression.

partfrac(1/(x^2 - 2), x)

The denominator x2 - 2 does not factor over the rational numbers.

factor(x^2 - 2)

Extend the coefficient field used by factor and partfrac by using the Adjoin option.

partfrac(1/(x^2 - 2), x, Adjoin = [sqrt(2)])

Example 3

Find the partial fraction decomposition with respect to an expression, such as sin(x).

partfrac(1/(sin(x)^4 - sin(x)^2 + sin(x) - 1), sin(x))
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Example 4

Return a list consisting of the numerators and denominators of the partial fraction
decomposition by using the List option.

partfrac(x^2/(x^3 - 3*x + 2), x, List)

Example 5

Find the partial fraction decomposition using numeric factorization over the field real
numbers, R_.

partfrac(1/(x^3 - 2), x, Domain = R_)

Find the partial fraction decomposition of the same expression using numeric
factorization over the field complex numbers, C_.

partfrac(1/(x^3 - 2), x, Domain = C_)

Example 6

Find the partial fraction decomposition factoring the denominator into linear factors
symbolically. For this, use the Full option.

partfrac(1/(x^3 + x - 2), x, Full)
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For irreducible denominators of the third and higher degrees, the partial fraction
decomposition is a symbolic sum of the roots.

S:= partfrac(1/(x^3 + x - 3), x, Full)

MuPAD uses the freeze function to keep the result in the form of an unevaluated
symbolic sum. To evaluate this symbolic sum, use unfreeze. Evaluating this symbolic
sum simplifies it back to the original input.

unfreeze(S); delete S:

Parameters

f

Rational expression in x

x

Indeterminate: typically, an identifier or an indexed identifier

Options

Full

Factor the denominator completely into linear factors, and find the partial fraction
decomposition with respect to that factorization.
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List

Return a list consisting of the numerators and denominators of the partial fraction
decomposition.

MaxDegree

Option, specified as MaxDegree = n

Adjoin only the coefficients of the denominator with the algebraic degree not exceeding n
to the field over which the denominator is factored. If you also use Full, then partfrac
does not use explicit formulas involving radicals to solve polynomial equations of a degree
higher than n.

Adjoin

Option, specified as Adjoin = g

Factor the denominator over the smallest field containing the rational numbers, all
coefficients of the denominator, and the elements of g.

Domain

Option, specified as Domain = d

Factor the denominator over the domain d, where d is one of the following: Expr, R_, or
C_. By default, d = Expr. For more details, see factor.

Mapcoeffs

Option, specified as Mapcoeffs = mp

When building the resulting expression, insert mp(c) instead of each coefficient c.

Return Values

arithmetical expression.

Overloaded By

f
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See Also

MuPAD Functions
collect | denom | divide | expand | factor | normal | numer | rectform |
rewrite | simplify
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pathname
Create a platform dependent path name

Syntax
pathname(dir, subdir, …)

pathname(<Root>, dir, subdir, …)

Description

pathname(dir, subdir, ...) returns a relative path name valid on the used
operating system.

pathname is used to specify pathnames via MuPAD strings. Directories and
subdirectories are concatenated in a suitable way creating a valid pathname for the
currently used operating system. For example, this mechanism may be used to specify
the location of library files independent of the platform.

In order to create valid path names for the operating systems supported by MuPAD, the
conventions holding for the corresponding operating system must be complied with. In
particular, the names must not contain the characters “/” , “\” or “:”. Compliance with
these conventions is tested by pathname.

Under Microsoft® Windows, pathname does not allow to specify a volume to become part
of the path name. Names are always relative to the current volume.

Examples:

Call Platform Result

pathname("lib",

"linalg")

UNIX (Linux/ Mac OS X) "lib/linalg/"

  Microsoft Windows "lib\\linalg\\"

pathname(Root, "lib",

"linalg")

UNIX (Linux/Mac OS X) "/lib/linalg/"
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Call Platform Result

  Microsoft Windows "\\lib\\linalg\\"

Examples

Example 1

The following examples are created on a UNIX/Linux system:

pathname("lib", "linalg")

pathname(Root, "lib", "linalg") . "det.mu"

Parameters

dir, subdir, …

Names of directories: character strings

Options

Root

Makes pathname generate an absolute path name

Return Values

String.
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See Also

MuPAD Functions
fclose | finput | fopen | fprint | fread | ftextinput | import::readbitmap
| import::readdata | print | protocol | read | READPATH | write | WRITEPATH
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pdivide
Pseudo-division of polynomials

Syntax
pdivide(p, q, <[x]>, <order>, options)

pdivide(p, q, <[x1, x2, …]>, <order>, options)

pdivide(p, q1, q2, …, <[x1, x2, …]>, <order>, options)

Description

pdivide(p, q) performs pseudo-division of polynomials or polynomial expressions
p and q. The function returns the factor b, the pseudo-quotient s, and the pseudo-
remainder r, such that b*p = s*q + r.

pdivide(p, q1, q2, q3, ..., qN) performs pseudo-division of a polynomial or a
polynomial expression p by polynomials or polynomial expressions q1, q2, q3, ...,
qN.

pdivide(p, q) returns the sequence b, s, r, where b is an element of the coefficient
ring of the polynomials. The pseudo-quotient s and pseudo-remainder r satisfy
these conditions: b*p = s*q + r, degree(p) = degree(s) + degree(q), and
degree(r) < degree(q).

By default, pdivide determines the factor b as b = lcoeff (q)^( degree (p) -
degree(q) + 1). AnyFactor enables pdivide to use other values of b. See “Example
2” on page 1-1461.

pdivide operates on polynomials or polynomial expressions.

Polynomials must be of the same type, meaning that their variables and coefficient rings
must be identical.

When you call pdivide for polynomial expressions, MuPAD internally converts these
expressions to polynomials. See the poly function. If the expressions cannot be converted
to polynomials, pdivide returns FAIL. See “Example 3” on page 1-1462.
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If you call pdivide for polynomials, it returns polynomials. If you call pdivide for
polynomial expressions, it returns polynomial expressions.

If you perform pseudo-division of polynomial expressions that contain multiple variables,
you can specify particular variables to be treated as variables. The pdivide function
treats all other variables as symbolic parameters. By default, pdivide assumes that
all variables in polynomial expressions are variables, and none of them is a symbolic
parameter. See “Example 4” on page 1-1462.

pdivide(p, q1, q2, q3, ..., qN) returns the factor b, pseudo-quotients s1,
s2, ..., sN and the pseudo-remainder r, such that b*p = s1*q1 + s2*q2 + ... +
sN*qN + r.

When performing pseudo-division of a polynomial by one or more polynomials, you can
select the term ordering. The ordering accepts these values:

• LexOrder sets the lexicographical ordering.
• DegreeOrder sets the total degree ordering. When using this ordering, MuPAD sorts

the terms of a polynomial according to the total degree of each term (the sum of the
exponents of the variables).

• DegInvLexOrder sets the total degree inverse lexicographic ordering. When using
this ordering, MuPAD sorts the terms of a polynomial according to the total degree
of each term (the sum of the exponents of the variables). If several terms have equal
total degrees, MuPAD sorts them using the inverse lexicographic ordering.

• Your custom term ordering of type Dom::MonomOrdering.

See “Example 5” on page 1-1463.

In contrast to divide, pdivide does not require that the coefficient ring of the
polynomials implements a "_divide" slot because coefficients are not divided in this
algorithm. See “Example 6” on page 1-1464.

Examples

Example 1

Perform pseudo-division of these two polynomials:

p:= poly(x^3 + x + 1):  q:= poly(3*x^2 + x + 1):
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[b, s, r] := [pdivide(p, q)]

The result satisfies this equation:

p*b = s*q + r

Now compute the pseudo-quotient and pseudo-remainder separately:

pdivide(p, q, Quo), pdivide(p, q, Rem)

delete p, q, b, s, r:

Example 2

By default, pdivide performs pseudo-division of p by q with the factor b determined by
the formula b = lcoeff (q)^( degree (p) - degree(q) + 1):

p := 4*x^2 + 3: q := 2*x + 2:

b = lcoeff(q)^(degree(p) - degree(q) + 1);

pdivide(p, q)

To enable pdivide to alter the value of b, use AnyFactor:

pdivide(4*x^2 + 3, 2*x + 2, AnyFactor)
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Example 3

If an expression cannot be converted to a polynomial, pdivide returns FAIL:

pdivide(1/x, x)

Example 4

When performing pseudo-division of multivariate polynomials, you can specify the list of
variables. The pdivide function assumes all other variables are symbolic parameters.
For example, divide the following two polynomial expressions specifying that x, y, and a
are variables. The resulting pseudo-quotient is 0, and the pseudo-remainder equals the
dividend p:

p := x^3 + x + y:

q := a*x^2 + x + 1:

pdivide(p, q, [x, y, a])

Divide these expressions specifying that x and y are variables. MuPAD assumes that a
is a symbolic parameter. Here, both the pseudo-quotient and pseudo-remainder are not
equal to 0:

pdivide(p, q, [x, y])

Now divide the same polynomial expressions specifying that only y is a variable. MuPAD
assumes that x and a are symbolic parameters. Here the pseudo-remainder is 0:

pdivide(p, q, [y])
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By default, the pdivide function treats polynomial expressions with multiple variables
as multivariate polynomial expressions. The function does not assume that any of the
variables are symbolic parameters:

pdivide(x^3 + x + y, a*x^2 + x + 1)

Example 5

pdivide lets you perform pseudo-division of a polynomial (or polynomial expression) by
multiple polynomials (or polynomial expressions):

p := 4*x^4 + a*x^2*y^4:

q1 := x^3 - a:

q2 := x + y:

[b, s1, s2, r] := [pdivide(p, q1, q2)]

The result satisfies the condition b*p = s1*q1 + s2*q2 + r:

testeq(b*p, s1*q1 + s2*q2 + r)

When dividing a polynomial by multiple polynomials, you can select the term ordering:

pdivide(p, q1, q2, LexOrder)

pdivide(p, q1, q2, DegreeOrder)
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Example 6

The coefficient ring can be an arbitrary ring. For example, here the residue class ring of
integers modulo 8 represents the coefficient ring:

pdivide(poly(x^3 + x + 1, IntMod(8)), 

        poly(4*x^3 + x + 1, IntMod(8)))

Note that pdivide does not require divisibility of the coefficients.

Parameters

p, q

Univariate or multivariate polynomials or polynomial expressions.

p, q1, q2, …

Univariate or multivariate polynomials or polynomial expressions.

x

The indeterminate of the polynomial, which is typically an identifier or an indexed
identifier. pdivide treats the expressions as univariate polynomials in the
indeterminate x.

x1, x2, …

The indeterminates of the polynomial, which are typically identifiers or indexed
identifiers. pdivide treats multivariate expressions as multivariate polynomials in
these indeterminates.

order

The term ordering when performing pseudo-division of one multivariate polynomial by
one or more multivariate polynomials: LexOrder, DegreeOrder, DegInvLexOrder, or a
custom term ordering of type Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder.
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Options

Quo, Rem

Return only the pseudo-quotient or pseudo-remainder. By default, pdivide returns the
sequence containing the factor b, pseudo-quotient s (or pseudo-quotients s1, s2, ...),
and pseudo-remainder r. See “Example 1” on page 1-1460.

AnyFactor

Allow flexibility for the factor b. Without this option, b = lcoeff (q)^( degree (p)
- degree(q) + 1).

Return Values

Polynomial, or polynomial expression, or a sequence containing an element of the
coefficient ring of the input polynomials and polynomials (or polynomial expressions), or
the value FAIL.

Overloaded By

f, g, p, q

See Also

MuPAD Functions
content | degree | divide | factor | gcd | gcdex | ground | lcoeff |
multcoeffs | poly
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piecewise
Domain of conditionally defined objects

Syntax

piecewise([condition1, value1], [condition2, value2], …, <[Otherwise, valueN]>, <ExclusiveConditions>)

Description

piecewise([condition1, value1], [condition2, value2], ...) defines
a conditional object that equals value1 if condition1 is provably true, value2
if condition2 is provably true, and so on. Typically, such objects define piecewise
functions or express solutions based on a case analysis of the free parameters of the
mathematical problem. See “Example 1” on page 1-1468.

A pair [condition, value] is called a branch. If condition is provably false, then
piecewise discards the entire branch. If condition is provably true, then piecewise
returns the corresponding value. If neither condition in a piecewise object is provably
true, piecewise returns an object of type piecewise that contains all branches, except
for branches with provably false conditions.

If all conditions are provably false, or if you call piecewise without any branches, then
piecewise returns undefined. See “Example 1” on page 1-1468.

Conditions do not need to be exhaustive or exclusive. If conditions contain parameters,
and you substitute values for the parameters, all conditions can become false. Also,
several conditions can become true.

If several conditions are simultaneously true, piecewise returns the value from the
first branch that contains the condition recognized as true. Ensure that all values
corresponding to the true conditions have the same mathematical meaning. Do not rely
on the system to recognize the first mathematically true condition as true. Alternatively,
you can use the ExclusiveConditions option to fix the order of the branches.

piecewise([condition1, value1], [condition2, value2], ...,

[Otherwise, valueN]) checks the conditions, and, if they are not satisfied, discards
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them and returns valueN. The Otherwise condition occurs in the last branch. It can
occur only once. It remains unchanged as long as there are other branches, but it is
treated as true when all other branches are discarded because their conditions are false.
See “Example 2” on page 1-1468.

The system checks the truth of the conditions for current values and properties of
all involved identifiers each time it evaluates an object of type piecewise. Thus, it
simplifies piecewise expressions under various different assumptions.

piecewise objects can be nested: both conditions and values can be piecewise
objects themselves. piecewise automatically “flattens” such objects. For example,
piecewise([conditionA, piecewise([conditionB, valueC])]) becomes
piecewise([conditionA and conditionB, valueC]). See “Example 3” on page
1-1469.

Arithmetical and set-theoretic operations work for piecewise objects, provided these
operations are defined for all values contained in the branches. If f is such an operation
and p1, p2, ... are piecewise objects, then f(p1, p2, ...) is the piecewise
object consisting of all branches of the form [condition1 and condition2 and ...,
f(value1, value2, ...)], where [condition1, value1] is a branch of p1,
[condition2, value2] is a branch of p2, and so on. In other words, applying f
commutes with any assignment to free parameters in the conditions. See “Example 4” on
page 1-1469.

piecewise objects can also be mixed with other objects in such operations. In such
cases, if p1 is not a piecewise object, the system treats it as a piecewise object with
the only branch [TRUE, p1]. See “Example 5” on page 1-1470.

diff, float, limit, int and similar functions handle expressions involving
piecewise. When you use a piecewise argument in unary operators and functions
with one argument, the system maps the operator or function to the values in each
branch. See “Example 6” on page 1-1470, “Example 7” on page 1-1471, and “Example
8” on page 1-1471.

piecewise differs from the if and case branching statements. First, piecewise
uses the property mechanism when deciding the truth of the conditions. Therefore,
the result depends on the properties of the identifiers that appear in the conditions.
Second, piecewise treats conditions mathematically, while if and case evaluate them
syntactically. Third, piecewise internally sorts the branches. If conditions in several
branches are true, piecewise can return any of these branches. See “Example 9” on
page 1-1471.
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The ExclusiveConditions option fixes the order of branches in a piecewise expression.
If the condition in the first branch returns TRUE, then piecewise returns the value
from the first branch. If a true condition appears in any further branch, then piecewise
returns the value from that branch and removes all subsequent branches. Thus,
piecewise with ExclusiveConditions is very similar to an if-elif-end_if
statement. Nevertheless, piecewise with ExclusiveConditions still takes into
account assumptions on identifiers and treats conditions mathematically while if-
elif-end_if treats them syntactically. See “Example 10” on page 1-1472.

Environment Interactions

piecewise takes into account properties of identifiers.

Examples

Example 1

Define this rectangular function f. Without additional information about the variable x,
the system cannot evaluate the conditions to TRUE or FALSE. Therefore, it returns the
piecewise object.

f := x -> piecewise([x < 0 or x > 1, 0], [x >= 0 and x <= 1, 1])

Call the function f with the following arguments. Every time you call this piecewise
function, the system checks the conditions in its branches and evaluates the function.

f(0), f(2), f(I)

Example 2

Create this piecewise function using the syntax that includes Otherwise:
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pw:= piecewise([x > 0 and x < 1, 1], [Otherwise, 0])

Evaluate pw for these three values:

pw | x = 1/2;

pw | x = 2;

pw | x = I;

For further computations, delete the identifier pw:

delete pw:

Example 3

Create this nested piecewise expression. MuPAD flattens nested piecewise objects.

p1 := piecewise([a > 0, a^2], [a <= 0, -a^2]):

piecewise([b > 0, a + b], [b = 0, p1 + b], [b < 0, a + b])

Example 4

Find the sum of these piecewise functions. You can perform most operations on piecewise
functions the same way as you would on ordinary arithmetical expressions. The result
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of an arithmetical operation is only defined at the points where all of the arguments are
defined:

piecewise([x > 0, 1], [x < -3, x^2]) + piecewise([x < 2, x])

Example 5

Solve this equation. The solver returns the result as a piecewise set:

S := solve(a*x = 0, x)

You can use set-theoretic operations work for such sets. For example, find the
intersection of this set and the interval (3, 5):

S intersect Dom::Interval(3, 5)

Example 6

Many unary functions are overloaded for piecewise by mapping them to the objects in
all branches of the input:

f := piecewise([x >= 0, arcsin(x)], [x < 0, arccos(x)]):

sin(f)
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Example 7

Find the limit of this piecewise function:

limit(piecewise([a > 0, x],[a < 0 and x > 1, 1/x],

                [a < 0 and x <= 1, -x]), x = infinity)

Example 8

Find the integral of this piecewise function:

int(piecewise([x < 0, x^2], [x > 0, x^3]), x = -1..1)

Example 9

Create this piecewise function. Here, piecewise cannot determine if any branch is true
or false. To do that, piecewise needs additional information about the identifier a.

p1 := piecewise([a = 0, 0], [a <> 0, 1/a])

Create a similar structure by using if-then-else. The if-then-else structure
evaluates the conditions syntactically. Here, a = 0 is technically false because the
identifier a and the integer 0 are different objects.

p2 := (if a = 0 then 0 else 1/a end)
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piecewise takes properties of identifiers into account:

p1 := piecewise([a + b = 0, 0], [Otherwise, 1/a]) assuming a + b = 0

if-then-else does not:

p2 := (if a + b = 0 then 0 else 1/a end) assuming a + b = 0

For further computations, delete identifiers a, b, p1, and p2:

delete a, b, p1, p2:

Example 10

Create this piecewise expression:

p := piecewise([x > 0, 1], [y > 0, 2])

Evaluate the expression at y = 1:

p | y = 1

Now, create the piecewise expression with the same branches, but this time use
ExclusiveConditions to fix the order of the branches. When you use this option, any
branch can be true only if the previous branches are false.

pE := piecewise([x > 0, x], [y > 0, y], ExclusiveConditions)
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Evaluate the expression at y = 1:

pE | y = 1

When you use ExclusiveConditions, piecewise acts the same way as an if-then-
else statement, but does not ignore properties of identifiers. For example, set the
assumption that x = 0:

assume(x = 0)

The piecewise function call returns 0 because it uses the assumption on identifier x:

p := piecewise([x = 0, x], [Otherwise, 1/x^2])

The corresponding if-then-else statement ignores the assumption, and, therefore,
returns 1/x^2:

pIf := (if x = 0 then x else 1/x^2 end)

For further computations, delete identifiers p, pE, x, and pIf:

delete p, pE, x, pIf:
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Example 11

Find a set of accumulation points of this piecewise function by calling limit with the
Intervals option:

limit(piecewise([a > 0, sin(x)], [a < 0 and x > 1, 1/x],

         [a < 0 and x <= 1, -x]), x = infinity, Intervals)

Example 12

Rewrite the sign function in terms of a piecewise object:

f := rewrite(sign(x), piecewise)

Example 13

Create this piecewise object:

f := piecewise([x > 0, 1], [x < -3, x^2])
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Extract a particular condition or object:

piecewise::condition(f, 1), piecewise::expression(f, 2)

The index operator has the same meaning as piecewise::expression and can be
typed faster:

f[2]

The piecewise::branch function extracts whole branches:

piecewise::branch(f, 1)

You can form another piecewise object from the branches for which the condition
satisfies a given selection criterion, or split the input into two piecewise objects, as the
system functions select and split do it for lists:

piecewise::selectConditions(f, has, 0)

piecewise::splitConditions(f, has, 0)

You can also create a copy of f with some branches added or removed:

piecewise::remove(f, 1)
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piecewise::insert(f, [x > -3 and x < 0, sin(x)])

Parameters

condition1, condition2, …

Boolean constants, or expressions representing logical formulas

object1, object2, …

Arbitrary objects

Otherwise

Identifier that specifies the last condition. This condition is always treated as a true
condition.

Options

ExclusiveConditions

The ExclusiveConditions option fixes the order of branches in a piecewise expression.
This option causes piecewise to automatically remove branches with false conditions.
Thus, piecewise with ExclusiveConditions is almost equivalent to an if-
elif-end_if statement, except that piecewise takes into account assumptions
on identifiers. For example, if the condition in the first branch returns TRUE, then
piecewise returns the expression from the first branch. If a true condition appears
in any further branch, then piecewise returns the expression from that branch and
removes all subsequent branches.
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Methods

Mathematical Methods

_in — Membership with piecewise on the left side

_in(p, S)

contains — Apply the function contains to the objects in all branches

contains(p, a)

This method overloads the function contains. The values in all branches must be valid
first arguments for contains.

diff — (partial) differentiation

diff(p, <x, …>)

If no variables are given, p is returned.

discont — Determine the discontinuities of a piecewise function

discont(p, x, <F>)

discont(p, x = a .. b, <F>)

The values in all branches of p must be arithmetical expressions.

The optional third parameter has the same meaning as for the function discont.

As for the function discont, only discontinuities in the given interval [a,b] are
returned when calling piecewise(p, x = a..b).

disregardPoints — Heuristic for simplifying conditions

disregardPoints(p)

expand — Apply the function expand to the objects in all branches

expand(p)
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factor — Apply the function factor to the objects in all branches

factor(p)

getElement — Get any element of a piecewise set

getElement(p)

The result is FAIL if no such common element is found.

This method overloads the function solvelib::getElement.

has — Test for the existence of a subobject

has(p, a)

int — Definite and indefinite integration of a piecewise function

int(p, x, <r>)

If a range a..b is given, this method computes the definite integral of p when x runs
through that range.

ilaplace — Apply the function ilaplace to the objects in all branches

ilaplace(p, x, t)

isFinite — Test whether a piecewise set is finite

isFinite(p)

This method overloads solvelib::isFinite.

laplace — Apply the function laplace to the objects in all branches

laplace(p, x, t)

limit — Compute the limit of a piecewise function

limit(p, x, <Left | Right | Real>, <Intervals>, <NoWarning>)

limit(p, x = x0, <Left | Right | Real>, <Intervals>, <NoWarning>)
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When called with the Intervals option, the method returns the set of accumulation
points of a function.

If the method cannot find the function limit and cannot prove the limit does not exist, the
function call returns an unevaluated limit function.

If the limit of a function does not exist, the method returns the special value undefined.

This method overloads the function limit.

normal — Apply the function normal to the objects in all branches

normal(p)

partfrac — Apply the function partfrac to the objects in all branches

partfrac(p)

restrict — Impose an additional condition

restrict(p, C)

set2expr — Membership with piecewise on the right side

set2expr(p, x)

The objects in all branches of p must represent sets.

This method overloads the system function _in.

simplify — Simplify a conditionally defined object

simplify(p)

solve — Solve a conditionally defined equation or inequality

solve(p, x, <option1, option2, …>)

For each branch [condition, value] of p, with value being an equation or
inequality, the method determines the set of all values x such that both condition
and value become true mathematically, and returns the union of all obtained sets. The
return value can be a conditionally defined set.
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This method overloads the function solve. See the corresponding help page for a
description of the available options and an overview of the types of sets that can be
returned.

solveConditions — Isolate a given identifier in all conditions

solveConditions(p, x)

Union — Union of a system of sets

Union(p, x, indexset)

The values in all branches of p must represent sets.

For each branch [condition, value] of p, this method does the following. It
substitutes for x in value all values from indexset satisfying condition and takes
the union over all obtained sets. Then it returns the union over the resulting sets for all
branches.

This method overloads the function solvelib::Union.

Access Methods

_concat — Merge piecewise objects

_concat(p, …)

branch — Nth branch

branch(p, n)

op — Branches

op(p)

op(p, n)

op(p, n) returns the nth branch of p as a list. If n = 0, then piecewise is returned.

setBranch — Replace the ith branch

setBranch(p, i, b)
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numberOfBranches — Number of branches

numberOfBranches(p)

condition — Condition in a specific branch

condition(p, i)

setCondition — Replace the condition in a specific branch by another

setCondition(p, i, cond)

expression — Object in a specific branch

expression(p, i)

Instead of piecewise::expression(p, i), the index operator p[i] can be used
synonymously.

_index — Object in a specific branch

_index(p, i)

piecewise::expression can be used synonymously.

setExpression — Replace the object in a specific branch by another

setExpression(p, i, a)

insert — Insert a branch

insert(p, b)

b can either be a branch extracted from another conditionally defined object using extop,
or a list [condition, object].

See “Example 13” on page 1-1474.

extmap — Apply a function to the objects in all branches

extmap(p, f, <a, …>)

mapConditions — Apply a function to the conditions in all branches

mapConditions(p, f, <a, …>)
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map — Apply the function map to the objects in all branches

map(p, f, <a, …>)

map(p, f) is equivalent to piecewise::extmap(p, map, f).

remove — Remove a branch

remove(p, i)

splitBranch — Split a branch into two branches

splitBranch(p, i, newcondition)

selectConditions — Select branches depending on their condition

selectConditions(p, f, <a, …>)

For every condition in p, f(condition a, …) must return a Boolean  constant.

If none of the conditions satisfies the selection criterion, undefined is returned.

selectExpressions — Select branches depending on their value

selectExpressions(p, f, <a, …>)

For every value in p, f(value a, …) must return a Boolean constant.

If none of the objects satisfies the selection criterion, undefined is returned.

splitConditions — Split branches depending on conditions

splitConditions(p, f, <a, …>)

For every condition in p, f(condition a, …) must return a Boolean constant.

See “Example 13” on page 1-1474.

subs — Substitution

subs(p, s, …)

This method overloads the function subs. The calling syntax is identical to that function.
See the corresponding help page for a description of the various types that are allowed for
s.
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zip — Apply a binary operation pointwise

zip(p1, p2, f)

If we regard conditionally defined objects as functions from the set A of parameter values
to a set B of objects, this method implements the canonical extension of the binary
operation f on B to the binary operation g on the set BA of all functions from A to B via
g(p1, p2)(a) = f(p1(a), p2(a)) for all a in A.

If only one of the first two arguments—p1, say—is of type piecewise, then each branch
[condition, value] of p1 is replaced by [condition, f(value, p2)].

If neither p1 nor p2 are of type piecewise, then piecewise::zip(p1, p2, f)
returns f(p1, p2).

Algorithms

The operands of a piecewise object (the branches) are pairs consisting of a condition
and the value valid under that condition.

Methods overloading system functions always assume that they have been called via
overloading, and that there is some conditionally defined object among their arguments.
All other methods do not assume that one of their arguments is of type piecewise. This
simplifies the use of piecewise: it is always allowed to enter p:=piecewise(...)
and to call some method of piecewise with p as an argument. You do not need to care
about the special case where p is not of type piecewise because some condition in its
definition is true or all conditions are false.

See Also

MuPAD Functions
assume | bool | case | if | is
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plot

Display graphical objects on the screen

Syntax

plot(object1, <object2, …>, <attribute1, attribute2, …>)

Description

plot(object1, object2, ...) displays the graphical objects object1, object2 etc.
on the screen.

plot() creates an empty graphical 2D scene.

display and plot are equivalent.

This function calls plot::easy for preprocessing its input.

The parameters object1, object2 and so on, must be accepted by plot::easy or
directly be graphical objects generated by routines of the plot library. This library
provides many such objects including:

• function graphs (plot::Function2d, plot::Function3d),
• curves (plot::Curve2d, plot::Curve3d),
• points (plot::Point2d, plot::Point3d),
• lines (plot::Line2d, plot::Line3d),
• polygons (plot::Polygon2d, plot::Polygon3d),
• surfaces (of domain type plot::Surface)

and many more. See “Example 1” on page 1-1485.

There are also many high level objects, such as plot::VectorField2d, plot::Ode2d,
plot::Ode3d, plot::Implicit2d, plot::Implicit3d, that can also be rendered by
plot. See “Example 2” on page 1-1487.
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Graphical attributes attribute1, attribute2, and so on, are specified by equations
of the form AttributeName = AttributeValue. There are several hundred such
attributes that allow to modify almost any aspect of the graphics.

Note: The graphical objects object1, object2, and so on, must have the same
dimension. A mix of 2D and 3D objects in one plot is not supported.

Examples

Example 1

Use the following calls to return objects representing the graphs of the sine and the
cosine function on the interval [0, 2 π]:

f1 := plot::Function2d(sin(x), x = 0..2*PI, Color = RGB::Red);

f2 := plot::Function2d(cos(x), x = 0..2*PI, Color = RGB::Blue)

The following call renders these graphs:

plot(f1, f2)
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Apart from the explicitly requested colors, this call uses the default values of all
graphical attributes. If different values are desired, an arbitrary number of attributes
can be passed as additional parameters to plot. For example, to draw grid lines in the
background of the previous plot, use:

plot(f1, f2, GridVisible = TRUE)
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delete f1, f2:

Example 2

The plot library contains various routines for creating more complex graphical objects,
such as vectorfields, solution curves of ordinary differential equations, and implicitly
defined curves.

For example, to plot the implicitly defined curve x2 + x + 2 = y2 with x, y from the interval
[- 5, 5], use the function plot::Implicit2d:

plot(plot::Implicit2d(x^3 + x + 2 = y^2,

                      x = -5..5, y = -5..5),

     Scaling = Constrained)
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Here the Scaling attribute guarantees an aspect ratio 1:1 between the x and y
coordinates independent of the window size.

Parameters

object1, object2, …

2D or 3D graphical objects of the plot library or expressions acceptable by plot::easy

attribute1, attribute2, …

Graphical attributes of the form AttributeName = AttributeValue

Overloaded By

object_1
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Algorithms

Technically, plot is not a function but a domain representing the library plot library.
Thus, when calling plot(...), the method plot is called.

See Also

MuPAD Functions
display | plot::easy | plotfunc2d | plotfunc3d

More About
• “Use Graphics”
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display
Display graphical objects on screen

Syntax
display(object1, <object2, …>, <attribute1, attribute2, …>)

Description

display(object1, object2, ...) displays the graphical objects object1,
object2,... on the screen.

display(object1, object2, ...) is equivalent to plot(object1,
object2, ...). For details and examples, see plot.

Parameters

object1, object2, …

2D or 3D graphical objects of the plot library or expressions accepted by plot::easy

attribute1, attribute2, …

Graphical attributes of the form AttributeName = AttributeValue

Overloaded By

object_1

See Also

MuPAD Functions
plot | plot::easy | plotfunc2d | plotfunc3d
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More About
• “Use Graphics”
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plotfunc2d
Function plots in 2D

Syntax
plotfunc2d(f1, f2, …, <Colors = [c1, c2, …]>, <attributes>)

plotfunc2d(f1, f2, …, x = xmin .. xmax, <Colors = [c1, c2, …]>, <attributes>)

plotfunc2d(f1, f2, …, x = xmin .. xmax, a = amin .. amax, <Colors = [c1, c2, …]>, <attributes>)

Description

plotfunc2d(f1, f2, ...) generates a 2D plot of the univariate functions f1, f2 etc.

We strongly recommend reading the introduction to plotfunc2d in Section 2.1 (“2D
Function Graphs”) of the plot document.

The functions to be plotted must not contain any symbolic parameters apart from the
variable x and the animation parameter a. Exact numerical values such as PI, sqrt(2)
etc. are accepted.

Animations are triggered by specifying a range a = amin .. amax for a parameter a that
is different from the indedependent variable x. Thus, in animations, both the x-range x
= xmin .. xmax as well as the animation range a = amin .. amax must be specified. See
“Example 2” on page 1-1496.

Non-real function values are ignored. See “Example 3” on page 1-1497.

Functions with singularities are handled. See “Example 4” on page 1-1498 and
“Example 5” on page 1-1502. If unbounded functions are plotted, the vertical viewing
range is clipped, automatically. An explicit vertical viewing range ymin .. ymax may
be requested via ViewingBoxYRange = `y_{min}` .. `y_{max}` or YRange =
`y_{min}` .. `y_{max}`.

Discontinuities and piecewise defined functions are handled. See  “Example 6” on page
1-1503 and “Example 7” on page 1-1504.
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The plot library provides the routine plot::Function2d which allows to create a
function graph as a graphical primitive, and to combine it with other graphical objects.

A variety of graphical attributes can be specified for fine tuning the graphical output.
Such attributes are passed as equations AttributeName = AttributeValue to the
plotfunc2d command.

Section 2.3 (“Attributes for plotfunc2d and plotfunc3d”) provides an overview of the
available attributes.

In particular, all attributes accepted by the graphical primitive plot::Function2d
for function graphs are accepted by plotfunc2d. These attributes allow to specify the
mesh for the numerical evaluation, the line width etc. The help page of plot::Function2d
provides a concise list.

Further, all attributes accepted by plot::CoordinateSystem2d are accepted by
plotfunc2d. These attributes include the specification of a viewing box, of the axes,
their tick marks and tick labels, the coordinate type (such as linear versus logarithmic
plots), grid lines etc. The help page of plot::CoordinateSystem2d provides a concise list.

Further, all attributes accepted by plot::Scene2d are accepted by plotfunc2d. These
attributes include the specification of the layout of the graphical scene, the background
color etc. The help page of plot::Scene2d provides a concise list.

Further, all attributes accepted by plot::Canvas are accepted by plotfunc2d.
These attributes include the specification of the size of the graphics, of further layout
parameters etc. The help page of plot::Canvas provides a concise list.

A graphical attribute such as Mesh = 500 (setting the number of mesh points for the
numerical evaluation to 500) is applied to all functions in the call plotfunc2d(f1, f2,
…). If separate attributes are appropriate, use the equivalent call

plot(plot::Function2d(f1, attr1), plot::Function2d(f2, attr2), …),

in which the attributes attr1, attr2 etc. can be set separately for each function.

Apart from few exceptions, plotfunc2d uses the standard default values for the
graphical attributes (see the help page of plot::Function2d). The exceptions are:

• If more than one function is plotted, plotfunc2d automatically creates a legend. Use
an explicit LegendVisible = FALSE to suppress the legend.
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• AdaptiveMesh is set to 2, i.e., plotfunc2d uses adaptive function evaluation unless
AdaptiveMesh = 0 is requested in plotfunc2d.

• If a parameter range such as x = `x_{min}` .. `x_{max}` is passed to
plotfunc2d, the name x is used as the title for the horizontal axis. Pass the attribute
XAxisTitle if a different label for the horizontal axis is desired.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. Make sure that DIGITS is set to a sufficiently small value
(such as the default value 10) to avoid the costs of computing unnecessarily precise plot
data.

Examples

Example 1

The following command draws the sine function and the cosine function on the interval [-
π, π]:

plotfunc2d(sin(x), cos(x), x = -PI .. PI):

1-1494



 plotfunc2d

With the attribute Scaling = Constrained, the y-axis has the same scale as the x-axis:

plotfunc2d(sin(x), cos(x), x = -PI .. PI, Scaling = Constrained):
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Example 2

When creating an animation, a range for the independent variable x must be specified.
An additional second range triggers the animation:

plotfunc2d(sin(x - a), cos(x + 2*a),

           x = -PI .. PI, a = -PI .. PI)
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Example 3

Only real function values are plotted:

plotfunc2d(sqrt(1 - x), sqrt(x), x = -2 .. 2):
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Example 4

The following functions have singularities in the specified interval:

plotfunc2d(x/(x^3 - 4*x), x = -5 .. 5):
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plotfunc2d(1/sin(x), tan(x), x = 0 .. 2*PI):
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Note that the automatic clipping may in some cases lead to an incorrect impression, such
as the following image where the function appears to converge to about - 4.6 (but actually
goes to - ∞ for small absolute values of x:

plotfunc2d(ln(abs(x)))
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In this case, the asymptote which points to the pole is not seen because of the axis:

plotfunc2d(ln(abs(x)), Axes=Boxed)
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Example 5

We specify a vertical range to which the function graph is restricted:

plotfunc2d(tan(x), x = -3 .. 3, YRange = -10 .. 10):
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Example 6

The following function has a jump discontinuity:

plotfunc2d((x^2 - x)/(2*abs(x - 1)), x = -3 .. 3, 

           YRange = -3 .. 3)
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Example 7

Piecewise defined functions are handled:

f := piecewise([x < 1, -x^2 + 1], [x >= 1, x]):

plotfunc2d(f(x), x = -3 .. 3, YRange = -3 .. 3,

           GridVisible = TRUE, TicksDistance = 1)
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f := piecewise([x <= 0, x], [x > 0, 1/x]):

plotfunc2d(f(x), x = -3 .. 3, YRange = -3 .. 3,

           GridVisible = TRUE, TicksDistance = 1)
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delete f:

Example 8

We use the attribute CoordinateType to create a logarithmic plot:

plotfunc2d(exp(x/10) + exp(-x), x = -1 .. 10,

           CoordinateType = LinLog)
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We demonstrate various further graphical attributes in a doubly logarithmic plot:

plotfunc2d(x^2, x^3/(1 + x^(1/2)), x^3, 

           x = 1/10 .. 10^3,

           CoordinateType = LogLog,

           Axes = Boxed,

           DiscontinuitySearch = FALSE,

           GridVisible = TRUE,

           TicksNumber = None,

           TicksAt = [[10^i $ i = -1 .. 3], 

                      [10^i $ i in {-3, 0, 3, 6, 9}]

                     ]):
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Parameters
f1, f2, …

The functions: arithmetical expressions or piecewise objects in the indeterminate x and
the animation parameter a. Alternatively,  procedures that accept 1 input parameter x
or 2 input parameters x, a and return a real numerical value when the input parameters
are numerical.

x

The independent variable: an identifier or an indexed identifier.

xmin .. xmax

The plot range: xmin, xmax must be numerical real values or expressions of the animation
parameter a. If not specified, the default range x = -5 .. 5 is used.

a

The animation parameter: an identifier or an indexed identifier.
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amin .. amax

The animation range: amin, amax must be numerical real values.

c1, c2, …

The colors for f1, f2 etc.: RGB or RGBa values. The length of the color list needs not
coincide with the number of functions in the plot. The colors are used cyclically; surplus
colors are ignored.

attributes

An arbitrary number of graphical attributes. Each attribute is given by an equation of
the form AttributeName = AttributeValue.

Return Values

MuPAD graphics tool is called to render the graphical scene. The null() object is
returned to the MuPAD session.

See Also

MuPAD Functions
display | plot | plot::easy | plotfunc3d

MuPAD Graphical Primitives
plot::Function2d | plot::Function3d

More About
• “2D Function Graphs: plotfunc2d”
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plotfunc3d
Function plots in 3D

Syntax
plotfunc3d(f1, f2, …, <Colors = [c1, c2, …]>, <attributes>)

plotfunc3d(f1, f2, …, x = xmin .. xmax, <Colors = [c1, c2, …]>, <attributes>)

plotfunc3d(f1, f2, …, x = xmin .. xmax, y = ymin .. ymax, <Colors = [c1, c2, …]>, <attributes>)

plotfunc3d(f1, f2, …, x = xmin .. xmax, y = ymin .. ymax, a = amin .. amax, <Colors = [c1, c2, …]>, <attributes>)

Description

plotfunc3d(f1, f2, ...) generates a 3D plot of the bivariate functions f1, f2 etc.

The functions to be plotted must not contain any symbolic parameters apart from the
variables x, y and the animation parameter a. Exact numerical values such as PI,
sqrt(2) etc. are accepted.

Animations are triggered by specifying a range a = `a_{min}` .. `a_{max}` for a
parameter a that is different from the indedependent variables x, y. Thus, in animations,
the x-range x = `x_{min}` .. `x_{max}`, the y-range y = `y_{min}` ..
`y_{max}` as well as the animation range a = `a_{min}` .. `a_{max}` must be
specified. See “Example 2” on page 1-1512.

If unbounded functions are plotted, the range of the z coordinate is clipped,
automatically. An explicit z range `z_{min}` .. `z_{max}` may be requested via
ViewingBoxZRange = `z_{min}` .. `z_{max}` or ZRange = `z_{min}` ..
`z_{max}`.

Discontinuities and piecewise defined functions are handled. See “Example 6” on page
1-1518 and “Example 7” on page 1-1519.

The plot library provides the routine plot::Function3d which allows to create a
function graph as a graphical primitive, and to combine it with other graphical objects.
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A variety of graphical attributes can be specified for fine tuning the graphical output.
Such attributes are passed as equations AttributeName = AttributeValue to the
plotfunc3d command.

Section 2.3 (“Attributes for plotfunc2d and plotfunc3d”) provides an overview of the
available attributes.

In particular, all attributes accepted by the graphical primitive plot::Function3d
for function graphs are accepted by plotfunc3d. These attributes allow to specify the
mesh for the numerical evaluation, the line width etc. The help page of plot::Function3d
provides a concise list.

Further, all attributes accepted by plot::CoordinateSystem3d are accepted by
plotfunc3d. These attributes include the specification of a viewing box, of the axes,
their tick marks and tick labels, the coordinate type (such as linear versus logarithmic
plots), grid lines etc. The help page of plot::CoordinateSystem3d provides a concise list.

Further, all attributes accepted by plot::Scene3d are accepted by plotfunc3d. These
attributes include the specification of the layout of the graphical scene, the background
color etc. The help page of plot::Scene3d provides a concise list.

Further, all attributes accepted by plot::Canvas are accepted by plotfunc3d.
These attributes include the specification of the size of the graphics, of further layout
parameters etc. The help page of plot::Canvas provides a concise list.

A graphical attribute such as Mesh = [20, 20] (setting the number of mesh points for
the numerical evaluation to 20 in each direction) is applied to all functions in the call
plotfunc3d(f1, f2, …). If separate attributes are appropriate, use the equivalent call

plot(plot::Function3d(f1, attr1), plot::Function3d(f2, attr2), …),

in which the attributes attr1, attr2 etc. can be set separately for each function.

Apart from few exceptions, plotfunc3d uses the standard default values for the
graphical attributes (see the help page of plot::Function3d). The exceptions are:

• If more than one function is plotted, plotfunc3d automatically creates a legend. Use
an explicit LegendVisible = FALSE to suppress the legend.

• If parameter ranges such as x = xmin .. xmax, y = ymin .. ymax are passed to
plotfunc3d, the names x, y are used as the titles for the corresponding axis. Pass
the attributes XAxisTitle, XAxisTitle if different labels are desired.
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Environment Interactions
The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. Make sure that DIGITS is set to a sufficiently small value
(such as the default value 10) to avoid the costs of computing unnecessarily precise plot
data.

Examples

Example 1

The following command draws two functions over the unit square:

plotfunc3d(sin(x^2 + y^2), cos(x^2 - y^2), x = 0..1, y = 0..2)

Example 2

When creating an animation, ranges for the independent variables x, y must be specified.
An additional third range triggers the animation:
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plotfunc3d(sin(x - a)*sin(y - a), 

           x = -PI .. PI, y = -PI .. PI, a = -PI .. PI)

Example 3

We demonstrate the effect of various graphical attributes:

plotfunc3d(abs(x + I*y), x = -1..1, y = -1..1,

           FillColor = RGB::Green, TicksDistance = 0.5)
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plotfunc3d(abs(x + I*y), x = -1..1, y = -1..1,

           Mesh = [40, 40], Axes = Frame,

           CameraDirection = [10, -5, 15])
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Example 4

Points where the function to plot are not real-valued are left out from the plot:

plotfunc3d(sqrt(1 - x^2 - y^2), x = -1..1, y = -1..1):

1-1515



1 The Standard Library

Example 5

Singular functions are handled. The vertical coordinate range is automatically restricted
by a heuristics:

plotfunc3d(1/(x^2 + y^2), x = -1..1, y = -1..1):
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If the heuristics produces an inappropriate vertical range, you can request an
appropriate range by the attribute ViewingBoxZRange or ZRange:

plotfunc3d(1/(x^2 + y^2), x = -1..1, y = -1..1,

           ZRange = 0 .. 20):
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Example 6

The following function has a discontinuity at the origin:

plotfunc3d((x^2 - y^2)/(x^2 + y^2), 

           x = -1 .. 1, y = -1 .. 1)
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Example 7

Piecewise defined functions are handled:

f := piecewise([x < y, 1 - x^2], [x >= y, 1 - y^2]):

plotfunc3d(f(x, y), x = -3..3, y = -3..3, TicksDistance = 1)
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delete f:

Parameters

f1, f2, …

The functions: arithmetical expressions or piecewise objects in the indeterminates x, y
and the animation parameter a. Alternatively,  procedures that accept 2 input parameter
x, y or 3 input parameters x, y, a and return a real numerical value when the input
parameters are numerical.

x

The first independent variable: an identifier or an indexed identifier.

xmin .. xmax

The range of x: xmin, xmax must be numerical real values or expressions of the animation
parameter a. If not specified, the default range x = -5 .. 5 is used.
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y

The second independent variable: an identifier or an indexed identifier.

ymin .. ymax

The range of y: ymin, ymax must be numerical real values or expressions of the animation
parameter a. If not specified, the default range y = -5 .. 5 is used.

a

The animation parameter: an identifier or an indexed identifier.

amin .. amax

The animation range: amin, amax must be numerical real values.

c1, c2, …

The colors for f1, f2 etc.: RGB or RGBa values. The length of the color list needs not
coincide with the number of functions in the plot. The colors are used cyclically; surplus
colors are ignored.

attributes

An arbitrary number of graphical attributes. Each attribute is given by an equation of
the form AttributeName = AttributeValue.

Return Values

MuPAD graphics tool is called to render the graphical scene. The null() object is
returned to the MuPAD session.

See Also

MuPAD Functions
display | plot | plot::easy | plotfunc2d

MuPAD Graphical Primitives
plot::Function2d | plot::Function3d
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More About
• “3D Function Graphs: plotfunc3d”
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pochhammer

The Pochhammer symbol

Syntax

pochhammer(x, n)

Description

pochhammer(x, n) represents the Pochhammer symbol .

If n is a positive integer, then . This is extended analytically

to arbitrary complex arguments via , where gamma is the gamma function.

If both x and x + n are non-positive integers, pochhammer(x, n) produces the limit
.

If both x and n are numerical values, then an explicit numerical result is returned.
Otherwise, a symbolic function call is returned.

If n is a negative integer, then the identity pochhammer(x, n) = 1/pochhammer(x +
n, -n) is used to express the result.

The following special cases are implemented: pochhammer(x, 0) = 1,
pochhammer(x, 1) = x, pochhammer(x,-1) = 1/(x - 1), pochhammer(1, n) =
gamma(n + 1), pochhammer(2, n) = gamma(n + 2).

If n is a positive integer, then expand(pochhammer(x, n)) yields the expanded
polynomial x (x + 1) … (x + n - 1).

If n is not an integer, then expand(pochhammer(x, n)) yields a representation in
terms of gamma.
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Environment Interactions

When called with floating-point arguments, this function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

pochhammer returns explicit results if both arguments are numbers:

pochhammer(3, 5), pochhammer(3/2, 2), pochhammer(7/2, I - 1/2)

Some special cases are implemented:

pochhammer(x, -1), pochhammer(x, 0), pochhammer(x, 1)

pochhammer(1, n), pochhammer(2, n)

A symbolic call is returned for other arguments:

pochhammer(x, 2), pochhammer(3, n), pochhammer(x + I, n)

Example 2

expand turns a symbolic pochhammer call into an explicit polynomial expression or
rewrites it in terms of the gamma function if that function is known to be defined at its
argument:
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expand(pochhammer(x, 3))

expand(pochhammer(x, -3))

expand(pochhammer(x, n)) assuming x>0 and n>0

expand(pochhammer(x + 1, n)) assuming x>0 and n>0

You can also use rewrite with the targets gamma or fact to rewrite pochhammer:

rewrite(pochhammer(x + 1, n), gamma)

rewrite(pochhammer(x + 1, n), fact)

Example 3

diff and series act on symbolic pochhammer calls:

diff(pochhammer(x, n), x)
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diff(pochhammer(x, n), n)

series(pochhammer(x, -3), x = 2)

Parameters

x

An arithmetical expression

n

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

n, x

See Also

MuPAD Functions
fact | gamma
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poles
Poles of expression or function

Syntax
poles(f, x)

poles(f, x = a..b)

poles(f, x, options)

poles(f, x = a..b, options)

Description

poles(f, x) finds nonremovable singularities of f. These singularities are called the
poles of f. Here, f is a function of the variable x. See “Example 1” on page 1-1527.

poles(f, x = a..b) finds the poles in the interval (a,b). See “Example 2” on page
1-1528.

If poles cannot find all nonremovable singularities and cannot prove that they do not
exist, it returns an unevaluated call. See “Example 3” on page 1-1528.

If poles can prove that f has no poles (either in the specified interval (a,b) or in the
complex plane), it returns an empty set. See “Example 4” on page 1-1528.

a and b must be real numbers or infinities. If you provide complex numbers, poles uses
an empty interval and returns an empty set.

Examples

Example 1

Find the poles of these expressions:

poles(1/(x - I), x);
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poles(sin(x)/(x - 1), x)

Example 2

Find the poles of the tangent function in the interval (-PI, PI):

poles(tan(x), x = -PI..PI)

Example 3

The tangent function has an infinite number of poles. If you do not specify the interval,
poles cannot find all of them and, therefore, returns an unevaluated call:

poles(tan(x), x)

Example 4

If poles can prove that the expression or function does not have any poles in the
specified interval, it returns an empty set:

poles(tan(x), x = -1..1)

Example 5

Use Multiple to find the poles of this expression and their orders. Restrict the search
interval to (-pi, 10*pi):
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poles(tan(x)/(x - 1)^3, x = -PI..PI, Multiple)

Example 6

Use Residues to find the poles of this expression and their residues:

poles(a/x^2/(x - 1), x, Residues)

Example 7

Use Multiple and Residues to find the poles of this expression and their orders and
residues:

poles(a/x^2/(x - 1), x, Multiple, Residues)

Parameters

f

Arithmetical expression representing a function in x.

x

Identifier.

a, b

Real numbers (including infinities) that specify the search interval for function poles. If
you do not specify the interval (a, b), then poles uses the entire complex plane.
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Options

Multiple

When you use this option, poles finds the poles of f and their orders. It returns a set of
lists. Each list contains two entries: the value of a pole and its order.

See “Example 5” on page 1-1528.

Residues

When you use this option, poles finds the poles of f and their residues. It returns a set
of lists. Each list contains two entries: the value of a pole and its residue.

See “Example 6” on page 1-1529.

Return Values

Set or set of lists. Without the options, poles returns a set containing the values of
poles. With Multiple or Residues, it returns a set of lists. Each list contains the value
of a pole and its order or residue, respectively. With both options, poles returns a set of
lists. Each list contains the value of a pole, its order, and residue.

See Also

MuPAD Functions
discont | limit | solve
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poly, Expr, IntMod

Create a polynomial

Syntax

poly(f, <[x1, x2, …]>, <ring>)

poly(p, <[x1, x2, …]>, <ring>)

poly(list, [x1, x2, …], <ring>)

poly(coeffs, [x], <ring>)

Description

poly(f) converts a polynomial expression f to a polynomial of the kernel domain
DOM_POLY.

The kernel domain DOM_POLY represents polynomials. The arithmetic for this data
structure is more efficient than the arithmetic for polynomial expressions. Moreover,
this domain allows you to use special coefficient rings that cannot be represented by
expressions. The function poly is the tool for generating polynomials of this type.

poly(f, [x1, x2, ...], ring) converts the expression f to a polynomial in the
indeterminates x1, x2, ... over the specified coefficient ring. The poly function
does not require an expanded form of the expression f. The function internally expands
expressions.

If you do not specify indeterminates, MuPAD searches for them internally. If MuPAD
cannot identify indeterminates, it returns FAIL.

By default, the poly function uses the coefficient ring of arbitrary MuPAD expressions.
In this case, you can use arbitrary MuPAD expressions as coefficients.

If the poly function cannot convert an expression to a polynomial, the function returns
FAIL. See “Example 10” on page 1-1539.
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If f is a domain element, the system calls f::dom::poly for the conversion into a
polynomial. If f contains domain elements, the system recursively calls f::dom::poly
for domain elements inside f. See “Example 11” on page 1-1539.

poly(p, [x1, x2, ...], ring) converts a polynomial p of the type DOM_POLY to
a polynomial in the indeterminates x1, x2, ... over the specified coefficient ring.
The indeterminates and the coefficient ring are part of the data structure DOM_POLY.
Using this function call, you can change the indeterminates and the coefficient ring of a
polynomial.

If you do not specify indeterminates, poly uses the indeterminates of the original
polynomial p.

If you do not specify a coefficient ring, poly uses the ring of the original polynomial p.

See “Example 8” on page 1-1538 and “Example 9” on page 1-1538.

poly(list, [x]) converts a list of coefficients [a0, a1, a2, …] to a univariate polynomial
a0 + a1 x + a2 x2 + …. See “Example 3” on page 1-1535.

For a univariate polynomial p, the call poly(list, [x]) converts the result of the call
coeff(p, All) back to a polynomial.

poly(list, [x1, x2, ...], ring) converts a list of coefficients and exponents to
a polynomial in the indeterminates x1, x2, ... over the specified coefficient ring. See
“Example 4” on page 1-1536 and “Example 7” on page 1-1537.

This call is the fastest method to create polynomials of the type DOM_POLY because the
input already has the form that MuPAD uses internally.

The list must contain an element for each nonzero monomial of the polynomial.
Therefore, you must use sparse input involving only nonzero terms. In particular, an
empty list results in the zero polynomial.

Each element of the list must be a list with two elements: the coefficient of the monomial
and the exponent (or exponent vector). For a univariate polynomial in the variable x, the
list

corresponds to c1 xe1 + c2 xe2 + …. For a multivariate polynomial, the exponent vectors
are lists containing the exponents of all indeterminates of the polynomial. The order of
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the exponents must be the same as the order given by the list of indeterminates. For a
multivariate polynomial in the variables x1, x2, the term list

corresponds to c1 x1
e11 x2

e12 + c2 x1
e21 x2

e22 + ….

The order of the elements of the term list does not affect the resulting polynomial. If you
provide multiple entries corresponding to the same term, poly adds the coefficients.

This call lets you restore polynomials from the term lists returned by poly2list.

The position of the indeterminates in the input list [x1, x2, ...] determines their
order in the resulting polynomial. If you do not specify indeterminates, MuPAD searches
the expression f for possible indeterminates and determines their order. See “Example 2”
on page 1-1535.

You can perform arithmetical operations on polynomials that have the same
indeterminates and the same coefficient ring. Also, you can perform arithmetical
operations on polynomials and arithmetical expressions. When you operate on a
polynomial and an arithmetical expression, MuPAD internally converts that arithmetical
expression to a polynomial and performs the calculation. See “Example 1” on page
1-1534.

The poly function does not limit acceptable indeterminates to identifiers or indexed
identifiers. You can use any expression (except for rational expressions) as an
indeterminate. For example, poly accepts the expressions sin(x) and f(x) as
indeterminates. See “Example 5” on page 1-1536.

After creating a polynomial, the poly function does not evaluate the coefficients of
the polynomial. If the coefficients contain free identifiers, poly does not replace these
identifiers with their values. See “Example 12” on page 1-1540.

If any domain of type DOM_DOMAIN provides arithmetical operations, you can use that
domain as a coefficient ring. See the “Background” section for details.

If you specify a coefficient domain, MuPAD accepts only the elements of that domain as
coefficients of the polynomial. On input, poly tries to convert a polynomial expression
f to a polynomial over the coefficient ring. For some coefficient rings, you cannot use
arithmetical expressions to represent a polynomial. The reason is that multiplication
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with the indeterminates can be an invalid operation in the ring. In such cases, you can
define the polynomial by using a term list. See “Example 7” on page 1-1537.

Examples

Example 1

The poly function creates a polynomial from a polynomial expression:

p := poly(2*x*(x + 3))

The operators *, +, - and ^ work on polynomials:

p^2 - p*(p + 1)

You can multiply a polynomial by an arithmetical expression. MuPAD internally
converts the expression to a polynomial of the appropriate type, and then multiplies
polynomials. For example, multiply the polynomial p by the constant 5:

p*5

Now, multiply the polynomial p by x - 1:

p*(x - 1)

If MuPAD cannot convert the expression to a polynomial of the appropriate type, the
arithmetical operation between a polynomial and this expression fails:

p*(1/x - 1)

1-1534



 poly, Expr, IntMod

Error: The argument is invalid. [_mult]

delete p:

Example 2

You can create a polynomial with parameters. In the following call, y is a parameter (not
an indeterminate):

poly((x*(y + 1))^2, [x])

If you do not specify indeterminates, MuPAD tries to find indeterminates automatically.
The following call converts a multivariate expression to a multivariate polynomial:

poly((x*(y + 1))^2)

Now, specify the order of the indeterminates explicitly:

poly((x*(y + 1))^2, [y, x])

Example 3

Use the poly function to convert the following list of coefficients to a univariate
polynomial in x. The first entry of the list produces the term with the zero exponent. The
last entry produces the term with the highest exponent:

p := poly([1, 2, 3, 4, 5], [x])

To revert the ordering of the coefficients in a polynomial, use the revert function:
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revert(p)

Example 4

Create the following polynomials by term lists:

poly([[c2, 3], [c1, 7], [c3, 0]], [x])

If you provide multiple coefficients corresponding to the same exponent, poly adds those
coefficients:

poly([[c2, 3], [c1, 7], [c3, 0], [a, 3]], [x])

For multivariate polynomials, specify exponent vectors by lists:

poly([[c1, [2, 2]], [c2, [2, 1]], [c3, [2, 0]]], [x, y])

Example 5

You can use expressions as indeterminates:

poly(f(x)*(f(x) + x^2))

Example 6

The residue class ring IntMod(7) is a valid coefficient ring:
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p := poly(9*x^3 + 4*x - 7, [x], IntMod(7))

For computations that involve polynomials over this ring, MuPAD uses modular
arithmetic:

p^3

However, MuPAD does not return coefficients as elements of a special domain. Instead, it
returns coefficients as plain integers of the type DOM_INT:

coeff(p)

delete p:

Example 7

To create the following polynomial, combine the input syntax that uses term lists with a
specified coefficient ring:

poly([[9, 3], [4, 1], [-2, 0]], [x], IntMod(7))

MuPAD interprets the input coefficients as elements of the coefficient domain. For
example, conversions such as 9 mod 7 = 2 mod 7 occur on input. You also can use
the domain Dom::IntegerMod(7) to define an equivalent polynomial. If you use
IntMod(7), MuPAD uses the symmetric modulo function mods and represents the
coefficients by the numbers - 3, …, 3. If you use Dom::IntegerMod(7), MuPAD uses the
positive modulo function modp and represents the coefficients by the numbers 0, …, 6:

poly([[9, 3], [4, 1], [-2, 0]], [x], Dom::IntegerMod(7))
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The domain Dom::IntegerMod(7) does not allow multiplication with identifiers:

c := Dom::IntegerMod(7)(3)

poly(c*x^2, [x], Dom::IntegerMod(7))

Instead, use the term list to specify the polynomial:

poly([[c, 2]], [x], Dom::IntegerMod(7))

delete c:

Example 8

Change the indeterminates in a polynomial:

p:= poly(((a + b)*x - a^2)*x, [x]): 

p, poly(p, [a, b])

Example 9

Change the coefficient ring of a polynomial:

p := poly(-4*x + 5*y - 5, [x, y], IntMod(7)):

p, poly(p, IntMod(3))
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Example 10

Create a polynomial over the coefficient ring Dom::Float:

poly(3*x - y, Dom::Float)

The identifier y cannot appear in coefficients from this ring because it cannot be
converted to a floating-point number:

poly(3*x - y, [x], Dom::Float)

Example 11

You can overload poly by its first operand. For example, create a domain polyInX that
represents polynomials in x:

domain polyInX

  new   := () -> new(dom, poly(args(), [x]));

  print := p -> expr(extop(p, 1));

  poly  := p -> 

           if args(0) = 1 then

             print(Unquoted, "polyInX::poly called with 1 argument");

             extop(p, 1);

           else 

             print(Unquoted, 

                   "polyInX::poly called with more than 1 argument");

             poly(extop(p, 1), 

                  args(2..args(0)));

           end;

end_domain:

p := polyInX(3*x^2-2)
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You can convert the elements of polyInX into polynomials of the type DOM_POLY. The
poly function calls the poly method of the domain:

poly(p)

polyInX::poly called with 1 argument

By reacting to additional arguments, the overloading defined above also allows you to
create polynomials over other coefficient rings:

poly(p, [x], IntMod(2))

polyInX::poly called with more than 1 argument

Example 12

Create a polynomial with coefficients containing the identifier y. Although you assign the
value 1 to y, MuPAD does not substitute the new value into the polynomial:

f := poly(x^2 - y, [x]): 

y := 1:

eval(f)

You can evaluate the coefficients explicitly. Use the mapcoeffs function to apply eval to
the coefficients of the polynomial:

f := mapcoeffs(f, eval)
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Parameters

f

A polynomial expression

x1, x2, …

The indeterminates of the polynomial: typically, identifiers or indexed identifiers.

ring

The coefficient ring: either Expr, or IntMod(n) with some integer n greater than 1,
or a domain of type DOM_DOMAIN. The default is the ring Expr of arbitrary MuPAD
expressions.

p

A polynomial of type DOM_POLY generated by poly

list

A list containing coefficients and exponents

coeffs

A list containing coefficients of a univariate polynomial

x

The indeterminate of a univariate polynomial

Options

Expr

The default ring Expr represents arbitrary MuPAD expressions. Mathematically,
this ring coincides with Dom::ExpressionField(). However, MuPAD operates
differently on the polynomials created over Expr and the polynomials created over
Dom::ExpressionField(). In particular, MuPAD performs arithmetic operations for
polynomials over the ring Expr faster.
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IntMod

The ring IntMod(n) represents the residue class ring ℤn, using the symmetrical
representation. Here, n is an integer greater than 1. Mathematically, this ring coincides
with Dom::IntegerMod(n). However, MuPAD operates differently on the polynomials
created over IntMod(n) and the polynomials created over Dom::IntegerMod(n). In
particular, MuPAD performs arithmetic operations for polynomials over the ring IntMod
faster. Also, for polynomials over IntMod, coeff and similar functions return requested
coefficients as integers of the type DOM_INT. See “Example 6” on page 1-1536, “Example
7” on page 1-1537, and “Example 9” on page 1-1538.

Return Values

Polynomial of the domain type DOM_POLY. If conversion to a polynomial is not possible,
the return value is FAIL.

Overloaded By

f

Algorithms

To use a domain as a coefficient, the domain must contain the following:

• The entry "zero" that provides the neutral element with respect to addition.
• The entry "one" that provides the neutral element with respect to multiplication.
• The method "_plus" that adds domain elements.
• The method "_negate" that returns the inverse with respect to addition.
• The method "_mult" that multiplies domain elements.
• The method "_power" that computes integer powers of a domain element. Call this

method with the domain element as the first argument and an integer as the second
argument.

In addition, you must define the following methods. Functions (such as gcd, diff,
divide, norm and so on) call these methods:
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• The method "gcd" that returns the greatest common divisor of domain elements.
• The method "diff" that differentiates a domain element with respect to a variable.
• The method "_divide" that divides two domain elements. It must return FAIL if

division is not possible.
• The method "norm" that computes the norm of a domain element and returns it as a

number.
• The method "convert" that converts an expression to a domain element. The

method must return FAIL if such conversion is not possible.

The system calls this method to convert the coefficients of polynomial expressions to
coefficients of the specified domain. If this method does not exist, you can specify the
coefficients only by using domain elements.

• The method "expr" that converts a domain element to an expression.

The system function expr calls this method to convert a polynomial over the
coefficient domain to a polynomial expression. If this method does not exist, expr
inserts domain elements into the expression.

You can convert a polynomial over a certain coefficient domain into a polynomial over
the same domain, but a different set of indeterminates. This conversion is much more
efficient when the domain has the axiom Ax::indetElements. MuPAD implicitly
assumes that this axiom holds for the domain IntMod(n), but not for Expr.

Internally, MuPAD stores polynomials of the type DOM_POLY in a sparse representation
and uses machine integers for the exponents. This method implies that in a 32-bit
environment, the exponent of each variable in each monomial cannot exceed 231 - 1.

See Also

MuPAD Domains
Dom::DistributedPolynomial | Dom::MultivariatePolynomial |
Dom::Polynomial | Dom::UnivariatePolynomial

MuPAD Functions
coeff | collect | degree | degreevec | divide | evalp | expr | factor |
gcd | ground | indets | lcoeff | ldegree | lmonomial | lterm | mapcoeffs |
monomials | nterms | nthcoeff | nthmonomial | nthterm | poly2list | RootOf
| tcoeff

1-1543



1 The Standard Library

poly2list
Convert a polynomial to a list of terms

Syntax
poly2list(p)

poly2list(f, <vars>)

Description
poly2list(p) returns a term list containing the coefficients and exponent vectors of the
polynomial p.

The returned term list is a list where each element represents a monomial of the
polynomial with non-zero coefficient. The monomials are also represented as lists, each
containing two elements: The first element is the coefficient and the second the exponent
or exponent vector of the monomial. If the polynomial is univariate, exponents are
returned, otherwise exponent vectors are returned. Exponent vectors have the same form
as returned by the function degreevec. A zero polynomial results in an empty list.

The elements of the term list are sorted lexicographically according to the exponent
vectors. This is also the ordering used internally for the terms of polynomials.

poly2list(f, vars) is equivalent to poly2list(poly(f, vars)): First, the
polynomial expression f is converted to a polynomial in the variables vars over the
expressions. Then that polynomial is converted to a term list. If the variables vars
are not given, the free identifiers contained in f are used as variables. See poly about
details on how the expression is converted to a polynomial. FAIL is returned if the
expression cannot be converted to a polynomial.

Examples

Example 1

The following expressions define univariate polynomials. Thus the term lists contain
exponents and not exponent vectors:
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poly2list(2*x^100 + 3*x^10 + 4)

poly2list(2*x*(x + 1)^2)

Specification of a list of indeterminates allows to distinguish symbolic parameters from
the indeterminates:

poly2list(a*x^2 + b*x + c, [x])

Example 2

In this example the polynomial is bivariate, thus exponent vectors are returned:

poly2list((x*(y + 1))^2, [x, y])

Example 3

In this example a polynomial of domain type DOM_POLY is given. This form must be used
if the polynomial has coefficients that does not consist of expressions:

poly2list(poly(-4*x + 5*y - 5, [x, y], IntMod(7)))

Parameters

p

A polynomial of type DOM_POLY
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f

A polynomial expression

vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

Return Values

List containing the coefficients and exponent vectors of the polynomial. FAIL is returned
if a given expression cannot be converted to a polynomial.

See Also

MuPAD Functions
coeff | coerce | degree | degreevec | lcoeff | monomials | poly | tcoeff
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polylog
Polylogarithm function

Syntax
polylog(n, x)

Description

polylog(n,x) represents the polylogarithm function Lin(x) of index n at the point x.

For a complex number x of modulus |x| < 1, the polylogarithm function of index n is
defined as

.

This function is extended to the whole complex plane by analytic continuation. Do not
confuse the polylogarithms Lin with the integral logarithm function Li which is displayed
using the same symbol (without an index).

If n is an integer and x a floating-point number, then a floating-point result is computed.

If n is an integer less or equal to 1, then an explicit expression is returned for any input
parameter x. If n is an integer larger than 1 or if n is a symbolic expression, then an
unevaluated call of polylog is returned, unless x is a floating-point number. If n is a
numerical value, but not an integer, then an error occurs.

Some special values for n = 2 are implemented (cf. dilog). The values Lin(0) = 0 and

 are implemented for any n. Furthermore,  for
any n ≠ 1.

Lin(x) has a singularity at the point x = 1 for indices n ≤ 1. For indices n ≥ 1, the point
x = 1 is a branch point. The branch cut is the real interval . A jump occurs when
crossing this cut. Cf. “Example 2” on page 1-1549.
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Mathematically, polylog(2,x) coincides with dilog(1-x).

Environment Interactions

When called with a floating-point argument x, the function is sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Explicit results are returned for integer indices n ≤ 1:

polylog(-5, x), polylog(-1, x), polylog(0, x), polylog(1, x)

An unevaluated call is returned if the index is an integer n > 1 or a symbolic expression:

polylog(2, x), polylog(n^2 + 1, 2), polylog(n + 1, 2.0)

Floating point values are computed for integer indices n and floating-point arguments x:

polylog(-5, -1.2), polylog(10, 100.0 + 3.2*I)

Some special symbolic values are implemented:

polylog(4, 1), polylog(5, -1), polylog(2, I)
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assume(n <> 1): polylog(n, -1)

unassume(n): polylog(n, -1)

Example 2

For indices n ≥ 1, the real interval  is a branch cut. The values returned by
polylog jump when crossing this cut:

polylog(3, 1.2 + I/10^1000) - polylog(3, 1.2 - I/10^1000)

Example 3

The functions diff, float, limit, and series handle expressions involving polylog:

diff(polylog(n, x), x), float(polylog(4, 3 + I))

series(polylog(4, sin(x)), x = 0)

Parameters

n

An arithmetical expression representing an integer
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x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

Algorithms

The polylogarithms are characterized by  in conjunction with Lin(0)

= 0 and Li1(x) = - ln(1 - x). Lin(x) is a rational function in x for n ≤ 0.

Lin has a branch cut along the real interval  for indices n ≥ 1. The value at a point x
on the cut coincides with the limit “from below”:

.

References

L. Lewin, “Polylogarithms and Related Functions”, North Holland (1981). L. Lewin (ed.),
“Structural Properties of Polylogarithms”, Mathematical Surveys and Monographs Vol.
37, American Mathematical Society, Providence (1991).

See Also

MuPAD Functions
dilog | ln
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potential

The (scalar) potential of a gradient field

Syntax

potential(f, [x1, x2, …], <[y1, y2, …]>, <Test>)

Description

potential(f, x) determines whether the vector field  is a gradient field

 of some scalar potential p with respect to the variables , and
computes that potential if it exists.

The potential of a vector field  = [f1(x1, x2, …), f2(x1, x2, …), …] exists (locally) if
and only if the Jacobian matrix  is symmetric in i and j. In 3 space, this is the

condition that  vanishes.

The potential  with  is uniquely determined up to an additive
constant.

An integral representation of the potential is given by

,

where  is an arbitrary “base point.” This is the contour integral of  along the
straight line from  to .
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If the Jacobian matrix  is not symmetric, the potential of  does not exist.

In this case, potential returns FALSE.

Note: Note that the answer FALSE is not always conclusive. For arbitrary expressions fi,
fj, there is no algorithm to decide whether  holds mathematically:

potential may return FALSE due to insufficient simplification of the partial
derivatives.

The representation of the potential depends on the strength of the symbolic integrator
int. If int does not manage to find a closed form of the potential, symbolic calls of int
may be returned. See “Example 3” on page 1-1553.

If no base point  is specified, the potential is only defined up to some additive constant.

potential does not consider irregular points of the vector field and its potential and
investigates the potential only locally. The returned potential may be a valid potential
only in a neighbourhood of the current point !

If f is a vector, the component ring of f must be a field (i.e., a domain of category
Cat::Field) which allows integration.

Examples

Example 1

Using the option Test, we check whether a vector field is a gradient field:

f := [x, y, z*exp(z)]:

potential(f, [x, y, z], Test)

Without the option Test, the potential is returned:
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potential(f, [x, y, z])

We check the result:

normal(gradient(%, [x, y, z]))

When a `base point' is specified, a suitable constant is added to the potential such that it
vanishes at this point:

potential(f, [x, y, z], [0, 0, 0])

potential(f, [x, y, z], [x0, y0, z0])

delete f:

Example 2

The vector field in this example is not a gradient field and has no potential:

potential([x[2], -x[1]], [x[1], x[2]])

Example 3

The vector field in this example is a gradient field and has a potential. However, the
symbolic integrator does not find a closed form of the integral representation for the
potential and returns a symbolic definite integral:
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potential([a + b*x, sin(y^2)*exp(y)], [x, y])

We check the result:

gradient(%, [x, y])

Parameters

f

The vector field: a list of arithmetical expressions, or a vector of such expressions. A
vector is an n×1 or 1 ×n matrix of a domain of category Cat::Matrix.

x1, x2, …

The variables: identifiers or indexed identifiers

y1, y2, …

The components of the “base point:” arithmetical expressions. If a base point  is
specified, the returned potential p satisfies .

Options

Test

Check whether the vector field has a potential and return TRUE or FALSE, respectively.
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Return Values

Arithmetical expression or a Boolean value.

See Also

MuPAD Functions
curl | divergence | gradient | laplacian | vectorPotential
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powermod

Compute a modular power of a number or a polynomial

Syntax

powermod(b, e, m)

Description

powermod(b, e, m) computes be mod m.

If b and m are numbers, the modular power be mod m can also be computed by the direct
call b^e mod m. However, powermod(b, e, m) avoids the overhead of computing the
intermediate result be and computes the modular power much more efficiently.

If b is a rational number, then the modular inverse of the denominator is calculated and
multiplied with the numerator.

If the modulus m is an integer, then the base b must either be a number, a polynomial
expression or a polynomial that is convertible to an IntMod(m)-polynomial.

If the modulus m is a polynomial expression, then the base b must either be a number, a
polynomial expression or a polynomial over the coefficient ring of MuPAD expressions.

If the modulus m is a polynomial of domain type DOM_POLY, then the base b must either
be a number, or a polynomial of the same type as m or a polynomial expression that can
be converted to a polynomial of the same type as m.

Note that the system function mod in charge of modular arithmetic may be changed
by the user; see the help page of mod. The function powermod reacts accordingly. See
“Example 5” on page 1-1558.

Internally, polynomials are divided by the function divide.
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Examples

Example 1

We compute 3^(123456) mod 7:

powermod(3, 123456, 7)

If the base is a rational number, the modular inverse of the denominator is computed and
multiplied with the numerator:

powermod(3/5, 1234567, 7)

Example 2

The coefficients of the following polynomial expression are computed modulo 7:

powermod(x^2 + 7*x - 3, 10, 7)

Example 3

The power of the following polynomial expression is reduced modulo the polynomial x2 +
1:

powermod(x^2 + 7*x - 3, 10, x^2 + 1)

Example 4

The type of the return value coincides with the type of the base: a polynomial is returned
if the base is a polynomial:
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powermod(poly(x^2 + 7*x - 3), 2, x^2 + 1),

powermod(poly(x^2 + 7*x - 3), 2, poly(x^2 + 1))

If the base is a polynomial expression, powermod returns a polynomial expression:

powermod(x^2 + 7*x - 3, 2, x^2 + 1),

powermod(x^2 + 7*x - 3, 2, poly(x^2 + 1))

Example 5

The following re-definition of _mod switches to a symmetric representation of modular
numbers:

R := Dom::IntegerMod(17):

_mod := mods: powermod(poly(2*x^2, R), 3, poly(3*x + 1, R))

The following command restores the default representation:

_mod := modp: powermod(poly(2*x^2, R), 3, poly(3*x + 1, R))

unalias(R):

Parameters

b

The base: an integer, a rational number, or a polynomial of type DOM_POLY, or a
polynomial expression
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e

The power: a nonnegative integer

m

The modulus: an integer (at least 2), or a polynomial of type DOM_POLY, or a polynomial
expression

Return Values

Depending on the type of b, the return value is an integer, a polynomial, or a polynomial
expression. FAIL is returned if an expression cannot be converted to a polynomial.

Overloaded By

b

See Also

MuPAD Functions
divide | mod | modp | mods | poly
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PRETTYPRINT
Control the formatting of output

Description

The environment variable PRETTYPRINT determines whether the MuPAD results are
printed in the one-dimensional or the two-dimensional format.

Possible values: Either TRUE or FALSE

PRETTYPRINT controls the pretty printer, which is responsible for formatted output. If
PRETTYPRINT has the value TRUE, then pretty printing is enabled for output.

The default value of PRETTYPRINT is TRUE; PRETTYPRINT has this value after starting
or resetting the system via reset. Also the command delete PRETTYPRINT restores
the default value.

In the MuPAD Notebook app, PRETTYPRINT normally has no effect when “typesetting”
is activated. An exception occurs for MuPAD output without typesetting defined, where
PRETTYPRINT determines the output style even if the typesetting is activated.

Typesetting is activated by default. You can switch it on or off by selecting
Notebook>Typeset Math or via View>Configure.

Examples

Example 1

The following command disables pretty printing:

PRETTYPRINT := FALSE

Now MuPAD results are printed in a one-dimensional, linearized form:
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series(sin(x), x = 0, 14)

x - (1/6)*x^3 + (1/120)*x^5 - (1/5040)*x^7 + (1/362880)*x^9 - (1/39916800)\

*x^11 + (1/6227020800)*x^13 + O(x^15)

After setting PRETTYPRINT to TRUE again, the usual two-dimensional output format is
used:

PRETTYPRINT := TRUE:

series(sin(x), x = 0, 14)

     3     5     7       9         11          13

    x     x     x       x         x           x           15

x - -- + --- - ---- + ------ - -------- + ---------- + O(x  )

     6   120   5040   362880   39916800   6227020800

See Also

MuPAD Functions
print | TEXTWIDTH
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prevprime
Next smaller prime

Syntax
prevprime(a)

Description

prevprime(a) returns the greatest prime number less or equal than a. If a < 2, then
prevprime(a) returns FAIL.

prevprime returns the function call with evaluated argument if the argument is not an
integer.

prevprime returns an error if the argument evaluates to zero or a negative integer.

Examples

Example 1

Computing the largest prime p ≤ 15485865:

prevprime(15485865)

Example 2

There are no primes smaller than 2:

prevprime(1)
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Parameters

a

A positive integer

Return Values

prevprime(a) returns either a natural number or FAIL.

Algorithms

prevprime uses the probabilistic prime test isprime and may therefore return false
results with small probability.

See Also

MuPAD Functions
isprime | ithprime | nextprime | numlib::proveprime
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print
Print objects to the screen

Compatibility

For printing in MATLAB, see print. For displaying a value, see display.

Syntax
print(<Unquoted>, <NoNL>, <KeepOrder>, <Plain>, <Typeset>, object1, object2, …)

Description

print(object) displays object on the screen.

At interactive level, the result of a MuPAD command entered at the command prompt
is usually displayed on the screen automatically. print serves to generate additional
output from within loops or procedures.

Apart from some exceptions mentioned below, the output generated by print is identical
to the usual output of MuPAD results at interactive level.

print evaluates its arguments sequentially from left to right (cf. “Example 3” on page
1-1567) and displays the results on the screen. The individual outputs are separated
by commas. A new line is started at the end of the output if this is not suppressed by the
option NoNL.

The output width for print with option Plain is limited by the environment variable
TEXTWIDTH. Cf. “Example 4” on page 1-1567.

With option Plain the style of the output is determined by the value of the environment
variable PRETTYPRINT. Cf. “Example 5” on page 1-1568.

print descends recursively into the operands of an object. For each subobject s, print
first determines its domain typeT. If the domain T has a "print" slot, then print issues
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the call T::print(s) to the slot routine. In contrast to the overloading mechanism for
most other MuPAD functions, print processes the result of this call recursively, and
the result of the recursive process is printed at the position of s (cf. “Example 6” on page
1-1568).

Note: The result returned by the "print" method must not contain the domain
element s itself as a subobject, since this leads to infinite recursion (cf. “Example 7”
on page 1-1569). The same remark also applies to the output procedures of function
environments (see below).

If T is a library domain without a "print" slot and the internal operands of s are op1,
op2, ..., then s is printed as new(T, op1, op2, ...). (See “Example 6” on page
1-1568.)

"print" methods may return strings or expressions. Strings are always printed
unquoted. Expressions are printed in normal mode. If they contain strings, they will be
printed with quotation marks. Cf. “Example 8” on page 1-1570.

The output of an expression is determined by the 0th operand of the expression. If the
0th operand is a function environment, then its second operand handles the output
of the expression. See “Example 9” on page 1-1570. Otherwise, the expression is printed
in functional notation.

In contrast to the usual output of MuPAD objects at interactive level, print does not
perform resubstitution of aliases (see Pref::alias for details). Moreover, the routines
defined via Pref::output and Pref::postOutput are not called by print. Cf.
“Example 14” on page 1-1572.

The output of floating-point numbers depends on the environment variable DIGITS
and the settings of Pref::floatFormat (exponential or floating-point representation)
and Pref::trailingZeroes (printing of trailing zeroes). Cf. “Example 16” on page
1-1574.

Environment Interactions

print is sensitive to the environment variables DIGITS, PRETTYPRINT, and TEXTWIDTH,
and to the output preferences Pref::floatFormat, Pref::keepOrder, and
Pref::trailingZeroes.
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Examples

Example 1

This example shows a simple call of print with strings as arguments. They are printed
with quotation marks:

print("Hello", "You"." !"):

Example 2

On platforms supporting typesetting, print can generate typeset output:

print(Typeset, int(f(x)/g(x), x = a..b)):

print uses the Typeset option by default:

print(int(f(x)/g(x), x = a..b)):

ASCII output is available with the option Plain:

print(Plain, int(f(x)/g(x), x = a..b)):

  b

  /

 |  f(x)

 |  ---- dx

/   g(x)

  a
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Example 3

Like most other functions, print evaluates its arguments. In the following call, x
evaluates to 0 and cos(0) evaluates to 1:

a := 0: print(cos(a)^2):

Use hold if you want to print the expression cos(a)^2 literally:

print(hold(cos(a)^2)):

delete a:

Example 4

print with the option Plain is sensitive to the current value of TEXTWIDTH:

print(Plain, expand((a + b)^4)):

 4      3        2  2        3    4

a  + 4 a  b + 6 a  b  + 4 a b  + b

TEXTWIDTH := 25:

print(Plain, expand((a + b)^4)):

 4      3        2  2

a  + 4 a  b + 6 a  b

          3    4

   + 4 a b  + b

If you disable the pretty print mode, the print function inserts the line continuation
character at the line breaks:

PRETTYPRINT:=FALSE:

print(Plain, expand((a + b)^4)):
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a^4 + 4*a^3*b + 6*a^2*b^\

2 + 4*a*b^3 + b^4

The line continuation character can be invalid for some strings. For example, when you
use the code generators, such as generate::MATLAB and generate::Simscape, the
displayed code containing the line continuation character is not valid. To avoid inserting
this character, change the TEXTWIDTH setting or use the fprint function instead of
print:

fprint(Unquoted, 0, expand((a + b)^4))

a^4 + 4*a^3*b + 6*a^2*b^2 + 4*a*b^3 + b^4

Also, see the Example 4 on the fprint help page.

PRETTYPRINT := TRUE:

delete TEXTWIDTH:

Example 5

print with option Plain is sensitive to the current value of PRETTYPRINT:

print(Plain, a/b):

old := PRETTYPRINT: PRETTYPRINT := FALSE:

print(Plain, a/b):

PRETTYPRINT := old:

a

-

b

a/b

delete old:

Example 6

We demonstrate how to achieve formatted output for elements of a user-defined domain.
Suppose that we want to write a new domain Complex for complex numbers. Each
element of this domain has two operands: the real part r and the imaginary part s:
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Complex := newDomain("Complex"): z := new(Complex, 1, 3):

z + 1;

print(Plain, z + 1):

new(Complex, 1, 3) + 1

Now we want a nicer output for elements of this domain, namely in the form r+s*I,
where I denotes the imaginary unit. We implement the slot routine Complex::print
to handle this. This slot routine will be called by MuPAD with an element of the domain
Complex as argument whenever such an element is to be printed on the screen:

Complex::print := (z -> extop(z, 1) + extop(z, 2)*I):

z + 1;

print(Plain, z + 1):

1 + 3 I + 1

delete Complex, z:

Example 7

The result of a "print" method must not contain the argument as a subobject; otherwise
this leads to infinite recursion. In the following example, the slot routine T::print
would be called infinitely often. MuPAD tries to trap such infinite recursions and prints
`????` instead:

T := newDomain(T): T::print := id:

new(T, 1);

print(Plain, new(T, 1)):

`????`

`????`
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delete T:

Example 8

If a "print" method returns a string, it will be printed unquoted:

Example := newDomain("Example"):  e := new(Example, 1):

Example::print := x -> "elementOfExample":

print(e):

If a "print"-method returns an expression, it will be printed in normal mode. If the
expression contains strings, they will be printed in the usual way with quotation marks:

Example::print := x -> ["elementOfExample", extop(x)]:

print(e):

delete Example, e:

Example 9

Suppose that you have defined a function f that may return itself symbolically, and
you want such symbolic expressions of the form f(x,...) to be printed in a special
way. To this end, embed your proceduref in a function environment and supply an
output procedure as second argument to the corresponding funcenv call. Whenever an
expression of the form f(x,...) is to be printed, the output procedure will be called
with the arguments x,... of the expression:

f := funcenv(f,

         proc(x) begin

            if nops(x) = 2 then

              "f does strange things with its arguments ".

              expr2text(op(x, 1))." and ".expr2text(op(x,2))

            else

              FAIL

            end

         end):
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delete a, b:

f(a, b)/2;

f(a, b, c)/2

delete f:

Example 10

With the option Unquoted, quotation marks are omitted:

print(Unquoted, "Hello", "World"." !"):

Hello, World !

With Unquoted the special characters \t and \n are expanded:

print(Unquoted, "As you can see,\n".

                "'\\n' is the newline character\n".

                "\tand '\\t' a tabulator"):

As you can see,

'\n' is the newline character

  and '\t' a tabulator

Example 11

It is useful to construct output strings using expr2text and the concatenation operator
.:

d := 5:  print(Unquoted, "d plus 3 = ".expr2text(d + 3)):

d plus 3 = 8
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delete d:

Example 12

With the option NoNL, no new line is put at the end of the output and PRETTYPRINT is
implicitly set to FALSE. Apart from that, the behavior is the same as with the option
Unquoted:

print(NoNL, "Hello"):  print(NoNL, ",  You"." !\n"):

print(NoNL, "As you can see, PRETTYPRINT is FALSE: "):

print(NoNL, x^2-1):  print(NoNL, "\n"):

Hello

,  You !

As you can see, PRETTYPRINT is FALSE: 

x^2 - 1

Example 13

If the option KeepOrder is given, sums are printed in their internal order:

print(b - a):  print(KeepOrder, b - a):

Example 14

Alias resubstitution (see Pref::alias) takes place for normal result outputs in an
interactive session, but not for outputs generated by print:
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delete a, b: alias(a = b):

a; print(a):

unalias(a):

In contrast to the usual result output, print does not react to Pref::output:

old := Pref::output(generate::TeX):

sin(a)^b; print(sin(a)^b):

Pref::output(old):

The same is true for Pref::postOutput:

old := Pref::postOutput("postOutput was called"):

a*b; print(a*b):

Pref::postOutput(old):

postOutput was called

delete old:

Example 15

The output of summands of a sum depends on the form of these summands. If the
summand is a _mult expression, only the first and last operand of the product are taken
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into account for determining the sign of that term in the output. If one of them is a
negative number then the "+"-symbol in the sum is replaced by a "-"-symbol:

print(hold(a + b*c*(-2)),

      hold(a + b*(-2)*c),

      hold(a + (-2)*b*c)):

This has to be taken into account when writing "print"-methods for polynomial
domains.

Example 16

Floating point numbers are usually printed in fixed-point notation. You can change this
to floating-point form with mantissa and exponent via Pref::floatFormat:

print(0.000001, 1000.0): old := Pref::floatFormat("e"):

print(0.000001, 1000.0): Pref::floatFormat(old):

In the default output of floating-point numbers, trailing zeroes are cut off. This behavior
can be changed via Pref::trailingZeroes:

print(0.000001, 1000.0): old := Pref::trailingZeroes(TRUE):

print(0.000001, 1000.0): Pref::trailingZeroes(old):

0.000001, 1000.0

0.000001000000000, 1000.000000
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The number of digits of floating-point numbers in output depends on the environment
variable DIGITS:

print(float(PI)):

DIGITS := 20:  print(float(PI)):

DIGITS := 30:  print(float(PI)):

delete old, DIGITS:

Example 17

The output order of sets differs from the internal order of sets, which is returned by op:

s := {a, b, 1}:

s;

print(Plain, s):

op(s)

{1, a, b}

The index operator [] can be used to access the elements of a set with respect to the
output order:

s[1], s[2], s[3]

delete s:
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Example 18

The output of a domain is determined by its "Name" slot if it exists, and otherwise by its
key:

T := newDomain("T"):

T;

print(Plain, T):

T

T::Name := "domain T":

T;

print(Plain, T):

domain T

delete T:

Example 19

It is sometimes desirable to combine strings with “pretty” expressions in an output. This
is not possible via expr2text. On the other hand, an output with commas as separators
is usually regarded as ugly. The following dummy expression sequence may be used to
achieve the desired result. It uses the MuPAD internal function for standard operator
output builtin(1100,...), with priority 20—the priority of _exprseq—and with an
empty operator symbol "":

myexprseq := funcenv(myexprseq,

                     builtin(1100, 20, "", "myexprseq")):

print(Unquoted,

      myexprseq("String and pretty expression ", a^b, ".")):

                              b
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String and pretty expression a .

delete myexprseq:

Example 20

If the option Typeset is combined with Unquoted or NoNL, a warning is given and
Typeset is ignored:

print(Typeset, Unquoted, "1"):

Warning: Conflicting options, ignoring 'Typeset' [print]

Example 21

For more elaborate constructions, you may want to combine multi-line strings with
MuPAD expressions. A first attempt might look like the following:

myexprseq := funcenv(myexprseq,

                     builtin(1100, 20, "", "myexprseq")):

Example := newDomain("Example"):

Example::print :=

  x -> myexprseq("--- \n--\n-\n--\n---", op(x)):

e := new(Example, 1):

print(Plain, e):

"--- \n--\n-\n--\n---"1

Obviously, this approach doesn't work. The return value of the "print" method defined
above is not a string, it's a (special) sequence, so the special rules for printing a string do
not apply. We would need another domain that simply takes a string and returns exactly
this string from its "print" slot. Fortunately, MuPAD already has such a domain,
stdlib::Exposed:

Example::print :=

  x -> myexprseq(stdlib::Exposed("--- \n--\n-\n--\n---"),

                 op(x)):

print(e):

---

--
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-   1

--

---

For expressions with a higher output, you see that the alignment of the string is
constant:

new(Example,x^(1/n));

new(Example,x/y)

---

--   1/n

-   x

--

---

---

--  x

-   -

--  y

---

To change this alignment, replace a \n by \b, thereby making the line it terminates the
“baseline” of the string:

Example::print :=

  x -> myexprseq(stdlib::Exposed("--- \b--\n-\n--\n---"),

                 op(x)):

print(e+2):

--- 1 + 2

--

-

--

---

When multiple \b appear in a string, the first one is taken as defining the base line:

Example::print :=

  x -> myexprseq(stdlib::Exposed("--- \n--\n-\b--\b---"),

                 op(x)):

print(e+2):
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---

--

-   1 + 2

--

---

Parameters

object1, object2, …

Any MuPAD objects

Options

Unquoted

With this option, character strings are displayed without quotation marks. Moreover,
the control characters \n, \t, and \\ in strings are expanded into a new line, a tabulator
skip, and a single backslash \, respectively. Cf. “Example 10” on page 1-1571.

The control character \t is expanded with tab-size 8. The following character is placed in
the next column i with i mod 8 = 0.

\b is expanded into a newline, too, but when combining multiple strings, the last line
with \b at its end is regarded as the “baseline”. Cf. “Example 21” on page 1-1577.

Note: The option Unquoted implicitly sets the option Plain. If the option Typeset is
used together with Unquoted, a warning is given and Typeset is ignored. Cf. “Example
20” on page 1-1577.

NoNL

This option has the same functionality as Unquoted. In addition, the new line at the end
of the output is suppressed. Cf. “Example 12” on page 1-1572.

Moreover, this option implicitly sets PRETTYPRINT to FALSE.
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Note: The option NoNL implicitly sets the option Plain. If the option Typeset is used
together with NoNL, a warning is given and Typeset is ignored. Cf. “Example 20” on
page 1-1577.

KeepOrder

This option determines the order of terms in sums. Normally, the system sorts the terms
of a sum such that a positive term is in the first position of the output. If KeepOrder is
given, no such re-ordering takes place and sums are printed in the internal order. Cf.
“Example 13” on page 1-1572.

This behavior can also be controlled via Pref::keepOrder. More precisely, the call
print(KeepOrder, ...) generates the same output as the following command:

Pref::keepOrder(Always):

print(...):

Pref::keepOrder(%2):

Plain

The output is in plain text mode. This is the default behavior in the terminal version.
In text mode the value of PRETTYPRINT determines if the output is linear or in a more
readable 2D form.

Typeset

The output is in typesetting mode. This is the default print behavior in the notebook, if
no other options are given. The option is only kept for backward compatibility.

In typesetting mode the value of PRETTYPRINT is ignored.

Return Values

print returns the void object null() of type DOM_NULL.

Overloaded By

object1, object2
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Algorithms

The output order of sets differs from the internal order of sets, which can be obtained
via op. For this reordering in the output, the kernel calls the method DOM_SET::sort,
which takes the set as argument and returns a sorted list. The elements of the set are
then printed in the order given by this list.

See Also

MuPAD Domains
DOM_FUNC_ENV

MuPAD Functions
DIGITS | doprint | expose | expr2text | finput | fprint | fread | funcenv
| input | Pref::floatFormat | Pref::keepOrder | Pref::trailingZeroes |
PRETTYPRINT | protocol | read | strprint | TEXTWIDTH | write

1-1581



1 The Standard Library

->, -->, proc, name, option, local, begin, end_proc,
procname

Define a procedure

Syntax

( x1, x2, … ) -> body

proc(

     x1 <= default1> <: type1>,

     x2 <= default2> <: type2>,

     ...

    ) <: returntype>

  <name pname;>

  <option option1, option2, …>

  <local local1, local2, …>

  <save global1, global2, …>

begin

   body

end_proc

( x1, x2, … ) --> body

_procdef(, …)

Description

proc - end_proc defines a procedure.

Procedures f := proc(x1, x2, ...) ... end_proc may be called like a system
function in the form f(x1, x2, ...). The return value of this call is the value of the
last command executed in the procedure body (or the value returned by the body via the
function return).

The procedure declaration (x1, x2, ...) -> body is equivalent to proc(x1,
x2, ...) begin body end_proc. It is useful for defining simple procedures that
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do not need local variables. E.g., f := x -> x^2 defines the mathematical function
. If the procedure uses more than one parameter, use brackets as in f := (x,

y) -> x^2 + y^2. Cf. “Example 1” on page 1-1586.

The procedure declaration (x1, x2, ...) --> body is equivalent to
fp::unapply(body, x1, x2, ...). The difference from the other definitions is that
body is evaluated before defining the procedure. Cf. “Example 2” on page 1-1586.

Note: The evaluation of body must not contain references to parameters or local
variables of an outer procedure.

A MuPAD procedure may have an arbitrary number of parameters. For each parameter,
a default value may be specified. This value is used if no actual value is passed when the
procedure is called. E.g.,

f := proc(x = 42) begin body end_proc

defines the default value of the parameter x to be 42. The call f() is equivalent to
f(42). Cf. “Example 3” on page 1-1587.

For each parameter, a type may be specified. This invokes an automatic type checking
when the procedure is called. E.g.,

f := proc(x : DOM_INT) begin body end_proc

restricts the argument x to integer values. If the procedure is called with an argument
of a wrong data type, the evaluation is aborted with an error message. Cf. “Example 4”
on page 1-1588. Checking the input parameters should be a standard feature of every
procedure. See Testing Arguments.

Also an automatic type checking for the return value may be implemented specifying
returntype. Cf. “Example 4” on page 1-1588.

With the keyword name, a name may be defined for the procedure, e.g.,

f := proc(...) name myName; begin body end_proc.

There is a special variable procname associated with a procedure which stores its
name. When the body returns a symbolic call procname(args()), the actual name is
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substituted. This is the name defined by the optional name entry. If no name entry is
specified, the first identifier the procedure has been assigned to is used as the name, i.e.,
f in this case. Cf. “Example 5” on page 1-1588.

With the keyword option, special features may be specified for a procedure:

• escape

Must be used if the procedure creates and returns a new procedure which accesses
local values of the enclosing procedure. Cf. “Example 6” on page 1-1589. This option
should only be used if necessary. Also refer to Pref::warnDeadProcEnv.

• hold

Prevents the procedure from evaluating the actual parameters it is called with. See
“Example 7” on page 1-1590.

• noDebug

Prevents the MuPAD source code debugger from entering this procedure. Also refer to
Pref::ignoreNoDebug. Cf. “Example 8” on page 1-1591.

• noFlatten

Prevents flattening of sequences passed as arguments of the procedure. See “Example
9” on page 1-1591.

• remember

Instructs the procedure to store each computed result in a so-called remember table.
When this procedure is called later with the same input parameters, the result is read
from this table and needs not be computed again.

This may speed up, e.g., recursive procedures drastically. Cf. “Example 10” on page
1-1592. However, the remember table may grow large and use a lot of memory.
Furthermore, the usefulness of this function is very limited in the light of properties—
identification of “the same input parameters” does not depend on assumptions on
identifiers or global variables such as DIGITS and ORDER, so the returned result may
not be compatible with new assumptions. Use of prog::remember instead of this
option is highly recommended for any function accepting symbolic input.

• noExpose

Instructs MuPAD to hide the procedure body from the user. Note that this prevents
debugging the procedure, too. Cf. “Example 15” on page 1-1597.
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With the keyword local, the local variables of the procedure are specified, e.g.,

f := proc(...) local x, y; begin body end_proc.

Cf. “Example 11” on page 1-1594.

Local variables cannot be used as “symbolic variables” (identifiers). They must be
assigned values before they can be used in computations.

Note that the names of global MuPAD variables such DIGITS, READPATH etc. should not
be used as local variables. Also refer to the keyword save.

With the keyword save, a local context for global MuPAD variables is created, e.g.,

f := proc(...) save DIGITS; begin DIGITS := newValue; ... end_proc.

This means that the values these variables have on entering the procedure are restored
on exiting the procedure. This is true even if the procedure is exited because of an error.
Cf. “Example 12” on page 1-1594.

One can define procedures that accept a variable number of arguments. E.g., one may
declare the procedure without any formal parameters. Inside the body, the actual
parameters the procedure is called with may be accessed via the function args. Cf.
“Example 13” on page 1-1596.

Calling a procedure name f, say, usually does not print the source code of the body to the
screen. Use expose(f) to see the body. Cf. “Example 14” on page 1-1596.

The environment variable MAXDEPTH limits the “nesting depth” of recursive procedure
calls. The default value is MAXDEPTH = 500. Cf. “Example 10” on page 1-1592.

If a procedure is a domain slot, the special variable dom contains the name of the domain
the slot belongs to. If the procedure is not a domain slot, the value of dom is NIL.

Instead of end_proc, also the keyword end can be used.

The imperative declaration proc - end_proc internally results in a call of the kernel
function _procdef. There is no need to call _procdef directly.

When evaluating a procedure, MuPAD parses the entire procedure first, and only then
executes it. If you want to introduce a new syntax (for example, define a new operator),
do it outside a procedure. See “Example 16” on page 1-1598.
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Examples

Example 1

Simple procedures can be generated with the “arrow operator” ->:

f := x -> x^2 + 2*x + 1:

f(x), f(y), f(a + b), f(1.5)

f := n -> isprime(n) and isprime(n + 2):

f(i) $ i = 11..18

The following command maps an “anonymous” procedure to the elements of a list:

map([1, 2, 3, 4, 5, 6], x -> x^2)

delete f:

Example 2

The declaration of procedures with the “arrow operator” is a powerful tool. In some
situations, however, it results in potentially unexpected results:

f := x -> sin(x^2)

g := x -> f'(x)
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The reason is simple: The body of a procedure definition is not evaluated at the time of
definition. For those occasions where evaluation is desired, the long version of the arrow
operator should be used:

g := x --> f'(x)

Of course, in this example, there is an even shorter way:

g := f'

Example 3

The declaration of default values is demonstrated. The following procedure uses the
default values if the procedure call does not provide all parameter values:

f := proc(x, y = 1, z = 2) begin [x, y, z] end_proc:

f(x, y, z), f(x, y), f(x)

No default value was declared for the first argument. A warning is issued if this
argument is missing:

f()

Warning: Uninitialized variable 'x' is used.

  Evaluating: f

delete f:
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Example 4

The automatic type checking of procedure arguments and return values is demonstrated.
The following procedure accepts only positive integers as argument:

f := proc(n : Type::PosInt) begin n! end_proc:

An error is raised if an unsuitable parameter is passed:

f(-1)

Error: The object '-1' is incorrect. The type of argument number 1 must be 'Type::PosInt'.

  Evaluating: f

Error: Wrong type of 1. argument (type 'Type::PosInt'

expected,        got argument '-1');   Evaluating: f 

In the following procedure, automatic type checking of the return value is invoked:

f := proc(n : Type::PosInt) : Type::Integer

begin 

  n/2 

end_proc:

An error is raised if the return value is not an integer:

f(3)

Error: The return value '3/2' is incorrect. The type of the return value must be 'Type::Integer'.

  Evaluating: f

Error: Wrong type of return value (type 'Type::Integer'

expected,        value is '3/2');   Evaluating: f 

delete f:

Example 5

The name entry of procedures is demonstrated. A procedure returns a symbolic call to
itself by using the variable procname that contains the current procedure name:

f := proc(x)

begin

  if testtype(x,Type::Numeric) 
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    then return(float(1/x))

    else return(procname(args()))

  end_if

end_proc:

f(x), f(x + 1), f(3), f(2*I)

Also error messages use this name:

f(0)

Error: Division by zero. [_invert]

  Evaluating: f

If the procedure has a name entry, this entry is used:

f := proc(x)

name myName;

begin

  if testtype(x,Type::Numeric) 

    then return(float(1/x))

    else return(procname(args()))

  end_if

end_proc:

f(x), f(x + 1), f(3), f(2*I)

f(0)

Error: Division by zero. [_invert]

  Evaluating: myName

delete f:

Example 6

The option escape is demonstrated. This option must be used if the procedure returns
another procedure that references a formal parameter or a local variable of the
generating procedure:
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f := proc(n) 

begin 

  proc(x) begin x^n end_proc

end_proc:

Without the option escape, the formal parameter n of f leaves its scope: g := f(3)
references n internally. When g is called, it cannot evaluate n to the value 3 that n had
inside the scope of the function f:

g := f(3): g(x)

Warning: Uninitialized variable 'unknown' is used.

  Evaluating: g

Error: The operand is invalid. [_power]

  Evaluating: g

The option escape instructs the procedure f to deal with variables escaping the local
scope. Now, the procedure g := f(3) references the value 3 rather than the formal
parameter n of f, and g can be executed correctly:

f := proc(n) 

option escape;

begin  

  proc(x) begin x^n end_proc 

end_proc:

g := f(3): g(x), g(y), g(10)

delete f, g:

Example 7

The option hold is demonstrated. With hold, the procedure sees the actual parameter
in the form that was used in the procedure call. Without hold, the function only sees the
value of the parameter:

f := proc(x) option hold; begin x end_proc:

g := proc(x) begin x end_proc:

x := PI/2: 
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f(sin(x) + 2) = g(sin(x) + 2), f(1/2 + 1/3) = g(1/2 + 1/3)

Procedures using option hold can evaluate the arguments with the function context:

f := proc(x) option hold; begin x = context(x) end_proc:

f(sin(x) + 2), f(1/2 + 1/3)

delete f, g, x:

Example 8

The option noDebug is demonstrated. The debug command starts the debugger which
steps inside the procedure f. After entering the debugger command c (continue), the
debugger continues the evaluation:

f := proc(x) begin x end_proc: debug(f(42))

Activating debugger...   #0 in f($1=42) at

/tmp/debug0.556:4 mdx> c Execution completed.                 

               42 

With the option noDebug, the debugger does not step into the procedure:

f := proc(x) option noDebug; begin x end_proc: debug(f(42))

Execution completed.                      

          42 

delete f:

Example 9

Create a procedure that accepts two arguments and returns a table containing the
arguments:

f := proc(x, y) begin table(x = y) end_proc:
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The parameters x, y of the procedure f form a sequence. If you call this procedure for
the sequence (a, b) and a variable c, MuPAD flattens the nested sequence ((a, b),
c) into (a, b, c). The procedure f accepts only two arguments. Thus, it uses a and b,
and ignores c:

f((a, b), c)

When you use the noFlatten option, MuPAD does not flatten the arguments of the
procedure:

g := proc(x, y) option noFlatten; begin table(x = y) end_proc:

g((a, b), c)

For further computations, delete f and g:

delete f, g:

Example 10

The option remember is demonstrated. The print command inside the following
procedure indicates if the procedure body is executed:

f:= proc(n : Type::PosInt)

option remember;

begin

   print("computing ".expr2text(n)."!");

   n!

end_proc:

f(5), f(10)

1-1592



 ->, -->, proc, name, option, local, begin, end_proc, procname

When calling the procedure again, all values that were computed before are taken from
the internal “remember table” without executing the procedure body again:

f(5)*f(10) + f(15)

option remember is used in the following procedure which computes the Fibonacci
numbers F(0) = 0, F(1) = 1, F(n) = F(n - 1) + F(n - 2) recursively:

f := proc(n : Type::NonNegInt)

option remember;

begin

   if n = 0 or n = 1 then return(n) end_if;

   f(n - 1) + f(n - 2)

end_proc:

f(123)

Due to the recursive nature of f, the arguments are restricted by the maximal recursive
depth (see MAXDEPTH):

f(1000)

Error: Recursive definition: the maximal depth for nested procedure calls is reached.

  Evaluating: f

Without optionremember, the recursion is rather slow:

f := proc(n : Type::NonNegInt)

begin

   if n = 0 or n = 1 then return(n) end_if;

   f(n - 1) + f(n - 2)

end_proc:
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f(28)

delete f:

Example 11

We demonstrate the use of local variables:

f := proc(a)

local x, y;

begin

  x := a^2; 

  y := a^3;

  print("x, y" = (x, y));

  x + y

end_proc:

The local variables x and y do not coincide with the global variables x, y outside the
procedure. The call to f does not change the global values:

x := 0: y := 0: f(123), x, y

delete f, x, y:

Example 12

The save declaration is demonstrated. The following procedure changes the environment
variable DIGITS internally. Because of save DIGITS, the original value of DIGITS is
restored after return from the procedure:

myfloat := proc(x, digits)

save DIGITS;

begin

  DIGITS := digits;
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  float(x);

end_proc:

The current value of DIGITS is:

DIGITS

With the default setting DIGITS = 10, the following float conversion suffers from
numerical cancellation. Due to the higher internal precision, myfloat produces a more
accurate result:

x := 10^20*(PI - 21053343141/6701487259): 

float(x), myfloat(x, 20)

The value of DIGITS was not changed by the call to myfloat:

DIGITS

The following procedure needs a global identifier, because local variables cannot be used
as integration variables in the int function. Internally, the global identifier x is deleted
to make sure that x does not have a value:

f := proc(n)

save x;

begin

  delete x;

  int(x^n*exp(-x), x = 0..1)

end_proc:

x := 3: f(1), f(2), f(3)

Because of save x, the previously assigned value of x is restored after the integration:
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x

delete myfloat, x, f:

Example 13

The following procedure accepts an arbitrary number of arguments. It accesses the actual
parameters via args, puts them into a list, reverses the list via revert, and returns its
arguments in reverse order:

f := proc()

local arguments;

begin

   arguments := [args()];

   op(revert(arguments))

end_proc:

f(a, b, c)

f(1, 2, 3, 4, 5, 6, 7)

delete f:

Example 14

Use expose to see the source code of a procedure:

f := proc(x = 0, n : DOM_INT)

begin 

  sourceCode;

end_proc
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expose(f)

proc(x = 0, n : DOM_INT)

  name f;

begin

  sourceCode

end_proc

delete f:

Example 15

The option noExpose prevents users from reading the definition of a procedure:

f := proc(a)

  option noExpose;

begin

  print(sin(a));

  if is(a>1)=TRUE then

    cos(a)

  else

    cos(a + 2)

  end_if

end_proc

f(x), f(0), f(3)

expose(f)
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proc(a)

  name f;

  option noDebug, noExpose;

begin

  /* Hidden */

end_proc

As you can see, setting option noExpose implicitly sets the option noDebug, too.

For more information on the intended use of this option, refer to the documentation of
write.

Example 16

When you evaluate a procedure, MuPAD parses the entire procedure, and only then
executes it. Thus, you cannot define and use a new operator inside a procedure. For
example, when MuPAD parses this procedure, it does not recognize the new operator <<.
The reason is that the procedure is not executed yet, and therefore, the new operator is
not defined:

f := proc(A, B)

begin

  bitshiftleft := (a, b) -> a * 2^b:

  operator("<<", bitshiftleft, Binary, 950):

  C := A<<B;

end_proc:

Error: Invalid input. 'expression' is expected. [line 6, col 10]

Define the operator << on the interactive level:

bitshiftleft := (a, b) -> a * 2^b:

operator("<<", bitshiftleft, Binary, 950):

Now you can use << inside procedures on the interactive level:

f := proc(A, B)

begin 

  C := A<<B;

end_proc:
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f(2, 1)

m<<n

Parameters

x1, x2, …

The formal parameters of the procedure: identifiers

default1, default2, …

Default values for the parameters: arbitrary MuPAD objects

type1, type2, …

Admissible types for the parameters: type objects as accepted by the function testtype

returntype

Admissible type for the return value: a type object as accepted by the function testtype

pname

The name of the procedure: an expression

option1, option2, …

Available options are: escape, hold, noDebug, noExpose, noFlatten, remember

local1, local2, …

The local variables: identifiers

global1, global2, …

Global variables: identifiers
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body

The body of the procedure: an arbitrary sequence of statements

Return Values

Procedure of type DOM_PROC.

See Also

MuPAD Functions
args | context | debug | expose | fp::unapply | hold | MAXDEPTH | newDomain
| Pref::ignoreNoDebug | Pref::typeCheck | Pref::warnDeadProcEnv | return
| save | testargs

1-1600



 product

product
Definite and indefinite products

Syntax
product(f, i)

product(f, i = a .. b)

product(f, i = RootOf(p, <x>))

product(f, i in RootOf(p, <x>))

product(f, i in {x1, x2, …})

Description

product(f, i) computes the indefinite product of f(i) with respect to i, i.e., a closed
form g such that .

product(f, i = a..b) tries to find a closed form representation of the product
.

product (f, i = RootOf(p, x)) computes the product of f(i) over the roots of the
polynomial p.

product(f, i in { x1, x2, …}) computes the product .

product serves for simplifying symbolic products. It should not be used for multiplying a
finite number of terms: if a and b are integers of type DOM_INT, the call _mult(f $ i =
a..b) is more efficient than product(f, i = a..b).

product(f, i) computes the indefinite product of f with respect to i. This is an
expression g such that .
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It is implicitly assumed that i runs through integers only.

product(f, i = a..b) computes the definite product with i running from a to b. It is
implicitly assumed that a ≤ b; it is an error if this is inconsistent.

a and b must not be numbers other than integers.

If b-a is an integer, the explicit product f(a) f(a + 1) … f(b) is returned if it has no more
than 1000 factors.

product (f, i = RootOf(p, x)) computes the definite product with i running
through the roots of the polynomial p in x according to their multiplicity, i.e., the number
of factors is equal to the degree of p.

The calls product (f, i = RootOf(p, x)) and product (f, i in RootOf(p,
x)) are equivalent.

The system returns a symbolic product call if it cannot compute a closed form
representation of the product.

Examples

Example 1

Each of the following two calls computes the product 1 2 3 4 5:

product(i, i = 1..5) = _mult(i $ i = 1..5)

However, using _mult is usually more efficient when the boundaries are integers of type
DOM_INT.

There is a closed form of this definite product from 1 to n:

product(i, i = 1..n)
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Since the upper boundary is a symbolic identifier, _mult cannot handle this product:

_mult(i $ i = 1..n)

The corresponding indefinite product is:

product(i, i)

The indefinite and the definite product of 2 i + 1 are:

product(2*i + 1, i)

product(2*i + 1, i = 1..n)

The boundaries may be symbolic expressions or  as well:

product(i^2/(i^2 - 1), i = 2..infinity)

The system cannot find closed forms of the following two products and returns symbolic
product calls:

delete f: product(f(i), i)
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product((1 + 2^(-i)), i = 1..infinity)

An approximation can be computed numerically via float:

float(%)

Alternatively, you can call numeric::product directly. This is usually more efficient,
since it skips the symbolic computations performed by product:

numeric::product((1 + 2^(-i)), i = 1..infinity)

Example 2

Some products over the roots of a polynomial:

product(1 + 1/x, x = RootOf(x^2 - 5*x + 6))

product(r+c, r = RootOf(x^3 + a*x^2 + b*x + c, x))

The multiplicity of roots is taken into account:

product(x+2, x in RootOf(x^5))
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MuPAD finds closed forms for products of rational expressions. In other cases, a symbolic
call to product is returned:

product(sin(r), r = RootOf(x^2 - PI^2/4, x))

An approximation can be computed numerically via float:

float(%)

Example 3

Some products over elements of a set:

product(x+2, x in {2,4,8})

product(a*x, x in {3, b, 5})

Identical objects appear only once in a set. Therefore, the second a in the following
example has no effect on the result:

product(-x, x in {a,a,7,b})
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Parameters

f

An arithmetical expression depending on i

i

The product index: an identifier or indexed indentifier

a, b

The boundaries: arithmetical expressions

p

A polynomial expression in x

x

Indeterminate

Return Values

arithmetical expression.

Algorithms

The product over the roots of a polynomial is computed via polylib::resultant.

See Also

MuPAD Functions
* | _mult | numeric::product | sum
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protect
Protect an identifier

Syntax
protect(x, <ProtectLevelError | ProtectLevelWarning | ProtectLevelNone>)

Description

protect(x) protects the identifier x.

protect(x, ProtectLevelError) sets full write-protection for the identifier. Any
subsequent attempt to assign a value to the identifier will lead to an error.

protect(x, ProtectLevelWarning) sets a “soft” protection. Any subsequent
assignment to the identifier results in a warning message. However, the identifier will be
assigned a value, anyway.

protect(x) is equivalent to protect(x, ProtectLevelWarning).

protect(x, ProtectLevelNone) removes any protection from the identifier. This call
is equivalent to unprotect(x).

Note: Overwriting protected identifiers such as the names of MuPAD functions may
damage your current session.

Examples

Example 1

The following call protects the identifier important with the protection level
“ProtectLevelWarning”:

protect(important, ProtectLevelWarning)
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The identifier can still be overwritten:

important := 1

Warning: The protected variable 'important' is overwritten. [_assign]

We protect the identifier with the level “ProtectLevelError”:

protect(important, ProtectLevelError)

Now, it is no longer possible to overwrite important:

important := 2

Error: The identifier 'important' is protected. [_assign]

The identifier keeps its previous value:

important

In order to overwrite this value, we must unprotect important:

protect(important, ProtectLevelNone)

important := 2
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The identifier is protected again with the default level “ProtectLevelWarning“:

protect(important)

important := 1

Warning: The protected variable 'important' is overwritten. [_assign]

unprotect(important): delete important:

Example 2

protect does not evaluate its first argument. Here the identifier x can still be
overwritten, while its value – which is the identifier y – remains write protected:

protect(y, ProtectLevelError):  x := y:  protect(x):  x := 1

Warning: The protected variable 'x' is overwritten. [_assign]

y := 2

Error: The identifier 'y' is protected. [_assign]

unprotect(x):  unprotect(y):  delete x, y:

Parameters

x

An identifier
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Options

ProtectLevelError, ProtectLevelNone, ProtectLevelWarning

The level of protection to set. The default value is ProtectLevelWarning.

Return Values

Previous protection level of x: either ProtectLevelError or ProtectLevelWarning or
ProtectLevelNone.

Algorithms

protect does not evaluate its first argument. This way identifiers can be protected that
have been assigned a value.

Identifiers starting with a # are implicitly protected and cannot be assigned a value nor
receive assumptions.

See Also

MuPAD Functions
:= | unprotect
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protocol
Create a protocol of a session

Syntax
protocol(filename | n, <InputOnly | OutputOnly>)

protocol()

Description

protocol(file) starts a protocol of the current MuPAD terminal session.

protocol() stops the protocol.

protocol writes a protocol of input commands and corresponding MuPAD output of a
terminal session to a text file.

When used from the MuPAD Notebook app, protocol is disabled and raises an error.

The file may be specified directly by its name. This either creates a new file or overwrites
an existing file. protocol opens and closes the file automatically.

If the filename ends in “.gz”, MuPAD will write a gzip-compressed text file.

If WRITEPATH does not have a value, protocol interprets the file name as a pathname
relative to the “working directory.”

Note that the meaning of “working directory” depends on the operating system. On
Microsoft Windows systems and on Mac OS X systems, the “working directory” is the
folder where MuPAD is installed. On UNIX systems, it is the current working directory
in which MuPAD was started; when started from a menu or desktop item, this is
typically the user's home directory.

Also absolute path names are processed by protocol.

Alternatively, the file may be specified by a file descriptor n. In this case, the file must
have been opened via fopen(Text, filename, Write) or fopen(Text, filename,
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Append). This returns the file descriptor as an integer n. Note that fopen(filename)
opens the file in read-only mode. A subsequent protocol command to this file causes an
error.

The file is not closed automatically by protocol() and must be closed by a subsequent
call to fclose.

A call of protocol without arguments terminates a running protocol and closes the
corresponding file if it has been opened by protocol. Closing the protocol file with
fclose also terminates the protocol.

If a new protocol is started while a protocol is running, then the old one is terminated
and the corresponding file is closed.

Environment Interactions

The function is sensitive to the environment variable WRITEPATH. If this variable has a
value, then the protocol file is created in the corresponding directory. Otherwise, the file
is created in the “current working directory.”

Examples

Example 1

We open a text file test in write mode with fopen:

n := fopen(Text, "test", Write):

A protocol is written into this file:

protocol(n):

1 + 1, a/b;

solve(x^2 = 2);

protocol():

fclose(n):

The file now has the following content:
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1 + 1, a/b;

     a

  2, -

     b

solve(x^2 = 2);

         1/2           1/2

  {[x = 2   ], [x = - 2   ]}

protocol():

Example 2

The protocol file is opened directly by protocol. Only input is protocolled:

protocol("test", InputOnly):

1 + 1, a/b;

solve(x^2 = 2);

protocol():

The file now has the following content:

1 + 1, a/b;

solve(x^2 = 2);

protocol():

Example 3

The protocol file is opened directly by protocol. Only output is protocolled:

protocol("test", OutputOnly):

1 + 1, a/b;

solve(x^2 = 2);

protocol():

The file now has the following content:

     a

  2, -

     b
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         1/2           1/2

  {[x = 2   ], [x = - 2   ]}

Parameters

filename

The name of a file: a character string

n

A file descriptor provided by fopen: a positive integer

Options

InputOnly

Only input is protocolled

The protocol file only contains the input lines. All output is omitted.

OutputOnly

Only output is protocolled

The protocol file only contains the output lines. All input is omitted.

Return Values

Void object of type DOM_NULL.

See Also

MuPAD Functions
fclose | finput | fname | fopen | fprint | fread | ftextinput | pathname |
print | read | READPATH | write | WRITEPATH

1-1614



 psi

psi
Digamma/polygamma function

Syntax
psi(x)

psi(x, n)

Description

psi(x) represents the digamma function, i.e., the logarithmic derivative  of

the gamma function.

psi(x, n) represents the n-th polygamma function, i.e., the n-th derivative .

psi(x, 0) is equivalent to psi(x).

The digamma/polygamma function is defined for all complex arguments x apart from the
singular points 0, - 1, - 2, ….

If x is a floating-point value, then a floating point value is returned.

Simplifications are implemented for rational numbers x. In particular, if x = numer(x)/
k with denominators k = 1, 2, 3, 4 or 6, explicit results expressed in terms of EULER,
PI, and ln are returned. In general, for any rational x with |x| (n + 1) ≤ 6
 Pref::autoExpansionLimit() = 6000 (see Pref::autoExpansionLimit), the
functional equation

,

is used to obtain a result with an argument x from the interval . Use
expand(psi(x, n)) to obtain such a shift of the argument for larger values of x.
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Some explicit formulas are implemented including

,

,

,

.

The special values ψ(∞) = ∞ and  for n > 0 are implemented.

For all other arguments, a symbolic function call of psi is returned.

The float attribute of the digamma function psi(x) is a kernel function, i.e., floating-
point evaluation is fast. The float attribute of the polygamma function psi(x, n) with
n > 0 is a library function. Note that psi(float(x)) and psi(float(x), n) rather
than float(psi(x)) and float(psi(x, n)) should be used for float evaluation
because, for rational values of x, the computation of the symbolic result psi(x), psi(x,
n) may be costly. Further, the float evaluation of the symbolic result may be numerically
unstable.

The expand attribute uses the functional equation

,

the nth derivative of the reflection formula

,

and the Gauß multiplication formula for  when k is a positive integer, to rewrite
psi(x, n). For numerical x, the functional equation is used to shift the argument to the
range 0 < x < 1. Cf. examples “Example 3” on page 1-1618 and  “Example 4” on page
1-1618.
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Environment Interactions

When called with a floating-point value x, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

psi(-3/2), psi(4, 1), psi(3/2, 2)

psi(x + sqrt(2), 4), psi(infinity, 5)

Floating point values are computed for floating-point arguments:

psi(-5.2), psi(1.0, 3), psi(2.0 + 3.0*I, 10)

Example 2

psi is singular for nonpositive integers:

psi(-2)

Error: Singularity. [psi]
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Example 3

For positive integers and rational numbers x with denominators 2, 3, 4 and 6,
respectively, the result is expressed in terms of EULER, PI, ln, and zeta if |x| (n +
1) ≤ 6 Pref::autoExpansionLimit() = 6000:

Pref::autoExpansionLimit()

psi(-5/2), psi(-3/2, 1), psi(13/3, 2), psi(11/6, 4)

For larger arguments, use expand to obtain such expressions:

psi(1001, 5)

expand(%)

    6

8 PI

-----

  63

   - 133533.../1093808...

Example 4

The functions diff, expand, float, limit, and series handle expressions involving
psi:

diff(psi(x^2 + 1, 3), x), float(ln(3 + psi(sqrt(PI))))
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expand(psi(2*x + 3, 2))

limit(x*psi(x), x = 0), limit(psi(x, 3), x = infinity)

series(psi(x), x = 0), series(psi(x, 3), x = infinity, 3)

Parameters

x

An arithmetical expression

n

A nonnegative integer

Return Values

Arithmetical expression.

Overloaded By

x
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See Also

MuPAD Functions
beta | binomial | fact | gamma | harmonic | lngamma | zeta
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radsimp
Simplify radicals in arithmetical expressions

Syntax
radsimp(z)

Description

radsimp(z) tries to simplify the radicals in the expression z. The result is
mathematically equivalent to z.

radsimp and simplifyRadical are equivalent.

Examples

Example 1

Simplify these constant expressions with square roots and higher order radicals:

radsimp(3*sqrt(7)/(sqrt(7) - 2)),

radsimp(sqrt(5 + 2*sqrt(6)));

radsimp(sqrt(5*sqrt(3) + 6*sqrt(2))),

radsimp(sqrt(3 + 2*sqrt(2)))

radsimp((1/2 + 1/4*3^(1/2))^(1/2))
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radsimp((5^(1/3) - 4^(1/3))^(1/2))

radsimp(sqrt(3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))

             + 14))

radsimp(2*2^(1/4) + 2^(3/4) - (6*2^(1/2) + 8)^(1/2))

radsimp(sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))

             - sqrt(10 + 6*sqrt(3)))

Example 2

Create the following expression and then simplify it using radsimp:

x := sqrt(3)*I/2 + 1/2: y := x^(1/3) + x^(-1/3): z := y^3 - 3*y

radsimp(z)

delete x, y, z:

Example 3

Use radsimp to simplify these arithmetical expressions containing variables:

1-1622



 radsimp

z := x/(sqrt(3) - 1) - x/2

radsimp(z) = expand(radsimp(z))

delete z:

Example 4

Use radsimp to simplify nested radicals. When simplifying nested radicals, radsimp
tries to reduce the nesting depth:

radsimp((6*2^(1/2) + 8)^(1/2));

radsimp(((32/5)^(1/5) - (27/5)^(1/5))^(1/3));

radsimp(sqrt((3+2^(1/3))^(1/2) * (4-2^(1/3))^(1/2)))

Parameters

z

An arithmetical expression
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Return Values

Arithmetical expression.

References

Borodin A., Fagin R., Hopcroft J.E., and Tompa M.: Decreasing the Nesting Depth of
Expressions Involving Square Roots, JSC 1, 1985, pp. 169-188.

See Also

MuPAD Functions
combine | ifactor | normal | rectform | simplify | simplifyRadical

More About
• “Manipulate Expressions”
• “Choose Simplification Functions”
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simplifyRadical
Simplify radicals in arithmetical expressions

Syntax
simplifyRadical(z)

Description

simplifyRadical(z) tries to simplify the radicals in the expression z. The result is
mathematically equivalent to z.

radsimp and simplifyRadical are equivalent.

Examples

Example 1

Simplify these constant expressions with square roots and higher order radicals:

simplifyRadical(3*sqrt(7)/(sqrt(7) - 2)),

simplifyRadical(sqrt(5 + 2*sqrt(6)));

simplifyRadical(sqrt(5*sqrt(3) + 6*sqrt(2))),

simplifyRadical(sqrt(3 + 2*sqrt(2)))

simplifyRadical((1/2 + 1/4*3^(1/2))^(1/2))
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simplifyRadical((5^(1/3) - 4^(1/3))^(1/2))

simplifyRadical(sqrt(3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))

             + 14))

simplifyRadical(2*2^(1/4) + 2^(3/4) - (6*2^(1/2) + 8)^(1/2))

simplifyRadical(sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3))

             - sqrt(10 + 6*sqrt(3)))

Example 2

Create the following expression and then simplify it using simplifyRadical:

x := sqrt(3)*I/2 + 1/2: y := x^(1/3) + x^(-1/3): z := y^3 - 3*y

simplifyRadical(z)

delete x, y, z:

Example 3

Use simplifyRadical to simplify these arithmetical expressions containing variables:
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z := x/(sqrt(3) - 1) - x/2

simplifyRadical(z) = expand(radsimp(z))

delete z:

Example 4

Use simplifyRadical to simplify nested radicals. When simplifying nested radicals,
simplifyRadical tries to reduce the nesting depth:

simplifyRadical((6*2^(1/2) + 8)^(1/2));

simplifyRadical(((32/5)^(1/5) - (27/5)^(1/5))^(1/3));

simplifyRadical(sqrt((3+2^(1/3))^(1/2) * (4-2^(1/3))^(1/2)))

Parameters

z

An arithmetical expression
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Return Values

Arithmetical expression.

Algorithms

For constant algebraic expressions, simplifyRadical constructs a tower of algebraic
extensions of ℚ using the domain Dom::AlgebraicExtension. It tries to return the
simplest possible form.

This function is based on an algorithm described in Borodin, Fagin, Hopcroft and Tompa,
“Decreasing the Nesting Depth of Expressions Involving Square Roots”, JSC 1, 1985,
pp. 169-188.In some special cases, an algorithm based on Landau, ”How to tangle with a
nested radical”, The Mathematical Intelligencer 16, 1994, no. 2, pp. 49-55, is used.

See Also

MuPAD Functions
combine | ifactor | normal | radsimp | rectform | simplify

More About
• “Manipulate Expressions”
• “Choose Simplification Functions”
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random
Generate random integer numbers

Syntax
random()

random(n1 .. n2)

random(n)

Description

random() returns a random integer number between 0 and 1012.

random(n1..n2) returns a procedure that generates random integers between n1 and
n2.

The calls random() return uniformly distributed random integers between 0 and
999999999988 (approximately 1012).

r := random(n1..n2) produces a random number generator r. Subsequent calls r()
generate uniformly distributed random integers between n1 and n2.

random(n) is equivalent to random(0 .. n - 1).

The global variable SEED is used for initializing or changing the sequence of random
numbers. It may be assigned any non-zero integer. The value of SEED fixes the sequence
of random numbers. This may be used to reset random generators and reproduce random
sequences.

SEED is set to a default value when MuPAD is initialized. Thus, each time MuPAD is
started or re-initialized with the reset function, the random generators produce the
same sequence of numbers.

To get a non-predictable initial value, make it dependent on the current time. See
“Example 5” on page 1-1632.
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Several random generators produced by random may run simultaneously. All generators
make use of the same global variable SEED.

For producing uniformly distributed floating-points numbers, it is recommended to use
the faster function frandom instead. The stats library provides random generators with
various other distributions. Cf. “Example 4” on page 1-1631.

Environment Interactions

random as well as the random number generators created by it are sensitive to the
environment variable SEED.

random and the random number generators created by it change the environment
variable SEED on each call.

Examples

Example 1

The following call produces a sequence of random integers. Note that an index variable
i must be used in the construction of the sequence. A call such as random() $8 would
produce 8 copies of the same random value:

random() $ i = 1..8

The following call produces a “die” that is rolled 20 times:

die := random(1..6): die() $ i = 1..20

The following call produces a “coin” that produces “head” or “tail”:

coin := random(2): coin() $ i = 1..10
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subs(%, [0 = head, 1 = tail])

delete dice, coin:

Example 2

random is sensitive to the global variable SEED which is set and reset when MuPAD
is (re-)initialized. The seed may also be set by the user. Random sequences can be
reproduced by starting with a fixed SEED:

SEED := 1: random() $ i = 1..4

SEED := 1: random() $ i = 1..4

Example 3

random allows you to create several random number generators for different ranges of
numbers, and to use them simultaneously:

r1 := random(0..4): r2 := random(2..9): [r1(), r2()] $ i = 1..6

delete r1, r2:

Example 4

random can be used to build a random generator for uniformly distributed floating-point
numbers. The following generator produces such numbers between -1.0 and 1.0:
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r := float@random(-10^DIGITS..10^DIGITS)/10^DIGITS:

r() $ i = 1..12;

However, it is strongly recommended to use the much more efficient functions frandom
or stats::uniformRandom instead:

r := stats::uniformRandom(-1, 1, Seed = 10^10):

r() $ i = 1..12

delete r:

Example 5

Usually, random is used to generate experimental input or “random” examples. In these
cases, reproducibility is a good thing. However, on occasion a “more random” sequence is
desirable. The usual way to get a random seed in a program is to use the current system
time:

SEED := round(1e10*frandom(CurrentTime)())

1035804049

random(), random()

861209862222, 269921735546

Parameters

n1, n2

Integers with n1 < n2
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n

A positive integer

Return Values

random() returns a nonnegative integer. The calls random(n1..n2) and random(n)
return a procedure of type DOM_PROC.

Algorithms

random implements a linear congruence generator. The sequence of pseudo-random
numbers generated by calling random() over and over again is f(x), f(f(x)), …., where x
is the initial value of SEED and f is the function mapping x to a x mod m with suitable
integer constants a and m.

See Also

MuPAD Functions
frandom | stats::uniformRandom
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rationalize

Transform an expression into a rational expression

Syntax

rationalize(object, options)

Description

rationalize(object) transforms the expression object into an equivalent rational
expression by replacing non-rational subexpressions by newly generated variables.

By default, a rational expression is an expression that contains only sums, products,
powers with integer exponents, integers, rational numbers, and identifiers as
subexpressions.

The rationalize function returns a sequence (rat, subsSet). The rationalized
expression rat contains new variables. The set of substitutions subsSet expresses the
new variables by the old ones.

If the original expression contains subexpressions, the rationalize function can
rationalize or replace subexpressions or keep them in their original form. Use the options
DescendInto, ReplaceType, and StopOn to control the action rationalize takes for
particular types of subexpressions.

If FindRelations = ["exp", "_power", "sin"], the rationalize function
detects maximal number of algebraic dependencies.

If you call rationalize with any combination of the following three contradicting
options, the function chooses the option using the following priorities: ReplaceType,
StopOn, DescendInto. For example, if you specify the same type of subexpression with
StopOn and DescendInto, the rationalize function uses only the StopOn option
for subexpressions of the specified type. If you combine any of these options with the
ReplaceType option, rationalize uses only the ReplaceType option.
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Examples

Example 1

rationalize operates on single arithmetical expressions, lists, and sets of expressions:

rationalize(2*sqrt(3) + 0.5*x^3)

rationalize([(x - sqrt(2))*(x^2 + sqrt(3)),

             (x - sqrt(2))*(x - sqrt(3))])

Example 2

Use the ApproximateFloats option to replace all floating-point numbers with rational
numbers:

rationalize([0.4, 0.333, 0.74], ApproximateFloats)

If you use both ApproximateFloats and ReplaceTypes options, ApproximateFloats
does not apply to the types of subexpressions specified in ReplaceTypes:

rationalize(0.4*x^2 + sin(0.33/x),

                ApproximateFloats,

                ReplaceTypes={DOM_FLOAT})

Instead of specifying the value of ReplaceTypes as a sequence of types, you can specify
it as a function. The function must return TRUE or FALSE as a result. For example,
rationalize the same expression . This time, use the function F to

specify the type of subexpressions which you want to replace by variables:
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F := X -> testtype(X, DOM_FLOAT):

rationalize(0.4*x^2 + sin(0.33/x),

                ApproximateFloats,

                ReplaceTypes = F)

Example 3

By default, rationalize rationalizes sums, products, bases of integer powers, lists, and
sets:

rationalize(ln(sin(x)^2 + cos(x)*exp(x)))

The DescendInto option lets you specify the types of subexpressions that you want to
rationalize. Each type can be a domain type, a string as returned by the function type or
a Type object. Note that DescendInto overwrites the default types with the types that
you specify:

rationalize(ln(sin(x)^2 + cos(x)*exp(x)), DescendInto = {"ln"})

If you want to add new types of subexpressions to the default ones, define the value of
DescendInto as a procedure that specifies all required types explicitly. The procedure
must return TRUE or FALSE:

F := proc(X)

begin

  hastype(X, {"_plus", "_mult", DOM_SET, DOM_LIST, "ln"}) or

  (hastype(X, "_power") and hastype(op(X, 2), DOM_INT))

end:

rationalize(ln(sin(x)^2 + cos(x)*exp(x)), DescendInto = F)
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Example 4

Use the MinimalPolynomials option to find minimal polynomials of irrational
expressions:

rationalize(x^(7/6) + x^(3/2), MinimalPolynomials)

Example 5

Use Prefix = s, where s is a string, to specify the prefix for generated variables (the
default prefix is X):

rationalize(x^(7/6) + x^(3/2), Prefix = "ABC")

Example 6

Use the ReplaceHardToEval option to replace limits, sums, and integrals with
generated variables. Expressions with limits, sums, and integrals tend to be the most
computationally expensive:

rationalize(sum(exp(x)/(x^2 + 1), x) +

            limit(sin(cos(1/x))*cos(1/x), x),

                           ReplaceHardToEval)

Example 7

By default, rationalize avoids rationalization of integers, rational numbers, and
identifiers:
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rationalize(2*sqrt(3) + 0.5*x^3)

The DescendInto option lets you avoid rationalization of particular types of
subexpressions. Each type can be specified as a domain type, a string as returned by the
function type, or a Type object. For example, rationalize the same expression leaving the
subexpression x^3 (of the type "_power") unchanged:

rationalize(2*sqrt(3) + 0.5*x^3, StopOn = {"_power"})

Rationalize the same expression including all subexpressions. Keep floating-point
numbers, integers, and identifiers (do not replace them with generated variables):

rationalize(2*sqrt(3) + 0.5*x^3,

            StopOn = {DOM_FLOAT, DOM_INT, DOM_IDENT})

Note that StopOn overwrites the default types with the types that you specify. If you
want to add new types of subexpressions to the default ones, specify all the types
explicitly:

rationalize(2*sqrt(3) + 0.5*x^3,

            StopOn = {DOM_INT, DOM_IDENT, DOM_RAT, DOM_FLOAT})

rationalize(2*sqrt(3) + 0.5*x^3,

            StopOn = {DOM_INT, DOM_IDENT,

                      DOM_RAT, DOM_FLOAT,

                               "_power"})
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The StopOn option also can accept a function as its value. The function must return
TRUE or FALSE. For example, use generated variables to replace only subexpressions that
contain sin. Keep all other subexpressions intact:

F := X -> not hastype(X, "sin"):

rationalize(sin(x^2) + x^3 + exp(x) + 1/x, StopOn = F)

Example 8

Use the FindRelations option to detect algebraic dependencies between exponentials:

rationalize(exp(x/2) + exp(x/3), FindRelations = ["exp"])

Detect algebraic dependencies for different powers of the same base by specifying the
type "_power":

rationalize(x^(3/2) + x^(7/4), FindRelations = ["_power"])

Detect algebraic dependencies for trigonometric functions by specifying the type "sin"
or "cos":

rationalize(sin(x) + cos(x), FindRelations = ["sin"]);

rationalize(sin(x)^3 + cos(x)^3, FindRelations = ["cos"])
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Example 9

For nested exponentials, use the Recursive option to obtain a list of substitutions:

rationalize(exp(exp(x)), FindRelations = ["exp"], Recursive)

The option also works for trigonometric functions:

rationalize(sin(sin(x)), FindRelations = ["sin"], Recursive)

Example 10

The ShowDependencies option shows all original variables upon which each generated
variable depends:

rationalize(sin(x)^3, ShowDependencies)

Parameters

object

Any MuPAD object

Options

ApproximateFloats

When you use the ApproximateFloats option, the rationalize function replaces
floating-point numbers with rational numbers. By default, ApproximateFloats=
FALSE: the rationalize function replaces all floating-point numbers with the
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new variables. If you rationalize an expression using both ApproximateFloats
and StopOn options, StopOn does not prevent rationalization of floating-point
numbers in the specified subexpressions. If you rationalize an expression using both
ApproximateFloats and ReplaceTypes options, ApproximateFloats does not apply
to the types of subexpressions specified in ReplaceTypes. See “Example 2” on page
1-1635.

DescendInto

When you use the DescendInto option, the rationalize function rationalizes all
subexpressions of the specified types. You can specify the value of this option as a set
(even if there is only one type) or a procedure that returns TRUE or FALSE. Each type can
be

• A domain type (such as DOM_INT, DOM_EXPR, and so on)
• A string as returned by the function type (such as "_plus", "_mult", "sin", and so

on)
• A Type object (Type::Boolean, Type::Equation, and so on)

By default, the rationalize function rationalizes the following types of
subexpresssions: sums, products, bases of integer powers, lists, and sets. When you
specify other types of subexpressions, rationalize uses them instead of the default
types. (DescendInto overwrites the default types with the types that you specify.) If
you want to extend the set of types of subexpressions retaining the default types, define
the value of DescendInto as a procedure that specifies all default and additional types
explicitly. See “Example 3” on page 1-1636.

FindRelations

When you use the FindRelations option, the rationalize function detects algebraic
dependencies for subexpressions of specified types. This option accepts the types of
subexpressions in the form of a list. The following types are available: "sin", "cos",
"exp", and "_power". By default, rationalize does not look for dependencies for
irrational subexpressions: FindRelations= [].

MinimalPolynomials

When you use the MinimalPolynomials option, the rationalize function returns
the minimal polynomials of irrational expressions. The function returns the rationalized
expression, the set of substitution equations, and minimal polynomials. By default,
MinimalPolynomials= FALSE. See “Example 4” on page 1-1637.
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Prefix

Use the Prefix option to specify the prefix for new variables generated by the
rationalize function. The value of this option must be a string. By default, Prefix=
"X". See “Example 5” on page 1-1637.

Recursive

When you use the Recursive option, the rationalize function recursively rationalizes
nested subexpressions, and returns a list of substitution equations. Each generated
variable in the returned list can depend on other variables in the list. By default,
Recursive= FALSE. See “Example 9” on page 1-1640.

ReplaceHardToEval

When you use the ReplaceHardToEval option, the rationalize function replaces
all limits, sums, and integrals by generated variables. Generally, this option allows
you to avoid most expensive rationalizations of sums, limits, and integrals. By default,
ReplaceHardToEval= FALSE. See “Example 6” on page 1-1637.

ReplaceTypes

When you use the ReplaceTypes option, the rationalize function replaces all
subexpressions of the specified types with generated variables. You can specify the value
of this option as a set (even if there is only one type) or a procedure that returns TRUE or
FALSE. Each type can be

• A domain type (such as DOM_INT, DOM_EXPR, and so on)
• A string as returned by the function type (such as "_plus", "_mult", "sin", and so

on)
• A Type object (Type::Boolean, Type::Equation, and so on)

This option allows you to specify and avoid most expensive rationalizations for your
particular expression. If you use this option in combination with ReplaceHardToEval,
the rationalize function uses generated variables to replace all limits, sums,
integrals, and the types that you specify. If ReplaceTypes specifies the same type
of subexpression as DescendInto, the ReplaceTypes option prevails. By default,
ReplaceTypes= {}.

Alternatively, specify the value of this option as a function that returns TRUE or FALSE.
See “Example 2” on page 1-1635.
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ShowDependencies

When you use the ShowDependencies option, the rationalize function replaces any
irrational subexpression containing the identifiers vars with an expression of the form
newvar(vars), showing the dependencies of the generated variables on the original
variables. By default, ShowDependencies= FALSE.

StopOn

When you use the StopOn option, the rationalize function does not rationalize the
specified types of subexpressions. You can specify the value of this option as a set (even if
there is only one type) or a function that returns TRUE or FALSE. Each type can be

• A domain type (such as DOM_INT, DOM_EXPR, and so on)
• A string as returned by the function type (such as "_plus", "_mult", "sin", and so

on)
• A Type object (Type::Boolean, Type::Equation, and so on)

By default, the rationalize function does not rationalize or replace integers, rational
numbers, and identifiers. When you specify other types of subexpressions, rationalize
uses them instead of the default types. (StopOn overwrites the default types with the
types that you specify.) If you want to extend the set of types of subexpressions retaining
the default types, specify StopOn = {DOM_INT, DOM_IDENT, DOM_RAT, extra
types}, where extra types are the additional types of subexpressions that you do not
want to rationalize. See “Example 7” on page 1-1637.

If StopOn specifies the same type of subexpression as DescendInto, the StopOn option
prevails.

StopOnConstants

When you use the StopOnConstants option, the rationalize function does not
rationalize the object of the type Type::Constant: numbers, strings, Boolean constants,
NIL, FAIL, PI, EULER, and CATALAN in the set Type::ConstantIdents. By default,
StopOnConstants= FALSE.

Return Values

Sequence consisting of the rationalized object and a set of substitution equations. If you
use the Recursive option, the rationalize function returns a list of substitution
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equations instead of a set. If you use the MinimalPolynomials option, the returned
value has a third argument: the minimal polynomials.

See Also

MuPAD Functions
indets | maprat | normal | rewrite | simplify | subs
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Re

Real part of an arithmetical expression

Syntax

Re(z)

Re(L)

Description

Re(z) returns the real part of z.

The intended use of Re is for constant arithmetical expressions. Especially for numbers,
of type DOM_INT, DOM_RAT, DOM_FLOAT, or DOM_COMPLEX, the real part is computed
directly and very efficiently.

Re can handle symbolic expressions. Properties of identifiers are taken into account. See
assume. An identifier without any property is assumed to be complex. See “Example 2”
on page 1-1646.

If Re cannot extract the whole real part of a symbolic expression z, then the
returned expression contains symbolic Re and Im calls. In such cases, try using the
rectform function. See “Example 3” on page 1-1646. Note that using rectform is
computationally expensive.

The Re function is automatically mapped to all entries of container objects, such as
arrays, lists, matrices, polynomials, sets, and tables.

Environment Interactions

This function is sensitive to properties of identifiers set via assume.
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Examples

Example 1

The real part of 2 e1 + i is:

Re(2*exp(1 + I))

Example 2

Re cannot extract the real part of symbolic expressions containing identifiers without
a value. However, in some cases it can still simplify the input expression, as in the
following two examples:

Re(u + v*I)

Re(z + 2*I)

By default, identifiers without a value are assumed to represent arbitrary complex
numbers. You can use assume to change this. The following command tells the system
that z represents only real numbers:

assume(z, Type::Real):

Re(z + 2)

unassume(z)

Example 3

If Re cannot extract the real part of a symbolic expression, try using the function
rectform. It splits a complex expression z into its real and imaginary part and is more
powerful than Re:
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Re(exp(I*sin(z)));

r := rectform(exp(I*sin(z)))

Then use Re(r) to extract the real part of r:

Re(r)

Example 4

Symbolic expressions of type "Re" always have the property Type::Real, even if no
identifier of the symbolic expression has a property:

is(Re(sin(2*x)), Type::Real)

Example 5

You can extend the functions Re and Im to their own special mathematical functions. See
the “Algorithms” section. To do so, embed your mathematical function into a function
environmentf and implement the behavior of the functions Re and Im for this function as
the slots "Re" and "Im" of the function environment.

If a subexpression of the form f(u,..) occurs in z, then Re and Im issue the call
f::Re(u,..) and f::Im(u,..), respectively, to the slot routine to determine the real
and the imaginary part of f(u,..), respectively.
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For example, extend the function Re for the sine function. Of course, the function
environment sin already has a "Re" slot. Call your function environment Sin in order
not to overwrite the existing system function sin:

Sin := funcenv(Sin):

Sin::Re := proc(u) // compute Re(Sin(u))

  local r, s;

begin

  r := Re(u);

  if r = u then

    return(Sin(u))

  elif not has(r, {hold(Im), hold(Re)}) then

    s := Im(u);

    if not has(s, {hold(Im), hold(Re)}) then

      return(Sin(r)*cosh(s))

    end_if

  end_if;

  return(FAIL)

end:

Re(Sin(2)), Im(Sin(3*I)), Re(Sin(2 + 3*I))

The return value FAIL tells the function Re that Sin::Re was unable to determine the
real part of the input expression. The result is then a symbolic Re call:

Re(2 + Sin(f(z)))

Parameters

z

An arithmetical expression

L

A container object: an array, an hfarray, a list, a matrix, a polynomial, a set, or a table.
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Return Values

arithmetical expression or a container object containing such expressions

Overloaded By

z

Algorithms

If a subexpression of the form f(u,...) occurs in z and f is a function environment,
then Re attempts to call the slot "Re" of f to determine the real part of f(u,...).
In this way, you can extend the functionality of Re to your own special mathematical
functions.

The slot "Re" is called with the arguments u,... of f. If the slot routine f::Re is not able
to determine the real part of f(u,...), then it must return FAIL.

If f does not have a slot "Re", or if the slot routine f::Re returns FAIL, then f(u,...)
is replaced by the symbolic call Re(f(u,...)) in the returned expression. See “Example
5” on page 1-1647.

Similarly, if an element d of a library domainT occurs as a subexpression of z, then Re
attempts to call the slot "Re" of that domain with d as argument to compute the real
part of d.

If the slot routine T::Re is unable to determine the real part of d, then it returns FAIL.

If T does not have a slot "Re", or if the slot routine T::Re returns FAIL, then d is
replaced by the symbolic call Re(d) in the returned expression.

See Also

MuPAD Functions
abs | assume | conjugate | Im | rectform | sign
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Im

Imaginary part of an arithmetical expression

Syntax

Im(z)

Im(L)

Description

Im(z) returns the imaginary part of z.

The intended use of Im is for constant arithmetical expressions. Especially for numbers,
of type DOM_INT, DOM_RAT, DOM_FLOAT, or DOM_COMPLEX, the imaginary part is
computed directly and very efficiently.

Im can handle symbolic expressions. Properties of identifiers are taken into account. See
assume. An identifier without any property is assumed to be complex. See “Example 2”
on page 1-1651.

If Im cannot extract the whole imaginary part of z, then the returned expression contains
symbolic Re and Im calls. In such cases, try using the rectform function. See “Example
3” on page 1-1651. Note that using rectform is computationally expensive.

The Im function is automatically mapped to all entries of container objects such as
arrays, lists, matrices, polynomials, sets, and tables.

Environment Interactions

This function is sensitive to properties of identifiers set via assume.
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Examples

Example 1

The imaginary part of 2 e1 + i is:

Im(2*exp(1 + I))

Example 2

Im cannot extract the imaginary part of symbolic expressions containing identifiers
without a value. However, in some cases it can still simplify the input expression, as in
the following two examples:

Im(u + v*I)

Im(z + 2)

By default, identifiers without a value are assumed to represent arbitrary complex
numbers. You can use assume to change this. The following command tells the system
that z represents only imaginary numbers:

assume(z, Type::Imaginary):

Im(z + 2*I)

unassume(z)

Example 3

If Im cannot extract the imaginary part of a symbolic expression, try using the function
rectform. It splits a complex expression z into its real and imaginary part and is more
powerful than Im:
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Im(exp(I*sin(z)));

r := rectform(exp(I*sin(z)))

Then use Im(r) to extract the imaginary part of r:

Im(r)

Example 4

Symbolic expressions of type "Im" always have the property Type::Real, even if no
identifier of the symbolic expression has a property:

is(Im(sin(2*x)), Type::Real)

Example 5

You can extend the functions Re and Im to their own special mathematical functions. See
the “Algorithms” section. To do so, embed your mathematical function into a function
environmentf and implement the behavior of the functions Re and Im for this function as
the slots "Re" and "Im" of the function environment.

If a subexpression of the form f(u,..) occurs in z, then Re and Im issue the call
f::Re(u,..) and f::Im(u,..), respectively, to the slot routine to determine the real
and the imaginary part of f(u,..), respectively.
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For example, extend the function Im for the sine function. Of course, the function
environment sin already has a "Im" slot. Call your function environment Sin in order
not to overwrite the existing system function sin:

Sin := funcenv(Sin):

Sin::Im := proc(u) // compute Im(Sin(u))

  local r, s;

begin

  r := Re(u);

  if r = u then

    return(0)

  elif not has(r, {hold(Im), hold(Re)}) then

    s := Im(u);

    if not has(s, {hold(Im), hold(Re)}) then

      return(cos(r)*sinh(s))

    end_if

  end_if;

  return(FAIL)

end:

Im(Sin(2)), Im(Sin(3*I)), Im(Sin(2 + 3*I))

The return value FAIL tells the function Im that Sin::Im was unable to determine the
imaginary part of the input expression. The result is then a symbolic Im call:

Im(2 + Sin(f(z)))

Parameters

z

An arithmetical expression

L

A container object: an array, an hfarray, a list, a matrix, a polynomial, a set, or a table.
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Return Values

arithmetical expression or a container object containing such expressions

Overloaded By

z

Algorithms

If a subexpression of the form f(u,...) occurs in z and f is a function environment,
then Im attempts to call the slot "Im" of f to determine the imaginary part of f(u,...).
In this way, you can extend the functionality of Im to your own special mathematical
functions.

The slot "Im" is called with the arguments u,... of f. If the slot routine f::Im is not able
to determine the imaginary part of f(u,...), then it must return FAIL.

If f does not have a slot "Im", or if the slot routine f::Im returns FAIL, then f(u,...)
is replaced by the symbolic call Im(f(u,...)) in the returned expression. See “Example
5” on page 1-1652.

Similarly, if an element d of a library domainT occurs as a subexpression of z, then
Im attempts to call the slot "Im" of that domain with d as argument to compute the
imaginary part of d.

If the slot routine T::Im is not able to determine the imaginary part of d, then it must
return FAIL.

If T does not have a slot "Im", or if the slot routine T::Im returns FAIL, then d is
replaced by the symbolic call Im(d) in the returned expression.

See Also

MuPAD Functions
abs | assume | conjugate | Re | rectform | sign
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read

Search, read, and execute file

Syntax

read(filename | n, <Quiet>, <Plain>, <Encoding = "encodingValue">)

Description

read(filename) searches for the file in various folders:

• First, filename is concatenated to each folder given by the environment variable
READPATH.

• Then the file name is interpreted as an absolute path name.
• Then the file name is interpreted as a relative pathname, i.e., relative to the “working

folder.”
• Last, the file name is concatenated to the library path.

If a file can be opened with one of these names, then the file is read and executed with
fread.

read(filename, Encoding = "encodingValue") uses the specified encoding for
text files. For supported encodings, see “Options” on page 1-1659.

If the file is in gzip-compressed format and its name ends in “.gz”, it will be
transparently uncompressed upon reading.

Note that the meaning of “working folder” depends on the operating system. On Microsoft
Windows systems and on Mac OS X systems, the “working folder” is the folder where
MATLAB is installed. On UNIX systems, it is the current working folder in which
MATLAB was started. When started from a menu or desktop item, this is typically the
user's home folder.

A path separator (“/”) is inserted as necessary when concatenating a given path and
filename.
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read(n) with a file descriptor n as returned by fopen is equivalent to the call
fread(n). When called with a file description, read does not automatically open and
close the file. Use fopen and fclose to open and close the file. The Encoding option
does not work with this syntax.

When you use the read command to read a file, the command evaluates all the
statements in that file with the maximal substitution depth defined by LEVEL. The
default value of LEVEL for interactive computations is 100. See “Example 3” on page
1-1657.

See the function fread for details about reading and executing the file's content and for
a detailed description of the options Plain and Quiet.

When a file is read with read, the variable FILEPATH contains the path of the file.

Examples

Example 1

Create a new file in the system's temporary folder. The name of the temporary folder
varies for different platforms. The fopen command with the TempFile option creates a
file in any system's temporary folder (if such folder exists):

a := 3:

b := 5:

fid := fopen(TempFile, Write, Text):

Use the write command to store values a and b in the temporary file:

write(fid, a, b):

Use fname to return the name of the temporary file you created:

file := fname(fid):

After reading the file, the values of a and b are restored:

delete a, b:

read(file):

a, b
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Alternatively, use fopen to open the file and read its content:

delete a, b:

n := fopen(file):

read(n):

fclose(n):

a, b

delete a, b, READPATH, n:

Example 2

You can explicitly specify the folder and file names. The following example only works on
systems like UNIX. To make it work on other operating systems, change the path names
accordingly. First, use write to store values in the file “testfile.mb” in the “/tmp”
folder:

a := 3:

b := 5:

write("/tmp/testfile.mb", a, b):

Now, define “/tmp” as the search folder and provide a path name relative to it. Note that
the path separator “/” is inserted by read:

delete a, b:

READPATH := "/tmp":

read("testfile.mb"):

a, b

Example 3

The read command evaluates all the statements in a file it reads with the maximal
substitution depth defined by LEVEL. For example, create and read a file that specifies
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the value of the variable a by using another variable b. Use the fopen command with the
TempFile option to create a new file in the system's temporary folder:

fid := fopen(TempFile, Write, Text):

Write the following statements to the file:

fprint(Unquoted, fid, "a := b^2:  b := 5: c := a/3: delete a, b:"):

Use fname to return the name of the temporary file you created. Use fclose to close the
file:

file := fname(fid):

fclose(fid)

Read the file. The read command evaluates the statements in the file recursively:

read(file):

c

To supress recursive evaluations, change the maximal substitution depth to 1:

delete c:

LEVEL := 1:

read(file):

c

Restore the default value of LEVEL for further computations:

delete LEVEL

Example 4

To specify the encoding to read data, use Encoding. The Encoding option applies only to
text files that are opened using a file name and not a file descriptor. Open a file and write
the statement "str = abcäöü" in the encoding “UTF-8”:
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fprint(Unquoted, Text, Encoding="UTF-8",

                       "read_test",

                       "str := \"abcäöü\"")

Specify the encoding to read the file. read returns the correct output:

read("read_test",Encoding="UTF-8"):

"abcäöü"

If you do not specify an encoding, the default system encoding is used. Thus, your output
might vary from that shown next. Characters unrecognized by the default system
encoding are replaced by the default substitution character for that encoding:

read("read_test"):

"abc������"

Parameters

filename

The name of a file: a character string

n

A file descriptor provided by fopen: a positive integer

Options

Plain

Makes read use its own parser context

Quiet

Suppresses output during execution of read

Encoding

This option lets you specify the character encoding to use. The allowed encodings are:
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"Big5" "ISO-8859-1" "windows-932"

"EUC-JP" "ISO-8859-2" "windows-936"

"GBK" "ISO-8859-3" "windows-949"

"KSC_5601" "ISO-8859-4" "windows-950"

"Macintosh" "ISO-8859-9" "windows-1250"

"Shift_JIS" "ISO-8859-13" "windows-1251"

"US-ASCII" "ISO-8859-15" "windows-1252"

"UTF-8"   "windows-1253"

    "windows-1254"

    "windows-1257"

The default encoding is system dependent. If you specify the encoding incorrectly,
characters might read incorrectly. Characters unrecognized by the encoding are replaced
by the default substitution character for the specified encoding.

Encodings not listed here can be specified but might not produce correct results.

Return Values

Return value of the last statement of the file.

See Also

MuPAD Functions
fclose | FILEPATH | finput | fname | fopen | fprint | fread | ftextinput
| import::readbitmap | import::readdata | input | pathname | print
| protocol | readbytes | READPATH | textinput | write | writebytes |
WRITEPATH
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readbytes

Read binary data from a file

Syntax

readbytes(filename | n, <m>, <format>, <BigEndian | LittleEndian>, <ReturnType = DOM_HFARRAY | DOM_LIST | [DOM_HFARRAY] | [DOM_HFARRAY, dim1, dim2, …]>)

Description

readbytes lets you read arbitrary files and interpret their contents as a sequence of
numbers.

The results of readbytes depend on the interpretation of the binary data set by
the format option. When reading a file, you can interpret it as a stream of Byte,
SignedByte, Short, SignedShort, Word, SignedWord, Float or Double. These are
standard formats that are used by many program packages to read data. See “Example
1” on page 1-1663.

This function is particularly useful when you work on data provided by or intended for
external programs. For example, you can use it to implement encryption or compression
algorithms in MuPAD. See “Example 2” on page 1-1664.

You can specify the file directly by its name. If a file name is specified, readbytes opens
and closes the file automatically. If READPATH has no value, readbytes interprets the
file name as a pathname relative to the “working directory.” Absolute path names are
processed by readbytes, too.

Note: The meaning of “working directory” depends on the operating system. On Microsoft
Windows systems and on Mac OS X systems, the “working directory” is the folder where
MuPAD is installed. On UNIX systems, it is the current working directory in which
MuPAD was started.

If a file name is specified, each call to readbytes opens the file at the beginning. If
the file was opened via fopen, subsequent calls of readbytes with the corresponding
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file descriptor start at the point in the file that was reached by the last readbytes
command. Hence, if you want to read a file by portions, you must open it with fopen
and use the returned file descriptor instead of the filename. See “Example 3” on page
1-1664.

Note: If you open the file by using fopen, be sure to pass the flag Raw to fopen.
Otherwise, readbytes throws an error.

Note: If the number of bytes in the file in a readbytes call is not a multiple of units of
the specified format, the data are read up to the last complete number. The remaining
bytes are ignored. See “Example 4” on page 1-1665.

Be sure to read the data in the appropriate way. You need to know the format used by
the program which created the file.

If readbytes is used with the option ReturnType = [DOM_HFARRAY, dim1, dim2,
…], the return value is a DOM_HFARRAY of the appropriate size. Here dim1, dim2, …
and positive integers which specifies the size of the dimensions of the array. If the
file contains lesser values or the number of values to be read is limited, the not read
elements of the array are initialized to 0.0. In other cases exactly the elements of the
array are read. See “Example 6” on page 1-1666.

If an array of type DOM_HFARRAY with complex numbers is written to a file, then first the
real parts of the elements are written and then the complex parts are written to the file.
Because readbytes can only read real values, first create the real and then the complex
part to reconstruct the complex array. See “Example 7” on page 1-1668.

Environment Interactions

The function readbytes is sensitive to the environment variable READPATH. First,
the file is searched in the “working directory.” If it cannot be found there, all paths in
READPATH are searched.
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Examples

Example 1

Write a sequence of numbers to the file test.tst with the default settings. Then, load
them back in:

writebytes("test.tst", [42, 17, 1, 3, 5, 7, 127, 250]):

readbytes("test.tst")

Read the above data with some other option: SignedByte interprets all values from 0
to 127 exactly as Byte does. Higher values x, however, are interpreted as x - 256. For
example, 250 - 256 = - 6:

readbytes("test.tst", SignedByte)

Short interprets two bytes to be one number. Therefore, the eight written bytes are
interpreted as four numbers. For example, the first 2 bytes yield 42 28 + 17 = 10769:

readbytes("test.tst", Short)

With the flag LittleEndian, the byte order is reversed. For example, the first 2 bytes
now yield 17 28 + 42 = 4394:

readbytes("test.tst", Short, LittleEndian)

Word interprets four bytes to be one number. Therefore, the eight written bytes give two
numbers. The first 4 bytes yield 10769 216 + 259 = 705757443:

1-1663



1 The Standard Library

readbytes("test.tst", Word)

Double interprets eight bytes to represent one floating-point number. The interpretation
is machine dependent and may be different for you:

readbytes("test.tst", Double)

Example 2

Use readbytes and writebytes to encrypt the file created in the previous example
with a simple “Caesar type encoding”: Any integer x (a byte) is replaced by x + 13 mod
256:

L := readbytes("test.tst"): 

L := map(L, x -> (x + 13 mod 256)):

writebytes("test.tst", L):

Knowing the encryption and its key, you can successfully decrypt the file:

L := readbytes("test.tst")

map(L, x -> (x - 13 mod 256))

delete L:

Example 3

Use fopen to write and read a file in portions:
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n := fopen("test.tst", Write, Raw):               

for i from 1 to 10 do writebytes(n, [i]) end_for: 

fclose(n):

Equivalently, you can write all data in one go:

n := fopen("test.tst", Write, Raw):               

writebytes(n, [i $ i = 1..10]):

fclose(n):

Read the data byte by byte:

n := fopen("test.tst", Read, Raw): 

readbytes(n, 1), readbytes(n, 1), readbytes(n, 1);

fclose(n):

The next command reads in portions of 5 bytes each:

n := fopen("test.tst", Read, Raw): 

readbytes(n, 5), readbytes(n, 5);

fclose(n):

delete n, i:

Example 4

Here is what happens if the number of bytes in the file does not match a multiple of
units of the specified format. Because both SignedShort and Float consist of an even
number of bytes, the trailing 5-th byte corresponding to 11 is ignored:

writebytes("test.tst", [42, 17, 7, 9, 11], Byte):

readbytes("test.tst", SignedShort), 

readbytes("test.tst", Float)
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Example 5

Specify byte ordering by using BigEndian and LittleEndian:

writebytes("test.tst", [129, 255, 145, 171, 191, 253], Byte):

L1 := readbytes("test.tst", Short, BigEndian)

L2 := readbytes("test.tst", Short, LittleEndian)

Look at the data in a binary representation. (See numlib::g_adic for details). The
effect of using LittleEndian instead of BigEndian is to exchange the first 8 bits and
the last 8 bits of each number:

map(L1, numlib::g_adic, 2)

map(L2, numlib::g_adic, 2)

delete L1, L2:

Example 6

Read data from a file and create a DOM_HFARRAY with the data using the option
ReturnType:

writebytes("test.tst", 

  [    0.2703,   12.8317, -33.1531, 9999.9948, 0.2662,  -14.3421, 

    1000.1801,    0.4521, -34.6787,  -67.3549, 0.6818,   13], Double):

readbytes("test.tst", ReturnType=[DOM_HFARRAY,2,6]);

1-1666



 readbytes

readbytes("test.tst", ReturnType=[DOM_HFARRAY,2,3,2]);

hfarray(1..2, 1..3, 1..2, [0.2703, 12.8317, -33.1531, 9999.9948, 0.2662, -\

14.3421, 1000.1801, 0.4521, -34.6787, -67.3549, 0.6818, 13.0])

If you try to read more elements, exactly the elements of the array are read.

readbytes("test.tst", ReturnType=[DOM_HFARRAY,2,4]);

readbytes("test.tst", 12, ReturnType=[DOM_HFARRAY,2,3]);

If you read just a part of the array, the other elements are initialized with 0.0.

readbytes("test.tst", ReturnType=[DOM_HFARRAY,2,7]);

readbytes("test.tst", 4, ReturnType=[DOM_HFARRAY,2,6]);

If you try to read all the data from the file using the option ReturnType without a
dimension for the DOM_HFARRAY a one dimensional array of the right size is created.

 

readbytes("test.tst", ReturnType=DOM_HFARRAY)
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Example 7

Write a DOM_HFARRAY with complex numbers to a file and try to reconstruct it by reading
the data.

A := hfarray(1..2, 1..3,

             [[2342.133 + 56*I, -342.56, PI + I],

              [           -3*E, I^2 + I,     13]]);

writebytes("test.tst", A);

fd := fopen("test.tst", Read, Raw):   

B := readbytes(fd, ReturnType = [DOM_HFARRAY, 2, 3]);

C := readbytes(fd, ReturnType = [DOM_HFARRAY, 2, 3]);

bool(A = B + C*I);

flose(fd):

delete A, B, C, fd:

Parameters

filename

The name of a file: a character string
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n

A file descriptor provided by fopen: a positive integer. The file must have been be opened
using the fopen-flag Raw.

m

The number of values to be read or written: a positive integer.

format

The format of binary data, specified as Byte, SignedByte, Short, SignedShort, Word,
SignedWord, Float, and Double.

Options

Byte, SignedByte, Short, SignedShort, SignedWord, Word, Double, Float

The format of the binary data. The default format is Byte.

A byte is an 8-bit binary number. Therefore, a byte can have 28 different values. For
Byte, these are the integers from 0 to 255. For SignedByte, they are the integers from -
128 to 127.

With Byte, the data are read/written in 8-bit blocks, interpreted as unsigned bytes.
When writing, the numbers are checked for being in the range from 0 to 255.

With SignedByte, the data are read or written using the 2-complement.

Byte is the default format.

A “short” is a 16-bit binary number (2 bytes). Therefore, a “short” can have 216 different
values. For Short, these are the integers from 0 to 65536. For SignedShort, they are
the integers from - 32768 to 32767.

The semantics of Short or SignedShort is analogous to that of Byte or SignedByte,
respectively.

A “word” is a 32-bit binary number (4 bytes). Therefore, a “word” can have 232 different
values. For Word, these are the integers from 0 to 4294967296. For SignedWord, they
are the integers from - 2147483648 to 2147483647.
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The semantics of Word or SignedWord is analogous to that of Byte or SignedByte,
respectively.

A “float” is a 32-bit representation of a real number (4 bytes). A “double” is a 64-bit
representation of a real number (8 bytes).

Note: Floating-point and double-precision values are read/written in the format of the
machine/operating system MuPAD is currently running on. Therefore, the results may
differ between different platforms.

Binary files containing floating-point numbers are, in general, not portable to other
platforms.

See the flags BigEndian and LittleEndian for details on the byte ordering.

See “Example 1” on page 1-1663 for an overview over the different format options.

BigEndian, LittleEndian

The byte ordering: either BigEndian or LittleEndian. The default ordering is
BigEndian.

BigEndian and LittleEndian specify the order used to arrange the bytes for Short,
SignedShort, Word, SignedWord, Float, and Double.

For all formats, the data are written in 8-bit blocks (bytes). This also includes the formats
where a unit is longer than one byte (all formats but Byte and SignedByte). With
BigEndian, the bytes with the most significant bits (“high bits”) are written first. With
LittleEndian, the bytes with the least significant bits are written first.

If, for example, Short is selected, there are 16 bits that are to be written. If you pass
BigEndian, first the byte with the bits for 215 to 28 and then the byte with the bits for 27

to 20 are written. If you specify LittleEndian, the order of the bytes is reversed.

BigEndian and LittleEndian have no effect if the formats Byte or SignedByte are
specified.

BigEndian is the default byte order.

See “Example 5” on page 1-1666 for the effects of BigEndian and LittleEndian.
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ReturnType

Option, specified as ReturnType = DOM_HFARRAY | DOM_LIST | [DOM_HFARRAY] |
[DOM_HFARRAY, dim1, dim2, …]that sets the type of the return value.

If set to DOM_LIST, the return value is a list which contains the read data.

If set to DOM_HFARRAY, the return value is a one dimensional array which contains the
read data.

If set to [DOM_HFARRAY, dim1, dim2, …], the return value is a (multidimensional) array
and dim1, dim2, … are positive integers which specifies the size of the dimensions of
the array.

Return Values

A list of MuPAD numbers (either integers or floating-point numbers) or an array of
hardware floating-point values of type DOM_HFARRAY. Its type depends on the setting of
the option ReturnType.

See Also

MuPAD Functions
fclose | FILEPATH | finput | fname | fopen | fprint | fread | ftextinput |
import::readbitmap | import::readdata | pathname | print | protocol | read
| READPATH | write | writebytes | WRITEPATH
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writebytes

Write binary data to a file

Syntax

writebytes(filename | n, list | hfarray, <format>, <BigEndian | LittleEndian>, <Force>)

Description

writebytes(file, list) writes a list of MuPAD numbers to a file.

writebytes(file, hfarray) writes an array of type DOM_HFARRAY to a file.

writebytes lets you write arbitrary files and interpret their contents as a sequence of
numbers.

The results of writebytes depend on the interpretation of the binary data set by
the format option. When writing to a file, you can interpret it as a stream of Byte,
SignedByte, Short, SignedShort, Word, SignedWord, Float or Double. These are
standard formats used by many program packages to write data. See “Example 1” on
page 1-1674.

This function is particularly useful when you work on data provided by or intended for
external programs. For example, you can use it to implement encryption or compression
algorithms in MuPAD. See “Example 2” on page 1-1675.

You can specify the file directly by its name. If a file name is specified, writebytes
creates a new file or overwrites an existing file. If a file name is specified, writebytes
also opens and closes the file automatically. If WRITEPATH has no value writebytes
interprets the file name as a pathname relative to the “working directory.” Absolute path
names are processed by writebytes, too.

Note: The meaning of “working directory” depends on the operating system. On Microsoft
Windows systems and on Mac OS X systems, the “working directory” is the folder where
MuPAD is installed. On UNIX systems, it is the current working directory in which
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MuPAD was started; when started from a menu or desktop item, this is typically the
user's home directory.

If a file name is specified, each call to writebytes opens the file at the beginning. If
the file was opened via fopen, subsequent calls of writebytes with the corresponding
file descriptor start at the point in the file that was reached by the last writebytes
command. Hence, if you want to write a file by portions, you must open it with fopen
and use the returned file descriptor instead of the filename. See “Example 3” on page
1-1675.

Note: If the file is to be opened via fopen, be sure to pass the flag Raw to fopen.
Otherwise, writebytes throws an error.

Be sure to write the data in the appropriate way. You must know the format used by the
program which will be reading the file.

When writing data via writebytes, each entry in the list is checked for whether it can
be converted to the specified format. If this is not the case, writebytes throws an error.
See “Example 4” on page 1-1676.

When writing an array of type DOM_HFARRAY, only Double is allowed as the binary
format. If no format option is given such arrays are written as doubles. See “Example 7”
on page 1-1677.

If an array of type DOM_HFARRAY with complex numbers is written to a file, then first the
real parts of the elements are written and then the complex parts are written to the file.
Because readbytes can only read real values, first one have to create the real and then
the complex part to reconstruct the complex array. See “Example 9” on page 1-1678.

Environment Interactions

The function writebytes is sensitive to the environment variable WRITEPATH. If this
variable has a value, the file is created in the corresponding directory. Otherwise, the file
is created in the “working directory.”
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Examples

Example 1

Write a sequence of numbers to the file test.tst with the default settings. Then, load
them back in:

writebytes("test.tst", [42, 17, 1, 3, 5, 7, 127, 250]):

readbytes("test.tst")

Read the above data with some other option: SignedByte interprets all values from 0
to 127 exactly as Byte does. Higher values x, however, are interpreted as x - 256. For
example, 250 - 256 = - 6:

readbytes("test.tst", SignedByte)

Short interprets two bytes to be one number. Therefore, the eight written bytes are
interpreted as four numbers. For example, the first 2 bytes yield 42 28 + 17 = 10769:

readbytes("test.tst", Short)

With the flag LittleEndian, the byte order is reversed. For example, the first 2 bytes
now yield 17 28 + 42 = 4394:

readbytes("test.tst", Short, LittleEndian)

Word interprets four bytes to be one number. Therefore, the eight written bytes give two
numbers. The first 4 bytes yield 10769 216 + 259 = 705757443:

readbytes("test.tst", Word)
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Double interprets eight bytes to represent one floating-point number. The interpretation
is machine dependent and may be different for you:

readbytes("test.tst", Double)

Example 2

Use readbytes and writebytes to encrypt the file created in the previous example
with a simple “Caesar type encoding”: Any integer x (a byte) is replaced by x + 13 mod
256:

L := readbytes("test.tst"): 

L := map(L, x -> (x + 13 mod 256)):

writebytes("test.tst", L):

Knowing the encryption and its key, you can successfully decrypt the file:

L := readbytes("test.tst")

map(L, x -> (x - 13 mod 256))

delete L:

Example 3

Use fopen to write and read a file in portions:

n := fopen("test.tst", Write, Raw):               

for i from 1 to 10 do writebytes(n, [i]) end_for: 

fclose(n):

Equivalently, you can write all data in one go:
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n := fopen("test.tst", Write, Raw):               

writebytes(n, [i $ i = 1..10]):

fclose(n):

Read the data byte by byte:

n := fopen("test.tst", Read, Raw): 

readbytes(n, 1), readbytes(n, 1), readbytes(n, 1);

fclose(n):

The next command reads in portions of 5 bytes each:

n := fopen("test.tst", Read, Raw): 

readbytes(n, 5), readbytes(n, 5);

fclose(n):

delete n, i:

Example 4

An error is thrown if the data do not match the specified format. Here, -5 does not match
Byte. This format does not include negative numbers:

writebytes("test.tst", [42, 17, -5, 7], Byte)

Error: The argument is invalid. [writebytes]

Example 5

Here is what happens if the number of bytes in the file does not match a multiple of
units of the specified format. Because both SignedShort and Float consist of an even
number of bytes, the trailing 5-th byte corresponding to 11 is ignored:

writebytes("test.tst", [42, 17, 7, 9, 11], Byte):

readbytes("test.tst", SignedShort), 

readbytes("test.tst", Float)
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Example 6

Specify byte ordering by using BigEndian and LittleEndian:

writebytes("test.tst", [129, 255, 145, 171, 191, 253], Byte):

L1 := readbytes("test.tst", Short, BigEndian)

L2 := readbytes("test.tst", Short, LittleEndian)

Look at the data in a binary representation. (See numlib::g_adic for details). The
effect of using LittleEndian instead of BigEndian is to exchange the first 8 bits and
the last 8 bits of each number:

map(L1, numlib::g_adic, 2)

map(L2, numlib::g_adic, 2)

delete L1, L2:

Example 7

Write the elements of a DOM_HFARRAY to a file. All the elements are double-precision
values, and writebytes does not allow writing the elements of the array in another
format than Double.

A:=hfarray(1..2,1..6,
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   [   0.2703,   12.8317, -33.1531, 9999.9948, 0.2662,  -14.3421, 

    1000.1801,    0.4521, -34.6787,  -67.3549, 0.6818,   13]):

writebytes("test.tst", A):

But if we try to write the elements as bytes we will get an error.

writebytes("test.tst", A, Byte);

Error: The argument is invalid. [writebytes]

delete A:

Example 9

Write a DOM_HFARRAY with complex numbers to a file and try to reconstruct it by reading
the data.

A := hfarray(1..2, 1..3,

             [[2342.133 + 56*I, -342.56, PI + I],

              [           -3*E, I^2 + I,     13]]);

writebytes("test.tst", A);

fd := fopen("test.tst", Read, Raw):   

B := readbytes(fd, ReturnType = [DOM_HFARRAY, 2, 3]);

C := readbytes(fd, ReturnType = [DOM_HFARRAY, 2, 3]);

bool(A = B + C*I);

flose(fd):

delete A, B, C, fd:
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Example 10

Suppose you have a DOM_HFARRAY with entries which are integer numbers between
-32768 and 32767 and we want to write this data as SignedShort to a file. If you try it
without the option Force, you will get an error because a floating-point number of type
DOM_FLOAT cannot be written as a SignedShort. With the option Force, writebytes
tries to convert the floating-point number to a signed word and writes it in any case to
the file.

A:=hfarray( 1..2,1..3, [[234,-32768,1],[32767,-12111,-3]]);

writebytes("test.tst", SignedShort, A):

Error: The argument is invalid. [writebytes]

writebytes("test.tst", SignedShort, Force, A):

l:= readbytes("test.tst", SignedShort);

op(A,i)-l[i] $i=1..6;

delete A, l:

Parameters

filename

The name of a file: a character string

n

A file descriptor provided by fopen: a positive integer. The file must have been be opened
using the fopen-flag Raw.
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list

A list of MuPAD numbers to be written to the file. The entries must match the specified
format.

hfarray

An array of type DOM_HFARRAY.

format

The format of binary data, specified as Byte, SignedByte, Short, SignedShort, Word,
SignedWord, Float, and Double.

Options

Byte, SignedByte, Short, SignedShort, SignedWord, Word, Double, Float

The format of the binary data. The default format is Byte.

A byte is an 8-bit binary number. Therefore, a byte can have 28 different values. For
Byte, these are the integers from 0 to 255. For SignedByte, they are the integers from -
128 to 127.

With Byte, the data are read/written in 8-bit blocks, interpreted as unsigned bytes.
When writing, the numbers are checked for being in the range from 0 to 255.

With SignedByte, the data are read or written using the 2-complement.

Byte is the default format.

A “short” is a 16-bit binary number (2 bytes). Therefore, a “short” can have 216 different
values. For Short, these are the integers from 0 to 65536. For SignedShort, they are
the integers from - 32768 to 32767.

The semantics of Short or SignedShort is analogous to that of Byte or SignedByte,
respectively.

A “word” is a 32-bit binary number (4 bytes). Therefore, a “word” can have 232 different
values. For Word, these are the integers from 0 to 4294967296. For SignedWord, they
are the integers from - 2147483648 to 2147483647.
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The semantics of Word or SignedWord is analogous to that of Byte or SignedByte,
respectively.

The format of the binary data. The default format is Byte.

A “float” is a 32-bit representation of a real number (4 bytes). A “double” is a 64-bit
representation of a real number (8 bytes).

Note: Floats and doubles are read/written in the format of the machine/operating system
MuPAD is currently running on. Therefore, the results may differ between different
platforms.

Binary files containing floating-point numbers are, in general, not portable to other
platforms.

See the flags BigEndian and LittleEndian for details on the byte ordering.

See “Example 1” on page 1-1674 for an overview over the different format options.

BigEndian, LittleEndian

The byte ordering: either BigEndian or LittleEndian. The default ordering is
BigEndian.

BigEndian and LittleEndian specify the order in which the bytes are arranged for
Short, SignedShort, Word, SignedWord, Float, and Double.

For all formats, the data are written in 8-bit blocks (bytes). This also includes the formats
where a unit is longer than one byte (all formats but Byte and SignedByte). With
BigEndian, the bytes with the most significant bits (“high bits”) are written first. With
LittleEndian, the bytes with the least significant bits are written first.

If, for example, Short is selected, there are 16 bits that are to be written. If you pass
BigEndian, first the byte with the bits for 215 to 28 and then the byte with the bits for 27

to 20 are written. If you specify LittleEndian, the order of the bytes is reversed.

BigEndian and LittleEndian have no effect if the formats Byte or SignedByte are
specified.

BigEndian is the default byte order.
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See “Example 6” on page 1-1677 for the effects of BigEndian and LittleEndian.

Force

Write the binary data in any case even if the numbers does not match the given format.

If the option Force is set, data are written in the given format, e.g. Byte even if they
does not have the right format. E.g. 100.00 is a DOM_FLOAT and normally writebytes
only writes this data if the format is Float or Double. With the option Force the value
is written as a Byte. Cf. “Example 10” on page 1-1679.

If the given value does not fit the given data format, the written value is not specified.
E.g. 53425.00 written as a Byte can be 177 which is 53425.00 mod 256 or just 0. But
for sure 100.00 is written as 100.

Return Values

The void object null() of type DOM_NULL.

See Also

MuPAD Functions
fclose | FILEPATH | finput | fname | fopen | fprint | fread | ftextinput |
import::readbitmap | import::readdata | pathname | print | protocol | read
| readbytes | READPATH | write | WRITEPATH
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repeat, until, end_repeat, _repeat
“repeat” loop

Syntax
repeat

  body

until condition end_repeat

_repeat(body, condition)

Description

repeat - end_repeat is a loop that evaluates its body until a specified stopping
criterion is satisfied.

In a repeat loop, first body and then condition are evaluated until condition
evaluates to TRUE.

In contrast to the while loop, the body of a repeat loop is always evaluated at least
once.

The body can consist of any number of statements which must be separated either by a
colon : or a semicolon ;. Only the last evaluated result inside the body (the return value
of the loop) is printed on the screen. Use print to see intermediate results.

The Boolean expression condition must be reducible to either TRUE or FALSE.
Internally, the condition is evaluated in the lazy evaluation context of the functions
_lazy_and and _lazy_or.

The statements next and break can be used in repeat loops in the same way as in for
loops.

The keyword end_repeat can be replaced by the keyword end.

The imperative form repeat - end_repeat is equivalent to corresponding call of the
function _repeat. In most cases, the imperative form leads to simpler code.
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The $ operator is often a more elegant notation for loops.

_repeat is a function of the system kernel.

Examples

Example 1

repeat loops do not show intermediate results of statements within a loop:

i := 1:

s := 0:

repeat

  s := s + i;

  i := i + 1;

until i >= 3

end_repeat

Above, only the return value of the loop is displayed. Use print to see intermediate
results:

i := 1:

s := 0:

repeat

  print("intermediate sum" = s);

  s := s + i;

  i := i + 1;

  s

until i >= 3

end_repeat
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delete i, s:

Example 2

Express the same statements as a repeat loop and as an equivalent while loop. In more
complicated cases, you might need additional initializations of variables:

i := 1:

repeat 

  print(i);

  i := i + 1;

until i = 3 end:

i := 1:

while i < 3 do

  print(i);

  i := i + 1;

end:

delete i:

Example 3

The Boolean expression condition must evaluate to TRUE or FALSE:

repeat

  condition := UNKNOWN;

  print(Condition = condition);

until condition
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end_repeat:

Error: The Boolean 'TRUE' or 'FALSE' is expected. [repeat]

To avoid this error, change the stopping criterion to condition <> TRUE:

repeat

  condition := UNKNOWN;

  print(Condition = condition);

until condition = UNKNOWN

end_repeat:

delete condition:

Example 4

You also can create a repeat loop by using the functional form _repeat:

hold(_repeat((statement1; statement2), condition))

repeat

  statement1;

  statement2

until condition end_repeat

Parameters

body

The body of the loop: an arbitrary sequence of statements

condition

A Boolean expression
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Return Values

Value of the last command executed in the body of the loop. If no command was executed,
the value NIL is returned. If the body of a while loop is not evaluated due to a false
condition, the void object of type DOM_NULL is returned.

See Also

MuPAD Functions
$ | _lazy_and | _lazy_or | break | for | next | while

More About
• “Loops”
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while, end_while, _while
“while” loop

Compatibility

For the while loop in MATLAB, see while.

Syntax
while condition do

  body

end_while

_while(condition, body)

Description

while - end_while represents a loop that evaluates its body while a specified
condition holds true.

In a while loop, condition is evaluated before the body is executed for the first time.
If condition evaluates to TRUE, the loop is entered and body and condition are
evaluated until condition evaluates to FALSE.

The body can consist of any number of statements which must be separated either by a
colon : or a semicolon ;. Only the last evaluated result inside the body (the return value
of the loop) is printed on the screen. Use print to see intermediate results.

The Boolean expression condition must be reducible to either TRUE or FALSE.
Internally, the condition is evaluated in the lazy evaluation context of the functions
_lazy_and and _lazy_or.

The statements next and break can be used in while loops in the same way as in for
loops.

The keyword end_while can be replaced by the keyword end.
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The imperative form while - end_while is equivalent to corresponding call of the
function _while. In most cases, the imperative form leads to simpler code.

The $ operator is often a more elegant notation for loops.

_while is a function of the system kernel.

Examples

Example 1

while loops do not show intermediate results of statements within a loop:

i := 1:

s := 0:

while i < 3 do

  s := s + i;

  i := i + 1;

end_while

Use print to see intermediate results:

i := 1:

s := 0:

while i < 3 do

  print("intermediate sum" = s);

  s := s + i;

  i := i + 1;

  s

end_while
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delete i, s:

Example 2

Express the same statements as a repeat loop and as an equivalent while loop. In more
complicated cases, you might need additional initializations of variables:

i := 1:

repeat 

  print(i);

  i := i + 1;

until i = 3 end:

i := 1:

while i < 3 do

  print(i);

  i := i + 1;

end:

delete i:

Example 3

The Boolean expression condition must evaluate to TRUE or FALSE:

condition := UNKNOWN:

while not condition do

  print(Condition = condition);

  condition := TRUE;

end_while:

Error: The Boolean 'TRUE' or 'FALSE' is expected. [while]
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To avoid this error, change the stopping criterion to condition <> TRUE:

condition := UNKNOWN:

while condition <> TRUE do

  print(Condition = condition);

  condition := TRUE;

end_while:

delete condition:

Example 4

You also can create a while loop by using the functional form _while:

hold(_while(condition, (statement1; statement2)))

while condition do

  statement1;

  statement2

end_while

Parameters

body

The body of the loop: an arbitrary sequence of statements

condition

A Boolean expression

Return Values

Value of the last command executed in the body of the loop. If no command was executed,
the value NIL is returned. If the body of a while loop is not evaluated due to a false
condition, the void object of type DOM_NULL is returned.
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See Also

MuPAD Functions
$ | _lazy_and | _lazy_or | break | for | next | repeat

More About
• “Loops”
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rec
Domain of recurrence equations

Syntax
rec(eq, y(n), <cond>)

Description

rec(eq, y(n)) creates an object of type rec representing a recurrence equation for the
sequence y(n).

The equation eq must involve only shifts y(n + i) with integer values of i; at least one
such expression must be present in eq. An arithmetical expressioneq is equivalent to the
equation eq = 0.

Initial or boundary conditions cond must be specified as sets of equations of the form
{y(n0) = y0, y(n1) = y1, ...} with arithmetical expressions n0, n1, ... that
must not contain the identifier n, and arithmetical expressions y0, y1, ... that must
not contain the identifier y.

The main purpose of the rec domain is to provide an environment for overloading
the function solve. For a recurrence r of type rec, the call solve(r) returns a set
representing an affine subspace of the complete solution space. Its only entry is an
expression in n that may contain free parameters such as C1, C2, etc. See“Example 1” on
page 1-1694, “Example 4” on page 1-1695, and “Example 5” on page 1-1695.

Currently only linear recurrences with coefficients that are rational functions of n can
be solved. solve handles recurrences with constant coefficients, it finds hypergeometric
solutions of first order recurrences, and polynomial solutions of higher order recurrences
with non-constant coefficients.

solve is not always able to find the complete solution space. Cf. “Example 5” on page
1-1695. If solve cannot find a solution, then the solve call is returned symbolically.
For parametric recurrences, the output of solve may be a conditionally defined set of
type piecewise. Cf. “Example 6” on page 1-1695.
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Examples

Example 1

The first command defines the homogeneous first order recurrence equation
 for the sequence y(n). It is solved by a call to the solve function:

rec(y(n + 1) = 2*y(n)*(n + 1)/n, y(n))

solve(%)

Thus, the general solution of the recurrence equation is y(n) = C1 n 2n, where C1 is an
arbitrary constant.

Example 2

In the next example, the homogeneous first order recurrence y(n + 1) = 3 (n + 1) y(n) with
the initial condition y(0) = 1 is solved for the unknown sequence y(n):

solve(rec(y(n + 1) = 3*(n + 1)*y(n), y(n), {y(0) = 1}))

Thus, the solution is  for all integers n ≥ 0 (gamma is the
gamma function).

Example 3

In the following example, the inhomogeneous second order recurrence y(n + 2) - 2 y(n +
1) + y(n) = 2 is solved for the unknown sequence y(n). The initial conditions y(0) = - 1 and
y(1) = m with some parameter m are taken into account by solve:
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solve(rec(y(n + 2) - 2*y(n + 1) + y(n) = 2, y(n),

          {y(0) = -1, y(1) = m}))

Example 4

We compute the general solution of the homogeneous second order recurrence y(n + 2) +
3 y(n + 1) + 2 y(n) = 0:

solve(rec(y(n + 2) + 3*y(n + 1) + 2*y(n), y(n)))

Here, C6 and C7 are arbitrary constants.

Example 5

For the following homogeneous third order recurrence with non-constant coefficients, the
system only finds the polynomial solutions:

solve(rec(n*y(n + 3) = (n + 3)*y(n), y(n)))

Example 6

The following homogeneous second order recurrence with constant coefficients involves a
parameter a. The solution set depends on the value of this parameter, and solve returns
a piecewise object:

solve(rec(a*y(n + 2) = y(n), y(n)))
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Example 7

The following homogeneous second order recurrence with non-constant coefficients
involves a parameter a. Although it has a polynomial solution for a = 2, the system does
not recognize this:

solve(rec(n*y(n + 2) = (n + a)*y(n), y(n)))

Parameters

eq

An equation or an arithmetical expression

y

The unknown function: an identifier

n

The index: an identifier

cond

A set of initial or boundary conditions

Return Values

Object of type rec.

Algorithms

For homogeneous recurrences with constant coefficients, solve computes the roots of
the characteristic polynomial. If some of them cannot be given in explicit form, i.e., only
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by means of RootOf, then solve does not return a solution. Otherwise, the complete
solution space is returned.

For first order homogeneous recurrences with nonconstant coefficients, solve returns
the complete solution space if the coefficients of the recurrence can be factored into at
most quadratic polynomials. Otherwise, solve does not return a solution.

For homogeneous recurrences of order at least two with nonconstant coefficients, solve
finds the complete space of all polynomial solutions.

Currently, inhomogeneous recurrences can only be solved if they have a polynomial
solution. The previous remarks apply.

For parametric recurrences, the system may not find solutions that are valid only for
special values of the parameters. Cf. “Example 7” on page 1-1696.

See Also

MuPAD Functions
ode | solve | sum
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rectform
Rectangular form of a complex expression

Syntax
rectform(z)

Description

rectform(z) computes the rectangular form of the complex expression z, i.e., it splits z
into z = ℜ(z) + i ℑ(z).

rectform(z) tries to split z into its real and imaginary part and to return z in the form
z = ℜ(z) + i ℑ(z).

rectform works recursively, i.e., it first tries to split each subexpression of z into its real
and imaginary part and then tackles z as a whole.

Use Re and Im to extract the real and imaginary parts, respectively, from the result of
rectform. See “Example 1” on page 1-1699.

rectform is more powerful than a direct application of Re and Im to z. However, usually
it is much slower. For constant arithmetical expressions, it is therefore recommended to
use the functions Re and Im directly. See “Example 2” on page 1-1700.

The main use of rectform is for symbolic expressions, and properties of identifiers are
taken into account (see assume). An identifier without any property is assumed to be
complex valued. See “Example 3” on page 1-1701.

If z is an array, a list, or a set, then rectform is applied to each entry of z.

If z is an hfarray, then rectform returns z unchanged.

If z is a polynomial or a series expansion, of type Series::Puiseux or
Series::gseries, then rectform is applied to each coefficient of z.

See “Example 5” on page 1-1703.
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The result r := rectform(z) is an element of the domain rectform. Such a domain
element consists of three operands, satisfying the following equality: z = op(r, 1) +
I*op(r, 2) + op(r, 3). The first two operands are real arithmetical expressions,
and the third operand is an expression that cannot be split into its real and imaginary
part.

Sometimes rectform is unable to compute the required decomposition. Then it still tries
to return some partial information by extracting as much as possible from the real and
imaginary part of z. The extracted parts are stored in the first two operands, and the
third operand contains the remainder, where no further extraction is possible. In extreme
cases, the first two operands may even be zero. “Example 6” on page 1-1704 illustrates
some possible cases.

Arithmetical operations with elements of the domain type rectform are possible. The
result of an arithmetical operation is again an element of this domain (see “Example 4”
on page 1-1701).

Most MuPAD functions handling arithmetical expressions (e.g., expand, normal,
simplify etc.) can be applied to elements of type rectform. They act on each of the
three operands individually.

Use expr to convert the result of rectform into an element of a basic domain. See
“Example 4” on page 1-1701.

Environment Interactions

The function is sensitive to properties of identifiers set via assume. See “Example 3” on
page 1-1701.

Examples

Example 1

The rectangular form of sin(z) for complex values z is:

delete z: r := rectform(sin(z))
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The real and the imaginary part can be extracted as follows:

Re(r), Im(r)

The complex conjugate of r can be obtained directly:

conjugate(r)

Example 2

The real and the imaginary part of a constant arithmetical expression can be determined
by the functions Re and Im, as in the following example:

Re(ln(-4)) + I*Im(ln(-4))

In fact, they work much faster than rectform. However, they fail to compute the real
and the imaginary part of arbitrary symbolic expressions, such as for the term ei sin(z):

delete z: f := exp(I*sin(z)):

Re(f), Im(f)

The function rectform is more powerful. It is able to split the expression above into its
real and imaginary part:

r := rectform(f)
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Now we can extract the real and the imaginary part of f:

Re(r)

Im(r)

Example 3

Identifiers without properties are considered to be complex variables:

delete z: rectform(ln(z))

However, you can affect the behavior of rectform by attaching properties to the
identifiers. For example, if z assumes only real negative values, the real and the
imaginary part simplify considerably:

assume(z < 0): rectform(ln(z))

Example 4

We compute the rectangular form of the complex variable x:

delete x: a := rectform(x)

Then we do the same for the real variable y:
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delete y: assume(y, Type::Real): b := rectform(y)

domtype(a), domtype(b)

We have stored the results, i.e., the elements of domain type rectform, in the two
identifiers a and b. We compute the sum of a and b, which is again of domain type
rectform, i.e., it is already splitted into its real and imaginary part:

c := a + b

domtype(c)

The result of an arithmetical operation between an element of domain type rectform
and an arbitrary arithmetical expression is of domain type rectform as well:

delete z: d := a + 2*b + exp(z)

domtype(d)

Use the function expr to convert an element of domain type rectform into an element
of a basic domain:

expr(d)
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domtype(%)

Example 5

rectform also works for polynomials and series expansions, namely individually on each
coefficient:

delete x, y: p := poly(ln(-4) + y*x, [x]):

rectform(p)

Similarly, rectform works for lists, sets, or arrays, where it is applied to each individual
entry:

a := array(1..2, [x, y]):

rectform(a)

hfarrays are returned unchanged:

a := hfarray(1..2, [1.0, 2.0]):

rectform(a)

Note that rectform does not work directly for other basic data types. For example, if the
input expression is a table of arithmetical expressions, then rectform responds with an
error message:

a := table("1st" = x, "2nd" = y): 

rectform(a)

Error: An arithmetical expression is expected. [rectform::new]

Use map to apply rectform to the operands of such an object:
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map(a, rectform)

Example 6

This example illustrates the meaning of the three operands of an object returned by
rectform.

We start with the expression x + sin(y), for which rectform is able to compute a
complete decomposition into real and imaginary part:

delete x, y: r := rectform(x + sin(y))

The first two operands of r are the real and imaginary part of the expression, and the
third operand is 0:

op(r)

Next we consider the expression x + f(y), where f(y) represents an unknown function in a
complex variable. rectform can split x into its real and imaginary part, but fails to do
this for the subexpression f(y):

delete f: r := rectform(x + f(y))

The first two operands of the returned object are the real and the imaginary part of x,
and the third operand is the remainder f(y), for which rectform was not able to extract
any information about its real and imaginary part:

op(r)
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Re(r), Im(r)

Sometimes rectform is not able to extract any information about the real and
imaginary part of the input expression. Then the third operand contains the whole
input expression, possibly in a rewritten form, due to the recursive mode of operation of
rectform. The first two operands are 0. Here is an example:

r := rectform(sin(x + f(y)))

op(r)

Re(r), Im(r)

Example 7

Advanced users can extend rectform to their own special mathematical functions (see
section “Backgrounds” below). To this end, embed your mathematical function into a
function environmentf and implement the behavior of rectform for this function as the
"rectform" slot of the function environment.

If a subexpression of the form f(u,..) occurs in z, then rectform issues the call
f::rectform(u,..) to the slot routine to determine the rectangular form of f(u,..).

For illustration, we show how this works for the sine function. Of course, the function
environment sin already has a "rectform" slot. We call our function environment Sin
in order not to overwrite the existing system function sin:

Sin := funcenv(Sin):
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Sin::rectform := proc(u) // compute rectform(Sin(u))

  local r, a, b;

begin

  // recursively compute rectform of u

  r := rectform(u);

   if op(r, 3) <> 0 then

    // we cannot split Sin(u)

    new(rectform, 0, 0, Sin(u))

  else

    a := op(r, 1); // real part of u

    b := op(r, 2); // imaginary part of u

    new(rectform, Sin(a)*cosh(b), cos(a)*sinh(b), 0)

  end_if

end:

delete z: rectform(Sin(z))

If the if condition is true, then rectform is unable to split u completely into its real and
imaginary part. In this case, Sin::rectform is unable to split Sin(u) into its real and
imaginary part and indicates this by storing the whole expression Sin(u) in the third
operand of the resulting rectform object:

delete f: rectform(Sin(f(z)))

op(%)

Parameters

z

An arithmetical expression, a polynomial, a series expansion, an array, an hfarray, a list,
or a set
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Return Values

Element of the domain rectform if z is an arithmetical expression, and an object of the
same type as z otherwise.

Function Calls

Calling an element of rectform as a function yields the object itself, regardless of the
arguments. The arguments are not evaluated.

Operations

You can apply (almost) any function to elements of rectform which transforms a
complex-valued expression into a complex-valued expression.

For example, you may add or multiply those elements, or apply functions such as expand
and diff to them. The result of such an operation, which is not explicitely overloaded by
a method of rectform (see below), is an element of rectform.

This “automatic overloading” works as follows: Each argument of the operation, which
is an element of rectform, is converted to an expression using the method "expr" (see
below). Then, the operation is applied and the result is re-converted to an element of
rectform.

Use the function expr to convert an element of rectform to an arithmetical expression
(as an element of a kernel domain).

The functions Re and Im return the real and imaginary part of elements of rectform.

Operands

An element z of rectform consists of three operands:

1 the real part of z,
2 the imaginary part of z,
3 the part of z, for that the real and imaginary part cannot be computed (possibly the

integer 0, if there are not such subexpressions).

1-1707



1 The Standard Library

Algorithms

If a subexpression of the form f(u,..) occurs in z and f is a function environment, then
rectform attempts to call the slot "rectform" of f to determine the rectangular form
of f(u,...). In this way, you can extend the functionality of rectform to your own
special mathematical functions.

The slot "rectform" is called with the arguments u,... of f. If the slot routine
f::rectform is not able to determine the rectangular form of f(u,..), then
it should return new(rectform(0,0,f(u,...))). See “Example 7” on page
1-1705. If f does not have a slot "rectform", then rectform returns the object
new(rectform(0,0,f(u,...))) for the corresponding subexpression.

Similarly, if an element d of a library domainT occurs as a subexpression of z, then
rectform attempts to call the slot "rectform" of that domain with d as argument to
compute the rectangular form of d.

If the slot routine T::rectform is not able to determine the rectangular form of d, then
it should return new(rectform(0,0,d)).

If the domain T does not have a slot "rectform", then rectform returns the object
new(rectform(0,0,d)) for the corresponding subexpression.

See Also

MuPAD Functions
abs | assume | collect | combine | conjugate | expand | Im | normal | radsimp
| Re | rewrite | sign | simplify

More About
• “Manipulate Expressions”
• “Choose Simplification Functions”
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rectangularPulse

Rectangular pulse function

Syntax

rectangularPulse(a, b, x)

rectangularPulse(x)

Description

rectangularPulse(a, b, x) represents the rectangular function.

rectangularPulse(x) is a shortcut for rectangularPulse(-1/2, 1/2, x).

The rectangular function is also called the rectangle function, box function, Pi function,
or gate function.

If a and b are variables or expressions with variables, rectangularPulse assumes that
a < b. If a and b are numerical values, such that a > b, rectangularPulse throws an
error.

If a < x < b, the rectangular pulse function equals 1. If x = a or x = b, the
rectangular pulse function equals 1/2. Otherwise, it equals 0. See “Example 1” on page
1-1710 and “Example 2” on page 1-1710.

If a = b, rectangularPulse returns 0. See “Example 3” on page 1-1710.

rectangularPulse(x) is equivalent to rectangularPulse(-1/2, 1/2, x). See
“Example 4” on page 1-1710.

rectangularPulse also accepts infinities as its arguments. See “Example 7” on page
1-1712.

rectangularPulse and rectpulse are equivalent.
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Examples

Example 1

Compute the rectangular pulse function for these input arguments:

[rectangularPulse(-1, 1, -2), rectangularPulse(-1, 1, -1),

rectangularPulse(-1, 1, 0), rectangularPulse(-1, 1, 1),

rectangularPulse(-1, 1, 2)]

Example 2

If a < b, the rectangular pulse function for x = a and x = b equals 1/2:

assume(a < b);

[rectangularPulse(a, b, a), rectangularPulse(a, b, b)]

Example 3

For a = b, the rectangular pulse function returns 0:

rectangularPulse(a, a, x)

Example 4

Use rectangularPulse with one input argument as a shortcut for computing
rectangularPulse(-1/2, 1/2, x):

rectangularPulse(x)
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[rectangularPulse(-1), rectangularPulse(-1/2), rectangularPulse(0),

rectangularPulse(1/2), rectangularPulse(1)]

Example 5

Rewrite the rectangular pulse function in terms of the Heaviside step function:

rewrite(rectangularPulse(a, b, x), heaviside)

Example 6

Plot the rectangular pulse function:

plot(rectangularPulse(x), x = -1..1)
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Example 7

Plot the rectangular pulse function for which the argument b is a positive infinity:

plot(rectangularPulse(0, infinity, x))

Parameters

a, b, x

Arithmetical expressions.

Return Values

Arithmetical expression.

1-1712



 rectangularPulse

Overloaded By

x

See Also

MuPAD Functions
heaviside | piecewise | triangularPulse
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rectpulse

Rectangular pulse function

Syntax

rectpulse(a, b, x)

rectpulse(x)

Description

rectpulse(a, b, x) represents the rectangular function.

rectpulse(x) is a shortcut for rectpulse(-1/2, 1/2, x).

rectpulse and rectangularPulse are equivalent. These functions represent the
triangular pulse function. For details and examples, see rectangularPulse.

Parameters

a, b, x

Arithmetical expressions.

Return Values

Arithmetical expression.

Overloaded By

x
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See Also

MuPAD Functions
heaviside | piecewise | rectangularPulse | triangularPulse
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rem
Remainder after division

Syntax
rem(a,b)

Description

rem(a,b) finds the remainder after division. If b <> 0, then rem(a,b) = a -
trunc(a/b)*b. See “Example 1” on page 1-1716 and “Example 2” on page 1-1716.

If b = 0 or b = infinity or b = -infinity, then rem returns undefined.

The rem function does not support complex numbers: all values must be real numbers.

Examples

Example 1

Find the remainder after division in case both the dividend and divisor are integers.

Find the modulus after division for these numbers.

rem(27, 4), rem(27, -4), rem(-27, 4), rem(-27, -4)

Example 2

Find the remainder after division in case the dividend is a rational number, and the
divisor is an integer.

Find the remainder after division for these numbers.
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rem(22/3, 5), rem(1/2, -7), rem(27/6, -11)

Example 3

Find the remainder after division in case the dividend and divisor are floating-point
numbers.

rem(2.3, 0.2), rem(-4.5, 1.3), rem(2.7, 1.0)

Parameters

a

A real number

b

A real number

Return Values

A number or an arithmetical expression.

Overloaded By

a, b

See Also

MuPAD Domains
Dom::IntegerMod
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MuPAD Functions
/ | div | divide | frac | gcd | gcdex | igcd | igcdex | IntMod | mod | modp |
mods | powermod
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reset
Re-initialize a session

Syntax
reset()

Description

reset() re-initializes a MuPAD session, so that the current session will behave like a
freshly started MuPAD session.

reset deletes the values of all identifiers and resets the environment variables to their
default values. Finally, the initialization files sysinit.mu and userinit.mu are read
again.

reset is permitted only at interactive level. Within a procedure, an error occurs.

Examples

Example 1

reset deletes the values of all identifiers and resets environment variables to their
default values:

a := 1: DIGITS := 5: reset(): a, DIGITS

Return Values

Void object null() of type DOM_NULL.
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See Also

MuPAD Functions
delete
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return
Exit a procedure

Syntax
return(x)

Description

return(x) terminates the execution of a procedure and returns x.

Usually, MuPAD ends a procedure when all statements of the procedure body were
processed. In this case, the return value of the procedure is the result of the last
statement that was executed.

Alternatively, the call return(x) inside a procedure leads to immediate exit from the
procedure: x is evaluated and becomes the return value of the procedure. Execution
proceeds after the point where the procedure was invoked.

x may be an expression sequence, i.e., calls such as return(x1, x2, ...) are allowed.

return() returns the void object of type DOM_NULL.

Note that return is a function, not a keyword. A statement such as return x; works in
the programming language C, but causes a syntax error in MuPAD.

If called outside a procedure, return(x) just returns x.

Examples

Example 1

This example shows the implementation of a maximum function (which, in contrast to
the system function max, accepts only two arguments). If x is larger than y, the value of
x is returned and the execution of the procedure mymax stops. Otherwise, return(x) is
not called. Consequently, y is the last evaluated object defining the return value:
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mymax := proc(x : Type::Real, y : Type::Real)

begin

   if x > y then

     return(x)

   end_if;

   y

end_proc:

mymax(3, 2), mymax(4, 5)

delete mymax:

Example 2

return() returns the void object:

f := x -> return(): type(f(anything))

delete f:

Example 3

If return is called on the interactive level, the evaluated arguments are returned:

x := 1: return(x, y)

delete x:

Parameters

x

Any MuPAD object

1-1722



 return

Return Values

X.

See Also

MuPAD Domains
DOM_PROC

MuPAD Functions
-> | proc
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revert
Revert polynomials, lists, character strings and tables, invert series expansions

Syntax
revert(object)

Description

revert reverses the ordering of the elements in a list and the ordering of characters in
a string, as well as the ordering of the coefficients in a polynomial. For tables, it swaps
indices and entries. For a series expansion, it returns the functional inverse.

revert is a general function to compute inverses with respect to functional composition,
or to reverse the order of operands. This type of functionality may be extended to further
types of objects via overloading.

Currently, the MuPAD library provides functionality for strings, polynomials,
lists, and tables, where revert reverses the order of the elements, coefficients, or
characters, respectively. In tables, entries are turned into indices and vice versa. E.g.,
revert(table(x = y, 2 = 4)) yields the table table(y = x, 4 = 2). For series
expansions, the functional inverse is returned.

For all other types of MuPAD objects that do not overload revert, the symbolic
expression revert(object) is returned.

Examples

Example 1

revert operates on lists and character strings:

revert([1, 2, 3, 4, 5])
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revert("nuf si DAPuM ni gnimmargorP")

revert operates on series:

revert(series(sin(x), x)) = series(arcsin(x), x)

revert operates on tables:

t := table():  t[x] := 1: t[y] := 2: t[z] := 3:

T := revert(t): T[1], T[2], T[3]

Beware: if an entry is stored under several distinct indices, revert reduces the number
of table operands:

revert(table(x = 1, y = 1, z = 3))

The functional inverse of the expansion of exp around x = 0 is the expansion of the
inverse function ln around x = exp(0) = 1:

revert(series(exp(x), x, 3)) = series(ln(x), x = 1, 2)

delete t, T:
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Example 2

revert computes the reverse of a polynomial:

revert(poly(x^3 + 2*x + 5))

The same works for multivariate polynomials, too:

revert(poly(x^3 + 2*x*y + 5*x + 6*y + 7))

We could have achieved the same by substituting all indeterminates by their inverses;
however, revert works faster.

numer(evalp(poly(x^3 + 2*x*y + 5*x + 6*y + 7), x = 1/x, y = 1/y))

Example 3

For all other types of objects, a symbolic function call is returned:

revert(x + y)

The following series expansion is not of type Series::Puiseux. Instead, a generalized
expansion of type Series::gseries is produced. Consequently, revert does not
compute an inverse:

revert(series(exp(-x)/(1 + x), x = infinity, 3))
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Parameters

object

A polynomial, a list, a character string, a table, or a series expansion of type
Series::Puiseux

Return Values

Object of the same type as the input object, or a symbolic call of type "revert".

Overloaded By

object

See Also

MuPAD Functions
series | sort | substring
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rewrite

Rewrite an expression

Syntax

rewrite(f, target)

Description

rewrite(f, target) transforms an expression f to a mathematically equivalent form,
trying to express f in terms of the specified target function.

The target indicates the function that is to be used in the desired representation.
Symbolic function calls in f are replaced by the target function if this is mathematically
valid.

With the target arg, the function ln(sign(x)) is rewritten as i arg(x).

With the target exp, all trigonometric and hyperbolic functions are rewritten in terms of
exp. Further, the inverse functions as well as arg are rewritten in terms of ln.

With the target sincos, the functions tan, cot, exp, sinh, cosh, tanh, and coth are
rewritten in terms of sin and cos.

With the target sin, the same is done as in the case of sincos. Additionally, cos(x)2 is
rewritten as 1 - sin(x)2. This holds for the target cos analogously.

With the target sinhcosh, the functions exp, tanh, coth, sin, cos, tan, and cot are
rewritten in terms of sinh and cosh. With the targets sinh and cosh, the same is
done, and cosh(x)^2 is rewritten in terms of sinh (or sinh(x)^2 in terms of cosh,
respectively.)

With the targets arcsin, arccos, arctan, and arccot, the logarithm, all inverse
trigonometric functions, and all inverse hyperbolic functions are rewritten in terms of the
target function.
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With the targets arcsinh, arccosh, arctanh, and arccoth, the logarithm, all inverse
hyperbolic functions and all inverse trigonometric functions are rewritten in terms of the
target function.

With the target lambertW, the function wrightOmega is rewritten in terms of
lambertW.

With the target erf, the functions erfc, erfi, and dawson are rewritten in terms of
erf.

With the target erfc, the functions erf, erfi, and dawson are rewritten in terms of
erfc.

With the target erfi, the functions erf, erfc, and dawson are rewritten in terms of
erfi.

With the target bernoulli, the function euler is rewritten in terms of bernoulli.

With the target diff, symbolic calls of the differential operator D are rewritten in terms
of symbolic calls of the function diff. E.g., D(f)(x) is converted to diff(f(x), x). A
univariate expression D(f)(x) is rewritten if x is an identifier or an indexed identifier.
A multivariate expression D([n1, n2, ...], f)(x1, x2, ...) is rewritten if x1, x2
are distinct identifiers or indexed identifiers. Trying to rewrite a multivariate call D(f)
(x1, x2, ...) of the univariate dervative D(f) raises an error.

With the target D, symbolic diff calls are rewritten in terms of the differential operator
D. Derivatives of univariate function calls such as diff(f(x), x) are rewritten as D(f)
(x). Derivatives of multivariate function calls are expressed via D([n1, n2, ...],
f). E.g., diff(f(x, y), x) is rewritten as D([1], f)(x, y).

With the target andor, the logical operators xor, ==>, and <=> are rewritten in terms of
and, or, and not.

With the targets min and max, expressions in max and min and, for real arguments, abs
are rewritten in terms of the target function.

The targets harmonic and psi serve for rewriting symbolic calls of psi in terms of
harmonic and vice versa.

With the target inverf, the function inverfc(x) is rewritten as inverf(1 - x).

With the target inverfc, the function inverf(x) is rewritten as inverfc(1 - x).
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Examples

Example 1

This example demonstrates the use of rewrite:

rewrite(D(D(f))(x), diff)

diff(f(x, x), x) = rewrite(diff(f(x, x), x), D)

assume(n, Type::PosInt):

rewrite(fact(n), gamma), rewrite(gamma(n), fact);

delete n:

rewrite(sign(x), heaviside), rewrite(heaviside(x), sign);

rewrite(heaviside(x), piecewise)

Example 2

Trigonometric functions can be rewritten in terms of exp, sin, cos etc.:

1-1730



 rewrite

rewrite(tan(x), exp), rewrite(cot(x), sincos),

rewrite(sin(x), tan)

rewrite(arcsinh(x), ln)

Example 3

Inverse trigonometric functions can be rewritten in terms of each other:

rewrite(arcsin(x), arctan)

The following result uses the function signIm (“sign of the imaginary part”) to make the
formula valid throughout the complex plane (apart from the singularities at ):

rewrite(arctan(x), arcsin)

Parameters

f

An arithmetical or boolean expression
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target

The target function to be used in the representation: one of andor, arccos, arccosh,
arccot, arccoth, arcsin, arcsinh, arctan, arctanh, arg, bernoulli, cos, cosh,
cot, coth, diff, D, erf, erfc, erfi, exp, fact, gamma, harmonic, heaviside,
inverf, inverfc, lambertW, ln, max, min, piecewise, psi, sign, sin, sincos, sinh,
sinhcosh, tan, or tanh

Return Values

arithmetical expression.

Overloaded By

f

See Also

MuPAD Functions
collect | combine | expand | factor | normal | partfrac | rationalize |
rectform | simplify
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RootOf
Set of roots of a polynomial

Syntax
RootOf(f, x)

RootOf(f)

Description

RootOf(f, x) represents the symbolic set of roots of the polynomial f(x) with respect to
the indeterminate x.

RootOf serves as a symbolic representation of the zero set of a polynomial. Since it is
generally impossible to represent the roots of a polynomial in terms of radicals, RootOf
is often the only possible way to represent the roots symbolically. RootOf mainly occurs
in the output of solve or related functions; see “Example 3” on page 1-1735.

The parameter f must be either a polynomial, or an arithmetical expression representing
a polynomial in x, or an equation p=q, where p and q are arithmetical expressions
representing polynomials in x. In the latter case, RootOf represents the roots of p-q
with respect to x.

The polynomial f need not be irreducible or even square-free. If f has multiple roots,
RootOf represents each of the roots with its multiplicity.

If x is omitted, then f must be an arithmetical expression or polynomial equation
containing exactly one indeterminate, and RootOf represents the roots with respect to
this indeterminate.

x need not be an identifier or indexed identifier: it may be any expression that is neither
rational nor constant.

If f contains only one indeterminate, then you can apply float to the RootOf object
to obtain a set of floating-point approximations for all roots; see “Example 3” on page
1-1735.
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Examples

Example 1

Each of the following calls represents the roots of the polynomial x3 - x2 with respect to x,
i.e., the set {0, 1}:

RootOf(x^3 - x^2, x), RootOf(x^3 = x^2, x)

RootOf(x^3 - x^2), RootOf(x^3 = x^2)

RootOf(poly(x^3 - x^2, [x]), x)

In general, however, RootOf is only used when no explicit symbolic representation of the
roots is possible.

Example 2

The first argument of RootOf may contain parameters:

RootOf(y*x^2 - x + y^2, x)

The set of roots of a polynomial is treated like an expression. For example, it may be
differentiated with respect to a free parameter. The result is the set of derivatives of the
roots; it is expressed in terms of RootOf, by giving a minimal polynomial:

diff(%, y)
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For reducible polynomials, the result may be a multiple of the correct minimal
polynomial.

Example 3

solve returns RootOf objects when the roots of a polynomial cannot be expressed in
terms of radicals:

solve(x^5 + x + 7, x)

You can apply the function float to obtain floating-point approximations of all roots:

float(%)

Example 4

The function sum is able to compute sums over all roots of a given polynomial:

sum(i^2, i = RootOf(x^3 + a*x^2 + b*x + c, x))

sum(1/(z + i), i = RootOf(x^4 - y*x + 1, x))

Example 5

A RootOf object represents the set of all roots. One can address the individual roots via
indexed calls:
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RootOf(z^3 - 1, z)[i] $ i = 1..3

float(RootOf(z^3 - 1, z)[i]) $ i = 1..3

Parameters

f

A polynomial, an arithmetical expression representing a polynomial in x, or a polynomial
equation in x

x

The indeterminate: typically, an identifier or indexed identifier

Return Values

Symbolic RootOf call, i.e., an expression of type "RootOf".

See Also

MuPAD Functions
isolate | numeric::polyroots | poly | solve
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Rule
Defining equivalence rules for mathematical expressions

Syntax
Rule(pattern, replacement, <conditions>)

Rule(procedure, <condProc>)

Description

Rule is a data type. Each object of Rule – a rule – describes the equivalence between
mathematical expressions. The arguments of a rule are two pattern expressions, that are
equivalent, and optional some conditions for the validity of the equivalence.

Rule can be applied to any expression, and returns an expression equivalent to the input,
or FAIL.

Additionally, a rule can consist of a procedure that returns an equivalent expression to a
given expression or FAIL without using the pattern matcher.

Rules created with Rule are mainly used to build a rule base for the new Simplify. See
the documentation of Simplify and “Example 8” on page 1-1744 for a real application
of Rule. “Example 3” on page 1-1740 shows, how to implement rewriting rules via
Rule.

All other examples are only given to explain the behavior of rules. In practice, single
rules and their manual application is unusual.

There are two kinds of rules: Use the library pattern matcher to determine whether the
rule is suitable, or use a user defined procedure to analyze a given expression and return
an equivalent expression.

Rule(pattern, replacement, conditions) defines a rule that describes the
equivalence of the expressions pattern and replacement.

When this rule is applied to a given expression ex, the pattern matcher is called with the
arguments
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match(ex, pattern, Cond = conditions)

and returns a set of replacements S:={var = ex_var, ...} for each variable var of
pattern, and ex_var is the corresponding subexpression of ex (see match for detailed
description).

In this case the result of the substitution subs(replacement, S) is returned as
equivalent expression to ex.

The call to match can also return FAIL, when ex doesn't have the same structure as
pattern. Then the return value of the rule application is FAIL, too.

See “Example 1” on page 1-1739 and “Example 2” on page 1-1739.

See match for the description of valid conditions.

Alternatively, a rule can consist of a procedure that is called with a given expression, and
must return an equivalent expression or FAIL. The “pattern matcher” is not called.

Rule(procedure, condProc) defines such a rule that returns an equivalent
expression to any given input as return value of procedure or FAIL.

The optional condition condProc must be a procedure, too. This procedure is called
before the procedure that produces equivalent expressions, with a given expression
ex. When the call condProc(ex) returns TRUE, then the return value of the call
procedure(ex) is returned as the result of the application of the rule, otherwise FAIL.

With a rule that consists of a procedure, several relations pattern <=> result can be
expressed. This is mostly more efficient, than using match for each equivalence.

See “Example 6” on page 1-1742 and “Example 7” on page 1-1743.

Note: Rules with expressions as arguments must use identifiers that are protected from
any assignment. Those identifiers must be of the form #X, where X can be any valid
variable name. All variables that start with # in their names are protected by the kernel
from any assignment.
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Examples

Example 1

The first rule represents the simplification sin(X)^2 + cos(X)^2 = 1. The first
argument of the rule is the expression sin(X)^2 + cos(X)^2. Each expression, which
has the same structure, is found by match, and the second argument of the rule 1 is
returned as result. There are no conditions for the validity of this equivalence. The
identifiers used for defining the rule are write protected, because they have names
beginning with #:

r := Rule(sin(`#X`)^2 + cos(`#X`)^2, 1):

Rule::apply(r, sin(2*x - 1)^2 + cos(2*x - 1)^2)

The next expression doesn't have the right form, the application of the rule fails:

Rule::apply(r, sin(2*x - 1)^2 + cos(2*x + 1)^2)

Example 2

The next rule represents the addition theorem sin(X + Y) = sin(X)*cos(Y) +
sin(Y)*cos(X). The first argument of the rule is the expression sin(X + Y). Each
expression that is a call to sin with a sum as argument, is identified by match, and the
sum sin(X)*cos(Y) + sin(Y)*cos(X) is returned, where X and Y are replaced by
the corresponding parts of the given expression. There are no conditions for the validity
of this equivalence. The second part of the rule is prevented from evaluation with hold.
The identifiers used for defining the rule are write protected, because they have names
beginning with #:

r := Rule(sin(`#X` + `#Y`),

          hold(sin(`#X`)*cos(`#Y`) + sin(`#Y`)*cos(`#X`))):

Rule::apply(r, sin(tan(x) + tan(y)))
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The matcher identifies the difference of two expressions a and b as the sum a + -b,
therefore also the following example works:

Rule::apply(r, sin(tan(x) - tan(y)))

Example 3

We define two rules based on the trigonometric identies sin(x)2 = 1 - cos(x)2 and
:

myrules := [Rule(sin(`#X`)^`#n`, (1 - cos(`#X`)^2)^(`#n`/2),

                         {`#n` -> is(`#n`, Type::Even)}),

            Rule(tan(`#X`)^`#n`, (1/cos(`#X`)^2 - 1)^(`#n`/2),

                            {`#n` -> is(`#n`, Type::Even)})

            ]:

We wish to apply these rules as rewriting rules to various expressions. We forward
Rule::apply to all subexpressions of an expression via misc::maprec. For
convenience, an interface function myrewrite is implemented that calls misc::maprec:

myrewrite:= proc(f, rules)

local _rewrite;

begin

   _rewrite:= proc(x)

   local r, tmp;

   begin

      for r in rules do

         tmp:= Rule::apply(r, x);

         if tmp <> FAIL then

            x:= tmp;

         end;

      end;         

      return(x)

    end;

    misc::maprec(f, TRUE = _rewrite);

end:

Now we can call myrewrite(f, myrules) to apply the rewriting rules to an expression
f:
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f:= tan(x) + sin(2*x) - tan(y)^2*sin(x + 3)^6 + sin(x)^2 * tan(23)^4:

myrewrite(f, myrules);

delete myrules, myrewrite, f:

Example 4

Another rule represents the simplification sin(X) = 0, which is only true, when X is an
integer multiple of PI:

r := Rule(sin(`#X`), 0, {`#X` -> is(`#X`/PI, Type::Integer)}):

Rule::apply(r, sin(2*x*PI))

In the last call, the argument of sin doesn't have the necessary property, so the
application of the rule fails.

After an assumption to x, the expression has the right form:

assume(x, Type::Integer):

Rule::apply(r, sin(2*x*PI))

The next application of the rule checks a constant expression:

Rule::apply(r, sin(2*PI))

Why FAIL? The problem is, sin simplifies the constant input 2*PI to 0 itself, so the rule
gets 0 as input. However, 0 doesn't have the necessary form, so FAIL is returned.
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Example 5

Another rule represents the simplification ln(neg^even*r) = even*ln(-neg) +
ln(r), which is only true, when neg is negative and even is an even number:

r := Rule(ln(`#Neg`^`#Even`*`#X`),

          `#Even`*ln(-`#Neg`) + ln(`#X`),

          {`#Neg` -> is(`#Neg`, Type::Negative) = TRUE,

           `#Even` -> is(`#Even`, Type::Even) = TRUE}):

delete e, n, x:

Rule::apply(r, ln(n^e*x))

The rule application fails, because the variables doesn't have the necessary properties.

With an assumption n should be a negative variable and e should be even:

assume(n < 0): assume(e, Type::Even):

Rule::apply(r, ln(n^e*x))

Example 6

This rule represents the application of rewrite to an expression with the target exp,
when the expression has subexpressions of type "sin" or "cos". The first argument
of the rule is a procedure that calls rewrite with any expression and target exp and
returns an expression equivalent to the input (because rewrite does it). The second
argument is a procedure that checks, whether sin or cos is contained in the input
expression:

r := Rule(X -> rewrite(X, exp), X -> has(X, sin) or has(X, cos)):

Rule::apply(r, sin(2*x - 1)^2 + cos(2*x - 1)^2)

The next expression doesn't have sin or cos, so the application of the rule fails:
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Rule::apply(r, tan(2*I*x))

Example 7

This rule represents the application of rewrite to an expression with several targets.
The first argument of the rule is a procedure that applies rewrite to the given
expression, with a target depending on the input. This rule doesn't have a condition
procedure:

rewProc :=

  proc(ex)

  begin

    rewrite(ex, (if has(ex, exp) then

                   tan

                 elif has(ex, sin) or has(ex, cos) then

                   cot

                 elif has(ex, tan) or has(ex, cot) then

                   sincos

                 else

                   exp

                 end_if))

  end_proc:

r := Rule(rewProc):

Rule::apply(r, exp(2*x))

The rule is applied again to the last result:

Rule::apply(r, %)

The last result should be simplified back to the first expression:
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Simplify(%)

Example 8

The new Simplify uses a rule base for applying a lot of rewriting rules for finding the
simplest form of any given expression.

We want to rewrite only some powers and assume that all used variables are real
(without using properties).

The list PowerRules consists of several rules. The procedure powerRules returns all
this rules in a list.

Because of better readability, the names of the used identifiers are short and not
protected names:

PowerRules :=

  [Rule(A^m*A^n, hold(A^(m + n))),

   Rule(A^m/A^n, hold(A^(m - n))),

   Rule(A^n*B^n, hold((A*B)^n)),

   Rule(A^n/B^n, hold((A/B)^n)),

   Rule(A^n/B^n, hold((B/A)^-n)),

   Rule((A^m)^n, hold(A^(m*n)))]:

powerRules := proc()

              begin

                PowerRules

              end_proc:

Simplify is called with the option SelectRules, and expects a procedure that returns
a list of rules, applicable to a given expression. In this case, all of the rules are returned
in every case.

Simplify applies all rules to a given expression and also to rewritten results, and tries
to find the easiest form of the expression with respect to the default valuation procedure
Simplify::complexity.

Because of the argument SelectRules = powerRules, only the given rules are used
by Simplify:

Simplify(T^(1/2)*(R*T)^(-1/2), SelectRules = powerRules)
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Other expressions cannot be simplified with the same rule base:

Simplify(sin(x)^2 + cos(x)^2, SelectRules = powerRules)

delete r, x, powerRules, PowerRules:

Parameters

pattern

A MuPAD expression; all identifiers are used as pattern variables for the pattern
matcher

replacement

A MuPAD expression with the same identifiers, as pattern; the replacement expression
should be protected from evaluation with the function hold

conditions

A set (of type DOM_SET) of procedures and expressions in the pattern variables, or the
empty set (see match and option Cond)

procedure

A MuPAD procedure that is called with an expression and must return an equivalent
expression or FAIL

condProc

A procedure that is called with an expression before procedure, and must return TRUE,
when procedure should be called with the expression, otherwise FAIL is returned
immediately
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See Also

MuPAD Functions
match | Simplify
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save, _save

Save the state of an identifier

Syntax

save x1, x2, …

_save(x1, x2, …)

Description

In a procedure, the statement “save x;” saves the state of the global identifier x.

The save statement saves the states of identifiers—i.e., their values and properties —
during the execution of procedures. The original state of the identifiers is restored when
procedure execution is finished. This holds even when an error occurs.

The save statement is to be used only inside the body of a procedure. It cannot be called
on the interactive level.

The arguments of the save statement are evaluated as usual. In the statement ‘save
x;’, the symbol x must evaluate to an identifier y, say. It is the state of the identifier y
that is saved.

The save statement is very similar to the save declaration for procedures. The main
difference to the declaration is that, in order to make the declaration, one has to know
the names of the identifiers to be saved in advance. The save statement allows to save
identifiers which are known only at runtime.

The save statement is usually used in order to temporarily change the properties of an
identifier, for example by calling the function assume. Eventually, the original properties
of the identifiers are restored even if an error occurs.

The statement ‘save x1, x2, ...;’ is equivalent to the function call _save(x1,
x2, ...).
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Examples

Example 1

First, we define a property for the identifier y:

assume(y < 0)

The properties of the identifier stored in x are changed temporarily during the execution
of the following procedure p:

p := proc(x : DOM_IDENT)

begin

    save x;

    assume(x > 0);

    is(x > 0)

end_proc:

From the procedure's result, we see that the properties of y were changed during the
execution of p:

p(y)

However, the original properties were restored after exiting p. The identifier y has its
original properties:

is(y > 0), is(y < 0)

The restoration of the original properties is guaranteed even if some error occurs inside
the procedure. The following procedure q raises an error after changing the identifier
given by x:

q := proc(x : DOM_IDENT)

begin

    save x;

    assume(x > 0);

    error("some error")
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end_proc:

q(y)

Error: some error [q]

Nevertheless, the original assumptions about y are restored:

is(y > 0), is(y < 0)

unassume(y): delete p, q:

Parameters

x1, x2, …

Symbols evaluating to identifiers

Return Values

Void object of type DOM_NULL.

See Also

MuPAD Functions
proc
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select

Select operands

Syntax

select(object, f, <p1, p2, …>)

Description

select(object, f) returns a copy of the object with all operands removed that do not
satisfy a criterion defined by the procedure f.

select is a fast and handy function for picking out elements of lists, sets, tables etc. that
satisfy a criterion set by the procedure f.

The function f must return a value that can be evaluated to one of the Boolean values
TRUE, FALSE, or UNKNOWN. It may either return one of these values directly, or it may
return an equation or an inequality that can be simplified to one of these values by the
function bool.

Internally, the function f is applied to all operands x of the input object via the call f(x,
p1, p2, ...). If the result is not TRUE, this operand is removed. The original object is
not modified in this process.

The output object is of the same type as the input object, i.e., a list yields a list, a set
yields a set etc.

An input object that is an expression sequence is not flattened. Cf. “Example 2” on page
1-1752.

Also “atomic” objects such as numbers or identifiers can be passed to select as first
argument. Such objects are handled like sequences with a single operand.
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Examples

Example 1

select handles lists and sets. In the first example, we select all true statements from a
list of logical statements. The result is again a list:

select([1 = 1, 1 = 2, 2 = 1, 2 = 2], bool)

In the following example, we extract the subset of all elements that are recognized as
zero by iszero:

select({0, 1, x, 0.0, 4*x}, iszero)

select also works on tables:

T:= table(1 = "y", 2 = "n", 3 = "n", 4 = "y", 5 = "y"):

select(T, has, "y")

The following expression is a sum, i.e., an expression of type "_plus". We extract the
sum of all terms that do not contain x:

select(x^5 + 2*x + y - 4, _not@has, x)

We extract all factors containing x from the following product. The result is a product
with exactly one factor, and therefore, is not of the syntactical type "_mult":

select(11*x^2*y*(1 - y), has, x)
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delete T:

Example 2

select works for expression sequences:

select((1, -4, 3, 0, -5, -2), testtype, Type::Negative)

The $ command generates such expression sequences:

select(i $ i = 1..20, isprime)

Atomic objects are treated as expression sequences of length one:

select(5, isprime)

The following result is the void object null() of type DOM_NULL:

domtype(select(6, isprime))

Example 3

It is possible to pass an “anonymous procedure” to select. This allows to perform more
complex actions with one call. In the following example, the command anames(All)
returns a set of all identifiers that have a value in the current MuPAD session. The
select statement extracts all identifiers beginning with the letter "h":

select(anames(All), x -> expr2text(x)[1] = "h")
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Parameters

object

A list, a set, a table, an expression sequence, or an expression of type DOM_EXPR

f

A procedure returning a Boolean value

p1, p2, …

Any MuPAD objects accepted by f as additional parameters

Return Values

Object of the same type as the input object.

Overloaded By

object

See Also

MuPAD Functions
map | op | split | zip

1-1753



1 The Standard Library

series
Compute a generalized series expansion

Syntax
series(f, x, <order>, <Left | Right | Real | Undirected>, <NoWarning>, <UseGseries>)

series(f, x = x0, <order>, <Left | Right | Real | Undirected>, <options>)

Description

series(f, x = x0) computes the first terms of a series expansion of f with respect to
the variable x around the point x0.

series tries to compute either the Taylor series, the Laurent series, the Puiseux series,
or a generalized series expansion of f around x = x0. See Series::gseries for details
on generalized series expansions.

The mathematical type of the series returned by series can be queried using the type
expression Type::Series.

If series cannot compute a series expansion of f, a symbolic function call is returned.
This is an expression of type "series". Cf. “Example 11” on page 1-1764.

Mathematically, the expansion computed by series is valid in some neighborhood of
the expansion point in the complex plane. Usually, this is an open disc centered at x0.
However, if the expansion point is a branch point, then the returned expansion may not
approximate the function f for values of x close to the branch cut. Cf. “Example 12” on
page 1-1765.

Using the options Left or Right, one can compute directed expansions that are valid
along the real axis. With the option Real, a two-sided expansion along the real axis is
computed. See “Example 5” on page 1-1759 and “Example 6” on page 1-1759.

If x0 is infinity or -infinity, then a directed series expansion along the real axis
from the left to the positive real infinity or from the right to the negative real infinity,
respectively, is computed. If x0 is complexInfinity and dir is not specified or
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Undirected, then an undirected series expansion around the complex infinity, i.e., the
north pole of the Riemann sphere, is computed. Specifying x0= infinity is equivalent
to x0= complexInfinity and dir = Left. Similarly, x0= -infinity is equivalent to
x0= complexInfinity and dir = Right. Cf. “Example 7” on page 1-1760.

Such a series expansion is computed as follows: The series variable x in f is replaced
by  (or  for x0= -infinity). Then, a series expansion of f around u = 0 is

computed. Finally,  (or , respectively) is substituted in the result.

Mathematically, the result of such a series expansion is a series in . However, it may

happen that the coefficients of the returned series depend on the series variable. See the
corresponding paragraph below.

The number of requested terms for the expansion is the argument order if specified.
Otherwise, the value of the environment variable ORDER is used. One can change the
default value 6 by assigning a new value to ORDER.

The number of terms is counted from the lowest degree term on for finite expansion
points, and from the highest degree term on for expansions around infinity, i.e., “order”
has to be regarded as a “relative truncation order”.

series implements a limited amount of precision management to circumvent
cancellation. If the number of terms of the computed expansion is less than order, a
second series computation with a higher value of order is tried automatically, and the
result of the latter is returned.

Note: Nevertheless, the actual number of terms in the resulting series expansion
may differ from the requested number of terms. See “Example 13” on page 1-1766
and “Example 15” on page 1-1768.

Taylor/Laurent/Puiseux expansions (all of domain type Series::Puiseux) can
be restricted easily to an absolute order term by adding an appropriate O term. Cf.
“Example 14” on page 1-1767.

Expansions of symbolic integrals can be computed. Cf. “Example 16” on page 1-1769.

If f is an expression of type RootOf, then series returns the set of all non-zero series
solutions of the corresponding algebraic equation. Cf. “Example 9” on page 1-1761.
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If order has the value infinity, then the system tries to convert the first argument
into a formal infinite series, i.e., it computes a general formula for the n-th coefficient
in the Taylor expansion of f. The result is an inactive symbolic sum or a polynomial
expression. Cf. “Example 10” on page 1-1764.

If series returns a series expansion of domain type Series::Puiseux, it may happen
that the “coefficients” of the returned series depend on the series variable. In this case,
the expansion is not a proper Puiseux series in the mathematical sense. See “Example
7” on page 1-1760 and “Example 8” on page 1-1761. However, if the series variable is
x and the expansion point is x0, then the following is valid for each coefficient function
c(x) and every positive ε: c(x) (x - x0)ε converges to zero and  is unbounded when x

approaches x0. Similarly, if the expansion point is infinity, then, for every positive ε, 

converges to zero and c(x) xε is unbounded when x approaches infinity.

The function returns a domain object that can be manipulated by the standard
arithmetical operations. Moreover, the following methods are available: ldegree
returns the exponent of the leading term; Series::Puiseux::order returns the
exponent of the error term; expr converts to an arithmetical expression, removing
the error term; coeff(s, n) returns the coefficient of the term of s with exponent n;
lcoeff returns the leading coefficient; revert computes the inverse with respect to
composition; diff and int differentiate and integrate a series expansion, respectively;
map applies a function to all coefficients. See the help pages for Series::Puiseux and
Series::gseries for further details.

Note: series works on a symbolic level and should not be called with arguments
containing floating point arguments.

Environment Interactions

The function is sensitive to the environment variable ORDER, which determines the
default number of terms in series computations.
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Examples

Example 1

We compute a series expansion of sin(x) around x = 0. The result is a Taylor series:

s := series(sin(x), x)

Syntactically, the result is an object of domain type Series::Puiseux:

domtype(s)

The mathematical type of the series expansion can be queried using the type expression
Type::Series:

testtype(s, Type::Series(Taylor))

Various system functions are overloaded to operate on series objects. E.g., the function
coeff can be used to extract the coefficients of a series expansion:

coeff(s, 5)

The standard arithmetical operators can be used to add or multiply series expansions:

s + 2*s, s*s

delete s:
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Example 2

This example computes the composition of s by itself, i.e. the series expansion of
sin(sin(x)).

s := series(sin(x), x): s @ s = series(sin(sin(x)), x)

delete s:

Example 3

We compute the series expansion of the tangent function around the origin in two ways:

series(sin(x), x) / series(cos(x), x) = series(tan(x), x)

bool(%)

Example 4

We compute a Laurent expansion around the point 1:

s := series(1/(x^2 - 1), x = 1)

testtype(s, Type::Series(Taylor)),

testtype(s, Type::Series(Laurent))
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Example 5

Without an optional argument or with the option Undirected, the sign function is not
expanded:

series(x*sign(x^2 + x), x) =

series(x*sign(x^2 + x), x, Undirected)

Some simplification occurs if one requests an expansion that is valid along the real axis
only:

series(x*sign(x^2 + x), x, Real)

The sign vanishes from the result if one requests a one-sided expansion along the real
axis:

series(x*sign(x^2 + x), x, Right),

series(x*sign(x^2 + x), x, Left)

Example 6

In MuPAD, the heaviside function is defined only on the real axis. Thus an undirected
expansion in the complex plane does not make sense:

series(x*heaviside(x + 1), x)

Warning: Cannot find an undirected series expansion. Try the 'Left', 'Right', or 'Real' option. [Series::main]

After specifying corresponding options, the system computes an expansion along the real
axis:
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series(x*heaviside(x + 1), x, Real),

series(x*heaviside(x + 1), x, Right)

At the point I in the complex plane, the function heaviside is not defined, and neither
is a series expansion:

series(heaviside(x), x = I, Real)

Example 7

We compute series expansions around infinity:

s1 := series((x + 1)/(x - 1), x = complexInfinity)

s2 := series(psi(x), x = infinity)

domtype(s1), domtype(s2)

Although both expansions are of domain type Series::Puiseux, s2 is not a Puiseux
series in the mathematical sense, since the first term contains a logarithm, which has an
essential singularity at infinity:

testtype(s1, Type::Series(Puiseux)),

testtype(s2, Type::Series(Puiseux))
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coeff(s2)

The following expansion is of domain type Series::gseries:

s3 := series(exp(x)/(1 - x), x = infinity, 4)

domtype(s3)

delete s1, s2, s3:

Example 8

Oscillating but bounded functions may appear in the “coefficients” of a series expansion
as well:

s := series(sin(x + 1/x), x = infinity)

domtype(s), testtype(s, Type::Series(Puiseux))

coeff(s, -1)

Example 9

The algebraic equation y5 - y - x = 0 cannot be resolved in terms of radicals:
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solve(y^5 - y - x, y)

However, series can compute all series solutions of this equation around x = 0:

series(%, x = 0)

It may happen that the series solutions themselves are expressed in terms of RootOfs:

series(RootOf(y^5 -(x + 2*x^2)*y^3 - x^3*y^2

              + (x^3 + x^4)*y + x^4 + x^5, y), x)
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The coefficients of the algebraic equation are allowed to be transcendental. They are
internally converted into Puiseux series by series:

series(RootOf(y^3 - y - exp(x - 1) + 1, y), x = 1, 4)
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An error occurs if some coefficient cannot be expanded into a Puiseux series:

series(RootOf(y^3 - y - exp(x), y), x = infinity)

Error: Cannot expand the coefficients of 'RootOf(y^3 - y - exp(1/x), y)' into a series. [Series::algebraic]

Example 10

In this example, we compute a formula for the n-th coefficient an in the Taylor expansion
of the function  around zero, by specifying infinity as order. The

result is a symbolic sum:

series(exp(-x), x, infinity)

If the input is a polynomial expression, then so is the output:

series(x^5 - 1, x = 1, infinity)

Example 11

No asymptotic expansion exists for the Bessel J function of unspecified index, and
series returns a symbolic function call:
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series(besselJ(k, x), x=infinity)

domtype(%), type(%)

Example 12

The branch cut of the logarithm and the square root is the negative real axis. For a series
expansion on the branch cut, series uses the function signIm to return an expansion
that is valid in an open disc around the expansion point:

series(ln(x), x = -1, 3)

series(sqrt(x), x = -1, 3)

The situation is more intricate when the expansion point is a branch point. The following
expansion of the function arcsin(x + 1) is valid in an open disc around the branch
point 0:

series(arcsin(x + 1), x, 4)

However, the expansion of f = ln(x + I*x^3) around the branch point 0 that is
returned by series does not approximate f for values of x that are close to the negative
real axis:

f := ln(x + I*x^3);
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g := series(f, x, 4);

DIGITS := 20:

float(subs([f, expr(g)], x = -0.01 + 0.0000001*I));

delete DIGITS:

The situation is similar for algebraic branch points:

f := sqrt(x + I*x^3);

g := series(f, x, 4);

DIGITS := 20:

float(subs([f, expr(g)], x = -0.01 + 0.0000001*I));

delete DIGITS:

delete f, g:

Example 13

The first six terms, including zeroes, of the following two series expansions agree:

series(sin(tan(x)), x, 12);

series(tan(sin(x)), x, 12);
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If we want to compute the series expansion of the difference sin(tan(x)) -
tan(sin(x)), cancellation happens and produces too few terms in the result. series
detects this automatically and performs a second series computation with increased
precision:

series(sin(tan(x)) - tan(sin(x)), x, 6)

It may nevertheless happen that the result has too few terms; cf. “Example 15” on page
1-1768.

If rational exponents occur in the series expansion, then it may even happen that the
result has more than the number of terms requested by the third argument:

series(x^2*exp(x) + x*sqrt(sin(x)), x, 3)

Example 14

series's control of the order term is based on the concept of `relative order', counting
the number of terms beginning with the lowest order that is present in the expansion. An
`absolute order' control can be achieved by simply adding an appropriate order term to
restrict a result returned by series:

series(exp(x) + x*sqrt(sin(x)), x, 7)
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series(exp(x) + x*sqrt(sin(x)), x, 7) + O(x^4)

Note, however, that the series must have enough terms for the added order term to have
any effect:

series(exp(x^2), x, 4)

series(exp(x^2), x, 4) + O(x^8)

Example 15

If the specified order for the expansion is too small to compute the reciprocal (due to
cancellation), series returns a symbolic call:

series(exp(x), x, 4)

series(1/(exp(x) - 1 - x - x^2/2 - x^3/6), x, 2)

After increasing the order, an expansion is computed, but possibly with fewer terms:

series(1/(exp(x) - 1 - x - x^2/2 - x^3/6), x, 3);

series(1/(exp(x) - 1 - x - x^2/2 - x^3/6), x, 4)
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Example 16

series and int support each other. On the one hand, series expansions can be
integrated:

int(series(1/(2 - x), x), x = 0..1)

On the other hand, series knows how to handle symbolic integrals:

int(x^x, x)

series(%, x = 0, 3)

int(exp(-x*sin(t)), t = 0.. x)

series(%, x = 0)
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int(cos((x*t^2 + x^2*t))^(1/3), t = 0..2)

series(%, x)

Example 17

Users can extend the power of series by implementing series attributes (slots) for
their own special mathematical functions.

We illustrate how to write such a series attribute, using the case of the exponential
function. (Of course, this function already has a series attribute in MuPAD, which you
can inspect via expose(exp::series).) In order not to overwrite the already existing
attribute, we work on a copy of the exponential function called Exp.

The series attribute must be a procedure with four arguments. This procedure is called
whenever a series expansion of Exp with an arbitrary argument is to be computed.
The first argument is the argument of Exp in the series call. The second argument is
the series variable; the expansion point is always the origin 0; other expansion points
are internally moved to the origin by a change of variables. The third and the fourth
argument are identical with the order and the dir argument of series, respectively.

For example, the command series(Exp(x^2 + 2), x, 5) is internally converted
into the call Exp::series(x^2 + x, x, 5, Undirected). Here is an example of a
series attribute for Exp.

// The series attribute for Exp. It handles the call

// series(Exp(f), x = 0, order, dir)

ExpSeries := proc(f, x, order, dir)

  local t, x0, s, r, i;

begin

  // Expand the argument into a series.

  t := series(f, x, order, dir);
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  // Determine the order k of the lowest term in t, so that

  // t = c*x^k + higher order terms, for some non-zero c.

  k := ldegree(t);

  if k = FAIL then

    // t consists only of an error term O(..)

    return(FAIL);

  elif k < 0 then

    // This corresponds to an expansion of exp around infinity,

    // which does not exist for the exponential

    // function, since it has an essential singularity. Thus we

    // return FAIL, which makes series return unevaluatedly. For

    // other special functions, you may add an asymptotic

    // expansion here.

    return(FAIL);

  else // k >= 0

    // This corresponds to an expansion of exp around a

    // finite point x0. We write t = x0 + y, where all

    // terms in y have positive order, use the

    // formula exp(x0 + y) = exp(x0)*exp(y) and compute

    // the series expansion of exp(y) as the functional

    // composition of the Taylor series of exp(x) around

    // x = 0 with t - x0. If your special function has

    // any finite singularities, then they should be

    // treated here.

    x0 := coeff(t, x, 0);

    s := Series::Puiseux::create(1, 0, order,

           [1/i! $ i = 0..(order - 1)], x, 0, dir);

    return(Series::Puiseux::scalmult(s @ (t - x0), Exp(x0), 0))

  end_if

end_proc:

This special function must be embedded in a function environment. The following
command defines Exp as a function environment and lets the system function exp do the
evaluation. The subs command applied on the result achieves that Exp with symbolic
arguments is returned as Exp and not as exp.

Exp := funcenv(x -> subs(exp(x), hold(exp)=hold(Exp))):

Exp(1), Exp(-1.0), Exp(x^2 + x)

1-1771



1 The Standard Library

series can already handle this “new” function, but it can only compute a Taylor
expansion with symbolic derivatives:

ORDER := 3: series(Exp(x), x = 0)

One can define the series attribute of Exp by assigning the procedure above to its
series slot:

Exp::series := ExpSeries:

Now we can test the new attribute:

series(Exp(x^2 + x), x = 0) = series(exp(x^2 + x), x = 0)

series(Exp(x^2 + x), x = 2) = series(exp(x^2 + x), x = 2)

series(Exp(x^2 + x), x = 0, 1)

series(Exp(x^2 + x), x = infinity)

Another possibility to obtain series expansions of user-defined functions is to define the
diff attribute of the corresponding function environment. This is used by series to
compute a Taylor expansion when no series attribute exists. However, this only works
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when a Taylor expansion exists, whilst a series attribute can handle more general
types of series expansions as well.

delete ExpSeries, Exp:

Parameters

f

An arithmetical expression representing a function in x

x

An identifier

x0

The expansion point: an arithmetical expression. If not specified, the default expansion
point 0 is used.

order

The number of terms to be computed: a nonnegative integer or infinity. The default
order is given by the environment variable ORDER (default value 6).

Options

Left, Real, Right, Undirected

If no expansion exists that is valid in the complex plane, this argument can be used
to request expansions that only need to be valid along the real line. The default is
Undirected.

NoWarning

Supresses warning messages printed during the series computation. This can be useful if
series is called within user-defined procedures.

UseGseries

Option, specified as UseGseries = b
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Use Series::gseries to compute the series. b must be TRUE or FALSE. Default
is TRUE. Even if this option is set to TRUE, computing a Puiseux expansion will be
attempted first.

Return Values

If order is a nonnegative integer, then series returns either an object of the domain
type Series::Puiseux or Series::gseries, an expression of type "series", or, if f
is a RootOf expression, a set of type Type::Set. If order = infinity, then series
returns an arithmetical expression.

Overloaded By

f

See Also

MuPAD Functions
asympt | limit | mtaylor | O | ORDER | RootOf | Series::gseries |
Series::Puiseux | solve | taylor | Type::Series
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Si
Sine integral function

Syntax
Si(x)

Description

Si(x) represents the sine integral 
sin t

t
dt

x ( )
Ú
0

.

If x is a floating-point number, then Si(x) returns floating-point results. The special
values Si(0) = 0, Si(∞) = π/2, and Si(-∞) = -π/2 are implemented. For all other
arguments, Si returns symbolic function calls.

If x is a negative integer or a negative rational number, then Si(x) = -Si(-x). The Si
function also uses this reflection rule when the argument is a symbolic product involving
such a factor. See “Example 2” on page 1-1776.

The float attribute of Si is a kernel function, thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments return themselves unevaluated:
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Si(0), Si(1), Si(sqrt(2)), Si(x + 1), Si(infinity)

To approximate exact results with floating-point numbers, use float:

float(Si(1)), float(Si(sqrt(2)))

Alternatively, use a floating-point value as an argument:

Si(-5.0), Si(1.0), Si(2.0 + 10.0*I)

Example 2

For negative real numbers and products involving such numbers, Si applies the
reflection rule Si(-x) = -Si(x):

Si(-3), Si(-3/7), Si(-sqrt(2)), Si(-x/7), Si(-0.3*x)

No such “normalization” occurs for complex numbers or arguments that are not products:

Si(- 3 - I), Si(3 + I), Si(x - 1), Si(1 - x)

Example 3

diff, float, limit, series, and other functions handle expressions involving Si:
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diff(Si(x), x, x, x), float(ln(3 + Si(sqrt(PI))))

limit(Si(2*x^2/(1+x)), x = infinity)

series(Si(x), x = 0)

series(Si(x), x = infinity, 3)

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x
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Algorithms

Si, Ssi, and Shi are entire functions.

Ssi(x) = Si(x) - π for all x in the complex plane.

i*Si(x) = Shi(i*x) for all x in the complex plane.

Reference: M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions”, Dover
Publications Inc., New York (1965).

See Also

MuPAD Functions
Chi | Ci | Ei | int | Li | Shi | sin | Ssi
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Ssi
Shifted sine integral function

Syntax
Ssi(x)

Description

Ssi(x) represents the shifted sine integral Si x( ) -
p

2
.

The special values Ssi(0) = -π/2, Ssi(∞) = 0, Ssi(- ∞) = -π are implemented.

If x is a negative integer or a negative rational number, then Ssi(x) = -Ssi(-x) -
π. The Ssi function also uses this reflection rule when argument is a symbolic product
involving such a factor. See “Example 2” on page 1-1780.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments return themselves unevaluated:

Ssi(0), Ssi(1), Ssi(sqrt(2)), Ssi(x + 1), Ssi(infinity)
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To approximate exact results with floating-point numbers, use float:

float(Ssi(1)), float(Ssi(sqrt(2)))

Alternatively, use a floating-point value as an argument:

Ssi(-5.0), Ssi(1.0), Ssi(2.0 + 10.0*I)

Example 2

For negative real numbers and products involving such numbers, Ssi applies the
reflection rule Ssi(-x) = - Ssi(x) - π:

Ssi(-3), Ssi(-3/7), Ssi(-sqrt(2)), Ssi(-x/7), Ssi(-0.3*x)

No such “normalization” occurs for complex numbers or arguments that are not products:

Ssi(- 3 - I), Ssi(3 + I), Ssi(x - 1), Ssi(1 - x)

Example 3

diff, float, limit, series, and other functions handle expressions involving Ssi:

diff(Ssi(x), x, x, x), float(ln(3 + Ssi(sqrt(PI))))
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limit(Ssi(2*x^2/(1+x)), x = infinity)

series(Ssi(x), x = 0)

series(Ssi(x), x = infinity, 3)

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

Algorithms

Si, Ssi, and Shi are entire functions.

Ssi(x) = Si(x) - π for all x in the complex plane.
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Reference: M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions”, Dover
Publications Inc., New York (1965).

See Also

MuPAD Functions
Chi | Ci | Ei | int | Li | Shi | Si | sin
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Shi
Hyperbolic sine integral function

Syntax
Shi(x)

Description

Shi(x) represents the hyperbolic sine integral 
sinh t

t
dt

x ( )
Ú
0

.

If x is a floating-point number, then Shi(x) returns floating-point results. The special
values Shi(0) = 0, Shi(∞) = ∞, Shi(- ∞) = -∞ are implemented. For all other
arguments, Shi returns symbolic function calls.

If x is a negative integer or a negative rational number, then Shi(x) = -Shi(-x).
The Shi function also uses this reflection rule when the argument is a symbolic product
involving such a factor. See “Example 2” on page 1-1784.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Most calls with exact arguments return themselves unevaluated:

Shi(0), Shi(1), Shi(sqrt(2)), Shi(x + 1), Shi(infinity)
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To approximate exact results with floating-point numbers, use float:

float(Shi(1)), float(Shi(sqrt(2)))

Alternatively, use a floating-point value as an argument:

Shi(-5.0), Shi(1.0), Shi(2.0 + 10.0*I)

Example 2

For negative real numbers and products involving such numbers, Shi applies the
reflection rule Shi(-x) = -Shi(x):

Shi(-3), Shi(-3/7), Shi(-sqrt(2)), Shi(-x/7), Shi(-0.3*x)

No such “normalization” occurs for complex numbers or arguments that are not products:

Shi(- 3 - I), Shi(3 + I), Shi(x - 1), Shi(1 - x)

Example 3

diff, float, limit, series, and other functions handle expressions involving Shi:

diff(Shi(x), x, x, x), float(ln(3 + Shi(sqrt(PI))))
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limit(Shi(2*I*x^2/(1+x)), x = infinity)

series(Shi(x), x = 0)

series(Shi(I*x), x = infinity, 3)

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

x

Algorithms

Si, Ssi, and Shi are entire functions.

i*Si(x) = Shi(i*x) for all x in the complex plane.
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Reference: M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions”, Dover
Publications Inc., New York (1965).

See Also

MuPAD Functions
Chi | Ci | Ei | int | Li | Si | sin | Ssi
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sign

Sign of a real or complex number

Syntax

sign(z)

Description

sign(z) returns the sign of the number z.

Mathematically, the sign of a complex number z ≠ 0 is defined as . For real numbers,

this reduces to 1 or - 1.

sign() and sign(0.0) return 0. The user may redefine this value by a direct
assignment, e.g.:

unprotect(sign): sign(0) := 1: protect(sign):

If the type of z is DOM_INT, DOM_RAT, or DOM_FLOAT, a fast kernel function is used to
determine the sign. The return value is either - 1, 0, or 1.

If the sign of the expression cannot be determined, a symbolic function call is returned.
Certain simplifications are implemented. In particular, numerical factors of symbolic
products are simplified. Cf. “Example 2” on page 1-1788.

The expand function rewrites the sign of a product to a product of signs. E.g.,
expand(sign(x*y)) yields sign(x)*sign(y). Cf. “Example 2” on page 1-1788.

For constant expressions such as PI - sqrt(2), exp(I*3) - I*sin(3) etc., internal
floating-point evaluation is used to determine, whether the expression represents a
non-zero real number. If so, the sign - 1 or 1 is returned. Internally, the floating-point
approximation is checked for reliability. Cf. “Example 4” on page 1-1789.
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Environment Interactions

sign respects properties of identifiers. For real expressions, the result may depend on
the value of the environment variable DIGITS.

Examples

Example 1

We compute the sign of various real numbers and expressions:

sign(-8/3), sign(3.2), sign(exp(3) - sqrt(2)*PI), sign(0)

The sign of a complex number z is the complex number z/abs(z):

sign(0.5 + 1.1*I), sign(2 + 3*I), sign(exp(sin(2 + 3*I)))

Example 2

sign yields a symbolic, yet simplified, function call if identifiers are involved:

sign(x), sign(2*x*y), sign(2*x + y),  sign(PI*exp(2 + y))

In special cases, the expand function may provide further simplifications:

expand(sign(2*x*y)), expand(sign(PI*exp(2 + y)))
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Example 3

sign respects properties of identifiers:

sign(x + PI)

assume(x > -3): sign(x + PI)

unassume(x):

Example 4

The following rational number approximates π to about 30 digits:

p:= 39269908169872415480783042291/12500000000000000000000000000:

With the standard precision DIGITS =10, the float test inside sign does not give a
decisive answer, whether p is larger or smaller than π:

float(PI - p)

This result is subject to numerical roundoff and does not allow a conclusion on the sign
of the number PI - p. The float test inside sign checks the reliablity of floating-point
approximations. In this case, no simplified result is returned:

sign(PI - p)

With increased DIGITS, a reliable decision can be taken:

DIGITS := 30: sign(PI - p)
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delete p, DIGITS:

Parameters

z

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

z

See Also

MuPAD Functions
abs | conjugate | Im | Re
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signIm
Sign of the imaginary part of a complex number

Syntax
signIm(z)

Description

signIm(z) represents the sign of Im(z).

signIm(z) indicates whether the complex number z lies in the upper or in the
lower half plane: signIm(z) yields 1 if Im(z) > 0, or if z is real and z < 0. At
the origin: signIm(0)=0. For all other numerical arguments, - 1 is returned. Thus,
signIm(z)=sign(Im(z)) if z is not on the real axis.

If the position of the argument in the complex plane cannot be determined, then a
symbolic call is returned. If appropriate, the reflection rule signIm(-x) = -signIm(x)
is used.

The functions diff and series treat signIm as a constant function. Cf. “Example 2” on
page 1-1793.

The following relation holds for arbitrary complex z and p:

.

Further, for arbitrary complex z:

and

.
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Environment Interactions

Properties of identifiers set via assume are taken into account.

Examples

Example 1

For numerical values, the position in the complex plane can always be determined:

signIm(2 + I), signIm(- 4 - I*PI), signIm(0.3), signIm(-2/7),

signIm(-sqrt(2) + 3*I*PI)

Symbolic arguments without properties lead to symbolic calls:

signIm(x), signIm(x - I*sqrt(2))

Properties set via assume are taken into account:

assume(x, Type::Real): signIm(x - I*sqrt(2))

assume(x > 0): signIm(x)

assume(x < 0): signIm(x)

assume(x = 0): signIm(x)
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unassume(x):

Example 2

signIm is a constant function, apart from the jump discontinuities along the real axis.
These discontinuities are ignored by diff:

diff(signIm(z), z)

Also series treats signIm as a constant function:

series(signIm(z/(1 - z)), z = 0)

Parameters

z

An arithmetical expression representing a complex number

Return Values

Either , 0, or a symbolic call of type "signIm".

Overloaded By

z
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simplify
Simplify an expression

Syntax
simplify(f, <target>, options)

simplify(L, <target>, options)

Description
simplify(f) tries to simplify the expression f by applying term rewriting rules.

simplify(f, target) restricts the simplification to term rewriting rules applicable to
one or more target functions.

Note:  The cos, sin, exp, ln, and sqrt targets has been removed. Use simplify
function calls without these targets. Alternatively, use radsimp instead of simplify
with the sqrt target.

The simplify function performs sequential simplifications. It applies a certain set
of term-rewriting rules to the original expression, rewrites the expression according
to these rules, takes the result, and applies the next set of term-rewriting rules. The
simplify function assumes that the output of every rule is “simpler” than the input
without further checks. Generally, this method is faster, but less reliable and controllable
than the algorithm used by Simplify.

If you do not specify a target, simplify tries to simplify the whole expression. This first
step includes rewriting of products of trigonometric and exponential terms. After that,
the function tries to simplify the operands of the expression. If an expression contains
special functions, MuPAD calls, the simplification methods available for these functions.

The call simplify(L, target ) applies simplifications to the operands of the object L.

If you specify the logic target, the simplify function simplifies Boolean expressions.
With the logic target, simplify does not use properties and assumptions specified for
the terms of Boolean expressions.
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If you specify the condition target, the simplify function simplifies Boolean
expressions. With the condition target, simplify uses properties and assumptions
specified for the terms of Boolean expressions.

Environment Interactions

simplify reacts to properties of identifiers.

Examples

Example 1

Use the simplify function to simplify the following algebraic expressions:

simplify(exp(x)-exp(x/2)^2)

f := ln(x) + ln(3) - ln(3*x) + (exp(x) - 1)/(exp(x/2) + 1):

simplify(f)

Example 2

To simplify Boolean expressions, use the logic target:

simplify((a and b) or (a and (not b)), logic)

Example 3

Alternatively, to simplify Boolean expressions, use the condition target. With the
condition target, simplify uses the properties and assumptions specified for the
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terms of Boolean expressions. With the logic target, simplify ignores those properties
and assumptions:

simplify(x > x, condition), simplify(x > x, logic)

Example 4

The option IgnoreAnalyticConstraints allows you to get simpler results using a set
of purely algebraic simplifications:

simplify(ln(x^2 + 2*x + 1) - ln(x + 1))

simplify(ln(x^2 + 2*x + 1) - ln(x + 1), IgnoreAnalyticConstraints)

If you use this option, the simplifier does not guarantee the equality of the initial
expression and the result for all symbolic parameters.

Example 5

To change the number of simplification steps, use the Steps option:

f := ((exp(-x*I)*I)/2 - (exp(x*I)*I)/2)/(exp(-x*I)/2 + exp(x*I)/2):

simplify(f);

simplify(f, Steps = 10);

simplify(f, Steps = 50)
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Example 6

Your custom functions can have simplification attributes. For example, suppose you
know that f is an additive function, but you do not know more about f. Therefore, you
cannot compute the function value of at any point except zero, but you can use the
additivity:

f := funcenv( x -> if iszero(x) then 0 else procname(x) end):

f::simplify := proc(F)

                 local argument;

                 begin

                   argument := op(F,1);

                   if type(argument) = "_plus" then

                     map(argument, f)

                   else

                     F

                   end

                 end:

f(x + 3*y) - f(3*y) = simplify(f(x + 3*y) - f(3*y))

You can refine the simplification attribute of f further. For example, you can specify that
it must turn f(3*y) into 3*f(y). The reverse rule (rewriting f(x) + f(y) as f(x + y)) is
not context-free. Therefore, you cannot implement the reverse rule in a simplification
attribute.

Parameters

f

An arithmetical expression

L

A container object: an array, an hfarray, a list, a matrix, a polynomial, a set, or a table.
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target

One of the identifiers unit, logic, or condition

Options

IgnoreAnalyticConstraints

With this option the simplifier applies the following rules to expressions:

• ln(a) + ln(b) = ln(a b) for all values of a and b. In particular:

 for all values of a, b, and c
• ln(ab) = b ln(a) for all values of a and b. In particular:

 for all values of a, b, and c
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x. In Particular:
• •

• arcsin(sin(x)) = x, arccos(cos(x)) = x, arctan(tan(x)) = x
• arcsinh(sinh(x)) = x, arccosh(cosh(x)) = x, arctanh(tanh(x)) = x
•  for all values of k

Using the IgnoreAnalyticConstraints option can give you simple results for
expressions for which the direct use of the simplifier returns complicated results. With
this option the simplifier does not guarantee the equality of the initial expression and the
result for all symbolic parameters. See “Example 4” on page 1-1796.

Seconds

Limit the time allowed for the internal simplification process. The value denotes the
maximal time in seconds. By default, the simplification time is unlimited.

Steps

Terminate algebraic simplification after the specified number of simplification steps. The
value must be a positive integer. the default number of simplification steps is 1.
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Return Values

Object of the same type as the input object f or L, respectively.

Overloaded By

f, L

See Also

MuPAD Functions
collect | combine | expand | factor | match | normal | radsimp | rectform |
rewrite | Simplify

More About
• “If You Want to Simplify Results Further”
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Simplify
Simplify an expression

Syntax
Simplify(f)

Simplify(f, Steps = numberOfSteps)

Simplify(f, options)

Description

Simplify(f) applies term-rewriting rules to f and returns the simplest expression it
can find.

The methods of searching for the simplest representation of an expression are different
for Simplify and simplify. The simplify function performs a linear search trying to
improve the result returned by the previous simplification step. The Simplify function
uses the results returned by all previous simplification steps (the best-first search). The
simplify function is faster. The Simplify function is slower, but more effective and
more configurable.

The term “simplest” is defined as follows. One object is simpler than another if it has
smaller valuation. If two objects have the same valuation, Simplify chooses the simpler
object using internal heuristics. A valuation is a function that assigns a nonnegative real
number to each MuPAD object. To override the default valuation used by Simplify,
use the Valuation option. Simplify uses the valuation for the best-first search as for
determining the best result at the final step. However, you can define a separate method
for the final simplification step by using the Criterion option.

The simplification process consists of steps. In each step, Simplify performs one of the
following kinds of tasks for a := f or some (previously obtained) object a equivalent to
f. In each step, Simplify can produce new objects equivalent to f (results) or new tasks
to do or both:

• Initial step: Find all rules for a. The Simplify function performs the search for all
rules for every new object a. This search produces no new result.
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• Rewriting step: Apply one rule to a. This step can either fail or produce an equivalent
object as result.

• Subexpression step: Perform one step in simplifying an operand of a. Replace the
operand with the returned result (if there are any results). This step can produce a
new equivalent object.

Each open task has a priority that determines what to do next. Simplification terminates
in any of the following cases:

• There are no more open tasks.
• Simplify reached the time limit specified by Seconds.
• Simplify performed the maximal number of simplification steps specified by Steps.
• Simplify returned the object specified by Goal.

Simplify always returns the “simplest” equivalent object found in all simplification
steps unless you specify another OutputType.

Rules form a particular domain Rule. They consist of a pattern (left side), an expression
(right side), and options.

MuPAD organizes rules for Simplify in rule bases. You can change the default rule base
by using the RuleBase option. You also can define your own rule selection mechanism by
using the SelectRules option.

Typically, Simplify applies the selected rules to the given object a as a whole. The
following case is an exception from this rule. If the pattern of the rule and the object
a are both a sum or a product, then Simplify applies the rule to each subsum or
subproduct of a that has the same number of operands as the pattern.

By using the ApplyRule option, you can specify your own function that applies a
particular rule to a particular object. Otherwise, Simplify uses a default method.

The application of a rule to an object a fails if the pattern does not match (see match) the
object a. The performance of Simplify strongly depends on the number of successful
matches. Therefore, if you specify your own rule base, it must dispose of non-matching
rules before rule selection.

A simplification step for an operand works like a simplification step on simplifying f. The
exceptions are as follows. Performing a simplification step for an operand, MuPAD does
not apply certain rules (see the details on SelectRules).
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MuPAD determines priorities of open tasks as follows. The priority of doing the initial
step for an expression depends on the valuation of the expression. The priority of doing a
simplification step on an operand depends on the ratio between the overall valuation of
the expression and the valuation of the operand and the priority of the highest-rank task
in the to-do list of the operand. Finally, the priority of applying a rule to an expression
equals to the priority of the rule multiplied by the valuation of the expression.

The strategy determines the priority of a rule. See the Strategy option for details.

Simplify never uses the symmetry of mathematical equivalence of expressions.
Therefore, you can use Simplify as a general rewriting system.

Simplify maps to lists, sets, and tables.

For domain elements d, Simplify can be overloaded in two ways. First, Simplify
uses the slot d::dom::Simplify. If that slot does not exist, Simplify uses
d::dom::simplify. If the slot that Simplify uses is not a list, Simplify calls the
slot and accepts the result as simple (even if the valuation does not agree). In this case,
Simplify does not apply any other rules to d. However, Simplify uses the valuation to
decide whether it must replace a domain element that occurs as an operand in another
object with its “simplified” version. If the slot is a list, its entries must be rules, and
Simplify applies them according to their priority.

Examples

Example 1

The easiest way to use Simplify is to accept all defaults, and then plug in the
expression you want to simplify:

Simplify(sin(x)^2 + cos(x)^2)

Example 2

By default, Simplify returns only one expression that the function considers as
simplest. To return a list of all equivalent expressions, use the All option:
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Simplify(sin(x)^2 + cos(x)^2, All)

Example 3

The output of the previous example is short because as soon as the simplifier finds
1, it stops immediately. After that, the simplifier does not look for other equivalent
expressions. In addition, the simplifier discards the equivalent expressions that are
significantly more complicated than the best expression found earlier. You can switch off
both mechanisms:

Simplify(sin(x)^2 + cos(x)^2, All, Discard = FALSE,

                                  IsSimple = FALSE)
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Example 4

By default, Simplify uses a valuation that favors expressions with fewer different
irrational subexpressions. For example, Simplify assumes that an expression
containing only sin(x) or cos(x) is simpler than an expression containing both:

Simplify(cos(x)*sin(x))

If you take the length as a complexity measure for expressions, Simplify returns
another result:

Simplify(cos(x)*sin(x), Valuation = length)

Example 5

The default number of steps is 100. To change the maximal number of possible
simplification steps, use the Steps option. For example, decrease (resulting in a
speedup) and increase (resulting in a probably better simplification) the number of
simplification steps:

f := ln(x) + ln(3) - ln(3*x) + (exp(x) - 1)/(exp(x/2) + 1):

Simplify(f, Steps = 8), Simplify(f, Steps = 120)

delete f:

Example 6

For many expressions, the default number of simplification steps does not allow the
simplifier to find a good simplification:

Simplify(e^(a* x *(a + 1) + b2* y *(y + b2* x* y)))
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Increasing this limit often helps:

Simplify(e^(a* x *(a + 1) + b2* y *(y + b2* x* y)), Steps=125)

Example 7

By default, simplification functions do not combine logarithms:

Simplify(ln(x^3 - 1) - ln(x - 1))

Using the IgnoreAnalyticConstraints option, you often can get shorter results:

Simplify(ln(x^3 - 1) - ln(x - 1), IgnoreAnalyticConstraints)

Example 8

You can write the same expression in different coordinate systems. For example, use
Cartesian and polar coordinates:

assume(x/r = cos(Symbol::theta)):

assumeAlso(y/r = sin(Symbol::theta)):

assumeAlso(r = sqrt(x^2+y^2)):

x/sqrt(x^2+y^2) + I*y/sqrt(x^2+y^2) = exp(I*Symbol::theta);

Simplify(%)
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Example 9

The following expression is equivalent to exp(x):

a := -1/(sin(1/2*I*x)^2 + 4*sin(1/4*I*x)^4 -

     4*sin(1/4*I*x)^2 + 1)*(sin(1/2*I*x)^2 -

     4*I*sin(1/2*I*x)*sin(1/4*I*x)^2 + 2*I*sin(1/2*I*x) - 

     4*sin(1/4*I*x)^4 + 4*sin(1/4*I*x)^2 - 1)

Simplify recognizes the equivalence of a and exp(x) within 100 steps. To show how
the function proves the equivalence at each step, use the OutputType option. Note that
the proof returned by Simplify is not a proof in a strict mathematical sense. Simplify
uses the rules from the default rule base:

Simplify(a, OutputType = "Proof")

Input was

  -(sin((x*I)/2)^2 - 4*sin((x*I)/2)*sin((x*I)/4)^2*I + 2*sin((x*I)/2)*I - \

4*sin((x*I)/4)^4 + 4*sin((x*I)/4)^2 - 1)/(sin((x*I)/2)^2 + 4*sin((x*I)/4)^\

4 - 4*sin((x*I)/4)^2 + 1)

Applying the rule

  Simplify::combineSinCos

gives

  cos(x*I) - sin(x*I)*I

Applying the rule

  Simplify::expand

gives

  cosh(x) + sinh(x)
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Applying the rule

  X -> rewrite(X, exp)

gives

  exp(x)

END OF PROOF

Example 10

You also can use Simplify for experiments with formal grammars given by only
a few rules. In this case, the better approach is not to use rule bases, but to use a
SelectRules method that returns a list of all rules. The following example presents
a general associative operator ?. The example computes the number of all possible
placements of parentheses. First, define the operator, and then attach it to a function
that controls its output (see funcenv). Specify that the only applicable rule is the
associative law. In the call to Simplify, set the number of steps to a very large value to
perform a complete search. Note that most grammars produce infinitely many words and
spend infinite time to finish a complete search:

_f := funcenv(() -> procname(args())):

operator("?", _f, Binary, 1000):

R := Rule((X ? Y) ? Z, X ? (Y ? Z)):

selectProc := () -> [R]:

S := Simplify(u ? v ? x ? y ? z, Steps = 10^10,

              SelectRules = selectProc, All):

PRETTYPRINT := FALSE:

print(Plain, S):

PRETTYPRINT := TRUE:

[u ? (v ? (x ? (y ? z))), u ? (v ? ((x ? y) ? z)), u ? ((v ? (x ? y)) ? z)\

, u ? (((v ? x) ? y) ? z), u ? ((v ? x) ? (y ? z)), (u ? (v ? x)) ? (y ? z\

), ((u ? v) ? x) ? (y ? z), (u ? v) ? (x ? (y ? z)), (u ? v) ? ((x ? y) ? \

z), (u ? (v ? (x ? y))) ? z, (u ? ((v ? x) ? y)) ? z, ((u ? (v ? x)) ? y) \

? z, (((u ? v) ? x) ? y) ? z, ((u ? v) ? (x ? y)) ? z]

There are 14 possible ways of placing parentheses:

nops(S); 

delete fout, _f, R, S, selectProc:

operator("?", Delete):
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Example 11

If you want to specify a larger set of rules, the best approach is to use your own rule
base. A classic example is differentiation. Although a heuristic search must be slower
than a simple recursive algorithm, this example is suitable for demonstrating some
efficiency considerations. Start by defining a function environment mydiff that does not
do anything:

mydiff := funcenv(mydiff):

mydiff::type := "mydiff"

The goal of this definition is to show that MuPAD sorts rules in rule bases by the types
of expressions to which MuPAD applies those rules. Therefore, mydiff gets its own type.
Now, define a rule base Myrules with the usual differentiation rules. Do not use any
additional rules:

Myrules := newDomain("Myrules"):

Myrules::mydiff :=

     [Rule(mydiff(f, x), 0, {(f, x) -> not has(f, x)}),

      Rule(mydiff(x, x), 1),

      Rule(mydiff(x^n, x), n*x^(n - 1)),

      Rule(mydiff(f*g, x), f*mydiff(g, x) + g*mydiff(f, x)),

      Rule(mydiff(f + g, x), mydiff(f, x) + mydiff(g, x))

     ]:

This rule base works for the expression x2:

Simplify(mydiff(x^2, x), RuleBase = Myrules)

However, the rule base does not work for the following expression:

Simplify(mydiff(x + 3, x), RuleBase = Myrules)

Try to improve that rule base. As a first step, increase the number of simplification steps.
Increasing the number of steps does not help in this case:

Simplify(mydiff(x + 3, x), RuleBase = Myrules, Steps = 200)
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As a second step, take a closer look on the equivalent expressions returned by Simplify.
Sometimes, Simplify finds the expected result, but does not return it because the
valuation of the expected result is higher than the valuation of some other equivalent
expression. For the expression x + 3, the Simplify function does not find the expected
result:

l := Simplify(mydiff(x + 3, x), RuleBase = Myrules, All)

1-1810



 Simplify

Note that the derivative of 1 appears in the result. Use the OutputType option, to check
how Simplify manipulates the third term l[3] and how it proves the equivalence of
input and output at each step:

Simplify(mydiff(x + 3, x), RuleBase = Myrules, 

                           Goal = l[3],

                           OutputType = "Proof")

Input was

  mydiff(x + 3, x)

Applying the rule

  mydiff(f*g, x) -> f*mydiff(g, x) + g*mydiff(f, x)

gives

  (x + 3)*mydiff(1, x) + mydiff(x + 3, x)

END OF PROOF

Now you can see that for each expression f, you must specify the rule for diffentiating
products because f = 1 f. Modify that rule:

(Myrules::mydiff)[4] := Rule(mydiff(f*g, x), 

                             f*mydiff(g, x) + g*mydiff(f, x),

                             {(f, g) -> f <> 1 and g <> 1}):

The updated rule base works:

Simplify(mydiff(x + 3, x), RuleBase=Myrules, Remember=FALSE)

Use a few options to optimize the call to Simplify. As a first step, measure how many
steps a typical example takes before returning the expected output:

Simplify(mydiff(5*x^4 + x^3 + x^2 + x + 1, x),

         RuleBase = Myrules, 

         Steps = 2000, 

         Goal = 20*x^3 + 3*x^2 + 2*x + 1, 

         OutputType = "NumberOfSteps")

Avoid the application of the equality f = f + 0. Switch off the remember mechanism. When
the remember mechanism works, Simplify ignores changes in the rule base:
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Myrules::mydiff[5] := Rule(mydiff(f + g, x), 

                           mydiff(f, x) + mydiff(g, x),

                           {(f, g) -> f <> 0 and g <> 0}):

Simplify(mydiff(5*x^4 + x^3 + x^2 + x + 1, x), 

         RuleBase = Myrules, 

         Steps = 2000, 

         Goal = 20*x^3 + 3*x^2 + 2*x + 1, 

         OutputType = "NumberOfSteps", 

         Remember = FALSE)

Next, try to change the valuation criteria. For example, use length:

Simplify(mydiff(5*x^4 + x^3 + x^2 + x + 1, x),

         RuleBase = Myrules, 

         Steps = 2000, 

         Goal = 20*x^3 + 3*x^2 + 2*x + 1, 

         OutputType = "NumberOfSteps", 

         Valuation = length)

To optimize the call to Simplify, you also can specify your own simplification strategy.
For example, the first rule seems to provide a very useful simplification whenever it
applies. Therefore, assign a high priority to this rule by assuming that on average this
rule simplifies its input to 0.03 of the original complexity:

Myrules::mydiff[1] := subsop(Myrules::mydiff[1],

                             4 = table("MyStrategy" = 0.03)):

Simplify(mydiff(5*x^4 + x^3 + x^2 + x + 1, x),

         RuleBase = Myrules, 

         Steps = 3000, 

         Goal = 20*x^3 + 3*x^2 + 2*x + 1, 

         OutputType = "NumberOfSteps", 

         Strategy = "MyStrategy")

When using the valuation length, you get the following result:
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Simplify(mydiff(5*x^4 + x^3 + x^2 + x + 1, x), 

         RuleBase = Myrules, 

         Steps = 3000, 

         Goal = 20*x^3 + 3*x^2 + 2*x + 1, 

         OutputType = "NumberOfSteps", 

         Strategy = "MyStrategy", 

         Valuation = length)

When you use a matcher-based simplification, most of the rules do not match to most
objects. Trying to match all rules to all objects produces many failing rewriting steps.
The recommended approach is to discard these failing rules during the initial step.
Discarding failling rules decreases the number of steps. It also increases the running
time per step by a small amount. Defining a procedure instead of a list of rules can help
you to discard the failing rules during an initial step. You can define the rules by using a
pattern or a procedure as their first argument:

Myrules::mydiff := 

proc(df) 

  begin 

  [if not has(op(df, 1), op(df, 2)) then 

      Rule(X -> 0) 

   else

      case type(op(df, 1)) 

        of "_plus" do 

           Rule(X -> map(op(X, 1), mydiff, op(X, 2)));

           break

        of "_mult" do

           Rule(mydiff(f*g, x), f*mydiff(g, x) + g*mydiff(f, x));

           break

        of "_power" do

           Rule(X -> op(X, [1,2])*op(X, [1,1])^(op(X, [1,2]) - 1));

           break

        of DOM_IDENT do

           assert(op(df, 1) = op(df, 2));

           Rule(X -> 1);

           break

        otherwise

           null()

       end_case

    end_if]

end_proc:
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Simplify(mydiff(5*x^4 + x^3 + x^2 + x + 1, x), 

         RuleBase = Myrules, 

         Steps = 200, 

         Goal = 20*x^3 + 3*x^2 + 2*x + 1, 

         OutputType = "NumberOfSteps")

delete Myrules, mydiff:

Parameters

f

Any object

Options

All

When you use the All option, the Simplify function returns a list of all equivalent
objects that the function can find. This syntax is a shortcut for OutputType = "All".

ApplyRule

Option, specified as ApplyRule = applyFunction

Specify the function applyFunction that Simplify calls every time when a rule R must
be applied to an object a. Here, applyFunction must be a function of two arguments R
(a rule) and a (an object). It must return the result of applying the rule R to an object a. If
the rule is not applicable, the applyFunction function must return FAIL.

Discard

Option, specified as Discard = discardFunction

Specify the function discardFunction(newvalue, bestvalue) that Simplify
calls every time it finds a new object equivalent to f. Here newvalue is the valuation
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of the new object, and bestvalue is the minimal valuation among all equivalent
objects that Simplify found earlier. If Boolean evaluation of the result produces TRUE,
then Simplify discards the new object. By default, Simplify discards a result if its
valuation exceeds 10×current best valuation + 1. To prevent the loss of results,
switch this mechanism off: Discard = FALSE.

Criterion

Option, specified as Criterion = CriterionFunction

Specify the function CriterionFunction(a, vala) that Simplify calls at the end
of the computation to perform the final sorting of the results. For each result a and its
valuation vala, CriterionFunction(a, vala) returns a number. Simplify uses
that number to sort the results. By default, Simplify uses vala to sort the results.

Goal

Option, specified as Goal = a

If the Simplify function finds the equivalent object a, stop the computation and return
a even if this object is not the simplest equivalent expression found.

IgnoreAnalyticConstraints

With this option the simplifier applies the following rules to expressions:

• ln(a) + ln(b) = ln(a b) for all values of a and b. In particular:

 for all values of a, b, and c
• ln(ab) = b ln(a) for all values of a and b. In particular:

 for all values of a, b, and c
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x. In particular:
• •

• arcsin(sin(x)) = x, arccos(cos(x)) = x, arctan(tan(x)) = x
• arcsinh(sinh(x)) = x, arccosh(cosh(x)) = x, arctanh(tanh(x)) = x
•  for all values of k
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With this option, the Simplify function can return simple results for expressions for
which Simplify without this option returns more complicated results. With this option
the simplifier does not guarantee the equality of the initial expression and the result for
all symbolic parameters. See “Example 7” on page 1-1806.

IsSimple

Option, specified as IsSimple = B

Specify the function B(a) that the Simplify function calls for any expression a that is
equivalent to any subexpression of the input. If the result of the call is TRUE, then the
Simplify function does not simplify this subexpression any further. B must return TRUE
or FALSE for every input.

KernelSteps

Option, specified as KernelSteps = n

Limit the effort invested in one simplification step. Here n must be a positive integer.
The default value is 100.

OutputType

Option, specified as OutputType = output

Specify the type of return value. The value output must be one of the strings "All",
"Best", "NumberOfSteps", or "Proof". This option makes Simplify return all
results, the best result, the number of performed simplification steps, or a proof for the
equivalence of the input and the best result. By default, Simplify returns the simplest
result found.

Even if you specify the output type as "All", Simplify does not return any results
discarded due to the Discard option. To get all results, set Discard to FALSE. See
“Example 3” on page 1-1803.

If you set this option to "Proof", the Simplify function returns text displaying proof
steps and lemmas. Proof steps state that fi - 1 is equivalent to fi for 1 ≤ i ≤ n, where f0 =
f is the input and fn is the result of the simplification. Each proof step is either a rule
application or a lemma application. A rule application step shows that applying a rule
to fi - 1 gives fi. A lemma application steps shows that replacing some operand of fi - 1 by
an equivalent object gives fi. A lemma consists of the statement that two objects are
equivalent, a proof in the above sense, and the END OF LEMMA tag.
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Technically, proofs are objects of the same type as the output of expose.

Remember

Option, specified as Remember = bool

The Remember option switches the remember mechanism on and off. If you call
Simplify with the same argument several times, the remember mechanism saves
running time. If the argument of one call reappears as a subexpression in the argument
of another call, the remember mechanism does not help to save time. By default, bool is
TRUE.

RuleBase

Option, specified as RuleBase = base

A rule base base is a domain that contains its rules for expressions of type T in its slot
slot(base, T). In addition, the following three slots can contain rules for a rule base:
base::All, base::Global, and base::Local. The base::All slot contains generally
applicable rules. The base::Global slot contains rules that the Simplify function
applies only to expressions. Simplify does not apply the rules defined in base::Global
within a subexpression step. The base::Local slot contains rules that the Simplify
function applies only within a subexpression step. If no slots exist for the type of a given
object, MuPAD does not generate any rules for that object. A slot of a rule base is a list of
rules or a procedure that returns such a list for any given object of appropriate type. Any
rule must be an object of type Rule. See the Rule help page for details. If you use your
own SelectRules, you can ignore these conventions. See “Example 11” on page 1-1809.

Seconds

Option, specified as Seconds = t

When you use the Seconds option, the Simplify function limits the time allowed for the
internal simplification process. The value t is the maximal time in seconds. By default,
the simplification process never terminates due to a time limitation: t = infinity.

SelectRules

Option, specified as SelectRules = selFunction

When you use the SelectRules option, MuPAD lets you specify the function
selFunction(base, ex, global, strat) that Simplify calls to obtain the rules

1-1817



1 The Standard Library

applicable to ex in the rule base base for strategy strat. The boolean flag global
indicates whether ex is the whole expression accepted by Simplify (global = TRUE)
or a subexpression of the original expression (global = FALSE). Using the arguments
given to selFunction is optional. For example, for small rule bases the easiest method
is to return a list of all rules independent of the given expression. See “Example 10”
on page 1-1808. However, returning a list of all rules can result in unnecessary
rule applications. Applying each unnecessary rule returns FAIL and only affects the
performance.

You can define any rule base and use any kind the rules. The only restriction is that
selFunction must return a list of rules.

Steps

Option, specified as Steps = numberOfSteps

When you use the Steps option, the Simplify function terminates a simplification after
numberOfSteps simplification steps. The default number of steps is 100.

StopIf

Option, specified as StopIf = B

When you use the StopIf option, the Simplify function lets you specify the function
B(a) that Simplify calls for any expression a that is equivalent to the original
expression. If the result is TRUE, the simplification stops immediately, and the Simplify
function returns the expression a as the simplest result regardless of its valuation. The
specified function B must return TRUE or FALSE for any input.

Strategy

Option, specified as Strategy = strat

When you use the Strategy option, the Simplify function lets you set the rule
selection strategy. The value of strat must be a string. The SelectRules option uses
strat as an argument that determines the priority for applying each rule.

By default, Simplify uses the strategy "Default". The default rule base also uses the
strategy "Default".

If a particular rule does not recognize the strategy strat, the Simplify function uses
the strategy "Default" to determine the priority of that rule. Finally, if no entry for the
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default strategy is available, the rule has the priority 1. In this case, expect an output to
be as complicated as the input.

If you use the IgnoreAnalyticConstraints, Simplify uses the strategy that comes
with that option instead of using the strategy "Default".

If Simplify uses a strategy, that strategy does not affect the valuation of results of rule
applications.

Valuation

Option, specified as Valuation = valFunction

When you use the Strategy option, the Simplify function lets you specify a function
MuPAD uses for computing valuations of returned objects. Simplify computes the
valuation for many intermediate results. Generally, to compute the valuation, Simplify
evaluates each node of the expression tree. Therefore, the Valuation option can
significantly affect the running time.

A good valuation is a compromise between context-free and maximum-type concepts.
For a context-free valuation, both the operator of an expression and the valuations of
the operands determine the valuation of the expression. For a maximum-type valuation,
generally the valuation of an expression equals the maximum of valuations of its
operands.

A typical context-free example is length. A typical maximum-type example is X ->
2^nops(indets(X)) .

MuPAD offers a context-free valuation Simplify::complexity. This valuation favors
usual operators like exp over unusual ones like besselJ and puts a penalty factor on
arguments of unusual operators.

Return Values

Simplify returns an object mathematically equivalent to the input. With the option
OutputType = "All", the Simplify function returns a list of all equivalent objects
found during the simplification. With the option OutputType = "NumberOfSteps",
the function returns a positive integer. With the option OutputType = "Proof", the
function returns a string containing a proof of the equivalence of the input and the result.
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Overloaded By

f

See Also

MuPAD Functions
collect | combine | expand | factor | match | normal | radsimp | rectform |
rewrite | simplify

More About
• “If You Want to Simplify Results Further”
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sin
Sine function

Syntax
sin(x)

Description

sin(x) represents the sine function.

Specify the argument x in radians, not in degrees. For example, use π to specify an angle
of 180o.

All trigonometric functions are defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

Translations by integer multiples of π are eliminated from the argument. Further,
arguments that are rational multiples of π lead to simplified results; symmetry relations
are used to rewrite the result using an argument from the standard interval .

Explicit expressions are returned for the following arguments:

.
See “Example 2” on page 1-1823.

The result is rewritten in terms of hyperbolic functions, if the argument is a rational
multiple of I. See “Example 3” on page 1-1823.

The functions expand and combine implement the addition theorems for the
trigonometric functions. See “Example 4” on page 1-1824.

The trigonometric functions do not respond to properties set via assume. Use simplify
to take such properties into account. See “Example 4” on page 1-1824.
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Use rewrite to rewrite expressions in terms of a specific target function. For example,
you can rewrite expressions involving the sine function in terms of other trigonometric
functions and vice versa. See “Example 5” on page 1-1825.

The inverse function is implemented by arcsin. See “Example 6” on page 1-1825.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, sin is sensitive to the environment variable
DIGITS which determines the numerical working precision.

Examples

Example 1

Call sin with the following exact and symbolic input arguments:

sin(PI), sin(1), sin(5 + I), sin(PI/2), sin(PI/11), sin(PI/8)

sin(-x), sin(x + PI), sin(x^2 - 4)

Floating point values are computed for floating-point arguments:

sin(123.4), sin(5.6 + 7.8*I), sin(1.0/10^20)

Floating point intervals are computed for interval arguments:
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sin(0...1), sin(20...30), sin(0...5)

Example 2

Some special values are implemented:

sin(PI/10), sin(2*PI/5), sin(123/8*PI), sin(-PI/12)

Translations by integer multiples of π are eliminated from the argument:

sin(x + 10*PI), sin(3 - PI), sin(x + PI), sin(2 - 10^100*PI)

All arguments that are rational multiples of π are transformed to arguments from the
interval :

sin(4/7*PI), sin(-20*PI/9), sin(123/11*PI), sin(-PI/13)

Example 3

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

sin(5*I), sin(5/4*I), sin(-3*I)

For other complex arguments, use expand to rewrite the result:
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sin(5*I + 2*PI/3), sin(PI/4 - 5/4*I), sin(-3*I + PI/2)

expand(sin(5*I + 2*PI/3)),

expand(sin(5/4*I - PI/4)),

expand(sin(-3*I + PI/2))

Example 4

The expand function implements the addition theorems:

expand(sin(x + PI/2)), expand(sin(x + y))

The combine function uses these theorems in the other direction, trying to rewrite
products of trigonometric functions:

combine(sin(x)*sin(y), sincos)

The trigonometric functions do not immediately respond to properties set via assume:

assume(n, Type::Integer):

sin(n*PI), sin((2*n + 1)*PI/2)

Use simplify to take such properties into account:
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simplify(sin(n*PI)),

simplify(sin((2*n + 1)*PI/2))

assume(n, Type::Odd):

sin(n*PI + x), simplify(sin(n*PI + x))

y := sin(x + n*PI) + sin(x - n*PI);

simplify(y)

delete n, y

Example 5

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(sin(x)*exp(2*I*x), exp);

rewrite(sin(x), cot)

Example 6

The inverse function is implemented as arcsin:
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sin(arcsin(x)),

arcsin(sin(x))

Note that arcsin(sin(x)) does not necessarily yield x because arcsin produces

values with real parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arcsin(sin(3)), arcsin(sin(1.6 + I))

Example 7

diff, float, limit, taylor and other system functions handle expressions involving
the trigonometric functions:

diff(sin(x^2), x), float(sin(3)*cot(5 + I))

limit(sin(x)/x, x = 0)

taylor(sin(x), x = 0)

Parameters

x

An arithmetical expression or a floating-point interval
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Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccos | arccot | arccsc | arcsec | arcsin | arctan | cos | cot | csc | sec |
tan
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cos
Cosine function

Syntax
cos(x)

Description

cos(x) represents the cosine function.

Specify the argument x in radians, not in degrees. For example, use π to specify an angle
of 180o.

All trigonometric functions are defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

Translations by integer multiples of π are eliminated from the argument. Further,
arguments that are rational multiples of π lead to simplified results; symmetry relations
are used to rewrite the result using an argument from the standard interval .

Explicit expressions are returned for the following arguments:

.
See “Example 2” on page 1-1830.

The result is rewritten in terms of hyperbolic functions, if the argument is a rational
multiple of I. See “Example 3” on page 1-1830.

The functions expand and combine implement the addition theorems for the
trigonometric functions. See “Example 4” on page 1-1831.

The trigonometric functions do not respond to properties set via assume. Use simplify
to take such properties into account. See “Example 4” on page 1-1831.
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Use rewrite to rewrite expressions in terms of a specific target function. For example,
you can rewrite expressions involving the cosine function in terms of other trigonometric
functions and vice versa. See “Example 5” on page 1-1832.

The inverse function is implemented as arccos. See “Example 6” on page 1-1832.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call cos with the following exact and symbolic input arguments:

cos(PI), cos(1), cos(5 + I), cos(PI/2), cos(PI/11), cos(PI/8)

cos(-x), cos(x + PI), cos(x^2 - 4)

Floating-point values are computed for floating-point arguments:

cos(123.4), cos(5.6 + 7.8*I), cos(1.0/10^20)

Floating-point intervals are computed for interval arguments:
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cos(0...1), cos(20...30), cos(0...3)

Example 2

Some special values are implemented:

cos(PI/10), cos(2*PI/5), cos(123/8*PI), cos(-PI/12)

Translations by integer multiples of π are eliminated from the argument:

cos(x + 10*PI), cos(3 - PI), cos(x + PI), cos(2 - 10^100*PI)

All arguments that are rational multiples of π are transformed to arguments from the
interval :

cos(4/7*PI), cos(-20*PI/9), cos(123/11*PI), cos(-PI/13)

Example 3

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

cos(5*I), cos(5/4*I), cos(-3*I)

For other complex arguments, use expand to rewrite the result:
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cos(5*I + 2*PI/3), cos(PI/4 - 5/4*I), cos(-3*I + PI/2)

expand(cos(5*I + 2*PI/3)),

expand(cos(5/4*I - PI/4)),

expand(cos(-3*I + PI/2))

Example 4

The expand function implements the addition theorems:

expand(cos(x + PI/2)), expand(cos(x + y))

The combine function uses these theorems in the other direction, trying to rewrite
products of trigonometric functions:

combine(cos(x)*cos(y), sincos)

The trigonometric functions do not immediately respond to properties set via assume:

assume(n, Type::Integer):

cos(n*PI), cos((n + 1/2)*PI)

Use simplify to take such properties into account:
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simplify(cos(n*PI)),

simplify(cos((n + 1/2)*PI))

assume(n, Type::Even):

cos(n*PI + x), simplify(cos(n*PI + x))

y := cos(x + n*PI) + cos(x - n*PI);

simplify(y)

delete n, y

Example 5

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(cos(x)*exp(2*I*x), exp);

rewrite(cos(x), tan)

Example 6

The inverse function is implemented as arccos:
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cos(arccos(x)),

arccos(cos(x))

Note that arccos(cos(x)) does not necessarily yield x because arccos produces
values with real parts in the interval [0,π]:

arccos(cos(4)), arccos(cos(3.2 + I))

Example 7

diff, float, limit, taylor and other system functions handle expressions involving
the trigonometric functions:

diff(cos(x^2), x), float(cos(3)*tan(5 + I))

limit((1 - cos(x))/x^2, x = 0)

taylor(cos(x), x = 0)

Parameters

x

An arithmetical expression or a floating-point interval
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Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccos | arccot | arccsc | arcsec | arcsin | arctan | cot | csc | sec | sin |
tan
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tan
Tangent function

Syntax
tan(x)

Description

tan(x) represents the tangent function sin(x)/cos(x).

Specify the argument x in radians, not in degrees. For example, use π to specify an angle
of 180o.

All trigonometric functions are defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

Translations by integer multiples of π are eliminated from the argument. Further,
arguments that are rational multiples of π lead to simplified results; symmetry relations
are used to rewrite the result using an argument from the standard interval .

Explicit expressions are returned for the following arguments:

.
See “Example 2” on page 1-1837.

The result is rewritten in terms of hyperbolic functions, if the argument is a rational
multiple of I. See “Example 3” on page 1-1838.

The functions expand and combine implement the addition theorems for the
trigonometric functions. See “Example 4” on page 1-1838.

The trigonometric functions do not respond to properties set via assume. Use simplify
to take such properties into account. See “Example 4” on page 1-1838.
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Use rewrite to rewrite expressions in terms of a specific target function. For
example, you can rewrite expressions involving the tangent function in terms of other
trigonometric functions and vice versa. See “Example 5” on page 1-1839.

The inverse function is implemented as arctan. See “Example 6” on page 1-1840.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call tan with the following exact and symbolic input arguments:

tan(0), tan(1), tan(5 + I), tan(PI), tan(PI/11), tan(PI/8)

tan(-x), tan(x + PI), tan(x^2 - 4)

Floating-point values are computed for floating-point arguments:

tan(123.4), tan(5.6 + 7.8*I), tan(1.0/10^20)

Floating-point intervals are computed for interval arguments:
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tan(0...1), tan(-1/2...1/2), tan(0...5)

For intervals containing discontinuities, the result is a union of intervals:

tan(1...2);

tan(-PI/2...0)

Example 2

Some special values are implemented:

tan(PI/10), tan(2*PI/5), tan(123/8*PI), tan(-PI/12)

Translations by integer multiples of π are eliminated from the argument:

tan(x + 10*PI), tan(3 - PI), tan(x + PI), tan(2 - 10^100*PI)

All arguments that are rational multiples of π are transformed to arguments from the
interval :

tan(4/7*PI), tan(-20*PI/9), tan(123/11*PI), tan(-PI/13)
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Example 3

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

tan(5*I), tan(5/4*I), tan(-3*I)

For other complex arguments, use expand to rewrite the result:

tan(5*I + 2*PI/3), tan(PI/4 - 5/4*I), tan(-3*I + PI/2)

expand(tan(5*I + 2*PI/3)),

expand(tan(5/4*I - PI/4)),

expand(tan(-3*I + PI/2))

Example 4

The expand function implements the addition theorems:

expand(tan(x + PI/2)), expand(tan(x + y))

The trigonometric functions do not immediately respond to properties set via assume:

assume(n, Type::Integer):

tan(n*PI)
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Use simplify to take such properties into account:

simplify(tan(n*PI))

assume(n, Type::Integer):

tan(n*PI + x), simplify(tan(n*PI + x))

y := tan(x + n*PI) + tan(x - n*PI);

simplify(y)

delete n, y

Example 5

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(tan(x)*exp(2*I*x), sincos);

rewrite(cos(x), tan)
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Example 6

The inverse function is implemented as arctan:

tan(arctan(x)),

arctan(tan(x))

Note that arctan(tan(x)) does not necessarily yield x because arctan produces

values with real parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arctan(tan(3)), arctan(tan(1.6 + I))

Example 7

diff, float, limit, taylor and other system functions handle expressions involving
the trigonometric functions:

diff(tan(x), x), float(tan(3)*cos(5 + I))

limit(x*sin(x)/tan(x^2), x = 0)

taylor(tan(x), x = 0)
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Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccos | arccot | arccsc | arcsec | arcsin | arctan | cos | cot | csc | sec |
sin
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csc
Cosecant function

Syntax
csc(x)

Description

csc(x) represents the cosecant function 1/sin(x).

Specify the argument x in radians, not in degrees. For example, use π to specify an angle
of 180o.

All trigonometric functions are defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

Translations by integer multiples of π are eliminated from the argument. Further,
arguments that are rational multiples of π lead to simplified results; symmetry relations
are used to rewrite the result using an argument from the standard interval .

Explicit expressions are returned for the following arguments:

.
See “Example 2” on page 1-1844.

The result is rewritten in terms of hyperbolic functions, if the argument is a rational
multiple of I. See “Example 3” on page 1-1845.

The functions expand and combine implement the addition theorems for the
trigonometric functions. See “Example 4” on page 1-1845.

The trigonometric functions do not respond to properties set via assume. Use simplify
to take such properties into account. See “Example 4” on page 1-1845.
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csc(x) is immediately rewritten as 1/sin(x). To rewrite the cosecant function in
terms of other target functions, use rewrite. For example, you can rewrite expressions
involving the cosecant function in terms of other trigonometric functions and vice versa.
See “Example 5” on page 1-1847.

The inverse function is implemented by arccsc. See “Example 6” on page 1-1847.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call csc with the following exact and symbolic input arguments. The cosecant function is
rewritten in terms of the sine function.

csc(-PI/2), csc(1), csc(5 + I), csc(PI/2), csc(PI/11), csc(PI/8)

csc(-x), csc(x + PI), csc(x^2 - 4)

Floating-point values are computed for floating-point arguments:

csc(123.4), csc(5.6 + 7.8*I), csc(1.0/10^20)
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Floating-point intervals are computed for interval arguments:

csc(-3...-1), csc(1/2...3/2), csc(PI/8...7*PI/8)

For intervals containing discontinuities, the result is a union of intervals:

csc(-1...1);

csc(-PI...0)

Example 2

Some special values are implemented:

csc(PI/10), csc(2*PI/5), csc(123/8*PI), csc(-PI/12)

Translations by integer multiples of π are eliminated from the argument:

csc(x + 10*PI), csc(3 - PI), csc(x + PI), csc(2 - 10^100*PI)

All arguments that are rational multiples of π are transformed to arguments from the
interval :

csc(4/7*PI), csc(-20*PI/9), csc(123/11*PI), csc(-PI/13)
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Example 3

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

csc(5*I), csc(5/4*I), csc(-3*I)

For other complex arguments, use expand to rewrite the result:

csc(5*I + 2*PI/3), csc(PI/4 - 5/4*I), csc(-3*I + PI/2)

expand(csc(5*I + 2*PI/3)),

expand(csc(5/4*I - PI/4)),

expand(csc(-3*I + PI/2))

Example 4

The expand function implements the addition theorems:

expand(csc(x + PI/2)), expand(csc(x + y))
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The combine function uses these theorems in the other direction, trying to rewrite
products of trigonometric functions:

combine(1/(csc(x)*csc(y)), sincos)

The trigonometric functions do not immediately respond to properties set via assume:

assume(n, Type::Integer):

csc((n + 1/2)*PI)

Use simplify to take such properties into account:

simplify(csc((n + 1/2)*PI))

assume(n, Type::Even):

csc(n*PI + x), simplify(csc(n*PI + x))

y := csc(x + n*PI) + csc(x - n*PI);

simplify(y)

delete n, y
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Example 5

csc(x) is immediately rewritten as 1/sin(x):

csc(x)

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(csc(x)*exp(2*I*x), exp);

rewrite(csc(x), cot)

Example 6

The inverse function is implemented as arccsc:

csc(arccsc(x)),

arccsc(csc(x))

Note that arccsc(csc(x)) is rewritten as arcsin(sin(x)) and does not necessarily

yield x because arcsin produces values with real parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arccsc(csc(3)), arccsc(csc(1.6 + I))
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Example 7

diff, float, limit, series and other system functions handle expressions involving
the trigonometric functions:

diff(csc(x), x), float(csc(3)*cot(5 + I))

limit(1/(x*csc(x)), x = 0)

series(csc(x), x = 0)

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x
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See Also

MuPAD Functions
arccos | arccot | arccsc | arcsec | arcsin | arctan | cos | cot | sec | sin |
tan
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sec
Secant function

Syntax
sec(x)

Description

sec(x) represents the secant function 1/cos(x).

Specify the argument x in radians, not in degrees. For example, use π to specify an angle
of 180o.

All trigonometric functions are defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

Translations by integer multiples of π are eliminated from the argument. Further,
arguments that are rational multiples of π lead to simplified results; symmetry relations
are used to rewrite the result using an argument from the standard interval .

Explicit expressions are returned for the following arguments:

.
See “Example 2” on page 1-1852.

The result is rewritten in terms of hyperbolic functions, if the argument is a rational
multiple of I. See “Example 3” on page 1-1853.

The functions expand and combine implement the addition theorems for the
trigonometric functions. See “Example 4” on page 1-1853.

The trigonometric functions do not respond to properties set via assume. Use simplify
to take such properties into account. See “Example 4” on page 1-1853.
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sec(x) is immediately rewritten as 1/cos(x). To rewrite the secant function in terms
of other target functions, use rewrite. For example, you can rewrite expressions
involving the secant function in terms of other trigonometric functions and vice versa.
See “Example 5” on page 1-1855.

The inverse function is implemented as arcsec. See “Example 6” on page 1-1855.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call sec with the following exact and symbolic input arguments. The secant function is
rewritten in terms of the cosine function.

sec(0), sec(1), sec(5 + I), sec(PI), sec(PI/11), sec(PI/8)

sec(-x), sec(x + PI), sec(x^2 - 4)

Floating-point values are computed for floating-point arguments:

sec(123.4), sec(5.6 + 7.8*I), sec(1.0/10^20)
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Floating-point intervals are computed for interval arguments:

sec(-1...1), sec(-4...-2), sec(3*PI/4...5*PI/4)

For intervals containing discontinuities, the result is a union of intervals:

sec(-3*PI/2...3*PI/2);

sec(-PI/2...0)

-RD_INF...-1.747888503e17  union 1.0 ...RD_INF

Example 2

Some special values are implemented:

sec(PI/10), sec(2*PI/5), sec(123/8*PI), sec(-PI/12)

Translations by integer multiples of π are eliminated from the argument:

sec(x + 10*PI), sec(3 - PI), sec(x + PI), sec(2 - 10^100*PI)

All arguments that are rational multiples of π are transformed to arguments from the
interval :

sec(4/7*PI), sec(-20*PI/9), sec(123/11*PI), sec(-PI/13)
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Example 3

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

sec(5*I), sec(5/4*I), sec(-3*I)

For other complex arguments, use expand to rewrite the result:

sec(5*I + 2*PI/3), sec(PI/4 - 5/4*I), sec(-3*I + PI/2)

expand(sec(5*I + 2*PI/3)),

expand(sec(5/4*I - PI/4)),

expand(sec(-3*I + PI/2))

Example 4

The expand function implements the addition theorems:

expand(sec(x + PI/2)), expand(sec(x + y))
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The combine function uses these theorems in the other direction, trying to rewrite
products of trigonometric functions:

combine(1/(sec(x)*sec(y)), sincos)

The trigonometric functions do not immediately respond to properties set via assume:

assume(n, Type::Integer):

sec(n*PI)

Use simplify to take such properties into account:

simplify(sec(n*PI))

assume(n, Type::Even):

sec(n*PI + x), simplify(sec(n*PI + x))

y := sec(x + n*PI) + sec(x - n*PI);

simplify(y)

delete n, y
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Example 5

sec(x) is immediately rewritten as 1/cos(x):

sec(x)

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(sec(x)*exp(2*I*x), exp);

rewrite(sec(x), tan)

Example 6

The inverse functions is implemented as arcsec:

sec(arcsec(x)),

arcsec(sec(x))

Note that arcsec(sec(x)) is rewritten as arccos(cos(x)) and does not necessarily
yield x because arccos produces values with real parts in the interval [0,π]:

arcsec(sec(4)), arcsec(sec(3.2 + I))
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Example 7

diff, float, limit, taylor and other system functions handle expressions involving
the trigonometric functions:

diff(sec(x), x), float(sec(3)*csc(5 + I))

limit((1 - 1/sec(x))/x^2, x = 0)

taylor(sec(x), x = 0)

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x
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See Also

MuPAD Functions
arccos | arccot | arccsc | arcsec | arcsin | arctan | cos | cot | csc | sin |
tan
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cot
Cotangent function

Syntax
cot(x)

Description

cot(x) represents the cotangent function cos(x)/sin(x).

Specify the argument x in radians, not in degrees. For example, use π to specify an angle
of 180o.

All trigonometric functions are defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

Translations by integer multiples of π are eliminated from the argument. Further,
arguments that are rational multiples of π lead to simplified results; symmetry relations
are used to rewrite the result using an argument from the standard interval .

Explicit expressions are returned for the following arguments:

.

See “Example 2” on page 1-1860.

The result is rewritten in terms of hyperbolic functions, if the argument is a rational
multiple of I. See “Example 3” on page 1-1861.

The functions expand and combine implement the addition theorems for the
trigonometric functions. See “Example 4” on page 1-1861.
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The trigonometric functions do not respond to properties set via assume. Use simplify
to take such properties into account. See “Example 4” on page 1-1861.

Use rewrite to rewrite expressions in terms of a specific target function. For example,
you can rewrite expressions involving the cotangent function in terms of other
trigonometric functions and vice versa. See “Example 5” on page 1-1862.

The inverse function is implemented as arccot. See “Example 6” on page 1-1862.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call cot with the following exact and symbolic input arguments:

cot(PI/2), cot(1), cot(5 + I), cot(3*PI/2), cot(PI/11), cot(PI/8)

cot(-x), cot(x + PI), cot(x^2 - 4)

Floating-point values are computed for floating-point arguments:

cot(123.4), cot(5.6 + 7.8*I), cot(1.0/10^20)
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Floating-point intervals are computed for interval arguments:

ccot(1...2), cot(PI/4...3*PI/4), cot(0...PI)

For intervals containing discontinuities, the result is a union of intervals:

cot(2...4);

cot(-PI...-5/2)

Example 2

Some special values are implemented:

cot(PI/10), cot(2*PI/5), cot(123/8*PI), cot(-PI/12)

Translations by integer multiples of π are eliminated from the argument:

cot(x + 10*PI), cot(3 - PI), cot(x + PI), cot(2 - 10^100*PI)

All arguments that are rational multiples of π are transformed to arguments from the
interval :

cot(4/7*PI), cot(-20*PI/9), cot(123/11*PI), cot(-PI/13)
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Example 3

Arguments that are rational multiples of I are rewritten in terms of hyperbolic functions:

cot(5*I), cot(5/4*I), cot(-3*I)

For other complex arguments, use expand to rewrite the result:

cot(5*I + 2*PI/3), cot(PI/4 - 5/4*I), cot(-3*I + PI/2)

expand(cot(5*I + 2*PI/3)),

expand(cot(5/4*I - PI/4)),

expand(cot(-3*I + PI/2))

Example 4

The expand function implements the addition theorems:

expand(cot(x + PI/2)), expand(cot(x + y))

The trigonometric functions do not immediately respond to properties set via assume:

assume(n, Type::Integer):

cot((n + 1/2)*PI)
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Use simplify to take such properties into account:

simplify(cot((n + 1/2)*PI))

assume(n, Type::Integer):

cot(n*PI + x), simplify(cot(n*PI + x))

y := cot(x + n*PI) + cot(x - n*PI);

simplify(y)

delete n, y

Example 5

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(cot(x)*exp(2*I*x), sincos), rewrite(sin(x), cot)

Example 6

The inverse function is implemented asarccot:
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cot(arccot(x)),

arccot(cot(x))

Note that arccot(cot(x)) does not necessarily yield x because arccot produces
values with real parts in the interval [0,π]:

arccot(cot(4)), arccot(cot(3.2 + I))

Example 7

diff, float, limit, taylor and other system functions handle expressions involving
the trigonometric functions:

diff(cot(x), x), float(sin(3)*cot(5 + I))

limit(cot(PI/2 - x)/x, x = 0)

taylor(tan(x), x = 0)

Parameters

x

An arithmetical expression or a floating-point interval
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Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccos | arccot | arccsc | arcsec | arcsin | arctan | cos | csc | sec | sin |
tan
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sinh
Hyperbolic sine function

Syntax
sinh(x)

Description
sinh(x) represents the hyperbolic sine function. This function is defined for complex
arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

Arguments that are integer multiples of ip

2
 lead to simplified results. If the argument

involves a negative numerical factor of Type::Real, then symmetry relations are used
to make this factor positive. See “Example 2” on page 1-1866.

The special values sinh(0) = 0, sinh(∞) = ∞, and sinh(–∞) = –∞ are implemented.

The functions expand and combine implement the addition theorems for the hyperbolic
functions. See “Example 3” on page 1-1867.

You can rewrite other hyperbolic functions in terms of sinh and cosh. For example,
csch(x) is rewritten as 1/sinh(x). Use expand or rewrite to rewrite expressions
involving tanh and coth in terms of sinh and cosh. See “Example 4” on page 1-1867.

The inverse function is implemented by arcsinh. See “Example 5” on page 1-1868.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions
When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call sinh with the following exact and symbolic input arguments:

sinh(I*PI), sinh(1), sinh(5 + I), sinh(PI), sinh(1/11), sinh(8)

sinh(x), sinh(x + I*PI), sinh(x^2 - 4)

Floating-point values are computed for floating-point arguments:

sinh(1.234), sinh(5.6 + 7.8*I), sinh(1.0/10^20)

Floating-point intervals are computed for interval arguments:

sinh(-1...1), sinh(0...1/2)

Example 2

Simplifications are implemented for arguments that are integer multiples of ip

2
:

assume(n in Z_)

simplify(sinh(n*I*PI))
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simplify(sinh((n - 1/2)*I*PI))

delete n

Negative real numerical factors in the argument are rewritten via symmetry relations:

sinh(-5), sinh(-3/2*x), sinh(-x*PI/12), sinh(-12/17*x*y*PI)

Example 3

The expand function implements the addition theorems:

expand(sinh(x + PI*I)), expand(sinh(x + y))

The combine function uses these theorems in the other direction, trying to rewrite
products of hyperbolic functions:

combine(sinh(x)*sinh(y), sinhcosh)

Example 4

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(sinh(x)*exp(2*x), sinhcosh);

rewrite(sinh(x), tanh)
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rewrite(sinh(x)*coth(y), exp);

rewrite(exp(x), sinhcosh)

Example 5

The inverse function is implemented as arcsinh:

sinh(arcsinh(x)),

arcsinh(sinh(x))

Note that arcsinh(sinh(x)) does not necessarily yield xbecause arcsinh produces

values with imaginary parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arcsinh(sinh(3)), arcsinh(sinh(1.6 + 100*I))

Example 6

diff, float, limit, taylor, series and other system functions handle expressions
involving the hyperbolic functions:

diff(sinh(x^2), x), float(sinh(3)*coth(5 + I))
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limit(x*sinh(x)/tanh(x^2), x = 0)

taylor(sinh(x), x = 0)

series((tanh(sinh(x)) - sinh(tanh(x)))/sinh(x^7), x = 0)

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsech | arcsinh | arctanh | cosh | coth |
csch | sech | tanh
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cosh
Hyperbolic cosine function

Syntax
cosh(x)

Description
cosh(x) represents the hyperbolic cosine function. This function is defined for complex
arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

Arguments that are integer multiples of ip

2
 lead to simplified results. If the argument

involves a negative numerical factor of Type::Real, then symmetry relations are used
to make this factor positive. See “Example 2” on page 1-1871.

The special values cosh(0) = 1, cosh(∞) = ∞, and cosh(- ∞) = ∞ are implemented.

The functions expand and combine implement the addition theorems for the hyperbolic
functions. See “Example 3” on page 1-1872.

You can rewrite other hyperbolic functions in terms of sinh and cosh. For example,
sech(x) is rewritten as 1/cosh(x). Use expand or rewrite to rewrite expressions
involving tanh and coth in terms of sinh and cosh. See “Example 4” on page 1-1872.

The inverse function is implemented by arccosh. See “Example 5” on page 1-1873.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions
When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call cosh with the following exact and symbolic input arguments:

cosh(I*PI), cosh(1), cosh(5 + I), cosh(PI), cosh(1/11), cosh(8)

cosh(x), cosh(x + I*PI), cosh(x^2 - 4)

Floating-point values are computed for floating-point arguments:

cosh(1.234), cosh(5.6 + 7.8*I), cosh(1.0/10^20)

Floating-point intervals are computed for interval arguments:

cosh(-1...1), cosh(0...1/2)

Example 2

Simplifications are implemented for arguments that are integer multiples of ip

2
:

assume(n in Z_)

simplify(cosh(n*I*PI))
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simplify(cosh((n - 1/2)*I*PI))

delete n

Negative real numerical factors in the argument are rewritten via symmetry relations:

cosh(-5), cosh(-3/2*x), cosh(-x*PI/12), cosh(-12/17*x*y*PI)

Example 3

The expand function implements the addition theorems:

expand(cosh(x + PI*I)), expand(cosh(x + y))

The combine function uses these theorems in the other direction, trying to rewrite
products of hyperbolic functions:

combine(cosh(x)*cosh(y), sinhcosh)

Example 4

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(cosh(x)*exp(2*x), sinhcosh);

rewrite(cosh(x), coth)
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rewrite(cosh(x)*tanh(y), exp);

rewrite(exp(x), sinhcosh)

Example 5

The inverse function is implemented as arccosh:

cosh(arccosh(x)),

arccosh(cosh(x))

Note that arccosh(cosh(x)) does not necessarily yield x, because arccosh produces

values with imaginary parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arccosh(cosh(3)), arccosh(cosh(1.6 + 100*I))

Example 6

diff, float, limit, taylor, series and other system functions handle expressions
involving the hyperbolic functions:
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diff(cosh(x^2), x), float(cosh(3)*coth(5 + I))

limit(cosh(sin(x)/x), x = 0)

taylor(cosh(x), x = 0)

series(cosh(1/x), x = 0, Right)

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x
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See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsech | arcsinh | arctanh | coth | csch |
sech | sinh | tanh
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tanh

Hyperbolic tangent function

Syntax

tanh(x)

Description

tanh(x) represents the hyperbolic tangent function, sinh(x)/cosh(x). This function
is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The hyperbolic tangent function equals 0 at the points i np , where n is an integer.

The hyperbolic tangent function has singularities at the points p
p

i
in

2
+ , where n is

an integer. If the argument involves a negative numerical factor of Type::Real, then
symmetry relations are used to make this factor positive. See “Example 2” on page
1-1877.

The special values tanh(0) = 0, tanh(∞) = 1, and tanh(-∞) = -1 are implemented.

The functions expand and combine implement the addition theorems for the hyperbolic
functions. See “Example 3” on page 1-1878.

Use expand or rewrite to rewrite expressions involving tanh and coth in terms of
sinh and cosh. See “Example 4” on page 1-1878.

The inverse function is implemented as arctanh. See “Example 5” on page 1-1879.

The float attributes are kernel functions, thus, floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call tanh with the following exact and symbolic input arguments:

tanh(I*PI), tanh(1), tanh(5 + I), tanh(PI), tanh(1/11), tanh(8)

tanh(x), tanh(x + I*PI), tanh(x^2 - 4)

Floating-point values are computed for floating-point arguments:

tanh(1.234), tanh(5.6 + 7.8*I), tanh(1.0/10^20)

Floating-point intervals are computed for interval arguments:

tanh(-1...1), tanh(0...1/2)

Example 2

The hyperbolic tangent function equals 0 at the points i np  where n is an integer:
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assume(n in Z_)

simplify(tanh(n*I*PI))

delete n

Negative real numerical factors in the argument are rewritten via symmetry relations:

tanh(-5), tanh(-3/2*x), tanh(-x*PI/12), tanh(-12/17*x*y*PI)

Example 3

The expand function implements the addition theorems:

expand(tanh(x + PI*I)), expand(tanh(x + y))

Example 4

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(tanh(x)*tanh(2*x), sinhcosh), rewrite(sinh(x), tanh)

rewrite(tanh(x)*sinh(y), exp), rewrite(exp(x), tanh)
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Example 5

The inverse function is implemented as arctanh:

tanh(arctanh(x)),

arctanh(tanh(x))

Note that arctanh(tanh(x)) does not necessarily yield x, because arctanh produces

values with imaginary parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arctanh(tanh(3)), arctanh(tanh(1.6 + 100*I))

Example 6

diff, float, limit, taylor, series, and other system functions handle expressions
involving the hyperbolic functions:

diff(tanh(x), x), float(cosh(3)*tanh(5 + I))

limit(x*sinh(x)/tanh(x^2), x = 0)

taylor(tanh(x), x = 0)
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series(tanh(x), x = infinity)

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsech | arcsinh | arctanh | cosh | coth |
csch | sech | sinh
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csch
Hyperbolic cosecant function

Syntax
csch(x)

Description
csch(x) represents the hyperbolic cosecant function, 1/sinh(x). This function is
defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The hyperbolic cosecant function simplifies to -( )
+

1
1 2n  at the points p

p
i

in
2

+ , where n

is an integer. The hyperbolic cosecant function has singularities at the points i np , where
n is an integer. If the argument involves a negative numerical factor of Type::Real,
then symmetry relations are used to make this factor positive. See “Example 2” on page
1-1883.

The functions expand and combine implement the addition theorems for the hyperbolic
functions. See “Example 3” on page 1-1883.

csch(x) is rewritten as 1/sinh(x). Use expand or rewrite to rewrite expressions
involving csch in terms of other functions. See “Example 4” on page 1-1883.

The inverse function is implemented as arccsch. See “Example 5” on page 1-1884.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions
When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call csch with the following exact and symbolic input arguments:

csch(I*PI/2), csch(1), csch(5 + I), csch(PI), csch(1/11), csch(8)

csch(x), csch(x + I*PI), csch(x^2 - 4)

Floating-point values are computed for floating-point arguments:

csch(1.234), csch(5.6 + 7.8*I), csch(1.0/10^20)

Floating-point intervals are computed for interval arguments:

csch(-1...-1/2), csch(1...10)

For functions with discontinuities, evaluation over an interval can return in a union of
intervals:

csch(-1...1)
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Example 2

The hyperbolic cosecant function equals simplifies to -( )
+

1
1 2n  at the points p

p
i

in
2

+ ,

where n is an integer:

assume(n in Z_)

simplify(csch((n - 1/2)*I*PI))

delete n

Negative real numerical factors in the argument are rewritten via symmetry relations:

csch(-5), csch(-3/2*x), csch(-x*PI/12), csch(-12/17*x*y*PI)

Example 3

The expand function implements the addition theorems:

expand(csch(x + PI*I)), expand(csch(x + y))

Example 4

csch(x) is automatically rewritten as 1/sinh(x):

csch(x)
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Use rewrite to obtain a representation in terms of other target functions:

rewrite(csch(x)*exp(2*x), sinhcosh), rewrite(csch(x), exp)

rewrite(csch(x)*coth(y), sincos), rewrite(csch(x), tanh)

Example 5

The inverse function is implemented as arccsch:

csch(arccsch(x)),

arccsch(csch(x))

Note that arccsch(csch(x)) does not necessarily yield x, because arccsch produces

values with imaginary parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arccsch(csch(3)), arccsch(csch(1.6 + 100*I))

Example 6

diff, float, limit, taylor, series, and other system functions handle expressions
involving the hyperbolic functions:

1-1884



 csch

diff(csch(x), x), float(csch(3)*coth(5 + I))

limit(x*csch(x)/cosh(x^2), x = 0)

taylor(1/csch(x), x = 0)

series(csch(x), x = 0)

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

1-1885



1 The Standard Library

See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsech | arcsinh | arctanh | cosh | coth |
sech | sinh | tanh
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sech
Hyperbolic secant function

Syntax
sech(x)

Description
sech(x) represents the hyperbolic secant function, 1/cosh(x). This function is defined
for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The hyperbolic secant function simplifies to (-1)n at the points i np , where n is an integer.

The hyperbolic secant function has singularities at the points p
p

i
in

2
+ , where n is an

integer. If the argument involves a negative numerical factor of Type::Real, then
symmetry relations are used to make this factor positive. See “Example 2” on page
1-1888.

The functions expand and combine implement the addition theorems for the hyperbolic
functions. See “Example 3” on page 1-1889.

sech(x) is rewritten as 1/cosh(x). Use expand or rewrite to rewrite expressions
involving sech in terms of other functions. See “Example 4” on page 1-1889.

The inverse function is implemented as arcsech. See “Example 5” on page 1-1890.

The float attributes are kernel functions, thus, floating-point evaluation is fast.

Environment Interactions
When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Call sech with the following exact and symbolic input arguments:

sech(I*PI), sech(1), sech(5 + I), sech(PI), sech(1/11), sech(8)

sech(x), sech(x + I*PI), sech(x^2 - 4)

Floating-point values are computed for floating-point arguments:

sech(1.234), sech(5.6 + 7.8*I), sech(1.0/10^20)

Floating-point intervals are computed for interval arguments:

sech(-1...1), sech(1...10)

Example 2

The hyperbolic secant function equals simplifies to (-1)n at the points i np , where n is an
integer:

assume(n in Z_)

simplify(sech(n*I*PI))
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delete n

Negative real numerical factors in the argument are rewritten via symmetry relations:

sech(-5), sech(-3/2*x), sech(-x*PI/12), sech(-12/17*x*y*PI)

Example 3

The expand function implements the addition theorems:

expand(sech(x + PI*I)), expand(sech(x + y))

Example 4

sech(x) is automatically rewritten as 1/cosh(x):

sech(x)

Use rewrite to obtain a representation in terms of other target functions:

rewrite(sech(x)*exp(2*x), sinhcosh), rewrite(sech(x), tanh)

rewrite(sinh(x)*sech(y), exp), rewrite(sech(x), coth)
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Example 5

The inverse function is implemented as arcsech:

sech(arcsech(x)),

arcsech(sech(x))

Note that arcsech(sech(x)) does not necessarily yield x, because arcsech produces

values with imaginary parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arcsech(sech(3)), arcsech(sech(1.6 + 100*I))

Example 6

diff, float, limit, taylor, series, and other system functions handle expressions
involving the hyperbolic functions:

diff(sech(x), x), float(sech(3)*coth(5 + I))

limit(1/sech(sin(x)/x), x = 0)
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taylor(1/sech(x), x = 0)

series(sech(x), x = 0)

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x

See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsech | arcsinh | arctanh | cosh | coth |
csch | sinh | tanh
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coth

Hyperbolic cotangent function

Syntax

coth(x)

Description

coth(x) represents the hyperbolic cotangent function, cosh(x)/sinh(x). This function
is defined for complex arguments.

Floating-point values are returned for floating-point arguments. Floating-point intervals
are returned for floating-point interval arguments. Unevaluated function calls are
returned for most exact arguments.

The hyperbolic cotangent function equals 0 at the points p
p

i
in

2
+ , where n is an integer.

The hyperbolic tangent function has singularities at the points i np , where n is an
integer. If the argument involves a negative numerical factor of Type::Real, then
symmetry relations are used to make this factor positive. See “Example 2” on page
1-1894.

The special values coth(∞) = 1 and coth(-∞) = -1 are implemented.

The functions expand and combine implement the addition theorems for the hyperbolic
functions. Cf. “Example 3” on page 1-1894.

Use expand or rewrite to rewrite expressions involving tanh and coth in terms of
sinh and cosh. See “Example 4” on page 1-1894.

The inverse function is implemented as arccoth. See “Example 5” on page 1-1895.

The float attributes are kernel functions, thus, floating-point evaluation is fast.
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Environment Interactions

When called with a floating-point argument, the functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

Call coth with the following exact and symbolic input arguments:

coth(I*PI/2), coth(1), coth(5 + I), coth(PI), coth(1/11), coth(8)

coth(x), coth(x + I*PI), coth(x^2 - 4)

Floating-point values are computed for floating-point arguments:

coth(1.234), coth(5.6 + 7.8*I), coth(1.0/10^20)

Floating-point intervals are computed for interval arguments:

coth(-1...-1/2), coth(1...10)

For functions with discontinuities, evaluation over an interval can return a union of
intervals:

coth(-1...1)
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Example 2

The hyperbolic cotangent function equals 0 at the points p
p

i
in

2
+ , where n is an integer:

assume(n in Z_)

simplify(coth((n - 1/2)*I*PI))

delete n

Negative real numerical factors in the argument are rewritten via symmetry relations:

coth(-5), coth(-3/2*x), coth(-x*PI/12), coth(-12/17*x*y*PI)

Example 3

The expand function implements the addition theorems:

expand(coth(x + PI*I)), expand(coth(x + y))

Example 4

Use rewrite to obtain a representation in terms of a specific target function:

rewrite(coth(x)*exp(2*x), sinhcosh), rewrite(sinh(x), coth)
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rewrite(sinh(x)*coth(y), exp), rewrite(exp(x), coth)

Example 5

The inverse function is implemented as arccoth:

coth(arccoth(x)),

arccoth(coth(x))

Note that arccoth(coth(x)) does not necessarily yield x, because arccoth produces

values with imaginary parts in the interval -
È

Î
Í

˘

˚
˙

p p

2 2
, :

arccoth(coth(3)), arccoth(coth(1.6 + 100*I))

Example 6

diff, float, limit, taylor, series, and other system functions handle expressions
involving the hyperbolic functions:

diff(coth(x), x), float(sinh(3)*coth(5 + I))
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limit(x*coth(x)/cosh(x^2), x = 0)

taylor(1/coth(x), x = 0)

series(coth(x), x = 0)

series(coth(x), x = infinity)

Parameters

x

An arithmetical expression or a floating-point interval

Return Values

Arithmetical expression or a floating-point interval

Overloaded By

x
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See Also

MuPAD Functions
arccosh | arccoth | arccsch | arcsech | arcsinh | arctanh | cosh | csch |
sech | sinh | tanh
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slot
Method or entry of a domain or a function environment

Syntax
d::n

slot(d, "n")

d::n := v 

slot(d, "n", v)

object::dom

slot(object, "dom")

Description

d::n returns the value of the slot named "n" of the object d.

d::n := v creates or changes the slot "n". The value v is assigned to the slot.

The function slot is used for defining methods and entries of data types (domains) or
for defining attributes of function environments. Such methods, entries, or attributes
are called slots. They allow to overload system functions by user defined domains and
function environments. See the “Background” section below for further information.

Any MuPAD object has a special slot named "dom". It holds the domain the object
belongs to: slot(object, "dom") is equivalent to domtype(object). The value of
this special slot cannot be changed. Cf. “Example 1” on page 1-1899.

Apart from the special slot "dom", only domains and function environments may have
further slots.

The call slot(d, "n") is equivalent to d::n. It returns the value of the slot.

The call slot(d, "n", v) returns the object d with an added or changed slot "n"
bearing the value v.
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For a function environmentd, the call slot(d, "n", v) returns d with the changed
slot "n" and changes the function environment d as a side-effect. This is the so-called
“reference effect” of function environments. Cf. “Example 2” on page 1-1900.

For a domaind, however, the call slot(d, "n", v) modifies d as a side-effect and
returns the domain. This is the so-called “reference effect” of domains. Cf. “Example 3” on
page 1-1900.

If a non-existing slot is accessed, FAIL is returned as the value of the slot. Cf. “Example
4” on page 1-1901.

The ::-operator is a shorthand notation to access a slot.

The expression d::n, when not appearing on the left hand side of an assignment, is
equivalent to slot(d, "n").

The command d::n := v assigns the value v to the slot "n" of d. This assignment
is almost equivalent to changing or creating a slot via slot(d, "n", v). Note the
following subtle semantical difference between these assignments: in d::n := v, the
identifier d is evaluated with level 1, i.e., the slot "n" is attached to the value of d. In
slot(d, "n", v), the identifier d is fully evaluated. See “Example 6” on page 1-1902.

With delete d::n or delete slot(d,"n"), the slot "n" of the function environment
or the domain d is deleted. Cf. “Example 5” on page 1-1901. The special slot "dom"
cannot be deleted.

The first argument of slot is not flattened. This allows to access the slots of expression
sequences and null() objects. Cf. “Example 7” on page 1-1902.

For domains, there is a special mechanism to create new values for slots on demand. If
a non existing slot is read, the method "make_slot" of the domain is called in order
to create the slot. If such a method does not exist, FAIL is returned. Cf. “Example 8” on
page 1-1903.

Examples

Example 1

Every object has the slot "dom":
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x::dom = domtype(x),

slot(45, "dom") = domtype(45),

sin::dom = domtype(sin)

Example 2

Here we access the existing "float" slot of the function environment sin implementing
the sine function. The float slot is again a function environment and may be called like
any MuPAD function. Note, however, the different functionality: in contrast to sin, the
float slot always tries to compute a floating-point approximation:

s := sin::float:  s(1), sin(1)

With the following commands, s becomes the function environment sin apart from a
changed "float" slot. The slot call has no effect on the original sin function because
slot returns a copy of the function environment:

s := funcenv(sin):

s::float := x -> float(x - x^3/3!):

s(PI/3) = sin(PI/3), s::float(1) <> sin::float(1)

delete s:

Example 3

If you are using the slot function to change slot entries in a domain, you must be aware
that you are modifying the domain:

old_one := Dom::Float::one
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newDomFloat := slot(Dom::Float, "one", 1):

newDomFloat::one, Dom::Float::one

We restore the original state:

slot(Dom::Float, "one", old_one):  Dom::Float::one

delete old_one, newDomFloat:

Example 4

The function environment sin does not contain a "sign" slot. So accessing this slot
yields FAIL:

slot(sin, "sign"), sin::sign

Example 5

We define a function environment for a function computing the logarithm to the base 3:

log3 := funcenv(x -> log(3, x)):

If the function info is to give some information about log3, we have to define the
"info" slot for this function:

log3::info := "log3 -- the logarithm to the base 3":

info(log3)

log3 -- the logarithm to the base 3

The delete statement is used for deleting a slot:
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delete log3::info: info(log3)

log3(x) -- a library procedure [try ?log3 for help]

It is not possible to delete the special slot "dom":

delete log3::dom

Error: The argument is invalid. [delete]

delete log3:

Example 6

Here we demonstrate the subtle difference between the slot function and the use of the
::-operator in assignments. The following call adds a "xyz" slot to the domain DOM_INT
of integer numbers:

delete b: d := b: b := DOM_INT: slot(d, "xyz", 42):

The slot "xyz" of DOM_INT is changed, because d is fully evaluated with the result
DOM_INT. Hence, the slot DOM_INT::xyz is set to 42:

slot(d, "xyz"), slot(DOM_INT, "xyz")

Here is the result when using the ::-operator: d is only evaluated with level 1, i.e., it is
evaluated to the identifier b. However, there is no slot b::xyz, and an error occurs:

delete b: d := b: b := DOM_INT: d::xyz := 42

Error: Slot 'd::xyz' is unknown. [slot]

delete b, d:

Example 7

The first argument of slot is not flattened. This allows access to the slots of expression
sequences and null() objects:
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slot((a, b), "dom") = (a,b)::dom,

slot(null(), "dom") = (null())::dom

Example 8

We give an example for the use of the function make_slot. The element undefined
of the domain stdlib::Undefined represents an undefined value. Any function
f should yield f(undefined) = undefined. Inside the implementation of
stdlib::Undefined, we find:

undef := newDomain("stdlib::Undefined"):

undefined := new(undef):

undef::func_call := proc() begin undefined end_proc;

undef::make_slot := undef::func_call:

The following mechanism takes place automatically for a function f that is overloadable
by its first argument: in the call f(undefined), it is checked whether the slot undef::f
exists. If this is not the case, the make_slot function creates this slot “on the fly”,
producing the value undefined. Thus, via overloading, f(undefined) returns the
value undefined.

Example 9

The following example is rather advanced and technical. It demonstrates overloading
of the slot function to implement slot access and slot assignments for other objects
than domains (DOM_DOMAIN) or function environments (DOM_FUNC_ENV). The following
example defines the slots "numer" and "denom" for rational numbers. The domain
DOM_RAT of such numbers does not have slots "numer" and "denom":

domtype(3/4)

slot(3/4, "numer")
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Error: Slot '(3/4)::numer' is unknown. [slot]

We can change DOM_RAT, however. For this, we have to unprotectDOM_RAT temporarily:

unprotect(DOM_RAT):

DOM_RAT::slot :=

  proc(r : DOM_RAT, n : DOM_STRING, v=null(): DOM_INT)

      local i : DOM_INT;

  begin

      i := contains(["numer", "denom"], n);

      if i = 0 then

         error("Unknown slot \"".expr2text(r)."::".n."\"")

      end;

      if args(0) = 3 then

         subsop(r, i = v)

      else

         op(r, i)

      end

  end_proc:

Now, we can access the operands of rational numbers, which are the numerator and the
denominator respectively, via our new slots:

slot(3/4, "numer"), (3/4)::numer,

slot(3/4, "denom"), (3/4)::denom

a := 3/4:  slot(a, "numer", 7)

a::numer := 11:  a

We restore the original behavior:

delete DOM_RAT::slot, a: protect(DOM_RAT, Error):
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Parameters

d

A domain or a function environment

n

The name of the slot: an identifier

v

The new value of the slot: an arbitrary MuPAD object

object

An arbitrary MuPAD object

Return Values

slot(d, "n") returns the value of the slot; slot(d, "n", v) returns the object d
with the added or changed slot; slot(object, "dom") returns the domain type of the
object.

Overloaded By

d

Algorithms

Overloading of system functions by domain elements is typically implemented as follows.
If a library function f, say, is to be overloadable by user defined data types, a code
segment as indicated by the following lines is appropriate. It tests whether the domain
x::dom of the argument x contains a method f. If this is the case, this domain method is
called:
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f:= proc(x)

    begin

      // check if f is overloaded by x

      if x::dom::f <> FAIL then

           // use the method of the domain of x

           return(x::dom::f(args()))

      else

           // execute the code for the function f

      endif

    end_proc:

By overloading the function slot, slot access and slot assignment can be implemented
for other objects than domains or function environments. Cf. “Example 9” on page
1-1903.

In principle, the name n of a slot may be an arbitrary MuPAD object. Note, however, that
the ::-operator cannot access slots defined by slot(d, n, v) if the the name n is not a
string.

Strings may be used in conjunction with the ::-operator: the calls d::"n" and d::n are
equivalent.

See Also

MuPAD Domains
DOM_DOMAIN | DOM_FUNC_ENV

MuPAD Functions
funcenv | newDomain | slotAssignCounter
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slotAssignCounter
Counts slot assignments

Syntax
slotAssignCounter(key)

Description

slotAssignCounter(key) returns the number of slot assignments with the key key
since the initialization of the counter. The counter for key is initialized with 0 on the
first call of slotAssignCounter(key). Previous assignments with the key key are not
counted.. This function serves a highly technical purpose. Usually, there should be no
need for a user to call this function.

slotAssignCounter only counts assignments to slots of domains and function
environments.

slotAssignCounter was introduced as a dependency check function for
prog::remember. See “Example 2” on page 1-1908.

Examples

Example 1

We initialize slot assignment counting of the slot "foo":

slotAssignCounter("foo")

Then we define a function f with a slot "foo":

f := funcenv(f):

f::foo := bar:
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Now the counter has the value 1:

slotAssignCounter("foo")

Example 2

Here we define a recursing function foo which overloads for domain elements. The
function remembers computed values with prog::remember:

foo := x -> (if x::dom::foo <> FAIL then return(x::dom::foo(x)) end_if;

             if x = op(x) then procname(x) else map(x, foo) end_if):

foo := prog::remember(foo):

Then we define a domain bar which does not overload the slot "foo":

bar := newDomain("bar"):

bar::new := x -> new(bar, x):

bar::print := x -> hold(bar)(extop(x)):

bar::op := id:

foo(bar(2))

Now we add a "foo" slot to bar:

bar::foo := x -> 4:

foo(bar(2))

The new slot was not used, because foo took the result from its remember table. If we
use a dependency function with slotAssignCounter in prog::remember, we can
make foo aware of changes in "foo"-slots of other functions and domains:

foo := x -> (if x::dom::foo <> FAIL then return(x::dom::foo(x)) end_if;

             if x = op(x) then x else map(x, foo) end_if):

foo := prog::remember(foo, () -> slotAssignCounter("foo")):

foo(bar(2));

bar::foo := x -> 5:
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foo(bar(2))

delete foo, bar:

Parameters

key

Any MuPAD object

Return Values

Non-negative number of type DOM_INT.

See Also

MuPAD Functions
prog::remember | slot

1-1909



1 The Standard Library

solve

Solve equations and inequalities

Compatibility

For the solve function in MATLAB, see solve.

Syntax

solve(eq, x, options)

solve(eq, x = a .. b, options)

solve(eq, vars, options)

solve(eq, options)

solve(eqs, x, options)

solve(eqs, vars, options)

solve(eqs, options)

solve(ODE)

solve(REC)

Description

solve(eq, x) returns the set of all complex solutions of an equation or inequality eq
with respect to x.

solve(eq, x = a..b) returns the set of all solutions in the closed interval
Dom::Interval([a, b]).

solve(eq, vars) solves an equation for the variables vars.
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solve(eqs, x) solves a system eqs for the variable x.

solve(eqs, vars) solves a system eqs of equations for the variables vars.

The solve function provides a unified interface to a variety of specialized solvers. See
Choosing a Solver.

If you do not specify indeterminates for which you want to solve an equation, inequality
or system, the solver uses a set of all indeterminates. Indeterminates must be identifiers
or indexed identifiers. You cannot use mathematical constants, such as PI, EULER, and
so on, as indeterminates. The solver discards indeterminates that appear only inside
function names or indices. See “Example 12” on page 1-1919.

If you specify a list of indeterminates for which you want to solve an equation, an
inequality, or a system, the solver sorts the components of the resulting solution vectors
according to the order of the indeterminates that you used. If you specify indeterminates
as a set, MuPAD can change the order of the indeterminates.

solve(eq, vars) is equivalent to solve([eq], vars).

The solver can return the following types of sets:

• Finite sets (type DOM_SET).
• Symbolic calls to solve.
• Zero sets of polynomials (type RootOf). The solver returns a set of this type if it

cannot solve an equation explicitly in terms of radicals. The solver also can return this
type of set when you use the MaxDegree option.

• Set-theoretic expressions, such as "_union", "_intersect", and "_minus".
• Symbolic calls to solvelib::Union. These calls represent unions over parametrized

systems of sets.
• The ℂ, ℝ, ℚ, and ℤ (type solvelib::BasicSet) sets.
• Intervals (type Dom::Interval).
• Image sets of functions (type Dom::ImageSet).
• Piecewise objects in which every branch defines a set of one of the valid types (type

piecewise).

MuPAD can use sets of these types, excluding intervals and basic sets, to represent sets
of vectors (for solutions of systems). When solving a system, MuPAD also can return a
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solution in the form Sn (the n-fold cartesian power of the set S of scalars). Here S is a set
of any type returned by solve.

For returned solution sets, you can use the set-theoretic operations, such as intersect,
union, and minus. Also, you can use pointwise-defined arithmetical operations, such
as +, *, and so on. To extract elements of a set, use the solvelib::getElement
function. To test whether the solution set returned by solve is finite, use the function
solvelib::isFinite. See “Example 2” on page 1-1913

For systems, the solver returns a set of vectors or a set of lists of equations. To specify
that the solver must return a set of vectors, use the VectorFormat option. See “Example
10” on page 1-1918.

By default, solve(eq, x) returns only the solutions consistent with the properties of x.
To ignore the properties of x, use the IgnoreProperties option. This option is helpful
when you solve a system of equations for more than one variable. See “Example 13” on
page 1-1920.

An inequality a <= b or a < b holds only when both sides represent real numbers. In
particular, a = b does not imply that a <= b for complex numbers.

You can write custom domains for equations of special types, and then overload solve
for these domains. MuPAD uses this feature for differential and recurrence equations.
See the ode, ode::solve, and rec help pages.

The solve function is a symbolic solver. If you want to use numeric methods, see the
numeric::solve help page for available options and examples.

If the input contains floating-point numbers, the solver replaces them by approximate
rational values. The accuracy of these approximate values depends on the environment
variable DIGITS. If solve finds a solution, MuPAD internally calls the float
function for that solution, and then returns the result. If the symbolic solver returns
unevaluated, MuPAD calls numeric::solve. See “Example 16” on page 1-1921.

If a numerator contains a factored polynomial with the multiplicities greater than 1, the
solver does not check the multiple roots for zeros in the denominator. See “Example 17”
on page 1-1921.

Environment Interactions
solve reacts to properties of identifiers.
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Examples

Example 1

Solve the following equation. Typically, for equations with a finite number of solutions,
the solver returns a set of the DOM_SET type:

S := solve(x^4 - 5*x^2 + 6*x = 2, x)

Assign individual solutions to variables by indexing into S:

sol1 := S[1]

Example 2

The solver can also return an infinite discrete set of solutions:

S := solve(sin(x*PI/7) = 0, x)

To select the solutions in a particular finite interval, find the intersection of the solution
set with the interval:

S intersect Dom::Interval(-22, 22)

Alternatively, specify the interval when calling the solver. For example, compute the
solutions in the interval [- 22, 22]:

solve(sin(x*PI/7) = 0, x = -22..22)
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delete S:

Example 3

Use the solve function to solve inequalities. Typically, the solution set of an inequality
is an interval or a union of intervals:

solve(x^2 > 5, x)

Example 4

Solve the following inequality. The solution includes the set of all complex numbers,
excluding  and :

solve(x^2 <> 7, x)

Example 5

The solver can return a solution as a union of an infinite family of sets. The
solvelib::Union function represents such infinite unions in MuPAD:

solve(sin(x)*cos(x) > 1/4, x, Real)

Example 6

If an equation contains symbolic parameters, the solver returns a piecewise solution. For
example, solve the quadratic equation ax2 + bx + c = 0:
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S := solve(a*x^2 + b*x + c, x)

Now, evaluate the solution assuming that a is not equal to 0:

assume(a <> 0): S

delete S: unassume(a):

Example 7

By default, the solver tries to find all possible solutions. The following inequality has
both real and complex solutions. For example,  is one of the solutions. The

solver cannot find a closed-form representation of all possible solutions:

solve(x + 1/x > 0, x)
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With the Real option, the solver computes only real solutions. The closed-form
representation of all real solutions of that equation is an interval of all real numbers
from 0 to infinity:

solve(x + 1/x > 0, x, Real)

Example 8

Solve this equation. By default, the solver returns a complete, but rather long and
complicated solution:

solve(x^(7/2) + 1/x^(7/2) = 1, x)

Using IgnoreAnalyticConstraints, you often can get simpler results:

solve(x^(7/2) + 1/x^(7/2) = 1, x, IgnoreAnalyticConstraints)

Using this option, you also can get wrong results:
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solve(arcsin(x) = C, x, IgnoreAnalyticConstraints) assuming C > 10

Always check the results obtained with this option:

testeq(arcsin(sin(C)), C)

The IgnoreAnalyticConstraints option also can lead to incomplete results:

solve(x^(5/2) = 1, x)

solve(x^(5/2) = 1, x, IgnoreAnalyticConstraints)

Example 9

With the IgnoreAnalyticConstraints option, the solver can multiply both sides of an
equation by any expression, except 0. In the following example, the solver multiplies both
sides of the equation by . The solver does not consider the special case x = y =
0:

solve(1/sqrt(x) = 1/sqrt(y), IgnoreAnalyticConstraints)

The result is not valid for x = y = 0.
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Example 10

When you solve a system of equations, MuPAD tries to represent the solutions as a set of
lists of substitutions:

solve([x^2 + y = 1, x + y^2 = 1], [x, y])

If you use the VectorFormat option, MuPAD returns a solution as a set of vectors:

solve([x^2 + y = 1, x + y^2 = 1], [x, y], VectorFormat)

Right sides of the returned substitutions can contain generated identifiers. In this
case, substituting each of these identifiers with a complex number gives a solution of
the system. You can obtain all solutions by substituting generated identifiers with all
complex numbers:

sys:= [x + y + z = 2, x + y^2 + z^2 = 4]:

solve(sys, [x, y, z])

If you use the VectorFormat option, the solver returns a solution as an infinite set of
vectors, in the usual mathematical notation:

solve(sys, [x, y, z], VectorFormat); delete sys:
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Example 11

You can specify the variable, for which you want to solve an equation, as a list of one
entry. In this case, the solver returns the solution using the output format typically used
for systems:

solve(x = x, x), solve(x = x, [x])

Example 12

If you do not specify indeterminates (the variables for which you want to solve an
equation), the solver uses the set of all indeterminates that it can find in that equation:

solve(x^2 = 3)

The solver does not regard operators and indices as indeterminates. Therefore, the solver
does not treat f and y as indeterminates in the following equation:

solve(f(x[y]) = 7)
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Example 13

If you set an assumption on the variable for which you want to solve an equation, the
solver returns only the results compatible with that assumption. For example, assume
that x represents a real positive number. Then, solve the following equation:

assume(x, Type::Positive): solve(x^4 = 1, x)

Without that assumption, the solver returns all complex solutions:

unassume(x): solve(x^4 = 1, x)

Example 14

To obtain the multiplicities of the roots of a polynomial, use the Multiple option. For
example, the polynomial x3 + 2 x2 + x has two roots. The multiplicity of x = - 1 is 2. The
multiplicity of x = 0 is 1:

solve(x^3 + 2*x^2 + x, x, Multiple)

Example 15

Suppose, you want to solve the following system of equations for two variables, x and y.
Suppose, you want to avoid backward substitutions while solving this system. To disable
backward substitutions, use the option BackSubstitution = FALSE. Specify the list
of variables so that x appears to the right of y. Now, the solution for the variable y can
contain the variable x:

solve({x^2 + y = 1, x - y = 2}, [y, x], BackSubstitution = FALSE)
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solve({x^2 + y = 1, x - y = 2}, {x, y})

If MuPAD cannot express the result as a set of lists, then BackSubstitution has no
effect:

solve({x^2 + y = 1, x - y = 2}, [y, x], 

BackSubstitution = FALSE, MaxDegree = 1)

Example 16

If the input contains floating-point numbers, MuPAD uses the symbolic solver solve,
and then calls the float function for the obtained solution:

solve(x^3 + 3.0*x + 1, x)

If the symbolic solver fails to solve such equation or system, MuPAD calls the numeric
solver numeric::solve:

solve({sin(x) + 1/2*cos(sqrt(2)*y) = 1, cos(x) + sin(y) = 0.1}, {x, y})

The numeric solver can return an incomplete set of solutions. For details, see the
numeric::solve help page.

Example 17

If a numerator contains a factored polynomial with the multiplicities greater than 1, the
solutions might give zeros in a denominator:
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solve((x - 1)^2/(x - 1) = 0, x)

To eliminate these solutions, expand a numerator:

f := expand((x - 1)^2): solve(f/(x - 1) = 0, x)

Example 18

You can use the solve function to solve Diophantine equations. For example, solve the
following linear Diophantine equation:

S := solve(30*x + 56*y = 2, [x, y], Domain = Z_)

Example 19

You can use the solve function to solve equation given in the form of memberships. For
example, solve the following equation:

solve(x^2 in Z_, x)

Example 20

You can solve an equation with symbolic parameters, thus finding its general solution.
Then you can evaluate the solution for any particular values of parameters or plot the
solution with respect to the parameter values.
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Solve this equation:

S := solve(x^5 + a = 1, x, Real)

Plot the result for the values -10 < a < 10:

plot(S, a = -10..10)

Evaluate the result for a = 5 using the operator | or its functional form evalAt:

S | a = 5

Approximate the result with a floating-point value using float:
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float(%)

Parameters

eq

A single equation or an inequality of type "_equal", "_less", "_leequal", or
"_unequal", or an equation in the form of membership (_in). Alternatively, any
Boolean expression composed of equations or inequalities by the operators "_and",
"_or", and "_not". Also, the solver accepts an arithmetical expression and regards such
expression as an equation without the right side. (Internally, the solver assumes that the
right side is equal to 0.)

x

The indeterminate for which you solve an equation, an inequality of a system: an
identifier or an indexed identifier

a, b

Arithmetical expressions

vars

A nonempty set or list of indeterminates for which you solve an equation, an inequality,
or a system

eqs

A set, list, array, or table of equations, inequalities, arithmetical expressions, or any
combination of these objects. The solver regards expressions as equations without the
right side. (Internally, the solver assumes that the right side is equal to 0.)

ODE

An ordinary differential equation: an object of the ode type.
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REC

A recurrence equation: an object of the rec type.

Options

MaxDegree

Option, specified as MaxDegree = n

Do not use explicit formulas that involve radicals when solving polynomial equations of
degree larger than n. Here n is a positive integer. By default, n = 2.

This option enables and disables the use of explicit formulas for the roots of polynomials.
This option does not affect other methods, such as factorization. For polynomial
equations, the given maximal degree n refers to the factors of the polynomials, not to the
input polynomial.

When you solve a fifth- or higher-order polynomial equation, the solver might be unable
to return the solution explicitly. In general, there are no explicit expressions for the roots
of polynomials of degrees higher than 4. Setting the MaxDegree option to 4 or a higher
value makes no difference.

BackSubstitution

Option, specified as BackSubstitution = b

Enable or disable backward substitutions when solving algebraic systems. The value b
must be TRUE or FALSE. By default, b = TRUE.

BackSubstitution only affects the results returned as sets of lists.

Multiple

With this option, solve returns a set of type Dom::Multiset, indicating the
multiplicity of polynomial roots.

The solver ignores this option if the input is not a polynomial expression or equation, or if
the solution is of the RootOf type.

VectorFormat

Return a set of vectors when solving a system of equations for a list of variables.
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PrincipalValue

With this option, the solver returns only one solution. The solver returns this solution
as a set with one element. If an equation does not have a solution, the solver returns an
empty set.

If the solver cannot find any solution and cannot prove that solutions do not exist, it
returns an unresolved symbolic call to solve. For example, if the set of solutions is a
piecewise function, and there are no elements that belongs to all cases, the solver cannot
find a solution.

You also can use this option to solve equations for more than one variable. In this case,
the solver returns a set that contains one list. This nested structure represents a solution
vector.

Domain

Option, specified as Domain = d

Return the set of all solutions that are elements of d. Here d must represent a
subset of the complex numbers (for example, real numbers Dom::Real or integers
Dom::Integer). Alternatively, d can be a domain over which you can factor polynomials
(for example, d can be a finite field). In this case, you can use this option only when
solving polynomial equations. Without this option, the solver returns all solutions in the
set of complex numbers.

You can solve an equation or a system over the following domains:

• Subsets of the set of complex numbers C_.
• Domains over which you can factor polynomials. You can use these domains only

when solving polynomial equations.

A subset of C_ is any kind of set returned by solve. Instead of C_, R_, Q_, and Z_,
you also can use the corresponding domains of the domains package Dom::Complex,
Dom::Real, Dom::Rational, and Dom::Integer.

You can overload the solver for your custom domains by adding the domsolve method
to those domains. If this method does not exist, MuPAD uses the solve_eq method to
solve equations. The solve_eq method does not accept systems as arguments. Finally,
if the solve_eq method does not exist, MuPAD uses the solve_poly method to solve
polynomials. The solve_poly method accepts only polynomials as first arguments. This
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method regards any first argument of solve that cannot be converted to a polynomial as
illegal.

The calling syntax for the domsolve, solve_eq, and solve_poly methods is
domsolve(eq, var, options). Here var is the same argument as in solve,
and options is a table of options. For the domsolve method, eq is also the same
as in solve. For the solve_eq method, eq must be an arithmetical expression. For
solve_poly, eq must be a polynomial.

You cannot solve equations and systems in more than one variable over domains.

IgnoreProperties

Include solutions that are not consistent with the properties of the variable x.

Real

Return only the solutions for which every subexpression of eq represents a real number.
Also, assume that every subexpression independent of x represents a real number.

With this option, the solver assumes that every subexpression independent of x
represents a real number. In particular, the solver assumes that all symbolic parameters
are real. When you use Real, the solver returns only the solutions for which every
subexpression of eq is real. See “Example 7” on page 1-1915.

When you use this option, MuPAD restricts the domain of every function to real
numbers. For example, it does not support the logarithms of negative numbers. For all
returned solutions x, the input is defined over the real numbers.

This option is particularly useful for solving inequalities. Inequalities hold only when
both sides represent real values.

This option does not affect some systems.

IgnoreSpecialCases

If a solution requires case analysis, ignore cases for which one or more parameters in the
equation are supposed to be an element of a comparatively small set (for example, with
this option, MuPAD can ignore a membership in a fixed finite set or a set of integers ).

With this option, the solver tries to reduce the number of branches in piecewise objects.
MuPAD finds equations and memberships in comparatively small sets. First, MuPAD
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tries to prove such equations and memberships by using the property mechanism. If the
property mechanism proves an equation or a membership is true, MuPAD keeps that
statement. Otherwise, MuPAD can replace that statement with the value FALSE. For
example, if the property mechanism cannot prove that a denominator is equal to zero,
MuPAD regards this denominator as nonzero. This option can significantly reduce the
number of piecewise objects in a solution.

IgnoreAnalyticConstraints

Apply purely algebraic simplifications to expressions and equations. With this option, the
solver applies the following rules to the expressions on both sides of an equation:

• ln(a) + ln(b) = ln(a b) for all values of a and b. In particular:

 for all values of a, b, and c.
• ln(ab) = b ln(a) for all values of a and b. In particular:

 for all values of a, b, and c.
• If f and g are standard mathematical functions and f(g(x)) = x for all small positive

numbers, f(g(x)) = x is assumed to be valid for all complex x. In particular:
• • .

• arcsin(sin(x)) = x, arccos(cos(x)) = x, arctan(tan(x)) = x.
• arcsinh(sinh(x)) = x, arccosh(cosh(x)) = x, arctanh(tanh(x)) = x.
•  for all values of k.

• The solver can multiply both sides of an equation by any expression except 0.
• The solutions of polynomial equations must be complete.

Using this option, you can get simpler solutions for equations for which the direct call
of the solver returns complicated results. Note that with this option the solver does not
verify the correctness and completeness of the result. See “Example 8” on page 1-1916
and “Example 9” on page 1-1917.

DontRewriteBySystem

Do not transform an equation to an equivalent system of equations. This option decreases
the running time. With this option, the solver cannot solve some equations.

1-1928



 solve

This option does not allow the solver to replace an equation with the equivalent system of
equations. Typically, MuPAD replaces an equation by an equivalent system of equations
when solving equations with nested roots. Solving the resulting system can be slow. Use
this option to improve performance of the solver. When you use DontRewriteBySystem,
the solver cannot solve some of the equations that it can solve without this option.

NoWarning

Suppress all warning messages.

Return Values

If x is an identifier, solve(eq, x) returns an object that represents a mathematical set
(see the “Details” section). If x is a set or a list, or if you omit x, a call to solve returns
a set of lists. Each list consists of equations. The left side of each equation is one of the
variables for which you solve an equation, an inequality of a system. In this case, solve
also can return an expression of the form x in S, where x is a list of variables, and
S is a set of vectors. When you solve a system providing the list of variables and the
VectorFormat option, the solver returns a set of vectors.

Overloaded By

eq

See Also

MuPAD Functions
isolate | linsolve | numeric::linsolve | numeric::solve | RootOf
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sort
Sort a list

Syntax
sort(list, <f>)

Description

sort(list) returns a sorted copy of the list.

sort sorts the list in ascending order.

If you do not specify a procedure f, the sort command uses the following rules for
sorting the lists:

• The command sorts a list of real numbers (Type::Real) numerically.
• The command sorts a list of character strings alphabetically.
• The command sorts an outer list containing inner lists with numeric first entries by

these numeric first entries. See “Example 4” on page 1-1933.
• In all other cases, the command sorts a list according to the internal order:

sort(list) is equivalent to sort(list, sysorder). All MuPAD sessions use
the same internal order. Between different versions of MuPAD, internal order might
change.

When you sort strings, uppercase letters have a preference over lowercase letters. For
example, Z appears before abc.

You can specify a procedure f to define the sorting criteria. sort calls the procedure f
for every pair of the entries of the list. f must return a Boolean expression that the bool
command can evaluate to TRUE or FALSE. If for the pair of entries the procedure f(x,
y) returns TRUE, the sorted list displays x to the left of y. Otherwise, x appears to the
right of y. The entries of the sorted list L := sort(list, f) satisfy bool(f(L[i],
L[j])) = TRUE for i < j.

If two entries of a list are equal by the sorting criteria f, the sort command can swap
these entries. For example, if you sort polynomials by their degrees, the sort command
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can return the polynomials with the same degree in the order different from their order
in the input.

sort can be overloaded by kernel domains. For example, use the function
DOM_SET::sort to sort sets. See “Example 3” on page 1-1932

The average runtime to sort a list containing n entries is O(n log(n)).

Examples

Example 1

The sort command sorts real numbers (type Type::Real) numerically:

sort([4, -1, 2/3, 0.5])

The sort command sorts strings alphabetically:

sort(["chip", "alpha", "Zip"])

If a list contains other types of objects the sort command sorts a list according to the
internal order. The command also applies internal order to sort the lists with mixed types
of entries:

sort([4, -1, 2/3, 0.5, "alpha"])

sort([4, -1, 2/3, 0.5, I])
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Example 2

Define your own criteria to sort a list. For example, sort the entries by their absolute
values:

sort([-2, 1, -3, 4], (x, y) -> abs(x) < abs(y))

Example 3

When sorting sets, the sort command returns a list as a result:

sort({3, 12, 5, 30, 6, 43})

The sorted set is equivalent to the corresponding sorted list:

bool(sort({3, 12, 5, 30, 6, 43}) = sort([3, 12, 5, 30, 6, 43]))

To sort other data types, implement a sort-slot for them:

unprotect(DOM_INT):

DOM_INT::sort :=

proc(n)

  local str, i;

begin

  str := expr2text(n);

  text2expr(_concat(op(sort([str[i] $ i = 1..length(str)]))))

end:

sort(1703936)

delete DOM_INT::sort:  protect(DOM_INT):
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Example 4

If the list contains lists as entries, and all the inner lists start with numbers, the sort
command uses these numbers to sort the outer list:

sort([[10 - i, i*x^i] $ i = 1..9])

Compare the sorted list with the internal order of its entries:

sort([[10 - i, i*x^i] $ i = 1..9], sysorder)

Parameters

list

A list of arbitrary MuPAD objects

f

A procedure defining the ordering

Return Values

List.

Overloaded By

list

See Also

MuPAD Functions
prog::sort | sysorder
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split

Split an object

Syntax

split(object, f, <p1, p2, …>)

Description

split(object, f) splits the object into a list of three objects. The first list entry is
an object consisting of those operands of the input object that satisfy a criterion defined
by the procedure f. The second list entry is built from the operands that violate the
criterion. The third list entry is built from the operands for which it is unknown whether
the criterion is satisfied.

The function f must return a value that can be evaluated to one of the Boolean values
TRUE, FALSE, or UNKNOWN. It may either return one of these values directly, or it may
return an equation or an inequality that can be simplified to one of these values by the
function bool.

The function f is applied to all operandsx of the input object via the call f(x, p1,
p2, ...). Depending on the result TRUE, FALSE, or UNKNOWN, this operand is inserted
into the first, the second, or the third output object, respectively.

The output objects are of the same type as the input object, i.e., a list is split into three
lists, a set into three sets, a table into three tables etc.

If the input object is an expression sequence, then neither the input sequence nor the
output (a list containing three sequences) are flattened.

Also “atomic” objects such as numbers or identifiers can be passed to split as first
argument. Such objects are handled like sequences with a single operand.
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Examples

Example 1

The following command checks which of the integers in the list are prime:

split([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], isprime)

The return value is a list of three lists. The first list contains the prime numbers, the
second list contains all other numbers. The third list is empty, because for any number of
the input list, it can be decided whether it is prime or not.

Example 2

With the optional arguments p1, p2, ... one can use functions that need more than
one argument. For example, contains is a handy function to be used with split. The
following call splits a list of sets into those sets that contain x and those that do not:

split([{a, x, b}, {a}, {1, x}], contains, x)

The elements of the returned list are of of type DOM_LIST, because the given expression
was a list. If the given expression is of another type, e.g., DOM_SET, also the elements of
the result are of type DOM_SET, too:

split({{a, x, b}, {a}, {1, x}}, contains, x)

Example 3

We use the function is to split an expression sequence into sub-sequences. This function
returns UNKNOWN if it cannot derive the queried property:

split((-2, -1, a, 0, b, 1, 2), is, Type::Positive)
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Example 4

We split a table of people marked as male or female:

people := table("Tom" = "m", "Rita" = "f", "Joe" = "m"):

[male, female, dummy] := split(people, has, "m"):

male

female

dummy

delete people, male, female, dummy:

Parameters

object

A list, a set, a table, an expression sequence, or an expression of type DOM_EXPR

f

A procedure returning a Boolean value

p1, p2, …

Any MuPAD objects accepted by f as additional parameters
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Return Values

List with three objects of the same type as the input object.

Overloaded By

object

See Also

MuPAD Functions
map | op | select | zip
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sqrt

Square root function

Syntax

sqrt(z)

Description

sqrt(z) represents the square root of z.

 represents the solution of x2 = z that has a nonnegative real part. In particular,
it represents the positive root for real positive z. For real negative z, it represents the
complex root with positive imaginary part.

A floating-point result is returned for floating-point arguments. Note that the branch
cut is chosen as the negative real semi-axis. The values returned by sqrt jump when
crossing this cut. Cf. “Example 2” on page 1-1939.

Certain simplifications of the argument may occur. In particular, positive integer factors
are extracted from some symbolic products. Cf. “Example 3” on page 1-1940.

Note that  cannot be simplified to x for all complex numbers (e.g.,  for real x
< 0). Cf. “Example 4” on page 1-1940.

Mathematically, sqrt(z) coincides with z^(1/2) = _power(z,1/2). However, sqrt
provides more simplifications than _power. Cf. “Example 5” on page 1-1940.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

sqrt(2), sqrt(4), sqrt(36*7), sqrt(127)

sqrt(1/4), sqrt(1/2), sqrt(3/4), sqrt(25/36/7), sqrt(4/127)

sqrt(-4), sqrt(-1/2), sqrt(1 + I)

sqrt(x), sqrt(4*x^(4/7)), sqrt(4*x/3), sqrt(4*(x + I))

Example 2

Floating point values are computed for floating-point arguments:

sqrt(1234.5), sqrt(-1234.5), sqrt(-2.0 + 3.0*I)

A jump occurs when crossing the negative real semi axis:

sqrt(-4.0), sqrt(-4.0 + I/10^100), sqrt(-4.0 - I/10^100)
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Example 3

The square root of symbolic products involving positive integer factors is simplified:

sqrt(20*x*y*z)

Example 4

Square roots of squares are not simplified, unless the argument is real and its sign is
known:

sqrt(x^2*y^4)

assume(x > 0): sqrt(x^2*y^4)

assume(x < 0): sqrt(x^2*y^4)

Example 5

sqrt provides more simplifications than the _power function:

sqrt(4*x), (4*x)^(1/2) = _power(4*x, 1/2)
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Parameters

z

An arithmetical expression

Return Values

Arithmetical expression.

Overloaded By

z

See Also

MuPAD Functions
_power | isqrt | numlib::issqr | surd
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strmatch
Match pattern in character string

Syntax
strmatch(text, pattern, <Index>, <ReturnMatches>, <All>)

Description

strmatch(text, pattern) checks whether text matches the regular expression
pattern.

strmatch performs regular expression matching on strings, via the ICU library. The
pattern can contain wildcards forming a perl-compatible regular expression. In these
expressions, most characters represent themselves. For example, "a" matches "a". For
the list of exceptions, see “Algorithms” on page 1-1955.

The library stringlib provides more functions for handling strings. For details, see
“Operations on Strings”.

Examples

Example 1

Most characters simply match themselves:

s := "Hamburg": strmatch(s, "Hamburg")

strmatch typically matches substrings:

strmatch(s, "Ham"), strmatch(s, "burg")
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strmatch("Ham", "Hamburg")

delete s:

Example 2

A dot (.) is a placeholder for any character except "\n":

strmatch("abcd", "a.c"), strmatch("ab\ncd", "ab.")

To match an actual dot, use "\\.":

strmatch("abcd", "a\\.c"),

strmatch("a.cd", "a\\.c")

A dot, like all special characters, has its special role only in the second argument of
strmatch:

strmatch("a.c", "abc")

With the s modifier, you can use a dot to match newlines:

strmatch("abcd", "(?s)a.c"), strmatch("ab\ncd", "(?s)ab.")

A dot matches only a single character:

strmatch("abcd", "a.d"), strmatch("abcd", "a.b")
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Example 3

By default, strmatch only checks for a match and returns a Boolean value:

strmatch("aaaba", "a"), strmatch("aaaba", "c")

To return the first place where a match occurs, use Index:

strmatch("aaaba", "a", Index), 

strmatch("aaaba", "c", Index)

To return the matched substrings, use ReturnMatches. This option is helpful when you
match complicated expressions.

strmatch("aaaba", "a", ReturnMatches), 

strmatch("aaaba", "c", ReturnMatches)

To find more than one match, use All:

strmatch("aaaba", "a", All), 

strmatch("aaaba", "c", All)

This expression has several matches because a dot matches any character:

strmatch("aaaba", "a.", All)

All implies ReturnMatches unless you also use Index:

strmatch("aaaba", "a", All, Index)
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Combine all three options:

strmatch("aaaba", "a", All, Index, ReturnMatches)

Example 4

By default, strmatch matches substrings. To look only for matches at the beginning and
end of the string, use the caret (^) and dollar ($) characters, respectively:

strmatch("abcd", "a"),

strmatch("abcd", "c"),

strmatch("abcd", "d"),

strmatch("abcd", "abcd")

strmatch("abcd", "^a"),

strmatch("abcd", "^c"),

strmatch("abcd", "^d"),

strmatch("abcd", "^abcd")

strmatch("abcd", "a$"),

strmatch("abcd", "c$"),

strmatch("abcd", "d$"),

strmatch("abcd", "abcd$")

strmatch("abcd", "^a$"),

strmatch("abcd", "^c$"),

strmatch("abcd", "^d$"),

strmatch("abcd", "^abcd$")
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Using the m modifier, you can change the meaning from the beginning or end of a string
to the beginning or end of a line:

s := "ab\ncd":

strmatch(s, "b$"),

strmatch(s, "(?m)b$")

Example 5

Specify alternative patterns to match by using the vertical bar (|):

strmatch("abcd", "abc|xyz")

strmatch("abcd", "a|f|j")

strmatch treats all characters between the vertical bars as one of the alternative
patterns. To limit the extent of alternatives, use parentheses:

strmatch("abcd", "ab(c|xy)z"),

strmatch("abcd", "ab(c|xy)(z|d)")

When you use the ReturnMatches option, strmatch returns the substrings matched by
each pair of parentheses:

strmatch("abcd", "ab(c|xy)(z|d)", ReturnMatches)

With alternatives, strmatch can find several matches:
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strmatch("abracadabra", "a(b|c|d)", All)

To group alternatives without returning matches, use (?:...):

strmatch("abracadabra", "a(?:b|c|d)", All)

To match for the characters "|", "(", and ")", use \\ before the character when you specify
the pattern to match:

strmatch("ab(c)d", "\\((c|d)\\)", ReturnMatches)

Example 6

Use a question mark (?) to indicate that a subexpression (a single character or a group of
characters in parentheses or brackets) is optional:

strmatch("abcd", "abc?d"),

strmatch("abd", "abc?d")

Use an asterisk (*) to indicate that a subexpression can be repeated an arbitrary number
of times, including zero:

strmatch("abcd", "a.*d"),

strmatch("abcd", "a.*c")

Use a plus sign (+) to indicate that a subexpression can be repeated an arbitrary number
of times, excluding zero:

strmatch("abcd", "a.+d"),

strmatch("abcd", "a.+b")
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When you use the asterisk or the plus sign in the pattern to match, strmatch finds the
first match going from left to right, and then returns the longest substring that satisfies
the matching pattern:

strmatch("abracadabra", "a.*a", ReturnMatches)

By appending another question mark, you can switch the asterisk and plus sign to “non-
greedy” matching:

strmatch("abracadabra", "a.*?a", ReturnMatches)

This does not return the shortest match (which would have been "aca" or "ada"). The
call returns the first match looking from left to right from the starting position.

Example 7

Use curly braces to specify a number of repetitions of a subexpression:

strmatch("abracadabra", "(a(b|c|d)){2}"),

strmatch("abracadabra", "(a(b|c|d)){3}"),

strmatch("abracadabra", "(a(b|c|d)){4}")

These repetitions must be adjacent:

strmatch("abracadabra", "(abr){2}")

To get nonadjacent repetitions, use ".*". This combination means "anything without
newlines".
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strmatch("abracadabra", "(abr.*){2}")

Example 8

To indicate a range of possible repetitions, use a comma inside curly braces. For example,
select the expressions representing binary numbers with three to five digits:

select(["11001", "1100111", "11", "11021"], strmatch, "^((0|1){3,5})$")

Here {3,5} specifies the range. You can omit the second number to remove the upper
bound. For example, {3,} indicates that there must be three or more repetitions.

The following regular expression checks whether there is an "a" followed by at least
three letters "b" followed by a "c" somewhere in the input string:

strmatch("abcd", "ab{3,}c"),

strmatch("abbbcd", "ab{3,}c"),

strmatch("abcdabbbc", "ab{3,}c")

By default, when strmatch looks for repetitions, it returns the longest matching
substring. Use a question mark to return the first match instead of the longest one:

strmatch("abcdabcdabcd", "a.{2,8}d", ReturnMatches),

strmatch("abcdabcdabcd", "a.{2,8}?d", ReturnMatches)

Example 9

Characters enclosed in brackets ([ ]) form a "character class", which matches any of
the characters in the class. This behavior is similar to an alternation between these
characters.
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strmatch("abc", "ab[cde]"),

strmatch("abd", "ab[cde]"),

strmatch("aba", "ab[cde]")

Inside character classes, special characters are completely different. Dots, asterisks, plus
and dollar signs, parentheses, and curly braces match themselves, but a character class
starting with a caret is "negated" and matches any character not listed:

strmatch("abcd", "[^ab]", All)

If a caret is not the first character in a class, then it represents itself:

strmatch("x^2", "[*^]2")

If a dash (-) is not the first character in a class (apart from the caret), then it specifies a
range of characters. Thus, to find a number with at least five digits, you can specify the
pattern as follows:

strmatch("x = 123456...", "[0-9]{5,}", ReturnMatches)

The exact meaning of a range depends on the language settings of your computer.
Technically, it depends on the "collating", which can be different for the same language
on different versions of the same operating system. For example, "[a-z]" can match
only lowercase ASCII characters on one computer, while on the second one it also
matches the uppercase characters from A through Y, and on the third one includes the
uppercase characters from B through Z. For this reason, the best practice is using the
named character classes instead:

strmatch("some words", "[[:word:]]+", All)
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Example 10

Some character classes have a short form, such as "\\x", where x is w, W, s, S, d, or D.
The uppercase letters mean the negation of the lowercase letters.

strmatch("abcd", "\\w"),

strmatch("abcd", "\\W"),

strmatch("abcd", "\\d"),

strmatch("abcd", "\\D")

Here, negation means that a character does not match whatever is negated:

strmatch("abcd 1", "\\w"),

strmatch("abcd 1", "\\W"),

strmatch("abcd 1", "\\d"),

strmatch("abcd 1", "\\D")

Use "\\b" to look for words starting with an a. The pattern "\\b" is a zero-width
expression matching the place between a "word" and the spaces surrounding it (or the
beginning and end of string).

strmatch("abc cbd cba (aa) b", "\\ba\\w*", All)

You can also use "\\b" to match the end of a word:

strmatch("abc cbd cba (aa) b", "\\w*a\\b", All)

Example 11

You can change the behavior of strmatch with modifier flags. For example, the i
modifier enables case-insensitive matching. (The precise effects of case-insensitive
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matching depend on your language settings, for example, most English computers do
not treat the German umlauts ä and Ä as being the same up to case.) To enable case-
insensitive matching for the whole expression, prefix it with "(?i)":

strmatch("ABC", "(?i)ab")

To limit the effect of the modifier to some part of the expression, use "(?i:...)":

strmatch("ABC", "(?i:a)b"),

strmatch("abc", "(?i:a)b"),

strmatch("Abc", "(?i:a)b")

Example 12

strmatch with ReturnMatches or All (without Index) returns the matched
substrings. You can also return parts of those substrings. For example, extract all
function names from this expression. To identify function names, note that an opening
parenthesis or a space and an opening parenthesis follows every function name.

s := "f(sin (x) + abc + def(x))":

strmatch(s, "\\b\\w+\\s*\\(", All)

To extract the function names themselves, use this command:

map(strmatch(s, "\\b(\\w+)\\s*\\(", All), op, 2)

Regular expressions can contain zero-width assertions. These assertions ensure that
something does or does not follow, without actually including it or moving the conceptual
pointer behind it. Therefore, the more efficient approach is to wrap the corresponding
expression in "(?=...)":

strmatch(s, "\\b\\w+(?=\\s*\\()", All)
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Example 13

Regular expressions can also make zero-width assertions with respect to the preceding
text. Such assertions must have a fixed width. For example, extract the amount of money
mentioned in this string:

s := "In March 2005, we've spent $1192.23 on light.":

strmatch(s, "(?<=\\$)\\d+(?:\\.\\d\\d)?", All)

Example 14

To detect the positions of the matches in the input string, use the Index option. The
returned list contains two numbers: the beginning and end of the match.

strmatch("abc", "b", Index)

If no match is found, strmatch returns FALSE:

strmatch("abc", "d", Index)

If you use both Index and ReturnMatches, then strmatch returns indices followed by
the matched subexpressions:

strmatch("abc", "b.", ReturnMatches, Index)

Example 15

If you use All, then the return value is a set:
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strmatch("abc", ".", All),

strmatch("abc", ".", Index, All),

strmatch("abc", ".", ReturnMatches, All)

Parameters

text, pattern

character strings

Options

Index

Return the position of the match. If there are no matches, strmatch returns FALSE.
Otherwise, it returns the position of the match as a list of two integers, [i, j], such
that text[i..j] is the matched substring.

ReturnMatches

Return the matched substrings. If the regular expression contains groups
(subexpressions in parentheses), then strmatch returns lists containing the matched
substring and the strings matched by the groups, in order of opening parentheses.

All

Return all matches that strprint can find. By default, strmatch returns only the first
match. If you do not use Index, then the All option also implies ReturnMatches.

Return Values

Without options, TRUE or FALSE is returned. With Index, a list of two nonnegative
integers or FALSE is returned. With option ReturnMatches, a string or a list of strings
is returned, depending on whether the pattern contains groups. With both Index and
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ReturnMatches, a list starting with the indices of the match, followed by the string or
strings of ReturnMatches, is returned. With option All, a set is returned.

Overloaded By

pattern, text

Algorithms

• A dot (.) matches any character, except "\n". With the s modifier, a dot matches any
character. See “Example 2” on page 1-1943.

• A caret (^) matches the beginning of a line. A dollar ($) matches the end of a line.
Typically, ^ and $ mark the beginning and end of the string, but with the m modifier
they also can appear after or before a "\n". See “Example 4” on page 1-1945.

• A pattern enclosed in parentheses (()) is considered “grouped.”
• A vertical bar (|) between two characters or groups (sub-regexes) lets you specify

alternative matching patterns. Any one of the alternatives matching is sufficient. See
“Example 5” on page 1-1946.

• A sub-regex followed by a number n enclosed in {} must match exactly n times.

A sub-regex followed by {n,} must match at least n times.

A sub-regex followed by {n,m} must match at least n and at most m times.

In any other context, { and } are treated as normal characters.

See “Example 7” on page 1-1948.
• Following a sub-regex, a question mark (?) works as {0,1}, making the sub-regex

optional.

A plus sign (+) in this context works as {1,} and allows an arbitrary positive number
of repetitions.

An asterisk after an expression is equivalent to {0,} and allows an arbitrary number
of repetitions, including zero.

See “Example 6” on page 1-1947.
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• By default, {n,} and its three shorthand forms match as many characters as possible.
By following them with another question mark (for example, "a(b[cd]){2,}?bd",
"(0|1)*?12"), you can specify that strmatch must return the lowest number of
characters consistent with the remainder of the pattern.

• While a backslash (which must be typed as "\\") escapes any special character
(including itself), it makes some characters following it special. See “Example 10” on
page 1-1951.

• "\\w" matches a “word” character (alphanumeric or underline).
• "\\W" matches a character not matched by "\\w".
• "\\s" matches a white-space character (space, or tabulator, or, if the s modifier is

active, also an end-of-line character).
• "\\S" matches a character not matched by "\\s".
• "\\d" matches a digit.
• "\\D" matches a nondigit.
• "\\b" matches the place between a word character and a nonword character, for

example, the place where a word starts or ends.
• "\\B" is also zero-width, but matches those places where "\\b" does not.
• "\\A" and "\\Z" match at the beginning and end of the string, respectively. "\

\Z" ignores a "\n" at the end of the string; "\\z" behaves like "\\Z", but does
not ignore a trailing "\n".

• '\\X' matches a grapheme cluster. For example, the letter ā is a grapheme
cluster: it consists of a and ̄. '\\X' lets you access ā as one entity.

• Characters enclosed between [ and ] form a character class. See “Example 9” on page
1-1949.

A character class starting with ^ is negated, and matches all the characters not listed.
The symbol ^ at any other place in the character class has no special meaning.

Inside a character class, the special characters, except for a hyphen, do not have any
special meaning. If a hyphen (-) is not the first character, then it creates a range of
characters. The language settings of your operating system (technically speaking, the
current locale) affect how strmatch interprets this range. Likely, in every language
setting "[0-9]" represents any digit.

To specify character classes independent of language settings, use named access to
POSIX character classes:
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• "[[:digit:]]" for any digit.
• "[[:alpha:]]" for characters (the language settings define what makes a

character).
• "[[:alnum:]]" for alphanumerical characters.
• "[[:word:]]" for alphanumerical characters plus the underline (_).
• "[[:punct:]]" for punctuation characters, such as a dot or a comma.
• "[[:ascii:]]" for characters in the ASCII range (decimal codes 32 through

127).
• "[[:blank:]]" for horizontal spaces, such as[ \t].
• "[[:space:]]" for spaces, including end-of-line.
• "[[:cntrl:]]" for control characters, such as newlines. Note that you cannot

type most control characters in MuPAD, but they can occur in strings read from
files.

• "[[:graph:]]" for the class of alphanumeric or punctuation characters, that is,
characters with visual graphical representation.

• "[[:print:]]" is equivalent to "[ [:graph:]]". It adds the space character to
the graph class.

• "[[:lower:]]" and "[[:upper:]]" for the characters that your language
settings consider lowercase and uppercase letters. For example, a German system
is more likely to know about ä being a lowercase letter than a U.S. system.

• "[[:xdigit:]]" matches hexadecimal digits. It is equivalent to
[0123456789aAbBcCdDeEfF].

You combine these classes with one another or add characters from one class
to another class. For example, you can match septendecimal digits with
"[[:xdigit:]gG]".

You can negate posix character classes using a caret. For example, "[[:^digit:]]"
matches nondigits. This is equivalent to "[^[:digit:]]", but "[0[:^digit:]]" to
allow any nondigit or zero is more difficult to express otherwise.

• Groups starting with (? have special meanings:

• Groups starting with (?: behave like other groups, but do not create output
matches for the ReturnMatches option.

• "(?#text)" is a comment and effectively ignored.
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• Groups starting with (?X:, where X is one of i, m, s, x, locally apply modifiers:

• i causes all pattern matching to be case-insensitive (as defined by the system's
locale).

• m causes a “multiline” match, where ^ and $ match after/before "\n"
characters in the string.

• s makes the dot match newlines.
• x allows perl-style comments in the pattern. In this case, strmatch ignores

spaces in most contexts. The ⨉ characters start comments that extend to the
end of the line.

When using these options in an outer group, you can disable them by preceding
them with a minus sign, as in "(?-i:aB)".

• The string "(?X)", where X is one of the characters listed above, switches the
corresponding setting on up to the end of the enclosing group.

• (?= starts a positive zero-width lookahead assertion. This is a zero-width item
(and therefore does not add something to the output) that matches if its contents
match at the current position. See “Example 12” on page 1-1952.

• (?! starts a zero-width negative look-ahead assertion. It behaves almost identical
to (?= except it matches if and only if (?= does not.

• (?<= starts a positive zero-width look-behind assertion, which is like (?=, but
looking in the other direction. Look-behind assertions must have a fixed width. See
“Example 13” on page 1-1953.

• (?<! starts a negative zero-width look-behind assertion, which matches if and
only if a (?<= at the same place does not match.

See Also

MuPAD Functions
_concat | length | stringlib::contains | stringlib::maskMeta |
stringlib::pos | substring
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strprint

Print into string

Syntax

strprint(<All>, <Unquoted>, <NoNL>, <KeepOrder>, object1, object2, …)

Description

strprint(objects) returns the string print(objects) would display on the screen.

strprint returns a string that contains the output print would have sent to the screen
for the same arguments. This string contains `\n' characters if the output would have
consisted of multiple lines.

On Windows systems, each \n is preceded by \r, because that is the traditional end-
of-line combination since that is the end-of-line combination inherited from CP/M.
The examples in this documentation assume a system like UNIX. Also note that with
Typesetting activated, \r, \n, \t, and \b will not be displayed in a string.

All options and dependencies on variables are interpreted as described in the
documentation of print. Especially, this means PRETTYPRINT affects the output of
strprint. Overloading of print is taken into account. See ?print for details.

Environment Interactions

strprint is sensitive to the environment variables DIGITS, PRETTYPRINT, and
TEXTWIDTH, and to the output preferences Pref::floatFormat, Pref::keepOrder,
and Pref::trailingZeroes.
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Examples

Example 1

The string returned by strprint, when printed with option Unquoted, yields the same
output as the operands would have in the first place:

s := strprint(a*x^2-7):

print(Unquoted, s)

   2

a x  - 7

This can be used to combine multiple outputs:

s1 := strprint(a*x^2-7):

s2 := _concat("-" $ TEXTWIDTH)."\n":

s3 := strprint(sin(1/x)):

print(Unquoted, s1.s2.s3)

   2

a x  - 7

---------------------------------------------------------------------------

   / 1 \

sin| - |

   \ x /

In the example above, you can see that the output of strprint does not contain the
spaces usually used for centering. The output in the first example was centered, because
it used only a fraction of the text width, while the string s1.s2.s3 in the second
example spans the whole width of the line and is therefore printed flush left.

Example 2

For demonstrative purposes, let us write a domain that puts an expression into a box.
We make use of the fact that strprint returns strings starting with a newline, of
output::fence and of indexed assignment to strings:

domain box

  print := proc(e)
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             local ex, str, w;

             save TEXTWIDTH;

           begin

             if TEXTWIDTH > 15 then 

               TEXTWIDTH := TEXTWIDTH - 4;

             end_if;

             ex := extop(e, 1);

             str := strprint(All, ex);

             w := str[5]+4;

             str := output::fence("| ", " |", 

                                  "\n".str[1]."\n",

                                  str[5], str[6]+1);

             str[1..w]     := "+"._concat("-"$w-2)."+";

             str[-w-1..-2] := "+"._concat("-"$w-2)."+";

             str;

           end_proc;

   new := x -> new(dom, x);

end_domain

print(Plain, box(a), box(sin(1/x)))

       +----------+

+---+  |    / 1 \ |

| a |, | sin| - | |

+---+  |    \ x / |

       +----------+

print(Plain, box(box(hold(E=m*c^2))))

+--------------+

| +----------+ |

| |        2 | |

| | E = m c  | |

| +----------+ |

+--------------+

Example 3

As a last example, we implement a print-method for matrices over ℤ5:

M5 := Dom::Matrix(Dom::IntegerMod(5))
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The standard output function simply puts “mod 5” behind every entry, inherited from the
output method of Dom::IntegerMod(5):

A := M5([[1,2,3,4],[5,6,7,8],[-2,-3,0,1]])

We now replace this method:

M5::print := proc(A)

               local str, h1, w1, h, w, b;

             begin

               [str, h1, w1, h, w, b] := strprint(All, expr(A));

               _concat(str, " " $ w, "[mod 5]");

             end_proc:

print(A):

/ 1, 2, 3, 4 \

|            |

| 0, 1, 2, 3 |

|            |

\ 3, 2, 0, 1 /

              [mod 5]

Alternatively, we can set the [mod 5] right beneath the brackets:

M5::print := proc(A)

               local str;

             begin

               str := strprint(expr(A));

               str[-1..-1] := " [mod 5]";

               str

             end_proc:

print(A):
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/ 1, 2, 3, 4 \

|            |

| 0, 1, 2, 3 |

|            |

\ 3, 2, 0, 1 / [mod 5]

Parameters

object1, object2, …

Any MuPAD objects

Options

All

When the option All is given, strprint returns additional information on the string
generated by printing. More specifically, it returns a list consisting of

1 the formatted string,
2 the height (in characters) of the first line,
3 the width of the first line,
4 the height of the complete string,
5 the width of the complete string,
6 the baseline, counted from top to bottom.

“Example 2” on page 1-1960 contains sample code that makes use of this information.

Unquoted

Display character strings without quotation marks and with expanded control characters
'\n', '\t', and '\b'.

NoNL

Like Unquoted, but no newline is put at the end. PRETTYPRINT is implicitly set to
FALSE.
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KeepOrder

Display operands of sums (of type "_plus") always in the internal order.

Return Values

DOM_STRING or a list of a DOM_STRING and five integers.

Overloaded By

See Also

MuPAD Functions
doprint | expose | expr2text | fprint | funcenv | output::fence | print
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subs
Substitute into an object

Syntax
subs(f, old = new, <Unsimplified>)

subs(f, old1 = new1, old2 = new2, …, options)

subs(f, [old1 = new1, old2 = new2, …], options)

subs(f, {old1 = new1, old2 = new2, …}, options)

subs(f, table(old1 = new1, old2 = new2, …), options)

subs(f, s1, s2, …, options)

Description

subs(f, old = new) searches f for operands matching old, and replaces old with
new. See “Example 1” on page 1-1966.

subs does not replace subexpressions. For example, subs(a + b + c, b + c = d)
does not replace b + c. Instead, use subsex. For details, see “Example 8” on page
1-1970.

The subs function returns a modified copy of the object. The function does not change the
object itself.

By default, the subs function does not evaluate the result of a substitution. To enforce
evaluation of all modified subexpressions, use the EvalChanges option. Also, you
can reevaluate the whole returned result by using the eval function. Evaluation
of the returned result is slower and less efficient than evaluation of the modified
subexpressions. See “Example 3” on page 1-1967 and “Example 4” on page 1-1968.

The call subs(f, old1 = new1, old2 = new2, ...) applies the specified
substitutions in a sequence from left to right (sequential substituton). This call
applies each substitution (except for the first substitution) to the result of the previous
substitution. See “Example 5” on page 1-1968.
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The call subs(f, [old1 = new1, old2 = new2, ...]) applies all specified
substitutions to the operands of the original input object f (parallel substitution).
This call does not use the results of any previous substitutions. If you specify multiple
substitutions of the same operand, this call computes only the first substitution.
Specifying substitutions by lists, sets, or tables invokes parallel substitution. See
“Example 6” on page 1-1969.

The call subs(f, s1, s2, ...) is a general form of substitution that can
combine sequential and parallel substitutions. This call is equivalent to subs(...
subs(subs(f, s1), s2), ...). MuPAD treats each substitution step as a sequential
or a parallel substitution depending on the form of the parameters s1, s2, …. See
“Example 7” on page 1-1970.

You can use subs to replace operands of expression sequences. The subs function does
not flatten such objects. See “Example 9” on page 1-1971.

If you do not specify substitutions, subs returns the original expression without
modifications. For example, subs(f) returns f.

Examples

Example 1

Use the subs function to substitute the operands in the following expressions:

subs(a + b*a, a = 4)

subs([a * (b + c), sin(b +c)], b + c = a)

Example 2

When replacing the sine function in an expression, use the hold command to prevent the
evaluation of the identifier sin:
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subs(sin(x), hold(sin) = cos);

domtype(hold(sin))

Otherwise, MuPAD replaces sin by its value. The function environment (see funcenv)
defines the value of sin:

subs(sin(x), sin = cos);

domtype(sin)

Inside the expression sin(x), the 0-th operand sin is the identifier, not the function
environment:

domtype(op(sin(x), 0))

Example 3

The subs function evaluates the original expression, performs a substitution, but does
not evaluate the modified expression:

subs(y^2 + sin(x), x = PI)

To evaluate the modified subexpression, use the EvalChanges option:

subs(y^2 + sin(x), x = PI, EvalChanges)
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Alternatively, use the eval function to evaluate the result returned by subs:

S := subs(y^2 + sin(x), x = PI):

eval(S)

Example 4

The subs function with the EvalChanges option returns the same results as the
evaluation of the whole expression:

eval(subs(sin(x + 3 - PI)*numeric::int(_plus(sin(k/y) $ k = 1..5),

                                       y = 0..1), x=-3));

subs(sin(x + 3 - PI)*numeric::int(_plus(sin(k/y) $ k = 1..5),

                                  y = 0..1), x = -3, EvalChanges)

The evaluation of the returned result is slower and less efficient than the evaluation of
the modified subexpressions:

time(eval(subs(sin(x + 3 - PI)*numeric::int(_plus(sin(k/y) $ k = 1..5),

                                            y = 0..1), x = -3)));

time(subs(sin(x + 3 - PI)*numeric::int(_plus(sin(k/y) $ k = 1..5),

                                       y = 0..1), x = -3, EvalChanges))

Example 5

The following call results in the sequential substitution :
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subs(x^3 + y*z, x = y, y = z)

Example 6

The subs function lets you use sequential and parallel substitutions. For example,
substitute the operand in the following expressions sequentiallly:

subs(a^2 + b^3, a = b, b = a)

subs(a^2 + b^3, b = a, a = b)

For the same expression, parallel substitution swaps the identifiers:

subs(a^2 + b^3, [a = b, b = a])

In the following call, the substitution of y + x for a yields the intermediate result y +
2*x. From there, the substitution of z for x results in y + 2 z:

subs(a + x, a = x + y, x = z)

Parallel substitution produces a different result. The following call substitues a with x
+ y. Simultaneously, this call substitutes the operand x of the original expression a + x
with z:

subs(a + x, [a = x + y, x = z])
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If you specify the substitutions using a set of a table of equations, the subs function also
performs a parallel substitution:

subs(a + x, {a = x + y, x = z})

T := table(): T[a] := x + y: T[x] := z: T

subs(a + x, T)

delete T:

Example 7

You can combine sequential and parallel substitutions:

subs(a + x, {a = x + y, x = z}, x = y)

Example 8

The subs function replaces only those operands that the op function can return. The
following expression contains the subexpression x + y as the operand op(f, [1, 2]):

f := sin(z*(x + y)): op(f, [1, 2]);

Consequently, the subs function replaces this subexpression:
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subs(f, x + y = z)

Syntactically, the following sum does not contain the subexpression x + y. Therefore,
the subs function does not replace it:

subs(x + y + z, x + y = z)

In contrast to subs, the subsex function finds and replaces partial sums and products:

subsex(x + y + z, x + y = z)

subs(a*b*c, a*c = 5), subsex(a*b*c, a*c = 5)

delete f:

For details on substitution functions in MuPAD, please see “Modify Subexpressions”. For
details on expression trees, please see “Visualize Expression Trees”.

Example 9

You can substitute operands of expression sequences. Enclose sequences in parentheses:

subs((a, b, a*b), a = x)

Example 10

The Unsimplified option suppresses simplification:
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subs(a + b + 2, a = 1, b = 0, Unsimplified)

Example 11

If you try to substitute something in a domain, MuPAD ignores the substitution. For
example, define a new domain with the methods "foo" and "bar":

mydomain := newDomain("Test"):

mydomain::foo := x -> 4*x:

mydomain::bar := x -> 4*x^2:

Now try to replace every number 4 inside the domain with the number 3:

mydomain := subs(mydomain, 4 = 3):

That substitution does not have any effect:

mydomain::foo(x), mydomain::bar(x)

To substitute objects in a domain method, you must substitute in the individual methods:

mydomain::foo := subs(mydomain::foo, 4 = 3):

mydomain::bar := subs(mydomain::bar, 4 = 3):

mydomain::foo(x), mydomain::bar(x)

delete mydomain:

Parameters

f

An arbitrary MuPAD object
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old, old1, old2, …

Arbitrary MuPAD objects

new, new1, new2, …

Arbitrary MuPAD objects

s1, s2, …

Either equations old = new, or lists or sets of such equations, or tables whose entries
are interpreted as such equations.

Options

EvalChanges

After substitution, evaluate all modified subexpressions.

By default, the subs function does not evaluate the modified object. The EvalChanges
option enforces the evaluation of all modified subexpressions. See “Example 3” on page
1-1967 and “Example 4” on page 1-1968.

Unsimplified

Do not simplify the result of a substitution.

As the last step of a substitution, MuPAD automatically simplifies (but does not
evaluate) the modified object. The Unsimplified option suppresses the final
simplification. See “Example 10” on page 1-1971.

Return Values

Copy of the input object with replaced operands.

Overloaded By

f
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See Also

MuPAD Functions
evalAt | extnops | extop | extsubsop | has | map | match | op | subsex |
subsop
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subset, _subset, _notsubset
Relation “is a subset of”

Syntax
A subset B

_subset(A, B)

not A subset B

_notsubset(A, B)

Description

A subset B represents the expression .

A is a subset of B if x ∈ A ⇒ x ∈ B.

The function _notsubset exists for typesetting purposes. It is returned as the result of
negating a subset expression. See “Example 4” on page 1-1976.

If called with symbolic arguments (anything but sets), these functions return a symbolic
expression of type _in or the unevaluated input.

Examples

Example 1

When called with two sets, these functions return a Boolean value:

{1} subset {1,2,3},

{} subset {1},

{1} subset {1},

{1} subset {}
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Example 2

Note: identifiers in sets are not assumed to be place-holders. See ?= for details on
syntactic equality.

{x} subset {1,2}

Example 3

If one of the arguments is not a set, these functions return an equivalent symbolic
expression:

{1} subset A, A subset {1}

Example 4

For “pretty typesetting”, the negation of subsetis implemented in a special function
environment:

not A subset B

type(%)

Parameters

A, B

MuPAD expressions
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Return Values

TRUE, FALSE, or an expression.

Overloaded By

A,  B

See Also

MuPAD Functions
in | intersect | minus | union
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subsex
Extended substitution

Syntax
subsex(f, old = new, <Unsimplified>)

subsex(f, old1 = new1, old2 = new2, …, <Unsimplified>)

subsex(f, [old1 = new1, old2 = new2, …], <Unsimplified>)

subsex(f, {old1 = new1, old2 = new2, …}, <Unsimplified>)

subsex(f, table(old1 = new1, old2 = new2, …), <Unsimplified>)

subsex(f, s1, s2, …, <Unsimplified>)

Description

subsex(f, old = new) returns a copy of the object f in which all expressions
matching old are replaced by the value new.

subsex returns a modified copy of the object, but does not change the object itself.

subsex(f, old = new) searches f for subexpressions matching old. Each such
subexpression is replaced by new.

Unlike the subs function, subsex replaces “incomplete” subexpressions. For example,
subsex(a + b + c, b + c = d) replaces b + c but subs(a + b + c, b + c
= d) does not replace b + c. In general, combinations of the operands of the n-ary
“operators” +, *, and, _exprseq, intersect, or, _lazy_and, _lazy_or, and union
can be replaced. In particular, partial sums and partial products can be replaced. Note
that these operations are assumed to be commutative, e.g., subsex(a*b*c, a*c =
new) does replace the partial product a*c by new. See “Example 1” on page 1-1979 and
“Example 2” on page 1-1980. However, the advantage of subs over subsex is that subs
is much faster.

subsex additionally replaces powers with the same base, if the exponent of the
expression is an integer multiple of the replacement power, e.g. like in subsex(a^4,
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a^2 = new). This rule also matches inverted expressions like in subsex(1/sqrt(x),
sqrt(x)=new), which is internally equivalent to subsex(x^(-1/2), x^(1/2)=new).
Cf. “Example 3” on page 1-1980.

The call subsex(f, old1 = new1, old2 = new2, ...) invokes a “sequential
substitution”. See the subs help page for details.

The call subsex(f, [old1 = new1, old2 = new2, ...]) invokes a “parallel
substitution”. See the subs help page for details.

The call subsex(f, s1, s2, ...) describes the most general form of substitution
which may combine sequential and parallel substitutions. This call is equivalent to
subsex(... subsex(subsex(f, s1), s2), ...). Depending on the form of s1, s2,
…, sequential or parallel substitutions are carried out in each step. An example can be
found on the subs help page.

After substitution, the result is not evaluated. Use the function eval to enforce
evaluation. Cf. “Example 5” on page 1-1982.

Operands of expression sequences can be replaced by subsex. Such objects are not
flattened. Cf. “Example 6” on page 1-1982.

The call subsex(f) is allowed; it returns f without modifications.

Examples

Example 1

We demonstrate some simple substitutions; subsex finds and replaces partial sums and
products:

subsex(a + b + c, a + c = x)

subsex(a*b*c, a*c = x)
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subsex(a * (b + c) + b + c, b + c = a)

subsex(a + b*c*d + b*d, b*d = c);

Example 2

We replace subexpressions inside a symbolic union of sets:

subsex(a union b union c, a union b = w)

The same can be achieved by using the functional equivalent _union of the operator
union:

subsex(_union(a, b, c), _union(a, b) = w)

For details on substitution functions in MuPAD, please see “Modify Subexpressions”. For
details on expression trees, please see “Visualize Expression Trees”.

Example 3

subsex replaces powers with with the same base, if the exponent of the expression is an
integer multiple of the replacement power:

subsex(1/a^4, a^2 = X)

This holds even for exponents which are expressions:
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subsex(1/a^(6*x), a^(2*x) = X)

1/sqrt(x) is internally x^(-1/2), so the replacement of sqrt(x) which is internally
x^(1/2) works, too:

subsex(1/sqrt(n), sqrt(n) = X)

Example 4

subsex is often useful to convert the output of one command into a form required by the
next one. As an example, we compute the Laplace transform of the two-dimensional ODE

,

,

and transform the result into a form suitable for calling solve by replacing the unknown
Laplace transforms by symbolic names:

xfrm1 := laplace(x'(t) = x(t) + 2*y(t), t, s);

xfrm2 := laplace(y'(t) = 5*x(t) + 2*y(t), t, s)

For readability, we give names to both substitutions:

sub_x := laplace(x(t),t,s) = X:

sub_y := laplace(y(t),t,s) = Y:

Leqn1 := subs(xfrm1, sub_x, sub_y, x(0) = 1);
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Leqn2 := subs(xfrm2, sub_x, sub_y, y(0) =-2)

solve({Leqn1, Leqn2}, {X, Y})

Example 5

The result of subsex is not evaluated. In the following call, the identifier sin is not
replaced by its value, i.e., by the procedure defining the behavior of the system's sine
function. Consequently, sin(2*PI) is not simplified to 0 by this procedure:

subsex(sin(2*x*y), x*y = PI)

The function eval enforces evaluation:

eval(subsex(sin(2*x*y), x*y = PI))

Example 6

Operands of expression sequences can be substituted. Note that sequences need to be
enclosed in brackets:

subsex((a, b, a*b*c), a*b = x)
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Example 7

The option Unsimplified suppresses simplification:

subsex(2 + a + b, a + b = 0, Unsimplified)

Parameters

f

An arbitrary MuPAD object

old, old1, old2, …

Arbitrary MuPAD objects

new, new1, new2, …

Arbitrary MuPAD objects

s1, s2, …

Either equations old = new, or lists or sets of such equations, or tables whose entries
are interpreted as such equations.

Options

Unsimplified

Prevents simplification of the returned object after substitution

As the last step of a substitution, the modified object is simplified (however, not
evaluated). This option suppresses this final simplification. See “Example 7” on page
1-1983.
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Return Values

Copy of the input object with replaced operands.

Overloaded By

f

See Also

MuPAD Functions
evalAt | extnops | extop | extsubsop | has | map | match | op | subs | subsop
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subsop

Replace operands

Syntax

subsop(object, i1 = new1, i2 = new2, …, <Unsimplified>)

Description

subsop returns a modified copy of the object, but does not change the object itself.

subsop(object, i = new) replaces the operand op(object, i) by new. Operands
are specified in the same way as with the function op: i may be an integer or a
list of integers. E.g., subsop(object, [j, k] = new) replaces the suboperand
op(op(object, j), k). Cf. “Example 2” on page 1-1986. In contrast to op, ranges
cannot be used in subsop to specify more than one operand to replace. Several
substitution equations have to be specified instead.

If several operands are to be replaced, the specified substitutions are processed in
sequence from left to right. Each substitution is carried out and the result is processed
further with the next substitution. The intermediate objects are not simplified.

The result of subsop is not evaluated further. It can be evaluated via the function eval.
Cf. “Example 3” on page 1-1987.

Operands of expression sequences can be replaced by subsop. Such objects are not
flattened.

Note that the order of the operands may change by replacing operands and evaluating
the result. Cf. “Example 4” on page 1-1987.

FAIL is returned if an operand cannot be accessed.

Substitution via subsop is faster than via subs or subsex.

The call subsop(object) is allowed; it returns the object without modifications.
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Examples

Example 1

We demonstrate how to replace one or more operands of an expression:

x := a + b: subsop(x, 2 = c)

subsop(x, 1 = 2, 2 = c)

Also the 0-th operand of an expression (the “operator”) can be replaced:

subsop(x, 0 = _mult)

The variable x itself was not affected by the substitutions:

x

delete x:

Example 2

The following call specifies the suboperand c by a list of integers:

subsop([a, b, f(c)], [3, 1] = x)
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Example 3

This example demonstrates the effect of simplification. The following substitution
replaces the first operand a by 2. The result simplifies to 3:

subsop(a + 1, 1 = 2)

The option Unsimplified suppresses the simplification:

subsop(a + 1, 1 = 2, Unsimplified)

The next call demonstrates the difference between simplification and evaluation. After
substitution of PI for x, the identifier sin is not evaluated, i.e., the body of the system
function sin is not executed:

subsop(sin(x),  1 = PI)

Evaluation of sin simplifies the result:

eval(%)

Example 4

The order of operands may change by substitutions. Substituting z for the identifier b
changes the internal order of the terms in x:

x := a + b + c: op(x)
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x := subsop(x, 2 = z): op(x)

delete x:

Parameters

object

Any MuPAD object

i1, i2, …

Integers or lists of integers

new1, new2, …

Arbitrary MuPAD objects

Options

Unsimplified

As the last step of a substitution, the modified object is simplified (however, not
evaluated). This option suppresses this final simplification. Cf. “Example 3” on page
1-1987.

Return Values

Input object with replaced operands or FAIL.

Overloaded By

object
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Algorithms

For overloading subsop, it is sufficient to handle the cases subsop(object) and
subsop(object, i = new).

The case where the position of the operand to be replaced is given by a list is always
handled recursively: First, op is called with the list bar the last element to find the
object to substitute in (using the overloading of op if present, storing all the intermediate
results), then the substitution is performed on that sub-object (using the overloading of
subsop of the form subsop(subobj, i = new)). The result is substituted into the
last-but-one result of the recursive op call, again respecting any overloading of subsop,
and so on up to the front of the list.

See Also

MuPAD Functions
extnops | extop | extsubsop | map | match | op | subs | subsex
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substring
Extract a substring from a string

Syntax
substring(string, i)

substring(string, i, l)

substring(string, i .. j)

Description

substring(string, i) returns the i-th character of a string.

substring(string, i, l) returns the substring of length l starting with the i-th
character of the string.

substring(string, i..j) returns the substring consisting of the characters i
through j, inclusive.

The empty string "" is returned if the length l = 0 is specified.

substring is considered obsolete. You should use index access to strings instead.

Examples

Example 1

We extract individual characters from a string:

substring("123456789", i) $ i = 1..9

Substrings of various lengths are extracted:
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substring("123456789", 1, 2), substring("123456789", 4, 4)

Substrings of length 0 are empty strings:

substring("123456789", 4, 0)

Ranges may be used to specify the substrings:

substring("123456789", 1..9)

Example 2

The following while loop removes all trailing blank characters from a string:

string := "MuPAD       ":

while substring(string, length(string)) = " " do

  string := substring(string, 1..length(string) - 1)

end_while

Parameters

string

A nonempty character string

i

An integer between 1 and length(string)
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l

An integer between 1 and length(string)

j

An integer between i and length(string)

Return Values

Character string

See Also

MuPAD Functions
length | stringlib::subs | strmatch
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_subtract

Subtract expressions

Syntax

_subtract(x, y)

Description

_subtract(x, y) subtracts y from x.

The difference operator - does not call _subtract(x, y). The difference x - y is
equivalent to x + (-y) = _plus (x, _negate(y)).

To implement the slot d::_subtract for your domain d, use the following convention:

• If both x and y are elements of d, the slot must return an appropriate difference of
type d.

• If x or y is not an element of d and cannot be converted to an element of d, the slot
must return FAIL.

• If x or y is not an element of d, but can be converted to type d, use the following
approach. This object must be converted to an element of d only if the mathematical
semantics is obvious to all users of d, including the users who treat this domain as a
“black box”. For example, you can regard integers as rational numbers because of the
natural mathematical embedding, but you must make sure that all users are aware
of this approach. Otherwise, the "_subtract" method must return FAIL instead of
using implicit conversions. If you use implicit conversions for the elements of your
domain, document these conversions.

In the MuPAD standard installation, most of the library domains comply with this
convention.

_subtract can subtract polynomials of the DOM_POLY type from a polynomial of the
same type. The polynomials must have the same indeterminates and the same coefficient
ring.
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_subtract can subtract finite sets from a finite set. For finite sets X and Y, the
difference is the set .

Examples

Example 1

Compute the difference of the following arithmetical expressions by using the
_subtract method. Then, compute the difference of the same expressions by using the
difference operator:

_subtract(x, y), x - y

Although both _subtract and the difference operator return the same result for these
expressions, the _subtract call is not equivalent to x - y:

type(hold(x - y)), type(hold(_subtract(x, y)))

Example 2

Use the _subtract function when combining the following lists:

zip([a, b, c, d], [1, 2, 3, 4], _subtract)

Parameters

x, y

arithmetical expressions, polynomials of type DOM_POLY, or sets
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Return Values

arithmetical expression, a polynomial, or a set.

Overloaded By

x,  y

See Also

MuPAD Functions
* | + | - | / | ^ | _invert | poly | Pref::keepOrder
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sum
Definite and indefinite summation

Compatibility

For the sum function in MATLAB, see sum.

Syntax
sum(f, i)

sum(f, i = a .. b)

sum(f, i = RootOf(p, x))

Description

sum(f, i) computes a symbolic antidifference of f(i) with respect to i.

sum(f, i = a..b) tries to find a closed form representation of the sum .

sum serves for simplifying symbolic sums (the discrete analog of integration). It should
not be used for simply adding a finite number of terms: if a and b are integers of type
DOM_INT, the call _plus(f $ i = a..b) gives the desired result, while sum(f, i =
a..b) may return unevaluated. expand may be used to sum such an unevaluated finite
sum. See “Example 3” on page 1-1998.

sum(f, i) computes the indefinite sum of f with respect to i. This is an expression g
such that f(i) = g(i + 1) - g(i).

It is implicitly assumed that i runs through integers only.

sum(f, i = a..b) computes the definite sum with i running from a to b.

If a and b are numbers, then they must be integers.
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If b - a is a nonnegative integer, then the explicit sum f(a) + f(a + 1) + … + f(b) is
returned, provided that this sum has no more than 1000 terms.

sum(f, i = RootOf(p, x)) computes the sum with i extending over all roots of the
polynomial p with respect to x.

If f is a rational function of i, a closed form of the sum will be found.

See “Example 2” on page 1-1998.

The system returns a symbolic call of sum if it cannot compute a closed form
representation of the sum.

Infinite symbolic sums without symbolic parameters can be evaluated numerically via
float or numeric::sum. Cf. “Example 4” on page 1-2000.

Examples

Example 1

We compute some indefinite sums:

sum(1/(i^2 - 1), i)

sum(1/i/(i + 2)^2, i)

sum(binomial(n + i, i), i)
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We compute some definite sums. Note that  are valid boundaries:

sum(1/(i^2 + 21*i), i = 1..infinity)

sum(1/i, i = a .. a + 3)

expand(%)

Example 2

We compute some sums over all roots of a polynomial:

sum(i^2, i = RootOf(x^3 + a*x^2 + b*x + c, x))

sum(1/(z + i), i = RootOf(x^4 - y*x + 1, x))

Example 3

sum can compute finite sums if indefinite summation succeeds:

sum(1/(i^2 + i), i = 1..100)
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_plus yields the same result more quickly if the number of summands is small:

_plus(1/(i^2 + i) $ i = 1..100)

In such cases, sum is much more efficient than _plus if the number of summands is
large:

sum(1/(i^2 + i), i = 1..10^30)

Finite sums for which no indefinite summation is possible are expanded if they have no
more than 1000 terms:

sum(binomial(n, i), i = 0..4)

An application of expand is necessary to expand the binomials:

expand(%)

Finite sums with more than 1000 terms are not expanded:

sum(binomial(n, i), i = 0..1000)

You might use expand here to expand the sum and obtain a huge expression. If you
really want to do that, we recommend using _plus directly.

However, if one of the boundaries is symbolic, then _plus cannot be used:
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_plus(1/(i^2 + i) $ i = 1..n)

_plus(binomial(n, i) $ i = 0..n)

sum(1/(i^2 + i), i = 1..n), sum(binomial(n, i), i = 0..n)

Example 4

The following infinite sum cannot be computed symbolically:

sum(ln(i)/i^5, i = 1..infinity)

We obtain a floating-point approximation via float:

float(%)

Alternatively, the function numeric::sum can be used directly. This is usually much
faster than applying float, since it avoids the overhead of sum attempting to compute a
symbolic representation:

numeric::sum(ln(i)/i^5, i = 1..infinity)
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Parameters

f

An arithmetical expression depending on i

i

The summation index: an identifier or indexed identifier

a, b

The boundaries: arithmetical expressions

p

A polynomial of type DOM_POLY or a polynomial expression

x

An indeterminate of p

Return Values

arithmetical expression.

Algorithms

The function sum implements Abramov's algorithm for rational expressions, Gosper's
algorithm for hypergeometric expressions, and Zeilberger's algorithm for the definite
summation of holonomic expressions.

See Also

MuPAD Functions
+ | _plus | int | numeric::sum | product | rec | sum::addpattern
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sum::addpattern

Add patterns for definite and indefinite summation

Syntax

sum::addpattern(pat, k, res, <[var, …], <[cond, …]>>)

sum::addpattern(pat, k = a .. b, res, <[var, …], <[cond, …]>>)

Description

sum::addpattern(pat, k, res) teaches sum to make use of .

sum::addpattern(pat, k=a..b, res) teaches sum that .

A part of a computer algebra system's summation abilities stems from mathematical
pattern matching. The MuPAD pattern matcher can be extended at runtime with
sum::addpattern.

For definite summation, each bound is either an arithmetical expression which may
contain pattern variables, or an identifier which can be used as a variable in the result
and condition terms.

Users can include pattern variables and conditions on these by giving additional
arguments. These conditions, as well as the result, are protected from premature
evaluation, i.e., it is not necessary to write hold( _not @ iszero )(a^2-b), a simple
not iszero(a^2-b) suffices.

The difference between not iszero(a^2-b) and a^2-b <> 0 when given as a
condition is that the latter takes into account assumptions on the identifiers encountered,
while the first does not. Cf. “Example 4” on page 1-2004.

Patterns introduced by sum::addpattern are also used in recursive calls of sum and
are automatically extended to include simple applications of summation by change of
variables. Cf. “Example 1” on page 1-2003.
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Environment Interactions

Calling sum::addpattern changes the expressions returned by future calls to sum.

Examples

Example 1

Not surprisingly, MuPAD does not know how to do an indefinite summation with the
function foo:

sum(foo(n), n)

We add a pattern for this function:

sum::addpattern(foo(k), k, bar(k))

sum(foo(n), n)

Note that this pattern is also used indirectly:

sum(foo(k+3),k)

Example 2

Definite sums can be added similarly:

sum::addpattern(foo(k), k=1..infinity, bar(k))

sum(foo(k), k=1..infinity)
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The above pattern will also match this definite sum with different bounds:

sum(foo(k), k=3..infinity)

Note that this pattern is also used indirectly:

sum(foo(k)+1/k^3, k=1..infinity)

The bounds may also be variables occurring in the pattern or the result:

sum::addpattern(foo(k,a), k=0..a, bar(a), [a])

sum(foo(k,7), k=0..7)

Example 3

The name of the summation variable used in the call to sum::addpattern does not
restrict later calls to sum:

sum::addpattern(x^(2*i+1)/(2*i+1), i=0..infinity,

                piecewise([abs(x) < 1,

                           arccoth(x) + PI/2*sqrt(-1/x^2)*x]),

                [x])

sum(x^(2*n+1)/(2*n+1),n=0..infinity)

Example 4

Conditions are checked using is and therefore react to assumptions:

1-2004



 sum::addpattern

sum::addpattern(binomial(-1/2, k)*x^(2*k^2 + 1)/(2*k + 1),

                              k = 0..infinity, arcsinh(x),

                                     [x], [abs(x) < 1])

sum(binomial(-1/2, k)*x^(2*k^2 + 1)/(2*k + 1), 

    k = 0..infinity) assuming -1 < x < 1

sum(binomial(-1/2, k)*x^(2*k^2 + 1)/(2*k + 1), 

    k = 0..infinity) assuming x > 1

If MuPAD cannot decide whether the conditions are satisfied, a piecewise defined object
is returned:

sum(binomial(-1/2, k) * x^(2*k^2+1)/(2*k+1), 

    k = 0..infinity)

If either the conditions are not satisfied or substituting the values into the result yields
an error, the pattern is ignored. There is no need to include a condition to guard against
an error, MuPAD simply computes the sum as usual:

sum::addpattern(c^k, k=0..n, (c^n-1)/(c-1), [c]);

sum(1^k, k=0..n)

Parameters

pat

The pattern to match: an arithmetical expression in k.
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k

The summation index: an identifier.

a .. b

The boundaries for a definite summation: arithmetical expressions or identifiers.

res

The pattern for the result of the summation: an arithmetical expression

var, …

“pattern variables”: placeholders in pat and ret, i.e., identifiers or indexed identifiers.
They do not represent themselves but almost arbitrary MuPAD expressions not
containing k. You may restrict them by the conditions in the 5th parameter.

cond, …

Conditions on the pattern variables

Return Values

Object of type DOM_NULL

See Also

MuPAD Functions
sum
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surd

N -th root

Syntax

surd(x, n)

Description

For a complex number x and integer n, surd(x, n) returns the n-th root of x whose
(complex) argument is closest to that of x.

If x is a positive real number, surd(x, n) coincides with x^(1/n). If x is a negative
real number and n is odd, then surd(x, n) coincides with -|x|^(1/n).

surd(x, n) returns that complex solution y of yn = x with polar angle closest to that of
x; among two equally distant y's, the one with smaller argument is chosen. In contrast,
x^(1/n) represents the solution with the smallest absolute value of the polar angle in
the range .

If n is a numerical value, it must be a non-zero integer. If it is symbolic, it is understood
to represent a non-zero integer.

surd(x, 2) is mathematically equivalent to sqrt(x). Unlike sqrt, however, surd
may return an unevaluated symbolic call.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

If n is odd and x is real, then surd(x, n) is real, too. On the other hand, x^(1/n) is not
real if x is negative:

surd(-27, 3), surd(-27.0, 3), (-27)^(1/3), (-27.0)^(1/3)

Example 2

surd may be called with symbolic arguments:

surd(3, n)

Sometimes, surd returns an unevaluated function call:

surd(x, 3), surd(x, n^2 + n)

Parameters

x

An arithmetical expression

n

An arithmetical expression
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Return Values

Arithmetical expression.

See Also

MuPAD Functions
_power | sqrt
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sysname
Name of the operating system

Syntax
sysname(<Arch>)

Description

sysname() returns information on the operating system on which MuPAD is currently
executed. It can return one of the following strings:

• "UNIX" for UNIX operating systems including Mac OS X and Linux,
• "MSDOS" for MS-DOS® operating systems including Microsoft Windows,

sysname(Arch) returns a more specific name of the operating system as a character
string.

Examples

Example 1

On a 64-bit Microsoft Windows operating system, sysname returns the following values:

sysname(), sysname(Arch)

On a 32-bit Microsoft Windows operating system, sysname(Arch) returns:

sysname(Arch)
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Example 2

On a 64-bit Linux operating system, sysname returns the following values:

sysname(), sysname(Arch)

Example 3

On a 64-bit Apple Macintosh operating system, sysname returns the following values:

sysname(), sysname(Arch)

Options

Arch

Makes sysname return more specific information on the architecture

Return Values

character string.

See Also

MuPAD Functions
system
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sysorder
Compare objects according to the internal order

Syntax
sysorder(object1, object2)

Description

sysorder(object1, object2) returns TRUE if the MuPAD internal order of object1
is less than or equal to the order of object2. Otherwise, FALSE is returned.

Note: The exceptions are domains.

One should not try and use the internal order to sort objects according to specific criteria.
E.g., its does not necessarily reflect the natural ordering of numbers or strings. Further,
the internal order may differ between different MuPAD versions.

The only feature one may rely upon is its uniqueness. Cf. “Example 2” on page 1-2013.

Examples

Example 1

We give some examples how sysorder behaves in the current MuPAD version. For
numbers, the internal order is equal to the natural order:

sysorder(3, 4) = bool(3 <= 4),

sysorder(45, 33) = bool(45 <= 33),

sysorder(0, 4) = bool(0 <= 4)
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sysorder(1/3, 1/4) = bool(1/3 <= 1/4),

sysorder(-4, 2) = bool(-4 <= 2),

sysorder(-4, -2) =  bool(-4 <= -2)

Example 2

We give a simple application of sysorder. Suppose, we want to implement a function f,
say, whose only known property is its skewness f(-x) = -f(x). Expressions involving
f should be simplified automatically, e.g., f(x) + f(-x) should yield zero for any
argument x. To achieve this, we use sysorder to decide, whether a call f(x) should
return f(x) or -f(-x):

f := proc(x) begin

       if sysorder(x, -x) then

            return(-procname(-x))

       else return(procname(x))

       end_if;

     end_proc:

For numerical arguments, f prefers to rewrite itself with positive arguments:

f(-3), f(3), f(-4.5), f(4.5), f(-2/3), f(2/3)

For other arguments, the result is difficult to predict:

f(x), f(-x), f(sqrt(2) + 1), f(-sqrt(2) - 1)

With this implementation, expressions involving f simplify automatically:

f(x) + f(-x) - f(3)*f(x) + f(-3)*f(-x) + sin(f(7)) + sin(f(-7))
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delete f:

Parameters

object1, object2

Arbitrary MuPAD objects

Return Values

TRUE or FALSE.

See Also

MuPAD Functions
_less | listlib::removeDupSorted | sort
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system

Execute a command of the operating system

Syntax

! command

system(command)

Description

system("command") executes a command of the operating system or a program,
respectively.

!command is equivalent to system("command"):; note that !command will suppress
output of its return value.

The syntax !command is allowed during interactive input only, not when reading MuPAD
input from a file. “!” must be the first character on the input line.

system is not available in all MuPAD versions. If not available, a call to system results
in the following error message:

Error: Function not available for this client [system].

system("command") sends the command to the operating system. E.g., this command
may start another application program on the computer. The return value 0 indicates
that the command was executed successfully. Otherwise, an integer error code is
returned which depends on the operating system and the command.

If the called command writes output to stderr on UNIX systems, the output will go to
the MuPAD stderr. Outputs on the standard output channel will be inserted in the
command's output, but are not accessible programmatically.
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Examples

Example 1

On a UNIX system, the date command is executed. The command output is printed to
the screen, the error code 0 for successful execution is returned to the MuPAD session:

errorcode := system("date"):

Fri Sep 29 14:42:13 MEST 2000 

errorcode

Now the date command is called with the command line option '+%m' in order to display
the current month only:

errorcode := system("date '+%m'"):

09 

Missing the prefix '+' in the command line option of date, date and therefore system
returns an error code. Note that the error output goes to stderr:

system("date '%m'")

delete errorcode:

Example 2

The output of a program started with the system command cannot be accessed in
MuPAD directly, but it can be redirected into a file and then be read using the read or
ftextinput command:

system("echo communication example > comm_file"):

ftextinput("comm_file")
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system("rm -f comm_file"):

Parameters

command

A command of the operating system or a name of a program as a MuPAD character
string

Return Values

“error code”: an integer.

See Also

MuPAD Functions
sysname
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table
Create a table

Syntax
table()

table(index1 = entry1, index2 = entry2, …, <default>)

table(<list>, <set>, <tab>, …, <default>)

Description

table() creates a new empty table.

table(index1 = entry1, index2 = entry2, ...) creates a new table with the
given indices and entries.

In MuPAD, tables are the most flexible objects for storing data. In contrast to arrays or
lists, arbitrary MuPAD objects can be used as indices. Indexed access to table entries is
fast and nearly independent of the size of the table. Thus, tables are suitable containers
for large data.

For a tableT, say, an indexed call T[index] returns the corresponding entry. If no such
entry exists, the default value of the table is returned, if the table has one. If no default
value has been set and, the indexed expression T[index] is returned symbolically.

An indexed assignment of the form T[index] := entry adds a new entry to an
existing table T or overwrites an existing entry associated with the index.

table can be used to create tables from other tables, lists or sets of equations. Cf.
“Example 2” on page 1-2020.

table is used for the explicit creation of a table. There also is the following mechanism
for creating a table implicitly.

If the value of an identifier T, say, is neither a table nor an array nor an hfarray
nor a list, then an indexed assignment T[index] := entry is equivalent to T :=
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table(index = entry). I.e., implicitly, a new table with one entry is created. Cf.
“Example 3” on page 1-2021.

If the value of T was either a table or an array or an hfarray or a list, then the indexed
assignment only inserts a new entry without changing the type of T implicitly.

Table entries can be deleted with the function delete. Cf. “Example 4” on page 1-2021.

Examples

Example 1

The following call creates a table with two entries:

T := table(a = 13, c = 42)

The data may be accessed via indexed calls. Note the symbolic result for the index b
which does not have a corresponding entry in the table:

T[a], T[b], T[c]

Entries of a table may be changed via indexed assignments:

T[a] := T[a] + 10: T

Expression sequences may be used as indices or entries, respectively. Note, however, that
they have to be enclosed in brackets when using them as input parameters for table:

T := table((a, b) = "hello", a + b = (50, 70))
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T[a + b]

Indexed access does not require additional brackets:

T[a, b] := T[a, b]." world": T

delete T:

Example 2

A table can be created from other tables, lists or sets:

table(table(a = 1, b = 2),

      {a = 3, c = 4},

      [b = 5, e = 6])

Please note that a set has no order of operands. When a set contains several values under
the same index, the table entry is chosen “randomly”:

table({a = 3, a = 4});

table({a = 4, a = 3})
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Example 3

Below, a new table is created implicitly by an indexed assignment using an identifier T
without a value:

delete T: T[4] := 7: T

delete T:

Example 4

Use delete to delete entries:

T := table(a = 1, b = 2, (a, b) = (1, 2))

delete T[b], T[a, b]: T

delete T:

Example 5

One of the uses of tables is to count the number of occurrences of some objects. In this
situation, an implementation not using default values would have to look like this:

T := table():

L := [1,2,3,a,b,c,a,b,a]:

for i in L do
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  if contains(T, i) then

    T[i] := T[i] + 1;

  else

    T[i] := 1;

  end_if;

end_for:

T

Note the test whether T[i] has already been set. If it has not, we cannot use its previous
value, because that would remain symbolic:

T := table():

T[a] := T[a] + 1:

T

By creating T as table(0) instead of table(), we can tell MuPAD to regard T[i] as
0 if it has not been told anything else and the code from above becomes substantially
shorter and, much more important, much easier to read:

T := table(0):

L := [1,2,3,a,b,c,a,b,a]:

for i in L do

  T[i] := T[i] + 1;

end_for:

T
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A slightly more complicated version counting all identifiers in an expression:

ex := sin(a*x+b)-cos(c+x):

cnt := table(0):

misc::maprec(ex,

  {DOM_IDENT} = (x -> (cnt[x] := cnt[x]+1; x))):

cnt

Parameters

index1, index2, …

The indices: arbitrary MuPAD objects

entry1, entry2, …

The corresponding entries: arbitrary MuPAD objects

list

A list of equations

set

A set of equations

tab

A table

default

The default value: A MuPAD object which is not an equation, a list, a set, nor a table
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Return Values

Object of type DOM_TABLE.

See Also

MuPAD Domains
DOM_ARRAY | DOM_HFARRAY | DOM_LIST | DOM_TABLE

MuPAD Functions
_assign | _index | array | assignElements | delete | hfarray | indexval
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taylor
Compute a Taylor series expansion

Syntax
taylor(f, x, <order>, <mode>)

taylor(f, x = x0, <order>, <mode>)

taylor(f, x, <AbsoluteOrder = order>)

taylor(f, x = x0, <AbsoluteOrder = order>)

taylor(f, x, <RelativeOrder = order>)

taylor(f, x = x0, <RelativeOrder = order>)

Description

taylor(f, x = x0) computes the first terms of the Taylor series of f with respect to
the variable x around the point x0.

If taylor finds the corresponding Taylor series, the result is a series expansion of
domain type Series::Puiseux. Use expr to convert it to an arithmetical expression of
domain type DOM_EXPR. See “Example 1” on page 1-2026.

If a Taylor series does not exist or if taylor cannot find it, then taylor throws an error.
See “Example 2” on page 1-2027 and “Example 3” on page 1-2028.

Mathematically, the expansion computed by taylor is valid in some open disc around
the expansion point in the complex plane.

If x0 is complexInfinity, then an expansion around the complex infinity, i.e., the
north pole of the Riemann sphere, is computed. If x0 is infinity or -infinity, a
directed series expansion valid along the real axis is computed.

Such an expansion is computed as follows: The series variable x in f is replaced by
. Then a directed series expansion at u = 0 from the right is computed. If x0 =
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complexInfinity, then an undirected expansion around u = 0 is computed. Finally,
 is substituted in the result.

Mathematically, the result of an expansion around complexInfinity or ±infinity is
a power series in . See “Example 4” on page 1-2028.

With the default mode RelativeOrder, the number of requested terms for the
expansion is order if specified. If no order is specified, the value of the environment
variable ORDER used. You can change the default value 6 by assigning a new value to
ORDER.

The number of terms is counted from the lowest degree term on for finite expansion
points, and from the highest degree term on for expansions around infinity, i.e., “order”
has to be regarded as a “relative truncation order”.

If AbsoluteOrder is specified, order represents the truncation order of the series (i.e.,
the x power in the Big-Oh term).

taylor uses the more general series function series to compute the Taylor expansion.
See the corresponding help page for series for details about the parameters and the
data structure of a Taylor series expansion.

Environment Interactions

The function is sensitive to the environment variable ORDER, which determines the
default number of terms in series computations.

Examples

Example 1

Compute a Taylor series around the default point 0:

s := taylor(exp(x^2), x)

1-2026



 taylor

The result of taylor is of the following domain type:

domtype(s)

If you apply the function expr to a series, the result is an arithmetical expression
without the order term:

expr(s)

domtype(%)

delete s:

Example 2

A Taylor series expansion of  around x = 1 does not exist. Therefore, taylor

throws an error:

taylor(1/(x^2 - 1), x = 1)

Error: Cannot compute a Taylor expansion of '1/(x^2 - 1)'. Try 'series' for a more general expansion. [taylor]

Call series to compute a more general series expansion. A Laurent expansion does
exist:

series(1/(x^2 - 1), x = 1)
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Example 3

If taylor cannot find a Taylor series expansion, it also throws an error.

taylor(psi(1/x), x = 0)

Error: Cannot compute a Taylor expansion of 'psi(1/x)'. Try 'series' with the 'Left', 'Right', or 'Real' option for a more general expansion. [taylor]

Call series with the optional argument. In this case, series returns a more general
type of expansion. In cases where series cannot find a series expansion, it returns the
symbolic function call.

series(psi(1/x), x = 0, Right)

Example 4

This is an example of a directed Taylor expansion along the real axis around infinity:

taylor(exp(1/x), x = infinity)

In fact, this is even an undirected expansion:

taylor(exp(1/x), x = complexInfinity)

Parameters

f

An arithmetical expression representing a function in x
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x

An identifier or an indexed identifier

x0

The expansion point: an arithmetical expression. Also expressions involving infinity or
complexInfinity are accepted.

If not specified, the default expansion point 0 is used.

order

The truncation order (in conjunction with AbsoluteOrder) or, in conjunction with
RelativeOrder, the number of terms to be computed, respectively. A nonnegative
integer; the default order is given by the environment variable ORDER (default value 6).

mode

One of the flags AbsoluteOrder or RelativeOrder. The default is RelativeOrder.

Options

AbsoluteOrder

With this flag, the integer value order is the truncation order of the computed series
(i.e., the exponent of x in the Big-Oh term).

RelativeOrder

With this flag, the exponents of x in the computed series range from some leading order
v to the highest exponent v + order - 1 (i.e., the exponent of x in the Big-Oh term is
v + order). In this case, order essentially is the “number of x powers” in the computed
series if the series involves all integer powers of x.

Return Values

Object of domain type Series::Puiseux or a symbolic expression of type "taylor".

1-2029



1 The Standard Library

Overloaded By

f

See Also

MuPAD Functions
asympt | diff | limit | mtaylor | O | series | Series::Puiseux |
Type::Series
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tbl2text

Concatenate the strings in a table

Syntax

tbl2text(strtab)

Description

tbl2text concatenates all entries of a table of character strings.

The table must be indexed by 1, 2, 3 etc. All entries must be character strings. They are
concatenated in the order of their indices.

tbl2text restores strings split by text2tbl.

Examples

Example 1

A character string can be created from an arbitrary number of table entries:

tbl2text(table(1 = "Hell", 2 = "o", 3 = " ", 4 = "world."))

Parameters

strtab

A table of character strings
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Return Values

Character string.

See Also

MuPAD Functions
_concat | coerce | expr2text | int2text | text2expr | text2list | text2tbl
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tcoeff
Trailing coefficient of a polynomial

Syntax
tcoeff(p, <order>)

tcoeff(f, <vars>, <order>)

Description

tcoeff(p) returns the trailing coefficient of the polynomial p.

The returned coefficient is “trailing” with respect to the lexicographical ordering, unless a
different ordering is specified via the argument order. Cf. “Example 1” on page 1-2033.

A polynomial expression f is first converted to a polynomial with the variables given by
vars. If no variables are given, they are searched for in f. See poly about details of the
conversion. The result is returned as polynomial expression. FAIL is returned if f cannot
be converted to a polynomial. Cf. “Example 3” on page 1-2034.

The result of tcoeff is not fully evaluated. Evaluation can be enforced by the function
eval. Cf. “Example 2” on page 1-2034.

Examples

Example 1

We demonstrate how various orderings influence the result:

p := poly(5*x^2*y^3 + 4*x^3*y*z + 3*x*y^4*z, [x, y, z]):    

tcoeff(p), tcoeff(p, DegreeOrder), tcoeff(p, DegInvLexOrder)
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The following call uses the reverse lexicographical order on 3 indeterminates:

tcoeff(p, Dom::MonomOrdering(RevLex(3)))

delete p:

Example 2

The result of tcoeff is not fully evaluated:

p := poly(27*x^2 + a*x, [x]): a := 5:

tcoeff(p), eval(tcoeff(p))

delete p, a:

Example 3

The expression 1/x may not be regarded as polynomial:

lterm(1/x)

Parameters

p

A polynomial of type DOM_POLY

f

A polynomial expression
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vars

A list of indeterminates of the polynomial: typically, identifiers or indexed identifiers

order

The term ordering: either LexOrder, or DegreeOrder, or DegInvLexOrder, or a user-
defined term ordering of type Dom::MonomOrdering. The default is the lexicographical
ordering LexOrder.

Return Values

Element of the coefficient domain of the polynomial or FAIL.

Overloaded By

p

See Also

MuPAD Functions
coeff | collect | degree | degreevec | ground | lcoeff | ldegree | lmonomial
| lterm | monomials | nterms | nthcoeff | nthmonomial | nthterm | poly |
poly2list
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testargs
Decide whether procedure arguments should be tested

Syntax
testargs()

testargs(b)

Description

Inside a procedure, testargs indicates whether the procedure should check its
arguments.

Checking the input parameters of a procedure may be costly. For this reason, most
functions of the MuPAD libraries are implemented according to the following philosophy:

If a procedure is called on the interactive level, i.e., if its parameters are supplied
interactively by the user, then the parameters should be checked. If the input parameters
do not comply with the documented specification of the procedure, then appropriate error
messages should be returned to notify the user of wrong usage.

If the procedure is called by another procedure, then no check of the parameters should
be performed to improve efficiency. The calling procedure is supposed to make sure that
appropriate parameters are passed.

testargs is the tool to check whether the arguments should be tested: called inside
the body of a procedure, testargs() returns TRUE if the procedure was called on the
interactive level. Otherwise, it returns FALSE.

testargs has two modes. In the “standard mode”, its functionality is as described
above. In the “argument checking mode”, the call testargs() always returns TRUE.
This supports the debugging of procedures: any function using testargs checks its
parameters and returns useful error messages if called in an inappropriate way.

The call testargs(TRUE) switches to the “argument checking mode”, i.e., parameter
testing is switched on globally.

1-2036



 testargs

The call testargs(FALSE) switches to the “standard mode”, i.e., parameter testing is
used only on the interactive level.

The call testargs(b) returns the previously set value.

testargs should not be used to change the behavior of a function other than performing
type-checks, since the user may have switched to “argument checking mode”.

Checking the input parameters of a procedure can also be controlled with the function
Pref::typeCheck.

Examples

Example 1

The following example demonstrates how testargs should be used inside a procedure.
The function p is to generate a sequence of n zeroes; its argument should be a positive
integer:

p := proc(n)

begin

   if testargs() then

       if not testtype(n, Type::PosInt) then

          error("expecting a positive integer");

       end_if;

   end_if;

   return(0 $ n)

end_proc:

Its argument is checked when p is called on the interactive level:

p(13/2)

Error: expecting a positive integer [p]

Calling p from within a procedure with an inappropriate parameter does not invoke the
argument testing. The following strange output is caused by the attempt to evaluate 0 $
n:

f := proc(n) begin p(n) end_proc:  f(13/2)
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We switch on the “argument checking mode” of testargs:

testargs(TRUE):

Now also a non-interactive call to p produces an informative error message:

f(13/2)

Error: expecting a positive integer [p]

We clean up, restoring the “standard mode” of testargs:

testargs(FALSE): delete f, g:

Parameters

b

TRUE or FALSE

Return Values

TRUE or FALSE.

See Also

MuPAD Functions
Pref::typeCheck | proc | testtype
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testeq

Check the mathematical equivalence of expressions

Syntax

testeq(ex1, options)

testeq(ex1, ex2, options)

Description

testeq(ex1, ex2) checks whether the expressions ex1 and ex2 are mathematically
equivalent.

testeq(ex1, ex2) returns TRUE if the difference ex1 - ex2 can be simplified to zero.

testeq returns FALSE if ex1 and ex2 attain different values for at least one choice of
variables contained in them.

By default, testeq performs five random tests. If randomly chosen values of the
variables are inconsistent with the assumptions on these variables or the test returns
the value undefined, the testeq function performs an additional test. The number of
additional tests cannot exceed the number of initial tests. By default, the maximal total
number of tests is 10. See “Example 4” on page 1-2042.

If the equivalence of ex1 and ex2 cannot be decided, testeq returns UNKNOWN.

If only one expression is passed to testeq, it is checked whether this expression is
equivalent to zero.

testeq uses Simplify(ex1 - ex2) and is(ex1 - ex2 = 0) to determine its result.
The result UNKNOWN can be caused by weaknesses of Simplify and is.

Using the options, the simplification process can be made stronger at the cost of
increased run time.
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Examples

Example 1

Check the mathematical equivalence of expressions:

testeq(sin(x)^2, 1 - cos(x)^2)

testeq(sin(2*x), 2*sin(x)*cos(x))

testeq((cos(a) + sin(a))^2, 2*(cos(PI/4 - a)^2))

In order to be equivalent, two expressions must be equivalent for all values their
variables can attain. For certain values of the parameter a the following two expressions
are equivalent, but for other values they are not; therefore, they are not equivalent:

testeq((cos(a) + sin(a))^2, 3*(cos(PI/4 - a)^2))

Example 2

Applying expand and rewrite to an expression always produces an equivalent
expression. However, with the default setting of 100 steps for the internal simplification
procedure, the equivalence is not recognized in the following example:

f:= exp(arcsin(I*sin(x))):

g:= rewrite(expand(f), ln):
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testeq(f, g)

After 1000 steps, however, the expressions are recognized as being equivalent:

testeq(f, g, Steps = 1000);

delete f, g:

Example 3

When trying to prove the equivalence of two expressions, the testeq command runs
random tests before applying IgnoreAnalyticConstraints. If tests for random
values of identifiers show that expressions are not equivalent, testeq disregards the
IgnoreAnalyticConstraints option and returns FALSE:

testeq(x^(ln(a))*x^(ln(b)) = x^(ln(a*b)),

               IgnoreAnalyticConstraints)

If, for a given number of attempts, random tests do not find the inequality between
expressions, testeq applies the IgnoreAnalyticConstraints option:

testeq(ln(a) + ln(b) = ln(a*b), IgnoreAnalyticConstraints)

By default, random tests check the equality of expressions for five random sets of values
of identifiers. Increasing the number of attempts can prove inequality:

testeq(ln(a) + ln(b) = ln(a*b), NumberOfRandomTests = 10,

                                IgnoreAnalyticConstraints)
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Example 4

When testeq performs tests, it takes into account the assumptions on variables that you
specify:

testeq(x, abs(x)) assuming x > 0

If testeq chooses values of the variables that are inconsistent with the assumptions on
these variables, it performs an additional test. The number of tests cannot exceed 2n,
where n is the original number of tests defined by the NumberOfRandomTests option.
If testeq performs 2n tests and all values of the variables are inconsistent with the
assumptions on the variables, testeq returns UNKNOWN:

testeq(x, abs(x)) assuming x^2 + x + 7 = x^13 + 11

For this particular assumption, MuPAD cannot find a closed-form expression to
substitute for x:

solve(x^2 + x + 7 = x^13 + 11, x)

Therefore, increasing the number of tests does not help testeq decide if the expressions
are equivalent:

testeq(x, abs(x), NumberOfRandomTests = 100)

            assuming x^2 + x + 7 = x^13 + 11

Parameters

ex1, ex2

Any MuPAD expressions
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Options

Steps

Option, specified as Steps = n

This option is directly passed to Simplify and determines the maximum number of
steps allowed for the internal simplification process. The default value of n is 100.
Increasing the number of steps can give you a simpler result, often at the costs of
increased runtime. For details, see the Simplify help page.

Seconds

Option, specified as Seconds = t

This option is directly passed to Simplify and sets a time limit t in seconds for the
internal simplification process. The default setting is infinity, i.e., the simplification
process will not terminate due to a time limitation, but due to other internal stopping
criteria. See the documentation of Simplify for details.

RuleBase

Option, specified as RuleBase = base

This option is directly passed to Simplify and determines the rule base that is used for
the internal simplification process. See the documentation of Simplify for details.

The default value of base is Simplify.

The advanced user can specify her own rule base (see Simplify). This allows the
construction of specialized and fast tests for special classes of expressions.

NumberOfRandomTests

Option, specified as NumberOfRandomTests = n

This option determines the number of times testeq tries to disprove the equivalence of
ex1 and ex2 by plugging in some random values for all identifiers.

The default value of n is 5. If randomly chosen values of the variables are inconsistent
with the assumptions on these variables or the test returns the value undefined, the
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testeq function performs an additional test. The total number of tests does not exceed
2n. See “Example 4” on page 1-2042.

IgnoreAnalyticConstraints

This option applies purely algebraic simplifications to expressions ex1 and ex2. For
the list of rules, see the documentation of Simplify. These simplification rules are not
generally valid.

Note that random tests have higher priority than IgnoreAnalyticConstraints. When
trying to prove the equivalence of two expressions, the testeq command runs random
tests before applying the IgnoreAnalyticConstraints option. If random tests prove
the expressions are not equivalent, testeq returns the value FALSE. See “Example 3”
on page 1-2041.

Return Values

TRUE, FALSE, or UNKNOWN

See Also

MuPAD Functions
is | Simplify | simplify

More About
• “Test Results”
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testtype
Syntactical type checking

Syntax
testtype(object, T)

Description

testtype(object, T) checks whether the object is syntactically of type T.

The type object T may be either a domain type such as DOM_INT, DOM_EXPR etc., a string
as returned by the function type, or a Type object. The latter are probably the most
useful predefined values for the argument T.

Note: testtype performs a purely syntactical check. Use is for semantical checks
taking into account properties of identifiers!

See the Algorithms section below for details on the overloading mechanism.

Examples

Example 1

The following call tests, whether the first argument is an expression. Expressions are
basic objects of domain type DOM_EXPR:

testtype(x + y, DOM_EXPR)

The type function distinguishes expressions. The corresponding type string is a valid
type object for testtype:
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type(x + y), testtype(x + y, "_plus")

The following call tests, whether the first argument is an integer by querying, whether it
is of domain type DOM_INT:

testtype(7, DOM_INT)

Note that testtype performs a purely syntactical test. Mathematically, the integer 7 is
a rational number. However, the domain type DOM_RAT does not encompass DOM_INT:

testtype(7, DOM_RAT)

The Type library provides more flexible type objects. E.g., Type::Rational represents
the union of DOM_INT and DOM_RAT:

testtype(7, Type::Rational)

The number 7 matches other types as well:

testtype(7, Type::PosInt), testtype(7, Type::Prime),

testtype(7, Type::Numeric), testtype(7, Type::Odd)

Example 2

Subtypes of expressions can be specified via character strings:

type(f(x)),  type(sin(x))
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testtype(sin(x), "function"), testtype(sin(x), "sin"),

testtype(sin(x), "cos")

Example 3

We demonstrate how to implement a customized type object “div3” which is to represent
integer multiples of 3. One has to create a new domain with a “testtypeDom” attribute:

div3 := newDomain("divisible by 3?"):

div3::testtypeDom := x -> testtype(x/3, Type::Integer):

Via overloading, the command testtype(object, div3) calls this slot:

testtype(5, div3), testtype(6, div3), testtype(sin(1), div3)

delete div3:

Parameters

object

Any MuPAD object

T

A type object

Return Values

TRUE or FALSE.
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Overloaded By

object,  T

Algorithms

Overloading of testtype works as follows: First, it is checked whether
domtype(object) = T or type(object) = T holds. If so, testtype returns TRUE.

Next, the method "testtype" of the domain object::dom is called with the arguments
object, T. If this method returns a result other than FAIL, then testtype returns
this value.

If the method object::dom::testtype does not exist or if this method returns FAIL,
then overloading by the second argument is used:

• If T is a domain, then the method "testtypeDom" of T is called with the arguments
object, T.

• If T is not a domain, then the method "testtypeDom" of T::dom is called with the
arguments object, T.

See Also

MuPAD Functions
coerce | domtype | hastype | is | type
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text2expr
Convert a character string to an expression

Syntax
text2expr(text)

Description

text2expr(text) interprets the character string text as MuPAD input and generates
the corresponding object.

The text must correspond to syntactically correct MuPAD input. Otherwise, text2expr
produces an error. Typically, strings created from MuPAD objects via expr2text can be
reconverted to corresponding objects.

The object is returned without being further evaluated. Evaluation can be enforced using
the function eval.

The text does not need to be terminated with a “;” or a “:” character, respectively.

text cannot refer to local variables of an enclosing procedure by their name. The text is
parsed as if entered interactively. Cf. “Example 4” on page 1-2051.

Examples

Example 1

A character string is converted to a simple expression. The newly created expression is
not evaluated automatically:

text2expr("21 + 21")
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It may be evaluated via eval:

eval(%)

Example 2

A character string is converted to a statement sequence:

text2expr("x:= 3; x + 2 + 1"); eval(%)

(x := 3;

x + 2 + 1)

x

delete x:

Example 3

A matrix is converted to a string:

matrix([[a11, a12], [a21, a22]])

expr2text(%)

The string is reconverted to a matrix:
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text2expr(%)

eval(%)

Example 4

text2expr will not create a DOM_VAR of an enclosing procedure from its name:

a := "global identifier":

g := proc()

       local a;

     begin

       a := "local variable";

       print(a);

       print(eval(text2expr("a")));

     end_proc:

g();

Parameters

text

A character string

Return Values

MuPAD object.
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See Also

MuPAD Functions
coerce | expr2text | input | int2text | tbl2text | text2int | text2list |
text2tbl
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text2int
Convert a character string to an integer

Syntax
text2int(text, <b>)

Description

text2int(text, b) converts a character string corresponding to an integer in b-adic
representation to an integer of type DOM_INT.

It must consist of the first b characters in 0, 1, …, 9, A, B, …, Z, a, b, …, z. The letters are
used to represent the b-adic digits larger than 9.

For bases larger than 10 but smaller than 37 the letters are not case sensitive. The lower
case letters a, b, …, z are accepted: a = A = 10, …, z = Z = 35.

text2int is the inverse of int2text.

Examples

Example 1

Relative to the default base 10, text2int provides a mere datatype conversion from
DOM_STRING to DOM_INT:

text2int("123"), text2int("-45678")

Example 2

The characters of the input string are interpreted as digits with respect to the specified
base, the return value is a standard MuPAD integer represented with respect to the
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decimal system. The following example converts integers from the base 2 and 16,
respectively, to the base 10:

text2int("101", 2), text2int("101", 16)

The digit “3” does not exist in a binary representation:

text2int("103", 2)

Error: The argument is invalid. [text2int]

Example 3

For bases larger than 10 but smaller than 37, the letters are not case-sensitive:

text2int("3B9ACA00", 16), text2int("Z", 36) = text2int("z", 36)

For bases larger than 37 however, the case makes a difference:

text2int("Z", 62) <> text2int("z", 62)

Parameters

text

A character string

b

The base: an integer between 2 and 62. The default base is 10.
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Return Values

Integer.

See Also

MuPAD Functions
coerce | expr2text | genpoly | int2text | numlib::g_adic | tbl2text |
text2expr | text2list | text2tbl
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text2list
Split a character string into a list of substrings

Syntax
text2list(text, separators, <Cyclic>)

Description

text2list splits a character string into a list of substrings, using the strings in the list
separators as delimiters. text2list returns a list containing the substrings.

Without the option Cyclic, the text is split as follows. The first occurrence of one of the
delimiters in separators is located in text. If no delimiter is found, the full text is
returned as the only substring. Otherwise, the substring up to the delimiter defines the
first substring. The delimiter is the second substring. The remaining text is processed as
above until there are no more characters left. The result does not depend on the order of
the delimiters.

With the option Cyclic, the first delimiter in separators is used to identify the first
substring. The delimiter itself is the second substring. Then the second delimiter in
separators is used to identify the third substring, and so on. After using the last
delimiter of the list, the first one is used again, until the whole text is processed or until
the current delimiter is not found in the remaining text. The result depends on the order
of the delimiters.

text2list is a function of the system kernel.

Examples

Example 1

Call text2list with and without the option Cyclic:

text2list("This is a simple example!", ["is", "mp"])
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text2list("This is a simple example!", ["is", "mp"], Cyclic)

Parameters

text

The text to be analyzed: a character string

separators

Delimiters: a list of character strings. The empty string "" is not accepted as a delimiter.

Options

Cyclic

The delimiter list is used cyclically

Return Values

List of character strings.

See Also

MuPAD Functions
coerce | expr2text | int2text | tbl2text | text2expr | text2int | text2tbl
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text2tbl
Split a character string into a table of substrings

Syntax
text2tbl(text, separators, <Cyclic>)

Description
text2tbl splits a character string into a table of substrings, using the strings in the list
separators as delimiters. text2tbl returns a table, using the indices 1, 2, 3, and so
on.

Without the option Cyclic, the text is split as follows. The first occurrence of one of the
delimiters in separators is located in text. If no delimiter is found, the full text is
returned as the only substring. Otherwise, the substring up to the delimiter defines the
first substring. The delimiter is the second substring. The remaining text is processed as
above until there are no more characters left. The result does not depend on the order of
the delimiters.

With the option Cyclic, the first delimiter in separators is used to identify the first
substring. The delimiter itself is the second substring. Then the second delimiter in
separators is used to identify the third substring, and so on. After using the last
delimiter of the list, the first one is used again, until the whole text is processed or until
the current delimiter is not found in the remaining text. The result depends on the order
of the delimiters.

tbl2text restores strings split by text2tbl.

text2tbl is a function of the system kernel.

Examples

Example 1

Call text2tbl with and without the option Cyclic:
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text2tbl("This is a simple example!", ["is", "mp"])

text2tbl("This is a simple example!", ["is", "mp"], Cyclic)

Parameters

text

The text to be analyzed: a character string

separators

Delimiters: a list of character strings. The empty string "" is not accepted as a delimiter.

Options

Cyclic

The delimiter list is used cyclically.
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Return Values

Table of character strings.

See Also

MuPAD Functions
coerce | expr2text | int2text | tbl2text | text2expr | text2int | text2list
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textinput

Interactive input of text

Syntax

textinput(<prompt1>)

textinput(<prompt1>, x1, <prompt2>, x2, …)

Description

textinput allows interactive input of text.

textinput() displays the prompt “Please enter text:” and waits for input by the
user. The input is converted to a character string, which is returned as the function's
return value.

textinput(prompt1) uses the character string prompt1 instead of the default prompt
“Please enter text:”.

textinput( prompt1 x1) converts the input to a character string and assigns this
string to the identifier or local variable x1. The default prompt is used, if no prompt
string is specified.

Several input values can be read with a single textinput command. Each identifier
in the sequence of arguments makes textinput return a prompt, waiting for input to
be assigned to the identifier or variable. A character string preceeding the identifier
or variable in the argument sequence replaces the default prompt. Cf. “Example 3” on
page 1-2062. Arguments that are neither prompt strings nor identifiers or variables are
ignored.

The input may extend over several lines. In the output string, MuPAD uses the character
\n (carriage return) to separate lines.

Input characters with a leading \ are not interpreted as control characters, but as two
separate characters.
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The identifiers or variables x1 etc. may have values. These are overwritten by
textinput.

Examples

Example 1

The default prompt is displayed, the input is converted to a character string and
returned:

textinput()

Please enter text input: << myinput >> 

Example 2

A user-defined prompt is used, the input is assigned to the identifier x:

textinput("enter your name: ", x)

enter your name: << Turing >> 

x

delete x:

Example 3

If several values are to be read, separate prompts can be defined for each value:

textinput("She: ", hername, "He:  ", hisname)
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She: << Bonnie >> He:  <<

Clyde >> 

hername, hisname

delete hername, hisname:

Parameters

prompt1, prompt2, …

Input prompts: character strings

x1, x2, …

identifiers or local variables

Return Values

Last input, converted to a character string.

See Also

MuPAD Functions
finput | fname | fprint | fread | ftextinput | import::readbitmap |
import::readdata | input | print | read | text2expr | write
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TEXTWIDTH
Maximum number of characters in an output line

Description

The environment variable TEXTWIDTH determines the maximum number of characters in
one line of screen output.

Possible values: Positive integer smaller than 231.

Output is broken into several lines if it needs more than TEXTWIDTH characters per line.

Deletion via the statement “delete TEXTWIDTH” resets TEXTWIDTH to its default value.
Executing the function reset also restores the default value.

The minimal value of TEXTWIDTH is 10.

TEXTWIDTH is set to its maximum value 231 - 1 when printing to a text file using fprint.
Thus, no additional line breaks occur in the output.

TEXTWIDTH does not influence the typesetting of expressions which is available for some
user interfaces of MuPAD.

TEXTWIDTH is set to the new number of available columns every time the console is
resized.

Examples

Example 1

Set the maximum number of characters in one line of screen output to 15:

TEXTWIDTH := 15:

Restore TEXTWIDTH to its default value:

delete TEXTWIDTH
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Example 2

The following procedure adds empty characters to produce output that is flushed right:

myprint := proc(x) local l; begin

             if domtype(x) <> DOM_STRING then

                x := expr2text(x);

             end_if;

             l := length(x);

             print(Unquoted, _concat(" " $ TEXTWIDTH - l, x))

           end_proc:

myprint("hello world"):  myprint(30!):  myprint("bye bye"):

                                                                hello world

                                          265252859812191058636308480000000

                                                                    bye bye

delete myprint:

See Also

MuPAD Functions
fprint | PRETTYPRINT | print
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theta
Theta series

Syntax
theta(x)

Description

theta(x) represents the value of the theta series .

The theta series converges for all complex numbers x with positive real part.

Floating-point results are computed for floating-point arguments. For other arguments,
the function returns symbolically with the imaginary part of complex numbers
normalized to lie between zero and 2.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.

Examples

Example 1

The theta series takes on large values for small positive arguments. Small values are
taken on near I:

theta(0.001), theta(0.001 + I)
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Example 2

Since the theta series is (2 i)-periodic, the imaginary part of complex arguments may be
reduced:

theta(7 + 5*I)

For exact or symbolic arguments, a symbolic call is returned:

theta(3), theta(x)

Parameters

x

An arithmetical expression

Return Values

Arithmetical expression

See Also

MuPAD Functions
dedekindEta | zeta
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rtime

Measure real time

Syntax

rtime()

rtime(a1, a2, …)

Description

rtime() returns the real time that elapsed since the start of the current MuPAD
session. It is measured in milliseconds.

rtime(a1, a2, ...) returns the real time needed to evaluate all arguments.

The result of rtime is the real time. Thus, rtime can be used to measure the total time
spent by the MuPAD process as well as by external processes spawned from inside the
MuPAD session. Note that an interactive call of rtime() is not very useful because the
idle time is included. However, rtime(a1, a2, ...) often yields a useful and more
realistic timing than time(a1, a2, ...) if the evaluation of the arguments spawns
external processes. For example, it can be useful for measuring time for numerical
computations because some routines of the numeric library call external numerical tools
using hardware floats.

If there are no running external processes besides MuPAD, the timings returned by
rtime(a1, a2, ...) and time(a1, a2, ...) roughly coincide.

On computers without “time-sharing”, such as the Macintosh computer, real time and
CPU time roughly coincide.

rtime is a function of the system kernel.
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Examples

Example 1

Use rtime to compute the elapsed hours, minutes and seconds since this session was
started:

t := rtime()/1000:

h := trunc(t/3600):

m := trunc(t/60 - h*60):

s := trunc(t - m*60 - h*3600):

print(Unquoted, "This session is running for " .

                h . " hours, " .

                m . " minutes and " .

                s . " seconds.")

This

session is running for 0 hours, 0 minutes and 10 seconds. 

delete t, h, m, s:

Parameters

a1, a2, …

Arbitrary MuPAD objects

Return Values

Nonnegative integer giving the elapsed time in milliseconds.

See Also

MuPAD Functions
prog::profile | time

More About
• “Measure Time”
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time

Measure CPU time

Syntax

time()

time(a1, a2, …)

Description

time() returns the total CPU time that was spent by the current MuPAD process. It is
measured in in milliseconds.

time(a1, a2, ...) returns the CPU time needed by the current MuPAD process to
evaluate all arguments.

The result of time() comprises all computation time spent by the MuPAD process.
This includes the time for system initialization and reading input (parsing). However,
it excludes the time spent by other external processes, even if they were spawned from
inside the MuPAD session or if they were started by a system command. Further, in
an interactive session, the idle time between the execution of MuPAD commands is
excluded.

If there are no running external process besides MuPAD, the timings returned by
rtime(a1, a2, ...) and time(a1, a2, ...) roughly coincide.

The time returned by time is computed in a system-dependent way, usually counting the
number of clock ticks of the system clock. Hence, the result is a multiple of the system's
time unit and cannot be more precise than one such unit. The time unit is 10 milliseconds
for many UNIX systems.

On computers without “time-sharing”, such as the Macintosh computer, real time and
CPU time roughly coincide.

time is a function of the system kernel.
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Examples

Example 1

Do a time measurement and assign the computed value to an identifier at the same time.
Note that the assignment needs extra parenthesis when passed as argument:

time((a := int(exp(x)*sin(x), x)))

a

delete a:

Alternatively, measure time for groups of statements as follows:

t0 := time():

command1

command2

...

time() - t0

Example 2

To obtain a more convenient output, multiply the measured time by the appropriate time
unit:

time(isprime(2^1000000000 - 1))*unit::msec

Alternatively, use stringlib::formatTime:

stringlib::formatTime(time(isprime(2^1000000000 - 1)))
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Parameters

a1, a2, …

Arbitrary MuPAD objects

Return Values

Nonnegative integer giving the elapsed time in milliseconds.

See Also

MuPAD Functions
prog::profile | rtime

More About
• “Measure Time”
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transpose
Transpose of a matrix

Compatibility

For the transpose function in MATLAB, see transpose.

Syntax
transpose(A)

Description

transpose(A) returns the transpose At of the matrix A. The transpose of the m×n
matrix A is the n×m matrix B such that Bi, j = Aj, i.

If the input is a matrix of category Cat::Matrix, then internally linalg::transpose
computes the result. For arrays and hfarrays, transpose uses other routines.

If the argument does not evaluate to a matrix of one of these types, the transpose is the
input itself.

Examples

Example 1

Compute the transpose of the following real matrix. For real matrices, the Hermitian
transpose coincides with the transpose:

A := matrix([[1, 2], [3, PI]])
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transpose(A) = htranspose(A)

In general, this does not hold for complex matrices:

A := matrix([[1, I, 3 + I], [PI*I, 4, 5]])

transpose(A) <> htranspose(A)

delete A:

Example 2

If the input does not evaluate to a matrix, then the transpose is the input itself:

transpose(A) + 2*transpose(B)

Parameters

A

An object of the category Cat::Matrix, a two-dimensional array, or a two-dimensional
hfarray.
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Return Values

Object of the same domain type as A.

Overloaded By

A

See Also

MuPAD Functions
htranspose | linalg::htranspose | linalg::transpose

More About
• “Transpose Matrices”
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htranspose
Hermitian transpose of a matrix

Syntax
htranspose(A)

Description

htranspose(A) returns the Hermitian transpose AH of the matrix A (the complex
conjugate of the transpose of A). The Hermitian transpose of the m×n matrix A is the
n×m matrix B with .

If the input is a matrix of category Cat::Matrix, then internally
linalg::htranspose computes the result. For arrays and hfarrays, htranspose
uses other routines.

If the argument does not evaluate to a matrix of one of these types, the transpose is the
conjugate of the input.

Examples

Example 1

Compute the transpose of the following real matrix. For real matrices, the Hermitian
transpose coincides with the transpose:

A := matrix([[1, 2], [3, PI]])

transpose(A) = htranspose(A)
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In general, this does not hold for complex matrices:

A := matrix([[1, I, 3 + I], [PI*I, 4, 5]])

transpose(A) <> htranspose(A)

delete A:

Example 2

Compute the product AH A of a matrix given by a hardware float array. This data
type allows matrix multiplication using the operator *:

A := hfarray(1..2, 1..3, [[1, I, 3], [PI*I, 4, 5 + I]])

AH:= htranspose(A)

The product AH A is Hermitian:

AH*A = htranspose(AH*A)
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delete A, AH:

Example 3

If the input does not evaluate to a matrix, then the transpose is the conjugate of the
input:

htranspose(A) + 2*htranspose(B)

Parameters

A

An object of the category Cat::Matrix, a two-dimensional array, or a two-dimensional
hfarray.

Return Values

Object of the same domain type as A.

Overloaded By

A
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See Also

MuPAD Functions
linalg::htranspose | linalg::transpose | transpose

More About
• “Transpose Matrices”
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traperror
Trap errors

Syntax
traperror(object)

traperror(object, t)

traperror(object, MaxSteps = s)

Description

traperror(object) traps errors produced by the evaluation of object.

traperror(object, t) does the same. Moreover, it stops the evaluation if it is not
finished after a real time of t seconds.

traperror traps errors caused by the evaluation of the object. Syntactical errors, i.e.,
errors on parsing the object, cannot be caught. The same holds true for fatal errors
causing the termination of MuPAD.

traperror returns the error code 0 if no error happened. The error code is 1320 if the
given time limit t is exceeded (“Execution time exceeded”) and 1321 if the given
number of “execution steps” is exceeded. The error code is 1028 if the error was raised by
the command error.

If traperror is called with a numerical second argument, this number is taken as a
time limit, measured in seconds, of “process time” (see the documentation of the time
function for a discussion of this term).

When using the option MaxSteps = s, the caller sets a time limit which is not system-
dependent, but rather measured in terms of MuPAD evaluation steps.

The number s does not refer directly to evaluation steps, but rather to a fixed (large)
number of steps which may change from one MuPAD release to the next, but is
fixed within one release. The number s is twice the number of outputs caused by
Pref::report(9) for a calculation using the maximum time allowed.
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If traperror has no time limit set and an “Execution time exceeded” error is raised
by an enclosing traperror(..., t) command, then this error is not trapped by the
inner traperror. It is trapped by the traperror call that has set the time limit. Cf.
“Example 5” on page 1-2083.

The object can be an assignment which, for syntactical reasons, must be enclosed in
additional brackets. The following code fragment demonstrates a typical application of
traperror:

   if traperror((x := SomeErrorProneFunction())) = 0 then

        DoSomethingWith(x);

   else RespondToTheError();

   end_if;

Use lasterror to reproduce the trapped error.

Examples

Example 1

Errors that happen during the execution of kernel functions have various error codes,
depending on the problem. E.g., “Division by zero” produces the error code 1025:

y := 1/x: traperror(subs(y, x = 0))

lasterror()

Error: Division by zero. [_power]

Example 2

All errors raised using the function error have the error code 1028. Errors during the
execution of library functions are of this kind:

traperror(error("My error!"))
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lasterror()

Error: My error!

Example 3

We try to factor a polynomial, but give up after ten seconds:

traperror(factor(x^1000 + 4*x + 1), 10)

lasterror()

 Error: Execution time exceeded;   Evaluating:

faclib::univ_mod_gcd 

Example 4

For use inside other routines, it is preferable to use MaxSteps instead of a time limit, to
achieve consistent results across slower and faster machines:

traperror(factor(x^1000 + 4*x + 1), MaxSteps=10)

lasterror()

 Error: Execution MaxSteps exceeded [traperror];

  Evaluating: faclib::ddf 

Note that evaluation steps may take vastly different amounts of time, so even on the
same machine, different expressions evaluated with the same value of MaxSteps may be
terminated after very different lengths of time:

time(traperror(factor(x^1000 + 4*x + 1), MaxSteps=1));

time(traperror(while TRUE do 1 end_while, MaxSteps=1));
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time(traperror(int(1/sqrt(1/r-1/r0), r=0..r0), MaxSteps=1))

Example 5

Here we have two nested traperror calls. The inner call contains an unterminated loop
and the outer call has a time limit of 2 seconds. When the execution time is exceeded,
this special error is not trapped by the inner traperror call. Because of the error,
print(1) is never executed:

traperror((traperror((while TRUE do 1 end)); print(1)), 2)

lasterror()

Error: Execution time is exceeded.

Parameters

object

Any MuPAD object

t

The time limit: a positive integer

s

The execution limit: a positive integer
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Return Values

Nonnegative integer.

See Also

MuPAD Functions
error | getlasterror | lasterror
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triangularPulse
Triangular pulse function

Syntax
triangularPulse(a, b, c, x)

triangularPulse(a, c, x)

Description

triangularPulse(a, b, c, x) represents the triangular function.

triangularPulse(a, c, x) is a shortcut for triangularPulse(a, (a + c)/2,
c, x).

triangularPulse(x) is a shortcut for triangularPulse(-1, 0, 1, x).

triangularPulse represents the triangular pulse function. This function is also called
the triangle function, hat function, tent function, or sawtooth function.

If a, b, and c are variables or expressions with variables, triangularPulse assumes
that a <= b <= c. If a, b, and c are numerical values that do not satisfy this condition,
triangularPulse throws an error.

If a < x < b, the triangular function equals (x - a)/(b - a). If b < x < c, the
triangular function equals (c - x)/(c - b). Otherwise, it equals 0. See “Example 1”
on page 1-2086 and “Example 2” on page 1-2086.

If a = b or b = c, the triangular function can be expressed in terms of the rectangular
function. See “Example 3” on page 1-2086.

If a = b = c, triangularPulse returns 0. See “Example 4” on page 1-2087.

triangularPulse(x) is equivalent to triangularPulse(-1, 0, 1, x). See
“Example 5” on page 1-2087.

triangularPulse(a, c, x) is equivalent to triangularPulse(a, (a + c)/2, c,
x). See “Example 6” on page 1-2087.
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triangularPulse also accepts infinities as its arguments. See “Example 9” on page
1-2089.

triangularPulse and tripulse are equivalent.

Examples

Example 1

Compute the triangular pulse function for these input arguments:

[triangularPulse(-2, 0, 2, -3),

 triangularPulse(-2, 0, 2, -1/2),

 triangularPulse(-2, 0, 2, 0), 

 triangularPulse(-2, 0, 2, 3/2),

 triangularPulse(-2, 0, 2, 3)]

Example 2

Compute the triangular pulse function for a < x < b:

triangularPulse(a, b, c, x) assuming a < x < b

Compute the triangular pulse function for b < x < c:

triangularPulse(a, b, c, x) assuming b < x < c

Example 3

Compute the triangular pulse function for a = b and c = b:
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triangularPulse(b, b, c, x) assuming b < c

triangularPulse(a, b, b, x) assuming a < b

Example 4

For a = b = c, the triangular pulse function returns 0:

triangularPulse(a, a, a, x)

Example 5

Use triangularPulse with one input argument as a shortcut for computing
triangularPulse(-1, 0, 1, x):

triangularPulse(x)

[triangularPulse(-10),

 triangularPulse(-3/4),

 triangularPulse(0),

 triangularPulse(2/3),

 triangularPulse(1)]

Example 6

Use triangularPulse with three input arguments as a shortcut for computing
triangularPulse(a, (a + c)/2, c, x):
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triangularPulse(a, c, x)

[triangularPulse(-10, 10, 3),

 triangularPulse(-1/2, -1/4, -2/3),

 triangularPulse(2, 4, 3),

 triangularPulse(2, 4, 6),

 triangularPulse(-1, 4, 0)]

Example 7

Rewrite the triangular pulse function in terms of the Heaviside step function:

rewrite(triangularPulse(a, b, c, x), heaviside)

Example 8

Plot the triangular pulse function:

plot(triangularPulse(x), x = -2..2)
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Example 9

Plot the triangular pulse function for which the argument c is a positive infinity:

plot(triangularPulse(-1, 1, infinity, x))
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Parameters

a, b, c, x

Arithmetical expressions.

Return Values

Arithmetical expression.

Overloaded By

x
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See Also

MuPAD Functions
heaviside | piecewise | rectangularPulse
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tripulse
Triangular pulse function

Syntax
tripulse(a, b, c, x)

tripulse(a, c, x)

Description

tripulse(a, b, c, x) represents the triangular function.

tripulse(a, c, x) is a shortcut for tripulse(a, (a + c)/2, c, x).

tripulse(x) is a shortcut for tripulse(-1, 0, 1, x).

tripulse and triangularPulse are equivalent. These functions represent the
triangular pulse function. For details and examples, see triangularPulse.

Parameters

a, b, c, x

Arithmetical expressions.

Return Values

Arithmetical expression.

Overloaded By

x
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See Also

MuPAD Functions
heaviside | piecewise | rectangularPulse | triangularPulse
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TRUE
Boolean constant TRUE

Description

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.

The Boolean constants TRUE, FALSE, UNKNOWN are of domain type DOM_BOOL.

See and, or, not for the logical rules of the MuPAD three state logic.

Boolean constants are returned by system functions such as bool and is. These
functions evaluate Boolean expressions such as equations and inequalities.

Examples

Example 1

The Boolean constants may be combined via and, or, and not:

(TRUE and (not FALSE)) or UNKNOWN

Example 2

The function bool serves for reducing Boolean expressions such as equations or
inequalities to one of the Boolean constants:

bool(x = x and 2 < 3 and 3 <> 4 or UNKNOWN)

The function is evaluates symbolic Boolean expressions with properties:

assume(x > 2): is(x^2 > 4), is(x^3 < 0), is(x^4 > 17)
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unassume(x):

Example 3

Boolean constants occur in the conditional part of program control structures such as if,
repeat, or while statements. The following loop searches for the smallest Mersenne
prime larger than 500 (see numlib::mersenne for details). The function isprime
returns TRUE if its argument is a prime, and FALSE otherwise. Once a Mersenne prime is
found, the while-loop is interrupted by the break statement:

p := 500:

while TRUE do

  p := nextprime(p + 1):

  if isprime(2^p - 1) then

     print(p);

     break;

  end_if;

end_while:

Note that the conditional part of if, repeat, and while statements must evaluate to
TRUE or FALSE. Any other value leads to an error:

if UNKNOWN then "true" else "false" end_if

Error: Cannot evaluate to Boolean. [if]

delete p:

See Also

MuPAD Domains
DOM_BOOL

MuPAD Functions
_lazy_and | _lazy_or | and | bool | FALSE | if | is | not | or | repeat |
UNKNOWN | while
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FALSE
Boolean constant FALSE

Description

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.

The Boolean constants TRUE, FALSE, UNKNOWN are of domain type DOM_BOOL.

See and, or, not for the logical rules of the MuPAD three state logic.

Boolean constants are returned by system functions such as bool and is. These
functions evaluate Boolean expressions such as equations and inequalities.

Examples

Example 1

The Boolean constants may be combined via and, or, and not:

(TRUE and (not FALSE)) or UNKNOWN

Example 2

The function bool serves for reducing Boolean expressions such as equations or
inequalities to one of the Boolean constants:

bool(x = x and 2 < 3 and 3 <> 4 or UNKNOWN)

The function is evaluates symbolic Boolean expressions with properties:

assume(x > 2): is(x^2 > 4), is(x^3 < 0), is(x^4 > 17)
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unassume(x):

Example 3

Boolean constants occur in the conditional part of program control structures such as if,
repeat, or while statements. The following loop searches for the smallest Mersenne
prime larger than 500 (see numlib::mersenne for details). The function isprime
returns TRUE if its argument is a prime, and FALSE otherwise. Once a Mersenne prime is
found, the while-loop is interrupted by the break statement:

p := 500:

while TRUE do

  p := nextprime(p + 1):

  if isprime(2^p - 1) then

     print(p);

     break;

  end_if;

end_while:

Note that the conditional part of if, repeat, and while statements must evaluate to
TRUE or FALSE. Any other value leads to an error:

if UNKNOWN then "true" else "false" end_if

Error: Cannot evaluate to Boolean. [if]

delete p:

See Also

MuPAD Domains
DOM_BOOL

MuPAD Functions
_lazy_and | _lazy_or | and | bool | if | is | not | or | repeat | TRUE |
UNKNOWN | while
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UNKNOWN
Boolean constant UNKNOWN

Description

MuPAD uses a three state logic with the Boolean constants TRUE, FALSE, and UNKNOWN.

The Boolean constants TRUE, FALSE, UNKNOWN are of domain type DOM_BOOL.

See and, or, not for the logical rules of the MuPAD three state logic.

Boolean constants are returned by system functions such as bool and is. These
functions evaluate Boolean expressions such as equations and inequalities.

Examples

Example 1

The Boolean constants may be combined via and, or, and not:

(TRUE and (not FALSE)) or UNKNOWN

Example 2

The function bool serves for reducing Boolean expressions such as equations or
inequalities to one of the Boolean constants:

bool(x = x and 2 < 3 and 3 <> 4 or UNKNOWN)

The function is evaluates symbolic Boolean expressions with properties:

assume(x > 2): is(x^2 > 4), is(x^3 < 0), is(x^4 > 17)
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unassume(x):

Example 3

Boolean constants occur in the conditional part of program control structures such as if,
repeat, or while statements. The following loop searches for the smallest Mersenne
prime larger than 500 (see numlib::mersenne for details). The function isprime
returns TRUE if its argument is a prime, and FALSE otherwise. Once a Mersenne prime is
found, the while-loop is interrupted by the break statement:

p := 500:

while TRUE do

  p := nextprime(p + 1):

  if isprime(2^p - 1) then

     print(p);

     break;

  end_if;

end_while:

Note that the conditional part of if, repeat, and while statements must evaluate to
TRUE or FALSE. Any other value leads to an error:

if UNKNOWN then "true" else "false" end_if

Error: Cannot evaluate to Boolean. [if]

delete p:

See Also

MuPAD Domains
DOM_BOOL

MuPAD Functions
_lazy_and | _lazy_or | and | bool | FALSE | if | is | not | or | repeat | TRUE |
while
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type
Type of an object

Syntax
type(object)

Description

type(object) returns the type of the object.

If object is not an expression of domain type DOM_EXPR, then type(object) is
equivalent to domtype(object), i.e., type returns the domain type of the object.

If object is an expression of domain type DOM_EXPR, then its type is determined by its
0-th operand (the “operator”). If the operator has a "type" slot, then type returns this
value, which usually is a string. If the operator has no "type" slot, then type returns
the string "function".

In contrast to most other functions, type does not flatten arguments that are expression
sequences. Cf. “Example 4” on page 1-2101.

Examples

Example 1

If an object is not an expression, its type equals its domain type:

type(3)

Example 2

The operator of a sum is _plus; the type slot of that operator is "_plus":
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type(x + y*z)

type evaluates its argument: thereby, the difference of x and y becomes the sum of x and
(-1)*y. Its type is not "_subtract", but "_plus":

type(x - y)

Example 3

If the operator of an expression is not a function environment having a type slot, the
expression is of type "function":

type(f(2))

Example 4

The following call to type is not regarded as a call with two arguments, because
expression sequences in the argument are not flattened:

type((2, 3))

Parameters

object

Any MuPAD object
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Return Values

Domain type of type DOM_DOMAIN or a character string.

Overloaded By

object

See Also

MuPAD Functions
coerce | domtype | hastype | testtype

1-2102



 unassume

unassume
Delete the properties of an identifier

Syntax
unassume(x)

Description

unassume(x) deletes the properties of the identifier x.

unassume serves for deleting properties of identifiers set via assume. See “Properties”
for a description of the property mechanism.

If x is a list or a set of identifiers, then the properties of all specified identifiers are
deleted.

The command delete x deletes the value and the properties of the identifier x.

Examples

Example 1

Properties are attached to the identifiers x and y:

assume(x > 0): assume(y < 0): getprop(x), getprop(y)

sign(x), sign(y)

unassume or delete deletes the properties:
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unassume(x): delete y: getprop(x), getprop(y)

sign(x), sign(y)

The properties of several identifiers can be deleted simultaneously by passing a list or a
set to unassume:

assume(x > y): unassume([x, y]): getprop(x), getprop(y)

Parameters

x

An identifier or a list or a set of identifiers

Return Values

Void object null().

See Also

MuPAD Functions
assume | delete | getprop | is
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undefined
Undefined value

Description

undefined indicates results of mathematically undefined operations.

MuPAD uses the special value undefined to indicate the results of operations that are
not defined in mathematics.

You can use the undefined value as an input. Arithmetical operations involving
undefined also return undefined. Multiplying infinities by 0 returns undefined.

For floating-point values, MuPAD uses the special value RD_NAN instead of undefined.
If you use typeset mode, MuPAD displays RD_NAN as NaN in output regions. Multiplying
infinities RD_INF and RD_NINF by 0 returns RD_NAN.

Examples

Example 1

Perform the following operations with infinities. MuPAD returns the undefined value
for these operations:

0*infinity, infinity - infinity, infinity/infinity

Example 2

Compute the limit of the sine function at infinity. Since this limit does not exist (is not
mathematically defined), MuPAD returns undefined:

limit(sin(x), x = infinity)
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Example 3

Multiply infinities by 0:

infinity*0, -infinity*0

RD_INF*0, RD_NINF*0

See Also

MuPAD Functions
FAIL

More About
• “Mathematical Constants Available in MuPAD”
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unit
Units of measurement

Syntax
unit::n

Description

unit::n represents the unit of measurement n, where n follows commonly used names.
For example, the units unit::m, unit::meter, and unit::metre all represent the
physical unit meter. These unit objects are domain objects of domain type unit. You
can use these units in arithmetical expressions as symbolic identifiers. For example,
3*unit::m^2. You must use units consistently in expressions, and you must specify
units for unknown variables so that the variables themselves are dimensionless. For
details, see “Example 3” on page 1-2109.

Expressions containing units are not combined or simplified automatically. Use
simplify or Simplify to simplify expressions containing units. Use unit::convert to
convert between units.

For a list of all implemented units, see “List of Units” on page 1-2112.

Examples

Example 1

Create an expression using different units of length. The common names of units work as
expected.

27*unit::cm + 30*unit::mm
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Because MuPAD does not simplify this expression automatically, use the simplify
function to simplify the expression.

simplify(%)

Simplify an expression involving several different units.

simplify(1234*unit::g + 1.234*unit::kg*unit::m^2/unit::inch^2)

Example 2

Convert between any two units using unit::convert.

Convert ounce to kilograms. unit::convert returns an exact conversion. Use float to
obtain a floating-point result.

unit::convert(unit::ounce, unit::kilogram)

float(%)

Use unit::convert to convert between units that are not of the same type. For
example, convert Newton-meter, which is a unit of torque, to Watts, which is a unit of
power.

unit::convert(1.23*unit::Nm, unit::W)
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Rewrite the target unit, Newton-meter, in terms of a composite expression in grams,
centimeters, and milliseconds.

unit::convert(unit::Nm, unit::g*unit::cm^2/unit::ms^2)

Try to convert kg inch2/mm to cm. unit::convert has no effect on units it cannot
convert.

unit::convert(1.23*unit::kg*unit::inch^2/unit::mm, unit::cm)

Example 3

For numerical computations, explicitly specify units such that the variables themselves
are dimensionless. If you apply units inconsistently, you might not get the desired result.

Demonstrate this issue by omitting the unit for an unknown variable in an expression.
Substitute for the variable with a number and evaluate the expression using float. The
float function cannot evaluate the expression.

L := 1*unit::m:

y := 0.1*unit::m:

f := y - x*cos(L/x):

float(subs(f, x = 1/PI))

Evaluate the expression by specifying units consistently. Now, the unknown variable x is
dimensionless.

f := y - x*unit::m*cos(L/(x*unit::m)):

float(subs(f, x = 1/PI))
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Example 4

Add new units using unit::newUnit.

Add a velocity unit to the unit domain.

unit::newUnit(SpeedOfLight = 300000*unit::km/unit::s)

You can use the unit unit::SpeedOfLight like any other unit. Use
unit::SpeedofLight to define another velocity unit.

unit::newUnit(Warp9 = 1.516*unit::SpeedOfLight)

Convert 123.4 miles per hour into the new speed units.

unit::convert(123.4*unit::mile/unit::hour, unit::SpeedOfLight)

unit::convert(123.4*unit::mile/unit::hour, unit::Warp9)

Example 5

Use the conversion methods to convert between different systems of units.

Use unit::convert2SIunits to convert a mass expressed in non-metric units to SI
units.

mass := 2*unit::cal*unit::ms^2/unit::inch^2 - 45*unit::carat
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unit::convert2SIunits(mass)

delete mass:

Convert a temperature of 20 degrees Celsius into the Fahrenheit temperature scale
using unit::Celsius2Fahrenheit.

unit::Celsius2Fahrenheit(20)

Example 6

You can use most functions such as diff, factor, and normal with unit. These
functions treat units like ordinary symbolic identifiers.

Use diff, factor, and normal with unit.

diff(x/unit::m*exp(-x^2/unit::m^2), x)

factor(%)

normal((4*unit::m^2 - a^2*unit::m^2)/(2*unit::m - a*unit::m))
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Parameters

n

The name of the physical unit. Expand the following list for all implemented units. You
can represent a unit by multiple names. For example, you can represent a meter by
unit::m, unit::meter, and unit::metre.

List of Units

Length —

• am, f (= Fermi = fermi), XU (= Xu = xu = XE), pm
• Ao (= Angstroem = angstroem = Angstrom = angstrom)
• nm (= nanometer)
• My (= micron = micrometer)
• mm (= millimeter), cm (= centimeter)
• dm (= decimeter), m (= meter)
• dam, hm, km (= kilometer), Mm, Gm, Tm, Pm, Em
• pt (= point), inch
• ft (= foot), ft_US (= foot_US)
• yd (= yard), mile, nmile, inm (= INM)
• AU (= AE), ly (= lightyear = Lj = lj), pc (= parsec)
• ch, fm (= fathom), fur (= furlong), gg, hand
• li (= link), line, mil, rod (= perch = pole), span

Mass —

• ag, fg, pg, ng, mcg (= mcgram = microgram)
• mg (= milligram), cg, dg, g (= gram), hg
• kg (= kilogram), Mg, Gg, Tg, Pg, Eg
• t, kt, Mt, ct (= carat = Kt = Karat = karat)
• oz (= ounce)
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• lb (= pound), stone, cwt (= sh_cwt)
• cwt_UK (= long_cwt = gross_cwt), tn (= ton = short_ton), ton_UK
• long_ton (= gross_ton), slug, gr, dr, quarter, cental

Time —

• as, fs, ps, ns (= nsec = nanosec = nanosecond)
• mcsec (= mcsecond = microsec = microsecond)
• ms (= msec = millisec = millisecond), cs, ds
• s (= sec = second), das, hs, ks
• Ms, Gs, Ts, Es, Ps, min (= minute = Minute)
• h (= hour), d (= day)
• week, month
• year

Temperature —

• K (= kelvin = Kelvin), Fahrenheit (= fahrenheit), Celsius (= celsius)
• Rankine (= rankine), Reaumur (= reaumur)

Plain Angle —

• degree , rad (= radian)

Solid Angle —

• sr (= steradian)

Data Size, Storage Capacity —

• bit (= Bit), kbit (= kBit), Mbit (= MBit), Gbit (= GBit), Tbit (= TBit)
• byte (= Byte), kbyte (= kByte), Mbyte (= MByte), Gbyte (= GByte)
• Tbyte (= TByte)

Data Rate (Bits per Second) —

• bps
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Signal Rate (= Frequency) —

• Bd (= Baud = baud)

Velocity —

• knot, knot_UK, mach

Acceleration —

• Gal, gn

Force —

• aN, fN, nN, pN, mcN, mN, cN, dN, N (= Newton = newton), daN, hN, kN, MN, GN
• TN, PN, EN, p (= pond = Pond), kp (= kilopond = Kilopond), dyn, pdl, lbf
• ozf, tonf

Torque —

• aNm, fNm, pNm, nNm, mcNm, mNm, cNm, dNm, Nm (= Newtonmeter = newtonmeter)
• daNm, hNm, kNm, MNm, GNm, TNm, PNm, ENm, kpm

Angular Momentum —

• aNms, fNms, pNms, nNms, mcNms, mNms, cNms, dNms
• Nms (= Newtonmetersec = newtonmetersec)
• daNms, hNms, kNms, MNms, GNms, PNms, ENms, TNms

Energy, Work —

• aJ (= aWs), fJ (= fWs), pJ (= pWs), nJ (= nWs), mcJ (= mcWs = microWs)
• mJ (= mJoule = mjoule = mWs), cJ (= cWs), dJ (= dWs)
• J (= Joule = joule = Ws), daJ (= daWs), hJ (= hWs)
• kJ (= kJoule = kjoule = kWs), MJ (= MJoule = Mjoule = MWs)
• GJ (= GWs), TJ (= TWs), PJ (= PWs), EJ (= EWs), Wh, kWh, MWh, GWh
• cal (= Calory = calory), kcal, aeV, feV, peV, neV, mceV, meV, ceV, deV, eV
• daeV, heV, keV, MeV, GeV, TeV, PeV, EeV, PSh, erg, Btu, therm
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Power —

• aW, fW, pW, nW, mcW (= mcWatt = mcwatt = microW = microWatt = microwatt)
• mW (= mWatt = mwatt), cW, dW, W (= Watt = watt), daW, hW
• kW (= kWatt = kwatt), MW (= MWatt = Mwatt), GW (= GWatt = Gwatt)
• TW, PW, EW, hp (= bhp)

Frequency —

• aHz, fHz, pHz, nHz, mcHz, mHz, cHz, dHz, Hz (= Hertz = hertz), daHz, hHz
• kHz (= kHertz = khertz), MHz (= MHertz = Mhertz)
• GHz (= GHertz = Ghertz), THz, PHz, EHz

Pressure, Stress —

• aPa, fPa, pPa, nPa, mcPa, mPa, cPa, dPa, Pa (= Pascal = pascal)
• daPa, hPa (= hPascal = hpascal), kPa, MPa, GPa, TPa, PPa, EPa
• mcbar (= mcBar = microbar = microBar), mbar (= mBar), bar (= Bar)
• kbar (= kBar), at (= ata = atu), atm, mmH2O (= mmWS), mH2O (= mWS)
• inH2O, ftH2O, mmHg, mHg, inHg, psi, Torr

Area —

• a (= are = Ar), ac (= acre), b (= barn), ha (= hectare)
• ro (= rood), township, circ_mil, circ_inch

Volume —

• al, fl, pl, nl, mcl, ml, cl, dl, l (= Liter = liter = Litre = litre), dal
• hl, kl, Ml, Gl, Tl, Pl, El, gal (= gallon), gal_UK, barrel, bu_UK, chaldron
• pottle, pint_UK, pk_UK, qt_UK, gill, gill_UK, floz, floz_UK, fldr, fldr_UK
• minim, minim_UK, liq_qt, liq_pt, dry_bu, dry_pk, bbl, dry_gal, dry_qt,

dry_pt

European Currency —

• cent (= Cent), EUR (= EURO = Euro), ATS, DEM (= DM), BEF, ESP, FIM, FRF, LUF
• NLG, PTE, IEP, ITL
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Molecular Substance —

• fmol, amol, pmol, nmol, mcmol (= mcMol = micromol = microMol)
• mmol (= mMol), cmol, dmol, mol (= Mol), damol, hmol, kmol (= kMol), Mmol
• Gmol, Tmol, Pmol, Emol

Electric Current, Amperage —

• aA, fA, pA, nA (= nAmpere = nampere)
• mcA (= microA = microAmpere = microampere), mA (= mAmpere = mampere)
• cA, dA, A (= ampere = Ampere), daA, hA, kA (= kAmpere = kampere), MA, GA
• TA, PA, EA, Bi (= Biot = biot), Gb (= Gilbert = gilbert)

Electric Voltage —

• aV, fV, pV, nV (= nanoV = nVolt = nvolt)
• mcV (= microV = mcVolt = mcvolt), mV (= mVolt = mvolt), cV, dV
• V (= Volt = volt), daV, hV
• kV (= kVolt = kvolt)
• MV (= MVolt = Mvolt), GV (= GVolt = Gvolt), TV, PV, EV

Electric Resistance —

• aOhm (= aohm), fOhm (= fohm), pOhm (= pohm), nOhm (= nohm)
• mcOhm (=mcohm = microOhm = microohm)
• mOhm (= mohm = milliOhm = milliohm), dOhm (= dohm), cOhm (= cohm)
• Ohm (= ohm), daOhm (= daohm), hOhm (= hohm), kOhm (= kohm), MOhm (= Mohm)
• GOhm (= Gohm), TOhm (= Tohm), POhm (= Pohm), EOhm (= Eohm)

Electric Charge —

• aC, fC, pC, nC, mcC, mC, cC, dC, C (= Coulomb = coulomb), daC, hC, kC, MC, GC, TC
• PC, EC

Electric Capacity —

• aF, fF, pF (= pFarad = pfarad), nF (= nFarad = nfarad)
• mcF (= mcFarad = mcfarad = microF = microFarad = microfarad)
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• mF (= mFarad = mfarad), cF, dF, F (= Farad = farad), daF, hF
• kF (= kFarad = kfarad) , MF, GF, TF, PF, EF

Electric Conductance —

• S (= Siemens = siemens)

Magnetic Inductance —

• H (= Henry = henry)

Magnetic Flux Density, Magnetic Inductivity —

• T (= Tesla = tesla), G (= Gauss = gauss)

Magnetic Flux —

• Wb (= Weber = weber), M (= Maxwell = maxwell)

Magnetic Field Strength —

• Oe (= Oersted = oersted)

Magnetomotive Force (= Electric Current) —

• Gb (= Gilbert = gilbert)

Luminous Intensity —

• fcd, acd, pcd, ncd, mccd, mcd, ccd, dcd, cd (= candela = Candela), dacd, hcd
• kcd, Mcd, Gcd, Tcd, Pcd, Ecd, HK, IK

Luminance —

• sb (= stilb), asb (= apostilb)

Luminous Flux —

• lm (= lumen)

Illuminance —

• lx (= lux), ph (= phot), nx

1-2117



1 The Standard Library

Radiation —

• langley

Radioactivity —

• aBq, fBq, pBq, nBq, mcBq, mBq, cBq, dBq, Bq (= Becquerel = becquerel), daBq
• hBq, kBq, MBq, GBq, TBq, PBq, EBq, Ci (= Curie)

Equivalent Dosage —

• aSv, fSv, pSv, nSv, mcSv, mSv, cSv, dSv
• Sv (= Sievert = sievert), daSv, hSv, kSv, MSv, GSv, TSv, PSv, ESv
• arem, frem, prem, nrem, mcrem, mrem, crem, drem
• rem (= Rem), darem, hrem, krem, Mrem, Grem, Trem, Prem, Erem

Absorbed Dosage —

• aGy, fGy, pGy, nGy, mcGy, mGy, cGy, dGy, Gy (= Gray = gray), daGy, hGy, kGy, MGy,
GGy

• TGy, PGy, EGy, rd

Ionizing Dosage —

• R (= Roentgen)

Lens Power —

• dpt (= diopter = dioptre)

Dynamic Viscosity —

• P (= Poise)

Kinematic Viscosity —

• St (= Stokes)

Mass Per Length —

• tex, den (= denier)

1-2118



 unit

Methods

convert — Convert between units

unit::convert(x, targetunit) converts all units in the arithmetical expression
x to the targetunit if possible. The targetunit can be a unit (such as unit::m) or
an arithmetical expression (such as unit::km/unit::s). In the second case, convert
rewrites x in terms of the units found in targetunit. See “Example 2” on page 1-2108.

convert2SIunits — Rewrite to SI units

unit::convert2SIunits(x) rewrites all units in the arithmetical expression x in
terms of corresponding SI base units. See “Example 5” on page 1-2110.

display — Format for output

unit::display(x) formats the displayed output of the arithmetical expression x such
that the units appear as a separate factor at the end of each term.

findUnits — Find all units in expression

unit::findUnits(x) returns the set of all units found in the arithmetical expression
x.

newUnit — Define a new unit

unit::newUnit(newname = f*oldunit) creates a unit addressed by
unit::newname. The name newname must be an identifier. The new unit is declared
as a multiple f of one or more pre-existing units oldunit, where f is a number. See
“Example 4” on page 1-2110.

simplify — Combine units of the same type

unit::simplify(x) combines all units of the same type in the arithmetical expression
x to one unit of that type found in x. See “Example 1” on page 1-2107.

The following methods convert a numeric temperature value to the same temperature
in another temperature scale. The name of a method describes the temperature scales
that the method converts between. For example, Celsius2Fahrenheit converts a
temperature in Celsius to the same temperature in Fahrenheit. See “Example 5” on page
1-2110.
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• Celsius2Fahrenheit
• Celsius2Kelvin
• Celsius2Rankine
• Celsius2Reaumur
• Fahrenheit2Celsius
• Fahrenheit2Kelvin
• Fahrenheit2Rankine
• Fahrenheit2Reaumur
• Kelvin2Fahrenheit
• Kelvin2Celsius
• Kelvin2Rankine
• Kelvin2Reaumur
• Rankine2Fahrenheit
• Rankine2Kelvin
• Rankine2Celsius
• Rankine2Reaumur
• Reaumur2Fahrenheit
• Reaumur2Kelvin
• Reaumur2Rankine
• Reaumur2Celsius

See Also

MuPAD Functions
Simplify | simplify

External Websites
• The International System of Units (SI)

1-2120

http://www.bipm.org/en/publications/si-brochure/


 universe

universe
Set-theoretical universe

Description

universe represents the set-theoretical universe of all objects.

universe is the only element of the domain stdlib::Universe.

The standard set operations such as union, intersection and subtraction can be used with
universe.

Examples

Example 1

We show some basic set operations involving universe:

universe union {a}

universe intersect {a}

{a} minus universe

See Also

MuPAD Domains
DOM_SET
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MuPAD Functions
intersect | minus | union
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unprotect
Remove protection of identifiers

Syntax
unprotect(x)

Description

unprotect(x) removes any write protection of the identifier x.

unprotect(x) is equivalent to protect(x, ProtectLevelNone).

unprotect does not evaluate its argument. Cf. “Example 2” on page 1-2123.

Examples

Example 1

unprotect allows to assign values to system functions:

unprotect(sign): sign(x) := 1

However, we strongly advise not to change identifiers protected by the system. We undo
the previous assignment:

delete sign(x): protect(sign, ProtectLevelError):

Example 2

unprotect does not evaluate its argument. Here the identifier x is unprotected and not
its value y:

x := y:  protect(y): unprotect(x): y := 1
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Warning: The protected variable 'y' is overwritten. [_assign]

 Warning: Protected variable

'y' overwritten. [_assign] 

unprotect(y): delete x, y:

Example 3

The identifier a is protected with various levels. unprotect returns the previous
protection level:

protect(a):

unprotect(a)

protect(a, ProtectLevelError):

unprotect(a)

At this place, a is not protected:

unprotect(a)

Parameters

x

An identifier
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Return Values

Previous protection level of x: either ProtectLevelError or ProtectLevelWarning or
ProtectLevelNone (see protect).

See Also

MuPAD Functions
protect
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use
Use library functions by a short name

Syntax
use(L, <Alias>, f1, f2, …)

use(L, <Alias>)

Description

use(L, f) 'exports' the public function L::f of the library L to the global namespace
such that it can be accessed as f without the prefix L.

use(L) exports all public functions of the library L.

The standard way of accessing the function f from the library L is via L::f. When the
function f is exported, you can call it simply as f. Technically, exporting means that the
global identifier f is assigned the value L::f. Alternatively, when the option Alias is
used, an alias is created.

Undoing the export of the library function f means that the value of the global identifier
f is deleted. Afterwards, the library function is available only as L::f.

use(L, f1, f2, ...) exports the specified functions f1, f2, ... of the library L.
If one of the identifiers already has a value, the corresponding function is not exported.
Instead, use prints a warning.

If one of the identifiers is not the name of a public library function, use throws an error.

A function that is already exported cannot be exported the second time.

use evaluates its first argument L, but it does not evaluate the remaining arguments
f1, f2, ....

The info function displays the interface functions and the exported functions of a
library.
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Some libraries have functions that are always exported. You cannot undo the export for
these functions. The function append from the library listlib is such an example.

Environment Interactions

When a function is exported, it is assigned to the corresponding global identifier. When
you undo the export, the corresponding identifier is deleted.

Examples

Example 1

Export the function invphi of the library numlib, and then undo the export:

numlib::invphi(4!)

use(numlib, invphi):

invphi(4!)

unuse(numlib, invphi):

invphi(4!)

Export all functions of the library numlib:

use(numlib):

invphi(100)

Warning: Identifier 'divisors' already has a value. It is not exported. [use]

Warning: Identifier 'contfrac' already has a value. It is not exported. [use]
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Here, use issues warnings because contfrac and divisors are already available
as global functions. For example, there is the global contfrac function that uses
numlib::contfrac for numerical arguments. Undo the export of the numlib functions.

unuse(numlib):

invphi(100)

Example 2

use issues a warning if a function cannot be exported since the corresponding identifier
already has a value:

invphi := 17:

use(numlib, invphi)

Warning: Identifier 'invphi' already has a value. It is not exported. [use]

Parameters

L

The library: a domain

f1, f2, …

Public functions of L: identifiers

Options

Alias

Use alias(f = L::f) to create an alias f for L::f rather than exporting L::f by the
assignment f:= L::f.
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Return Values

Void object null() of type DOM_NULL.

Algorithms

The names of the functions of a library L are stored in the set L::interface. This set is
used by the function info and for exporting.

The names of functions exported from a library L are stored in the set L::_exported.

See Also

MuPAD Functions
:= | alias | delete | info | unuse
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unuse

Undo export of library function

Syntax

unuse(L, f1, f2, …)

unuse(L)

Description

unuse(L, f) is used to undo the export of the function L::f of the library L, so that it
is no longer available as f.

unuse(L) is used to undo the export of all previously exported functions of the library L.

The standard way of accessing the function f from the library L is via L::f. When the
function f is exported, you can call it simply as f. Technically, exporting means that the
global identifier f is assigned the value L::f. Alternatively, when the option Alias is
used, an alias is created.

Undoing the export of the library function f means that the value of the global identifier
f is deleted. Afterwards, the library function is available only as L::f.

unuse(L, f1, f2, ...) is used to undo the export of the specified functions f1,
f2, ...of the library L. unuse evaluates its first argument L, but it does not evaluate
the remaining arguments f1, f2, .... Thus, you do not need to use hold to protect
functions from being evaluated.

The function info displays the interface functions and the exported functions of a
library.

Some libraries have functions that are always exported. You cannot undo the export for
these functions. The function append from the library listlib is such an example.
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Environment Interactions

When a function is exported, it is assigned to the corresponding global identifier. When
you undo the export, the corresponding identifier is deleted.

Examples

Example 1

Export the function invphi of the library numlib, and then undo the export:

numlib::invphi(4!)

use(numlib, invphi):

invphi(4!)

unuse(numlib, invphi):

invphi(4!)

Export all functions of the library numlib:

use(numlib):

invphi(100)

Warning: Identifier 'divisors' already has a value. It is not exported. [use]

Warning: Identifier 'contfrac' already has a value. It is not exported. [use]
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Here, use issues warnings because contfrac and divisors are already available
as global functions. For example, there is the global contfrac function that uses
numlib::contfrac for numerical arguments. Undo the export of the numlib functions.

unuse(numlib):

invphi(100)

Parameters

L

The library: a domain

f1, f2, …

Public functions of L: identifiers

Return Values

Void object null() of type DOM_NULL.

Algorithms

The names of the functions of a library L are stored in the set L::interface. This set is
used by the function info and for exporting.

The names of functions exported from a library L are stored in the set L::_exported.

See Also

MuPAD Functions
:= | alias | delete | info | use
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More About
• “Use the MuPAD Libraries”
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val
Value of an object

Syntax
val(object)

Description

val(object) replaces every identifier in object by its value.

val does not perform any simplification of the result.

If the result of val is a set, duplicate elements are removed from that set.

val does not work recursively, i.e., if the value of an identifier in turn contains
identifiers, then these are not replaced by their values. See “Example 3” on page 1-2135.

val does not flatten its argument. Hence, an expression sequence is accepted as
argument. Cf. “Example 2” on page 1-2135.

Examples

Example 1

val replaces identifiers by their values, but does not call arithmetical functions such as
_plus:

a := 0: val(a*b + 4 + 0)

Duplicate elements in sets are removed:

a := b: val({a, b, a*0})
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delete a:

Example 2

val does not flatten its argument, nor does it remove void objects of type DOM_NULL:

a := null(): val((a, null()))

 null(), null() 

However, it is not legal to pass several arguments:

val(a, null())

Error: The number of arguments is incorrect. [val]

delete a:

Example 3

val does not recursively substitute values for the identifiers:

delete a, b: a := b: b := c: val(a)

Parameters

object

Any MuPAD object

Return Values

“evaluated” object.
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See Also

MuPAD Functions
eval | hold | LEVEL | level | MAXLEVEL
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vectorPotential

Vector potential of a three-dimensional vector field

Syntax

vectorPotential(j, [x1, x2, x3], <Test>)

Description

vectorPotential(j, x) returns the vector potential of the vector field  with
respect to . This is a vector field  with .

The vector potential of a vector function j exists if and only if the divergence of j is zero.
It is uniquely determined.

If the vector potential of j does not exist, then vectorPotential returns FALSE.

If j is a vector then the component ring of j must be a field (i.e., a domain of category
Cat::Field) for which definite integration can be performed.

If j is given as a list of three arithmetical expressions, then vectorPotential returns a
vector of the domain Dom::Matrix().

Examples

Example 1

We check if the vector function  has a vector potential:

delete x, y, z:

vectorPotential(
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  [x^2*y, -1/2*y^2*x, -x*y*z], [x, y, z], Test

)

The answer is yes, so let us compute the vector potential of :

vectorPotential(

  [x^2*y, -1/2*y^2*x, -x*y*z], [x, y, z]

)

We check the result:

curl(%, [x, y, z])

Example 2

The vector function  does not have a vector potential:

vectorPotential([x^2, 2*y, z], [x, y, z])
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Parameters

j

A list of three arithmetical expressions, or a 3-dimensional vector (i.e., a 3×1 or 1 ×3
matrix of a domain of category Cat::Matrix)

x1, x2, x3

(indexed) identifiers

Options

Test

Check whether the vector field j has a vector potential and return TRUE or FALSE,
respectively.

Return Values

Vector with three components, i.e., an 3 ×1 or 1×n matrix of a domain of category
Cat::Matrix, or a boolean value.

See Also

MuPAD Functions
curl | divergence | gradient | laplacian | potential
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version
Version number of the MuPAD library

Syntax
version()

Description

version() returns the version number of the installed MuPAD library.

The call Pref::kernel() returns the version number of the installed MuPAD kernel.

The version numbers of the kernel and the library may differ: version refers to the
library, whereas the call Pref::kernel() returns the version number of the kernel.

Examples

Example 1

The version of this MuPAD library is:

version()

Return Values

Version number: a list of three nonnegative integers.

See Also

MuPAD Functions
buildnumber | Pref::kernel
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warning
Print a warning message

Syntax
warning(message)

Description

warning(message) prints the message with the prefix “Warning:”.

warning may be used to print information about potential problems in an algorithm.
E.g., it is used in limit to provide hints.

Examples

Example 1

A warning:

warning("You should not do this!"):

Warning: You should not do this!

Example 2

This example shows a simple procedure which divides two numbers. If the second
argument is omitted, a warning is printed and the computation continues:

mydivide := proc(x, y)

begin

  if args(0) < 2 then

    warning("Denominator not given, using 1.");

    y := 1;

  end_if:
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  x/y

end_proc:

mydivide(10)

Warning: Denominator not given, using 1. [mydivide]

Parameters

message

A character string

Return Values

Void object of type DOM_NULL.

See Also

MuPAD Functions
error | print
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whittakerM
The Whittaker M function

Syntax
whittakerM(a, b, z)

Description

whittakerM returns the Whittaker M function, M za b, ( ) .

The Whittaker functions M za b, ( )  and W za b, ( )  are linearly independent solutions of the
following differential equation:

d w
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The Whittaker M function is defined via the confluent hypergeometric function

p qF a b z a b z, , , ,( ) = ( )F  as follows:

M z e z b a b za b
z b

, , ,( ) = - + +Ê
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ˆ
¯̃

- +2 1 2 1

2
1 2F

The Whittaker M function is defined for complex arguments a, b, and z.

For most of the values of the parameters, an unevaluated function call is returned. See
“Example 1” on page 1-2144.

Explicit symbolic expressions are returned for some particular values of the parameters.
See “Example 2” on page 1-2145.
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Note: MuPAD defines 1 1F a a z e
x

, ,( ) =  for all complex numbers a . As a consequence, the
MuPAD whittakerM function differs from the corresponding function in M. Abramowitz

and I. A. Stegun, “Handbook of Mathematical Functions” when b a- +

1

2
 and 1 2+ b

are negative integers and b a b- + ≥ +
1

2
1 2 . Some of the formulas in Chapter 13 of the

“Handbook of Mathematical Functions” do not hold for the MuPAD whittakerM with
such arguments. See “Example 4” on page 1-2146.

Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

For exact or symbolic arguments, whittakerM returns unevaluated calls:

whittakerM(a, b, x);

whittakerM(-3/2, 1/2, 1)

For floating-point arguments, whittakerM returns floating-point results:

whittakerM(-2, 0.5, -50),

whittakerM(-3/2, 1/2, 1.0)
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Example 2

For some specific values of the parameters, whittakerM returns explicit expressions:

whittakerM(0, b, x);

whittakerM(-3/2, 1/2, 0);

whittakerM(-3/2, 0, x)

Example 3

diff, float, limit, series and other functions handle expressions involving the
Whittaker M function:

diff(whittakerM(a, b, z), z)

float(whittakerM(-3/2, 1/2, 1))

series(whittakerM(-3/2, 1/2, x), x)
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Example 4

For some values of the input parameters, recurrence and differential relations in Chapter
13 of M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions” do not
hold for the MuPAD whittakerM functions. For example, Formula 13.4.32

z
z

M z
z

a M z a b M za b a b a b

∂
∂

( ) = -Ê
ËÁ

ˆ
¯̃

( ) + + +Ê
ËÁ

ˆ
¯̃

( )+, , ,
2

1

2
1

is not satisfied for a = 0 and b = -3/2:

expand(x*diff(whittakerM(0, -3/2, x), x) <>

          x/2*whittakerM(0, -3/2, x) -

              whittakerM(1, -3/2, x))

Parameters

a, b, z

Arithmetical expressions

Return Values

Arithmetical expression.

Overloaded By

z

See Also

MuPAD Functions
hypergeom | kummerU | whittakerW
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whittakerW
The Whittaker W function

Syntax

whittakerW(a, b, z)

Description

whittakerW returns the Whittaker W function W za b, ( ) .

The Whittaker functions M za b, ( )  and W za b, ( )  are linearly independent solutions of the
following differential equation:
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The Whittaker W function is defined via the confluent hypergeometric Kummer U
function U a b z, ,( )  as follows:

W z e z U b a b za b
z b

, , ,( ) = - + +Ê
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ˆ
¯̃

- +2 1 2 1

2
1 2

The WhittakerW function is defined for complex arguments a, b, and z.

For most of the values of the parameters, an unevaluated function call is returned. See
“Example 1” on page 1-2148.

Explicit symbolic expressions are returned for some particular values of the parameters.
See “Example 2” on page 1-2148.
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Environment Interactions

When called with floating-point arguments, these functions are sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

For exact or symbolic arguments, whittakerW returns unevaluated calls:

whittakerW(a, b, x);

whittakerW(-3/2, 1/2, 1)

For floating-point arguments, whittakerW returns floating-point results:

whittakerW(2, 0.5, -5),

whittakerW(-3/2, 1/2, 0.0)

Example 2

For some specific values of the parameters, whittakerW returns explicit expressions:

whittakerW(0, b, x);

whittakerW(-3/2, 1/2, 0);

whittakerW(-3/2, 0 ,x);

whittakerW(a, -a + 1/2, x)
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Example 3

diff, float, limit, series, and other functions handle expressions involving the
Whittaker W function:

diff(whittakerW(a, b, z), z)

float(whittakerW(-3/2, 1/2, 0))

series(whittakerW(-3/2, 1/2, x), x, 2)
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Parameters

a, b, z

Arithmetical expressions

Return Values

Arithmetical expression.

Overloaded By

z

See Also

MuPAD Functions
hypergeom | kummerU | whittakerM
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wrightOmega

The Wright ω function

Syntax

wrightOmega(x)

Description

 is defined in terms of Lambert's W function as .

For x ≠ t - i π with t ≤ - 1,  is a solution of the equation y + ln(y) = x. The complete
solution set of this equation is

.

A floating-point value is computed if the argument is a floating point value. Unevaluated
symbolic calls are returned for most exact arguments. For some special cases explicit
symbolic representations are returned.

Environment Interactions

When called with a floating-point argument, the function is sensitive to the environment
variable DIGITS which determines the numerical working precision.
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Examples

Example 1

Most calls with exact arguments return themselves unevaluated:

wrightOmega(1/2); wrightOmega(I*PI);

Some special arguments return explicit symbolic representations:

wrightOmega(-1+I*PI); wrightOmega(ln(2)+6*PI*I);

If the argument is a floating-point value, then a floating-point result will be returned:

wrightOmega(0.5)

Parameters

x

An arithmetical expression, the “argument”

Return Values

Arithmetical expression
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See Also

MuPAD Functions
lambertW
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write
Write values of variables into file

Syntax
write(<Bin | Text>, <Encoding = "encodingValue">, filename, <x1, x2, …>)

write(<Encoding = "encodingValue">, n, <x1, x2, …>)

Description

write serves for storing information from the current MuPAD session in a file. The file
contains the values of identifiers of the current session. These identifiers are assigned
the stored values when this file is read into another MuPAD session via the function
read.

write(filename, x1, x2, ...) stores the current values of the identifiers x1, x2 etc.
to the file filename.

write(filename) stores the values of all identifiers defined in the current session to
the file filename.

write(n) and write(n, x1, x2, ...) store the data in the file associated with the
file descriptor n.

write(..., Encoding = "encodingValue", ...) stores the current values of
identifiers in the specified encoding only when writing in Text mode. For the supported
encodings, see “Options” on page 1-2159. You can use this option with any of the
previously specified syntaxes.

If the file is specified by its name, write creates a new file or overwrites an existing file;
write opens and closes the file automatically.

If WRITEPATH does not have a value, write interprets the file name as a pathname
relative to the “working folder”.

Note that the meaning of “working folder” depends on the operating system. On Microsoft
Windows systems and on Mac OS X systems, the “working folder” is the folder where
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MATLAB is installed. On UNIX systems, it is the current working folder in which
MATLAB was started. When started from a menu or desktop item, this is typically the
user's home folder.

Also absolute path names are processed by write.

Instead of a file name, also a file descriptor of a file opened via fopen can be used. See
“Example 2” on page 1-2156. In this case, the data written by write are appended to
the corresponding file. The file is not closed automatically by write and must be closed
by a subsequent call to fclose.

Note that fopen(filename) opens the file in read-only mode. A subsequent write
command to this file causes an error. Use the Write or Append option of fopen to open
the file for writing.

The file descriptor 0 represents the screen.

write stores procedures with the option noExpose in encrypted format.

Note:  write stores the values of the given identifiers, not their full evaluation! See
“Example 3” on page 1-2157.

Environment Interactions

The function is sensitive to the environment variable WRITEPATH. If this variable has a
value, the file is created in the corresponding folder. Otherwise, the file is created in the
“working folder.”

Examples

Example 1

The variable a and its value b + 1 are stored in a file named test:

a := b + 1:

fid := fopen(TempFile, Write, Text):

write(fid, a):
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Use fname to return the name of the temporary file you created:

file := fname(fid):

The content of this file is displayed via ftextinput:

ftextinput(file)

Delete the value of a. Reading the file test restores the previous value:

delete a:

read(file):

a

For identifiers that have no value, write writes a delete command to the file:

delete a:

write(Text, 0, a):

delete a:

Example 2

The file test is opened for writing using the MuPAD binary format:

fid := fopen(TempFile):

file := fname(fid):

n := fopen(file, Write)

This number is the descriptor of the file and can be used in a write command:

a := b + 1:

write(n, a):

fclose(n):

delete a:
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read(file):

a

Clean up:

delete n, a:

Example 3

The value b + 1 is assigned to the identifier a. After assigning the value 2 to b, complete
evaluation of a yields 3:

a := b + 1:

b := 2:

a

Note, however, that the value of a is the expression b + 1. This value is stored by a
write command:

fid := fopen(TempFile, Write, Text):

write(fid, a):

file := fname(fid):

ftextinput(file)

Consequently, this value is restored after reading the file into a MuPAD session:

delete a, b:

read(file):

a

delete a:
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Example 4

write, when writing binary format, can store procedures with the option noExpose set.
They are encrypted before writing:

f := proc(a)

  option noExpose;

begin

  print(a, a^2, a*a);

end_proc:

write("hidden_proc.mb", f):

delete f:

read("hidden_proc.mb"):

f(-2...3);

expose(f)

proc(a)

  name f;

  option noDebug, noExpose;

begin

  /* Hidden */

end_proc

This is the intention behind option noExpose: You can develop code you wish not to
publish, then include option noExpose in your sources, rerun your tests, use write to
write a binary version of your library and distribute that.

Example 5

To specify the encoding to write data, use Encoding. The Encoding option applies only
to text files that are opened using a file name and not a file descriptor. Write the value of
the identifier a:="abcäöü" into a temporary file in the encoding “UTF-8”:

a:="abcäöü":

write(Text,Encoding="UTF-8","write_test",a):
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Specify the correct encoding to read the file:

read("write_test", Encoding="UTF-8")

If you do not specify an encoding, the default system encoding is used. Thus, your output
might vary from that shown next. Characters unrecognized by the default system
encoding are replaced by the default substitution character for that encoding:

a:="abcäöü":

write(Text, "write_test", a):

read("write_test")

Parameters

filename

The name of a file: a character string

x1, x2, …

identifiers

n

A file descriptor provided by fopen: a nonnegative integer

Options

Bin, Text

With Bin, the data are stored in the MuPAD binary format. With Text, standard ASCII
format is used. The default is Bin.

In ASCII format, assignments of the form identifier := hold(value): or delete
identifier: are written into the file. See “Example 1” on page 1-2155.
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Encoding

This option lets you specify the character encoding to use. The allowed encodings are:

"Big5" "ISO-8859-1" "windows-932"

"EUC-JP" "ISO-8859-2" "windows-936"

"GBK" "ISO-8859-3" "windows-949"

"KSC_5601" "ISO-8859-4" "windows-950"

"Macintosh" "ISO-8859-9" "windows-1250"

"Shift_JIS"x "ISO-8859-13" "windows-1251"

"US-ASCII" "ISO-8859-15" "windows-1252"

"UTF-8"   "windows-1253"

    "windows-1254"

    "windows-1257"

The default encoding is system dependent. If you specify the encoding incorrectly,
characters might read incorrectly. Characters unrecognized by the encoding are replaced
by the default substitution character for the specified encoding.

Encodings not listed here can be specified but might not produce correct results.

Return Values

Void object of type DOM_NULL.

See Also

MuPAD Functions
doprint | fclose | finput | fname | fopen | fprint | fread | ftextinput |
import::readbitmap | import::readdata | pathname | print | protocol | read
| READPATH | WRITEPATH
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zeta
The Riemann zeta function

Syntax
zeta(z)

zeta(z, n)

Description

zeta(z) represents the Riemann zeta function .

zeta(z, n) represents the n-th derivative  of the zeta function.

The series converge only if the real part of z is greater than 1. The definition of the zeta
function is extended to the entire complex plane, except for a simple pole z = 1, by
analytic continuation.

The calls zeta(z) and zeta(z, 0) are equivalent.

A floating-point result is returned for floating-point arguments z.

The following special exact values are implemented:

, ,

ζ(z) = 0 for even integers z < 0,

 for odd integers z satisfying - Pref::autoExpansionLimit() ≤ z < 0,

 for even integers z satisfying 0 ≤ z ≤ Pref::autoExpansionLimit(),

ζ(∞) = 1, ζ(∞, n) = 0 for n > 0.
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zeta returns a symbolic function call, if the argument does not evaluate to one of the
above numbers.

Note: Floating point evaluation is rather slow for large values of n. Further, for large n,
evaluation for ℜ(z) < 0 is much slower than the evaluation for ℜ(z) ≥ 0.

Environment Interactions

When called with a floating-point argument z, the function is sensitive to the
environment variable DIGITS which determines the numerical working precision.

Examples

Example 1

We demonstrate some calls with exact and symbolic input data:

zeta(-6), zeta(-5), zeta(-4), zeta(-3), zeta(-2), zeta(-1)

zeta(0), zeta(2), zeta(3), zeta(4), zeta(5), zeta(6), zeta(7)

zeta(1/2), zeta(1 + I, 1), zeta(z^2 -I, 2)

Here are some values of the derivative of the zeta function:

zeta(0, 1), zeta(infinity, 1)
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Floating point values are computed for floating-point arguments:

zeta(-1001.0), zeta(12.3, 1), zeta(0.5 + 14.13472514*I, 2)

zeta has a pole at the point z = 1:

zeta(1)

Error: Singularity. [zeta]

Example 2

Looking for nontrivial roots of the Zeta function, we plot the function f(z) = |ζ(z)| along
the “critical line” of complex numbers with real part :

plotfunc2d(abs(zeta(1/2 + y*I)), y = 0..30,

                                Mesh = 500,

                                AxesTitles = ["y", "|zeta|"])
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The following calls search for numerical roots along the critical line:

numeric::solve(zeta(1/2 + I*y), y = 10..20),

numeric::solve(zeta(1/2 + I*y), y = 20..22),

numeric::solve(zeta(1/2 + I*y), y = 22..26)

Parameters

z

An arithmetical expression

n

An arithmetical expression representing a nonnegative integer

Return Values

Arithmetical expression.

Overloaded By

z

See Also

MuPAD Functions
bernoulli
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zip
Combine lists

Syntax
zip(list1, list2, f)

zip(list1, list2, f, default)

Description

zip(list1, list2, f) combines two lists via a function f. It returns a list whose i-th
entry is f(list1[i], list2[i]). Its length is the minimum of the lengths of the two
input lists.

zip(list1, list2, f, default) returns a list whose length is the maximum of the
lengths of the two input lists. The shorter list is padded with the default value.

If f produces the void object of type DOM_NULL, then this element is removed from the
resulting list.

zip is recommended for fast manipulation of lists. It is a function of the system kernel.

Examples

Example 1

The fastest way of adding the entries of two lists is to 'zip' them via the function _plus:

zip([a, b, c, d], [1, 2, 3, 4], _plus)

If the input lists have different lengths, then the shorter list determines the length of the
returned list:
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zip([a, b, c, d], [1, 2], _plus)

The longer list determines the length of the returned list if a value for padding the
shorter list is provided:

zip([a, b, c, d], [1, 2], _plus, 17)

Parameters

list1, list2

lists of arbitrary MuPAD objects

f

Any MuPAD object. Typically, a function of two arguments.

default

Any MuPAD object

Return Values

List.

Overloaded By

list1,  list2

See Also

MuPAD Functions
map | op | select | split
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ztrans
Z transform

Syntax
ztrans(f, k, z)

Description

ztrans(f, k, z) computes the Z transform of the expression f = f(k) with respect
to the index k at the point z.

The Z transform F(z) of the function f(k) is defined as follows:

F z
f k

zk
k

( ) =
( )

=

•

Â
0

If ztrans cannot find an explicit representation of the transform, it returns an
unevaluated function call. See “Example 4” on page 1-2169.

If f is a matrix, ztrans applies the Z transform to all components of the matrix.

To compute the inverse Z transform, use iztrans.

Examples

Example 1

Compute the Z transform of these expressions:

ztrans(1/k!, k, z)
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ztrans(sin(k), k, z)

Example 2

Compute the Z transform of this expression and then simplify the result:

ztrans(cos(a*k + b), k, z)

Simplify(%)

Example 3

Compute the Z transform of this expression with respect to the variable k:

F := ztrans(2*k + 3, k, z)

Evaluate the Z transform of the expression at the points z = 2 a + 3 and z = 1 + i. You can
evaluate the resulting expression F using | (or its functional form evalAt):

F | z = 2*a + 3
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Also, you can evaluate the Z transform at a particular point directly:

ztrans(2*k + 3, k, 1 + I)

Example 4

If ztrans cannot find an explicit representation of the transform, it returns an
unevaluated call:

ztrans(f(k), k, z)

iztrans returns the original expression:

iztrans(%, z, k)

Example 5

Compute the following Z transforms that involve Kronecker's Delta function and the
Heaviside function:

ztrans(f(k)*kroneckerDelta(k, 1) +

       g(k)*kroneckerDelta(k, -5), k, z)

ztrans(binomial(k, 2)*heaviside(5 - k), k, z)
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Simplify the last expression using simplify:

simplify(%)

Example 6

Compute the Z transforms of this expression that involves the Heaviside function:

ztrans(heaviside(k - 3), k, z)

Note that MuPAD uses the value heaviside(0) = 1/2. You can define a different
value for heaviside(0):

unprotect(heaviside):

heaviside(0) := 1:

For better performance, MuPAD remembers the previously computed value of the Z
transform. To force the system to recalculate the transform, clear its remember table:

ztrans(Remember, Clear):

For details about the remember mechanism, see Remember Mechanism.

Defining a different value for heaviside(0) produces a different value of the Z
transform:

ztrans(heaviside(k - 3), k, z)
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For further computations, restore the original value:

heaviside(0):= 1/2:

protect(heaviside):

Example 7

Compute the Z tranforms of these expressions:

ztrans(k*f(k), k, z)

ztrans(f(k + 1), k, z)

Parameters

f

Arithmetical expression or matrix of such expressions

k

Identifier or indexed identifier

z

Arithmetical expression representing the evaluation point

Return Values

Arithmetical expression or unevaluated function call of type ztrans. An explicit result
can be a piecewise object. If the first argument is a matrix, the result is returned as a
matrix.
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Overloaded By

f

See Also

MuPAD Functions
iztrans | iztrans::addpattern | ztrans::addpattern

1-2172



 ztrans::addpattern

ztrans::addpattern
Add patterns for the Z transform

Syntax
ztrans::addpattern(pat, k, z, res, <vars, <conds>>)

Description

ztrans::addpattern(pat, k, z, res) teaches ztrans to return
.

The ztrans function uses a set of patterns for computing Z transforms. You can extend
the set by adding your own patterns. To add a new pattern to the pattern matcher, use
ztrans::addpattern. MuPAD does not save custom patterns permanently. The new
patterns are available in the current MuPAD session only.

Variable names that you use when calling ztrans::addpattern can differ from the
names that you use when calling ztrans. See “Example 2” on page 1-2174.

You can include a list of free parameters and a list of conditions on these parameters.
These conditions and the result are protected from premature evaluation. This means
that you can use not   iszero(a^2 - b) instead of hold( _not @ iszero )(a^2
- b).

The following conditions treat assumptions on identifiers differently:

• a^2 - b <> 0 takes into account assumptions on identifiers.
• not   iszero(a^2 - b) disregards assumptions on identifiers.

See “Example 3” on page 1-2175.

Environment Interactions

Calling ztrans::addpattern changes the expressions returned by future calls to
ztrans.
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Examples

Example 1

Compute the Z transform of the function foo. By default, MuPAD does not have a
pattern for this function:

ztrans(foo(k), k, z)

Add a pattern for the Z transform of foo using ztrans::addpattern:

ztrans::addpattern(foo(k), k, z, bar(z)):

Now ztrans returns the Z transform of foo:

ztrans(foo(k), k, z)

After you add a new transform pattern, MuPAD can use that pattern indirectly:

ztrans(foo(k + 3), k, z)

Example 2

Define the Z transform of foo(x) using the variables x and y as parameters:

ztrans::addpattern(x, x, y, y/(y^2-2*y+1)):

The ztrans function recognizes the added pattern even if you use other variables as
parameters:

ztrans(s, s, t)
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Example 3

Use assumptions when adding this pattern for the Z transform:

ztrans::addpattern(FOO(x*k), k, z, sin(1/(x - 1/2))*BAR(z),

                                     [x], [abs(x) < 1]):

ztrans(FOO(x*k), k, z) assuming -1 < x < 1

If |x| ≥ 1, you cannot apply this pattern:

ztrans(FOO(x*k), k, z) assuming x >= 1

If MuPAD cannot determine whether the conditions are satisfied, it returns a
piecewise object:

ztrans(FOO(x*k), k, z)

Note that the resulting expression defining the Z transform of FOO(x*k) implicitly
assumes that the value of x is not 1/2. A strict definition of the pattern is:

ztrans::addpattern(BAR(x*k), k, z, sin(1/(x - 1/2))*FOO(z),

                   [x], [abs(x) < 1, x <> 1/2]):

If either the conditions are not satisfied or substituting the values into the result gives
an error, ztrans ignores the pattern. For this particular pattern, you can omit specifying
the assumption x <> 1/2. If x = 1/2, MuPAD throws an internal “Division by zero.”
error and ignores the pattern:
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ztrans(FOO(s/2),s,t)

Parameters

pat

Arithmetical expression in the variable k representing the pattern to match

k

Identifier or indexed identifier used as a variable in the pattern

z

Identifier or indexed identifier used as a variable in the result

res

Arithmetical expression in the variable k representing the pattern for the result of the
transformation

vars

List of identifiers or indexed identifiers used as “pattern variables” (placeholders in pat
and res). You can use pattern variables as placeholders for almost arbitrary MuPAD
expressions not containing k or z. You can restrict them by conditions given in the
optional parameter conds.

conds

List of conditions on the pattern variables

Return Values

Object of type DOM_NULL
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See Also

MuPAD Functions
iztrans | iztrans::addpattern | ztrans
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adt::Heap
Abstract data type “Heap”

Syntax
adt::Heap()

Description

adt::Heap implements the abstract data type “Heap”.

A “heap” or “priority queue” is a data type that stores a collection of elements. Elements
can be compared and the minimal element can be read and deleted from the heap.

In adt::Heap, each element is associated with a comparison key, typically a real
number. The keys must be comparable with one another using <.

To get access to the largest element in an adt::Heap, you can simply negate the
comparison keys.

adt::Heap returns a function environment. This object has slots "insert", "nops",
"min_pair", "min_element", and "delete_min" which allow operations on the heap.
See the examples.

adt::Heap does not allow access to other elements than the minimal one.

Examples

Example 1

adt::Heap() creates an empty heap:

h := adt::Heap()
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The slot "nops" of h shows the number of elements in the heap:

h::nops()

h::insert is the method to insert new elements. It expects two arguments: the
comparison key and the data. For now, we simply insert some numbers, so we repeat the
number in both arguments:

h::insert(3,3):

h::insert(1,1):

h::insert(2,2):

h::nops()

When retrieving the elements with h::delete_min, we see that they are returned in
increasing order:

h::delete_min(), h::delete_min(), h::delete_min()

The heap is now empty:

h::nops()

Calling delete_min on an empty heap returns FAIL:

h::delete_min()
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Algorithms

adt::Heap uses a complete binary tree stored in a list. Insertions operate in expected
constant time, with a worst case time logarithmic in the number of elements in the heap.
For "delete_min", both the average and the worst-case running time are O(log n), with
n the size of the heap.

See Also

MuPAD Functions
adt::Queue | adt::Stack | adt::Tree
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adt::Queue
Abstract data type “Queue”

Syntax
adt::Queue(queue)

Description
adt::Queue implements the abstract data type “Queue”. To create a queue, an
expression sequence of any MuPAD objects can be given to initialize the queue, otherwise
an empty queue is built.

Note: The methods of all abstract data types must be called especially and will result
changing the object itself as side effect.

With Q := adt::Queue() an empty queue is built and assigned to the variable Q.

Every queue will be displayed as Queue followed by a number. This name is generated by
genident.

Note: All following methods changes the value of Q itself. A new assignment to the
variable (in this example Q) is not necessary, in contrast to all other MuPAD functions
and data types.

The methods clear, dequeue, empty, enqueue, front, length, reverse are available
for handling with queues.

Examples

Example 1

Create a new queue with strings as arguments.
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Q := adt::Queue("1", "2", "3", "4")

Show the length of the queue.

Q::length()

Fill up the queue with a new element. The queue will be changed by the method, no new
assignment to Q is necessary!

Q::enqueue("5")

Show the front of the queue. This method does not change the queue.

Q::front(), Q::front()

After twice getting an element of the queue, the third element is the new front of the
queue, and the length is 3.

Q::dequeue(), Q::dequeue(), Q::front(), Q::length()

Now revert the queue. The last element will be the first element.

Q::reverse(): Q::front()

Enlarge the queue with "2".

Q::enqueue("2"):

Q::empty()
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Finally collect all elements of the queue in the list assigned to ARGS, until the queue is
empty.

ARGS := []:

while not Q::empty() do ARGS := append(ARGS, Q::dequeue()) end:

ARGS

Parameters

queue

An expression sequence of objects to initialize the queue

Methods

clear — Clear the queue

clear()

dequeue — Get an element from the queue

dequeue()

empty — I the queue empty

empty()

enqueue — Fill up the queue

enqueue(x)

front — Front of the queue

front()
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length — Length of the queue

length()

reverse — Revert the queue

reverse()
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adt::Stack
Abstract datatype “Stack”

Syntax
adt::Stack(stack)

Description

adt::Stack implements the abstract data type “Stack.” To create a stack, an expression
sequence of any MuPAD objects can be given to initialize the stack, otherwise an empty
stack is built.

Note: The methods adt::Stack, like those of all abstract data types, change their
argument as a side effect.

With S := adt::Stack() an empty stack is built and assigned to the variable S.

Note: All following methods change the value of S itself. A new assignment to the variable
(in this example S) is not necessary, in contrast to most other MuPAD functions and data
types.

The stacks created in a session are named Stack1, Stack2,... and printed as such.

Examples

Example 1

We create an empty stack, and fill it with some values:

S := adt::Stack();
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S::push(a): S::push(b): S::push(c):

The stack now contains 3 elements:

S::nops()

The top of the stack is the last valued pushed:

S::top()

Now, we fetch successively the values contains in S; they come back in reversed order:

S::pop();

S::pop();

S::pop()

Now, the stack is empty. Trying to pop again an element from it results in a FAIL value
being returned:

S::pop()

2-10



 adt::Stack

Parameters

stack

An expression sequence of objects to initialize the stack

Return Values

Object of the domain adt::Stack

Methods

S::empty — I the stack empty

S::empty()

S::nops — Size of the stack

S::nops()

S::depth — Depth of the stack

S::depth()

S::top — Top element of the stack

S::top()

S::push — Push an element on the stack

S::push(x)

S::pop — Pop an element from the stack

S::pop()

S::reverse — Revert the stack

S::reverse()
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S::copy — Copy of the stack

S::copy()
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adt::Tree

Abstract data type “Tree”

Syntax

adt::Tree(tree)

Description

adt::Tree implements the abstract data type “Tree”.

A tree must be given as a special MuPAD list. The first object of the list is the root of the
tree. All further objects are leaves or subtrees of the tree. A subtree is again a special list
(as described), and any other MuPAD object will be interpreted as leaf of the tree (see
“Example 1” on page 2-14).

A tree can be used to display data in tree structure using the function output::tree
(or the method "print" of a tree). The nodes and leaves of the tree will be printed by
MuPAD when the tree will be displayed.

A tree can also be used as datatype to keep and handle any MuPAD data.

Note: The methods of all abstract data types must be called especially and will result
changing the object itself as side effect.

T := adt::Tree([_plus, 3, 4, [_mult, 5, 3], 1]) builds a tree and assigns it
to the variable T.

Every tree will be displayed as Tree followed by a number. This name is generated by
genident.

To display the content of a tree, the function expose or the method "print" of the tree
itself must be used.
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Note: All following methods changes the value of T itself. A new assignment to the
variable (in this example T) is not necessary, in contrast to all other MuPAD functions
and data types.

The methods nops, op, expr, print, indent, chars are now available for handling
with trees.

Examples

Example 1

Creating a simple tree with only two leaves. To access and display a tree it must be
assigned to a variable:

T := adt::Tree(["ROOT", "LEFT", "RIGHT"])

The tree will only be printed by its name. To display the tree, the function expose or the
method "print" of the tree must be used:

T::print()

ROOT

|

+-- LEFT

|

`-- RIGHT

expose(T)

ROOT

|

+-- LEFT

|

`-- RIGHT

The next tree contains two subtrees as leaves:
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T := adt::Tree(["ROOT", ["LROOT", "LLEFT", "LRIGHT"],

                        ["RROOT", "RLEFT", "RRIGHT"]]):

T::print()

ROOT

|

+-- LROOT

|   |

|   +-- LLEFT

|   |

|   `-- LRIGHT

|

`-- RROOT

    |

    +-- RLEFT

    |

    `-- RRIGHT

Example 2

Get the operands of a tree: Also a subtree can be an operand:

T := adt::Tree(["ROOT", ["LROOT", "LLEFT", "LRIGHT"],

                        "MIDDLE",

                        ["RROOT", "RLEFT", "RRIGHT"]]):

T::op()

Use expose to display subtrees:

map(%, expose)

LROOT                 RROOT

|                     |

+-- LLEFT , "MIDDLE", +-- RLEFT

|                     |

`-- LRIGHT            `-- RRIGHT

Get all operands including the root:

T::op(0..T::nops())
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Access to various operands:

T::op(0);

T::op(2..3);

T::op([1, 2])

Example 3

The default characters are ["|", "+", "-", „", " "]:

T := adt::Tree(["ROOT", ["LROOT", "LLEFT", "LRIGHT"],

                        ["RROOT", "RLEFT", "RRIGHT"]]):

T::print()

ROOT

|

+-- LROOT

|   |

|   +-- LLEFT

|   |

|   `-- LRIGHT

|

`-- RROOT

    |

    +-- RLEFT

    |

    `-- RRIGHT

The characters can be changed:

T::chars(["|", "|", "_", "|", " "]):

T::print()
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ROOT

|

|__ LROOT

|   |

|   |__ LLEFT

|   |

|   |__ LRIGHT

|

|__ RROOT

    |

    |__ RLEFT

    |

    |__ RRIGHT

Example 4

A tree visualizes the structure of an expression:

T:= adt::Tree([_plus, [_power, [sin, x], 2], [_power, [cos, x], 2]]):

T::print()

_plus

|

+-- _power

|   |

|   +-- sin

|   |   |

|   |   `-- x

|   |

|   `-- 2

|

`-- _power

    |

    +-- cos

    |   |

    |   `-- x

    |

    `-- 2

A tree can be converted to a MuPAD expression:

T::expr(), simplify(T::expr())
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Parameters

tree

The tree, given as a special list (see details)

Methods

nops — Number of operands

nops()

In this example T has 4 operands, the numbers 3, 4, 1 and the subtree
adt::Tree([_mult, 5, 3]).

op — Operand of a tree

op(<n>)

T::op(n) returns the specified operands of the tree. n can be a number between 0
and T::nops() (0 gives the root of the tree), a sequence i..j (to return the ith to jth
operand), or a list to specify operands of subtrees (exactly as for the kernel function op).
T::op() returns all operands except the 0-th as expression sequence. See “Example 2”
on page 2-15.

expr — Convert a tree to an expression

expr()

print — Display a tree

print()

indent — Indent width of each operand

indent(<n>)
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chars — Indent width of each operand

chars(<list>)

See Also

MuPAD Functions
output::tree
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3 Ax – Axioms

Ax::canonicalOrder
Axiom of canonically ordered sets

Description

Ax::canonicalOrder states that a domain has an order < (_less) which is defined by
the canonical order of the MuPAD expressions.

This implies that the order of two elements is defined by the system function _less.
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Ax::canonicalRep
Axiom of canonical representation

Description

Ax::canonicalRep states that domain elements are canonically represented, i.e. that
each element of the domain has only one unique expression which represents it.

This axiom implies that for an abelian monoid the axiom Ax::normalRep also holds.
This is not enforced by the category but must be stated by the implementor of a domain.
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Ax::canonicalUnitNormal
Axiom of canonical unit normals

Description

Ax::canonicalUnitNormal states that the method "unitNormal" of an integral
domain (category Cat::IntegralDomain) returns a unique unit normal.

This means that for each non-zero element x of the integral domain there exists an
unique associate among the associate class of x, i.e. for any x and y of a domain dom of
category Cat::IntegralDomain where dom::associates(x, y) returns TRUE the
equation dom::equal(dom::unitNormal(x), dom::unitNormal(y)) = TRUE must
hold.

Note that this axiom does not imply that the unit normals are canonically represented.
The unit normals of x and y must be mathematically equal in the sense of the method
"equal", they need not be structurally equal as MuPAD objects.
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Ax::closedUnitNormals
Axiom of closed unit normals

Description

Ax::closedUnitNormals states that the unit normals of an integral domain are
closed under multiplication, i.e., that dom::equal(x, dom::unitNormal(a) *
dom::unitNormal(b)) = TRUE implies dom::equal(x, dom::unitNormal(x)) =
TRUE for all elements x, a and b of the domain dom.

This axiom may be used only in conjunction with the axiom
Ax::canonicalUnitNormal. If an integral domain has no unique unit normals, this
axiom may not be stated.
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Ax::efficientOperation
Axiom of efficient operations

Syntax
Ax::efficientOperation(oper)

Description

Ax::efficientOperation(oper) states that operation oper can be performed
efficiently.

The string oper must be the name of the operation's slot in the domain stating the
axiom. Examples are "_mult", "_invert" or "_divide".

Parameters

oper

A string which defines the efficient operation.
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Ax::indetElements
Axiom that indeterminates may be elements

Description

Ax::indetElements states that there exist domain elements that may also be regarded
as being transcendental over the domain.

Ax::indetElements has no mathematical meaning: elements of a ring are always
algebraic (of degree 1) over the ring. However, since there are domains in MuPAD that
comprise all MuPAD identifiers, insisting on this viewpoint would mean that polynomials
over such domains could not be constructed. Hence MuPAD allows the user to regard an
identifier as being transcendental over the set of all identifiers.
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Ax::normalRep
Axiom of normal representation

Description

Ax::normalRep states that an abelian monoid has a canonical representation of its zero
element, i.e., that there is only one unique expression to represent zero.

If the axiom Ax::normalRep holds for a domain dom, one may test for zero by comparing
an element with dom::zero using the system function _equal.
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Ax::noZeroDivisors
Axiom of rings with no zero divisor

Description

Ax::noZeroDivisors states that a ring without a unit has no zero divisors, i.e., that
the product of two non-zero elements is never zero.

Note that an integral domain implicitly has no zero divisors.

3-9



3 Ax – Axioms

Ax::systemRep
Axiom of façade domains

Description

Ax::systemRep states that domain elements are represented by elements of built-in
domains.

There are principally two ways to represent the elements of a domain: On the one hand
the elements may be created explicitly by the system function new, on the other hand
one may use the built-in (or basic) domains of MuPAD (like DOM_INT) to represent the
elements.

Domains which don't create elements of their own but use elements of basic domains
instead are called façade domains.

The usage of basic domains for the representation has the advantage that system
functions may be used directly as methods of the domain without the overhead caused
by overloading and procedure calls. But it has some severe limitations, see the domain
Dom::Expression for details.

The axiom Ax::systemRep is used to state that the elements of a domain are
represented by basic domains and are not created by new.
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Cat::BaseCategory
Cat::AbelianGroup
Cat::AbelianMonoid
Cat::AbelianSemiGroup
Cat::Algebra
Cat::CancellationAbelianMonoid
Cat::CommutativeRing
Cat::DifferentialRing
Cat::EntireRing
Cat::EuclideanDomain
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Cat::Group
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Cat::HomogeneousFiniteProduct
Cat::IntegralDomain
Cat::LeftModule
Cat::Matrix
Cat::Module
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Cat::OrderedSet
Cat::PartialDifferentialRing
Cat::Polynomial
Cat::PrincipalIdealDomain
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Cat::RightModule
Cat::Ring
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Cat::SemiGroup
Cat::Set



4 Cat – Categories

Cat::SkewField
Cat::SquareMatrix
Cat::UnivariatePolynomial
Cat::VectorSpace
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Cat::BaseCategory

Base category

Description

Cat::BaseCategory is the most general super-category of all categories defined by the
Cat package. Any domain in the Dom package is of this category.

The methods defined by Cat::BaseCategory are related to type conversion and
equality testing, they are not related to an algebraic structure.

Methods

Basic Methods

convert — Convert into this domain

convert(x)

convert_to — Convert to certain type

convert_to(x, T)

equal — Test for equality

equal(x, y)

Note that this method does not overload the function _equal, i.e. the = operator. The
function _equal cannot be overloaded.

expr — Convert into expression

expr(x)
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Conversion Methods

coerce — Coerce into this domain

coerce(x)

The implementation provided tries to convert x into an element of this domain by first
calling dom::convert(x) and then, if this fails, x::dom::convert_to(x, dom); it
retuns FAIL if both methods fail.

equiv — Test for equivalence

equiv(x, y)

The implementation provided tries to convert x and y into elements of this domain and
then calls dom::equal with these elements. It returns FAIL if the conversion fails or the
equality test returns UNKNOWN.

new — Create element of this domain

new(x)

Given a domain D, an expression of the form D(x,...) results in a call of the form
D::new(x,...).

The implementation provided here tries to convert x by calling dom::convert(x) and
returns the result. It raises an error if dom::convert returns FAIL.

print — Return expression to print an element

print(x)

Please do not print directly in this method by calling the function print for example!

The implementation provided here is dom::expr.

testtype — Test type of object

testtype(x, T)

This method must return TRUE if it can decide that x is of type T, FALSE if it can decide
that x is not of type T and FAIL if it can not decide the test.
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This method is called in three different situations: Either if the argument x is of this
domain, or if T is this domain, or if T is an element of this domain. Thus the following
three situations can arise:

• x is an element of the current domain.

In this case it must be tested if x may be regarded as an element of the type T, which
may either be a domain or type expression. By default, this is only true if the domain
type of x is T, or if T is a domain constructor for which x::dom::hasProp(x, T) is
TRUE. In particular, x is, by default, not of type T if T is a type of the Type library.

• T is the current domain.

In this case it must be tested if x may be regarded as an element of this domain. By
the default implementation provided, this is TRUE only if the domain type of x is dom.

• T is an element of the current domain.

In this case T is regarded as a type expression. The default implementation provided
returns TRUE if the domain type of x is T, and FAIL if not. A special rule holds if T
is a façade domain: in that case, coerce(x,T) is called, if this is successful TRUE is
returned and FAIL if not.

Technical Methods

new_extelement — Create element of kernel or façade domain

new_extelement(x, …)

When an expression new(D,x,...) is evaluated and D is a domain with method
"new_extelement", then D::new_extelement(D,x,...) is evaluated and returned
as result.

Kernel or façade domains must define this method because otherwise the function new
would return a “container” element of D rather than a “raw” element as intended.

The implementation provided here returns the result of D::new(x,...).
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Cat::AbelianGroup

Category of Abelian groups

Description

Cat::AbelianGroup represents the category of Abelian groups.

A Cat::AbelianGroup is an Abelian monoid with cancellation law where the operation
+ is invertible.

Categories

Cat::CancellationAbelianMonoid

Methods

Basic Methods

_negate — Return opposite

_negate(x)

Mathematical Methods

equal — Test for equality

equal(x, y)

intmult — Return integer multiple

intmult(x, n)
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_subtract — Subtract two elements

_subtract(x, y)
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Cat::AbelianMonoid

Category of Abelian monoids

Description

Cat::AbelianMonoid represents an Abelian monoid.

An Cat::AbelianMonoid is an Abelian semi-group with a neutral element dom::zero
according to the operation + (_plus).

Use the axiom Ax::normalRep to state that zero is always represented in a unique way
(i.e. canonically).

If an Abelian monoid has not the axion Ax::normalRep then dom::zero is only one
possible representation of the neutral element. An Abelian semi-group must at least have
the method "iszero" to test for zero in such a case.

Axioms

If the domain has Ax::canonicalRep, then Ax::normalRep.

Categories

Cat::AbelianSemiGroup

Entries

"zero" Must hold the neutral element according to
the operation +.
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Methods

Mathematical Methods

intmult — Return integer multiple

intmult(x, n)

iszero — Test if element is zero

iszero(x)
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Cat::AbelianSemiGroup
Category of Abelian semi-groups

Description

Cat::AbelianSemiGroup represents the category of Abelian semi-groups where the
operation is written as addition. Hence an Cat::AbelianSemiGroup is a set with an
associative and commutative operation + (_plus).

Note that non-Abelian semi-groups with operation * have category Cat::SemiGroup.

Categories

Cat::BaseCategory

Methods

Basic Methods

_plus — Return the sum of its arguments

_plus(x, …)

Mathematical Methods

intmult — Return integer multiple

intmult(x, n)
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Cat::Algebra
Category of associative algebras

Syntax
Cat::Algebra(R)

Description

Cat::Algebra(R) represents the category of associative algebras over the commutative
ring R.

A Cat::Algebra(R) is a module over a commutative ring R which also is a ring.

Categories

Cat::Ring, Cat::Module(R)

Parameters

R

A domain which is a commutative ring. The algebra will be an algebra over this ring.
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Cat::CancellationAbelianMonoid
Category of abelian monoids with cancellation

Description

Cat::CancellationAbelianMonoid represents the category of Abelian monoids with
cancellation.

A Cat::CancellationAbelianMonoid is an Abelian monoid where the cancellation
law holds according to the operation +, i.e. a + b = a + c implies b = c.

Categories

Cat::AbelianMonoid

Methods

Basic Methods

_subtract — Subtract two elements

_subtract(x, y)

Mathematical Methods

equal — Test for equality

equal(x, y)

The method "iszero" is used to test for zero.

_negate — Negate element

_negate(x)
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intmult — Return integer multiple

intmult(x, n)
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Cat::CommutativeRing
Category of commutative rings

Description

Cat::CommutativeRing represents the category of commutative rings.

A Cat::CommutativeRing is a ring with unit dom::one where the multiplication *
(_mult) is commutative. It is also a right module over itself.

This implementation additionally assumes that the elements are always constant with
respect to differentiation and derivates. One must re-implement the methods "diff"
and "D" if this assumption is false.

Categories

Cat::Ring, Cat::RightModule(dom)

Methods

Mathematical Methods

diff — Differentiate element

diff(x, <v, …>)

D — Return derivative

D(l, x)
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Cat::DifferentialRing
Category of ordinary differential rings

Description

Cat::DifferentialRing represents the category of ordinary differential rings.

A Cat::DifferentialRing is a commutative ring with a single derivation operator D.

A derivation is a linear operator with product rule, i.e.  holds for all f
and g.

Categories

Cat::PartialDifferentialRing

Methods

Basic Methods

D — Return derivative

D(f)

diff — Differentiation with respect to a variable

diff(f, x)
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Cat::EntireRing
Category of entire rings

Description

Cat::EntireRing represents the category of entire rings.

An Cat::EntireRing is a ring with unit "one" which has no zero divisors: Given non-
zero ring elements a and b the product a times b is never zero.

Axioms

Ax::noZeroDivisors

Categories

Cat::Ring, Cat::RightModule(dom)
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Cat::EuclideanDomain

Category of Euclidean domains

Description

Cat::EuclideanDomain represents the category of Euclidean domains.

A Cat::EuclideanDomain is a principal ideal domain with an “Euclidean degree”
function "euclideanDegree" and operations "quo" and "rem" computing the
Euclidean quotient and Euclidean remainder.

The Euclidean degree returns nonnegative integers such that for each non-zero x and y
there exist s and r such that x = y s + r and either the Euclidean degree of r is less than
that of s or r is zero.

In addition s is equal to quo(x,y) and r is equal to rem(x,y).

Categories

Cat::PrincipalIdealDomain

Methods

Basic Methods

euclideanDegree — Return Euclidean degree

euclideanDegree(x)

divide — Division with remainder

divide(x, y)
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Mathematical Methods

_divide — Exact division

_divide(x, y)

gcd — Greatest common divisor

gcd(x, …)

gcdex — Extended greatest common divisor

gcdex(x, y)

idealGenerator — Generator of finitely generated ideal

idealGenerator(x, …)

quo — Euclidean quotient

quo(x, y)

The default implementation provided here uses the basic method "divide".

rem — Euclidean remainder

rem(x, y)

The default implementation provided here uses the basic method "divide".
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Cat::FactorialDomain
Category of factorial domains

Description

Cat::FactorialDomain represents the category of factorial domains (i.e., unique
factorization domains).

A Cat::FactorialDomain is an integral domain with gcd where an unique
factorization can be computed.

The factorization methods are named "factor" and "sqrfree" and must return
elements of the domain Factored over this domain.

Categories

Cat::GcdDomain

Methods

Basic Methods

factor — Unique factorization

factor(x)

See Factored for details about the representation of the factorization.

Mathematical Methods

irreducible — Test if element is irreducible

irreducible(x)
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sqrfree — Square-free factorization

sqrfree(x)

See Factored for details about the representation of the factorization.

The default implementation provided here uses the method "factor" and therefore may
be very inefficient.
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Cat::Field
Category of fields

Description

Cat::Field represents the category of fields.

A Cat::Field is a factorial domain, an Euclidean domain and a skew field. As a
Euclidean domain, it has a commutative multiplication * (_mult) and as a skew field,
the multiplication is invertible.

Many of the methods defined for factorial and Euclidean domains are trivial for a field.

Axioms

Ax::canonicalUnitNormal, Ax::closedUnitNormals

Categories

Cat::EuclideanDomain, Cat::FactorialDomain, Cat::SkewField

Methods

Mathematical Methods

associates — Test for associate elements

associates(x, y)

_divide — Exact division

_divide(x, y)
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divide — Division with remainder

divide(x, y)

divides — Test if division is exact

divides(x, y)

euclideanDegree — Return Euclidean degree

euclideanDegree(x)

factor — Unique factorization

factor(x)

gcd — Greatest common divisor

gcd(x, …)

irreducible — Test if element is irreducible

irreducible(x)

isUnit — Test if element is an unit

isUnit(x)

quo — Return Euclidean quotient

quo(x, y)

rem — Return Euclidean remainder

rem(x, y)

sqrfree — Square-free factorization

sqrfree(x)

unitNormal — Unit normal form

unitNormal(x)
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unitNormalRep — Unit normal representation

unitNormalRep(x)
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Cat::FiniteCollection
Category of finite collections

Description

Cat::FiniteCollection represents the category of finite collections, i.e., the category
of “universal” bags.

A finite collection is a data structure where each element represents a finite bag of
“things” of any type.

The elements are numbered 1,...,nops(c), where nops(c) is the number of elements
in the bag.

Categories

Cat::BaseCategory

Methods

Basic Methods

_index — Return element given its index

_index(x, i)

map — Map function on elements

map(x, f, <a, …>)

nops — Return number of elements

nops(x)
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op — Return certain elements

op(x)

op(x, i)

Must return the i-th element of x or FAIL if an element with the given index does not
exist.

Operand ranges or paths need not be handled by this method because they are handled
directly by op.

set_index — Change element with given index

set_index(x, i, v)

Overloads the function _assign with an _index expression on the left hand side. The
result is assigned to x.

subs — Substitute in elements

subs(x, e = f)

subsop — Substitute operands

subsop(x, i = v)

Technical Methods

mapCanFail — Map function on elements

mapCanFail(x, f, <a, …>)

testEach — Test each element with a predicate

testEach(x, f, <a, …>)

testOne — Test if element exists fulfilling a predicate

testOne(x, f, <a, …>)
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Cat::GcdDomain

Category of integral domains with gcd

Description

Cat::GcdDomain represents the category of integral domains with a gcd.

A Cat::GcdDomain is an integral domain where the greatest common divisor of two
elements can be computed by the method "gcd".

Categories

Cat::IntegralDomain

Methods

Basic Methods

gcd — Greatest common divisor

gcd(x, …)

The method must satisfy the following conditions:

1 x and y must divide dom::gcd(x,y),
2 if z divides both x and y, then z must divide dom::gcd(x,y),
3 if a domain has the axiom Ax::canonicalUnitNormal then dom::gcd(x,y) must

be equal to dom::unitNormal(dom::gcd(x,y)).

Remember that x divides y if _divide(x,y) does not return FAIL.
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Mathematical Methods

lcm — Least common multiple

lcm(x, …)
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Cat::Group
Category of groups

Description

Cat::Group represents the category of groups.

A Cat::Group is a (potentially non-Abelian) monoid where the group operation *
(_mult) is invertible.

Categories

Cat::Monoid

Methods

Mathematical Methods

_divide — Return quotient

_divide(x, y)
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Cat::HomogeneousFiniteCollection
Category of homogeneous finite collections

Syntax
Cat::HomogeneousFiniteCollection(T)

Description

Cat::HomogeneousFiniteCollection(T) represents the category of homogeneous
finite collections (i.e. bags) of elements of the domain T.

A Cat::HomogeneousFiniteCollection is a finite collection where each element of
the collection must be from the same domain T.

Categories

Cat::FiniteCollection

If T is a Cat::OrderedSet, then Cat::OrderedSet.

Parameters

T

A domain which must be from the category Cat::BaseCategory. Only elements of this
domain may be contained in the collection.

Entries

"elemDom" The parameter domain T.
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Methods

Mathematical Methods

_less — Compare two elements

_less(x, y)

Returns TRUE if x is less than y.

The collections x and y are ordered by the lexical ordering of their elements.
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Cat::HomogeneousFiniteProduct
Category of homogeneous finite products

Syntax
Cat::HomogeneousFiniteProduct(T)

Description

Cat::HomogeneousFiniteProduct(T) represents the category of homogeneous finite
products of elements of the domain T.

A Cat::HomogeneousFiniteProduct(T) is a homogeneous finite collection where
each collection has the same number of elements of the domain T.

The number of elements must be given by the entry "card", which must be defined by
domains of this category. It is not given as a category parameter simply because it is not
needed. Thus no unnecessary instances of the category are created.

One could principally implement all the algebraic operations here, but they will be slow if
the methods "_index" and "set_index" are slow, which most often will be the case. So
we avoid the work and let the domain implementors do it.

Categories

Cat::HomogeneousFiniteCollection(T)

If T is a Cat::DifferentialRing, then Cat::DifferentialRing.

If T is a Cat::PartialDifferentialRing, then Cat::PartialDifferentialRing.

If T is a Cat::CommutativeRing, then Cat::CommutativeRing.

If T is a Cat::SkewField, then Cat::SkewField.

If T is a Cat::Ring, then Cat::Ring.
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If T is a Cat::Rng, then Cat::Rng.

If T is a Cat::AbelianGroup, then Cat::AbelianGroup.

If T is a Cat::CancellationAbelianMonoid, then
Cat::CancellationAbelianMonoid.

If T is a Cat::AbelianMonoid, then Cat::AbelianMonoid.

If T is a Cat::AbelianSemiGroup, then Cat::AbelianSemiGroup.

If T is a Cat::Group, then Cat::Group.

If T is a Cat::Monoid, then Cat::Monoid.

If T is a Cat::SemiGroup, then Cat::SemiGroup.

If T is a Cat::CommutativeRing, then Cat::Algebra(T).

If T is a Cat::Ring, then Cat::LeftModule(T).

If T is a Cat::Ring, then Cat::RightModule(T).

Parameters

T

A domain which must be from the category Cat::BaseCategory. This defines the
domain of the products elements.

Entries

"card" Must hold the number of elements of a
collection.

"characteristic" Defined if T is a ring: In this case the
characteristic of the product domain is the
same as that of T.
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Methods

Basic Methods

zip — Combine elements

zip(x, y, f)

zipCanFail — Combine elements, may fail

zipCanFail(x, y, f)

Access Methods

nops — Return number of elements

nops(x)

4-33



4 Cat – Categories

Cat::IntegralDomain
Category of integral domains

Description

Cat::IntegralDomain represents the category of integral domains.

A Cat::IntegralDomain is a commutative and entire ring which has a “partial”
division method "_divide": If b divides a then dom::_divide(a,b) must return the
quotient, otherwise FAIL. The result of the method "_divide" must be unique.

Use the axiom Ax::canonicalUnitNormal to state in addition that there exists
a canonical unit normal form for each element of the ring. If a ring has the axiom
Ax::canonicalUnitNormal the method "unitNormal" must return the unique unit
normal for a ring element. If the axiom is not valid the method may return any associate.

Use the axiom Ax::closedUnitNormals in addition to state that the unit normals
which are computed by the method "unitNormal" are closed under multiplication, i.e.
that the product of two unit normals returns a unit normal.

These two axioms are not implicitly valid for an Cat::IntegralDomain because there
are integral domains for which one can't compute a canonical unit normal for each
element.

Categories

Cat::EntireRing, Cat::CommutativeRing, Cat::Algebra(dom)

Methods

Basic Methods

_divide — Return quotient

_divide(x, y)
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The result must be unique:

1 the product y * dom::_divide(x,y) must be equal to x provided that y is not
zero and y divides x,

2 if x is equal to y * z then y must divide x.

It is an error if y is zero.

isUnit — Test if element is a unit

isUnit(x)

unitNormal — Return an associate

unitNormal(x)

If the ring has the axiom Ax::canonicalUnitNormal the method must return the
unique unit normal of x.

An implementation is provided if the ring has not the axiom
Ax::canonicalUnitNormal: In this case simply x is returned.

Mathematical Methods

associates — Test if elements are associates

associates(x, y)

divides — Test if elements divides another

divides(x, y)

unitNormalRep — Return the unit normal representation

unitNormalRep(x)

If the ring has the axiom Ax::canonicalUnitNormal the method must return the
unique unit normal of x. The default implementation uses the method "unitNormal" to
compute the unit normal n in this case.

If the ring dos not have the axiom Ax::canonicalUnitNormal the method simply
returns [x, dom::one, dom::one].
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Cat::LeftModule

Category of left R -modules

Syntax

Cat::LeftModule(R)

Description

Cat::LeftModule(R) represents the category of left R-modules.

A Cat::LeftModule(R) is an Abelian group together with a rng R (a ring without unit)
and a left multiplication * (_mult).

The left multiplication is an operation taking an element of rng R and a module element
and returning a module element.

Given ring elements a, b and module elements x, y the following 3 distibutive laws must
hold:

1 (a b) x = a (b x),
2 (a + b) x = a x + b x,
3 a (x + y) = a x + a y.

Beware: The operation of a non-Abelian semi-group is also written as * (_mult). The
method "_mult" must handle the situation if a left module is also a non-Abelian
semi-group. In such a case it must both implement the group operation and the left
multiplication by elements of the rng.

Categories

Cat::AbelianGroup
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Parameters

R

A domain which must be from the category Cat::Rng.

Methods

Basic Methods

_mult — Left multiplication by a rng element

_mult(r, x)
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Cat::Matrix
Category of matrices

Syntax
Cat::Matrix(R)

Description

Cat::Matrix(R) represents the category of matrices over the rng R.

A Cat::Matrix(R) is a matrix of arbitrary dimension over a component ring R.

In the following description of the methods, we use the following notations for a matrix A
from a domain of category Cat::Matrix(R):

nrows(A) denotes the number of rows and ncols(A) the number of columns of A.

Further on, a row index is an integer ranges from 1 to nrows(A), and a column index is an
integer ranges from 1 to ncols(A).

Categories

Cat::BaseCategory

Parameters

R

A domain which must be from the category Cat::Rng (a ring without unit).

Entries

"coeffRing" is set to R.
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Methods

Basic Methods

_index — Matrix indexing

_index(A, i, j)

matdim — Matrix dimension

matdim(A)

new — Matrix definition

new(m, n)

Of course, this method may implement further possibilites to create matrices (for
example, see the method "new" of the domain constructor Dom::Matrix).

set_index — Setting matrix components

set_index(A, i, j, x)

Mathematical Methods

_negate — Negate a matrix

_negate(A)

_plus — Add matrices

_plus(A1, A2, …)

The matrices must be of the same domain type, otherwise FAIL is returned.

_subtract — Subtract two matrices

_subtract(A, B)
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equal — Test on equality of matrices

equal(A, B)

identity — Identity matrix

identity(n)

It only exists if R is of category Cat::Ring, i.e., a ring with unit.

iszero — Test on zero matrices

iszero(A)

Note that there may be more than one representation of the zero matrix of a given
dimension if R does not have the axiom Ax::canonicalRep.

transpose — Transpose of a matrix

transpose(A)

Access Methods

col — Extracting columns

col(A, c)

concatMatrix — Horizontal concatenation of matrices

concatMatrix(A, B)

An error message is issued if the two matrices do not have the same number of rows.

delCol — Deleting columns

delCol(A, c)

If A only consists of one column then NIL is returned.

delRow — Deleting rows

delRow(A, r)
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If A only consists of one row then NIL is returned.

row — Extracting rows

row(A, r)

setCol — Replacing columns

setCol(A, c, v)

setRow — Replacing rows

setRow(A, r, v)

stackMatrix — Appending of matrices vertically

stackMatrix(A, B)

An error message is issued if the two matrices do not have the same number of columns.

swapCol — Swapping matrix columns

swapCol(A, c1, c2)

swapRow — Swapping matrix rows

swapRow(A, r1, r2)
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Cat::Module
Category of R-modules

Syntax
Cat::Module(R)

Description

Cat::Module(R) represents the category of R-modules.

A Cat::Module(R) is a left and right R-module over a commutative ring R.

Right and left multiplications must be both implemented by the method "_mult".

Categories

Cat::LeftModule(R), Cat::RightModule(R)

Parameters

R

A domain which must be from the category Cat::CommutativeRing.
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Cat::Monoid
Category of monoids

Description

Cat::Monoid represents the category of monoids.

Cat::Monoid is a non-Abelian semi-group with a neutral element one (dom::one)
according to the group operation * (_mult).

Categories

Cat::SemiGroup

Entries

"one" Must hold the neutral element according to
the operation *.

Methods

Basic Methods

_invert — Return inverse

_invert(x)

Mathematical Methods

isone — Test if element is one

isone(x)
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_power — Raise to the nth power

_power(x, n)

This implementation does “repeated squaring”.
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Cat::OrderedSet
Category of ordered sets

Description

Cat::OrderedSet represents the category of ordered sets.

An Cat::OrderedSet is a set with a (complete) order relation < (_less).

Use the axiom Ax::canonicalOrder to state that elements of a domain are canonically
ordered as MuPAD expressions (i.e. ordered with respect to the kernel function _less).

Categories

Cat::BaseCategory

Methods

Basic Methods

_less — Compare if element is less

_less(x, y)

An implementation is provided if this domain has axiom Ax::canonicalOrder.

Mathematical Methods

_leequal — Compare if element is less or equal

_leequal(x, y)

The implementation provided uses the methods "_less" and "equal".
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max — Return maximum

max(x, …)

min — Return minimum

min(x, …)

sort — Sort list of elements

sort(l)
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Cat::PartialDifferentialRing
Category of partial differential rings

Description

Cat::PartialDifferentialRing represents the category of partial differential rings.

A Cat::PartialDifferentialRing is a commutative ring with a finite set of
derivation operators D_i.

A derivation is a linear operator with product rule, i.e. D_i(f * g) equals D_i(f) * g
+ f * D_i(g) for all f and g.

For many partial differential rings the derivations are differentiations with respect to
some indeterminates. Thus in order to support a natural notion it is also supposed that
a method "diff" exists, such that diff(f, x) returns the partial derivation of f with
respect to the indeterminate x.

Categories

Cat::CommutativeRing

Methods

Basic Methods

D — Return derivative

D(l, x)

diff — Return partial derivative

diff(x, <v, …>)
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Cat::Polynomial
Category of multivariate polynomials

Syntax
Cat::Polynomial(R)

Description

Cat::Polynomial(R) represents the category of multivariate polynomials over R.

A Cat::Polynomial(R) is a multivariate polynomial ring over a commutative
coefficient ring R.

Axioms

If R has Ax::canonicalUnitNormal, then Ax::canonicalUnitNormal.

If R has Ax::closedUnitNormals, then Ax::closedUnitNormals.

Categories

Cat::PartialDifferentialRing, Cat::Algebra(R)

If R is a Cat::FactorialDomain, then Cat::FactorialDomain.

If R is a Cat::GcdDomain, then Cat::GcdDomain.

If R is a Cat::IntegralDomain, then Cat::IntegralDomain.

Parameters

R

A domain which must be from the category Cat::CommutativeRing.
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Entries

"coeffRing" The coefficient ring R.
"characteristic" The characteristic of this domain, which is

the same as that of the ring R.

Methods

Basic Methods

coeff — Return coefficients

coeff(p)

coeff(p, x, n)

coeff(p, n)

Must return the coefficient of x^n of p, which is a polynomial in the remaining
indeterminates.

Must return the coefficient of x^n of p, where x is the main variable of p.

degree — Return total degree

degree(p)

degree(p, x)

Must return the degree of p with respect to the indeterminate x.

degreevec — Return degree vector

degreevec(p)

evalp — Evaluate at a point

evalp(p, x = v, …)
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More than one evaluation point may be given. The result must be a polynomial in the
remaining indeterminates or an element of R.

indets — Return indeterminates

indets(p)

lcoeff — Return leading coefficient

lcoeff(p)

lmonomial — Return leading monomial

lmonomial(p)

lterm — Return leading term

lterm(p)

mainvar — Return main variable

mainvar(p)

mapcoeffs — Map coefficients

mapcoeffs(p, f, <a, …>)

multcoeffs — Multiply coefficients

multcoeffs(p, c)

nterms — Return number of terms

nterms(p)

nthcoeff — Return n-th coefficient

nthcoeff(p, n)

nthmonomial — Return n-th monomial

nthmonomial(p, n)
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nthterm — Return n-th term

nthterm(p, n)

tcoeff — Return trailing coefficient

tcoeff(p)

unitNormal — Return unit normal

unitNormal(p)

An implementation is provided if R has the axiom Ax::canonicalUnitNormal: In this
case p is multiplied by an unit of R such that the leading coefficient has unit normal
representation in R.

unitNormalRep — Return unit normal representation

unitNormalRep(p)

An implementation is provided if R has the axiom Ax::canonicalUnitNormal.

Mathematical Methods

content — Return content

content(p)

isUnit — Test if element is a unit

isUnit(p)

primpart — Return primitive part

primpart(p)

poly2list — Convert into a list

poly2list(p)

solve — Solve polynomial equation

solve(p, x, <opt, …>)
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solve(p, x = T, <opt, …>)

solve(p)

Solves the polynomial equation p = 0 with respect to x over the domain T. See the
function solve for details about the optional arguments opt, ...

The polynomial p must be univariate. Solves the polynomial equation p = 0 with respect
to the indeterminate of p over the domain R.
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Cat::PrincipalIdealDomain
Category of principal ideal domains

Description

Cat::PrincipalIdealDomain represents the category of principal ideal domains.

A Cat::PrincipalIdealDomain is an integral domain with gcd where each ideal is
principal. Note that the method "idealGenerator" has to find generators for finitely
generated ideals only.

Categories

Cat::GcdDomain

Methods

Basic Methods

idealGenerator — Return generator of ideal

idealGenerator(x, …)
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Cat::QuotientField

Category of quotient fields

Syntax

Cat::QuotientField(R)

Description

Cat::QuotientField(R) represents the category of quotient fields over R.

A Cat::QuotientField is the field of fractions over the integral domain R.

Categories

Cat::Field, Cat::Algebra(R)

If R has Cat::OrderedSet, then Cat::OrderedSet.

Parameters

R

A domain which must be from the category Cat::IntegralDomain.

Entries

"characteristic" The characteristic of this domain, which is
the same as that of R.
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Methods

Basic Methods

denom — Return denominator

denom(x)

numer — Return numerator

numer(x)

Mathematical Methods

equal — Test for equality

equal(x, y)

iszero — Test for zero

iszero(x)

_less — Test if element is less

_less(x, y)

retract — Return retracted element

retract(x)

The default implementation uses the method "_divide" to divide numerator and
denominator.
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Cat::RightModule

Category of right R-modules

Syntax

Cat::RightModule(R)

Description

Cat::RightModule(R) represents the caregory of right R-modules.

A Cat::RightModule is an Abelian group together with a ring R and a right
multiplication * (_mult).

The right multiplication is an operation taking an element of ring R and a module
element and returning a module element.

Given ring elements a, b and module elements x, y the following 3 distributive laws must
hold:

1 x (a b) = (x a) b,
2 x (a + b) = x a + x b,
3 (x + y) a = x a + y a.

Beware: The operation of a non-Abelian semi-group is also written as * (_mult). The
method "_mult" must handle the situation if a right module is also a non-Abelian
semi-group. In such a case it must both implement the group operation and the right
multiplication by elements of the ring.

Categories

Cat::AbelianGroup
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Parameters

R

A domain which must be from the category Cat::Ring.

Methods

Basic Methods

_mult — Right multiplication by a ring element

_mult(x, r)
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Cat::Ring
Category of rings

Description

Cat::Ring represents the category of rings.

A Cat::Ring is a ring with a unit dom::one, i.e., an Abelian group according to the
operation + (_plus) and a non-Abelian monoid according to the operation * (_mult)
where in addition the two distributive laws a (b + c) = a b + a c and (a + b) c = a c + b c
hold.

A Cat::Ring is also a left module over itself. The left multiplication of the module is also
written as * (_mult).

Note that a ring without unit is a Cat::Rng.

Categories

Cat::Rng, Cat::Monoid, Cat::LeftModule(dom)

Entries

"characteristic" Must hold the characteristic of this ring.
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Cat::Rng
Category of rings without unit

Description

Cat::Rng represents the category of rings without unit.

A Cat::Rng is a ring without a unit, i.e. an Abelian group according to the operation +
(_plus) and a non-Abelian semi-group according to the operation * (_mult) where in
addition the two distributive laws a (b + c) = a b + a c and (a + b) c = a c + b c hold.

Use the axiom Ax::noZeroDivisors to state that there are no zero divisors according
to *, i.e. that the product of non-zero elements never is zero.

Categories

Cat::AbelianGroup, Cat::SemiGroup
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Cat::SemiGroup
Category of semi-groups

Description

Cat::SemiGroup represents the category of semi-groups.

A Cat::SemiGroup represents the category of non-Abelian semi-groups, where the
group operation is written as multiplication. Hence a Cat::SemiGroup is a set with an
associative operation * (_mult).

Note that Abelian semi-groups with operation + have category
Cat::AbelianSemiGroup.

Categories

Cat::BaseCategory

Methods

Basic Methods

_mult — Return product

_mult(x, …)

Mathematical Methods

_power — Return integer power

_power(x, n)
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Cat::Set

Category of sets of complex numbers

Description

Cat::Set represents the category of subsets of the complex numbers.

Sets of this category allow set-theoretic operations as well as pointwise arithmetical
operations.

The main feature of Cat::Set is a particular overloading mechanism. It provides n-ary
operators that can handle operands from different domains of category Cat::Set, as
well as mixed input where some operands are of types not belonging to Cat::Set. Hence,
in the methods of Cat::Set, operands of arbitrary type are allowed.

There are three kinds of operators: n-ary (associative and commutative), binary (not
assumed to be commutative), and unary (mapping a function). Cat::Set provides
generic methods for generating these kinds of operators, and uses them to define default
methods overloading the common set-theoretic and arithmetical functions.

By default, any operation of sets is defined, but returns unevaluated since the
arithmetical or set-theoretic expression cannot be simplified. Each domain of type
Cat::Set must provide particular slots and tables in order to achieve simplifications in
certain special cases.

Arithmetical operations are defined pointwise. It is not an error if some operation is not
defined for all elements of a set.

Cat::Set is mainly used by domains of sets returned by solve.

Categories

Cat::BaseCategory
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Methods

Mathematical Methods

commassop — Return an n-ary commutative and associative operator for sets

commassop(operatorname)

The returned procedure first sorts its operands (which it may do because of
commutativity). Those operands not belonging to a domain of category Cat::Set
are handled by the usual overloading mechanism, i.e. by the slot operatorname
of one of their domains. Out of the others, several operands belonging to the same
domain are handled by the slot "homog".operatorname of that domain. Finally,
the returned method tries to combine each possible pair of operands. If they are from
the same domain, "bin".operatorname is called for them. The following is done
if the operands are from different domains: let T1 and T2 be their types; then their
"inhomog".operatorname slots are used. If such a slot exists in the domain T1, it
must contain a table indexed by possible types T2, and the entry at that index must be a
procedure that carries out the operation for exactly two arguments, the first being a T1,
the second being a T2. Conversely, if such a slot exists in the domain T2, it must contain
a table indexed by possible types T1, and the entry at that index must be a procedure
that carries out the operation for exactly two arguments, the first being a T2, the second
being a T1.

The slot "homog".operatorname, or a table entry in the slot
"inhomog".operatorname, may return FAIL in order to indicate that it could not
simplify its input; if they are missing, this indicates that a simplification is generally not
possible for input of this type. In these cases, the returned procedure proceeds by trying
to combine another two of the given arguments.

A slot "bin".operatorname usually won't exist, except for the case that there is no
"homog".operatorname; usually the latter can also take care for the case of exactly two
operands.

The whole process is repeated over and over until no new simplifications occur or only
one operand is left. If no more simplifications occur, an unevaluated call to the operator
is returned, the arguments being all remaining operands that could not be combined
further.
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binop — Return a binary operator for sets

binop(operatorname)

The returned procedure uses the slot "bin".operatorname of its first
argument if both arguments are of the same type. Otherwise it uses the slot
"inhomogleft".operatorname of its first argument; if that fails, it uses the
slot "inhomogright".operatorname of its second argument; each of these
slots, if it exists, must contain tables, indexed by the type of the other argument,
such that slot(T1, "inhomogleft".operatorname)[T2] and slot(T2,
"inhomogright".operatorname)[T1] carry out the operation for objects of type T1
and T2, in this order.

No commutativity of the operation is assumed.

If the slots or table entries do not exist or return FAIL, an unevaluated call to the
operator is returned.

homogassop — Return an n-ary operator for sets belonging to the same domain

homogassop(operatorname)

_union — Union of sets

_union(S1, …)

_intersect — Intersection of sets

_intersect(S1, …)

_plus — Set of sums of set elements

_plus(S1, …)

The sum of sets is computed by the commutative-associative operator generated by
"commassop", using the slots "homog_plus" and "inhomog_plus" of the domains of
its operands.

_mult — Set of product of set elements

_mult(S1, …)
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The product of sets is computed by the commutative-associative operator generated by
"commassop", using the slots "homog_mult" and "inhomog_mult of the domains of its
operands.

_minus — Set of subtractions

_minus(S1, S2)

_power — Pointwise power

_power(S1, S2)

The power of sets is computed by the binary operator generated by "binop", using the
slots "homog_power", "inhomogleft_power", and "inhomogright_power" of its
operands.

map — Map an operation to a set

map(S, f)

By overloading this method in a particular domain, the behavior of sets changes
whenever a special function is applied to them.
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Cat::SkewField
Category of skew fields

Description

Cat::SkewField represents the category of skew fields (division rings).

A Cat::SkewField represents a ring with unit where each non-zero element is
invertible. This structure is also called division ring in the literature.

Categories

Cat::Ring
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Cat::SquareMatrix
Category of square matrices

Syntax
Cat::SquareMatrix(R)

Description

Cat::SquareMatrix(R) represents the category of square matrices over the rng R.

A Cat::SquareMatrix(R) represents the rng (ring without unit) of square matrices
over the coefficient domain R.

Categories

Cat::Rng, Cat::Matrix(R)

If R has Cat::Ring, then Cat::Ring.

Parameters

R

A domain which must be from the category Cat::Rng.

Entries

"characteristic" Defined if R is a ring: In this case the
characteristic of the matrix domain is the
same as that of R.
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Cat::UnivariatePolynomial
Category of univariate polynomials

Syntax
Cat::UnivariatePolynomial(R)

Description
Cat::UnivariatePolynomial(R) represents the category of univariate polynomials
over R.

A Cat::UnivariatePolynomial(R) is a univariate polynomial over the commutative
ring R.

Categories
Cat::Polynomial(R), Cat::DifferentialRing

If R has Cat::Field, then Cat::EuclideanDomain.

Parameters
R

A domain which must be from the category Cat::CommutativeRing.

Methods

Basic Methods
pdivide — Pseudo-divide polynomials

pdivide(p, q)
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Must return a sequence (b, s, r) of a ring element b and polynomials s and r such
that multcoeffs(p, b) = s q + r holds with b = lcoeff(q)degree(p) - degree(q) + 1.

pquo — Return pseudo-quotient

pquo(p, q)

prem — Return pseudo-remainder

prem(p, q)
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Cat::VectorSpace
Category of vector spaces

Syntax
Cat::VectorSpace(F)

Description

Cat::VectorSpace(F) represents the category of vector spaces over the field F.

A vector space is an Abelian group with an operation + (_plus).

The scalar product has to be implemented via the method "_mult". Other kinds of
multiplication are not defined.

Categories

Cat::Module(F)

Parameters

F

A domain which must be from the category Cat::Field.

Methods

Basic Methods

_mult — Return scalar product

_mult(c, x)
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_mult(x, c)

Must return the scalar product of x and c.
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combinat::bell
Bell numbers

Syntax
combinat::bell(n)

combinat::bell(expression)

Description

combinat::bell(n) computes the n-th Bell number.

The n-th Bell number is defined by the exponential generating function:

Often another definition is used. The n-th Bell number is the number of different ways of
partitioning the set {1, 2, …, n} into disjoint nonempty subsets, and bell(0) is defined to
be 1.

Bell numbers are computed using the formula:

• bell(0) = 1

 for n > 0

Examples

Example 1

The third Bell number is 5:
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combinat::bell(3)

This means that you can partition the set {1, 2, 3} into disjoint subsets in 5 different
ways. These are {{1, 2, 3}}, {{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}, and {{1}, {2}, {3}}. Or, that
you can write 105 = 3 5 7 as 5 different products. These are 105 = 3 35 = 5 21 = 7 15 = 3 5
 7.

Example 2

If one uses a wrong argument, an error message is returned.

combinat::bell(3.4)

Error: A nonnegative integer is expected. [combinat::bell]

Example 3

It can be useful to return the unevaluated function call.

a := combinat::bell(x);

x := 4;

a ;

delete(a);

Parameters

n

Nonnegative integer
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expression

An expression of type Type::Arithmetical which must be a nonnegative integer if it is
a number.

Return Values

Positive integer value if n was a nonnegative integer. Otherwise combinat::bell
returns the unevaluated function call.
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combinat::cartesianProduct
Cartesian product

Syntax
combinat::cartesianProduct(S1, …)

Description
combinat::cartesianProduct(S1, ...) returns the cartesian product of the sets or
lists S1, … as a list of lists.

The cartesian product of S1 through Sn consists of all lists of length n whose i-th entry is
an operand of the set or list Si, for 1 ≤ i ≤ n.

Any integer k among the arguments is identified with the set of the first k positive
integers.

The ordering of the output is unspecified.

Examples

Example 1

The following calls are equivalent:

combinat::cartesianProduct({1, 2}, {a, b}), 

combinat::cartesianProduct(2, [b, a])

Parameters
S1

Set, list, or nonnegative integer
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Return Values

List of lists, each of them having as many operands as there were arguments passed to
combinat::cartesianProduct.
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combinat::catalan

Catalan numbers

Syntax

combinat::catalan(n)

Description

combinat::catalan(n) returns the n-th Catalan number.

The Catalan numbers are ubiquitous in combinatorics. For example,
combinat::catalan(n) counts the Dyck words of size n, the ordered trees with n
nodes, the binary trees with n+1 nodes, the complete binary trees with 2n+1 nodes, the
standard tableaux with two rows of size n, the triangulations of a regular n+2-gone, or
the non-crossing partitions of {1, 2, …, n}.

combinat::catalan(n) is calculated using the formula

.

Examples

Example 1

We compute the first Catalan numbers:

combinat::catalan(n) $ n = 0..6

5-7



5 combinat – Combinatorics

Example 2

If one uses a wrong argument, an error message is returned

combinat::catalan(-1)

Error: The object '-1' is incorrect. The type of argument number 1 must be 'Type::NonNegInt'.

  Evaluating: combinat::catalan

Parameters

n

Nonnegative integer

Return Values

Positive integer.
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combinat::choose
Subsets of a given size

Syntax
combinat::choose(S, k)

Description

combinat::choose(S, k) returns all subsets of S that have exactly k elements.

If S is an integer, it represents the set of the first S positive integers.

Examples

Example 1

There are three subsets of a three-element set that have exactly two elements:

combinat::choose({a, b, c}, 2)

Parameters

S

Set or nonnegative integer

k

Nonnegative integer
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Return Values

Sequence of sets.
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combinat::compositions
Compositions of an integer

Syntax
combinat::compositions(n, <MinPart = k>, <MaxPart = l>, <Length = m>)

Description
combinat::compositions(n) returns all compositions of the nonnegative integer n.

A composition of a nonnegative integer n is a list of positive integers with total sum n.

Examples

Example 1

We output all compositions of the integer 4:

combinat::compositions(4)

Example 2

It is possible to output only the compositions of a certain length:

combinat::compositions(4, Length=2)

Example 3

The options MinPart and MaxPart can be used to set constraints on the sizes of all
parts. Using MaxPart, you can select compositions having only small entries. This is the
list of the compositions of 4 with all parts at most 2:
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combinat::compositions(4, MaxPart=2)

MinPart is complementary to MaxPart and selects compositions having only large parts
(it takes a non-negative value). This is the list of the compositions of 4 with all parts at
least 2:

combinat::compositions(4, MinPart=2)

By default, the parts of a composition have to be positive. This can be changed using
the option MinPart. In the following example, the options Length and MinPart are
combined together to obtain the list of the compositions of 4 with 3 nonnegative parts:

combinat::compositions(4, Length=3, MinPart=0)

If no length is given, MinPart=0 is not allowed.

Parameters

n

Nonnegative integer

Options

MinPart

Option, specified as MinPart = k

Return only compositions consisting of integers greater or equal than k. The option
MinPart = 0 is only allowed if also the option Length is given. Default is 1.
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MaxPart

Option, specified as MaxPart = l

Return only compositions consisting of integers less or equal than l.

Length

Option, specified as Length = m

Return only compositions consisting of exactly m integers.
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combinat::modStirling
Modified Stirling numbers

Syntax
combinat::modStirling(q, n, k)

Description

combinat::modStirling computes the modified Stirling numbers.

combinat::modStirling(q,n,k) takes the elementary symmetric polynomial in n
variables of degree k and evaluates it for the values q + 1, …, q + n. Note that k must not
be greater than n.

Examples

Example 1

combinat::modStirling(2,4,2)

Parameters

q

The argument: an integer

n

The number of variables: a nonnegative integer
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k

The degree: a nonnegative integer

Return Values

Positive integer.

5-15



5 combinat – Combinatorics

combinat::partitions
Partitions of an integer

Syntax
combinat::partitions(n)

Description
cominat::partitions(n) returns the number of partitions of the integer n.

A partition of a nonnegative integer n is a non-increasing list of positive integers with
total sum n.

Examples

Example 1

There are 5 partitions of 4:

combinat::partitions(4)

Parameters
n

Nonnegative integer

Algorithms
Counting is done efficiently with Euler's pentagonal formula for small values of n and
Hardy-Ramanujan-Rademacher's formula otherwise.
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combinat::permute
Permutations of a list

Syntax
combinat::permute(l, <Duplicate>)

combinat::permute(n, <Duplicate>)

Description

For a list l, the call combinat::permute(l) returns all permutations of l.

For an integer n, the call combinat::permute(n) returns all permutations of the list
[1, ..., n].

A permutation of a list is a list that contains the same elements, and each of them the
same number of times, as the original list.

Equivalently, a permutation of a list l of n elements is any f(l) where f is an element
of the symmetric group Dom::SymmetricGroup(n). Different f may produce the same
f(l); with the option Duplicate, every permutation is listed as many times as it occurs
in that way; without that option, every permutation is listed only once.

Examples

Example 1

There are six permutations of three letters:

combinat::permute([a, b, c])

To permute the first three integers, the following syntax is also possible:

combinat::permute(3)
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If some list entry occurs several times, the number of permutations decreases:

combinat::permute([a, a, b])

However, the same permutation is listed as often as it can be obtained by applying
different elements of the symmetric group S3 if the option Duplicate is given.

combinat::permute([a, a, b], Duplicate)

We could have achieved the same by permuting three different symbols and then setting
two of them equal:

subs(combinat::permute([a, b, c]), c=a)

Parameters

l

List

n

Positive integer

Options

Duplicate

List every permutation as often as it can be produced in different ways by applying some
bijective mapping (element of the symmetric group) to the original list.
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combinat::powerset
Subsets of a set

Syntax
combinat::powerset(S)

Description

If S is a set, combinat::powerset(S) returns the set of all subsets of S. If l is a list,
combinat::powerset(l) returns the set of all sublists of l.

The powerset of a list l is the set of all lists that can be obtained by deleting some
elements of l and leaving the others in order.

combinat::powerset has been overloaded for multisets of type Dom::Multiset. The
powerset of a multiset S consists of all multisets that contain only elements occurring
also in S, each of them at most as many times as it occurs in S.

Examples

Example 1

Given a finite set, combinat::powerset returns the powerset (set of all subsets) of the
input:

combinat::powerset({a, b, c})

The same works for multisets:

combinat::powerset(Dom::Multiset(a, a, b))
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Example 2

The powerset of a list l of pairwise different elements is the same as the powerset of the
set of these elements, except that it consists of lists in which the order of elements is the
same as in l:

combinat::powerset([c, a, b])

In general, the powerset of a list l is the same as the powerset of the multiset of its
elements, except that it consists of lists in which the original order is preserved:

combinat::powerset([a, b, a])

Parameters

S

Set

l

List
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combinat::stirling1
Stirling numbers of the first kind

Syntax
combinat::stirling1(n, k)

Description

combinat::stirling1(n,k) computes the Stirling numbers of the first kind.

Let S(n, k) be the number of permutations of n symbols that have exactly k cycles. Then
combinat::stirling1(n,k) computes (- 1)(n + k) S(n, k).

Let S1(n, k) be the Stirling number of the first kind, then we have:

.

Examples

Example 1

Let us have a look what's the result of x (x - 1) (x - 2) (x - 3) (x - 4) (x - 5) written as a sum.

expand(x*(x-1)*(x-2)*(x-3)*(x-4)*(x-5))

Now let us “prove” the formula mentioned in the “Details” section by calculating the
proper Stirling numbers:

combinat::stirling1(6,1); 
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combinat::stirling1(6,2); 

combinat::stirling1(6,3); 

combinat::stirling1(6,4); 

combinat::stirling1(6,5); 

combinat::stirling1(6,6)

Example 2

combinat::stirling1(3,-1)

Error: Nonnegative integers are expected. [combinat::stirling1]

Parameters

n, k

Nonnegative integers

Return Values

Integer.
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References

J.J. Rotman, An Introduction to the Theory of Groups, 3rd Edition, Wm. C. Brown
Publishers, Dubuque, 1988
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combinat::stirling2
Stirling numbers of the second kind

Syntax
combinat::stirling2(n, k)

Description

combinat::stirling2(n,k) computes the number of ways of partitioning a set of n
elements into k non-empty subsets.

combinat::stirling2(n,k) is calculated using the formula

.

Examples

Example 1

One can partition the set {1, 2, 3} into {1, 2, 3} = {1, 2} ∪ {3} = {1, 3} ∪ {2} = {2, 3} ∪ {1}

combinat::stirling2(3,2)

Example 2

combinat::stirling2(3)

Error: Two arguments are expected. [combinat::stirling2]
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Parameters

n, k

Nonnegative integers

Return Values

Nonnegative integer.
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combinat::subwords
Subwords of a word

Syntax
combinat::subwords(w)

Description

The function combinat::subwords(w) returns a list of all subwords (sublists) of the
list w.

A subword of a word w is a word obtained by deleting the letters at some of the positions
in w. A subword is generated as many times as it appears in the word.

To obtain each subword only once, combinat::powerset should be used.

Examples

Example 1

There are 8 subwords of the word [a, b, c]:

combinat::subwords([a, b, c])

Parameters

w

List
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daetools::findDecoupledBlocks

Search for decoupled blocks in systems of equations

Syntax

[eqsBlocks,varsBlocks] := daetools::findDecoupledBlocks(eqs,vars)

Description

[eqsBlocks,varsBlocks] := daetools::findDecoupledBlocks(eqs,vars)

identifies subsets (blocks) of equations that can be used to define subsets of variables.
The number of variables vars must coincide with the number of equations eqs.

The ith block is the set of equations determining the
variables in vars[varsBlocks[i]]. The variables in
vars[varsBlocks[1],...,varsBlocks[i-1]] are determined recursively by the
previous blocks of equations. After you solve the first block of equations for the first
block of variables, the second block of equations, given by eqs[eqsBlocks[2]], defines
a decoupled subset of equations containing only the subset of variables given by the
second block of variables vars[varsBlock[2]], plus the variables from the first block
(these variables are known at this time). Thus, if a nontrivial block decomposition is
possible, you can split the solution process for a large system of equations involving many
variables into several steps, where each step involves a smaller subsystem.

The number of blocks is nops(eqsBlocks). It coincides with nops(varsBlocks). If
nops(eqsBlocks) = nops(varsBlocks) = 1, then a nontrivial block decomposition
of the equations is not possible.

The implemented algorithm requires that for each variable in vars there must be
at least one matching equation in eqs involving this variable. The same equation
cannot also be matched to another variable. If the system does not satisfy this
condition, then daetools::findDecoupledBlocks throws an error. In particular,
daetools::findDecoupledBlocks requires that nops(eqs) = nops(vars).
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Examples

Example 1

Compute a block lower triangular decomposition of a symbolic system of differential
algebraic equations (DAEs).

Create the following system of four differential algebraic equations. Here, the
expressions x1(t), x2(t), x3(t), and x4(t) represent the state variables of the
system. The system also contains symbolic parameters c1, c2, c3, c4, and the
expressions f(t,x,y) and g(t,x,y).

eqs := [c1*diff(x1(t),t) + c2*diff(x3(t),t) = c3*f(t,x1(t),x3(t)),

        c2*diff(x1(t),t) + c1*diff(x3(t),t) = c4*g(t,x3(t),x4(t)),

        x1(t) = g(t,x1(t),x3(t)),

        x2(t) = f(t,x3(t),x4(t))]:

vars:= [x1(t), x2(t), x3(t), x4(t)]:

Use daetools::findDecoupledBlocks to find the block structure of the system.

[eqsBlocks, varsBlocks] := daetools::findDecoupledBlocks(eqs, vars)

The first block contains two equations in two variables.

eqs[eqsBlocks[1]]

vars[varsBlocks[1]]

After you solve this block for the state variables x1(t), x3(t), you can solve the next
block of equations. This block consists of one equation.
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eqs[eqsBlocks[2]]

This block involves one variable.

vars[varsBlocks[2]]

After you solve the equation from block 2 for the state variable x4(t), the
remaining block of equations eqs[eqsBlocks[3]] defines the remaining variable
vars[varsBlocks[3]].

eqs[eqsBlocks[3]];

vars[varsBlocks[3]]

Find the permutations that convert the system to a block lower triangular form.

eqsPerm := [op(eqsBlocks[i]) $ i = 1..nops(eqsBlocks)];

varsPerm := [op(varsBlocks[i]) $ i = 1..nops(varsBlocks)]

Convert the system to a block lower triangular system of equations.

eqs := eqs[eqsPerm];

vars := vars[varsPerm]
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Find the incidence matrix of the resulting system. The incidence matrix shows that the
system of permuted equations has three diagonal blocks of size 2-by-2, 1-by-1, and 1-
by-1.

daetools::incidenceMatrix(eqs, vars)

Parameters

eqs

A list or a vector of equations or expressions in the state variables vars and their
derivatives. Expressions represent equations with 0 right side.

vars

A list or a vector of identifiers or expressions, such as [x1(t),x2(t)].

Return Values

A nested list of integers representing permutations required to convert the original
system eqs,vars to a block lower triangular form.
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See Also

MuPAD Functions
daetools::incidenceMatrix | daetools::isLowIndexDAE |
daetools::massMatrixForm | daetools::reduceDAEIndex |
daetools::reduceDAEToODE | daetools::reduceDifferentialOrder |
daetools::reduceRedundancies

Introduced in R2014b
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daetools::incidenceMatrix
Find incidence matrix of system of equations

Syntax
A := daetools::incidenceMatrix(eqs,vars)

Description

A := daetools::incidenceMatrix(eqs,vars) for m equations eqs and n variables
vars returns an m-by-n matrix A, where A[i,j] = 1 if eqs[i] contains vars[j] or
any derivative of vars[j]. All other elements of A are 0s.

Examples

Example 1

Find the incidence matrix of a system of five equations in five variables.

Create the following vector eqs containing five symbolic differential equations.

eqs := [diff(y1(t),t) = y2(t),

        diff(y2(t),t) = c1*y1(t) + c3*y3(t),

        diff(y3(t),t) = y2(t) + y4(t),

        diff(y4(t),t) = y3(t) + y5(t),

        diff(y5(t),t) = y4(t)]:

Create the vector of variables. Here, c1 and c3 are symbolic parameters (not variables)
of the system.

vars := [y1(t), y2(t), y3(t), y4(t), y5(t)]:

Find the incidence matrix A for the equations eqs with respect to the variables vars.

A := daetools::incidenceMatrix(eqs, vars)
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Parameters

eqs

A list or a vector of equations or expressions in the state variables vars and their
derivatives. Expressions represent equations with 0 right side.

vars

A list or a vector of identifiers or expressions, such as [x1(t), x2(t)].

Return Values

A matrix of 1s and 0s.

See Also

MuPAD Functions
daetools::findDecoupledBlocks | daetools::isLowIndexDAE
| daetools::massMatrixForm | daetools::reduceDAEIndex |
daetools::reduceDAEToODE | daetools::reduceDifferentialOrder |
daetools::reduceRedundancies

Introduced in R2014b
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daetools::isLowIndexDAE
Check if differential index of system equations is lower than 2

Syntax
daetools::isLowIndexDAE(eqs,vars)

Description

daetools::isLowIndexDAE(eqs,vars) checks if the system eqs of first-order
semilinear differential algebraic equations (DAEs) has a low differential index. If
the differential index of the system is 0 or 1, isLowIndexDAE returns TRUE. If the
differential index of eqs is higher than 1, then daetools::isLowIndexDAE returns
FALSE.

The number of equations eqs must match the number of variables vars.

Examples

Example 1

Check if a system of first-order semilinear DAEs has a low (0 or 1) differential index.

Create the following system of two differential algebraic equations. Here, x(t) and y(t)
are the state variables of the system.

eqs := [diff(x(t),t) = x(t) + y(t), x(t)^2 + y(t)^2 = 1];

vars := [x(t), y(t)]
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Use daetools::isLowIndexDAE to check the differential order of the
system. The differential order of this system is 1. For systems of index 0 and 1,
daetools::isLowIndexDAE returns TRUE.

daetools::isLowIndexDAE(eqs, vars)

Example 2

Check if the following DAE system has a low or high differential index. If the index is
higher than 1, then use daetools::reduceDAEIndex to reduce it.

Create the following system of two differential algebraic equations. Here, x(t), y(t),
and z(t) are the state variables of the system.

eqs := [diff(x(t),t) = x(t) + z(t),

        diff(y(t),t) = f(t),

        x(t) = y(t)];

vars := [x(t), y(t), z(t)]

Use daetools::isLowIndexDAE to check the differential index of the system. For this
system, daetools::isLowIndexDAE returns FALSE. This means that the differential
index of the system is 2 or higher.

daetools::isLowIndexDAE(eqs, vars)

Use daetools::reduceDAEIndex to rewrite the system so that the differential index is
1. The new system has one additional state variable, Dyt(t).

[newEqs, newVars, transform, oldIndex] :=
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         daetools::reduceDAEIndex(eqs, vars):

newEqs;

newVars

daetools::reduceDAEIndex also returns the differential index of the original system.

oldIndex

Check if the differential order of the new system is lower than 2.

daetools::isLowIndexDAE(newEqs, newVars)

Parameters

eqs

A list or a vector of equations or expressions in the state variables vars and their
derivatives. Expressions represent equations with 0 right side.

vars

A list or a vector of identifiers or expressions, such as [x1(t), x2(t)].

Return Values

TRUE or FALSE.
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See Also

MuPAD Functions
daetools::findDecoupledBlocks | daetools::incidenceMatrix
| daetools::massMatrixForm | daetools::reduceDAEIndex |
daetools::reduceDAEToODE | daetools::reduceDifferentialOrder |
daetools::reduceRedundancies

Introduced in R2014b
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daetools::massMatrixForm
Extract mass matrix and right side of semilinear system of differential algebraic
equations

Syntax
MF := daetools::massMatrixForm(eqs,vars)

Description
MF := daetools::massMatrixForm(eqs,vars) returns a list containing the
mass matrix M and the right side of equations F of a semilinear system of first-order
differential algebraic equations (DAEs). Algebraic equations in eqs that do not contain
any derivatives of the variables in vars correspond to empty rows of the mass matrix M.

The mass matrix M and the right side of equations F refer to the form M(t,x(t)x'(t))
= F(t,x(t)).

Examples

Example 1

Convert a semilinear system of differential algebraic equations to mass matrix form.

Create the following system of differential algebraic equations. Here, x1(t) and x2(t)
represent state variables of the system. The system also contains symbolic parameters r
and m, and the parameter f(t, x1(t), x2(t)).

eqs :=

 [m*x2(t)*diff(x1(t), t) + m*t*diff(x2(t), t) = f(t, x1(t), x2(t)),

  x1(t)^2 + x2(t)^2 = r^2];

vars := [x1(t), x2(t)];
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Find the mass matrix form of this system.

MF := daetools::massMatrixForm(eqs, vars):

M := MF[1];

F := MF[2]

Parameters
eqs

A list or a vector of equations or expressions in the state variables vars and their
derivatives. Expressions represent equations with 0 right side.

vars

A list or a vector of identifiers or expressions, such as [x1(t), x2(t)].

Return Values
A list of two matrices. The first entry is the mass matrix. The number of rows is the
number of equations in eqs, and the number of columns is the number of variables in
vars. The second entry is an n-by-1 matrix of the right side of equations, where n is the
number of equations eqs.

See Also

MuPAD Functions
daetools::findDecoupledBlocks | daetools::incidenceMatrix
| daetools::isLowIndexDAE | daetools::reduceDAEIndex |
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daetools::reduceDAEToODE | daetools::reduceDifferentialOrder |
daetools::reduceRedundancies

Introduced in R2014b
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daetools::reduceDAEIndex

Convert system of first-order differential algebraic equations to equivalent system of
differential index 1

Syntax

[newEqs,newVars,R,oldIndex] := daetools::reduceDAEIndex(eqs,vars)

Description

[newEqs,newVars,R,oldIndex] := daetools::reduceDAEIndex(eqs,vars)

converts a high-index system of first-order differential algebraic equations eqs to an
equivalent system newEqs of differential index 1. The daetools::reduceDAEIndex
function keeps the original equations and variables and introduces new variables and
equations. It also returns the matrix R that expresses the new variables in newVars as
derivatives of the original variables vars and the differential index oldIndex of the
original system of DAEs, eqs.

After conversion, daetools::reduceDAEIndex checks the differential index of the new
system by calling daetools::isLowIndexDAE. If the index of newEqs is 2 or higher,
then daetools::reduceDAEIndex issues a warning.

The implementation of daetools::reduceDAEIndex uses the Pantelides algorithm.
This algorithm reduces higher-index systems to lower-index systems by selectively
adding differentiated forms of the original equations. The Pantelides algorithm can
underestimate the differential index of a new system, and therefore, can fail to reduce
the differential index to 1. In this case, daetools::reduceDAEIndex issues a warning
and returns the value of oldIndex as UNKNOWN. The daetools::reduceDAEToODE
function uses more reliable, but slower Gaussian elimination. Note that
daetools::reduceDAEToODE requires the DAE system to be semilinear.
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Examples

Example 1

Reduce the differential index of a system that contains two second-order differential
algebraic equations. Because the equations are second-order equations, first use
reduceDifferentialOrder to rewrite the system to a system of first-order DAEs.

Create the following system of two second-order DAEs. Here, x(t), y(t), and F(t)are
state variables of the system.

eqs := [diff(x(t), t, t) = -F(t)*x(t),

        diff(y(t), t, t) = -F(t)*y(t) - g,

        x(t)^2 + y(t)^2 = r^2];

vars := [x(t), y(t), F(t)]

Rewrite this system so that all equations become first-order differential equations. The
daetools::reduceDifferentialOrder function replaces the second-order DAE by
two first-order expressions by introducing the new variables Dxt(t) and Dyt(t).

[eqs, vars, R] := daetools::reduceDifferentialOrder(eqs, vars):

newEquations = eqs;

newVariables = vars;

relations = R
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Use daetools::reduceDAEIndex to rewrite the system so that the differential index is
1.

[eqs,vars,R,originalIndex] := daetools::reduceDAEIndex(eqs,vars):

newEquations = eqs;

newVariables = vars;

relations = R;

originalDAEIndex = originalIndex

Use daetools::reduceRedundancies to shorten the system.

[eqs, vars, solvedEquations,

 constantVariables,    

 replacedVariables, 

 otherEquations] := daetools::reduceRedundancies(eqs, vars):

newEquations = eqs;

newVariables = vars;
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Parameters

eqs

A list or a vector of equations or expressions in the state variables vars and their
derivatives. Expressions represent equations with 0 right side.

vars

A list or a vector of identifiers or expressions, such as [x1(t), x2(t)].

Return Values

A nested list containing the following four lists: a list of new equations, a list of new
variables, a list of relations between new and original variables, and the differential
index of the original DAE system. If daetools::reduceDAEIndex fails to reduce the
differential index to 1, then it issues a warning and returns UNKNOWN instead of the
differential index of the original DAE system.

See Also

MuPAD Functions
daetools::findDecoupledBlocks | daetools::incidenceMatrix
| daetools::isLowIndexDAE | daetools::massMatrixForm |
daetools::reduceDAEToODE | daetools::reduceDifferentialOrder |
daetools::reduceRedundancies

Introduced in R2014b
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daetools::reduceDAEToODE
Convert system of first-order quasilinear differential algebraic equations to equivalent
system of differential index 0

Syntax
[newEqs,constraintEqs,oldIndex] = daetools::reduceDAEToODE(eqs,vars)

Description

[newEqs,constraintEqs,oldIndex] :=

daetools::reduceDAEToODE(eqs,vars) converts a high-index system of first-order
semilinear algebraic equations eqs to an equivalent system of ordinary differential
equations, newEqs. It also returns a vector of constraint equations and the differential
index oldIndex of the original system of semilinear DAEs, eqs.

The differential index of the new system is 0, that is, the Jacobian of newEqs with
respect to the derivatives of the variables in vars is invertible.

The implementation of daetools::reduceDAEToODE is based on Gaussian
elimination. This algorithm is more reliable than the Pantelides algorithm used by
daetools::reduceDAEIndex, but it can be much slower.

The number of equations eqs must coincide with the number of variables vars.

Examples

Example 1

Check if a DAE system has a low (0 or 1) or high (>1) differential index. If the index is
higher than 1, then first try to reduce the index by using daetools::reduceDAEIndex
and then by using daetools::reduceDAEToODE.

Create the following system of differential algebraic equations. Here, x1(t), x2(t), and
x3(t) represent state variables of the system. The system also contains the expressions
q1(t), q2(t), and q3(t) that do not represent state variables.
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eqs := [diff(x2(t),t) = q1(t) - x1(t),

        diff(x3(t),t) = q2(t) - 2*x2(t) - t*(q1(t)-x1(t)),

        q3(t) - t*x2(t) - x3(t) = 0];

vars := [x1(t), x2(t), x3(t)]

Use daetools::isLowIndexDAE to check the differential index of the system. For this
system, daetools::isLowIndexDAE returns FALSE. This means that the differential
index of the system is 2 or higher.

daetools::isLowIndexDAE(eqs, vars)

Use daetools::reduceDAEIndex as your first attempt to rewrite the system so that
the differential index is 1. For this system, daetools::reduceDAEIndex issues a
warning because it cannot reduce the differential index of the system to 0 or 1.

[newEqs, newVars, R, oldIndex] :=

    daetools::reduceDAEIndex(eqs, vars):

newEquations = newEqs;

newVariables = newVars;

relations = R;

originalIndex = oldIndex

Warning: The index of the reduced DAEs is larger than 1. [daetools::reduceDAEIndex]
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If daetools::reduceDAEIndex cannot reduce the semilinear system so that the index
is 0 or 1, try using daetools::reduceDAEToODE. This function can be much slower,
therefore it is not recommended as a first choice.

[newEqs, constraintEqs, oldIndex] :=

    daetools::reduceDAEToODE(eqs, vars):

ODEs = eqs;

constraintEquations = constraintEqs;

originalIndex = oldIndex

Parameters

eqs

A list or a vector of equations or expressions in the state variables vars and their
derivatives. Expressions represent equations with 0 right side.
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vars

A list or a vector of identifiers or expressions, such as [x1(t), x2(t)].

Return Values

A nested list containing the following three lists: a list of ordinary differential equations,
a list of constraint equations encountered during system reduction, and the differential
index of the original DAE system.

See Also

MuPAD Functions
daetools::findDecoupledBlocks | daetools::incidenceMatrix
| daetools::isLowIndexDAE | daetools::massMatrixForm |
daetools::reduceDAEIndex | daetools::reduceDifferentialOrder |
daetools::reduceRedundancies

Introduced in R2014b
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daetools::reduceDifferentialOrder
Reduce systems of higher-order differential equations to systems of first-order
differential equations

Syntax
[newEqs,newVars,R] := daetools::reduceDifferentialOrder(eqs,vars)

Description

[newEqs,newVars,R] := daetools::reduceDifferentialOrder(eqs,vars)

rewrites a system of higher-order differential equations eqs as a system of first-order
differential equations newEqs by substituting derivatives in eqs with new variables. It
also returns the matrix R that expresses the new variables in newVars as derivatives
of the original variables vars. Here, newVars consists of the original variables vars
augmented with these new variables.

Examples

Example 1

Reduce a system containing a second- and a third-order expression to a system
containing only first-order DAEs, and return a matrix that expresses the variables
generated by daetools::reduceDifferentialOrder via the original variables of this
system.

Create the following system of differential equations, which includes a second- and a
third-order expression. Here, x(t) and y(t) are state variables of the system.

eqs := [diff(x(t),t,t) = diff(f(t),t,t,t),

        diff(y(t),t,t,t) = diff(f(t),t,t)];

vars := [x(t), y(t)]
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Rewrite this system so that all equations become first-order differential equations. The
daetools::reduceDifferentialOrder function replaces the higher-order DAE with
first-order equations by introducing the new variables Dxt(t), Dyt(t), and Dytt(t).
This function returns a nested list containing the following three lists: a list of new
equations, a list of new variables, and a list of relations between the new and the original
variables. Display newEqs, newVars, and R separately.

[newEqs, newVars, R] :=

    daetools::reduceDifferentialOrder(eqs, vars):

newEqs;

newVars;

R

Parameters

eqs

A list or a vector of equations or expressions in the state variables vars and their
derivatives. Expressions represent equations with 0 right side.

vars

A list or a vector of identifiers or expressions, such as [x1(t), x2(t)].

Return Values

A nested list containing the following three lists: a list of new equations, a list of new
variables, and a list of relations between the new and the original variables.
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See Also

MuPAD Functions
daetools::findDecoupledBlocks | daetools::incidenceMatrix
| daetools::isLowIndexDAE | daetools::massMatrixForm |
daetools::reduceDAEIndex | daetools::reduceDAEToODE |
daetools::reduceRedundancies

Introduced in R2014b
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daetools::reduceRedundancies
Simplify system of first-order differential algebraic equations by eliminating redundant
equations and variables

Syntax
[newEqs,

 newVars,

 solvedEquations,

 constantVariables,

 replacedVariables,

 otherEquations

] := daetools::reduceRedundancies(eqs, vars)

Description

[newEqs, newVars, solvedEquations, constantVariables,

replacedVariables, otherEquations] :=

daetools::reduceRedundancies(eqs, vars) eliminates simple equations from the
system of first-order differential algebraic equations eqs. It returns a list of remaining
equations, a list of remaining variables, and four more lists containing information on the
eliminated equations and variables. For details, see “Return Values” on page 6-29.

Examples

Example 1

Use daetools::reduceRedundancies to simplify a system of five differential
algebraic equations in four variables to a system of two equations in two variables.

Create the following system of five differential algebraic equations for four state
variables: x1(t), x2(t), x3(t), and x4(t). This system also contains symbolic
parameters a1, a2, a3, a4, b, c, and a parameter function f(t) that is not a state
variable.

eqs := [a1*diff(x1(t),t)+a2*diff(x2(t),t) = b*x4(t),
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        a3*diff(x2(t),t)+a4*diff(x3(t),t) = c*x4(t),

        x1(t) = 2*x2(t),

        x4(t) = f(t),

        f(t) = sin(t)];

vars := [x1(t), x2(t), x3(t), x4(t)]

Use daetools::reduceRedundancies to eliminate redundant equations and
corresponding state variables.

[newEqs, newVars,

 solvedEquations,

 constantVariables,

 replacedVariables,

 otherEquations

] := daetools::reduceRedundancies(eqs, vars):

Display the new equations and new variables.

newEqs;

newVars

Display the equations that daetools::reduceRedundancies used to replace those
state variables from vars that do not appear in newEqs.

solvedEquations
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Display those state variables from vars that daetools::reduceRedundancies
replaced by constant values.

constantVariables

Display those state variables from vars that daetools::reduceRedundancies
replaced by expressions in terms of other variables.

replacedVariables

Display those equations from eqs that do not contain any of the state variables vars.

otherEquations

Parameters

eqs

A list or a vector of equations or expressions in the state variables vars and their
derivatives. Expressions represent equations with 0 right side.

vars

A list or a vector of identifiers or expressions, such as [x1(t), x2(t)].

Return Values

A nested list containing the following lists:
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• A list of new equations
• A list of those variables that remain in the new DAE system
• A list of equations that do not appear in newEqs
• A list of equations [y1 = value1(t), y2 = value2(t),...] defining those of

the variables [y1,y2,...] (contained in the original equations eqs and the original
vars) that were eliminated from eqs. In newEqs, they are replaced by the values.

• A list of equations [y1 = Y1(t,x,diff(x,t),...), y2 =
Y2(t,x,diff(x,t),...),...] defining those of the variables ]y1,y2,...] (in
the original vars) that were eliminated in terms of the variables that are still in
newVars. (Typically, equations involving only two variables are used to eliminate one
of the variables.)

• A list of equations that do not contain any of the variables. These equations do not
appear in newEqs.

See Also

MuPAD Functions
daetools::findDecoupledBlocks | daetools::incidenceMatrix
| daetools::isLowIndexDAE | daetools::massMatrixForm |
daetools::reduceDAEIndex | daetools::reduceDAEToODE |
daetools::reduceDifferentialOrder

Introduced in R2014b
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DOM_ARRAY
DOM_BOOL
DOM_COMPLEX
DOM_DOMAIN
DOM_EXEC
DOM_EXPR
DOM_FLOAT
DOM_FUNC_ENV
DOM_HFARRAY
DOM_IDENT
DOM_INT
DOM_INTERVAL
DOM_LIST
DOM_PROC
DOM_PROC_ENV
DOM_RAT
DOM_SET
DOM_STRING
DOM_VAR
Dom::AlgebraicExtension
Dom::ArithmeticalExpression
Dom::BaseDomain
Dom::Complex
Dom::DenseMatrix
Dom::DihedralGroup
Dom::DistributedPolynomial
Dom::Expression
Dom::ExpressionField
Dom::Float
Dom::FloatIV
Dom::Fraction
Dom::GaloisField
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Dom::ImageSet
Dom::Integer
Dom::IntegerMod
Dom::Interval
Dom::LinearOrdinaryDifferentialOperator
Dom::Matrix
Dom::MatrixGroup
Dom::MonomOrdering
Dom::Multiset
Dom::MultivariatePolynomial
Dom::Natural
Dom::Numerical
Dom::Polynomial
Dom::Product
Dom::Quaternion
Dom::Rational
Dom::Real
Dom::SquareMatrix
Dom::SymmetricGroup
Dom::UnivariatePolynomial
Factored
Series::Puiseux
Series::gseries
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DOM_ARRAY
(symbolic, multidimensional) arrays

Description

DOM_ARRAY is a multidimensional container type, storing arbitrary MuPAD objects at
integer indices.

Arrays are a fundamental data type in many programming languages: For a fixed
number of indices (“dimensions”), for each index an integer from a fixed range, an array
provides space to store an arbitrary piece of data at this combination.

Function Calls

Using an array as a function symbol creates the list obtained by using each array entry
as a function symbol for the operands used, i.e., array(1..2, [f, g])(x, y) results
in array(1..2, [f(x, y), g(x, y)]).

Operations

As with any container, the most important operation on an array is reading and writing
its entries, which is performed by indexed access, as in A[1, 2] or B[1, 3, 2] :=
exp(x). Trying to access an element outside the boundaries of an array raises an error.

The function map applies some function or transformation to each element of an array,
returning an array of the same format as its input, with the results of the calls as its
entries.

If A is an array, nops(A) returns the number of elements in A.

Operands

If A is an array, the 0th operand of A, op(A, 0), will be the sequence starting with the
number of dimensions (an integer n) followed by n ranges of integers, which denote the
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acceptable ranges of indices for each dimension, including both numbers listed in the
range.

For 1 ≤ i ≤ nops(A), the ith operand of A is the ith entry of A, in the lexicographic order of
indices.

Uninitialized entries of arrays will be displayed symbolically while still in the array.
When being accessed by op or indexed access, NIL is returned.

Output

One-dimensional arrays are displayed as row vectors, two-dimensional arrays as
matrices. Higher-dimensional arrays are written in functional form, using the index =
value notation, and do not have a typesetting version. This also causes typesetting to be
disabled for any surrounding expression in the same output.

Element Creation

The primary way of creating arrays is the function array. Beside that, obviously,
coerce can convert a number of data types, such as matrices into arrays and a number
of MuPAD functions, especially in the numeric library, return arrays.

See Also

MuPAD Domains
DOM_HFARRAY | DOM_LIST | DOM_TABLE

MuPAD Functions
array | matrix
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DOM_BOOL
Boolean constants

Description
DOM_BOOL is the data type of the truth values TRUE, FALSE, and UNKNOWN.

MuPAD uses a three-valued logic system, with these values (constants) TRUE, FALSE,
and UNKNOWN.

Function Calls
Using a Boolean constant as a function returns that constant unchanged. The arguments
of the call are not evaluated.

Operations
The most important operations on Boolean values are the logical operators and, not, or,
xor, ==>, <=>, and using them in conditions of if or piecewise.

Operands
Boolean constants are atomic.

Output
TRUE is displayed as TRUE, FALSE is displayed as FALSE, and UNKNOWN is shown as
UNKNOWN.

Element Creation
The three constants can be types in as shown above. Additionally, many MuPAD
functions returns Boolean values, the most generic/prominent two being bool and is.
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See Also

MuPAD Functions
bool | if | is
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DOM_COMPLEX
(Simple) Complex Numbers

Description

DOM_COMPLEX is the type of complex numbers with integer, rational, or floating-point
components.

Complex numbers of type DOM_COMPLEX have two operands, their real and imaginary
part. These are objects of type DOM_FLOAT, DOM_INT, or DOM_RAT. Complex numbers
with other components (such as ) are not of domain type DOM_COMPLEX, but
DOM_EXPR.

Function Calls

Calling a complex number as a function returns that number unchanged. The arguments
of the call are not evaluated.

Operations

Most MuPAD functions operate on complex numbers. Use Re and Im to access the real
and imaginary part, respectively.

Operands

Every object of type DOM_COMPLEX has two operands, the real and the imaginary part.

Output

Objects of type DOM_COMPLEX are essentially written as expressions in rectangular form.
The imaginary unit is displayed as I.

7-7



7 Dom – Domains

Element Creation

Complex numbers can be constructed by typing in the corresponding expression, such as
3+4*I. The keyword for typing the imaginary unit I is I (a capital letter i).

See Also

MuPAD Domains
DOM_FLOAT | DOM_INT | DOM_RAT
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DOM_DOMAIN
Data type of data types

Description

DOM_DOMAIN is the data type of datatypes.

Each MuPAD object has a unique data type. Since a data type is a MuPAD object, too, it
must itself have a data type; the data type comprising all data types (including itself) is
DOM_DOMAIN.

There are two kinds of elements of DOM_DOMAIN: data types of the kernel, and data types
defined in the library or by the user (domains). Objects that have a data type of the latter
kind are called domain elements.

A data type has the same internal structure as a table; its entries are called slots. One
particular slot is the key; no two different data types can have the same key. Most of the
other slots determine how arguments of that data type are handled by functions.

Once a user-defined domain has been constructed, it cannot be destroyed.

Examples

Example 1

Our first example stems from ethnology: some languages in Polynesia do not have words
for numbers greater than three; every integer greater than three is denoted by the word
“many”. Hence two plus two does not equal four but “many”. We are going to implement
a domain for this kind of integers; in other words, we are going to implement a data type
for the finite set {1, 2, 3, many}.

S := newDomain("Polynesian integer")

At this point, we have defined a new data type: a MuPAD object can be a Polynesian
integer now. No operations are available yet; the domain consists of its key only:
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op(S)

Even though there are no methods for input and output of domain elements yet,
Polynesian integers can be entered and displayed right now. You have to use the function
new for defining domain elements:

x := new(S, 5)

Now, x is a Polynesian integer:

type(x)

Of course, MuPAD cannot know what meaning a Polynesian integer has and what its
internal structure should be. The arguments of the call to the function new are just
stored as the zeroth, first, etc. operand of the domain element, without checking them.
You may call new with as many arguments as you want:

new(S, 1, 2, 3, 4); op(%)

new cannot know that Polynesian integers should have exactly one operand and that we
want 5 to be replaced by many. To achieve this, we implement our own method "new";
this also allows us to check the argument. We have one more problem: domain methods
should refer to the domain; but they should not depend on the fact that the domain is
currently stored in S. For this purpose, MuPAD has a special local variable dom that
always refers to the domain a procedure belongs to:

S::new := 

proc(i : Type::PosInt)

begin
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  if args(0) <> 1 then

    error("There must be exactly one argument")

  end_if;

  if i > 3 then

    new(dom, hold(many))

  else

    new(dom, i)

  end_if

end_proc:

A function call to the domain such as S(5) now implicitly calls the "new" method:

S(5)

S("nonsense")

Error: The object '"nonsense"' is incorrect. The type of argument number 1 must be 'Type::PosInt'.

  Evaluating: S::new

In the next step, we define our own output method. A Polynesian integer i, say, shall not
be printed as new(Polynesian integer, i), only its internal value 1, 2, 3, or many
shall appear on the screen. Note that this value is the first operand of the data structure:

S::print := 

proc(x)

begin

  op(x, 1)

end_proc:

S(1), S(2), S(3), S(4), S(5)

By now, the input and output of elements of S have been defined. It remains to define
how the functions and operators of MuPAD should react to Polynesian integers. This is
done by overloading them. However, it is not necessary to overload each of the thousands
of functions of MuPAD; for some of them, the default behavior is acceptable. For example,
expression manipulation functions leave domain elements unaltered:

x := S(5): expand(x), simplify(x), combine(x); delete x:
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Arithmetical operations handle domain elements like identifiers; they automatically
apply the associative and commutative law for addition and multiplication:

(S(3) + S(2)) + S(4)

In our case, this is not what we want. So we have to overload the operator +. Operators
are overloaded by overloading the corresponding “underline-functions”; hence, we have to
write a method "_plus":

S::_plus :=

proc()

local argv;

begin  

  argv := map([args()], op, 1);

  if has(argv, hold(many)) then

     new(dom, hold(many))

  else

     dom(_plus(op(argv)))

  end_if

end_proc:

Now, the sum of Polynesian integers calls this slot:

S(1) + S(2), S(2) + S(3) + S(7)

Deleting the identifier S does not destroy our domain. It can still be reconstructed using
newDomain.

delete S:

op(newDomain("Polynesian integer"))
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Example 2

We could now give a similar example for more advanced Polynesian mathematics with
numbers up to ten, say. This leads to the question whether it is necessary to enter all
the code again and again whenever we decide to count a bit farther. It is not; this is
one of the advantages of domain constructors. A domain constructor may be regarded
as a function that returns a domain depending on some input parameters. It has
several additional features. Firstly, the additional keywords category and axiom
are available for specifying the mathematical structure of the domain; in our case, we
have the structure of a commutative semigroup where different domain elements have
different mathematical meanings (we call this a domain with a canonical representation).
Secondly, an initialization part may be defined that is executed exactly once for every
domain returned by the constructor; it should at least check the parameters passed to
the constructor. Each domain created in such a way may inherit methods from other
domains, and it must at least inherit the methods of Dom::BaseDomain.

domain CountingUpTo(n : Type::PosInt)

  inherits Dom::BaseDomain;

  category Cat::AbelianSemiGroup;

  axiom Ax::canonicalRep;

  

  new := proc(x : Type::PosInt)

  begin

    if args(0) <> 1 then

      error("There must be exactly one argument")

    end_if;

    if x > n then

      new(dom, hold(many))

    else

      new(dom, x)

    end_if

  end_proc;

  

  print := proc(x) begin op(x, 1) end_proc;

  

  _plus := proc() local argv;

  begin  

    argv:= map([args()], op, 1);

    if has(argv, hold(many)) then

       new(dom, hold(many))

    else

       dom(_plus(op(argv)))

    end_if
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  end_proc;

// initialization part

begin

  if args(0) <> 1 then

    error("Wrong number of arguments")

  end_if;

end:

Now, CountingUpTo is a domain constructor:

type(CountingUpTo)

We have defined the domain constructor CountingUpTo, but we have not created a
domain yet. This is done by calling the constructor:

CountingUpToNine := CountingUpTo(9);

CountingUpToTen := CountingUpTo(10)

We are now able to create, output, and manipulate domain elements as in the previous
example:

x := CountingUpToNine(3): y := CountingUpToNine(7):

x, x + x, y, x + y, y + y

x := CountingUpToTen(3): y := CountingUpToTen(7): 

x, x + x, y, x + y, y + y

delete CountingUpToNine, CountingUpToTen, CountingUpTo, x, y:

No domain constructor with the same name may be used again during the same session.
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Example 3

Suppose that your domain does not really depend on a parameter, but that you need
some of the other features of domain constructors. Then you may define a domain
constructor dc, say, that is called without parameters. From such a domain constructor,
you can construct exactly one domain dc(). Instead of defining the constructor via
domain dc() ... end first and then using d := dc() to construct the domain d, say,
you may directly enter domain d ... end, thereby saving some work.

Continuing the previous examples, suppose that we want to count up to three, knowing
that we never want to count farther. However, we want to declare our domain to be
an Abelian semigroup with a canonical representation of the elements. This is not
possible with a construction of the domain using newDomain as in “Example 1” on page
7-9: we have to use the keyword domain. You will notice at once that the following
source code is almost identical to the one in the previous example—we just removed the
dependence on the parameter n.

domain CountingUpToThree

inherits Dom::BaseDomain;

category Cat::AbelianSemiGroup;

axiom Ax::canonicalRep;

new := proc(x : Type::PosInt)

begin

  if args(0) <> 1 then

    error("There must be exactly one argument")

  end_if;

  if x > 3 then

    new(dom, hold(many))

  else

    new(dom, x)

  end_if

end_proc;

print := proc(x) begin op(x, 1) end_proc;

_plus := proc() local argv;

begin  

  argv:= map([args()], op, 1);

  if has(argv, hold(many)) then

     new(dom, hold(many))

  else
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     dom(_plus(op(argv)))

  end_if

end_proc;

end:

Now, CountingUpToThree is a domain and not a domain contructor:

type(CountingUpToThree)

You may use this domain in the same way as CountingUpTo(3) in “Example 2” on page
7-13.

Function Calls

When called as a function, the data type creates a new object of this data type out of the
arguments of the call. E.g., the call DOM_LIST(1, 2, x) generates the list [1, 2, x]
of domain type DOM_LIST (although, in this case, you probably prefer to type in [1, 2,
x] directly which results in the same object). It depends on the particular type which
arguments are admitted here.

In the case of a domain, the "new" method of that domain is called.

Operations

You can obtain the slots of a domain using slot. The function slot can also be used on
the left hand side of an assignment to define new slots, or to re-define existing slots. Use
delete to delete slots.

Operands

A data type consists of an arbitrary number of equations (objects of type "equal"). If
a = b is among these equations, we say that the slota of the data type equals b. By
convention, a is usually a string. Each domain has at least one slot indexed by "key".
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Element Creation

The names of the data types provided by the MuPAD kernel are of the form DOM_XXX,
such us DOM_ARRAY, DOM_HFARRAY, DOM_IDENT, DOM_INT, DOM_LIST, DOM_TABLE etc.

You can create further data types using the function newDomain (cf. “Example 1” on page
7-9) or via the keyword domain (cf. “Example 3” on page 7-15).

You can also create new data types by calling a domain constructor. Various pre-defined
domain constructors can be found in the library Dom. You can also define your own
domain constructors using the keyword domain. Cf. “Example 2” on page 7-13.

The domain type (data type) of any MuPAD object can be queried by the function
domtype.

Algorithms

Only one domain with a given key may exist. If it is stored in two variables S and T, say,
assigning or deleting a slot slot(S, a) implicitly also changes slot(T, a) (reference
effect). This also holds if a = "key".

Note: You get no warning even if T is protected.
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DOM_EXEC
Kernel functions

Description

Objects of type DOM_EXEC represent kernel functions implemented in C++.

Unlike functions defined at the library level (which are stored in objects of type
DOM_PROC), functions defined in C++ in the MuPAD kernel are represented by objects of
type DOM_EXEC.

Users normally need not care about DOM_EXECs except for the cases where explicitly
testing the domtype of arguments; in those cases, DOM_EXEC should often be treated
identically to DOM_PROC.

Most kernel functions are actually stored inside function environments of type
DOM_FUNC_ENV, and therefore, you can see DOM_EXEC only when explicitly accessing the
first or second operand of those function environments.

Function Calls

An object of type DOM_EXEC essentially represents a function; using it in this way calls
the corresponding function.

Operands

The operands of a DOM_EXEC are used internally, may change at any time and remain
undocumented.

See Also

MuPAD Domains
DOM_FUNC_ENV | DOM_PROC
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DOM_EXPR
Type of “general expressions”

Description
DOM_EXPR is the data type of symbolic function calls. This includes expressions such as a
+ b which is internally stored as _plus(a, b).

In MuPAD, non-atomic symbolic expressions which are not elements of special domains
have type DOM_EXPR.

Objects of type DOM_EXPR have a 0th operand which contains the functor (the function
symbol, the f in f(x)). This operand is not counted in the result of nops. The subsequent
operands can be of arbitrary type (although most functions will limit the number and
type of operands when evaluated).

The 0th operand of a DOM_EXPR will be a procedure or function environment only in
exceptional circumstances. In usual circumstances, expressions only have expressions,
domain elements, or identifiers as their 0th operands.

Examples

Example 1

Function calls are of type DOM_EXPR:

domtype(sin(x))

The 0th operand of a function call is the function symbol:

op(sin(x), 0)

This operand is taken into account neither by nops nor by op if called with one
argument:
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nops(sin(x)), op(sin(x))

Function Calls

The effect of using an expression of type DOM_EXPR as a function to call depends on the
0th operand of the expression. For many system functions, the result is that of using
all operands of the expression as functions, passing the unevaluated arguments. (These
functions may in turn evaluate their arguments.)

Operations

Most MuPAD functions (documented as accepting “arithmetical expressions”) are built to
work on elements of type DOM_EXPR.

Often, the operands of an expression will be expressions themselves. This creates a so-
called “expression tree” which can be visualized using prog::exprtree.

Operands

All expressions are internally represented as function calls. The 0th operand is the
function symbol of this call.

Evaluation

Evaluating an expression results in calling the 0th operand as a function. For library
functions without option hold, the operands are evaluated first.

See Also

MuPAD Domains
DOM_BOOL | DOM_FLOAT | DOM_IDENT | DOM_INT | DOM_INTERVAL | DOM_LIST |
DOM_POLY | DOM_RAT | DOM_SET | DOM_TABLE
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MuPAD Functions
prog::exprtree

7-21



7 Dom – Domains

DOM_FLOAT
Real Floating Point Numbers

Description

DOM_FLOAT is the type of (arbitrary precision) real floating-point numbers.

Apart from exact symbolic calculations, MuPAD can also compute numerical
approximations with arbitrary precision.

MuPAD uses the values RD_INF and RD_NINF for real positive and negative infinities in
floating-point intervals.

MuPAD uses the value RD_NAN to indicate undefined values in floating-point intervals. If
you use typeset mode, MuPAD displays this value as  in output regions.

Function Calls

Calling a floating-point number as a function returns the number unchanged. The
arguments of the call are not evaluated.

Operations

Just about any arithmetical operation can be performed with floating-point numbers.

Operands

DOM_FLOATs are atomic.

Output

The output format of DOM_FLOAT depends on the setting of Pref::floatFormat and is
documented there.
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Element Creation

Floating point numbers are typed in with an optional sign (an arbitrary number of +
and - signs), an optional integer part (consisting of digits), a decimal point (irrespective
of locale settings of the operating system, MuPAD always expects a decimal point), a
fractional part (one or more decimal digits) and optionally a decimal shift, written as the
letter e followed by an optionally signed integer.

The decimal shift is interpreted as a power of ten, i.e., 6.022e23 is the Avogadro number
6.022 1023.

Additionally, the function float and most calls to functions of the numeric library
create floating-point numbers as well.

See Also

MuPAD Domains
DOM_COMPLEX | DOM_INTERVAL | DOM_RAT

MuPAD Functions
DIGITS | float
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DOM_FUNC_ENV
Data type of function environments

Description

DOM_FUNC_ENV is the data type of function environments.

MuPAD uses function environments (domain type DOM_FUNC_ENV) to integrate
functions into the system. All MuPAD library functions and most kernel functions are
implemented as function environments.

A function environment stores special function attributes (slots) in an internal table.
When an overloadable system function, such as diff, expand, or float, encounters an
object of type DOM_FUNC_ENV, it searches the function environment for a corresponding
slot.

Operands

A function environment consists of three operands. The first operand is a procedure
that computes the return value of a function call. The second operand is a procedure for
printing a symbolic function call on the screen. The third operand is a table that specifies
how the system functions handle symbolic function calls.

Element Creation

funcenv and fp::unapply (or its equivalent -->) create function environments of type
DOM_FUNC_ENV.

See Also

MuPAD Domains
DOM_EXEC | DOM_PROC

MuPAD Functions
fp::unapply | funcenv
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DOM_HFARRAY
Hardware floating-point arrays

Description

DOM_HFARRAY is a multidimensional container type, storing hardware floating-point
numbers at integer indices.

Unlike generic arrays, objects of type DOM_HFARRAY are containers of hardware
floating-point numbers, real or complex. They take up considerably less space than the
corresponding arrays of software floats (DOM_FLOAT) would, but the range of hardware
floating-point numbers is much more limited.

Function Calls

Using an hf-array as the symbol of a function call returns that hf-array unchanged. The
arguments of the call are not evaluated.

Operations

Read and write access to an hf-array is performed using indexed access, as in A[1],
which automatically converts between hardware and software floats. Trying to write a
value which cannot be converted into a hardware float into an hf-array causes an error to
be raised, as does accessing an element out of bounds.

The function map applies some function or transformation to each element of an hf-array,
returning an hf-array of the same format as its input, with the results of the calls as its
entries. If a result cannot be converted to a hardware float, an error is raised.

If A is an hf-array, nops(A) returns the number of elements in A.

Basic arithmetic works on hf-arrays: Addition and subtraction of hf-arrays of identical
format combines the containers element-wise, addition and subtraction of constants is
applied to the main diagonal. For two-dimensional hf-arrays, multiplication performs
matrix multiplication. Division is possible for completeness, but should be avoided, as it
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numerically inverts the dividend first, and this is hardly ever the algorithmically “right”
way to handle a numerical problem.

Operands

If A is an hf-array, the 0th operand of A, op(A, 0), will be the sequence starting with
the number of dimensions (an integer n) followed by n ranges of integers, which denote
the acceptable ranges of indices for each dimension, including both numbers listed in the
range.

For 1 ≤ i ≤ nops(A), the ith operand of A is the ith entry of A, in the lexicographic order of
indices.

Output

One-dimensional hf-arrays are displayed as row vectors, two-dimensional hf-arrays
as matrices. Higher-dimensional hf-arrays are written in functional form, writing the
entries as a flat list, and do not have a typesetting version. This also causes typesetting
to be disabled for any surrounding expression in the same output.

Element Creation

The primary way of creating hf-arrays is the function hfarray. Other important
functions (optionally) returning hardware float arrays include several functions of the
numeric library and import::readbitmap.

See Also

MuPAD Domains
DOM_ARRAY | DOM_LIST | DOM_TABLE

MuPAD Functions
float | hfarray
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DOM_IDENT
Symbolic Identifiers

Description
DOM_IDENT is the data type of symbolic identifiers, used for example for indeterminates.

To perform symbolic computations, it is often necessary to represent indeterminates,
which may or may not carry assumptions. These indeterminates (which in some contexts
may also be bound identifers and which may also be assigned specific values) are called
“identifiers” in MuPAD and have the domain type DOM_IDENT.

Function Calls
Calling a DOM_IDENT as a function creates a DOM_EXPR. If the identifier has a value, the
evaluation of that DOM_EXPR may result in an arbitrary value.

Operations
Identifiers are valid arithmetical expressions, so most MuPAD functions happily accept
identifiers.

To get and analyze the name of an identifier, you can use coerce(identifier,
DOM_STRING ) and look at the resulting string. (The call "".identifier returns the
same string and is shorter to type.)

Operands
Identifiers are atomic.

Output
Identifiers are displayed with their names, with the following special cases in
typesetting:
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• Underscores (_) in the middle of identifiers cause subscripting: x_2 is displayed as x2.
• Certain constructs of the form `&...;` in identifiers are replaced by special

typeset characters. For example, `&alpha;&rarr;` is displayed as . To
generate these identifiers, we suggest using the Symbol library, which would use
Symbol::accentRightArrow(Symbol::alpha) for the example above.

Element Creation

A sequence of characters, underscores and digits which does not start with a digit is
considered an identifier. Examples: x, x0, t_0.

Additionally, an arbitrary string of characters enclosed in ‘backticks’ `` is also an
identifier. Examples: `x+y`, `a plus 1`. If the string of characters between the back
ticks is a valid identifier already, this input form creates the same identifier as the one
without the backticks.

See Also

MuPAD Domains
DOM_EXPR | DOM_VAR

MuPAD Functions
genident | indets
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DOM_INT
Integers

Description
DOM_INT is the domain of integer constants such as 42 or - 56412564156717653. The size
of integers is limited to 2221

 - 1 in absolute value.

Function Calls
Calling an integer as a function returns that integer unchanged. The arguments are not
evaluated.

Operations
Integers are arithmetical expressions and thus accepted by almost every MuPAD
function.

To represent an integer in a basis different from 10, please use int2text.

Operands
Integers are atomic.

Element Creation
Integers are given by an optional sign (an arbitrarily long string of + and - signs)
and a sequence of decimal digits. Apart from this direct input method, many MuPAD
commands such as text2int return integers.

See Also

MuPAD Domains
DOM_FLOAT | DOM_RAT
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DOM_INTERVAL

Floating point intervals

Description

Object of type DOM_INTERVAL represents an interval of complex numbers. Either
border may be infinity or - ∞. The borders are represented by floating point numbers
(DOM_FLOAT).

Objects of type DOM_INTERVAL represent numerical enclosures of rectangles in the
complex plane or finite unions thereof. Numerical enclosures of real intervals are an
important special case.

Because an element of type DOM_INTERVAL contains floating-point numbers of type
DOM_FLOAT, its exact value depends on the value of the environment variable DIGITS at
the time of creation.

The result of all arithmetical operations on elements of type DOM_INTERVAL is rounded
outwards, that is, the resulting (union of) rectangle(s) is guaranteed to contain the exact
result. If the result interval is purely real, the lower bound of the result is guaranteed
to be no larger than the exact value of the exact result, while the upper value of the
result is guaranteed to be no smaller than the exact value. The exact values may not be
representable as floating-point numbers. In this case, the result of a single operation
such as + or * is the smallest representable interval containing the exact result. In other
words, operations on DOM_INTERVAL are locally optimal.

Note that the representation of an element of DOM_INTERVAL on the screen is generated
with outward rounding, too. This may lead to “apparent overestimation,” as you can see
in “Example 1” on page 7-31.

For generating matrix or polynomial rings over floating-point intervals, use the façade
domain Dom::FloatIV.
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Examples

Example 1

An interval of type DOM_INTERVAL can only hold floating-point numbers, which are
internally stored as binary numbers. For this reason, it cannot hold symbolic expressions
as its operands:

iv := hull(PI)

This intervals certainly does contain π. However, the value printed on the screen does
not accurately describe the interval generated, as you can see when you print the same
interval with a larger value of DIGITS:

DIGITS := 15: iv; delete DIGITS:

In the first output, it looked as if the difference between the two borders (the width of the
interval) was 10- 8, while in the latter output we can see that it is at most 10- 13. Actually,
the difference is even smaller:

op(iv,2) - op(iv,1)

This rounding does not take place for symbolic values which can be represented exactly
in both the internal (binary) and the on-screen (decimal) format:

iv := hull(1); op(iv,2) - op(iv,1)
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However, floating-point values in the input are assumed to be approximations up to the
current computing precision:

iv := hull(1.0); op(iv,2) - op(iv,1)

Example 2

If you convert infinity or -infinity into an interval of type DOM_INTERVAL, the
resulting interval will contain the corresponding floating-point infinity, which are
displayed as RD_INF or RD_NINF, respectively:

hull(infinity), hull(-infinity)

Since the range of floating-point numbers is limited, also conversion of finite values may
generate floating-point infinities. The exact limit of floating-point numbers may change
from one MuPAD version to the next. Currently, the following command exceeds the
representable range::

hull(exp(10^9))

As for calculating with intervals with infinities as their borders, note that any
multiplication where one factor is exactly zero and the other factor contains either
infinity results in the interval encompassing the whole real axis:

(0...0) * (1e30...infinity)
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Example 3

Objects of type DOM_INTERVAL represent rectangular subsets of the complex plane with
the sides parallel to the coordinate axes or unions of such rectangles. In the following
example, the exact result would be a rotated rectangle. Interval arithmetics returns the
smallest non-rotated rectangle enclosing the precise result:

(1...2+I)*(1+I)

Example 4

When computing with floating-point numbers, you can easily run into cancellation and
round-off errors without noticing:

(1+1e-18) - 1.0

sin(1e42)

The fundamental problem of numerical computations is that there is no indication to
these errors. Of course, you can get around most problems of this type by increasing the
number of significant digits, if you know that problems are lurking:

DIGITS:=50:

(1+1e-18) - 1.0,

sin(1e42)

Interval calculations, amongst other things, provide a way to be notified of cancellation
since the result of an operation over DOM_INTERVAL is certain to contain the exact result:
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DIGITS:=10:

(1+1e-18) - hull(1.0)

sin(hull(1e42))

DIGITS:=50:

sin(hull(1e42))

So, in the latter case we know that the first 17 digits are correct and that the 18th digit is
3, 4, or 5.

Function Calls

The result of a call to an interval is the interval itself, regardless of the arguments. The
arguments are not evaluated.

Operations

You can access the borders of an interval using op. See below for the details.

Intervals can be viewed as sets, and the corresponding functions union, intersect, and
minus work on intervals, too.

As of version 2.5, MuPAD implements the following operations on elements of type
DOM_INTERVAL:

• The basic arithmetical operations: +, -, *, /, ^, sqrt.
• The trigonometric functions and their inverses: sin, cos, tan, sec, csc, cot,

arcsin, arccos, arctan, arccsc, arccot.
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• The exponential function and the logarithm.
• The hyperbolic functions and their inverses: sinh, cosh, tanh, sech, csch, coth,

arcsinh, arccosh, arctanh, arccsch, arccoth.
• The functions Re, Im (real- and imaginary part), abs, sign and arg (the `argument' =

polar angle of a complex number).
• For real intervals, gamma and beta.
• ceil, floor, trunc, round.

For legal combinations of arguments, all computations are carried out in interval
arithmetics, see “Example 4” on page 7-33.

Operands

The operands of an interval depend on its value:

• An interval of type DOM_INTERVAL may be a union of rectangles in the complex plane.
In this case, the 0th operand is the identifier union, while the remaining operands
are the corresponding rectangles, which are of type DOM_INTERVAL.

• Rectangles with non-zero imaginary part, which are not unions, have two operands of
type DOM_INTERVAL: Their real and imaginary parts, both of which are real intervals.

• Real intervals, i.e., non-union rectangles with vanishing imaginary part, have two
operands, their left and right borders.

Output

A real interval is displayed in the form “left ... right”, where “left” and “right” are the
borders of the interval, printed as floating-point numbers.

A complex interval is displayed as “(real part) + (imaginary part) * I”, with the real and
imaginary part displayed as real intervals.

A union of rectangles is displayed as “interval union interval”, with the intervals inside
written as specified above.

The output of an interval depends on the environment variable DIGITS as well as on the
preference settings Pref::floatFormat and Pref::trailingZeroes.
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Note that the borders are rounded outwards for printing. “Example 1” on page 7-31
shows how this effects the output.

Element Creation

Elements of type DOM_INTERVAL can be constructed in the following ways:

• With the function hull:

hull(PI, -3, 1/2), hull(1/3)

• With the operator ... (which in turn calls hull):

1 ... 4+I

• The function interval creates elements of type DOM_INTERVAL as well, but may
return expressions:

interval(x^2+sin(1))

Note that floating-point values in the input of hull or interval are considered to be
approximations, even if the value displayed in the decimal system can be represented
exactly in the internal binary format. This is because hull cannot decide whether, for
example, 0.25 has actually been typed in as such or if it should have been some 0.25
+ ϵ. If you want zero-width intervals, use a rational number as input which can be
represented exactly in binary:

Algorithms

Intervals of type DOM_INTERVAL are always interpreted as closed intervals, i.e., the
endpoints belong to the set. It is reasonable not to have open intervals included, since
most operations will enlarge the resulting interval anyway (although only marginally so).
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DOM_LIST
Lists of Objects

Description

Lists (of domain type DOM_LIST) are ordered collections of an arbitrary number of
arbitrary MuPAD objects, except for sequences and the null object.

In MuPAD, the mathematical construct of an n-tuple is implemented as the data type
DOM_LIST. Lists consist of an arbitrary (finite) number of arbitrary objects, with the
exception of expression sequences, which are split into their operands when placed into a
list.

Unlike sets, lists can contain multiple copies of the same element. The order of elements
in a list is preserved.

Lists can be empty.

Examples

Example 1

To create a list for our first example, we use the operator $:

L := [x_.i $ i=1..10]

This list contains 10 elements:

nops(L)

The fifth element of the list is x5 and the list of elements from x3 through x6 can also be
accessed very easily:
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L[5], L[3..6]

To change an element of the list, we use the indexed form on the left hand side of an
assignment:

L[5] := 5

L

Note that this assignment only changes L, not x5:

x_5

Likewise, we can change a sublist by assigning another list to it. This may change the
length of the list:

L[3..6] := [1, 2]

nops(L), L

Function Calls

Using a list as a function symbol creates the list obtained by using each list element as a
function symbol for the operands used, i.e., [f, g](x, y) results in [f(x, y), g(x,
y)].
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Operations

Assuming that L is a list, the number of elements in L can be determined by calling
nops(L).

Individual elements of the list are accessed in the form L[1], L[2] etc. when counting
from the beginning or L[-1], L[-2] etc. when counting from the end. Trying to access
an element “outside” the list or L[0] raises an error.

Continuous sub-lists can be extracted by using a range in an indexed access: L[2..4]
returns the list [L[2], L[3], L[4]]; L[2..-2] returns the list L without its first and
last element.

Both forms of indexed access can also be used as the left hand side of an assignment, cf.
“Example 1” on page 7-37.

Lists can be concatenated with the dot operator, as in L1 . L2 or its functional form,
_concat.

The function contains finds the first occurrence of a given MuPAD object in a list.
select and split can be used to extract those elements from a list fulfilling an
arbitrary predicate.

Lists can be sorted with sort or prog::sort.

The function map applies a function to all elements of a list, returning the list of results.
To combine two lists element-wise with some function, use zip.

Assigning a list to a list of identifiers is possible and results in a simultaneous
assignment, cf. ?_assign.

Operands

The operands of a list are its elements.

Element Creation

The most direct way of creating a list is to place a sequence of MuPAD objects (separated
by commas) between rectangular brackets, as in [1, 2, 3].
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See Also

MuPAD Domains
DOM_ARRAY | DOM_HFARRAY | DOM_SET
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DOM_PROC
Data type of procedures

Description

DOM_PROC is the data type of procedures.

MuPAD procedures belong to the kernel domain DOM_PROC.

You can enclose procedures of type DOM_PROC into function environments of type
DOM_FUNC_ENV.

Element Creation

proc and its equivalent -> create procedures of type DOM_PROC.

See Also

MuPAD Domains
DOM_PROC_ENV

MuPAD Functions
funcenv | proc
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DOM_PROC_ENV
Data type of procedure environments

Description

Procedure environments are mostly ephemeral objects and are only rarely seen by the
user (and even more rarely useful to examine). A procedure environment represents a
procedure that is currently being executed: formal parameters and local variables have
values.

Procedure environments do rarely become visible, and you do not need to manipulate
them directly. They serve only one purpose: if a procedure is generated inside another
procedure, variable names in the body of the inner procedure that are not declared local
there refer to names in the outer procedure, provided they are declared local in the outer
procedure. (See the Programming Manual for more information on the scoping rules for
MuPAD.) Consequently, the inner procedure must contain information on the current
values of local variables of the outer procedure. Hence, the status of the outer procedure
is encoded into an object of type DOM_PROC_ENV, and that object is stored in the returned
procedure as its twelfth operand.

You never need to generate objects of this type. There are no operations available.

Examples

Example 1

The only occasion on which you should come across a procedure environment is
the following: an outer procedure returns an inner procedure depending on formal
parameters or local variables of the outer procedure:

outer := 

proc(x)

option escape;

begin

  /* inner procedure to return : */

  y -> x + y

end_proc:
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add5 := outer(5)

In spite of the (slightly confusing) output, x has a special meaning here: it points to the
parameter x of outer. That parameter currently has the value 5 and won't be changed
any more. To be able to access that value, the particular instance of outer in the status
of being executed has to be stored in add5:

expr2text(op(add5, 12))

Operands

The number of operands of a procedure environment depends on the number of
local and saved variables of the outer procedure. Details about the operands remain
undocumented.

Algorithms

The integers appearing in the output of objects of type DOM_PROC_ENV have no
mathematical meaning; they denote positions in memory.
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DOM_RAT
Rational Numbers

Description

DOM_RAT is the data type of rational numbers.

Examples

Example 1

The operands of a rational number are its numerator and denominator:

op(2/3)

When substituting an operand, the resulting DOM_RAT is again normalized:

subsop(2/3, 2=6)

Function Calls

Using a rational number as a function returns that number unchanged. The function
arguments are not evaluated.

Operations

Rational numbers are arithmetical expressions and therefore valid inputs to most
MuPAD functions.
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The numerator and denominator of a rational number can be accessed using numer and
denom or by using op directly.

Elements of DOM_RAT are always normalized, cf. “Example 1” on page 7-44.

Operands

A rational number has two operands, which are integers: Its numerator and its
denominator.

Element Creation

The division of two integers results in an integer or a rational number.

See Also

MuPAD Domains
Dom::Rational | DOM_COMPLEX | DOM_FLOAT | DOM_INT

7-45



7 Dom – Domains

DOM_SET
Sets of Objects

Description

Set of type DOM_SET can store an arbitrary finite number of arbitrary MuPAD objects,
except for sequences and the null object.

In MuPAD, finite sets are implemented with the data type DOM_SET. Sets are unordered
collections of arbitrary objects, with identical objects appearing only once. Sequences
(objects separated by commas) are “flattened” when put into a set, i.e., instead of the
sequence, its elements are placed into the set. The null object is treated as the empty
sequence, i.e., it does not result in an element in the set.

Sets can be empty. The empty set is displayed as ∅.

Function Calls

Using a set as a function symbol creates the set obtained by using each element as a
function symbol for the operands used, i.e., {f, g}(x, y) results in {f(x, y), g(x,
y)}.

Operations

Assuming that S is a set, the number of elements in S can be obtained by calling
nops(S).

Individual elements of the set can be obtained in two subtly different ways:

1 Using an indexed access, as in S[2], returns the n-th element of the set, counted in
the order as the set appears on the screen. This is a potentially slow operation, since
it requires determining that order for each access, i.e., sorting the set.

Negative indices are accepted, counting from the end of the sequence of elements.
Trying to access an element “outside” the set or S[0] raises an error.
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2 Using op, as in op(S, 2), returns the n-th element of the set, counted in the
internal order. This is a fast operation (O(n) to get the n-th element, irrespective
of the size of S), but the internal order of two mathematically identical sets can be
completely different and almost any operation changing a set can completely change
its internal order, so no assumptions should be made.

Both of these ways also accept ranges as indices. S[2..4] returns the set {S[2],
S[3], S[4]}, while op(S, 2..4) returns the sequence op(S, 2), op(S, 3),
op(S, 4).

To iterate over all elements of a set in no particular order, using map or the $ operator is
highly superior to using a for-loop with either of the above element access methods. If a
for-loop is required, you should use the form for s in S, which has linear complexity
as well.

The usual set operations are provided as infix operations: union, minus, intersect.

To change an element of a set, the preferred method is to remove it using minus and
adding a new one using union. It is also possible to replace an element with subsop;
replacing an element with null() deletes it from the set. (Note that subsop does not do
a side-effect assignment.)

The function contains checks for occurrence of a given MuPAD object in a set; see also
the in operator for the same purpose, but with different evaluation semantics. select
and split can be used to extract those elements from a set fulfilling an arbitrary
predicate.

To get a list of the elements of a set, use coerce. To get such a list with the elements
ordered in the same way as printed on the screen, use DOM_SET::sort(S).

Operands

The operands of a set are its elements, in the internal order. (See above for details.)

Output

Sets are ordered for the output.
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Element Creation

The most direct way of creating a set is to place a sequence of MuPAD objects (separated
by commas) between curly brackets, as in {1, 2, 3}.

See Also

MuPAD Domains
Dom::ImageSet | Dom::Multiset | DOM_LIST
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DOM_STRING
Texts (character strings)

Description

Texts (which are not really “mathematical objects”, but useful to the programmer) in
MuPAD are of domain type DOM_STRING.

MuPAD can manipulate texts (strings of characters). These are primarily used for output
and data input.

Examples

Example 1

As far as op is concerned, a string cannot be dissected:

s := "this is a string":

op(s, 1), op(s, 2)

To access individual characters or substrings, use indexed access:

s[1], s[6..7]

Assigning to a substring may change the length of a string:

s[6..7] := "changes";

s
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Function Calls

Using a string as a function returns the string unchanged. The arguments are not
evaluated.

Operations

Strings can be concatenated using the dot operator or its functional equivalent, _concat.

The length of a string can be obtained using length.

Substrings and individual characters (which are strings of length 1) can be accessed
using substring or indexed access, with indices starting at 1 and negative indices
counting from the end of the string: s[1], s[3..-2]. It is also possible to perform an
indexed assignment to a string, cf. “Example 1” on page 7-49.

To convert a string into the MuPAD expression that would be obtained by using the
string as an input, use text2expr. For simple MuPAD expressions, it is possible to get
a string that evaluates to that expression using expr2text. Expressions that are not
convertible in this way include all expressions containing local variables set with option
escape. Also, expressions involving floating point numbers usually will change when
being converted to strings and back.

Operands

Strings are atomic, i.e., they have exactly one operand, the string itself.

Output

The output form of strings is very similar to their input form. When typesetting, spaces
at the beginning and the end of strings are ignored and multiple adjacent blanks as well
as newlines are collapsed to a single space.
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Element Creation

A string is created by enclosing characters in a pair of typewriter quotes: "this is a
string". The following special sequences are supported (but see below for the typeset
output; these are useful only for non-typeset output):

• "\n" denotes an end-of-line character.
• "\b" is almost identical to "\n", except that for “pretty-printing” it encodes the

baseline of the current object.
• "\t" is a tabulator.
• "\\" encodes a backslash.

See the documentation of print for details.
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DOM_VAR
Local Variables in Procedures

Description

Local variables (variables in the programming sense, with “lexical scoping”) are of
domain type DOM_VAR.

When writing MuPAD functions, often intermediate results need to be stored and
retrieved. Like most programming languages, MuPAD offers “local variables” for this
purpose. These local variables do not conflict with global identifiers of the same name nor
with other local variables of the same name used at other places.

Local variables use “lexical scoping”, i.e., they can be used in all program code that is
written inside the body of the procedure declaring the local variable. Note that returning
anything with a reference to a local variable requires the use of option escape in the
procedure definition.

Operations

Local variables can be assigned values and these values can later be retrieved.

Element Creation

Local variables are created by using either the special names dom or procname or one of
the names declared with the keyword local inside a procedure definition.

See Also

MuPAD Domains
DOM_IDENT | DOM_PROC | DOM_PROC_ENV

MuPAD Functions
context | proc
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Dom::AlgebraicExtension
Simple algebraic field extensions

Syntax

Domain Creation

Dom::AlgebraicExtension(F, f)

Dom::AlgebraicExtension(F, f, x)

Dom::AlgebraicExtension(F, f1 = f2)

Dom::AlgebraicExtension(F, f1 = f2, x)

Element Creation

Dom::AlgebraicExtension(F,f)(g)

Dom::AlgebraicExtension(F, f)(rat)

Description

Domain Creation

For a given field F and a polynomial f ∈ F[x], Dom::AlgebraicExtension(F, f, x)
creates the residue class field F[x]/<f>.

Dom::AlgebraicExtension(F, f1=f2, x) does the same for f = f1 - f2.

Dom::AlgebraicExtension(F, f, x) creates the field F[x]/<f> of residue classes
of polynomials modulo f. This field can also be written as F[x]/<f>, the field of residue
classes of rational functions modulo f.

The parameter x may be omitted if f is a univariate polynomial or a polynomial
expression that contains exactly one indeterminate; it is then taken to be the
indeterminate occurring in f.

The field F must have normal representation.
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f must not be a constant polynomial.

f must be irreducible; this is not checked.

f may be a polynomial over a coefficient ring different from F, or multivariate; however,
it must be possible to convert it to a univariate polynomial over F. See “Example 2” on
page 7-55.

Element Creation

Dom::AlgebraicExtension(F, f)(g) creates the residue class of g modulo f.

If rat has numerator and denominator p and q, respectively, then
Dom::AlgebraicExtension(F,f)(rat) equals Dom::AlgebraicExtension(F,f)
(p) divided by Dom::AlgebraicExtension(F,f)(q).

Superdomain
Dom::BaseDomain

Axioms
If F has Ax::canonicalRep, then Ax::canonicalRep.

Categories
Cat::Field, Cat::Algebra(F), Cat::VectorSpace(F)

If F is a Cat::DifferentialRing, then Cat::DifferentialRing.

If F is a Cat::PartialDifferentialRing, then Cat::PartialDifferentialRing.

Examples

Example 1

We adjoin a cubic root alpha of 2 to the rationals.
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G := Dom::AlgebraicExtension(Dom::Rational, alpha^3 = 2)

The third power of a cubic root of 2 equals 2, of course.

G(alpha)^3

The trace of α is zero:

G::conjTrace(G(alpha))

You can also create random elements:

G::random()

Example 2

The ground field may be an algebraic extension itself. In this way, it is possible to
construct a tower of fields. In the following example, an algebraic extension is defined
using a primitive element alpha, and the primitive element beta of a further extension
is defined in terms of alpha. In such cases, when a minimal equation contains more
than one identifier, a third argument to Dom::AlgebraicExtension must be explicitly
given.

F := Dom::AlgebraicExtension(Dom::Rational, alpha^2 = 2):

G := Dom::AlgebraicExtension(F, bet^2 + bet = alpha, bet)
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Example 3

We want to define an extension of the field of fractions of the ring of bivariate
polynomials over the rationals.

P:= Dom::DistributedPolynomial([x, y], Dom::Rational):

F:= Dom::Fraction(P):

K:= Dom::AlgebraicExtension(F, alpha^2 = x, alpha)

Now . Of course, the square root function has the usual derivative; note
that  can be expressed as :

diff(K(alpha), x)

On the other hand, the derivative of  with respect to y is zero, of course:

 diff(K(alpha), y)

We must not use D here. This works only if we start our construction with a ring of
univariate polynomials:

P:= Dom::DistributedPolynomial([x], Dom::Rational):

F:= Dom::Fraction(P):

K:= Dom::AlgebraicExtension(F, alpha^2 = x, alpha):

D(K(alpha))
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Parameters

F

The ground field: a domain of category Cat::Field

f, f1, f2

Polynomials or polynomial expressions

x

Identifier

g

Element of the residue class to be defined: polynomial over F in the variable x, or any
object convertible to such.

rat

Rational function that belongs to the residue class to be defined: expression whose
numerator and denominator can be converted to polynomials over F in the variable x.
The denominator must not be a multiple of f.

Entries

"zero" the zero element of the field extension
"one" the unit element of the field extension
"groundField" the ground field of the extension
"minpoly" the minimal polynomial f
"deg" the degree of the extension, i.e., of f
"variable" the unknown of the minimal polynomial f
"characteristic" the characteristic, which always equals

the characteristic of the ground field. This
entry only exists if the characteristic of the
ground field is known.
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"degreeOverPrimeField" the dimension of the field when viewed as
a vector space over the prime field. This
entry only exists if the ground field is a
prime field, or its degree over its prime
field is known.

Methods

Mathematical Methods

_plus — Sum of field elements

_plus(a, …)

This method overloads the function _plus of the system kernel.

_mult — Product of field elements

_mult(a, …)

This method overloads the function _mult of the system kernel.

_power — Raise to the nth power

Inherited from Cat::Monoid.

_negate — Negate a field element

_negate(a)

This method overloads the function _negate of the system kernel.

_subtract — Difference of field elements

_subtract(a, b)

This method overloads the function _subtract of the system kernel.

equal — Test for mathematical equality

Inherited from Dom::BaseDomain.
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equiv — Test for equivalence

Inherited from Cat::BaseCategory.

iszero — Test whether a field element is zero.

iszero(a)

This method overloads the function iszero.

isone — Test if element is one

Inherited from Cat::Monoid.

isUnit — Test if element is an unit

Inherited from Cat::Field.

intmult — Multiply a field element by an integer

intmult(a, b)

This method is more efficient than "_mult" in this special case.

_invert — Inverse of a field element

_invert(a)

This method overloads the function _invert.

_divide — Exact division

Inherited from Cat::Field.

divide — Division with remainder

Inherited from Cat::Field.

quo — Return Euclidean quotient

Inherited from Cat::Field.

rem — Return Euclidean remainder

Inherited from Cat::Field.
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euclideanDegree — Return Euclidean degree

Inherited from Cat::Field.

idealGenerator — Generator of finitely generated ideal

Inherited from Cat::EuclideanDomain.

divides — Test if division is exact

Inherited from Cat::Field.

gcd — Gcd of field elements

gcd(a, …)

This method overloads the function gcd.

gcdex — Extended greatest common divisor

Inherited from Cat::EuclideanDomain.

associates — Test for associate elements

Inherited from Cat::Field.

unitNormal — Unit normal form

Inherited from Cat::Field.

unitNormalRep — Unit normal representation

Inherited from Cat::Field.

lcm — Least common multiple

Inherited from Cat::GcdDomain.

sqrfree — Square-free factorization

Inherited from Cat::Field.

irreducible — Test if element is irreducible

Inherited from Cat::Field.
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factor — Unique factorization

Inherited from Cat::Field.

conjNorm — Norm of an element

conjNorm(a)

conjTrace — Trace of an element

conjTrace(a)

minimalPolynomial — Minimal polynomial of an element

minimalPolynomial(a)

D — Differential operator

D(a)

This method overloads the function D.

This method must not be called for inseparable extensions; note that MuPAD cannot
check whether an extension is separable.

See “Example 3” on page 7-56.

diff — Partial differentiation

diff(a, x1, …)

Differentiation is defined to be the continuation of differentiation of the ground field; this
method exists only if the ground field has a method "diff", too.

Differentiation is not possible in inseparable extensions.

This method overloads the function diff.

This method must not be called for inseparable extensions; note that MuPAD cannot
check whether an extension is separable.

See “Example 3” on page 7-56.
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random — Random element of the field

random()

The random method of the ground field is used to generate coefficients of a random
polynomial of the ground field; the residue class of that polynomial is the return value.
Hence the probability distribution of the elements returned depends on that of the
random method of the ground field.

Conversion Methods

convert — Convert into a field element

convert(x)

If the conversion fails, then FAIL is returned.

convert_to — Convert a field element into another type

convert_to(a, T)

Field elements can be converted to polynomials or expressions. Field elements
represented by constant polynomials can also be converted to the same types as the
elements of the ground field; in particular, they can be converted to elements of the
ground field.

coerce — Coerce into this domain

Inherited from Cat::BaseCategory.

new — Create element of this domain

Inherited from Cat::BaseCategory.

expr — Convert an element of the field into an expression

expr(a)

This method overloads the function expr.

subs — Avoid substitution

Inherited from Dom::BaseDomain.
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subsex — Avoid extended substitution

Inherited from Dom::BaseDomain.

testtype — Test type of object

Inherited from Cat::BaseCategory.

print — Return expression to print an element

Inherited from Cat::BaseCategory.

printMethods — Print out methods

Inherited from Dom::BaseDomain.

TeX — Generate TeX output

Inherited from Dom::BaseDomain.

hasProp — Test for a certain property

Inherited from Dom::BaseDomain.

whichEntry — Return the domain or category implementing an entry

Inherited from Dom::BaseDomain.

allEntries — Return the names of all entries

Inherited from Dom::BaseDomain.

undefinedEntries — Return missing entries

Inherited from Dom::BaseDomain.

getAxioms — Return axioms stated in the constructor

Inherited from Dom::BaseDomain.

getSuperDomain — Return super-domain stated in the constructor

Inherited from Dom::BaseDomain.
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allSuperDomains — Return all super-domains

Inherited from Dom::BaseDomain.

getCategories — Return categories stated in the constructor

Inherited from Dom::BaseDomain.

allAxioms — Return all axioms

Inherited from Dom::BaseDomain.

allCategories — Return all categories

Inherited from Dom::BaseDomain.

See Also

MuPAD Domains
Dom::GaloisField
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Dom::ArithmeticalExpression
Domains of arithmetical expressions

Syntax
Dom::ArithmeticalExpression(x)

Description

Dom::ArithmeticalExpression is a façade domain of arithmetical expressions built
up by the system functions and operators like + and *.

This domain has almost no algebraic structure because unqualified expressions have
no normal form. (For example, there are rational expressions for zero which are not
normalized to 0.) The main purpose of Dom::ArithmeticalExpression is to provide
implementations for methods used by façade sub-domains like Dom::Integer which are
represented by a subset of the arithmetical expressions.

Elements of Dom::ArithmeticalExpression are usually not created explicitly.
However, if one creates elements using the usual syntax, the input is converted to
an expression using expr, then it is checked whether the result is an arithmetical
expression.

Superdomain

Dom::Expression

Axioms

Ax::systemRep

Categories

Cat::BaseCategory
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Examples

Example 1

For brevity, we will use AE as a shorthand notation for
Dom::ArithmeticalExpression:

AE := Dom::ArithmeticalExpression

An element of this domain can not be created as follows:

e := AE(2*sin(x) + f(x)/y)

Since Dom::ArithmeticalExpression is a façade domain, e is not a domain element,
but an expression:

domtype(e)

The fact that no error was returned yields the information that e is an arithmetical
expression. This can also be checked as follows:

testtype(e,AE)

In contrast to its super-domain Dom::Expression, this domain only allows elements
which are valid arguments for the arithmetical functions, thus the following yields an
error:

AE([a, b])

7-66



 Dom::ArithmeticalExpression

Error: The arguments are invalid. [Dom::ArithmeticalExpression::new]

Parameters

x

An arithmetical expression

Entries

"key" The name of this domain.
"one" The neutral element w.r.t. "_mult": the

constant 1.
"zero" The neutral element w.r.t. "_plus": the

constant 0.

Methods

Mathematical Methods

_divide — Divide arithmetical expressions

_divide(f, g)

This method overloads the function _divide.

For details, please see _divide.

_invert — Invert an arithmetical expression

_invert(f)

This method overloads the function _invert.
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For details, please see _invert.

_mult — Multiplie arithmetical expressions

_mult(<f, g, …>)

This method overloads the function _mult.

For details, please see _mult.

_negate — Negate an arithmetical expression

_negate(f)

This method overloads the function _negate.

For details, please see _negate.

_plus — Add arithmetical expressions

_plus(<f, g, …>)

This method overloads the function _plus.

For details, please see _plus.

_power — Power operator

_power(f, g)

This method overloads the function _power.

For details, please see _power.

_subtract — Subtract an arithmetical expression

_subtract(f, g)

For details, please see _subtract.

D — Differential operator for functions

D(f)
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D([c1, …], f)

This method overloads the function D.

For details, please see D.

diff — Differentiate an arithmetical expression

diff(f, <x, …>)

This method overloads the function diff.

For details, please see diff.

equiv — Test for equivalence

Inherited from Cat::BaseCategory.

intmult — Multiply an arithmetical expression with an integer

intmult(f, n)

This method overloads the function _mult.

For details, please see _mult.

iszero — Test for zero

iszero(f)

This method overloads the function iszero.

For details, please see iszero.

max — Maximum of numbers

max(x, <y, …>)

All numerical arguments must be real.

This method overloads the function max.

For details, please see max.
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min — Minimum of numbers

min(x, <y, …>)

All numerical arguments must be real.

This method overloads the function min.

For details, please see min.

norm — Norm of an arithmetical expression

norm(f)

This method overloads the function abs.

For details, please see abs.

random — Create random expression

Inherited from Dom::Expression.

Access Methods

subs — Substitution

Inherited from Dom::Expression.

subsex — Extended substitution

Inherited from Dom::Expression.

Conversion Methods

coerce — Coerce into this domain

Inherited from Cat::BaseCategory.

convert — Check for being an arithmetical expression

convert(x)
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convert_to — Conversion to other domains

Inherited from Dom::Expression.

expr — Just return the argument

Inherited from Dom::Expression.

float — Convert numbers to floats

Inherited from Dom::Expression.

Technical Methods

allAxioms — Return all axioms

Inherited from Dom::BaseDomain.

allCategories — Return all categories

Inherited from Dom::BaseDomain.

allEntries — Return the names of all entries

Inherited from Dom::BaseDomain.

allSuperDomains — Return all super-domains

Inherited from Dom::BaseDomain.

testtype — Test type of object

Inherited from Cat::BaseCategory.

undefinedEntries — Return missing entries

Inherited from Dom::BaseDomain.

whichEntry — Return the domain or category implementing an entry

Inherited from Dom::BaseDomain.
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getAxioms — Return axioms stated in the constructor

Inherited from Dom::BaseDomain.

getCategories — Return categories stated in the constructor

Inherited from Dom::BaseDomain.

getSuperDomain — Return super-domain stated in the constructor

Inherited from Dom::BaseDomain.

hasProp — Test for a certain property

Inherited from Dom::BaseDomain.

info — Print short information about this domain

Inherited from Dom::BaseDomain.

new — Create element of this domain

Inherited from Cat::BaseCategory.

print — Return expression to print an element

Inherited from Cat::BaseCategory.

printMethods — Print out methods

Inherited from Dom::BaseDomain.

testtype — Test whether its argument is an expression

Inherited from Dom::Expression.

undefinedEntries — Return missing entries

Inherited from Dom::BaseDomain.

whichEntry — Return the domain or category implementing an entry

Inherited from Dom::BaseDomain.
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See Also

MuPAD Domains
Dom::Expression
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Dom::BaseDomain
Root of the domain hierarchy

Description

Dom::BaseDomain is the root of the domain hierarchy as defined by the Dom package.
Every domain of the package inherits from it.

The only purpose of Dom::BaseDomain is to supply all domains of the package with
some basic methods like "hasProp". Elements of Dom::BaseDomain cannot be created.

Unlike other super-domains this domain does not impose any restrictions on the
representation of the elements of its sub-domains. Thus it may be a super-domain for any
domain created by a domain constructor.

Categories

Cat::BaseCategory

Entries

"create_dom" This domain entry is used to revive the
domain when it is read from a binary
MCode stream.

If this entry is present it is written to the
MCode stream instead of the contents of
the domain. When the stream is read it is
used to create the domain.

If this entry does not exist all entries of the
domain are written to the stream and read
in later to create the domain.

Dom::BaseDomain defines "create_dom"
to have the same value as the key of the
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domain, as stored in the entry "key". All
domains of the Dom package inherit this
entry, thus they must be created by the
reader of the MCode stream by evaluating
the expression stored in the key.

Methods

Mathematical Methods

equal — Test for mathematical equality

equal(x, y)

If this domain has the axiom Ax::canonicalRep, which implies that two domain
elements are mathematically equal if and only if they are structurally equal, the kernel
function _equal is used to decide the equality. In this case UNKNOWN is never returned.

If the axiom Ax::canonicalRep does not hold the method will return TRUE if x and y
are structurally equal (in the sense of the function _equal) and UNKNOWN otherwise.

Conversion Methods

convert_to — Convert element

convert_to(x, T)

The implementation provided here can convert x to an element of this domain (the
trivial case) or to an element of Dom::Expression (by using the method "expr", see
Cat::BaseCategory).

TeX — Generate TeX output

TeX(x)

The default implementation provided here converts x into an expression using the
method "expr" and then uses the function generate::TeX to convert the expression.
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Access Methods

allAxioms — Return all axioms

allAxioms()

allCategories — Return all categories

allCategories()

allEntries — Return the names of all entries

allEntries()

allSuperDomains — Return all super-domains

allSuperDomains()

The last, most general, super-domain of all domains of the Dom package is
Dom::BaseDomain.

getAxioms — Return axioms stated in the constructor

getAxioms()

getCategories — Return categories stated in the constructor

getCategories()

getSuperDomain — Return super-domain stated in the constructor

getSuperDomain()

hasProp — Test for a certain property

hasProp(d)

hasProp(dc)

hasProp(a)

hasProp(ac)

7-76



 Dom::BaseDomain

hasProp(c)

hasProp(cc)

hasProp(dc) tests if this domain or a super-domain of it was defined by the domain
constructor dc.

hasProp(a) tests if this domain has the axiom a.

hasProp(ac) tests if an axiom of this domain was defined by the axiom constructor ac.

hasProp(c) tests if this domain has the category c.

hasProp(cc) tests if a category of this domain was defined by the category constructor
cc.

info — Print short information about this domain

info()

It prints out the super-domains, categories, axioms and entry names of this domain.

If an entry "info_str", which must be a string, is defined for this domain it is used to
print the header line.

printMethods — Print out methods

printMethods(<sort>, <Table>)

printMethods(<sort>, Tree)

If no sorting function is given, sort is used as default.

Similar as above, using Tree provides only that the names of the entries are inserted
into a tree, an element of the domain adt::Tree. The tree is both printed out and
returned by the method.

Using neither Table nor Tree the function does the same as
dom::printMethods(sort, Table).

subs — Avoid substitution

subs(x, , …)
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Sub-domains should provide a new implementation of this method with sensible
semantics if possible.

subsex — Avoid extended substitution

subsex(x, , …)

Sub-domains should provide a new implementation of this method with sensible
semantics if possible.

undefinedEntries — Return missing entries

undefinedEntries()

An entry is missing if it should have a definition according to a category of the domain,
but the definition is not present.

whichEntry — Return the domain or category implementing an entry

whichEntry(e)

FAIL is returned if no entry with the given name is defined for this domain.
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Dom::Complex
Field of complex numbers

Syntax
Dom::Complex(x)

Description

Dom::Complex is the domain of complex constants represented by expressions of type
DOM_INT, DOM_RAT, DOM_FLOAT or DOM_COMPLEX. An expression of type DOM_EXPR is
considered a complex number if it is of type Type::Arithmetical and if it contains
only indeterminates which are of type Type::ConstantIdents or if it contains no
indeterminates, cf. “Example 2” on page 7-80.

Dom::Complex is of category Cat::Field due to pragmatism. This domain actually is
not a field because bool(1.0 = float(3) / float(3)) returns FALSE, for example.

Elements of Dom::Complex are usually not created explicitly. However, if one creates
elements using the usual syntax, it is checked whether the input expression can be
converted to a number. This means Dom::Complex is a facade domain which creates
elements of domain type DOM_INT, DOM_RAT, DOM_FLOAT, DOM_COMPLEX or DOM_EXPR.

Dom::Complex has no normal representation, because 0 and 0.0 both represent the
zero.

Viewed as a differential ring, Dom::Complex is trivial. It only contains constants.

Dom::Complex has the domain Dom::BaseDomain as its super domain, i.e., it inherits
each method which is defined by Dom::BaseDomain and not re-implemented by
Dom::Complex. Methods described below are re-implemented by Dom::Complex.

Superdomain

Dom::ArithmeticalExpression
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Axioms

Ax::systemRep, Ax::efficientOperation("_divide"),
Ax::efficientOperation("_mult"), Ax::efficientOperation("_invert")

Categories

Cat::DifferentialRing, Cat::Field

Examples

Example 1

Creating some complex numbers using Dom::Complex:

Dom::Complex(2/3)

Dom::Complex(2/3 + 4*I)

Example 2

It's also possible to use expressions or constants for creating an element of
Dom::Complex:

Dom::Complex(PI)

Dom::Complex(sin(2))
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Dom::Complex(sin(2/3*I) + 3)

If the expression cannot be converted to an element of Dom::Complex we will get an
error message:

Dom::Complex(sin(x))

Error: The arguments are invalid. [Dom::Complex::new]

Parameters

x

An expression of type DOM_INT, DOM_RAT, DOM_FLOAT, DOM_COMPLEX. An expression of
type DOM_EXPR is also possible if it is of type Type::Arithmetical and if it contains
only indeterminates which are of type Type::ConstantIdents or if it contains no
indeterminates.

Entries

"characteristic" the characteristic of this field is 0.
"one" the unit element; it equals 1.
"zero" The zero element; it equals 0.

Methods

Mathematical Methods

_divide — Divide numbers

_divide(x, y)
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_invert — Invert numbers

_invert(x)

_mult — Multiplie numbers

_mult(x, y, …)

_negate — Negate numbers

_negate(x)

_plus — Add numbers

_plus(x, y, …)

_power — Power operator

_power(x, y)

_unequal — Inequalities

_unequal(x, y)

conjugate — Conversion to a basic type

conjugate(x)

D — Differential operator

D(x)

diff — Differentiates

diff(z, <x, …>)

equal — Equations

equal(x, y)

expr — Conversion to a basic type

expr(x)
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iszero — Zero test

iszero(x)

norm — Absolute value of a number

norm(x)

random — Random number generation

random()

random(n)

random(m .. n)

random(n) returns a random number generator which creates complex random numbers
where the real parts and the imaginary parts are positive integers between 0 and n - 1.

random(m..n) returns a random number generator which creates complex random
numbers where the real parts and the imaginary parts are positive integers between m
and n.

unequal — Inequalities

unequal(x, y)

Conversion Methods

convert — Conversion into this domain

convert(x)

An arithmetical expression can be converted if it only contains subexpression of the types
just mentioned.

If the conversion fails, FAIL is returned.

convert_to — Conversion to other domains

convert_to(x, T)
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If the conversion fails, FAIL is returned.

The following domains are allowed for T: DOM_INT, Dom::Integer, DOM_RAT,
Dom::Rational, DOM_FLOAT, Dom::Float, Dom::Numerical, DOM_COMPLEX and
DOM_EXPR.

normal — Normal form of objects

normal(x)

See Also

MuPAD Domains
Dom::Float | Dom::Integer | Dom::Numerical | Dom::Rational | Dom::Real
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Dom::DenseMatrix

Matrices

Syntax

Domain Creation

Dom::DenseMatrix(<R>)

Element Creation

Dom::DenseMatrix(R)(Array)

Dom::DenseMatrix(R)(List)

Dom::DenseMatrix(R)(ListOfRows)

Dom::DenseMatrix(R)(Matrix)

Dom::DenseMatrix(R)(m, n)

Dom::DenseMatrix(R)(m, n, Array)

Dom::DenseMatrix(R)(m, n, List)

Dom::DenseMatrix(R)(m, n, ListOfRows)

Dom::DenseMatrix(R)(m, n, f)

Dom::DenseMatrix(R)(m, n, List, Diagonal)

Dom::DenseMatrix(R)(m, n, g, Diagonal)

Dom::DenseMatrix(R)(m, n, List, Banded)

Dom::DenseMatrix(R)(1, n, List)

Dom::DenseMatrix(R)(m, 1, List)
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Description

Domain Creation

Dom::DenseMatrix(R) creates domains of matrices over a component domain R of
category Cat::Rng (a ring, possibly without unit).

If the optional parameter R is not given, the domain Dom::ExpressionField() is used.

A vector with n entries is either an n×1 matrix (a column vector), or a 1×n matrix (a row
vector).

Arithmetical operations with matrices can be performed by using the standard
arithmetical operators of MuPAD.

E.g., if A and B are two matrices defined by Dom::DenseMatrix(R), A + B computes
the sum, and A * B computes the product of the two matrices, provided that the
dimensions are correct.

Similarly, A^(-1) or 1/A computes the inverse of a square matrix A if it exists, and
returns FAIL otherwise. See “Example 1” on page 7-89.

Many system functions have been overloaded for matrices, such as map, subs, has,
zip, conjugate to compute the complex conjugate of a matrix, norm to compute matrix
norms, or exp to compute the exponential of a matrix.

Most of the functions in the MuPAD linear algebra package linalg work with matrices.
For example, the command linalg::gaussJordan(A) performs Gauss-Jordan
elimination on A to transform A to its reduced row echelon form.

The domain Dom::DenseMatrix(R) represents matrices over R of arbitrary size, and it
therefore does not have any algebraic structure (other than being a set of matrices).

The domain Dom::SquareMatrix(n, R) represents the ring of n×n matrices over
R. The domain Dom::MatrixGroup(m, n, R) represents the Abelian group of m×n
matrices over R.

We use the following notations for a matrix A (an element of Dom::DenseMatrix(R)):

• nrows(A) denotes the number of rows of A.
• ncols(A) denotes the number of columns of A.
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• A row index is an integer in the range from 1 to nrows(A).
• A column index is an integer in the range from 1 to ncols(A).

Note: The components of a matrix are no longer evaluated after the creation of the
matrix, i.e., if they contain free identifiers they will not be replaced by their values.

Element Creation

Dom::DenseMatrix(R)(Array) and Dom::DenseMatrix(R)(Matrix) create a new
matrix with the dimension and the components of Array and Matrix, respectively.

The components of Array or Matrix are converted into elements of the domain R. An
error message is issued if one of these conversions fails.

Dom::DenseMatrix(R)(List) creates an m×1 column vector with components taken
from the nonempty list, where m is the number of entries of List.

Dom::DenseMatrix(R)(ListOfRows) creates an m×n matrix with components taken
from the nested list ListOfRows, where m is the number of inner lists of ListOfRows,
and n is the maximal number of elements of an inner list. Each inner list corresponds to
a row of the matrix. Both m and n must be non-zero.

If an inner list has less than n entries, then the remaining components in the
corresponding row of the matrix are set to zero.

The entries of the inner lists are converted into elements of the domain R. An error
message is issued if one of these conversions fails.

It might be a good idea first to create a two-dimensional array from that list before
calling Dom::DenseMatrix(R). This is due to the fact that creating a matrix from an
array is the fastest way one can achieve. However, in this case the sublists must have the
same number of elements.

The call Dom::DenseMatrix(R)(m, n) returns the m×n zero matrix.

Use the method "identity" to create the n×n identity matrix.

The call Dom::DenseMatrix(R)(m, n, Array) creates an m×n matrix with
components taken from Array, which must be an array or an hfarray. Array must have
m n operands. The first m operands define the first row, the next m operands define the
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second row, etc. The formatting of the array is irrelevant. E.g., any array with 6 elements
can be used to create a matrix of dimension 1 ×6, or 2×3, or 3×2, or 6 ×1.

The call Dom::DenseMatrix(R)(m, n, List) creates an m×n matrix with
components taken from the list List with m n elements. The first m elements of the list
define the first row, the next m elements of the list define the second row, etc.

The call Dom::DenseMatrix(R)(m, n, ListOfRows) creates an m×n matrix with
components taken from the listListOfRows.

If m ≥ 2 and n ≥ 2, then ListOfRows must consist of at most m inner lists, each having at
most n entries. The inner lists correspond to the rows of the returned matrix.

If an inner list has less than n entries, then the remaining components of the
corresponding row of the matrix are set to zero. If there are less than m inner lists, then
the remaining lower rows of the matrix are filled with zeroes.

Dom::DenseMatrix(R)(m, n, f) returns the matrix whose (i, j)th component is the
value of the function call f(i,j). The row index i ranges from 1 to m and the column
index j from 1 to n.

The function values are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::DenseMatrix(R)(1, n, List) returns the 1 ×n row vector with components
taken from List. The list List must have at most n entries. If there are fewer entries,
then the remaining vector components are set to zero.

The entries of the list are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::DenseMatrix(R)(m, 1, List) returns the m×1 column vector with components
taken from List. The list List must have at most m entries. If there are fewer entries,
then the remaining vector components are set to zero.

The entries of the list are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Superdomain

Dom::BaseDomain
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Axioms

If R has Ax::canonicalRep, then Ax::canonicalRep.

Categories

Cat::Matrix(R).

Examples

Example 1

First we create the domain of matrices over the field of rational numbers:

MatQ := Dom::DenseMatrix(Dom::Rational)

We assigned this domain to the identifier MatQ. Next we define the 2×2 matrix

by a list of two rows, where each row is a list of two elements:

A := MatQ([[1, 5], [2, 3]])

In the same way we define the following 2 ×3 matrix:

B := MatQ([[-1, 5/2, 3], [1/3, 0, 2/5]])
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and perform matrix arithmetic using the standard arithmetical operators of MuPAD,
e.g., the matrix product A B, the 4th power of A as well as the scalar multiplication of A
times :

A * B, A ^ 4, 1/3 * A

The matrices A and B have different dimensions, and therefore the sum of A and B is not
defined. MuPAD issues an error message:

A + B

Error: The dimensions do not match. [(Dom::DenseMatrix(Dom::Rational))::_plus]

To compute the inverse of A, just enter:

1/A

If a matrix is not invertible, FAIL is the result of this operation. For example, the matrix:

C := densematrix(2, 2, [[2]])

is not invertible, hence:

C^(-1)
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Example 2

We create the domain of matrices over the reals:

MatR := Dom::DenseMatrix(Dom::Real)

Beside standard matrix arithmetic, the library linalg offers a lot of functions
dealing with matrices. For example, if one wants to compute the rank of a matrix, use
linalg::rank:

A := MatR([[1, 2], [2, 4]])

linalg::rank(A)

Use linalg::eigenvectors to compute eigenvalues and eigenvectors of the matrix A:

linalg::eigenvectors(A)

Try info(linalg) for a list of available functions, or enter help(linalg) for details
about the library linalg.

Some of the functions in the linalg package simply serve as “interface” functions
for methods of a matrix domain described above. For example, linalg::transpose
uses the method "transpose" to get the transposed matrix. The function
linalg::gaussElim applies Gaussian elimination to a matrix, such as:

linalg::gaussElim(A)
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The computation is performed by the method "gaussElim" as described above. Such
functions of the linalg packages, in contrast to the corresponding methods of the
domain Dom::DenseMatrix(R), check their incoming parameters, and some of them
offer extended functionalities.

Example 3

In this example, we use the default matrix domain which is created by
Dom::DenseMatrix(). This domain represents matrices whose components
can be arbitrary arithmetical expressions (i.e., the component ring is the domain
Dom::ExpressionField()).

This domain is already known to MuPAD by the name matrix:

A := densematrix(

  [[1, 2, 3, 4], [2, 0, 4, 1], [-1, 0, 5, 2]]

)

domtype(A)

Matrix components can be extracted by the index operator []:

A[2, 1] * A[1, 2] - A[3, 1] * A[1, 3]

If one of the indices is not in its valid range, an error message is issued. Assignments to
matrix components are performed similarly:

delete a:
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A[1, 2] := a^2: A

Beside the usual indexing of matrix components, it is also possible to extract submatrices
from a given matrix. The following call creates the submatrix of A which consists of the
rows 2 to 3 and columns 1 to 3 of A:

A[2..3, 1..3]

The index operator does not allow to insert submatrices into a given matrix. This is
implemented by the function linalg::substitute.

Example 4

In the following examples, we demonstrate the different ways of creating matrices. We
work with matrices defined over the field ℤ19, i.e., the field of integers modulo 19. This
component ring can be created with the domain constructor Dom::IntegerMod.

We start by giving a list of rows, where each row is a list of row entries:

MatZ19 := Dom::DenseMatrix(Dom::IntegerMod(19)):

MatZ19([[1, 2], [2]])

The elements of the two inner lists, the row entries, were converted into elements of the
domain Dom::IntegerMod(19).

The number of rows is the number of sublists of the argument, i.e., m = 2. The number
of columns is determined by the length of the inner list with the most entries, which is
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the first inner list with two entries. Missing entries in the other inner lists are treated as
zero components. The call:

MatZ19(4, 4, [[1, 2], [2]])

fixes the dimension of the matrix. Missing entries and inner lists are treated as zero
components and zero rows, respectively.

An error message is issued if one of the given entries cannot be converted into an element
over ℤ19:

MatZ19([[2, 3], [-1, I]])

Error: Cannot define a matrix over 'Dom::IntegerMod(19)'. [(Dom::DenseMatrix(Dom::IntegerMod(19)))::new]

Example 5

This example illustrates how to create a matrix with components given as values
of an index function. First we create the 2 ×2 Hilbert matrix (see also the functions
linalg::hilbert and linalg::invhilbert):

densematrix(2, 2, (i, j) -> 1/(i + j - 1))

Note the difference when working with expressions and functions. If you give an
expression it is treated as a function in the row and column indices:

delete x:

densematrix(2, 2, x), densematrix(2, 2, (i, j) -> x)
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Example 6

Diagonal matrices can be created with the option Diagonal and a list of diagonal
components:

MatC := Dom::DenseMatrix(Dom::Complex):

MatC(3, 4, [1, 2, 3], Diagonal)

Hence, to define the n×n identity matrix, you can enter:

MatC(3, 3, [1 $ 3], Diagonal)

or even call:

MatC(3, 3, x -> 1, Diagonal)

The easiest way to create the identity matrix, however, is to use the method
"identity":

MatC::identity(3)
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Example 7

Toeplitz matrices can be defined with the option Banded. The following call defines a
three-banded matrix with the component 2 on the main diagonal and the component - 1
on the first subdiagonals:

densematrix(4, 4, [-1, 2, -1], Banded)

Example 8

Some system functions can be applied to matrices, such as norm, expand, diff,
conjugate, or exp.

For example, to expand the components of the matrix:

delete a, b: 

A := densematrix(

  [[(a - b)^2, a^2 + b^2], [a^2 + b^2, (a - b)*(a + b)]]

)

enter:

expand(A)
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If you want to differentiate the matrix components, then call for example:

diff(A, a)

To substitute matrix components by some values, enter:

subs(A, a = 1, b = -1)

The function zip can also be applied to matrices. The following call combines two
matrices A and B by dividing each component of A by the corresponding component of B:

A := densematrix([[4, 2], [9, 3]]): 

B := densematrix([[2, 1], [3,-1]]):

zip(A, B, `/`)

The quoted character `/` is another notation for the function _divide, the functional
form of the division operator /.

If one needs to apply a function to the components of a matrix, then use the function map.
For example, to simplify the components of the matrix:

C := densematrix(

  [[sin(x)^2 + cos(x)^2, cos(x)*tan(x)], 

  [(a^2 - b^2)/(a + b), 1]]

)
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call:

map(C, Simplify)

Example 9

However, there may appear some unexpected results using the function diff in the
context of matrices. The derivative of the following unspecified function f of a matrix is
computed due to the chain rule:

diff(f(densematrix([[a*x^2, b], [c, d]])), x)

Usually, the function f would implicitly be assumed to be scalar. Hence, the derivative
of f should be scalar as well. In the above situation the chain rule is applied for
differentiation: the inner function is the matrix containing the symbolic components
a*x^2, b, c and d. Its derivative is computed by simply applying diff to each component
of the matrix:

diff(densematrix([[a*x^2, b], [c, d]]), x)

Finally, the exterior unspecified function f is implicitly assumed to be scalar, such that
each component of the derivative of the inner function is multiplied by the exterior
differentiation.

Example 10

A column vector is represented as a 2×1 matrix:
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MatR := Dom::DenseMatrix(Dom::Real):

v := MatR(2, 1, [1, 2])

The dimension of this vector is:

MatR::matdim(v)

Use linalg::vecdim, or even call nops(v) to get the length of a vector:

linalg::vecdim(v)

The ith component of this vector can be extracted in two ways: either by v[i,1] or by
v[i]:

v[1], v[2]

We get the 2-norm of v by the following call:

norm(v, 2)

Parameters

R

A ring, i.e., a domain of category Cat::Rng; default is Dom::ExpressionField()
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Array

A one- or two-dimensional array or hfarray

Matrix

A matrix, i.e., an element of a domain of category Cat::Matrix

m, n

Matrix dimension (positive integers)

List

A list of matrix components

ListOfRows

A list of at most m rows; each row given as a list of at most n matrix components

f

A function or a functional expression with two parameters (the row and column index)

g

A function or a functional expression with one parameter (the row index)

Options

Diagonal

Create a diagonal matrix

With the option Diagonal, diagonal matrices can be created with diagonal elements
taken from a list, or computed by a function or a functional expression.

Dom::DenseMatrix(R)(m, n, List, Diagonal) creates the m×n diagonal matrix
whose diagonal elements are the entries of List.
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List must have at most min(m, n) entries. If it has fewer elements, the remaining
diagonal elements are set to zero.

The entries of List are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::DenseMatrix(R)(m, n, g, Diagonal) returns the matrix whose ith diagonal
element is g(i, i), where the index i runs from 1 to min(m, n).

The function values are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Banded

Create a banded Toeplitz matrix

Dom::DenseMatrix(R)(m, n, List, Banded) creates an m×n banded Toeplitz
matrix with the elements of List as entries. The number of entries of List must be odd,
say 2 h + 1, and must not exceed n. The resulting matrix has bandwidth at most 2 h + 1.

A Toeplitz matrix is a matrix where the elements of each band are identical. See also
“Example 7” on page 7-96.

All elements of the main diagonal of the created matrix are initialized with the middle
element of List. All elements of the ith subdiagonal are initialized with the (h + 1 - i)th
element of List. All elements of the ith superdiagonal are initialized with the (h + 1 +
i)th element of List. All entries on the remaining sub- and superdiagonals are set to
zero.

The entries of List are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Entries

"isSparse" is always FALSE, as elements of
Dom::DenseMatrix(R) use a dense
representation of their matrix components.

"randomDimen" is set to [10,10]. See the method
"random" below for details.
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Methods

Mathematical Methods

_divide — Divide matrices

_divide(A, B)

An error message is issued if the dimensions of A and B do not match.

This method only exists if R is a commutative ring with a unit, i.e., a domain of category
Cat::Ring.

This method overloads the function _divide for matrices, i.e., one may use it in the form
A / B, or in functional notation: _divide(A, B).

_invert — Compute the inverse of a matrix

_invert(A, Normal = b)

If the component ring R is the domain Dom::Float, a floating-point approximation of the
inverse matrix is computed by the function numeric::inverse.

This method only exists if R is a domain of category Cat::Ring.

This method overloads the function _invert for matrices, i.e., one may use it in the form
1/A or A^(-1), or in functional notation: _invert(A).

If Normal = TRUE, then the matrix inverse is always returned in a normalized form.
For details about normalization, see normal. If Normal = FALSE, then the matrix
inverse can appear in a normalized form, but normalization is not guaranteed. By default
Normal = TRUE.

Normal affects the results only if a matrix contains variables or exact expressions, such
as sqrt(5) or sin(PI/7).

_mod — Map the modulo operator to a matrix

_mod(A, n)

n must be non-zero, and a mod n must be defined for every entry a of A.
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This method overloads the function mod for matrices; one may use it in the form A mod
n, or in functional notation: _mod(A, n).

_mult — Multiplie matrices by matrices, vectors and scalars

_mult(x, y)

_mult(x, y)

If y is of the domain type R or can be converted into such an element, the corresponding
scalar multiplication is computed.

Otherwise, y is converted into a matrix of the domain type of x. If this conversion fails,
then this method calls the method "_mult" of the domain of y giving all arguments in
the same order.

If x is a matrix of the same domain type as y, then the matrix product x y is computed.
An error message is issued if the dimensions of the matrices do not match.

If x is of the domain type R or can be converted into such an element, the corresponding
scalar multiplication is computed.

Otherwise, x is converted into a matrix of the domain type of y. If this conversion fails,
then FAIL is returned.

This method handles more than two arguments by calling itself recursively with the first
half of all arguments and the last half of all arguments. Then the product of these two
results is computed with the system function _mult.

This method overloads the function _mult for matrices, i.e., one may use it in the form x
* y, or in functional notation: _mult(x, y).

_negate — Negate a matrix

_negate(A)

This method overloads the function _negate for matrices, i.e., one may use it in the form
-A, or in functional notation: _negate(A).

_plus — Add matrices

_plus(A, B, …)
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The arguments A, B , ... are converted into matrices of the domain type
Dom::DenseMatrix(R). FAIL is returned if one of these conversions fails.

This method overloads the function _plus for matrices, i.e., one may use it in the form A
+ B, or in functional notation: _plus(A, B).

_power — Integer power of a matrix

_power(A, n)

If the power n is a negative integer then A must be nonsingular and R must be a domain
of category Cat::IntegralDomain. Otherwise FAIL is returned.

If n is zero and the component ring R is a ring with no unit (i.e., of category Cat::Rng,
but not of category Cat::Ring), FAIL is returned.

This method overloads the function _power for matrices, i.e., one may use it in the form
A^n, or in functional notation: _power(A, n).

conjugate — Complex conjugate of a matrix

conjugate(A)

This method only exists if R implements the method "conjugate", which computes the
complex conjugate of an element of the domain R.

This method overloads the function conjugate for matrices, i.e., one may use it in the
form conjugate(A).

cos — Cosine of a matrix

cos(A)

If A is not square, an error message is issued. If the component domain of A does not
allow the computation of cos(elem) for an arbitrary element elem of the component
ring, FAIL is returned.

This method uses the function numeric::expMatrix for a floating-point approximation
of the exponential of A if A is defined over the domain Dom::Float.

If some eigenvalues of A do not exist in R or cannot be computed, then FAIL is returned.
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In the symbolic case the functions exp and linalg::jordanForm are called. The latter
may not be able to compute the Jordan form of A. In this case FAIL is returned.

This method only exists if R is a domain of category Cat::Field.

This method overloads the function cos for matrices, i.e., one may use it in the form
cos(A).

diff — Differentiation of matrix components

diff(A, …)

This method only exists if R implements the method "diff".

This method overloads the function diff for matrices, i.e., one may use it in the form
diff(A, ...). See “Example 8” on page 7-96 and “Example 9” on page 7-98.

equal — Equality test of matrices

equal(A, B)

Note that if R has the axiom Ax::systemRep then normal is used to simplify the
components of A and B before testing their equality.

exp — Exponential of a matrix

exp(A, <t>)

If A is not square, an error message is issued. If the component domain of A does not
allow the computation of exp(elem) for an arbitrary element elem of the component
ring, FAIL is returned.

This method uses the function numeric::expMatrix for a floating-point approximation
of the exponential of A if A is defined over the domain Dom::Float and if t = 1.

If some eigenvalues of A do not exist in R or cannot be computed, then FAIL is returned.

In the symbolic case the function linalg::jordanForm is called, which may not be able
to compute the Jordan form of A. In this case FAIL is returned.

This method only exists if R is a domain of category Cat::Field.

This method overloads the function exp for matrices, i.e., one may use it in the form
exp(A, ...).
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expand — Expand matrix components

expand(A)

This method only exists if R implements the method "expand", or if R has the axiom
Ax::systemRep (in this case, the system function expand is used).

This method overloads the function expand for matrices, i.e., one may use it in the form
expand(A).

factor — Scalar-matrix factorization

factor(A)

The factor s is the gcd of all components of the matrix A. Hence, this method only exists if
R is of category Cat::GcdDomain.

This method overloads the function factor for matrices, i.e., one may use it in the form
factor(A).

float — Floating-point approximation of the matrix components

float(A)

This method only exists if R implements the method "float".

Note: Usually the floating-point approximations are not elements of R! For example,
Dom::Integer implements such a method, but the floating-point approximation of an
integer cannot be re-converted into an integer.

This method checks whether the resulting matrix can be converted into the domain type
of A only if testargs returns TRUE (e.g., if one calls this method from the interactive
level of MuPAD).

Otherwise, one has to take care that the matrix returned is compatible to its component
ring.

gaussElim — Gaussian elimination

gaussElim(A)
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If the matrix is not square, i.e., the determinant of A is not defined, then the third entry
of the list returned is the value FAIL.

This method only exists if the component ring R is an integral domain, i.e., a domain of
category Cat::IntegralDomain.

If R has the method "pivotSize", then the pivot element of smallest size is chosen at
every pivoting step, whereby pivotSize must return a positive integer representing the
“size” of an element.

If no such method is defined, Gaussian elimination without a pivot strategy is applied to
A.

If R has the axiom Ax::efficientOperation("_invert") and is of category
Cat::Field, then ordinary Gaussian elimination is used. Otherwise, fraction-free
elimination is performed on A.

If R implements the method "normal", it is used to simplify subsequent computations of
the Gaussian elimination process.

Note that if R does not implement the method "normal", but the elements of R are
represented by kernel domains, i.e., R has the axiom Ax::systemRep, the system
function normal is used instead.

identity — Identity matrix

identity(n)

This method only exists if the component ring R is of category Cat::Ring, i.e., a ring
with unit.

int — Integration of matrix components

int(A, …)

This method only exists if R implements the method "int".

This method overloads the system function int for matrices, i.e., one may use it in the
form int(A, ...).

iszero — Test for zero matrices

iszero(A)
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Note that there may exist more than one representation of the zero matrix of a given
dimension if R does not have Ax::canonicalRep.

If R implements the method "normal", it is used to simplify the components of A for the
zero-test.

Note that if R does not implement such a method, but the elements of R are represented
by kernel domains, i.e., R has the axiom Ax::systemRep, the system function normal is
used instead.

This method overloads the function iszero for matrices, i.e., one may use it in the form
iszero(A).

matdim — Matrix dimension

matdim(A)

norm — Norm of matrices and vectors

norm(A, Infinity)

norm(A, Maximum)

norm(v, Infinity)

norm(v, Maximum)

norm(A, Frobenius)

norm(A, 1)

norm(v, Euclidean)

norm(v, k)

norm(A, Maximum) computes the maximum norm of the matrix A, which is the
maximum row sum (the row sum is the sum of norms of each component in a row).

If the domain R does not implement the methods "max" and "norm", FAIL is returned.

Using norm(v, Infinity) for a vector v the maximum norm of all elements is
returned.

If the domain R does not implement the methods "max" and "norm", FAIL is returned.
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Using norm(v, Maximum) for a vector v the maximum norm of all elements is returned.

If the domain R does not implement the methods "max" and "norm", FAIL is returned.

norm(A, Frobenius) computes the Frobenius norm of A, which is the square root of
the sum of the squares of the norms of each component.

If the result is no longer an element of the domain R, or if R does not implement the
method "norm", FAIL is returned.

norm(A, 1) computes the 1-norm of the matrix A, which is the maximum sum of the
norms of the elements of each column. If R does not implement the methods "max" and
"norm", FAIL is returned.

norm(v, Euclidean) computes the Euclidean norm (2-norm) of the vector v, which is
defined to be the square root of the sum of the norms of the elements of v raised to the
square.

FAIL is returned if the result is no longer an element of the domain R. The function
linalg::scalarProduct is used to compute the Euclidean norm of the vector v.

If R does not implement the method "norm", FAIL is returned.

norm(v, k) computes the k-norm of the vector v, which is defined to be the kth root of
the sum of the norms of the elements of v raised to the kth power.

FAIL is returned if the result is no longer an element of the domain R. For k = 2, the
function linalg::scalarProduct is used to compute the 2-norm of v.

If R does not implement the method "norm", FAIL is returned.

The method norm overloads the function norm for matrices, i.e., one may use it in the
form norm(A k ), where k is either Infinity, Frobenius, or a positive integer. The
default value of k is Infinity.

normal — Simplification of matrix components

normal(A)

If R does not implement the method "normal", but the elements of R are represented by
kernel domains, i.e., R has the axiom Ax::systemRep, then the system function normal
is applied to the components of A. Otherwise normal(A) returns A without any changes.
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This method overloads the function normal for matrices, i.e., one may use it in the form
normal(A).

nonZeros — Number of non-zero components of a matrix

nonZeros(A)

nonZeroes — Number of non-zero components of a matrix

nonZeroes(A)

nonZeroOperands — Return a sequence of all non-zero operands

nonZeroOperands(A)

This method is useful for retrieving information on the non-zero entries. For example,
to find out the types of the entries in the matrix, one should not consider all operands
op(A), because this would also involve the zero entries. For large matrices with few
entries, it is much more efficient to use this method to extract the entries.

random — Random matrix generation

random()

This method only exists if R implements the method "random".

The dimension of the matrix is also chosen randomly, but it is limited by the values given
in "randomDimen" (see “Entries” above).

To change the value of the entry "randomDimen" for a domain MatR created with
Dom::DenseMatrix, one must first unprotect the domain Dom (see unprotect for
details).

sin — Sine of a matrix

sin(A)

If A is not square, an error message is issued. If the component domain of A does not
allow the computation of sin(elem) for an arbitrary element elem of the component
ring, FAIL is returned.

This method uses the function numeric::expMatrix for a floating-point approximation
of the exponential of A if A is defined over the domain Dom::Float.
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If some eigenvalues of A do not exist in R or cannot be computed, then FAIL is returned.

In the symbolic case the functions exp and linalg::jordanForm are called. The latter
may not be able to compute the Jordan form of A. In this case FAIL is returned.

This method only exists if R is a domain of category Cat::Field.

This method overloads the function sin for matrices, i.e., one may use it in the form
sin(A).

sqrt — Square root of a matrix

sqrt(A, <sqrtfunc>)

Returned is a matrix B with B2 = A such that the eigenvalues of B are the square roots
of the eigenvalues of A or FAIL if the square root of the matrix does not exist. For
computing the square roots of the eigenvalues a function satisfying sqrtfunc(a)2 = a for
every element a of the coefficient ring of A can be given as optional second argument.

For details we refer to the help page of the function linalg::sqrtMatrix.

testeq — Testing for equality of two matrices

testeq(A, B)

tr — Trace of a square matrix

tr(A)

If A is not square, then an error message is issued.

transpose — Transpose of a matrix

transpose(A)

Access Methods

_concat — Horizontal concatenation of matrices

_concat(A, B, …)
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An error message is issued if the given matrices do not have the same number of rows.

This method overloads the function _concat for matrices, i.e., one may use it in the form
A . B . ..., or in functional notation: _concat(A, B, ...).

_index — Matrix indexing

_index(A, i, j)

_index(A, r1 .. r2, c1 .. c2)

_index(v, i)

_index(v, i1 .. i2)

If i and j are not integers, then the call of this method returns in its symbolic form (of
type "_index") with evaluated arguments.

Otherwise an error message is given, if i and j are not valid row and column indices,
respectively.

Note: Note that this method uses the system function context to evaluate the entry in
the context of the calling environment.

_index(A,r1..r2,c1..c2) returns the submatrix of A created by the rows of A with
indices from r1 to r2 and the columns of A with indices from c1 to c2.

_index(v,i) returns the ith entry of the vector v.

An error message is issued if v is not a vector.

If i is not an integer, then the call of this method returns in its symbolic form (of type
"_index") with evaluated arguments.

Otherwise an error message is given, if i is less than one or greater than the dimension
of v.

Note: Note that this method uses the system function context to evaluate the entry in
the context of the calling environment.
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_index(v,i1..i2) returns the subvector of v, formed by the entries with index i1 to
i2. See also the method "op".

An error message is issued if v is not a vector.

This method overloads the function _index for matrices, i.e., one may use it in the form
A[i, j], A[r1..r2, c1..c2], v[i] and v[i1..i2], respectively, or in functional
notation: _index(A, ...).

concatMatrix — Horizontal concatenation of matrices

concatMatrix(A, B, …)

col — Extracting a column

col(A, c)

An error message is issued if c is less than one or greater than the number of columns of
A.

delCol — Deleting a column

delCol(A, c)

NIL is returned if A consists of only one column.

An error message is issued if c is less than one or greater than the number of columns of
A.

delRow — Deleting a row

delRow(A, r)

NIL is returned if A consists of only one row.

An error message is issued if r is less than one or greater than the number of rows of A.

evalp — Evaluating matrices of polynomials at a certain point

evalp(A, x = a, …)

This method is only defined if R is a polynomial ring of category Cat::Polynomial.

7-113



7 Dom – Domains

This method overloads the function evalp for matrices, i.e., one may use it in the form
evalp(A, x = a).

length — Length of a matrix

length(A)

This method overloads the function length for matrices, i.e., one may use it in the form
length(A).

map — Apply a function to matrix components

map(A, func, <expr, …>)

Note: Note that the function values are converted into elements of the domain R only
if testargs returns TRUE (e.g., if one calls this method from the interactive level of
MuPAD).

If testargs returns FALSE, then one must guarantee that the function calls return
elements of the domain type R, otherwise the resulting matrix, which is of domain type
Dom::DenseMatrix(R), would have components which are not elements of the domain
R!

This method overloads the function map for matrices, i.e., one may use it in the form
map(A, func, ...).

mapNonZeroes — Apply a function to the non-zero components of a matrix

mapNonZeroes(A, f, <p1, p2, …>)

nops — Number of components of a matrix

nops(A)

This method overloads the function nops for matrices, i.e., one may use it in the form
nops(A).

op — Component of a matrix

op(A, i)

op(A)
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This method returns an expression sequence of all components of A.

See also the method "_index".

This method overloads the function op for matrices, i.e., one may use it in the form
op(A, i) and op(A), respectively.

row — Extracting a row

row(A, r)

An error message is issued if r is less than one or greater than the number of rows of A.

setCol — Replacing a column

setCol(A, c, v)

An error message is issued if c is less than one or greater than the number of rows of A.

setRow — Replacing a row

setRow(A, r, v)

An error message is issued if r is less than one or greater than the number of rows of A.

stackMatrix — Vertical concatenation of matrices

stackMatrix(A, B, …)

An error message is issued if the given matrices do not have the same number of
columns.

subs — Substitution of matrix components

subs(A, …)

Note: Note that the function values are converted into elements of the domain R only
if testargs returns TRUE (e.g., if one calls this method from the interactive level of
MuPAD).

If testargs returns FALSE, then one must guarantee that the function calls return
elements of the domain type R, otherwise the resulting matrix, which is of domain type
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Dom::DenseMatrix(R), would have components which are not elements of the domain
R!

This method overloads the function subs for matrices, i.e., one may use it in the form
subs(A, ...).

subsex — Extended substitution of matrix components

subsex(A, …)

Note: Note that the results of the substitutions are converted into elements of the
domain R only if testargs returns TRUE (e.g., if one calls this method from the
interactive level of MuPAD).

If testargs returns FALSE, then one must guarantee that the results of the
substitutions are of the domain type R, otherwise the resulting matrix, which is of
domain type Dom::DenseMatrix(R), would have components which are not elements of
the domain R!

This method overloads the function subsex for matrices, i.e., one may use it in the form
subsex(A, ...).

subsop — Operand substitution of matrix components

subsop(A, i = x, …)

Note: Note that x is converted into the domain R only if testargs returns TRUE (e.g., if
one calls this method from the interactive level of MuPAD).

If testargs returns FALSE, then x must be an element of R, otherwise the resulting
matrix, which is of domain type Dom::DenseMatrix(R), would have components which
are not elements of the domain R!

See also the method "set_index".

This method overloads the function subsop for matrices, i.e., one may use it in the form
subsop(A, ...).
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swapCol — Swapping matrix columns

swapCol(A, c1, c2)

swapCol(A, c1, c2, r1 .. r2)

An error message is issued if one of the column indices is less than one or greater than
the number of columns of A.

swapCol(A,c1,c2,r1..r2) swaps the column with index c1 and the column with
index c2 of A, but by taking only those column components which lie in the rows with
indices r1 to r2.

An error message is issued if one of the column indices is less than one or greater than
the number of columns of A, or if one of the row indices is less than one or greater than
the number of rows of A.

swapRow — Swapping matrix rows

swapRow(A, r1, r2)

swapRow(A, r1, r2, c1 .. c2)

An error message is issued if one of the row indices is less than one or greater than the
number of rows of A.

swapCol(A,r1,r2,c1..c2) swaps the row with index r1 and the row with index r2 of
A, but by taking only those row components which lie in the columns with indices c1 to
c2.

An error message is issued if one of the row indices is less than one or greater than the
number of rows of A, or if one of the column indices is less than one or greater than the
number of columns of A.

set_index — Setting matrix components

set_index(A, i, j, x)

set_index(v, i, x)

Note: Note that x is converted into an element of the domain R only if testargs returns
TRUE and i and j are integers (e.g., if one calls this method from the interactive level of
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MuPAD). If x is a matrix of the same type as A or can be converted into a matrix of the
same type as A and the indices i or j are ranges corresponding to a submatrix of A, then
x replaces the corresponding submatrix in A.

Otherwise one has to take care that x is of domain type R.

See also the method "subsop".

set_index(v,i,x) replaces the ith entry of the vector v by x.

set_index on vectors overloads the function set_index for matrices, i.e., one may use
it in the form A[i, j] := x and v[i] := x, respectively, or in functional notation:
A := set_index(A, i, j, x) or v := set_index(v, i, x).

zip — Combine matrices component-wise

zip(A, B, func, <expr, …>)

The row number of the matrix returned is the minimum of the row numbers of A and B,
and its column number is the minimum of the column numbers of A and B.

Note: Note that the function values are converted into elements of the domain R only
if testargs returns TRUE (e.g., if one calls this method from the interactive level of
MuPAD).

If testargs returns FALSE, then one must guarantee that the function calls return
elements of the domain type R, otherwise the resulting matrix, which is of domain type
Dom::DenseMatrix(R), would have components which are not elements of the domain
R!

This method overloads the function zip for matrices, i.e., one may use it in the form
zip(A, B, ...).

Conversion Methods

convert — Conversion to a matrix

convert(x)
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FAIL is returned if the conversion fails.

x may either be an array, a matrix, or a list (of sublists, see the parameter ListOfRows
in “Creating Elements” above). Their entries must then be convertible into elements of
the domain R.

convert_to — Matrix conversion

convert_to(A, T)

T may either be DOM_ARRAY, DOM_LIST, or a domain constructed by Dom::DenseMatrix
or Dom::SquareMatrix. The elements of A must be convertible into elements of the
domain R.

Use the function expr to convert A into an object of a kernel domain (see below).

create — Defining matrices without component conversions

create(x, …)

This method works more efficient than if one creates matrices by calling the method
"new" of the domain, because it avoids any conversion of the components. One must
guarantee that the components have the correct domain type, otherwise run-time errors
can be caused.

If x is a list of sublists, it might be a good idea first to create a two-dimensional array
from that list before calling this method. This is due to the fact that creating a matrix
from an array is the fastest way one can achieve.

Please note that when creating a two-dimensional array from a list of sublists, the
sublists must have the same number of elements.

expr — Matrix conversion into an object of a kernel domain

expr(A)

The result is an array representing the matrix A where each entry is an object of a kernel
domain.

This method overloads the function expr for matrices, i.e., one may use it in the form
expr(A).
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expr2text — Matrix conversion to a string

expr2text(A)

This method overloads the function expr2text for matrices, i.e., one may use it in the
form expr2text(A).

TeX — TeX formatting of a matrix

TeX(A)

Note that in the case of very large matrices the output will not be useful. For printing
large matrices use the function "doprint".

The method "TeX" of the component ring R is used to get the TeX-representation of each
component of A.

This method is used by the function generate::TeX.

Technical Methods

assignElements — Multiple assignment to matrices

assignElements(A, …)

The assigned components must have the domain type R, an implicit conversion of the
components into elements of domain type R is not performed.

This method overloads the function assignElements for matrices, i.e., one may use it in
the form assignElements(A, ...).

mkDense — Conversion of a matrix to an array

mkDense(Array)

mkDense(List)

mkDense(r, c, List)

mkDense(List) tries to convert the list List into an array a. The result is either FAIL
if this is not possible, or the list [r, c, a], where the positive integers r and c give the
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dimension of a. See the parameters List and ListOfRows in “Creating Elements” above
for admissible formats of List.

The array a has dimension one if r or c is equal to one. The entries of a have been
converted into elements of the domain R.

mkDense(r,c,List) tries to convert the list List into an array a of the dimension r
times c.

The result is either FAIL if this is not possible, or the list [r, c, a].

The array a has dimension one if r or c is equal to one. The entries of a have been
converted into elements of the domain R.

print — Printing matrices

print(A)

Note: Note that in general it is not useful to print very large matrices. Hence, a warning
message is be displayed if the size of the matrix oversteps a certain dimension – printing
such matrices can be done by using the function "doprint".

doprint — Printing very large matrices

doprint(A)

unapply — Create a procedure from a matrix

unapply(A, <x, …>)

This method overloads the function fp::unapply for matrices, i.e., one may use it in the
form fp::unapply(A).

See Also

MuPAD Domains
Dom::Matrix | Dom::MatrixGroup | Dom::SquareMatrix
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Dom::DihedralGroup
Dihedral groups

Syntax

Domain Creation

Dom::DihedralGroup(n)

Element Creation

Dom::DihedralGroupn(l)

Description

Domain Creation

Dom::DihedralGroup(n) creates the dihedral group of size n, i.e., the group of
symmetries of a regular polygon with n edges.

Dom::DihedralGroup(n) creates the group of all congruent mappings of the plane that
induce a bijective mapping of the set of corners of a regular n-angle to itself.

Element Creation

Dom::DihedralGroup(n)([a,b]) represents the group element “ta carried out after
rb”, where r is a rotation that maps each corner to its left neighbor, and t is a reflection
w.r.t. some fixed central diagonal.

Superdomain

Dom::BaseDomain
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Axioms

Ax::canonicalRep

Categories

Cat::Group

Examples

Example 1

Define the group D6, i.e., the group of congruence mappings of the hexagon:

G := Dom::DihedralGroup(6)

Then elements may be created as follows:

a := G([7, 19]);

This means that 19 rotations—mapping each corner to its left neighbor—and 7
reflections have the same effect as one operation of either type.

Parameters

n

Positive integer
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l

List or array of two integers

Entries

"size" the number of elements, which equals 2 n.
"one" the mapping leaving each point fixed.

Methods

Mathematical Methods

_mult — Functional composition of elements

_mult(a, …)

This method overloads the kernel function _mult.

_invert — Inverse of an element

_invert(a)

This method overloads the kernel function _invert.

_power — Power of an element

_power(a, n)

It overloads the kernel function _power.

order — Order of a group element

order(a)

random — Random element

random()
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Conversion Methods

expr — Convert group element to list

expr(a)

TeX — TeX output of a group element

TeX(a)

equiv — Test for equivalence

Inherited from Cat::BaseCategory.

new — Create element of this domain

Inherited from Cat::BaseCategory.

coerce — Coerce into this domain

Inherited from Cat::BaseCategory.

hasProp — Test for a certain property

Inherited from Dom::BaseDomain.

whichEntry — Return the domain or category implementing an entry

Inherited from Dom::BaseDomain.

isone — Test if element is one

Inherited from Cat::Monoid.

printMethods — Print out methods

Inherited from Dom::BaseDomain.

info — Print short information about this domain

Inherited from Dom::BaseDomain.

_divide — Return quotient

Inherited from Cat::Group.
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getAxioms — Return axioms stated in the constructor

Inherited from Dom::BaseDomain.

getCategories — Return categories stated in the constructor

Inherited from Dom::BaseDomain.

equal — Test for mathematical equality

Inherited from Dom::BaseDomain.

allAxioms — Return all axioms

Inherited from Dom::BaseDomain.

undefinedEntries — Return missing entries

Inherited from Dom::BaseDomain.

allCategories — Return all categories

Inherited from Dom::BaseDomain.

testtype — Test type of object

Inherited from Cat::BaseCategory.

allEntries — Return the names of all entries

Inherited from Dom::BaseDomain.

getSuperDomain — Return super-domain stated in the constructor

Inherited from Dom::BaseDomain.

subs — Avoid substitution

Inherited from Dom::BaseDomain.

allSuperDomains — Return all super-domains

Inherited from Dom::BaseDomain.
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subsex — Avoid extended substitution

Inherited from Dom::BaseDomain.
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Dom::DistributedPolynomial

Domains of distributed polynomials

Syntax

Domain Creation

Dom::DistributedPolynomial(<Vars, <R, <Order>>>)

Element Creation

Dom::DistributedPolynomial(Vars, R, Order)(p)

Dom::DistributedPolynomial(Vars, R, Order)(lm)

Dom::DistributedPolynomial(Vars, R, Order)(lm, v)

Description

Dom::DistributedPolynomial(Vars, R, ..) creates the domain of polynomials in
the variables of the list Vars over the commutative ring R in distributed representation.

Dom::DistributedPolynomial(Vars, R, Order) creates a domain of polynomials
in the variables of the list Vars over a domain of category Cat::CommutativeRing in
sparse distributed representation with respect to the monomial ordering Order.

If Dom::DistributedPolynomial is called without any argument, a
polynomial domain in arbitrarily many indeterminates over the domain
Dom::ExpressionField(normal) with respect to the lexicographic monomial ordering
is created.

If Dom::DistributedPolynomial is called only with the variable list Vars
as argument, the polynomial domain in the variable list Vars over the domain
Dom::ExpressionField(normal) with respect to the lexicographic monomial ordering
is created.
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Note: Only commutative coefficient rings of type DOM_DOMAIN are allowed which
inherit from Dom::BaseDomain. If R is of type DOM_DOMAIN but does not inherit from
Dom::BaseDomain, the domain Dom::ExpressionField(normal) will be used
instead.

Dom::DistributedPolynomial accepts expressions as indeterminates, similar to the
kernel domain DOM_POLY. Hence, for example, [x,cos(x)] is a valid variable list.

If the variable list Vars is the empty list ([]), a polynomial domain in arbitrarily many
indeterminates is created. In this case, when creating new elements from polynomials or
polynomial expressions, the system function indets is first called to get the variables
and then the polynomial is created with respect to these variables. Hence, in this case
only identifiers can be valid indeterminates, because indets returns only identifiers.

It is not allowed to create polynomial domains in arbitrarily many indeterminates over
another polynomial domain of category Cat::Polynomial, but it is possible to create
multivariate polynomial domains with a given list of variables over any polynomial
domain.

Dom::DistributedPolynomial represents polynomials over arbitrary commutative
rings. It is intended as a basic domain for distributed polynomials from which it is easy to
create new distributed polynomial domains.

All usual algebraic and arithmetical polynomial operations are implemented, including
Gröbner basis computation.

Note: It is highly recommended to use only coefficient rings with unique zero
representation. Otherwise it can happen that, e.g., a polynomial division will not
terminate or a wrong degree will be returned.

Please note that for reasons of efficiency not all methods check their arguments, not even
at the interactive level. In particular this is true for many access methods, converting
methods and technical methods.

Superdomain

Dom::BaseDomain
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Axioms

If R has Ax::normalRep, then Ax::normalRep.

If R has Ax::canonicalRep, then Ax::canonicalRep.

Categories

If Vars has exactly one variable, then Cat::UnivariatePolynomial(R), else
Cat::Polynomial(R).

Examples

Example 1

The following call creates a polynomial domain in x, y and z.

DP := Dom::DistributedPolynomial([x, y, z])

Since neither the coefficient ring nor the monomial ordering was specified, this domain is
created with the default values for these parameters.

It is rather easy to create elements of this domain, as e.g.

a := DP(x + 2*y*z + 3)

b := DP(z^4 - 2*y^2*x^2)

In contrast to expressions all elements of this domain have a representation which is
fixed by the chosen Order, the representation of the coefficient ring R and the way of
representing monomials.
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With these elements one can now perform usual arithmetic operations as, e.g., (scalar)
multiplication, multiplication with integers and adding polynomials and ring elements:

4*b^2 + a/3 + 1/2

There are a lot of methods for manipulating polynomials and to get access to all parts of a
polynomial. For example one has access to the leading monomial of a as follows:

lmonomial(a)

The leading monomial of a polynomial depends on the monomial ordering, so with respect
to the degree order one gets a different result:

lmonomial(a, DegreeOrder)

To get a minus its leading monomial one may call:

DP::reductum(a)

Obviously the following identity holds:

a - lmonomial(a) - DP::reductum(a)

There are also methods for converting elements of this domain into other domains, like a
basic polynomial domain or the domain of arbitrary expressions:

poly(a), domtype(poly(a))
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expr(b), domtype(expr(b))

Parameters

Vars

A list of indeterminates. Default is [] (the empty list, indicating “arbitrary
indeterminates”).

R

A commutative ring, i.e., a domain of category Cat::CommutativeRing. Default is
Dom::ExpressionField(normal).

Order

A monomial ordering, i.e., one of the predefined orderings LexOrder, DegreeOrder or
DegInvLexOrder or any object of type Dom::MonomOrdering. Default is LexOrder.

p

A polynomial or a polynomial expression.

lm

List of monomials, which are represented as lists containing the coefficients together
with the exponents or exponent vectors.

v

List of indeterminates. This parameter is only valid for Vars = [].

Entries

"characteristic" The characteristic of this domain.
"coeffRing" The coefficient ring of this domain as

defined by the parameter R.
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"key" The name of the created domain.
"one" The neutral element w.r.t. "_mult".
"ordering" The monomial order as defined by the

parameter Order.
"variables" The list of variables as defined by the

parameter Vars.
"zero" The neutral element w.r.t. "_plus".

Methods

Mathematical Methods

_divide — Exact polynomial division

_divide(a, b)

_divide(a, b)

_divide(a, b)

It overloads the function _divide for polynomials, i.e., one may use it either in the form
a / b, or in functional form _divide(a, b).

Note: This method only exists if R is an integral domain, i.e., a domain of category
Cat::IntegralDomain.

_invert — Inverse of an element

_invert(a)

_mult — Multiplie polynomials and coefficient ring elements

_mult(<a, b, …>)

This method overloads the function _mult for polynomials, i.e., one may use it either in
the form a * b * ... or in functional notation _mult(a, b, ...).
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_negate — Negate a polynomial

_negate(a)

This method overloads the function _negate for polynomials, i.e., one may use it either
in the form -a or in functional notation _negate(a).

_plus — Add polynomials and coefficent ring elements

_plus(<a, b, …>)

This method overloads the function _plus for polynomials, i.e., one may use it either in
the form a + b + ... or in functional notation _plus(a, b, ...).

_power — Nth power of a polynomial

_power(a, n)

This method overloads the function _power for polynomials, i.e., one may use it either in
the form a^n or in functional notation _power(a,n).

_subtract — Subtract a polynomial or a coefficient ring element

_subtract(a, b)

This method overloads the function _subtract for polynomials, i.e., one may use it
either in the form a - b or in functional notation _subtract(a, b).

associates — Test if elements are associates

Inherited from Cat::IntegralDomain.

content — Content of a polynomial

content(a)

Note: This method only exists if R is a domain of category Cat::GcdDomain.

D — Differential operator for polynomials

D(a)
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D(l, a)

Dpoly — Differential operator for polynomials

Dpoly(a)

Dpoly(l, a)

Dpoly(l,a) computes the partial derivative of a with respect to l. For details see
polylib::Dpoly.

This method overloads the function polylib::Dpoly for polynomials.

decompose — Functional decomposition of a polynomial

decompose(a, <var>)

If a is a polynomial in only one variable, the second argument is not necessary.

This method overloads the function polylib::decompose for polynomials.

diff — Differentiate a polynomial

diff(a, varseq)

If varseq is an empty sequence, a is returned unchanged.

If in varseq an expression occurs which is not a variable of a, the zero polynomial is
returned.

This method overloads the function diff for polynomials.

dimension — Dimension of affine variety

dimension(ais, <ord>)

dimension(ais, <ord>)

This method is merely an interface for the function groebner::dimension.

Note: This method only exists if R is a field, i.e., a domain of category Cat::Field and
Vars is not the empty list.
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divide — Divide polynomials

divide(a, b, <Quo | Rem | Exact>)

divide(a, b, var, <Quo | Rem | Exact>)

If no option is given, the quotient s and the remainder r are computed such that a =
s*b + r and the degree of r in the relevant indeterminate is smaller than that of b. The
sequence consisting of s, r is returned, otherwise FAIL.

If the option Quo is given, only the quotient s is returned.

If the option Rem is given, only the remainder r is returned.

If the option Exact is given, only the quotient s is returned, in case the remainder is
zero, otherwise FAIL.

divide(a,b,Exact) divides the multivariate polynomial a by b. If a cannot be divided
by b, the method returns FAIL.

This method overloads the function divide for polynomials.

Note: This method only exists if R is a field, i.e., a domain of category Cat::Field
and either this domain is of category Cat::UnivariatePolynomial(R) or R has
characteristic zero (R::characteristic = 0). If the first pair of conditions is true then
the first call is valid otherwise the second one.

divides — Test if elements divides another

Inherited from Cat::IntegralDomain.

equal — Test for mathematical equality

Inherited from Dom::BaseDomain.

equiv — Test for equivalence

Inherited from Cat::BaseCategory.

evalp — Evaluate a polynomial

evalp(a, var = e)
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This method overloads the function evalp for polynomials.

factor — Factor a polynomial

factor(a)

This method overloads the function factor for polynomials.

Note: This method only exists if R is a domain of category Cat::Field or if R is the
domain Dom::Integer.

func_call — Applie expressions to a polynomial

func_call(a, e1, …, en, <Expr>)

func_call(a, e1, …, en, <Expr>)

func_call(a, e1, …, en, <Expr>)

a(e1,...,en) applies the sequence e1,...,en of either elements of this domain
or elements of R with respect to Vars (where n is the number of variables) to the
polynomial a. An element of this domain or an element of the coefficient ring respectively
is returned.

a(e1,...,en, Expr) applies the sequence of expressions or of elements of this
domain or of elements of R to the polynomial a. With this call a is first converted into an
expression. Afterwards e1,...,en is substituted into this expression with respect to
Vars. The return value may be any object.

The number of variables must be equal to the number of applied expressions.

Note: This method only exists if Vars has at least one indeterminate.

gcd — Greatest common divisor of polynomials

gcd(a, b, …)

This method overloads the function gcd for polynomials.
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Note: This method only exists if R is a domain of category Cat::GcdDomain.

gcdex — Extended Euclidean algorithm for polynomials

gcdex(a, b)

This method overloads the function gcdex for polynomials. Especially, it only works for
coefficient rings described there.

Note: This method only exists if R is a domain of category Cat::GcdDomain.

groebner — Reduced Gröbner basis

groebner(ais, <ord>, <Reorder>)

groebner(ais, <ord>, <Reorder>)

If the option Reorder is given, the lexicographical order of variables may change to
another one that is likely to decrease the running time.

Note: Note that this may also cause a change of the returned list, which may now have
polynomials over the same coefficient ring R but with a possibly re-ordered variable list.
Thus, it may contain elements not belonging to this domain.

This method is merely an interface for the function groebner::gbasis.

Note: This method only exists if R is a field, i.e., a domain of category Cat::Field, and
Vars is not the empty list.

idealGenerator — Generator of finitely generated ideal

Inherited from Cat::EuclideanDomain.

int — Definite and indefinite integration of a polynomial

int(a, <x>)
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int(a, <x = x0 .. x1>)

int(a,x=x0..x1) returns the definite integral  or FAIL, if the result is not an
element of this domain or an element of a polynomial domain over Dom::Fraction(R).

This method overloads the function int for polynomials.

intmult — Multiplie a polynomial with an integer

intmult(a, z)

This method is more efficient than using polynomial multiplication and is, e.g., necessary
for the method "Dpoly".

irreducible — Test if element is irreducible

Inherited from Cat::FactorialDomain.

isUnit — Test if element is a unit

Inherited from Cat::Polynomial.

isone — Test for one

isone(a)

Note: The result can only be valid if the coefficients of a are in normal form (i.e., if zero
has a unique representation in R). Thus, R should have at least Ax::normalRep.

iszero — Test for zero

iszero(a)

Note: The result can only be valid, if the coefficients of a are in normal form (i.e., if
zero has a unique representation in R). Thus, the coefficient ring R should have at least
Ax::normalRep.

lcm — Least common multiple of polynomials

lcm(a, b, …)
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This method overloads the function lcm for polynomials.

Note: This method only exists if R is a domain of category Cat::GcdDomain.

makeIntegral — Make the coefficients fraction free

makeIntegral(a)

Note: This method only exists if R is a domain of category Cat::GcdDomain and R has
the method "denom".

monic — Normalize a polynomial

monic(a)

The zero polynomial returns itself.

Note: This method only exists if R is a field, i.e., a domain of category Cat::Field.

normalForm — Complete reduction modulo an ideal

normalForm(a, ais, <ord>)

normalForm(a, ais, <ord>)

This method is merely an interface for the function groebner::normalf.

Note: This method only exists if R is a field, i.e., a domain of category Cat::Field, and
Vars is not the empty list.

pdioe — Solve polynomial Diophantine equations

pdioe(a, b, c)

This method overloads the function solvelib::pdioe.

7-140



 Dom::DistributedPolynomial

Note: This method only exists if R is a field, i.e., a domain of category Cat::Field and
Vars consists of a single variable.

pdivide — Pseudo-division of polynomials

pdivide(a, b, <Quo | Rem>)

If the option Quo is given, only the pseudo-quotient q is returned.

If the option Rem is given, only the pseudo-remainder r is returned.

This method overloads the function pdivide for polynomials.

Note: This method only exists if Vars consists of a single variable.

pquo — Pseudo-quotient of polynomials

pquo(a, b)

Note: This method only exists if Vars consists of a single variable.

prem — Pseudo-remainder of polynomials

prem(a, b)

Note: This method only exists if Vars consists of a single variable.

primpart — Return primitive part

Inherited from Cat::Polynomial.

quo — Euclidean quotient

Inherited from Cat::EuclideanDomain.

random — Create a random polynomial

random()
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With every call the global variable SEED is changed by a call of random(). Thus it is
hard to create the same random sequence twice, see random.

If the parameter Vars is the empty list, first a list of 1 to 4 variables is generated
randomly and the random polynomial is generated in these indeterminates afterwards.

This method overloads the function polylib::randpoly for polynomials.

rem — Euclidean remainder

Inherited from Cat::EuclideanDomain.

resultant — Resultant of two polynomials

resultant(a, b, <var>)

resultant(a, b, var) returns the resultant of a and b with respect to the variable
var.

The value returned is a polynomial of this domain or FAIL.

This method overloads the function polylib::resultant for polynomials.

Note: This method only exists if R has the method "_divide".

ringmult — Multiplie a polynomial with a coefficient ring element

ringmult(a, c)

solve — Zero of polynomials

solve(a, <var>, <options>)

solve(a, <vars>, <options>)

solve(ais, <var>, <options>)

solve(ais, <vars>, <options>)

solve(ais, ..) tries to find the zeros of the polynomial system ais. The exact
behavior depends on further arguments.

For a detailed description of possible return values and options see function solve.
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This method overloads the function solve.

SPolynomial — Compute the S-polynomial of two polynomials

SPolynomial(a, b, <ord>)

This method is merely an interface for the function groebner::spoly.

Note: This method only exists if R is a field, i.e., a domain of category Cat::Field, and
Vars is not the empty list.

sqrfree — Square-free factorization of polynomials

sqrfree(a)

The ai are primitive and pairwise different square-free divisors of a and represented as
elements of this domain. u is a unit of the coefficient ring and represented as an element
of this domain. The ei are integers.

This method overloads the function polylib::sqrfree for polynomials.

Note: This method only exists if R is a field, i.e., a domain of category Cat::Field, or if
R is Dom::Integer.

unitNormal — Return unit normal

Inherited from Cat::Polynomial.

unitNormalRep — Return unit normal representation

Inherited from Cat::Polynomial.

Access Methods

coeff — Coefficient of a polynomial

coeff(a)
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coeff(a, var, n)

coeff(a, n)

coeff(a,var,n) returns the coefficient of the term var^n—as an element of this
domain if it is of category Cat::Polynomial(R), or as an element of the coefficient ring
R if it is of Cat::UnivariatePolynomial(R), where a is considered as a univariate
polynomial in a valid variable var.

coeff(a,n) returns the coefficient of the term var^n—as an element of this domain if
it is of category Cat::Polynomial(R), or as an element of the coefficient ring R if it is of
Cat::UnivariatePolynomial(R), where a is considered as a univariate polynomial in
var and var is the main variable of a, i.e., the variable returned by dom::mainvar(a).

This method overloads the function coeff for polynomials.

degree — Degree of a polynomial

degree(a)

degree(a, var)

degree(a, var) returns the degree of a with respect to var.

The degree of the zero polynomial is defined as zero.

This method overloads the function degree for polynomials.

degreevec — Vector of exponents of the leading term of a polynomial

degreevec(a, <ord>)

The degree vector of the zero polynomial is defined as a list of zeros.

This method overloads the function degreevec for polynomials.

euclideanDegree — Euclidean degree function

euclideanDegree(a)

Note: This method only exists if Vars consists of a single variable.
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ground — Ground term of a polynomial

ground(a)

This method overloads the function ground for polynomials.

has — Existence of an object in a polynomial

has(a, obj)

This method overloads the function has.

indets — Indeterminate of a polynomial

indets(<a>)

In case Vars is not the empty list, indets can be called without argument.

Since this domain allows expressions as indeterminates, the returned set may contain
expressions, too.

This method overloads the function indets for polynomials.

lcoeff — Leading coefficient of a polynomial

lcoeff(a)

lcoeff(a, <vars>, <ord>)

lcoeff(a, ord) returns the leading coefficient of a with respect to the monomial
ordering ord as an element of the coefficient ring R.

lcoeff(a, vars, ord) returns the leading coefficient of a with respect to the
variable list vars and the monomial ordering ord as an element of this domain if it is
of category Cat::Polynomial(R), or as an element of the coefficient ring R if it is of
Cat::UnivariatePolynomial(R).

• If ord is not explicitly given, the lexicographical order LexOrder will be used instead.
• It tries to convert a into a polynomial in the specified list of indeterminates vars over

the coefficient ring R and returns FAIL if this conversions fails.

This method overloads the function lcoeff for polynomials.
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ldegree — Lowest degree of a polynomial

ldegree(a)

ldegree(a, x)

ldegree(a, x) returns the lowest degree of the variable x in a.

This method overloads the function ldegree for polynomials.

lmonomial — Leading monomial of a polynomial

lmonomial(a, <ord>)

lmonomial(a, <vars>, <ord>, <Rem>)

lmonomial(a, vars, ord) returns the leading monomial of a with respect to the
variable list vars and the monomial ordering ord as an element of this domain.

• If ord is not explicitly given, the lexicographical order LexOrder will be used instead.
• It tries to convert a into a polynomial in the specified list of indeterminates vars over

the coefficient ring R and returns FAIL if this conversions fails.

lmonomial(a, vars, ord, Rem) returns the list consisting of the leading monomial
and the reductum of a with respect to the variable list vars and the monomial ordering
ord as a list of elements of this domain.

• If ord is not explicitly given, the lexicographical order LexOrder will be used instead.
• It tries to convert a into a polynomial in the specified list of indeterminates vars over

the coefficient ring R and returns FAIL if this conversions fails.

Note: In MuPAD a monomial denotes a coefficient together with a power product as, e.g.,
3 x2.

This method overloads the function lmonomial for polynomials.

lterm — Leading term of a polynomial

lterm(a)

lterm(a, <vars>, <ord>)
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lterm(a, ord) returns the leading coefficient of a with respect to the monomial
ordering ord as an element of this domain.

lterm(a, vars, ord) returns the leading term of a with respect to the variable list
vars and the monomial ordering ord as an element of this domain.

• If ord is not explicitly given, the lexicographical order LexOrder will be used instead.
• It tries to convert a into a polynomial in the specified list of indeterminates vars over

the coefficient ring R and returns FAIL if this conversions fails.

Note: In MuPAD a term denotes a power product without a coefficient as, e.g., x2 y3 z.

This method overloads the function lterm for polynomials.

mainvar — Main variable of a polynomial

mainvar(<a>)

If Vars is not the empty list, mainvar can be called without argument.

mapcoeffs — Applie a function to the coefficients of a polynomial

mapcoeffs(a, f, <e1, …>)

This method overloads the function mapcoeffs for polynomials.

multcoeffs — Multiplie the coefficients of a polynomial with a factor

multcoeffs(a, c)

This method overloads the function multcoeffs for polynomials.

nterms — Number of terms of a polynomial

nterms(a)

This method overloads the function nterms for polynomials.

nthcoeff — N-th coefficient of a polynomial

nthcoeff(a, n, <ord>)
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If n is larger than the number of monomials of the polynomial then the function returns
FAIL.

The zero polynomial has no monomials. nthcoeff returns FAIL when invoked on the
zero polynomial.

This method overloads the function nthcoeff for polynomials.

nthmonomial — N-th monomial of a polynomial

nthmonomial(a, n, <ord>)

If n is larger than the number of monomials of the polynomial then the function returns
FAIL.

The zero polynomial has no monomials. nthmonomial returns FAIL for the zero
polynomial.

This method overloads the function nthmonomial for polynomials.

nthterm — N-th term of a polynomial

nthterm(a, n, <ord>)

If n is larger than the number of monomials of the polynomial then the function returns
FAIL.

The zero polynomial has no monomials. nthterm returns FAIL when called with the zero
polynomial.

This method overloads the function nthterm for polynomials.

orderedVariableList — Ordered list of indeterminates of a polynomial

orderedVariableList(<a>)

In case Vars is not the empty list, orderedVariableList can be called without an
argument.

pivotSize — Size of a pivot element

pivotSize(a)
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This method is called if this domain is used as the component ring of a matrix domain to
perform Gaussian elimination.

reductum — Reductum of a polynomial

reductum(a, <ord>)

subs — Avoid substitution

Inherited from Dom::BaseDomain.

subsex — Avoid extended substitution

Inherited from Dom::BaseDomain.

tcoeff — Lowest coefficient of a polynomial

tcoeff(a, <ord>)

This method overloads the function tcoeff for polynomials.

Conversion Methods

coerce — Coerce into this domain

Inherited from Cat::BaseCategory.

convert — Conversion to a polynomial

convert(p)

convert_to — Convert element

Inherited from Dom::BaseDomain.

expr — Conversion to a basic type

expr(a)

This method overloads the function expr.
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poly — Convert to a basic polynomial domain

poly(a)

This method overloads the function poly.

TeX — TeX formatting of a polynomial

TeX(a)

TeXCoeff — TeX formatting of a polynomial coefficient

TeXCoeff(c)

TeXident — TeX formatting of a polynomial indeterminate

TeXident(var)

TeXTerm — TeX formatting of a polynomial term

TeXTerm(t)

Technical Methods

adaptIndets — Convert polynomials to common indeterminates

adaptIndets(<a, b, …>)

Note: This method only exists if the parameter Vars is the empty list ([]).

allAxioms — Return all axioms

Inherited from Dom::BaseDomain.

allCategories — Return all categories

Inherited from Dom::BaseDomain.

allEntries — Return the names of all entries

Inherited from Dom::BaseDomain.
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allSuperDomains — Return all super-domains

Inherited from Dom::BaseDomain.

getAxioms — Return axioms stated in the constructor

Inherited from Dom::BaseDomain.

getCategories — Return categories stated in the constructor

Inherited from Dom::BaseDomain.

getSuperDomain — Return super-domain stated in the constructor

Inherited from Dom::BaseDomain.

hasProp — Test for a certain property

Inherited from Dom::BaseDomain.

info — Print short information about this domain

Inherited from Dom::BaseDomain.

isNeg — Test on leading output token

isNeg(a)

mult — Multiplie polynomials

mult(a, b, …)

new — Create a new element

new(p)

new(lm)

new(lm, v)

dom(p) creates an element of this domain from a polynomial or a polynomial expression
p and returns that element. If this is not possible, an error message is given.

If Vars is chosen as the empty list ([]) then in creating new elements from a polynomial
or polynomial expression the function indets is first called to get the identifiers.
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Afterwards the element is created with this list of identifiers. For creating an element
from a constant the dummy variable _dummy is introduced. The drawback of this
approach is that two mathematically equal polynomials may have variable lists which
differ by the dummy variable.

dom(lm) creates, if Vars is not the empty list [], a polynomial from the list lm of
the form [[c1, [e11,... e1n]],... [cm,[em1,... emn]]] where the ci are
coefficients and the eij are the exponents with respect to Vars. For a univariate
polynomial this list can be simplified to [[c1,e1],... [cm,em]].

dom(lm,v) creates, if Vars = [], a polynomial from the list lm of the form [[c1,
[e11,... e1n]],... [cm,[em1,... emn]]] where the ci are coefficients and the
eij are the exponents with respect to v. For a univariate polynomial this list can be
simplified to [[c1,e1],... [cm,em]]. The list of indeterminates v must contain valid
indeterminates.

plus — Add polynomials

plus(a, b, …)

print — Print polynomials

print(a)

This method overloads the function print.

printMethods — Print out methods

Inherited from Dom::BaseDomain.

printMonomial — Print a monomial in defined order

printMonomial(c, d, v)

printTerm — Print a term in defined order

printTerm(d)

printTerm(d, v)

printTerm(d,v) returns an ordered sequence of the indeterminates together with their
powers as given in the variable list v and the degree vector d respectively.
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Note that this call is only valid if nops(v)=nops(d).

Rep — Data representation of a polynomial

Rep(a)

sign — Leading sign of a polynomial

sign(a)

Note: this method does not have the meaning of a mathematical sign function!

testtype — Test type of object

Inherited from Cat::BaseCategory.

undefinedEntries — Return missing entries

Inherited from Dom::BaseDomain.

whichEntry — Return the domain or category implementing an entry

Inherited from Dom::BaseDomain.

See Also

MuPAD Domains
Dom::MultivariatePolynomial | Dom::Polynomial |
Dom::UnivariatePolynomial
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Dom::Expression
Domain of all objects of basic type

Syntax
Dom::Expression(x)

Description

Dom::Expression comprises all objects only consisting of operands of built-in types.

Dom::Expression is a façade domain: it has no domain elements, but uses system
representation.

Unlike Dom::ExpressionField, Dom::Expression does not belong to any
arithmetical category, and its elements need not be arithmetical expressions.

Dom::Expression mainly serves as a super-domain to
Dom::ArithmeticalExpression; it rarely makes sense to use it directly.

Superdomain

Dom::BaseDomain

Axioms

Ax::systemRep, Ax::efficientOperation("_divide"),
Ax::efficientOperation("_mult"), Ax::efficientOperation("_invert")

Categories

Cat::BaseCategory
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Examples

Example 1

Almost every MuPAD object can be converted to an expression. Objects of basic type are
expressions.

Dom::Expression([3, array(1..2), rectform(exp(I))])

The convert method flattens its argument: hence expression sequences are not allowed.

Dom::Expression((3, x))

Error: The number of arguments is incorrect. [expr]

  Evaluating: Dom::Expression::new

Parameters

x

An object of basic type consisting only of operands of built-in types, or any other object
convertible to such using expr.

Entries

"randomIdent" an identifier used for creating random
elements
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Methods

Conversion Methods

convert — Conversion of objects

convert(x)

convert_to — Conversion to other domains

convert_to(x, T)

expr — Just return the argument

expr(x)

testtype — Test whether its argument is an expression

testtype(x, Dom::Expression)

This method overloads testtype; since Dom::Expression has no domain elements, the
overloading can only be caused by the second argument.

float — Convert numbers to floats

float(x)

Technical Methods

subs — Substitution

subs(x, s, …)

subsex — Extended substitution

subsex(x, s, …)

random — Create random expression

random()
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See Also

MuPAD Domains
Dom::ExpressionField
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Dom::ExpressionField

Domains of expressions forming a field

Syntax

Domain Creation

Dom::ExpressionField(<Normal, <IsZero>>)

Element Creation

Dom::ExpressionField(Normal, IsZero)(e)

Description

Domain Creation

Dom::ExpressionField(Normal, IsZero) creates a domain of expressions forming
a field, where the functions Normal and IsZero are used to normalize expressions and
test for zero.

The function Normal is used to normalize the expressions representing the elements, the
function IsZero is used to test the expressions for zero. It is assumed that the field has
characteristic 0.

The domain cannot decide if the element expressions—given the normalizing function
and zero test—actually form a field. It is up to the user to choose correct functions for
normalizing and zero test and to enter only valid expressions as domains elements.

One should view this domain constructor as a pragmatic way to create a field of
characteristic 0 in an ad-hoc fashion. Note that the default of using id and iszero
does not yield a field really, but it is often convenient and sensible to use the resulting
structure as a field.
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Normal must be a function which takes an expression representing a domain element
and returns the normalized expression. Normal should return FAIL if the expression is
not valid.

If Normal is not given, then the system function id is used, i.e., only the kernel
simplifier is used to normalize expressions.

If a normalizing function other than id is given, it is assumed that this functions returns
a normal form where the zero element is uniquely represented by the constant 0.

IsZero must be a function which takes an expression representing a domain element
and returns TRUE if the expression represents zero and FALSE otherwise.

If IsZero is not given, then iszero @ Normal is used for zero testing. If Normal is
equal to id this functional expression is simplified to iszero.

If Normal is equal to id and IsZero is equal to iszero, a façade domain is created, i.e.,
the domain elements are simply expressions and are not explicitly created by new.

Otherwise the elements of the domain are explicitly created by new. Each such element
has one operand, which is the expression representing the domain element. The element
expressions are normalized after each operation using the function Normal.

Element Creation

Dom::ExpressionField(Normal, IsZero)(e) creates a field element represented by
the expression e. The expression is normalized using the function Normal.

If Normal returns FAIL, it is assumed that the expression does not represent a valid field
element. If this test is not fully implemented the domain cannot decide if the expression
represents a valid field element. In this case it is up to the user to enter only valid
expressions as field elements.

If Normal is equal to id and IsZero is equal to iszero, the domain is only a façade
domain. In this case the expression e is returned after being simplified by the built-in
kernel simplifier.

Superdomain
If Normal = id and IsZero = iszero, then Dom::ArithmeticalExpression, else
Dom::BaseDomain.
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Axioms

Ax::indetElements

If Normal = id and IsZero = iszero, then  Ax::efficientOperation
("_divide"), Ax::efficientOperation ("_mult"),

Ax::efficientOperation("_invert"), else Ax::normalRep.

If Normal = id and IsZero = iszero and IsZero = iszero, then Ax::systemRep.

Categories

Cat::Field, Cat::DifferentialRing

Examples

Example 1

Dom::ExpressionField(normal) creates a field of rational expressions over the
rationals. The expressions representing the field elements are allways normalized by
normal:

Fn := Dom::ExpressionField(normal):

a := Fn((x^2 - 1)/(x - 1))

The field elements are explicit elements of the domain:

domtype(a)

Example 2

In the domain Dom::ExpressionField(id, iszero@normal) the expressions
representing the elements are normalized by the kernel simplifier only:
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Fi := Dom::ExpressionField(id, iszero@normal):

a := Fi((x^2 - 1)/(x - 1))

The elements of this domain are not normalized (when viewed as rational expressions
over the rationals), thus the domain does not have the axiom Ax::normalRep:

b := a/Fi(x + 1) - Fi(1)

But nevertheless this domain also represents the field of rational expressions over the
rationals, because zero is detected correctly by the function iszero @ normal:

iszero(b)

Parameters

Normal

A function used to normalize the expressions of the domain; default is id.

IsZero

A function used to test the expressions of the domain for zero; default is iszero @
Normal.

e

An expression representing a field element.
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Entries

"characteristic" The characteristic of the fields created by
this constructor is assumed to be 0.

"one" The element represented by the expression
1 is assumed to be a neutral element w.r.t.
"_mult".

"zero" The element represented by the expression
0 is assumed to be a neutral element w.r.t.
"_plus".

Methods

Mathematical Methods

abs — Absolute value

abs(x)

Overloads the function abs, thus may be called via abs(x).

combine — Combine terms of the same algebraic structure

combine(x, <a>)

Overloads the function combine, thus may be called via combine(x,...).

conjugate — Complex conjugate

conjugate(x)

Overloads the function conjugate, thus may be called via conjugate(x).

D — Differential operator

D(<l>, x)

Overloads the function D, thus may be called via D(x) or D(l, x).
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denom — Denominator

denom(x)

Overloads the function denom, thus may be called via denom(x).

diff — Differentiate an element

diff(x, <v, , …>)

Overloads the function diff, thus may be called via diff(x,...).

_divide — Divide elements

_divide(x, y)

Overloads the function _divide, thus may be called via x/y or _divide(x, y).

equal — Test for mathematical equality

equal(x, y)

expand — Expand an element

expand(x)

Overloads the function expand, thus may be called via expand(x).

factor — Factorize an element

factor(x)

Overloads the function factor, thus may be called via factor(x).

float — Floating-point approximation

float(x)

Overloads the function float, thus may be called via float(x).

gcd — Greatest common divisor

gcd(x, …)

Overloads the function gcd, thus may be called via gcd(x,...).
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Im — Imaginary part of an element

Im(x)

Overloads the function Im, thus may be called via Im(x).

int — Definite and indefinite integration

int(x, <v>)

Overloads the function int, thus may be called via int(x,...).

intmult — Integer multiple

intmult(x, n)

_invert — Invert an element

_invert(x)

Overloads the function _invert, thus may be called via 1/x or _invert(x).

iszero — Test for zero

iszero(x)

Overloads the function iszero, thus may be called via iszero(x).

lcm — Least common multiple

lcm(x, …)

Overloads the function lcm, thus may be called via lcm(x, ...).

_leequal — Test if less or equal

_leequal(x, y)

Please note that the function _leequal can only test numbers (in a syntactical sense),
but not constant expressions like PI or sqrt(2).

Overloads the function _leequal, thus may be called via x <= y, y >= x or
_leequal(x, y).
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_less — Test if element is less

_less(x, y)

Please note that the function _less can only test numbers (in a syntactical sense), but
not constant expressions like PI or sqrt(2).

Overloads the function _less, thus may be called via x < y, y > x or _less(x, y).

limit — Limit computation

limit(x, <v, …>)

Overloads the function limit, thus may be called via limit(x,...).

max — Maximum of arguments

max(x, …)

Overloads the function max, thus may be called via max(x,...).

min — Minimum of arguments

min(x, …)

Overloads the function min, thus may be called via min(x,...).

_mult — Multiplie elements

_mult(x, …)

If all arguments are of this domain or can be coerced to this domain (using the method
coerce), the product of the expressions representing the arguments is calculated using
the function _mult.

If one of the arguments cannot be coerced, the arguments up to the offending one are
multiplied and then the method "_mult" of the domain of the offending argument is
called to multiply the remaining arguments.

Overloads the function _mult, thus may be called via x*... or _mult(x,...).

_negate — Negate an element

_negate(x)
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Overloads the function _negate, thus may be called via -x or _negate(x).

norm — Norm of an element

norm(x)

Overloads the function norm, thus may be called via norm(x).

Please note that the system function norm, applied to an expression, computes the norm
of that expression interpreted as a polynomial expression and not the absolute value of
the expression. This may be regarded as an inconsistency.

normal — Normal form

normal(x)

Overloads the function normal, thus may be called via normal(x).

numer — Numerator

numer(x)

Overloads the function numer, thus may be called via numer(x).

_plus — Add elements

_plus(x, …)

If all arguments are of this domain or can be coerced to this domain (using the method
coerce) the sum of the expressions representing the arguments is calculated using the
function _plus.

If one of the arguments cannot be coerced the arguments up to the offending one are
added and then the method "_plus" of the domain of the offending argument is called to
add the remaining arguments.

Overloads the function _plus, thus may be called via x+... or _plus(x,...).

_power — Exponentiate arguments

_power(x, y)

_power(x, y)
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If both arguments are of this domain the power is calculated by mapping the function
_power to the expressions representing the arguments.

If one of the arguments is not of this domain it is coerced to this domain, then the power
is computed. If the coercion fails an error is raised.

Note that it is assumed that at least one of the arguments is of this domain.

Overloads the function _power, thus may be called via x^y or _power(x, y).

radsimp — Simplifie radicals

radsimp(x)

Overloads the function radsimp, thus may be called via radsimp(x).

random — Create a random element

random()

See polylib::randpoly for details about creating random polynomials.

Re — Real part of an element

Re(x)

Overloads the function Re, thus may be called via Re(x).

sign — Sign of an element

sign(x)

Overloads the function sign, thus may be called via sign(x).

simplify — General simplification of an element

simplify(x, <a>)

Overloads the function simplify, thus may be called via simplify(x,...).

solve — Solve an equation

solve(x, <a, …>)
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Note that this method will never return an element of this domain. See solve for details
about results and optional additional arguments.

Overloads the function solve, thus may be called via solve(x,...).

sqrfree — Square-free factorization

sqrfree(x)

Overloads the function polylib::sqrfree, thus may be called via
polylib::sqrfree(x).

_subtract — Subtract elements

_subtract(x, y)

Overloads the function _subtract, thus may be called via x-y or _subtract(x, y).

Conversion Methods

convert — Convert to this domain

convert(x)

convert_to — Convert to other domain

convert_to(x, T)

expr — Convert to basic type

expr(x)

This method is called by the function expr if a subexpression of the argument is an
element of this domain.

new — Creating an element

new(x)

Overloads the function call operator for this domain, thus may be called via F(x) where
F is this domain.
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Access Methods

nops — Number of operands

nops(x)

Overloads the function nops, thus may be called via nops(x).

op — Get operands

op(x)

op(x, i)

Returns the operand with index i of the expression representing x. If i is 0 then the
operator of the expression is returned, which usually is not an element of this domain.
The other operands are converted to elements of this domain.

This method is called by the function op when an element of this domain is contained, as
a subexpression, in the first argument of op. Operand ranges and paths are handled by
op and need not be handled by this method. See op for details.

subs — Substitute subexpressions

subs(x, e, …)

Maps subs to the expression representing x. The resulting expression is converted to an
element of this domain.

This method is called by the function subs when an element of this domain is contained,
as a subexpression, in the first argument of subs. See subs for details.

subsex — Extended substitution

subsex(x, e, , …)

Maps subsex to the expression representing x. The resulting expression is converted to
an element of this domain.

This method is called by the function subsex when an element of this domain is
contained, as a subexpression, in the first argument of subsex. See subsex for details.
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subsop — Substitute operand

subsop(x, e, , …)

This method is called by the function subsop when an element of this domain is
contained, as a subexpression, in the first argument of subsop. Operand ranges and
paths are handled by subsop and need not be handled by this method. See subsop for
details.

Technical Methods

indets — Identifier of an element

indets(x, <optionName>)

Overloads the function indets, thus may be called via indets(x) and indets(x,
optionName), respectively.

length — Size of an element

length(x)

Overloads the function length, thus may be called via length(x).

map — Applie function to operands

map(x, f, <a, …>)

Overloads the function map, thus may be called via map(x, f,...).

rationalize — Approximate floating-point numbers by rationals

rationalize(x, <a, …>)

Note that this method does not overload the function rationalize from the standard
library package, but the function numeric::rationalize from the numeric package
instead. Thus the method may be called via numeric::rationalize(x,...).

pivotSize — Pivot size

pivotSize(x)
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Dom::Float

Real floating-point numbers

Syntax

Dom::Float(x)

Description

Dom::Float is the set of real floating-point numbers represented by elements of the
domain DOM_FLOAT.

Dom::Float is the domain of real floating point numbers represented by expressions of
type DOM_FLOAT.

Dom::Float has category Cat::Field out of pragmatism. This domain actually is not a
field because bool(1.0 = float(3) / float(3)) returns FALSE for example.

Elements of Dom::Float are usually not created explicitly. However, if one creates
elements using the usual syntax, it is checked whether the input expression may be
converted to a floating point number. This means Dom::Float is a facade domain which
creates elements of domain type DOM_FLOAT.

Viewed as a differential ring Dom::Float is trivial, it contains constants only.

Dom::Float has the domain Dom::Numerical as its super domain, i.e., it inherits each
method which is defined by Dom::Numerical and not implemented by Dom::Float.
Methods described below are re-implemented by Dom::Float.

Superdomain

Dom::Numerical
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Axioms

Ax::canonicalRep, Ax::systemRep, Ax::canonicalOrder,
Ax::efficientOperation("_divide"), Ax::efficientOperation("_mult"),
Ax::efficientOperation("_invert")

Categories

Cat::DifferentialRing, Cat::Field, Cat::OrderedSet

Examples

Example 1

Creating some floating-point numbers using Dom::Float. This example also shows that
Dom::Float is a facade domain.

Dom::Float(2.3); domtype(%)

Dom::Float(sin(2/3*PI) + 3)

Dom::Float(sin(x))

Error: The arguments are invalid. [Dom::Float::new]

Example 2

By tracing the method Dom::Float::testtypeDom we can see the interaction between
testtype and Dom::Float::testtypeDom.
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prog::trace(Dom::Float::testtypeDom):

delete x:

testtype(x, Dom::Float);

testtype(3.4, Dom::Float);

prog::untrace(Dom::Float::testtypeDom):

enter Dom::Float::testtypeDom(x, Dom::Float)

computed FAIL

enter Dom::Float::testtypeDom(3.4, Dom::Float)

computed TRUE

Parameters

x

An expression which can be converted to a DOM_FLOAT by the function float.

Entries

"one" the unit element; it equals 1.0.
"zero" The zero element; it equals 0.0.

Methods

Mathematical Methods

pivotSize — Size of a pivot element

pivotSize(x)
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This method is called if this domain is used as the component ring of a matrix domain to
perform Gaussian elimination.

random — Random number generation

random()

Conversion Methods

convert — Conversion of objects

convert(x)

In general, if float(x) evaluates to a real floating-point number of type DOM_FLOAT,
this number is the result of the conversion.

convert_to — Conversion to other domains

convert_to(x, T)

The following domains are allowed for T: DOM_FLOAT, Dom::Float and
Dom::Numerical.

testtype — Type checking

testtype(x, T)

In general this method is called from the function testtype and not directly by the user.
“Example 2” on page 7-172 demonstrates this behavior.

See Also

MuPAD Domains
Dom::Complex | Dom::Integer | Dom::Numerical | Dom::Rational | Dom::Real
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Dom::FloatIV

The “field” of Floating Point Intervals

Syntax

Dom::FloatIV(x, …)

Description

Dom::FloatIV is the inclusion algebra of (finite unions of) rectangular intervals in the
complex plane.

Dom::FloatIV is the domain of kernel intervals of type DOM_INTERVAL.

Dom::FloatIV has category Cat::Field out of pragmatism. This domain actually is
not a field because, for example, there is no additive inverse of 1...2.

Elements of Dom::FloatIV are usually not created explicitly. The syntax given above
is equivalent to an interval call, with no check to ensure that the result is in fact
an interval, it could, for example, also be an expression with all numerical coefficients
replaced by intervals. Apart from this behavior of the constructor and the "convert"
slot, Dom::FloatIV is a façade domain for elements of domain type DOM_INTERVAL.

Viewed as a differential ring Dom::FloatIV is trivial, it contains constants only.

Dom::FloatIV has the domain Dom::Numerical as its super domain, i.e., it inherits
each method which is defined by Dom::Numerical and not re-implemented by
Dom::FloatIV. Methods described below are those implemented by Dom::FloatIV.

Superdomain

Dom::Numerical
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Axioms

Ax::canonicalRep, Ax::systemRep, Ax::efficientOperation("_divide"),
Ax::efficientOperation("_invert"), Ax::efficientOperation("_mult"),
Ax::efficientOperation("_plus")

Categories

Cat::Field, Cat::DifferentialRing

Parameters

x, …

MuPAD expressions

Methods

Mathematical Methods

Im — Imaginary Part

Im(iv)

Re — Real Part

Re(iv)

abs — Absolute Value

abs(iv)

arccos — Inverse Cosine

arccos(iv)
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arccosh — Inverse Hyperbolic Cosine

arccosh(iv)

arccot — Inverse Cotangent

arccot(iv)

arccoth — Inverse Hyperbolic Cotangent

arccoth(iv)

arccsc — Inverse Cosecant

arccsc(iv)

arccsch — Inverse Hyperbolic Cosecant

arccsch(iv)

arcsec — Inverse Secant

arcsec(iv)

arcsech — Inverse Hyperbolic Secant

arcsech(iv)

arcsin — Inverse Sine

arcsin(iv)

arcsinh — Inverse Hyperbolic Sine

arcsinh(iv)

arctan — Inverse Tangent

arctan(iv)

arctanh — Inverse Hyperbolic Tangent

arctanh(iv)
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arg — Argument (‘Polar Angle’)

arg(iv)

beta — Beta Function

beta(iv)

ceil — Rounding Up

ceil(iv)

center — Geometric Center

center(iv)

cos — Cosine

cos(iv)

cosh — Hyperbolic Cosine

cosh(iv)

cot — Cotangent

cot(iv)

coth — Hyperbolic Cotangent

coth(iv)

csc — Cosecant

csc(iv)

dirac — Dirac delta distribution

dirac(iv)

exp — Exponential Function

exp(iv)
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floor — Rounding Down

floor(iv)

gamma — Gamma Function

gamma(iv)

ln — Logarithm

ln(iv)

mag — Interval Magnitude

mag(iv)

mig — Interval Mignitude

mig(iv)

random — Random Element

random()

round — Round

round(iv)

sec — Secans

sec(iv)

sign — Sign

sign(iv)

sin — Sine

sin(iv)

sinh — Hyperbolic Sine

sinh(iv)
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sqrt — Square Root

sqrt(iv)

tan — Tangent

tan(iv)

tanh — Hyperbolic Tangent

tanh(iv)

trunc — Round to Zero

trunc(iv)

width — Width of an Interval

width(x)

Conversion Methods

convert — Conversion of Objects

convert(x)

testtype — Type checking

testtype(x, T)

Usually, this method is called from the function testtype and not directly by the user.

See Also

MuPAD Domains
Dom::Complex | Dom::Float | Dom::Integer | Dom::Interval | Dom::Numerical
| Dom::Rational | Dom::Real
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Dom::Fraction
Field of fractions of an integral domain

Syntax

Domain Creation

Dom::Fraction(R)

Element Creation

Dom::Fraction(R)(r)

Description

Domain Creation

Dom::Fraction(R) creates a domain which represents the field of fractions
 of the integral domain R.

An element of the domain Dom::Fraction(R) has two operands, the numerator and
denominator.

If Dom::Fraction(R) has the axiom Ax::canonicalRep (see below), the denominators
have unit normal form and the gcds of numerators and denominators cancel.

The domain Dom::Fraction(Dom::Integer) represents the field of rational numbers.
But the created domain is not the domain Dom::Rational, because it uses a different
representation of its elements. Arithmetic in Dom::Rational is much more efficient
than it is in Dom::Fraction(Dom::Integer).

Element Creation

If r is a rational expression, then an element of the field of fractions Dom::Fraction(R)
is created by going through the operands of r and converting each operand into an
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element of R. The result of this process is r in the form , where x and y are elements of

R. If R has Cat::GcdDomain, then x and y are coprime.

If one of the operands can not be converted into the domain R, an error message is issued.

Superdomain

Dom::BaseDomain

Axioms

Ax::normalRep

Categories

Cat::QuotientField(R)

Examples

Example 1

We define the field of rational functions over the rationals:

F := Dom::Fraction(Dom::Polynomial(Dom::Rational))

and create an element of F:

a := F(y/(x - 1) + 1/(x + 1))
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To calculate with such elements use the standard arithmetical operators:

2*a, 1/a, a*a

Some system functions are overloaded for elements of domains generated by
Dom::Fraction, such as diff, numer or denom (see the description of the
corresponding methods "diff", "numer" and "denom" above).

For example, to differentiate the fraction a with respect to x enter:

diff(a, x)

If one knows the variables in advance, then using the domain
Dom::DistributedPolynomial yields a more efficient arithmetic of rational functions:

Fxy := Dom::Fraction(

  Dom::DistributedPolynomial([x, y], Dom::Rational)

)

b := Fxy(y/(x - 1) + 1/(x + 1)): 

b^3

Example 2

We create the field of rational numbers as the field of fractions of the integers, i.e.,
:
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Q := Dom::Fraction(Dom::Integer):

Q(1/3)

domtype(%)

Another representation of ℚ in MuPAD is the domain Dom::Rational where the
rationals are of the kernel domains DOM_INT and DOM_RAT. Therefore it is much more
efficient to work with Dom::Rational than with Dom::Fraction(Dom::Integer).

Parameters

R

An integral domain, i.e., a domain of category Cat::IntegralDomain

r

A rational expression, or an element of R

Entries

"characteristic" is the characteristic of R.
"coeffRing" is the integral domain R.
"one" is the one of the field of fractions of R, i.e.,

the fraction 1.
"zero" is the zero of the field of fractions of R, i.e.,

the fraction 0.
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Methods

Mathematical Methods

_divide — Divide two fractions

_divide(x, y)

This method overloads the function _divide for fractions, i.e., one may use it in the form
x / y or in functional notation: _divide(x, y).

_invert — Invert a fraction

_invert(r)

This method overloads the function _invert for fractions, i.e., one may use it in the form
1/r or r^(-1), or in functional notation: _invert(r).

_less — Less-than relation

_less(q, r)

An implementation is provided only if R is an ordered set, i.e., a domain of category
Cat::OrderedSet.

This method overloads the function _less for fractions, i.e., one may use it in the form q
< r, or in functional notation: _less(q, r).

_mult — Multiplie fractions by fractions or rational expressions

_mult(q, r)

If q is not of the domain type Dom::Fraction(R), it is considered as a rational
expression which is converted into a fraction over R and multiplied with q. If the
conversion fails, FAIL is returned.

The same applies to r.

This method also handles more than two arguments. In this case, the argument list is
splitted into two parts of the same length which both are multiplied with the function
_mult. The two results are multiplied again with _mult whose result then is returned.
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This method overloads the function _mult for fractions, i.e., one may use it in the form q
* r or in functional notation: _mult(q, r).

_negate — Negate a fraction

_negate(r)

This method overloads the function _negate for fractions, i.e., one may use it in the form
-r or in functional notation: _negate(r).

_power — Integer power of a fraction

_power(r, n)

This method overloads the function _power for fractions, i.e., one may use it in the form
r^n or in functional notation: _power(r, n).

_plus — Add fractions

_plus(q, r, …)

If one of the arguments is not of the domain type Dom::Fraction(R), then FAIL is
returned.

This method overloads the function _plus for fractions, i.e., one may use it in the form q
+ r or in functional notation: _plus(q, r).

D — Differential operator

D(r)

An implementation is provided only if R is a partial differential ring, i.e., a domain of
category Cat::PartialDifferentialRing.

This method overloads the operator D for fractions, i.e., one may use it in the form D(r).

denom — Denominator of a fraction

denom(r)

This method overloads the function denom for fractions, i.e., one may use it in the form
denom(r).
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diff — Differentiation of fractions

diff(r, u)

This method overloads the function diff for fractions, i.e., one may use it in the form
diff(r, u).

An implementation is provided only if R is a partial differential ring, i.e., a domain of
category Cat::PartialDifferentialRing.

equal — Test on equality of fractions

equal(q, r)

factor — Factorize the numerator and denominator of a fraction

factor(r)

The factors u, r1, …, rn are fractions of type Dom::Fraction(R), the exponents e1, …, en
are integers.

The system function factor is used to perform the factorization of the numerator and
denominator of r.

This method overloads the function factor for fractions, i.e., one may use it in the form
factor(r).

intmult — Integer multiple of a fraction

intmult(r, n)

iszero — Test for zero

iszero(r)

An element of the field Dom::Fraction(R) is zero if its numerator is the zero element of
R. Note that there may be more than one representation of the zero element if R does not
have Ax::canonicalRep.

This method overloads the function iszero for fractions, i.e., one may use it in the form
iszero(r).
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numer — Numerator of a fraction

numer(r)

This method overloads the function numer for fractions, i.e., one may use it in the form
numer(r).

random — Random fraction generation

random()

The returning fraction is normalized (see the methods "normalize" and
"normalizePrime".

Conversion Methods

convert_to — Fraction conversion

convert_to(r, T)

If the conversion fails, FAIL is returned.

The conversion succeeds if T is one of the following domains: Dom::Expression or
Dom::ArithmeticalExpression.

Use the function expr to convert r into an object of a kernel domain (see below).

expr — Convert a fraction into an object of a kernel domain

expr(r)

The result is an object of a kernel domain (e.g., DOM_RAT or DOM_EXPR).

This method overloads the function expr for fractions, i.e., one may use it in the form
expr(r).

TeX — TeX formatting of a fraction

TeX(r)

The method TeX of the component ring R is used to get the TeX-representations of the
numerator and denominator of r, respectively.

7-188



 Dom::Fraction

retract — Retraction to base domain

retract(r)

Technical Methods

normalize — Normalizing fractions

normalize(x, y)

Normalization means to remove the gcd of x and y. Hence, R needs to be of category
Cat::GcdDomain. Otherwise, normalization cannot be performed and the result of this
method is the fraction .

normalizePrime — Normalizing fractions over integral domains with a gcd

normalizePrime(x, y)

In rings of category Cat::GcdDomain, elements are assumed to be relatively prime.
Hence, there is no need to normalize the fraction .

In rings not of category Cat::GcdDomain, normalization of elements can not be
performed and the result of this method is the fraction .

See Also

MuPAD Domains
Dom::Rational
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Dom::GaloisField
Finite fields

Syntax

Domain Creation

Dom::GaloisField(q)

Dom::GaloisField(p, n)

Dom::GaloisField(p, n, f)

Dom::GaloisField(F, n)

Dom::GaloisField(F, n, f)

Element Creation

Dom::GaloisField(p, n, f)(g)

Description

Domain Creation

Dom::GaloisField(p, n, f) creates the residue class field , a finite

field with pn elements. If f is not given, it is chosen at random among all irreducible
polynomials of degree n.

Dom::GaloisField(q) (where q = pn) is equivalent to Dom::GaloisField(p,n).

Dom::GaloisField(F, n, f) creates the residue class field F[X]/<f>, a finite field
with |F|n elements.

If f is not given, a random irreducible polynomial of appropriate degree is used; some
free identifier is chosen as its variable, and this one must also be used when creating
domain elements.
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Although n = 1 is allowed, Dom::IntegerMod should be used for representing prime
fields.

If F is of type Dom::GaloisField, consisting of residue classes of polynomials, the
variable of these polynomials must be distinct from the variable of f. If a tower several
of Galois fields is constructed, the variable used in the uppermost Galois field must not
equal any of those used in the tower. A special entry "VariablesInUse" serves to keep
track of all variables appearing somewhere in the tower.

Element Creation

Dom::GaloisField(p,n,f)(g) (or, respectively, Dom::GaloisField(F,n,f)(g))
creates the residue class of g modulo f. It is represented by the unique polynomial in that
class that has smaller degree than f.

Superdomain

Dom::AlgebraicExtension(Dom::IntegerMod(p),f)

Axioms

Ax::canonicalRep

Categories

Cat::Field, Cat::Algebra(F), Cat::VectorSpace(F)

Examples

Example 1

We define L to be the field with 4 elements. Then a4 = a for every a ∈ L, by a well-known
theorem.
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L:=Dom::GaloisField(2, 2, u^2+u+1): L(u+1)^4

Parameters

q

Prime power

p

Prime

n

Positive integer

f

Univariate irreducible polynomial over Dom::IntegerMod(p) or F, or polynomial
expression convertible to such

F

Finite field of type Dom::IntegerMod or Dom::GaloisField.

g

Univariate polynomial over the ground field in the same variable as f, or polynomial
expression convertible to such

Entries

"zero" the zero element of the field
"one" the unit element of the field
"characteristic" the characteristic of the field
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"size" the number of elements of the field
"PrimeField" the prime field, which equals

Dom::IntegerMod(p).
"Variable" the variable of the polynomial f.
"VariablesInUse" a list consisting of "Variable" and the

variables used by the ground field.

Methods

Mathematical Methods

iszero — Test for zero

iszero(a)

It overloads the function iszero.

_power — Integer power of an element

_power(a, n)

It overloads _power.

frobenius — Frobeniu map

frobenius(a)

conjugates — Conjugate of an element

conjugates(a)

order — Order of an element

order(a)

isSquare — Test whether an element is a square

isSquare(a)
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ln — Discrete logarithm

ln(a, b)

elementNumber — Enumerate field elements

elementNumber(a)

The inverse of this mapping has not been implemented.

companionMatrix — Companion matrix of the Galois field over its ground field

companionMatrix()

companionPowers — Power of the companion matrix

companionPowers()

matrixRepresentation — Isomorphism to the algebra generated by the companion matrix

matrixRepresentation(a)

If A is the companion matrix, the image of  is .

randomPrimitive — Choose a primitive element at random

randomPrimitive()

isBasis — Test elements for being a basis over the ground field

isBasis(l)

isNormal — Test whether a given field element is normal

isNormal(a)

randomNormal — Choose normal element at random

randomNormal()

isPrimitivePolynomial — Test whether a polynomial over the field is primitive

isPrimitivePolynomial(h)
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Conversion Methods

convert — Conversion from other types

convert(a)

convert_to — Conversion to other types

convert_to(a, T)

See Also

MuPAD Domains
Dom::AlgebraicExtension | Dom::IntegerMod
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Dom::ImageSet
Domain of images of sets under mappings

Syntax

Domain Creation

Dom::ImageSet()

Element Creation

Dom::ImageSet(f, x, S)

Dom::ImageSet(f, [x1, …], [S1, …])

Description

Domain Creation

Dom::ImageSet is the domain of all sets of complex numbers that can be written as the
set of all values taken on by some mapping, i.e., sets of the form 
for some function f and some sets S1, …, Sn.

Image sets are mainly used by solve to express sets like  .

Dom::ImageSet belongs to the category Cat::Set—arithmetical and set-theoretic
operations are inherited from there.

Element Creation

Dom::ImageSet(f, x, S) represents the set of all values that can be obtained by
substituting some element of S for x in the expression f.

Dom::ImageSet(f, [x1, ...], [S1, ...]) represents the set of all values that
can be obtained by substituting, for each i, the identifier xi by some element of Si in the
expression f.
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Dom::ImageSet(f, x, S) represents the set . Dom::ImageSet(f,
[x1, ..., xn], [S1, ..., Sn]) represents the set .

f need not contain x; on the other hand, it may contain other identifiers (free variables).

If a list of several identifiers is given, the identifiers must be distinct.

S must be a set; see solve for an overview of the different kinds of sets in MuPAD.

Dom::ImageSet carries out some automatical simplifications that may produce a result
of a type different from Dom::ImageSet.

Dom::ImageSet renames the variables x1, ..., xn, in order to avoid naming conflicts
as well as producing a nicer output.

Superdomain

Dom::BaseDomain

Categories

Cat::Set

Examples

Example 1

We define S to be the set of all integer multiples of π.

S:= Dom::ImageSet(ugly*PI, ugly, Z_)

Our ugly variable name has been replaced by a nicer one which suggests that it
represents an integer.
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We may now apply the usual set-theoretic operations.

S intersect Dom::Interval(3..7)

Example 2

An element of an image set may be obtained by substituting all parameters by some
values:

S:= Dom::ImageSet(a^7 + b^3 + C, [a, b], [Z_, Z_])

On calling the evalParam method, we have to take care that the variable names have
been replaced.

Dom::ImageSet::evalParam(S, k = 3, l = 5)

The same may be achieved using the index operator:

S[3, 5]

Substituting only for one parameter, we obtain an image set in the other parameter:

Dom::ImageSet::evalParam(S, k = 3)

A parameter may be substituted by itself, meaning that it becomes a free variable:

Dom::ImageSet::evalParam(S, k = k)
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The evalParam method cannot be used to substitute a free variable:

Dom::ImageSet::evalParam(S, C = 3)

delete S:

Parameters

f

Arithmetical expression

x

Identifier or indexed identifier

S

Set of any type

Methods

Mathematical Methods

changevar — Change the name of a variable

changevar(A, oldvar, newvar)

The new variable newvar must not equal any element of the list of variables; this is not
checked!

setvar — Set the name of the variable

setvar(A, newvar)
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setvar(A, newvar)

For an argument A that is not an image set, the method "setvar" is applied to all image
sets contained in the expression A. A might be, for example, a union, intersection, etc. of
image sets and other sets.

homogpointwise — Define an n-ary pointwise operator for image sets

homogpointwise(Op)

Op must accept arithmetical expressions as arguments.

isEmpty — Test whether a set is empty

isEmpty(A)

substituteBySet — Substitute an ImageSet for a variable

substituteBySet(a, x, A)

freeIndets — Free parameters of a set

freeIndets(A)

If , the xi are called bound and the yi are called
free parameters.

Use the slot "variables" to obtain the bound parameters.

evalParam — Insert values for bound parameters

evalParam(A(x = value, …))

If x is not a parameter, but a free variable of A, it is not substituted by value.

value may be an identifier or contain identifiers; in particular, it may contain x and/
or some of the remaining parameters. This may be used to convert parameters into free
variables.

Several parameters may be replaced in a single call.

See “Example 2” on page 7-198.
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_index — Extract element by inserting values for bound parameters

_index(A, value1, …)

The number of values passed must match the number of variables of A.

It is not checked whether for each i, the value for the ith parameter belongs to the ith set.

See “Example 2” on page 7-198.

Access Methods

expr — Defining mapping as an expression

expr(A)

This method overloads the function expr.

variables — List of variables

variables(A)

The free parameters (identifiers appearing in f other than the xi) can be obtained using
the "freeIndets" slot.

nvars — Number of variables

nvars(A)

sets — List of sets

sets(A)

Technical Methods

print — Print image set

print(A)
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Dom::Integer

Ring of integer numbers

Syntax

Dom::Integer(x)

Description

Dom::Integer is the ring of integer numbers represented by elements of the domain
DOM_INT.

Elements of Dom::Integer are usually not created explicitly. However, if one creates
elements using the usual syntax, it is checked whether the input is an integer number.
This means that Dom::Integer is a façade domain which creates elements of domain
type DOM_INT.

Viewed as a differential ring Dom::Integer is trivial, it contains constants only.

Dom::Integer has the domain Dom::Numerical as its super domain, i.e., it inherits
each method which is defined by Dom::Numerical and not re-implemented by
Dom::Integer. Methods described below are those implemented by Dom::Integer.

Superdomain

Dom::Numerical

Axioms

Ax::canonicalRep, Ax::systemRep, Ax::canonicalOrder,
Ax::canonicalUnitNormal, Ax::closedUnitNormals,
Ax::efficientOperation("_divide"), Ax::efficientOperation("_mult")

7-202



 Dom::Integer

Categories

Cat::EuclideanDomain, Cat::FactorialDomain, Cat::DifferentialRing,
Cat::OrderedSet

Examples

Example 1

Creating some integer numbers using Dom::Integer. This example also shows that
Dom::Integer is a façade domain.

Dom::Integer(2); domtype(%)

Dom::Integer(2/3)

Error: The arguments are invalid. [Dom::Integer::new]

Example 2

By tracing the method Dom::Integer::testtypeDom we can see the interaction
between testtype and Dom::Integer::testtypeDom.

prog::trace(Dom::Integer::testtypeDom):

delete x:

testtype(x, Dom::Integer);

testtype(3, Dom::Integer);

prog::untrace(Dom::Integer::testtypeDom):

enter Dom::Integer::testtypeDom(x, Dom::Integer)

computed FALSE
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enter Dom::Integer::testtypeDom(3, Dom::Integer)

computed TRUE

Parameters

x

An integer

Methods

Mathematical Methods

associates — Associate elements

associates(x, y)

_divide — Division of two objects

_divide(x, y)

_divides — Decide if a number divides another one

_divides(x, y)

euclideanDegree — Euclidean degree

euclideanDegree(x)

factor — Factorization

factor(x)
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gcd — Gcd computation

gcd(x1, x2, …)

gcdex — Applie the extended Euclidean algorithm

gcdex(x, y)

_invert — Inverse of an element

_invert(x)

irreducible — Prime number test

irreducible(x)

isUnit — Test if an element is a unit

isUnit(x)

lcm — Compute the lcm

lcm(x1, x2, …)

quo — Compute the euclidean quotient

quo(x, y)

random — Random number generation

random()

random(n)

random(m .. n)

This methods returns a random number between 0 and n - 1.

This methods returns a random number between m and n.

rem — Compute the Euclidean reminder

rem(x, y)
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unitNormal — Unit normal part

unitNormal(x)

unitNormalRep — Unit normal representation

unitNormalRep(x)

Conversion Methods

convert — Conversion of objects

convert(x)

convert_to — Conversion to other domains

convert_to(x, T)

The following domains are allowed for T: DOM_INT, Dom::Integer, Dom::Rational,
DOM_FLOAT, Dom::Float and Dom::Numerical.

testtype — Type checking

testtype(x, T)

Usually, this method is called from the function testtype and not directly by the user.
“Example 2” on page 7-203 demonstrates this behavior.

See Also

MuPAD Domains
Dom::Complex | Dom::Float | Dom::Numerical | Dom::Rational | Dom::Real
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Dom::IntegerMod
Residue class rings modulo integers

Syntax

Domain Creation

Dom::IntegerMod(n)

Element Creation

Dom::IntegerMod(n)(a)

Description

Domain Creation

Dom::IntegerMod(n) creates the residue class ring of integers modulo n.

Dom::IntegerMod(n) creates the integer residue class rings .

Element Creation

Dom::IntegerMod(n)(a) creates the residue class of a modulo n.

Superdomain

Dom::BaseDomain

Axioms

Ax::normalRep, Ax::canonicalRep, Ax::noZeroDivisors,
Ax::closedUnitNormals, Ax::canonicalUnitNormal,
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Ax::efficientOperation("_invert"), Ax::efficientOperation("_divide"),
Ax::efficientOperation("_mult")

Categories

If n is prime, then Cat::Field, else Cat::CommutativeRing.

Examples

Example 1

We define the residue class ring of the integers mod 7:

Z7:= Dom::IntegerMod(7)

Next, we create some elements:

a:= Z7(1); b:= Z7(2); c:= Z7(3)

We may use infix notation for arithmetical operations since the operators have been
overloaded:

a + b, a*b*c, 1/c, b/c/a/c

a and b are squares while c is not:
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Z7::isSquare(a), Z7::isSquare(b), Z7::isSquare(c)

Indeed, c is a generator of the group of units:

Z7::order(a), Z7::order(b), Z7::order(c)

Parameters

n

Positive integer greater than 1

a

Any integer or a rational number whose denominator is coprime to n

Entries

"characteristic" the characteristic of the residue class ring,
n

"one" the unit element, 1 mod n
"zero" the zero element, 0 mod n

Methods

Mathematical Methods

_divide — Division of two elements

_divide(element1, element2)
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_invert — Invert elements

_invert(element)

_mult — Multiply elements

_mult(element, …)

_negate — Negate elements

_negate(element)

_plus — Add elements

_plus(element, …)

_power — Power of elements

_power(element, power)

_subtract — Subtraction of two elements

_subtract(element1, element2)

D — Return derivative

Inherited from Cat::CommutativeRing.

associates — Test for associate elements

Inherited from Cat::Field.

coerce — Coerce into this domain

Inherited from Cat::BaseCategory.

diff — Differentiate element

Inherited from Cat::CommutativeRing.

divide — Division with remainder

Inherited from Cat::Field.
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divides — Test if division is exact

Inherited from Cat::Field.

equal — Test for mathematical equality

Inherited from Dom::BaseDomain.

equiv — Test for equivalence

Inherited from Cat::BaseCategory.

euclideanDegree — Return Euclidean degree

Inherited from Cat::Field.

factor — Unique factorization

Inherited from Cat::Field.

gcd — Greatest common divisor

Inherited from Cat::Field.

gcdex — Extended greatest common divisor

Inherited from Cat::EuclideanDomain.

idealGenerator — Generator of finitely generated ideal

Inherited from Cat::EuclideanDomain.

irreducible — Test if element is irreducible

Inherited from Cat::Field.

isUnit — Test if element is an unit

Inherited from Cat::Field.

isone — Test if element is one

Inherited from Cat::Monoid.
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lcm — Least common multiple

Inherited from Cat::GcdDomain.

quo — Return Euclidean quotient

Inherited from Cat::Field.

rem — Return Euclidean remainder

Inherited from Cat::Field.

sqrfree — Square-free factorization

Inherited from Cat::Field.

testtype — Test type of object

Inherited from Cat::BaseCategory.

isSquare — Test for being a square

isSquare(element)

iszero — Zero test

iszero(element)

ln — Discrete logarithm

ln(element, base)

The result is infinity if element is not in the subgroup generated by base.

The result is FAIL if base is not a unit.

order — Order

order(element)

The result is FAIL if element is not a unit.
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Access Methods

subs — Avoid substitution

Inherited from Dom::BaseDomain.

subsex — Avoid extended substitution

Inherited from Dom::BaseDomain.

Conversion Methods

TeX — TeX output

TeX(element)

convert — Conversion

convert(number)

The conversion fails if the denominator of number and the modulus n are not relatively
prime.

convert_to — Conversion

convert_to(element, d)

expr — Convert an element to an expression

expr(element)

Technical Methods

allAxioms — Return all axioms

Inherited from Dom::BaseDomain.

allCategories — Return all categories

Inherited from Dom::BaseDomain.
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allEntries — Return the names of all entries

Inherited from Dom::BaseDomain.

allSuperDomains — Return all super-domains

Inherited from Dom::BaseDomain.

getAxioms — Return axioms stated in the constructor

Inherited from Dom::BaseDomain.

getCategories — Return categories stated in the constructor

Inherited from Dom::BaseDomain.

getSuperDomain — Return super-domain stated in the constructor

Inherited from Dom::BaseDomain.

hasProp — Test for a certain property

Inherited from Dom::BaseDomain.

info — Print short information about this domain

Inherited from Dom::BaseDomain.

new — Create element of this domain

Inherited from Cat::BaseCategory.

print — Printing elements

print(element)

printMethods — Print out methods

Inherited from Dom::BaseDomain.

random — Random element

random()
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undefinedEntries — Return missing entries

Inherited from Dom::BaseDomain.

unitNormal — Unit normal form

Inherited from Cat::Field.

unitNormalRep — Unit normal representation

Inherited from Cat::Field.

whichEntry — Return the domain or category implementing an entry

Inherited from Dom::BaseDomain.

See Also

MuPAD Domains
Dom::GaloisField | Dom::Integer
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Dom::Interval

Intervals of real numbers

Syntax

Dom::Interval(l, r)

Dom::Interval([l], r)

Dom::Interval(l, [r])

Dom::Interval([l], [r])

Dom::Interval([l, r])

Description

Dom::Interval represents the set of all intervals of real numbers.

Dom::Interval(l, r) creates the interval of all real numbers between l and r. If a
border is given as a list with l or r as the sole element, this border will be regarded as a
closed border, otherwise the interval does not contain l and r.

A border can be any arithmetical expression that could represent a real number, e.g.,
sqrt(2*x) and a + I. Properties are ignored.

The domain Dom::Interval provides fundamental operations to combine intervals with
intervals and other mathematical objects.

The return value can be either an interval of type Dom::Interval or the empty set of
type DOM_SET, if the interval is empty.

Most mathematical operations are overloaded to work with intervals (such as
sin). If f is a function of n real variables, its extension to intervals is defined to be

. The return value of such an operation is in
most cases an interval, a union of intervals, a Dom::ImageSet or a set. For example,
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the sine of an interval [a, b] is the interval {sin(x), x in [a, b]} that contains
all sine values of the given interval. In general, you should expect the return value to be
an interval larger than strictly necessary. Also note that, when using the same interval
twice in one formula, the uses are regarded as independent, so interval1/interval1
does not return the interval [1, 1] as you might expect.

The functions overloaded in this way are:

• _mult, _divide, _invert, _power
• _plus, _negate, _subtract
• abs

• cos, arccos, cosh, arccosh, cot, arccot, coth, arccoth, csc, arccsc, csch,
arccsch, sec, arcsec, sech, arcsech, sin, arcsin, sinh, arcsinh, tan, arctan,
tanh, arctanh

• dirac, heaviside
• exp, ln
• sign

Furthermore, an interval is a special type of set. This is reflected by Dom::Interval
having the category Cat::Set. Among the methods inherited from Cat::Set, the
following are especially important: intersect, minus and union.

An interval can be open or closed. If one border is given as a list with one element [x],
then this element x is taken as border and the interval will be created as closed at this
side. If the interval should be closed at both sides, one list with the both borders as
arguments can be given.

Superdomain

Dom::BaseDomain

Categories

Cat::Set, Cat::AbelianMonoid
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Examples

Example 1

First create a closed interval between 0 and 1.

A:= Dom::Interval([0], [1])

Now another open interval between -1 and 1.

B:= Dom::Interval(-1, 1)

Intervals can be handled like other objects.

A + B, A - B, A*B, A/B

2*A, 1 - A, (A - 1)^2

Example 2

Standard functions are overloaded to work with intervals.

sin(B), float(sin(B))

Example 3

The next examples shows some technical methods to access and manipulate intervals.

Get the borders and open/closed information about intervals.
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A:= Dom::Interval([0], [1]):

Dom::Interval::left(A), Dom::Interval::leftB(A)

Dom::Interval::isleftopen(A), Dom::Interval::subsleft(A, -1)

Parameters

l

The left border. If given as a list of one element (the left border), the interval will be
created as left closed.

r

The right border. If given as a list of one element (the right border), the interval will be
created as right closed.

Entries

"one" the unit element; it equals the one-point
interval [1, 1].

"zero" the zero element; it equals the one-point
interval [0, 0].

Methods

Mathematical Methods

Im — Imaginary part of an interval (this always equals zero)

Im(interval)
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Re — Real part of an interval (this is the interval)

Re(interval)

_divide — Divide intervals

_divide(interval1, interval2)

_intersect — Intersection of sets

Inherited from Cat::Set.

_invert — Invert intervals

_invert(interval)

_minus — Set of subtractions

Inherited from Cat::Set.

_mult — Set of product of set elements

Inherited from Cat::Set.

_negate — Negate intervals

_negate(interval)

_plus — Set of sums of set elements

Inherited from Cat::Set.

_power — Pointwise power

Inherited from Cat::Set.

_union — Union of sets

Inherited from Cat::Set.

abs — Absolute value of intervals

abs(interval)
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arccos — Inverse cosine of intervals

arccos(interval)

arccosh — Area cosine of intervals

arccosh(interval)

arccot — Inverse cotangent of intervals

arccot(interval)

arccoth — Area cotangent of intervals

arccoth(interval)

arcsin — Inverse sine of intervals

arcsin(interval)

arcsinh — Area sine of intervals

arcsinh(interval)

arctan — Inverse tangent of intervals

arctan(interval)

arctanh — Area tangent of intervals

arctanh(interval)

coerce — Coerce into this domain

Inherited from Cat::BaseCategory.

contains — Containing an element

contains(interval, element)

cos — Cosinu of intervals

cos(interval)
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cosh — Hyperbolic cosinus of intervals

cosh(interval)

cot — Cotangent of intervals

cot(interval)

coth — Hyperbolic cotangent of intervals

coth(interval)

dirac — Dirac distribution of an interval

dirac(interval)

equiv — Test for equivalence

Inherited from Cat::BaseCategory.

exp — Exponential function of an interval

exp(interval)

heaviside — Heaviside function

heaviside(interval)

intmult — Return integer multiple

Inherited from Cat::AbelianMonoid.

ln — Natural logarithm of an interval

ln(interval)

max — Maximum of an interval

max(interval, …)

The maximum of intervals is the set of all possible results of the function max when
applied to a sequence of arguments consisting of exactly one element of each interval.
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min — Minimum of an interval

min(interval, …)

The minimum of intervals is defined analogously to their maximum.

new — Create an interval

new(left, right)

new([left], right)

new(left, [right])

new([left], [right])

sign — Signum of an interval

sign(interval)

sin — Sine of intervals

sin(interval)

sinh — Hyperbolic sine of intervals

sinh(interval)

tan — Tangent of intervals

tan(interval)

tanh — Hyperbolic tangent of intervals

tanh(interval)

Access Methods

borders — Border of an interval

borders(interval)
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left — Left border of an interval

left(interval)

leftB — Left border of an interval

leftB(interval)

isleftopen — Left open interval

isleftopen(interval)

isrightopen — Right open interval

isrightopen(interval)

iszero — Null interval

iszero(interval)

op — Operand (borders) of an interval

op(interval)

subs — Substitution in intervals

subs(Interval, equation, …)

subsex — Avoid extended substitution

Inherited from Dom::BaseDomain.

subsleft — Substitute left border

subsleft(interval, left)

subsright — Substitute right border

subsright(interval, right)

subsvals — Substitute both borders

subsvals(interval, left, right)
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Conversion Methods

convert — Converting objects to intervals

convert(object)

If the conversion fails, FAIL is returned.

convert_to — Convert element

Inherited from Dom::BaseDomain.

float — Convert to floating-point interval

float(interval)

getElement — One element of an interval

getElement(interval)

simplify — Simplify intervals

simplify(interval)

testtype — Test type of object

Inherited from Cat::BaseCategory.

TeX — Generate TeX output

Inherited from Dom::BaseDomain.

Technical Methods

allAxioms — Return all axioms

Inherited from Dom::BaseDomain.

allCategories — Return all categories

Inherited from Dom::BaseDomain.
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allEntries — Return the names of all entries

Inherited from Dom::BaseDomain.

allSuperDomains — Return all super-domains

Inherited from Dom::BaseDomain.

emptycheck — Check intervals

emptycheck(interval)

equal — Comparison of intervals

equal(interval, interval)

getAxioms — Return axioms stated in the constructor

Inherited from Dom::BaseDomain.

getCategories — Return categories stated in the constructor

Inherited from Dom::BaseDomain.

getSuperDomain — Return super-domain stated in the constructor

Inherited from Dom::BaseDomain.

hasProp — Test for a certain property

Inherited from Dom::BaseDomain.

info — Print short information about this domain

Inherited from Dom::BaseDomain.

map — Apply functions to intervals

map(interval, function, <argument, …>)

mapBorders — Apply functions to the borders of an interval

mapBorders(interval, function, <argument, …>)
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print — Printing intervals

print(interval)

printMethods — Print out methods

Inherited from Dom::BaseDomain.

random — Random interval

random()

undefinedEntries — Return missing entries

Inherited from Dom::BaseDomain.

whichEntry — Return the domain or category implementing an entry

Inherited from Dom::BaseDomain.

zip — Combine intervals

zip(interval, interval, function)

Algorithms

The operand of an object of Dom::Interval is an object of the domain
property::IVnat, which realizes the basic interval arithmetic. This domain is not
documented.

See Also

MuPAD Functions
Type::Interval
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Dom::LinearOrdinaryDifferentialOperator
Domain of linear ordinary differential operators

Syntax

Domain Creation

Dom::LinearOrdinaryDifferentialOperator(<Var, <DVar, <Ring>>>)

Element Creation

Dom::LinearOrdinaryDifferentialOperator(Var, DVar, Ring)(p)

Dom::LinearOrdinaryDifferentialOperator(Var, DVar, Ring)(l)

Dom::LinearOrdinaryDifferentialOperator(Var, DVar, Ring)(eq, yx)

Description

Dom::LinearOrdinaryDifferentialOperator(Var, DVar, Ring) creates the
domain of linear ordinary differential operators with coefficients in the differential ring
Ring and with derivation Var where DVar is the differential indeterminate. Elements
of this domain are also called Ore polynomials and the multiplication of two elements is
completely determined by the prescribed rule  for every element r

in Ring. And so Dom::LinearOrdinaryDifferentialOperator is a noncommutative
ring.

Note: Nevertheless, for some reasons, for every element r in Ring, Var*r is
automatically rewritten as r*Var. See “Example 1” on page 7-229.

If Dom::LinearOrdinaryDifferentialOperator is called without any argument, a
domain with coefficients in Dom::ExpressionField(normal) with derivation Df and
differential indeterminate x is created.
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Note: Only commutative differential rings of type DOM_DOMAIN are allowed which
inherit from Dom::BaseDomain. If Ring is of type DOM_DOMAIN but does not inherit
from Dom::BaseDomain, the domain Dom::ExpressionField(normal) will be used
instead.

Note: It is highly recommend to use only coefficient rings with unique zero
representation. Otherwise it can happen that, e.g., a polynomial division will not
terminate or a wrong degree will be returned.

Examples

Example 1

First we create the domain of linear ordinary differential operators:

lodo := Dom::LinearOrdinaryDifferentialOperator()

by default the above domain has coefficients in the field
Dom::ExpressionField(normal) with derivation Df and differential indeterminate x.

We can create elements of lodo in 3 ways: polynomials in Df, list of elements of
Dom::ExpressionField and with a linear ordinary homogeneous differential equation:

lodo(Df^2 + (x + 1)*Df + 2*x), lodo([2*x, x + 1, 1]),

lodo(diff(y(x),x,x) + (x + 1)*diff(y(x),x) + 2*x*y(x), y(x))

It's easy to obtain the linear differential equation associated to a linear differential
operator:

L := lodo((x + x^3)*Df^3 + (6*x^2 + 3)*Df^2 - 12):

L(y(x))

7-229



7 Dom – Domains

and one can also evaluates a differential operator at an expression:

L(2*x^2 + 1), L(ln(x)), L(ln(x), Unsimplified)

Multiplication of elements of lodo is noncommutative but for every element r of the
coefficients ring one has Df*r = r*Df:

lodo(x^2*Df), lodo(Df*x^2), lodo(Df)*lodo(x^2)

Example 2

Dom::LinearOrdinaryDifferentialOperator is a domain where the Euclidean
division exists but one has to precise if the multiplication of 2 elements of this domain is
made on the right or on the left side:

L1 := lodo(x*Df^3 + (x^2 - 3)*Df^2 + 4*x*Df + 2):

lodo::leftDivide(L1,lodo(x*Df + 1))

lodo(x*Df + 1) * %[quotient] = L1

Hence one has the notions of greatest common divisor, least common multiple on the
right and on the left, and a modified version of the extended Euclidean algorithm:
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L2 := lodo(x*Df + 1):

ree := lodo::rightExtendedEuclid(L1,L2)

The right greatest common divisor and the left least common multiple can be read from
the above list:

iszero(lodo::rightGcd(L1,L2) - ree[1][1]), 

iszero(ree[1][1] - (ree[1][2]*L1 + ree[1][3]*L2)),

iszero(lodo::leftLcm(L1,L2) - (-ree[2][1]*L1)), 

iszero(-ree[2][1]*L1 - ree[2][2]*L2)

Example 3

One can compute polynomial, rational and exponential zeros of linear differential
operators of any degree provided the ring Ring is the field of rational functions of x

L3 := lodo((x^2 + 1)*x*Df^3 + 3*(2*x^2 + 1)*Df^2 - 12):

lodo::rationalZeros(L3), lodo::exponentialZeros(L3)

even when the operator contains some parameters rationally:

lodo::exponentialZeros(

lodo(Df^4 + (b*l - 2*a^2 - a*l*x)*Df^2 + a^4-a^2*b*l + a^3*l*x))

7-231



7 Dom – Domains

Example 4

One can factorize linear differential operators into irreducible factors when the ring Ring
is the field of rational functions of x. Nevertheless, the algorithm is complete only for
operators of degree at most 3; for higher degree only left and right factors of degree 1 are
found:

factor(lodo((x^2 + 1)*x*Df^3 + 3*(2*x^2 + 1)*Df^2 - 12)),

factor(lodo(Df^3 + a*x*Df + a + b^3 + a*b*x))

Here the operator factors into two factors of degree 2 which cannot be found by MuPAD:

factor(lodo(Df^2 + x^3 + 1/x^3) * lodo(Df^2 + x^2 - 1/x^3))

Example 5

Solving linear differential operators using the command solve is also possible:

solve(lodo(Df^2 + (3 - x)/(16*x^2)))

For certain cases, where the groups associated to the dfferential operators are finite
primitive groups of degree 2, a polynomial is returned corresponding to the minimal
polynomial of all zeros of the differential operator (they are algebraic over the base field):

solve(lodo(Df^2 + 
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      (-27*x + 32*x^2 + 27)/(144*x^2 - 288*x^3 + 144*x^4)))

For linear differential operators of degree greater than 3 only exponential zeros will be
found:

solve(lodo(x*Df^4 + (-x + 4)*Df^3 - 3*Df^2 - x^2*Df - x + x^2))

Certain second degree linear differential operator can be solved in terms of some special
functions (nonliouvillian functions) such as airyAi, besselI and whittakerM:

solve(lodo(Df^2 - (x + 1)/(x - 1)^5))

solve(lodo(Df^2 - (243 + 4*x^8 + 162*x^2 + 19*x^4)/

                   36/x^2/(x^2 + 3)^2))
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Parameters

Var

An indeterminate of type DOM_IDENT. Default is Df.

DVar

A differential indeterminate of type DOM_IDENT. Default is x.

Ring

An arbitrary commutative differential ring of characteristic zero. Default is
Dom::ExpressionField(normal).

p

A polynomial expression in Var.

l

A list corresponding to the coefficients of the differential operator. If n is the length of l
then the result returned is l[1] + l[2]*Var + ... + l[n]*Var^(n-1).

eq

A linear homogeneous differential equation.

yx

A function of DVar representing the dependent variable of the above linear differential
equation.

Methods

Mathematical Methods

_mult — Multiplie linear differential operators

_mult(<a, b, …>)
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This method overloads the function _mult of the system kernel, i.e. one may use it either
in the form a * b * ... or in functional notation _mult(a, b, ...).

_negate — Negate a linear differential operator

_negate(a)

This method overloads the function _negate of the system kernel, i.e. one may use it
either in the form -a or in functional notation _negate(a).

_plus — Add linear differential operators and coefficient ring elements

_plus(<a, b, …>)

This method overloads the function _plus of the system kernel, i.e. one may use it either
in the form a + b + ... or in functional notation _plus(a, b, ...).

_power — Nth power of a linear differential operator

_power(a, n)

This method overloads the function _power of the system kernel, i.e., one may use it
either in the form a^n or in functional notation _power(a,n).

_subtract — Subtract a linear differential operator

_subtract(a, b)

This method overloads the function _subtract of the system kernel, i.e. one may use it
either in the form a - b or in functional notation _subtract(a, b).

adjoint — Adjoint of a linear differential operator

adjoint(a)

companionSystem — Companion matrix of a linear differential operator

companionSystem(a)

If a is not of positive degree, an error message is issued.

D — Derivative of a linear differential operator

D(<l>, a)
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Dpoly — Derivative of a linear differential operator

Dpoly(<l>, a)

Dpoly(l,a) computes the partial derivative of a with respect to l. If l = [1,...,1]
with length(l) = n then the method computes the n-th derivative a. If l = [] then
the result returned is a.

evalLODO — Applie an expression to a linear differential operator

evalLODO(a, f)

This method may be used either in the form a(f) or in functional notation
evalLODO(a,f).

exponentialZeros — Exponential zeros of a linear differential operator

exponentialZeros(a)

Note: This method only works when Ring is the field of rational functions in DVar.

factor — Factor a linear differential operator

factor(a)

Note: This method is only available when the base field Ring is the field of rational
functions in DVar. If a is of degree greater than or equal to 4 then only left and right
factors of degree 1 of a will be found. Otherwise, a complete factorization is returned.

This method overloads the function factor of the system kernel.

factors — List of irreducible factors of a linear differential operator

factors(a)

func_call — Applie an expression to a linear differential operator

func_call(a, f, <Unsimplified>)
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This method may be used either in the form a(f) or in functional notation
func_call(a,f).

leftDivide — Left division of 2 linear differential operators

leftDivide(a, b)

leftExtendedEuclid — Left extended Euclidean algorithm for linear differential operators

leftExtendedEuclid(a, b)

leftExtendedGcd — Coefficient in the left extended Euclidean algorithm

leftExtendedGcd(a, b)

leftGcd — Left greatest common divisor of linear differential operators

leftGcd(a, b)

leftLcm — Left least common multiple of linear differential operators

leftLcm(a, b)

leftQuotient — Left quotient of linear differential operators

leftQuotient(a, b)

leftRemainder — Left remainder of linear differential operators

leftRemainder(a, b)

makeIntegral — Integral form of a linear differential operator

makeIntegral(a)

monic — Normalize a linear differential operator

monic(a)

polynomialZeros — Polynomial zeros of a linear differential operator

polynomialZeros(a)
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Note: This method only works when Ring is the field of rational functions in DVar.

rationalZeros — Rational zeros of a linear differential operator

rationalZeros(a)

Note: This method only works when Ring is the field of rational functions in DVar.

rightDivide — Right division of 2 linear differential operators

rightDivide(a, b)

rightExtendedEuclid — Right extended Euclidean algorithm for linear differential
operators

rightExtendedEuclid(a, b)

rightExtendedGcd — Coefficient in the right extended Euclidean algorithm

rightExtendedGcd(a, b)

rightGcd — Right greatest common divisor of linear differential operators

rightGcd(a, b)

rightLcm — Right least common multiple of linear differential operators

rightLcm(a, b)

rightQuotient — Right quotient of linear differential operators

rightQuotient(a, b)

rightRemainder — Right remainder of linear differential operators

rightRemainder(a, b)

solve — Zero of a linear differential operator

solve(a, <Transform>, <Irreducible>)
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The algorithm for finding liouvillian solutions is complete for operators of degree
at most 2 and enables to solve partially operators of higher degree (i.e. it finds all
exponential solutions). The algorithm for finding solutions in terms of special functions
(nonliouvillian solutions) is not complete even for the degree 2.

When option Transform is given the unimodular transformation is performed
unconditionally and when option Irreducible is given, a is assumed to be irreducible.

Note: This method only works when Ring is the field of rational functions in DVar.

This method overloads the function solve of the system kernel.

symmetricPower — Symmetric power of a linear differential operator

symmetricPower(a, m)

unimodular — Unimodular transformation of a linear differential operator

unimodular(a, <Transform>)

If the option Transform is given then a is transformed unconditionally even if a has yet
a unimodular Galois group.

Access Methods

coeff — Coefficient of a linear differential operator

coeff(a)

coeff(a, Var, n)

coeff(a, n)

coeff(a,Var,n) returns the coefficient of the term Var^n as an element of the
coefficient ring Ring, where a is a linear differential operator in the variable Var.

coeff(a,n) returns the coefficient of the term Var^n as an element of the coefficient
ring Ring, where a is a linear differential operator in the variable Var.

This method overloads the function coeff of the system kernel.
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degree — Degree of a linear differential operator

degree(a)

The degree of the zero polynomial is defined as zero.

This method overloads the function degree for polynomials.

vectorize — List of coefficients of a linear differential operator

vectorize(a)

Conversion Methods

convert — Conversion to a linear differential operator

convert(a)

FAIL is returned if the conversion fails.

expr — Conversion into an object of a kernel domain

expr(a)

This method overloads the function expr of the system kernel.

TeX — TeX formatting of a linear differential operator

TeX(a)

This method is used by the function generate::TeX.

Algorithms

Some references on linear differential equations/operators:

• _mult, _divide, _invert, _power
• _plus, _negate, _subtract
• abs
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• cos, arccos, cosh, arccosh, cot, arccot, coth, arccoth, csc, arccsc, csch,
arccsch, sec, arcsec, sech, arcsech, sin, arcsin, sinh, arcsinh, tan, arctan,
tanh, arctanh

• dirac, heaviside
• exp, ln
• sign

See Also

MuPAD Domains
Dom::UnivariatePolynomial
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Dom::Matrix
Matrices

Syntax

Domain Creation

Dom::Matrix(<R>)

Element Creation

Dom::Matrix(R)(Array)

Dom::Matrix(R)(List)

Dom::Matrix(R)(ListOfRows)

Dom::Matrix(R)(Matrix)

Dom::Matrix(R)(m, n)

Dom::Matrix(R)(m, n, Array)

Dom::Matrix(R)(m, n, List)

Dom::Matrix(R)(m, n, ListOfRows)

Dom::Matrix(R)(m, n, Table)

Dom::Matrix(R)(m, n, [(i1, j1) = value1, (i2, j2) = value2, …])

Dom::Matrix(R)(m, n, f)

Dom::Matrix(R)(m, n, List, Diagonal)

Dom::Matrix(R)(m, n, g, Diagonal)

Dom::Matrix(R)(m, n, List, Banded)

Dom::Matrix(R)(1, n, Array)

Dom::Matrix(R)(1, n, List)

Dom::Matrix(R)(1, n, Table)
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Dom::Matrix(R)(1, n, [j1 = value1, j2 = value2, …])

Dom::Matrix(R)(m, 1, Array)

Dom::Matrix(R)(m, 1, List)

Dom::Matrix(R)(m, 1, Table)

Dom::Matrix(R)(m, 1, [i1 = value1, i2 = value2, …])

Description

Domain Creation

Dom::Matrix(R) creates domains of matrices over a component domain R of category
Cat::Rng (a ring, possibly without unit).

If the optional parameter R is not given, Dom::ExpressionField() is used as
component domain. Matrices of this type accept arbitrary MuPAD expressions (numbers,
symbols etc.) as entries. The name matrix is an alias for this default matrix domain
Dom::Matrix().

A vector with n entries is either an n×1 matrix (a column vector), or a 1×n matrix (a row
vector).

Arithmetical operations with matrices can be performed by using the standard
arithmetical operators of MuPAD.

E.g., if A and B are two matrices defined by Dom::Matrix(R), A + B computes the sum,
and A * B computes the product of the two matrices, provided that the dimensions are
appropriate.

Similarly, A^(-1) or 1/A computes the inverse of a square matrix A if it exists.
Otherwise, FAIL is returned. See “Example 1” on page 7-247.

Many system functions are overloaded for matrices, such as map, subs, has, zip, E.g.,
use conjugate to compute the complex conjugate of a matrix, norm to compute matrix
norms, or exp to compute the exponential of a matrix.

Most of the functions in the MuPAD linear algebra package linalg work with matrices.
For example, the command linalg::gaussJordan(A) performs Gauss-Jordan
elimination on A to transform A to its reduced row echelon form.
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See the documentation of linalg for a list of available functions of this package.

The domain Dom::Matrix(R) represents matrices over R of arbitrary size. Therefore, it
does not have any algebraic structure (other than being a set of matrices).

In this help page, we use the following notations for a matrix A (an element of
Dom::Matrix(R)):

• nrows(A) denotes the number of rows of A.
• ncols(A) denotes the number of columns of A.
• A row index is an integer in the range from 1 to nrows(A).
• A column index is an integer in the range from 1 to ncols(A).

Note: The number of rows and columns, respectively, of a matrix must be less than 231.

Note: The components of a matrix are no longer evaluated after the creation of the
matrix, i.e., if they contain free identifiers they will not be replaced by their values.

Element Creation

Dom::Matrix(R)(Array) and Dom::Matrix(R)(Matrix) create a new matrix with
the dimension and the components of Array and Matrix, respectively.

The components of Array or Matrix are converted to elements of the domain R. An error
message is issued if one of these conversions fails.

The creation of (sparse) matrices via arrays is useful for matrices of moderate size. Note
that indexed assignments to arrays are much faster than the corresponding indexed
assignments to matrices. However, since all elements of the array (including the zeroes)
need to be filled in before conversion to a (sparse) matrix, memory is wasted for very
large and very sparse matrices. In such a situation, one should define a table containing
only the non-zero elements and convert the table to a matrix (see below).

Dom::Matrix(R)(List) creates an m×1 column vector with components taken from the
nonempty list, where m is the number of entries of List.

One may also use a list of equations to create an object of Dom::Matrix. In this case the
entries of the list must be of the form (i, j) = value, where i and j denote the row
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and column index and value the coefficient of the matrix. i and j need to be positive
integers.

Dom::Matrix(R)(ListOfRows) creates an m×n matrix with components taken from
the nested list ListOfRows, where m is the number of inner lists of ListOfRows, and n
is the maximal number of elements of an inner list. Each inner list corresponds to a row
of the matrix. Both m and n must be non-zero.

If an inner list has less than n entries, the remaining components in the corresponding
row of the matrix are set to zero.

The entries of the inner lists are converted to elements of the domain R. An error
message is issued if one of these conversions fails.

The call Dom::Matrix(R)(m, n) returns the m×n zero matrix.

Use the method "identity" to create the n×n identity matrix.

The call Dom::Matrix(R)(m, n, Array) creates an m×n matrix with components
taken from Array, which must be an array or an hfarray. Array must have m n
operands. The first m operands define the first row, the next m operands define the
second row, etc. The formatting of the array is irrelevant. E.g., any array with 6 elements
can be used to create a matrix of dimension 1 ×6, or 2×3, or 3×2, or 6 ×1.

Dom::Matrix(R)(m, n, List) creates an m×n matrix with components taken row
after row from the non-empty list. The list must contain m n entries.

Dom::Matrix(R)(m, n, ListOfRows) creates an m×n matrix with components taken
from the list ListOfRows.

If m ≥ 2 and n ≥ 2, then ListOfRows must consist of at most m inner lists, each having at
most n entries. The inner lists correspond to the rows of the returned matrix.

If an inner list has less than n entries, the remaining components of the corresponding
row of the matrix are set to zero. If there are less than m inner lists, the remaining lower
rows of the matrix are filled with zeroes.

Dom::Matrix(R)(m, n, Table) creates an m×n matrix with components taken from
the table Table.

By defining the entries of the table first, one can easily create large and sparse matrices.
The entry Table[i, j] of the table will be the entry in the i-th row and the j-th
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column of the matrix. Therefore, the table needs to be indexed by positive integers i and
j.

Dom::Matrix(R)(m, n, [(i1, j1) = value1, (i2, j2) = value2, ...])

is a further way to create a matrix specifying only the non-zero entries A[i1, j1]
= value1, A[i2, j2] = value2 etc. The ordering of the entries in the input list is
irrelevant.

Dom::Matrix(R)(m, n, f) returns the matrix whose (i, j)-th component is the value
of the function call f(i, j). The row index i ranges from 1 to m and the column index j
from 1 to n.

The function values are converted to elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::Matrix(R)(1, n, Array) returns the 1 ×n row vector with components taken
from Array. The array or hfarray Array must have n entries.

The entries of the array are converted to elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::Matrix(R)(1, n, List) returns the 1 ×n row vector with components taken
from List. The list List must have at most n entries. If there are fewer entries, the
remaining vector components are set to zero.

The entries of the list are converted to elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::Matrix(R)(1, n, Table) returns the 1 ×n row vector with components taken
from Table. The table Table must not have more than n entries. If there are fewer
entries, the remaining vector components are regarded as zero.

Dom::Matrix(R)(m, 1, Array) returns the m×1 column vector with components
taken from Array. The array or hfarray Array must have m entries.

The entries of the array are converted to elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::Matrix(R)(m, 1, List) returns the m×1 column vector with components taken
from List. The list List must have at most m entries. If there are fewer entries, the
remaining vector components are set to zero.
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The entries of the list are converted to elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::Matrix(R)(m, 1, Table) returns the m×1 column vector with components
taken from Table. The table Table must have no more than m entries. If there are fewer
entries, the remaining vector components are regarded as zero.

Superdomain

Dom::BaseDomain

Axioms

If R has Ax::canonicalRep, then Ax::canonicalRep.

Categories

Cat::Matrix(R)

Examples

Example 1

Whenever possible, one should use Dom::ExpressionField() as the coefficient domain
of matrices – therefore Dom::ExpressionField() is the default coefficient domain of
matrices.

The components of matrices over Dom::ExpressionField() can be arbitrary
arithmetical expressions. Consider

Mat := Dom::Matrix()

We assigned the domain to the identifier Mat and now we can define a matrix A of two
rows, where each row is a list of two elements by the following line:
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A := Mat([[1, 5], [2, 3]])

In the same way, we define the following 2 ×3 matrix:

B := Mat([[-1, 5/2, 3], [1/3, 0, 2/5]])

and perform matrix arithmetic using the standard arithmetical operators of MuPAD,
e.g., the matrix product A B, the fourth power of A as well as the scalar multiplication of
A times :

A * B, A ^ 4, 1/3 * A

The matrices A and B have different dimensions, and therefore the sum of A and B is not
defined. MuPAD issues an error message:

A + B

Error: The dimensions do not match. [(Dom::Matrix(Dom::ExpressionField()))::_plus]

To compute the inverse of A, just enter:

1/A

If a matrix is not invertible, FAIL is the result of this operation. For example, the matrix:
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C := Mat(2, 2, [[2]])

is not invertible, hence:

C^(-1)

delete A, B, C:

Example 2

We create the domain of matrices over the coeffcient ring Dom::ExpressionField():

Mat := Dom::Matrix()

Beside standard matrix arithmetic, the library linalg offers many functions dealing with
matrices. For example, if one wants to compute the rank of a matrix, use linalg::rank:

A := Mat([[1, 2], [2, 4]])

linalg::rank(A)

Use linalg::eigenvectors to compute eigenvalues and eigenvectors of the matrix A:

linalg::eigenvectors(A)
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Try info(linalg) for a list of available functions, or enter help(linalg) for details
about the library linalg.

Some of the functions in the linalg package simply serve as “interface” functions
for methods of a matrix domain described above. For example, linalg::transpose
uses the method "transpose" to get the transposed matrix. The function
linalg::gaussElim applies Gaussian elimination to a matrix by calling the method
"gaussElim":

linalg::gaussElim(A) = A::dom::gaussElim(A)[1]

In contrast to the methods of the domain Dom::Matrix(R), the corresponding functions
of the linalg packages do extended checking of their input parameters. Note that there
might be minor differences in the functionality of the linalg functions and the matrix
methods. E.g., the option ColumnElimination is not available in linalg::gaussElim,
but only in the "gaussElim" method of the matrix domain:

A::dom::gaussElim(A, ColumnElimination)

delete A:

Example 3

We create the default matrix domain Dom::Matrix(). As a shortcut, this domain can
also be created via matrix:

A := matrix([[ 1, 2, 3, 4], 

                   [ 2, 0, 4, 1], 

                   [-1, 0, 5, 2]])

domtype(A)
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Matrix components can be extracted by the index operator []:

A[2, 1] * A[1, 2] - A[3, 1] * A[1, 3]

If one of the indices is not in its valid range, an error message is issued. Assignments to
matrix components are performed similarly:

delete a:

A[1, 2] := a^2: A

Beside the usual indexing of matrix components, it is also possible to extract submatrices
from a given matrix. The following call creates the submatrix of A which consists of the
rows 2 to 3 and columns 1 to 3 of A:

A[2..3, 1..3]

The index operator does not allow to insert submatrices into a given matrix. This is
implemented by the function linalg::substitute.

delete A:

Example 4

In the following examples, we demonstrate the different ways of creating matrices. We
work with matrices defined over the field ℤ19, i.e., the field of integers modulo 19. This
component ring can be created with the domain constructor Dom::IntegerMod.

We start by giving a list of rows, where each row is a list of row entries:
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MatZ19 := Dom::Matrix(Dom::IntegerMod(19)):

MatZ19([[1, 2], [2]])

The elements of the two inner lists, the row entries, were converted to elements of the
domain Dom::IntegerMod(19).

The number of rows is the number of sublists of the argument, i.e., m = 2. The number
of columns is determined by the length of the inner list with the most entries, which is
the first inner list with two entries. Missing entries in the other inner lists are treated as
zero components. The call:

MatZ19(4, 4, [[1, 2], [2]])

fixes the dimension of the matrix. Missing entries and inner lists are treated as zero
components and zero rows, respectively.

An error message is issued if one of the given entries cannot be converted to an element
over ℤ19:

MatZ19([[2, 3], [-1, I]])

Error: Cannot define a matrix over 'Dom::IntegerMod(19)'. [(Dom::Matrix(Dom::IntegerMod(19)))::new]

delete MatZ19:

Example 5

This example illustrates how to create a matrix with components given as values
of an index function. First we create the 2 ×2 Hilbert matrix (see also the functions
linalg::hilbert and linalg::invhilbert):

Dom::Matrix()(2, 2, (i, j) -> 1/(i + j - 1))
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Note the difference when working with expressions and functions. If you give an
expression it is treated as a function in the row and column indices:

delete x:

Dom::Matrix()(2, 2, x), Dom::Matrix()(2, 2, (i, j) -> x)

Example 6

Diagonal matrices can be created with the option Diagonal and a list of diagonal
components:

Mat := Dom::Matrix():

Mat(3, 4, [1, 2, 3], Diagonal)

Hence, to define the n×n identity matrix, you can enter:

Mat(3, 3, [1 $ 3], Diagonal)

or call:

Mat(3, 3, x -> 1, Diagonal)
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The easiest way to create the identity matrix, however, is to use the method
"identity":

Mat::identity(3)

delete Mat:

Example 7

Toeplitz matrices can be defined with the option Banded. The following call defines a
three-banded matrix with the component 2 on the main diagonal and the component - 1
on the first subdiagonal and superdiagonal:

Dom::Matrix()(4, 4, [-1, 2, -1], Banded)

Example 8

Some system functions can be applied to matrices, such as norm, expand, diff,
conjugate, or exp.

For example, to expand the components of the matrix:

delete a, b: 

A := Dom::Matrix()(

  [[(a - b)^2, a^2 + b^2], [a^2 + b^2, (a - b)*(a + b)]]

)
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enter:

expand(A)

If you want to differentiate the matrix components, then call for example:

diff(A, a)

To substitute matrix components by some values, enter:

subs(A, a = 1, b = -1)

The function zip can also be applied to matrices. The following call combines two
matrices A and B by dividing each component of A by the corresponding component of B:

A := Dom::Matrix()([[4, 2], [9, 3]]): 

B := Dom::Matrix()([[2, 1], [3,-1]]):

zip(A, B, `/`)

The quoted character `/` is another notation for the function _divide, the functional
form of the division operator /.

If one needs to apply a function to the components of a matrix, then use the function map.
For example, to simplify the components of the matrix:

C := Dom::Matrix()(

  [[sin(x)^2 + cos(x)^2, cos(x)*tan(x)], 

  [(a^2 - b^2)/(a + b), 1]]
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)

call:

map(C, Simplify)

delete A, B, C:

Example 9

However, there may appear some unexpected results using the function diff in the
context of matrices. The derivative of the following unspecified function f of a matrix is
computed due to the chain rule:

diff(f(matrix([[a*x^2, b], [c, d]])), x)

Usually, the function f would implicitly be assumed to be scalar. Hence, the derivative
of f should be scalar as well. In the above situation the chain rule is applied for
differentiation: the inner function is the matrix containing the symbolic components
a*x^2, b, c and d. Its derivative is computed by simply applying diff to each component
of the matrix:

diff(matrix([[a*x^2, b], [c, d]]), x)
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Finally, the exterior unspecified function f is implicitly assumed to be scalar, such that
each component of the derivative of the inner function is multiplied by the exterior
differentiation.

Example 10

A column vector is represented by a 2×1 matrix:

Mat := Dom::Matrix():

v := Mat(2, 1, [1, 2])

The dimension of this vector is:

Mat::matdim(v)

The length of a vector may also be queried by linalg::vecdim or nops(v):

linalg::vecdim(v)

The ith component of this vector can be extracted in two ways: either by v[i, 1] or by
v[i]:

v[1], v[2]

We compute the 2-norm of v by the following call:

norm(v, 2)

delete Mat, v:
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Example 11

We create random matrices over the field of the rational numbers. Consider a random
matrix A1 with 3 rows and 3 columns:

Mat := Dom::Matrix(Dom::Rational):

A1 := Mat::random(3, 3)

A second matrix A2 should contain at most 2 non-zero entries. We can create such a
matrix by using 2 as the third argument for random:

A2 := Mat::random(3, 3, 2)

The product of these matrices is given by

C := A1 * A2

By default, matrices are displayed like 'dense' arrays with zeroes in the empty places.
For sparse matrices of large column and/or row dimension, such a 'dense' print mode is
not appropriate: formatting of the print output would be very time consuming. Further,
a 'dense' print output is not very informative for sparse matrices. For this reason, the
"doprint" method provides a sparse output mode printing only the non-zero entries:
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C::dom::doprint(C)

With this method, one can also print large sparse matrices. We create a random sparse
matrix with 100 rows, 200 columns and at most 6 non-zero entries:

X := Mat::random(100, 200, 6):  print(X)

Warning: This matrix is too large for display. To see all nonzero entries of a matrix A, use 'A::dom::doprint(A)'. [(Dom::Matrix(Dom::Rational))::print]

The warning speaks for itself. X is regarded as 'too large for display' since, with the
default 'dense' output mode, the sparse matrix would be printed as a huge array-like
structure of dimension 100×200 with (integer) zeroes in the empty places. The sparse
print mode should be used:

X::dom::doprint(X)

For convenience, there is a function doprint that calls this method by just entering:

doprint(X)

delete Mat, A1, A2, C, X:

Parameters

R

A ring, i.e., a domain of category Cat::Rng. The default ring is
Dom::ExpressionField().
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Array

A one- or two-dimensional array or hfarray

Matrix

A matrix, i.e., an element of a domain of category Cat::Matrix

m, n

Matrix dimension (positive integers)

List

A list of matrix components

ListOfRows

A list of at most m rows; each row given as a list of at most n matrix components

Table

A table of coefficients of the matrix for sparse input

f

A function or a functional expression with two parameters (the row and column index)

g

A function or a functional expression with one parameter (the row index)

Options

Diagonal

Create a diagonal matrix

With the option Diagonal, diagonal matrices can be created with diagonal elements
taken from a list, or computed by a function or a functional expression.

7-260



 Dom::Matrix

Dom::Matrix(R)(m, n, List, Diagonal) creates the m×n diagonal matrix, whose
diagonal elements are the entries of List.

List must have at most min(m, n) entries. If it has fewer elements, the remaining
diagonal elements are set to zero.

The entries of List are converted to elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::Matrix(R)(m, n, g, Diagonal) returns the sparse matrix whose ith diagonal
element is g(i, i), where the index i runs from 1 to min(m, n).

The function values are converted to elements of the domain R. An error message is
issued if one of these conversions fails.

Banded

Create a Toeplitz matrix

Dom::Matrix(R)(m, n, List, Banded) creates an m×n Toeplitz matrix with the
elements of List as entries. The number of entries of List must be odd, say 2 h + 1, and
must not exceed 2 min(m, n) - 1. The bandwidth of the resulting matrix is at most 2 h + 1.

A Toeplitz matrix is a matrix where the elements of each band are identical. See also
“Example 7” on page 7-254.

All elements of the main diagonal of the created matrix are initialized with the middle
element of List. All elements of the i-th subdiagonal are initialized with the (h + 1 - i)-
th element of List. All elements of the i-th superdiagonal are initialized with the (h + 1
+ i)-th element of List. All entries on the remaining sub- and superdiagonals are set to
zero.

The entries of List are converted to elements of the domain R. An error message is
issued if one of these conversions fails.

Entries

"isSparse" is always TRUE.
"randomDimen" is set to [10, 10]. See the method

"random" below for details.
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Methods

Mathematical Methods

_divide — Divide matrices

_divide(A, B)

An error message is issued if the dimensions of A and B do not match.

This method only exists if R is a commutative ring with a unit, i.e., a domain of category
Cat::Ring.

This method overloads the system function _divide for matrices, i.e., one may use it in
the form A / B, or in functional notation: _divide(A, B).

_invert — Compute the inverse of a matrix

_invert(A, Normal = b)

This method only exists if R is a domain of category Cat::Ring.

This method overloads the system function _invert for matrices, i.e., one may use it in
the form 1/A or A^(-1), or in functional notation: _invert(A).

If Normal = TRUE, then the matrix inverse is always returned in a normalized form.
For details about normalization, see normal. If Normal = FALSE, then the matrix
inverse can appear in a normalized form, but normalization is not guaranteed. By default
Normal = TRUE.

Normal affects the results only if a matrix contains variables or exact expressions, such
as sqrt(5) or sin(PI/7).

_mod — Map the modulo operator to the elements of a matrix

_mod(A, n)

n must be non-zero, and a mod n must be defined for every entry a of A.

This method overloads the function _mod for matrices; one may use it in the form A mod
n, or in functional notation: _mod(A, n).
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_mult — Multiplie matrices by matrices, vectors and scalars

_mult(x, y)

_mult(x, y)

If y is of the domain type R or can be converted to such an element, the corresponding
scalar multiplication is computed.

Otherwise, y is converted to a matrix of the domain type of x. If this conversion fails, this
method calls the method "_mult" of the domain of y giving all arguments in the same
order.

If x is a matrix of the same domain type as y, the matrix product x y is computed. An
error message is issued if the dimensions of the matrices do not match.

If x is of the domain type R or can be converted to such an element, the corresponding
scalar multiplication is computed.

Otherwise, x is converted to a matrix of the domain type of y. If this conversion fails,
FAIL is returned.

This method handles more than two arguments by calling itself recursively with the first
half of all arguments and the last half of all arguments. Then the product of these two
results is computed with the system function _mult.

This method overloads the system function _mult for matrices, i.e., one may use it in the
form x * y, or in functional notation: _mult(x, y).

_negate — Negate a matrix

_negate(A)

This method overloads the system function _negate for matrices, i.e., one may use it in
the form -A, or in functional notation: _negate(A).

_plus — Add matrices

_plus(A, B, …)

The arguments A, B , ... are converted to matrices of the domain type
Dom::Matrix(R). FAIL is returned if one of these conversions fails.
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This method overloads the system function _plus for matrices, i.e., one may use it in the
form A + B, or in functional notation: _plus(A, B).

_power — Integer power of a matrix

_power(A, n)

If the power n is a negative integer then A must be nonsingular and R must be a domain
of category Cat::IntegralDomain. Otherwise FAIL is returned.

If n is zero and the component ring R is a ring with no unit (i.e., of category Cat::Rng,
but not of category Cat::Ring), FAIL is returned.

This method overloads the system function _power for matrices, i.e., one may use it in
the form A^n, or in functional notation: _power(A, n).

conjugate — Complex conjugate of a matrix

conjugate(A)

This method only exists if R implements the method "conjugate", which computes the
complex conjugate of an element of the domain R.

This method overloads the system function conjugate for matrices, i.e., one may use it
in the form conjugate(A).

cos — Cosine of a matrix

cos(A)

If A is not square, an error message is issued. If the component domain of A does not
allow the computation of cos(elem) for an arbitrary element elem of the component
ring, FAIL is returned.

This method uses the function numeric::expMatrix for a floating-point approximation
of the exponential of A if A is defined over the domain Dom::Float.

If some eigenvalues of A do not exist in R or cannot be computed, then FAIL is returned.

In the symbolic case the functions exp and linalg::jordanForm are called. The latter
may not be able to compute the Jordan form of A. In this case FAIL is returned.
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This method only exists if R is a domain of category Cat::Field.

This method overloads the function cos for matrices, i.e., one may use it in the form
cos(A).

diff — Differentiation of matrix components

diff(A, …)

This method only exists if R implements the method "diff".

This method overloads the system function diff for matrices, i.e., one may use it in
the form diff(A, ...). See “Example 8” on page 7-254 and “Example 9” on page
7-256.

equal — Equality test of matrices

equal(A, B)

Note that if R has the axiom Ax::systemRep then normal is used to simplify the
components of A and B before testing their equality.

exp — Exponential of a matrix

exp(A, <t>)

If A is not square, an error message is issued. If the component domain of A does not
allow the computation of exp(elem) for an arbitrary element elem of the component
ring, FAIL is returned.

This method uses the function numeric::expMatrix for a floating-point approximation
of the exponential of A if A*t contains at least one floating-point number and all entries
can be converted to floating-point numbers.

If some eigenvalues of A do not exist in R or cannot be computed, then FAIL is returned.

In the symbolic case, the function linalg::jordanForm is called, which may not be
able to compute the Jordan form of A. In this case FAIL is returned.

This method only exists if R is a domain of category Cat::Field.

This method overloads the system function exp for matrices, i.e., one may use it in the
form exp(A, ...).
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expand — Expand matrix components

expand(A)

This method only exists if R implements the method "expand", or if R has the axiom
Ax::systemRep (in this case, the system function expand is used).

This method overloads the system function expand for matrices, i.e., one may use it in
the form expand(A).

factor — Scalar-matrix factorization

factor(A)

The factor s is the gcd of all components of the matrix A. Hence, this method only exists if
R is of category Cat::GcdDomain.

This method overloads the system function factor for matrices, i.e., one may use it in
the form factor(A).

float — Floating-point approximation of the matrix components

float(A)

This method only exists if R implements the method "float".

Note: Usually the floating-point approximations are not elements of R! For example,
Dom::Integer implements such a method, but the floating-point approximation of an
integer cannot be re-converted to an integer.

This method checks whether the resulting matrix can be converted to the domain type
of A only if testargs() returns TRUE (e.g., if one calls this method from the interactive
level of MuPAD).

Otherwise, one has to take care that the matrix returned is compatible with its
component ring.

fourier — Fourier transform of the matrix components

fourier(A, t, s)

7-266



 Dom::Matrix

This method overloads the function fourier for matrices.

gaussElim — Gaussian elimination for matrices

gaussElim(A, <ColumnElimination>)

With the option ColumnElimination, the matrix A is reduced to a lower triangular
echelon form via elementary column operations (without ColumnElimination, the
Gauss algorithm uses elementray row operations to obtain the upper echelon form). The
following relation holds: transpose(gaussElim(A, ColumnElimination)[1]) =
gaussElim(transpose(A))[1]. With ColumnElimination, the last entry of the
returned list is the set of characteristic column indices of A.

For very large m×n matrices A with m much greater n, the column elimination is faster
than the row elimination.

If the matrix is not square, i.e., the determinant of A is not defined, then the third entry
of the returned list is the value FAIL.

This method only exists if the component ring R is an integral domain, i.e., a domain of
category Cat::IntegralDomain.

If R has the method "pivotSize", the pivot element of smallest size is chosen at every
pivoting step, whereby pivotSize must return a positive integer representing the “size”
of an element.

If no such method is defined, Gaussian elimination without a pivot strategy is applied to
A.

If R has the axiom Ax::efficientOperation("_invert") and is of category
Cat::Field, ordinary Gaussian elimination is used. Otherwise, fraction-free
elimination is performed on A.

If R implements the method "normal", it is used to simplify subsequent computations of
the Gaussian elimination process.

Note that if R does not implement the method "normal", but the elements of R are
represented by kernel domains, i.e., R has the axiom Ax::systemRep, the system
function normal is used instead.

identity — Identity matrix

identity(n)
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This method only exists if the component ring R is of category Cat::Ring, i.e., a ring
with unit.

int — Integration of matrix components

int(A, …)

This method only exists if R implements the method "int".

This method overloads the system function int for matrices, i.e., one may use it in the
form int(A, ...).

ifourier — Inverse Fourier transform of the matrix components

ifourier(A, s, t)

This method overloads the function ifourier for matrices.

ilaplace — Inverse Laplace transform of the matrix components

ilaplace(A, s, t)

This method overloads the function ilaplace for matrices.

iszero — Test for zero matrices

iszero(A)

Note that there may exist more than one representation of the zero matrix of a given
dimension if R does not have Ax::canonicalRep.

If R implements the method "normal", it is used to simplify the components of A for the
zero-test.

Note that if R does not implement such a method, but the elements of R are represented
by kernel domains, i.e., R has the axiom Ax::systemRep, the system function normal is
used instead.

This method overloads the system function iszero for matrices, i.e., one may use it in
the form iszero(A).

laplace — Laplace transform of the matrix components

laplace(A, t, s)
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This method overloads the function laplace for matrices.

matdim — Matrix dimension

matdim(A)

norm — Norm of matrices and vectors

norm(A, Infinity)

norm(A, Maximum)

norm(v, Infinity)

norm(v, Maximum)

norm(A, Frobenius)

norm(A, 1)

norm(v, Euclidean)

norm(v, k)

norm(A, Maximum) computes the maximum norm of the matrix A, which is the
maximum row sum (the row sum is the sum of norms of each component in a row).

If the domain R does not implement the methods "max" and "norm", FAIL is returned.

Using norm(v, Infinity) for a vector v the maximum norm of all elements is
returned.

If the domain R does not implement the methods "max" and "norm", FAIL is returned.

Using norm(v, Maximum) for a vector v the maximum norm of all elements is returned.

If the domain R does not implement the methods "max" and "norm", FAIL is returned.

norm(A, Frobenius) computes the Frobenius norm of A, which is the square root of
the sum of the squares of the norms of each component.

If the result is no longer an element of the domain R, or if R does not implement the
method "norm", FAIL is returned.

7-269



7 Dom – Domains

norm(A, 1) computes the 1-norm of the matrix A, which is the maximum sum of the
norms of the elements of each column. If R does not implement the methods "max" and
"norm", FAIL is returned.

norm(v, Euclidean) computes the Euclidean norm (2-norm) of the vector v, which is
defined to be the square root of the sum of the norms of the elements of v raised to the
square.

FAIL is returned if the result is no longer an element of the domain R. The function
linalg::scalarProduct is used to compute the Euclidean norm of the vector v.

If R does not implement the method "norm", FAIL is returned.

norm(v, k) computes the k-norm of the vector v, which is defined to be the kth root of
the sum of the norms of the elements of v raised to the kth power.

FAIL is returned if the result is no longer an element of the domain R. For k = 2, the
function linalg::scalarProduct is used to compute the 2-norm of v.

If R does not implement the method "norm", FAIL is returned.

The method norm overloads the function norm for matrices, i.e., one may use it in the
form norm(A k ), where k is either Infinity, Frobenius, or a positive integer. The
default value of k is Infinity.

normal — Simplification of matrix components

normal(A)

If R does not implement the method "normal", but the elements of R are represented by
kernel domains, i.e., R has the axiom Ax::systemRep, the system function normal is
applied to the components of A. Otherwise normal(A) returns A without any changes.

This method overloads the system function normal for matrices, i.e., one may use it in
the form normal(A).

nonZeros — Number of non-zero components of a matrix

nonZeros(A)

nonZeroes — Number of non-zero components of a matrix

nonZeroes(A)
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nonZeroOperands — Return a sequence of all non-zero operands

nonZeroOperands(A)

This method is useful for retrieving information on the non-zero entries. For example,
to find out the types of the entries in the matrix, one should not consider all operands
op(A), because this would also involve the zero entries. For large matrices with few
entries, it is much more efficient to use this method to extract the entries.

random — Random matrix generation

random()

random(g)

random(m, n)

random(m, n, g)

random(m, n, p)

random(m, n, p, g)

The dimension of the matrix is also chosen randomly. The matrix size is limited by
the values "randomDimen" (see “Entries” above). To change the value of the entry
"randomDimen", one must first unprotect the domain Dom (see unprotect for details).

When calling the "random" method with one parameter g, this parameter is regarded as
a random generator. The matrix entries are created by the calls g() which must return
elements of the coefficient ring R.

The dimension of the matrix is chosen randomly as above.

When calling the "random" method with two positive integers m and n, a random
matrix with m rows and n columns is created. Its elements are generated by the method
"random" of the component ring R. If R::random does not exist, FAIL is returned.

random(m,n,g) creates a matrix with m rows and n columns. The third parameter g is
regarded as a random generator. The matrix entries are created by the calls g() which
must return elements of the coefficient ring R.

When calling the "random" method with positive integers m, n and a nonnegative integer
p, a sparse matrix with m rows, n columns and at most p non-zero entries is created.
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These entries are generated by the function "random" of the component ring R. If
R::random does not exist, FAIL is returned.

The integer p must satisfy 0 ≤ p ≤ m n.

When calling the "random" method with four parameters, a sparse matrix with m rows,
n columns and at most p non-zero entries is created. The fourth parameter g is regarded
as a random generator. The matrix entries are created by the calls g() which must
return elements of the coefficient ring R.

The integer p must satisfy 0 ≤ p ≤ m n.

sin — Sine of a matrix

sin(A)

If A is not square, an error message is issued. If the component domain of A does not
allow the computation of sin(elem) for an arbitrary element elem of the component
ring, FAIL is returned.

This method uses the function numeric::expMatrix for a floating-point approximation
of the exponential of A if A is defined over the domain Dom::Float.

If some eigenvalues of A do not exist in R or cannot be computed, then FAIL is returned.

In the symbolic case the functions exp and linalg::jordanForm are called. The latter
may not be able to compute the Jordan form of A. In this case FAIL is returned.

This method only exists if R is a domain of category Cat::Field.

This method overloads the function sin for matrices, i.e., one may use it in the form
sin(A).

sqrt — Square root of a matrix

sqrt(A, <sqrtfunc>)

Returned is a matrix B with B2 = A such that the eigenvalues of B are the square roots
of the eigenvalues of A or FAIL if the square root of the matrix does not exist. For
computing the square roots of the eigenvalues a function satisfying sqrtfunc(a)2 = a for
every element a of the coefficient ring of A can be given as optional second argument.

For details we refer to the help page of the function linalg::sqrtMatrix.
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testeq — Testing for equality of two matrices

testeq(A, B)

tr — Trace of a square matrix

tr(A)

If A is not square, an error message is issued.

transpose — Transpose of a matrix

transpose(A)

Access Methods

_concat — Horizontal concatenation of matrices

_concat(A, B, …)

This method overloads the system function _concat for matrices, i.e., one may use it in
the form A . B . ..., or in functional notation: _concat(A, B, ...).

_index — Matrix indexing

_index(A, i, j)

_index(A, r1 .. r2, c1 .. c2)

_index(v, i)

_index(v, i1 .. i2)

If i and j are not integers, the call of this method returns in its symbolic form (of type
"_index") with evaluated arguments.

Otherwise an error message is given, if i and j are not valid row and column indices,
respectively.

Note: Note that this method uses the system function context to evaluate the entry in
the context of the calling environment.
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_index(A,r1..r2,c1..c2) returns the submatrix of A created by the rows of A with
indices from r1 to r2 and the columns of A with indices from c1 to c2.

This method returns the ith entry of the vector v.

An error message is issued if v is not a vector.

If i is not an integer, the call of _index(v,i) returns in its symbolic form (of type
"_index") with evaluated arguments.

Otherwise an error message is given, if i is less than one or greater than the dimension
of v.

Note: Note that this method uses the system function context to evaluate the entry in
the context of the calling environment.

_index(v,i1..i2) returns the subvector of v, formed by the entries with index i1 to
i2. See also the method "op".

An error message is issued if v is not a vector.

_index overloads the system function _index for matrices, i.e., one may use it in
the form A[i, j], A[r1..r2, c1..c2], v[i] and v[i1..i2], respectively, or in
functional notation: _index(A, ...).

addCol — Addition of a multiple of one column to the multiple of another column

addCol(A, i, j, f, <g>)

i and j must be positive integers smaller than or equal to the number of columns of the
matrix A.

If f and g are not elements of the coefficient domain R of the matrix A and cannot be
converted to R, FAIL is returned.

addRow — Addition of a multiple of one row to the multiple of another row

addRow(A, i, j, f, g)

i and j must be positive integers smaller than or equal to the number of rows of the
matrix A.
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If f and g are not elements of the coefficient domain R of the matrix A and cannot be
converted to R, FAIL is returned.

concatMatrix — Horizontal concatenation of matrices

concatMatrix(A, B, …)

col — Extracting a column of a matrix

col(A, c)

An error message is issued if c is less than one or greater than the number of columns of
A.

delCol — Deleting a column of a matrix

delCol(A, c)

NIL is returned if A consists of only one column.

An error message is issued if c is less than one or greater than the number of columns of
A.

delRow — Deleting a row of a matrix

delRow(A, r)

NIL is returned if A consists of only one row.

An error message is issued if r is less than one or greater than the number of rows of A.

evalp — Evaluating matrices of polynomials at a certain point

evalp(A, x = a, …)

This method is only defined if R is a polynomial ring of category Cat::Polynomial.

This method overloads the system function evalp for matrices, i.e., one may use it in the
form evalp(A, x = a).

length — Length of a matrix

length(A)
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This method overloads the system function length for matrices, i.e., one may use it in
the form length(A).

map — Apply a function to matrix components

map(A, f, <p1, p2, …>)

Note: Note that values returned by f are converted to elements of the domain R only
if testargs() returns TRUE (i.e., if one calls this method from the interactive level of
MuPAD).

If testargs() returns FALSE, one must guarantee that f returns elements of the
domain type R. Otherwise, the resulting matrix will have components which are not
elements of the component ring R!

Note: If the function f does not map the zero element of the component ring to the zero
element, a sparse matrix will change into a dense matrix. This may lead to memory
problems when dealing with very large (sparse) matrices.

Note that there is the method "mapNonZeroes" which maps a function to the non-zero
entries of the matrix only.

This method overloads the system function map for matrices, i.e., one may use it in the
form map(A, f p1 , p2 , , …).

mapNonZeroes — Apply a function to the non-zero components of a (sparse) matrix

mapNonZeroes(A, f, <p1, p2, …>)

multCol — Multiplication of one column by a scalar factor

multCol(A, i, f)

i must be a positive integer smaller than or equal to the number of columns of the matrix
A.

If f is not an element of the coefficient domain R of the matrix A and cannot be converted
to R, FAIL is returned.
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multRow — Multiplication of one row by a scalar factor

multRow(A, i, f)

i must be a positive integer smaller than or equal to the number of rows of the matrix A.

If f is not an element of the coefficient domain R of the matrix A and cannot be converted
to R, FAIL is returned.

nops — Number of components of a matrix

nops(A)

This method overloads the system function nops for matrices, i.e., one may use it in the
form nops(A).

op — Component of a matrix

op(A, i)

op(A)

This method returns an expression sequence of all components of A.

See also the method "_index".

This method overloads the system function op for matrices, i.e., one may use it in the
form op(A, i) and op(A), respectively.

row — Extracting a row from a matrix

row(A, r)

An error message is issued if r is less than one or greater than the number of rows of A.

setCol — Replacing a column of a matrix

setCol(A, c, v)

An error message is issued if c is less than one or greater than the number of rows of A.

setRow — Replacing a row of a matrix

setRow(A, r, v)
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An error message is issued if r is less than one or greater than the number of rows of A.

stackMatrix — Vertical concatenation of matrices

stackMatrix(A, B, …)

An error message is issued if the given matrices do not have the same number of
columns.

subs — Substitution of matrix components

subs(A, …)

Note: Note that the function values are converted to elements of the domain R only if
testargs() returns TRUE (e.g., if one calls this method from the interactive level of
MuPAD).

If testargs() returns FALSE, one must guarantee that f returns elements
of the domain type R. Otherwise, the resulting matrix, which is of domain type
Dom::Matrix(R), would have components which are not elements of the domain R!

This method overloads the system function subs for matrices, i.e., one may use it in the
form subs(A, ...).

subsex — Extended substitution of matrix components

subsex(A, …)

Note: Note that the results of the substitutions are converted to elements of the domain R
only if testargs() returns TRUE (e.g., if one calls this method from the interactive level
of MuPAD).

If testargs() returns FALSE, one must guarantee that the results of the substitutions
are of the domain type R, otherwise the resulting matrix, which is of domain type
Dom::Matrix(R), would have components which are not elements of the domain R!

This method overloads the system function subsex for matrices, i.e., one may use it in
the form subsex(A, ...).
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subsop — Operand substitution of matrix components

subsop(A, i = x, …)

Note: Note that x is converted to the domain R only if testargs() returns TRUE (e.g., if
one calls this method from the interactive level of MuPAD).

If testargs() returns FALSE, x must be an element of R, otherwise the resulting
matrix, which is of domain type Dom::Matrix(R), would have components which are
not elements of the domain R!

See also the method "set_index".

This method overloads the system function subsop for matrices, i.e., one may use it in
the form subsop(A, ...).

swapCol — Swapping matrix columns

swapCol(A, c1, c2)

swapCol(A, c1, c2, r1 .. r2)

An error message is issued if one of the column indices is less than one or greater than
the number of columns of A.

swapCol(A,c1,c2,r1..r2) swaps the column with index c1 and the column with
index c2 of A, but by taking only those column components which lie in the rows with
indices r1 to r2.

An error message is issued if one of the column indices is less than one or greater than
the number of columns of A, or if one of the row indices is less than one or greater than
the number of rows of A.

swapRow — Swapping matrix rows

swapRow(A, r1, r2)

swapRow(A, r1, r2, c1 .. c2)

An error message is issued if one of the row indices is less than one or greater than the
number of rows of A.
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swapCol(A,r1,r2,c1..c2) swaps the row with index r1 and the row with index r2 of
A, but by taking only those row components which lie in the columns with indices c1 to
c2.

An error message is issued if one of the row indices is less than one or greater than the
number of rows of A, or if one of the column indices is less than one or greater than the
number of columns of A.

set_index — Setting matrix components

set_index(A, i, j, x)

set_index(v, i, x)

Note: Note that x is converted into an element of the domain R only if testargs returns
TRUE and i and j are integers (e.g., if one calls this method from the interactive level of
MuPAD). If x is a matrix of the same type as A or can be converted into a matrix of the
same type as A and the indices i or j are ranges corresponding to a submatrix of A, then
x replaces the corresponding submatrix in A.

Otherwise one has to take care that x is of domain type R.

See also the method "subsop".

set_index(v,i,x) replaces the ith entry of the vector v by x.

set_index on vectors overloads the function set_index for matrices, i.e., one may use
it in the form A[i, j] := x and v[i] := x, respectively, or in functional notation:
A := set_index(A, i, j, x) or v := set_index(v, i, x).

zip — Combine matrices component-wise

zip(A, B, f, <p1, p2, …>)

The row number of the matrix returned is the minimum of the row numbers of A and B.
Its column number is the minimum of the column numbers of A and B.

Note: Note that the values returned by f are converted to elements of the domain R only
if testargs() returns TRUE (i.e., if one calls this method from the interactive level of
MuPAD).
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If testargs() returns FALSE, one must guarantee that f returns elements of the
domain type R. Otherwise, the resulting matrix will have components which are not
elements of the component ring R!

This method overloads the system function zip for matrices, i.e., one may use it in the
form zip(A, B, f p1 , p2 , , …).

Conversion Methods

convert — Conversion to a matrix

convert(x)

FAIL is returned if the conversion fails.

x may either be an array, a matrix, or a list (of sublists, see the parameter ListOfRows
in “Creating Elements” above). Their entries must then be convertible into elements of
the domain R.

convert_to — Matrix conversion

convert_to(A, T)

T may either be DOM_ARRAY, DOM_LIST, or a domain constructed by Dom::Matrix
or Dom::SquareMatrix. The elements of A must be convertible into elements of the
domain R.

Use the function expr to convert A into an object of a kernel domain (see below).

create — Defining matrices without component conversions

create(x, …)

This method works more efficiently than if one creates matrices by calling the method
"new" of the domain, because it avoids any conversion of the components. One must
guarantee that the components have the correct domain type, otherwise run-time errors
can be caused.

expr — Conversion of a matrix to an object of a kernel domain

expr(A)
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The result is an array representing the matrix A where each entry is an object of a kernel
domain.

This method overloads the system function expr for matrices, i.e., one may use it in the
form expr(A).

expr2text — Conversion of a mtrix to a string

expr2text(A)

This method overloads the system function expr2text for matrices, i.e., one may use it
in the form expr2text(A).

TeX — TeX formatting of a matrix

TeX(A)

Note that in the case of very large matrices the output will not be useful. For printing
large matrices use the function "doprint" to obtain a sparse matrix output displaying
all non-zero entries. Alternatively, use the matrix slot "setPrintMaxSize" to set
the maximal size of matrices that will be printed like “dense” arrays with zero entries
displayed as the integer 0.

The method "TeX" of the component ring R is used to get the TeX-representation of each
component of A.

This method is used by the function generate::TeX.

Technical Methods

assignElements — Multiple assignment to matrices

assignElements(A, …)

The assigned components must have the domain type R, an implicit conversion of the
components into elements of domain type R is not performed.

This method overloads the system function assignElements for matrices, i.e., one may
use it in the form assignElements(A, ...).
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mkSparse — Conversion of an array or a list of lists to a sparse structure

mkSparse(Array)

mkSparse(List)

mkSparse(r, c, List)

The 'sparse structure' s is a list of c univariate polynomials that is used to store the non-
trivial elements of the columns of matrices.

mkSparse(List) tries to convert the list List into a a sparse structure. The result is
either FAIL if this is not possible, or the list [s, [r, c]], where the positive integers
r and c are the dimension of the corresponding matrix. The 'sparse structure' s is a list
of univariate polynomials that is used to store the non-trivial elements of the columns of
matrices.

See the parameters List and ListOfRows in “Creating Elements” above for admissible
formats of List.

The matrix is regarded as a column or a row vector, if r or c is equal to one. T

mkSparse(r,c,List) tries to convert the list List into a sparse structure representing
a matrix of dimension r times c.

The result is either FAIL if this is not possible, or the list [s, [r, c]]. The 'sparse
structure' s is a list of univariate polynomials that is used to store the non-trivial
elements of the columns of matrices.

The matrix is regarded as a column or a row vector, if r or c is equal to one. T

print — Printing matrices

print(A)

Note: Note that it will not be useful to print very large sparse matrices with lots of
zero coefficients in this way – printing such matrices can be done by using the function
"doprint".

Use the matrix slot "setPrintMaxSize" to set the maximal size of matrices that will be
printed like “dense” arrays with zero entries displayed as the integer 0.
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doprint — Printing large sparse matrices

doprint(A)

setPrintMaxSize — Set the maximal size of matrices that will be printed like “dense”
arrays

setPrintMaxSize(printMaxSize)

The value of the parameter printMaxSize may also be infinity. In this case, matrices
of arbitrary size are printed like “dense” arrays.

This method returns the previous value of printMaxSize.

The default value is printMaxSize = 500.

unapply — Create a procedure from a matrix

unapply(A, <x, …>)

This method overloads the system function fp::unapply for matrices, i.e., one may use
it in the form fp::unapply(A).

See Also

MuPAD Domains
Dom::DenseMatrix | Dom::DenseMatrix | Dom::MatrixGroup |
Dom::SquareMatrix

MuPAD Functions
densematrix | matrix
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Dom::MatrixGroup
The Abelian group of matrices

Syntax

Domain Creation

Dom::MatrixGroup(m, n, <R>)

Element Creation

Dom::MatrixGroup(m, n, R)(Array)

Dom::MatrixGroup(m, n, R)(Matrix)

Dom::MatrixGroup(m, n, R)(<m, n>)

Dom::MatrixGroup(m, n, R)(<m, n>, List)

Dom::MatrixGroup(m, n, R)(<m, n>, ListOfRows)

Dom::MatrixGroup(m, n, R)(<m, n>, f)

Dom::MatrixGroup(m, n, R)(<m, n>, List, <Diagonal>)

Dom::MatrixGroup(m, n, R)(<m, n>, g, <Diagonal>)

Dom::MatrixGroup(m, n, R)(<m, n>, List, <Banded>)

Description

Domain Creation

Dom::MatrixGroup(m, n, R) creates a domain which represents the Abelian
group of m×n matrices over the component ring R, i.e., it is a domain of category
Cat::AbelianGroup.

The domain Dom::ExpressionField() is used as the component ring for the matrices
if the optional parameter R is not given.
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For matrices of a domain created by Dom::MatrixGroup(m, n, R), matrix arithmetic
is implemented by overloading the standard arithmetical operators +, -, *, / and ^.
All functions of the linalg package dealing with matrices can be applied.

Dom::MatrixGroup(m, n, R) has the domain Dom::Matrix(R) as its super
domain, i.e., it inherits each method which is defined by Dom::Matrix(R) and not re-
implemented by Dom::MatrixGroup(m, n, R).

Methods described below are implemented by Dom::MatrixGroup.

The domain Dom::Matrix(R) represents matrices over R of arbitrary size, and it
therefore does not have any algebraic structure (except of being a set of matrices).

The domain Dom::SquareMatrix(n, R) represents the ring of n×n matrices over R.

Element Creation

Dom::MatrixGroup(m, n, R)(Array) and Dom::MatrixGroup(m, n, R)
(Matrix) create a new matrix formed by the entries of Array and Matrix, respectively.

The components of Array and Matrix, respectively, are converted into elements of the
domain R. An error message is issued if one of these conversions fails.

The call Dom::MatrixGroup(m, n, R)( m , n ) returns the m×n zero matrix. Note
that the m×n zero matrix can also be found in the entry "zero" (see below).

Dom::MatrixGroup(m, n, R)( m , n List) creates an m×n matrix with
components taken from the list List.

This call is only allowed for m×1 or 1 ×n matrices, i.e., if either m or n is equal to one.

If the list has too few entries, the remaining components of the matrix are set to zero.

The entries of the list are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::MatrixGroup(m, n, R)( m , n ListOfRows) creates an m×n matrix with
components taken from the nested list ListOfRows. Each inner list corresponds to a
row of the matrix.

If an inner list has less than n entries, the remaining components in the corresponding
row of the matrix are set to zero. If there are less than m inner lists, the remaining lower
rows of the matrix are filled with zeroes.
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The entries of the inner lists are coerced into elements of the domain R. An error message
is issued if one of these conversions fails.

It might be a good idea first to create a two-dimensional array from that list before
calling Dom::MatrixGroup(m, n, R). This is due to the fact that creating a matrix
from an array is the fastest way one can achieve. However, in this case the sublists must
have the same number of elements.

Dom::MatrixGroup(m, n, R)( m , n f) returns the matrix whose (i, j)th
component is the value of the function call f(i, j). The row index i ranges from 1 to m
and the column index j from 1 to n.

The function values are coerced into elements of the domain R. An error message is
issued if one of these conversions fails.

Superdomain

Dom::Matrix(R)

Axioms

If R has Ax::canonicalRep, then Ax::canonicalRep.

Categories

Cat::Matrix(R), Cat::AbelianGroup

Examples

Example 1

A lot of examples can be found on the help page of the domain constructor
Dom::Matrix, and most of them are also examples for working with domains created
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by Dom::MatrixGroup. This example only highlights some differences with respect to
working with matrices of the domain Dom::Matrix(R).

The following command defines the abelian group of 3 ×4 matrices over the rationals:

MatGQ := Dom::MatrixGroup(3, 4, Dom::Rational)

MatGQ::hasProp(Cat::AbelianGroup), MatGQ::hasProp(Cat::Ring)

MatGQ is a commutative group with respect to the addition of matrices. The unit of this
group is the 3 ×4 zero matrix:

MatGQ::zero

Note that some operations defined by the domain MatGQ return matrices which
are no longer elements of the matrix group. They return matrices of the domain
Dom::Matrix(Dom::Rational), the super-domain of MatGQ.

For example, if we define the matrix:

A := MatGQ([[1, 2, 1, 2], [-5, 3], [2, 1/3, 0, 1]])

and delete its third column, we get the matrix:
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MatGQ::delCol(A, 3)

which is of the domain type:

domtype(%)

As another example we create the 3×3 identity matrix using the method "identity" of
our domain:

E3 := MatGQ::identity(3)

This is also a matrix of the domain Dom::Matrix(Dom::Rational):

domtype(E3)

If we concatenate E3 to the right of the matrix A defined above, we get the 3 ×7 matrix:

B := A . E3
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which is of the domain type Dom::Matrix(Dom::Rational):

domtype(B)

Example 2

We can convert a matrix from a domain created with Dom::MatrixGroup into or from
another matrix domain, as shown next:

MatGR := Dom::MatrixGroup(2, 3, Dom::Real):

MatC := Dom::Matrix(Dom::Complex):

A := MatGR((i, j) -> i*j)

To convert A into a matrix of the domain MatC, enter:

coerce(A, MatC)

domtype(%)

The conversion is done component-wise. For example, we define the following matrix:

B := MatC([[0, 1, 0], [exp(I), 0, 1]])
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The matrix B has one complex component and therefore cannot be converted into the
domain MatGR:

coerce(B, MatGR)

Note: The system function coerce uses the methods "convert" and "convert_to"
implemented by any domain created with Dom::MatrixGroup and Dom::Matrix.

Parameters

m, n

Positive integers (matrix dimension)

R

A commutative ring, i.e., a domain of category Cat::CommutativeRing; the default is
Dom::ExpressionField()

Array

An m×n array

Matrix

An m×n matrix, i.e., an element of a domain of category Cat::Matrix

List

A list of matrix components

ListOfRows

A list of at most m rows; each row is a list of at most n matrix components

f

A function or a functional expression with two parameters (the row and column index)
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g

A function or a functional expression with one parameter (the row index)

Options

Diagonal

Create a diagonal matrix

With the option Diagonal, diagonal matrices can be created with diagonal elements
taken from a list, or computed by a function.

Dom::MatrixGroup(m, n, R)( m , n List, Diagonal) creates the m×n diagonal
matrix whose diagonal elements are the entries of List.

List must have at most min(m, n) entries. If it has fewer elements, then the remaining
diagonal elements are set to zero.

The entries of List are coerced into elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::MatrixGroup(m, n, R)( m , n g, Diagonal) returns the matrix whose ith
diagonal element is g(i, i), where the index i runs from 1 to min(m, n).

The function values are coerced into elements of the domain R. An error message is
issued if one of these conversions fails.

Banded

Create a banded Toeplitz matrix

With the option Banded, banded matrices can be created.

A banded matrix has all entries zero outside the main diagonal and some of the adjacent
sub- and superdiagonals.

Dom::MatrixGroup(m, n, R)( m , n List, Banded) creates an m×n banded
Toeplitz matrix with the elements of List as entries. The number of entries of List
must be odd, say 2 h + 1, and must not exceed n. The resulting matrix has bandwidth at
most 2 h + 1.
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All elements of the main diagonal of the created matrix are initialized with the middle
element of List. All elements of the ith subdiagonal are initialized with the (h + 1 - i)th
element of List. All elements of the ith superdiagonal are initialized with the (h + 1 +
i)th element of List. All entries on the remaining sub- and superdiagonals are set to
zero.

The entries of List are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Entries

"one" is only defined if m is equal to n; in that
case it defines the n×n identity matrix.

"randomDimen" is set to [m, n].
"zero" is the m×n zero matrix.

Methods

Mathematical Methods

evalp — Evaluating matrices of polynomials at a certain point

evalp(A, x = a, …)

This method is only defined if R is a polynomial ring of category Cat::Polynomial.

This method overloads the function evalp for matrices, i.e., one may use it in the form
evalp(A, x = a).

identity — Identity matrix

identity(k)

Note: The matrix returned is of the domain Dom::Matrix(R), if  or if .
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matdim — Matrix dimension

matdim(A)

random — Random matrix generation

random()

The components of the random matrix are randomly generated with the method
"random" of the component ring R.

Access Methods

_concat — Horizontally concatenation of matrices

_concat(A, B, …)

An error message is issued if the given matrices do not have the same number of rows.

Note: The returned matrix is of the domain Dom::Matrix(R).

This method overloads the function _concat for matrices, i.e., one may use it in the form
A . B . ..., or in functional notation: _concat(A, B, ...).

_index — Matrix indexing

_index(A, i, j)

_index(A, r1 .. r2, c1 .. c2)

_index(A, i)

_index(A, i1 .. i2)

If i and j are not integers, then the call of this method returns in its symbolic form (of
type "_index") with evaluated arguments.

Otherwise an error message is given, if i and j are not valid row and column indices,
respectively.
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Note: Note that the system function context is used to evaluate the entry in the context
of the calling environment.

This method overloads the function _index for matrices, i.e., one may use it in the form
A[i, j] or in functional notation: _index(A, i, j).

Returns the submatrix of A, created by the rows of A with indices from r1 to r2 and the
columns of A with indices from c1 to c2.

Note: The submatrix is of the domain Dom::Matrix(R).

This method returns the ith entry of A.

If i is not an integer, then the call of this method returns in its symbolic form (of type
"_index") with evaluated arguments.

Otherwise an error message is given, if i is less than one or greater than the dimension
of v.

This call is only allowed for 1×n or m×1 matrices, i.e., either m or n must be equal to one.
Otherwise an error message is issued.

Note: Note that the system function context is used to evaluate the entry in the context
of the calling environment.

This method returns the subvector of A, formed by the entries with index i1 to i2 (see
also the method "op").

This call is only allowed for 1×n or m×1 matrices, i.e., either m or n must be equal to one.
Otherwise an error message is issued.

This method overloads the function _index for matrices, i.e., one may use it in the
form A[i,j], A[r1..r2,c1..c2], A[i] or A[i1..i2], respectively, or in functional
notation: _index(A, ...).

concatMatrix — Horizontally concatenation of matrices

concatMatrix(A, B, …)
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col — Extracting a column

col(A, c)

An error message is issued if c is less than one or greater than n.

delCol — Deleting a column

delCol(A, c)

NIL is returned if A only consists of one column.

Note: The returned matrix is of the domain Dom::Matrix(R).

An error message is issued if c is less than one or greater than n.

delRow — Deleting a row

delRow(A, r)

NIL is returned if A only consists of one row.

Note: The returned matrix is of the domain Dom::Matrix(R).

An error message is issued if r is less than one or greater than m.

row — Extracting a row

row(A, r)

An error message is issued if r is less than one or greater than m.

stackMatrix — Concatenating of matrices vertically

stackMatrix(A, B, …)

An error message is issued if the given matrices do not have the same number of
columns.
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Note: The matrix returned is of the domain Dom::Matrix(R).

Conversion Methods

convert — Conversion into a matrix

convert(x)

FAIL is returned if the conversion fails.

x may either be an m×n array, or an m×n matrix of category Cat::Matrix.

x can also be a list. See the parameter List and ListOfRows in “Creating Elements”
above for admissible values of x.

The entries of x must be convertable into elements of the domain R, otherwise FAIL is
returned.

See Also

MuPAD Domains
Dom::Matrix | Dom::SquareMatrix
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Dom::MonomOrdering
Monomial orderings

Syntax
Dom::MonomOrdering(Lex(n))

Dom::MonomOrdering(RevLex(n))

Dom::MonomOrdering(DegLex(n))

Dom::MonomOrdering(DegRevLex(n))

Dom::MonomOrdering(DegInvLex(n))

Dom::MonomOrdering(WeightedLex(w1, …,wn))

Dom::MonomOrdering(WeightedDegLex(w1, …,wn))

Dom::MonomOrdering(WeightedDegRevLex(w1, …,wn))

Dom::MonomOrdering(WeightedRevLex(w1, …,wn))

Dom::MonomOrdering(Block(o1, …))

Dom::MonomOrdering(Matrix(params))

Description

Dom::MonomOrdering represents the set of all possible monomial orderings. A
monomial ordering is a well-ordering of the set of all k-tuples of nonnegative integers for
some k.

In MuPAD, a monomial ordering is implemented as a function that, when applied to two
lists of nonnegative integers, returns -1, 0, or 1 if the first list is respectively smaller
than, equal to, or greater than the second list. Each ordering can only compare lists
of one fixed length, called its its order length. Since the lists under consideration will
be exponent vectors in most cases, their length is also referred to as the number of
indeterminates.
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Monomial orderings are used in algebraic geometry for comparing terms  and

 in a polynomial ring. Since Dom::MonomOrdering works on the exponent

vectors [α1, …, αn] and [β1, …, βn], degreevec must be applied to the terms to be
compared before applying Dom::MonomOrdering.

Elements of Dom::MonomOrdering can be used as arguments for lcoeff, lmonomial,
lterm, and tcoeff as well as for the functions of the groebner package in order to
specify the monomial ordering to be considered.

Monomial orderings are created by calling
Dom::MonomOrdering(someIdentifier(parameters)), where someIdentifier
is one of a certain set of predefined identifiers, as stated below. Converting
someIdentifier into a string gives the order type of the monomial ordering.

Dom::MonomOrdering(Lex(n)) creates the lexicographical order on n indeterminates.

Dom::MonomOrdering(RevLex(n)) creates the reverse lexicographical order
on n indeterminates, i.e., Dom::MonomOrdering(RevLex(n))([a1,...,an])=
Dom::MonomOrdering(Lex(n))([an,...,a1]).

Dom::MonomOrdering(DegLex(n)) creates the degree order on n indeterminates with
the lexicographical order used for tie-break.

Dom::MonomOrdering(DegRevLex(n)) creates the degree order on n indeterminates
with the reverse lexicographical order used for tie-break .

Dom::MonomOrdering(DegInvLex(n)) creates the degree order on n indeterminates,
with the tie break being the opposite to the lexicographical order.

Dom::MonomOrdering(Weighted...(w1,...,wn)) returns a weighted degree order
with weights w1 through wn. The word following the word Weighted specifies the tie-
break used. Note that MuPAD uses the ordinary degree order as the first tie-break.

Dom::MonomOrdering(Matrix(params)) creates a matrix order, with the order
matrix defined by Dom::Matrix()(params).

Dom::MonomOrdering(Block(o1, ..., on)) or, equivalently,
Dom::MonomOrdering([o1, ..., on]), creates a block order such
that Dom::MonomOrdering(o1) is used on the first indeterminates, then
Dom::MonomOrdering(o2) is used as a tie-break on the following indeterminates etc.
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Block orders may be nested, i.e., the blocks may be block orders, too.

Weight vectors with negative entries and order matrices do not define well-orderings in
general. You may enter such orderings, but it may cause trouble, e.g., to use them with
the groebner package.

Superdomain

Dom::BaseDomain

Categories

Cat::BaseCategory

Examples

Example 1

We define ORD by prescribing that lists [a, b, c] are ordered according to their weighted
degrees 5 a + 2 b + π c. For lists with equal weighted degree, the non-weighted degree a
+ b + c is used as a tie-break. Finally, the lexicographical order decides (in fact, this last
step is not necessary because π is irrational).

ORD:=Dom::MonomOrdering(WeightedDegLex(5, 2, PI))

With respect to ORD, [1, 6, 1] is smaller than [2, 1, 3]:

ORD([1,6,1], [2,1,3])
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Parameters

n

Positive integer

w1, …

Numerical expressions

o1, …

Valid arguments to Dom::MonomOrdering

params

A sequence valid as the sequence of arguments to Dom::Matrix().

Methods

Mathematical Methods

func_call — Compare two lists of integers

func_call(o, l1, l2)

The lengths of l1 and l2 must not exceed the order length of o. If l1 or l2 is too short,
the necessary number of zeroes is appended.

Access Methods

ordertype — Return the type of an order

ordertype(o)

If o equals Dom::MonomOrdering(someIdentifier(params)), then converting
someIdentifier into a string gives the order type of o.
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orderlength — Return the length of an order

orderlength(o)

nops — Number of blocks

nops(o)

block — Get a particular block

block(o, i)

blocktype — Get the order type of a particular block

blocktype(o, i)

blocklength — Get the order length of a particular block

blocklength(o, i)

Conversion Methods

expr — Return an expression from which the order can be restored

expr(o)

See Also

MuPAD Functions
groebner::gbasis
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Dom::Multiset
Multisets

Syntax
Dom::Multiset(<s1, s2, …>)

Description

Dom::Multiset is the domain of multisets, i.e., sets with possibly multiple identical
elements.

A multiset is represented by a set of lists of the form [s, m], where s is an element of the
multiset and m its multiplicity.

Multisets can be returned by the system solver solve. For example, the input
solve(x^3 - 4*x^2 + 5*x - 2, x, Multiple) gives all roots of the polynomial x3 -
4 x2 + 5 x - 2 in form of the multiset {[1, 2], [2, 1]}.

The standard set operations such as union, intersection and subtraction of sets have been
extended to deal with multisets.

These operations can handle different types of sets, such as sets of type DOM_SET and
multisets. One may, for example, compute the union of the multiset {[a, 2], [b, 1]}
and the set {c}, which results in the multiset {[a, 2], [b, 1], [c, 1]}.

The elements of the multiset are sorted at the time where the multiset is created. The
system function sort is used in order to guarantee that exactly one representation exists
for a multiset, independent of the sequence in which the arguments appear.

Dom::Multiset(s1, s2, ...) creates the multiset consisting of the elements s1,
s2, ...

Multiple identical elements in s1, s2, ... are collected. For example, the call
Dom::Multiset(a, b, a, c) creates a multiset with the elements a, b, c. The
element a has multiplicity two, the other two elements b and c both have multiplicity
one.
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Superdomain

Dom::BaseDomain

Categories

Cat::Set

Examples

Example 1

The multiset {a, a, b} consists of the two different elements a and b, where a has
multiplicity two and b has multiplicity one:

delete a, b, c:

set1 := Dom::Multiset(a, a, b)

We create another multiset:

set2 := Dom::Multiset(a, c, c)

Standard set operations such as disjoint union, intersection or subtraction are
implemented for multisets and can be performed using the standard set operators of
MuPAD:

set1 union set2

set1 intersect set2
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contains(set1, a), contains(set1, d)

Example 2

Some system functions were overloaded for multisets, such as expand, normal or split.

If we apply expand to a multiset, for example, we get an expression sequence of all
elements of the multiset (appearing in correspondence to their multiplicity):

delete a, b, c, d, e:

set := Dom::Multiset(a, b, c, a, c, d, c, e, c)

expand(set)

If you want to convert a multiset into an ordinary set of the domain type DOM_SET, use
coerce:

coerce(set, DOM_SET)

Note: The system function coerce uses the methods "convert" and "convert_to" of
the domain Dom::Multiset.

Compare the last result with the return value of the function expr, when it is applied for
multisets:

expr(set)
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The result is a set of the domain type DOM_SET, consisting of lists of the domain
type DOM_LIST with two entries, an element of the multiset and the corresponding
multiplicity of that element.

Parameters

s1, s2, …

Objects of any type

Entries

"isFinite" is TRUE because Dom::Multiset
represents finite sets.

"inhomog_intersect" a table of the form T = Proc(multiset,
setoftypeT). This entry is used
internally by the implementation, and thus
should not be touched.

"inhomog_union" a table of the form T = Proc(multiset,
setoftypeT). This entry is used
internally by the implementation, and thus
should not be touched.

Methods

Mathematical Methods

normal — Normalization of multisets

normal(set)

This method overloads the function normal for multisets, i.e., one may use it in the form
normal(set).
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powerset — Power set of a multiset

powerset(set)

The power set of set is returned as a set of multisets.

random — Random multiset generation

random()

The number of elements created, including their multiplicities, is restricted to 20.

Access Methods

_index — Multiset indexing

_index(set, i)

See the method "op".

This method overloads the function _index for multisets, i.e., one may use it in the form
set[i], or in functional notation: _index(set, i).

contains — Check on existence of set elements

contains(set, s)

This method overloads the function contains for multisets, i.e., one may use it in the
form contains(set, s).

equal — Test on equality of multisets

equal(set1, set2)

The system function _equal is used for the test.

expand — Expand a multiset to a sequence of its elements

expand(set)

This method overloads the function expand for multisets, i.e., one may use it in the form
expand(set).

7-307



7 Dom – Domains

getElement — Extract one element from a multiset

getElement(set)

Note that the elements of the multiset are sorted with the use of the system function
sort, and thus the order of a multiset depends on the sorting criteria specified by this
function.

This method overloads the function solvelib::getElement, i.e., one may use it in the
form solvelib::getElement(set).

has — Check on existence of (sub-)expressions

has(set, expr)

To check whether expr is contained as an element of set and not as a subexpression of
the elements of set, the function contains must be used.

This method overloads the function has for multisets, i.e., one may use it in the form
has(set, expr).

map — Apply a function to multiset elements

map(set, func, <expr, …>)

It overloads the function map for multisets, i.e., one may use it in the form map(set,
func, ...).

multiplicity — Multiplicity of an element

multiplicity(set, s)

Elements which are not contained in set have multiplicity zero.

card — Number of elements in a multiset

card(set)

This method overloads the function card.

nops — Number of different elements in a multiset

nops(set)
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This method overloads the function nops for multisets, i.e., one may use it in the form
nops(set).

op — Element of a multiset

op(set)

op(set, i)

Returns the i-th element s of the multiset set and its multiplicity m in form of the list [s,
m].

See also the method "_index".

Note that the elements of the multiset are sorted with the use of the system function
sort, and thus the order of a multiset depends on the sorting criteria specified by this
function.

This method overloads the function op for multisets, i.e., one may use it in the form
op(s, i).

select — Selecting of multiset elements

select(set, func, <expr, …>)

This method overloads the function select for multisets, i.e., one may use it in the form
select(set, func, ...). See select for details.

split — Splitting a multiset

split(set, func, <expr, …>)

This method overloads the function split for multisets, i.e., one may use it in the form
split(set, func, ...). See split for details.

subs — Substitution of elements in multisets

subs(set, …)

This method overloads the function subs for multisets, i.e., one may use it in the form
subs(set, ...).
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Conversion Methods

convert — Conversion into a multiset

convert(x)

FAIL is returned if the conversion fails.

Currently only sets of type DOM_SET can be converted into multisets.

convert_to — Multiset conversion

convert_to(set, T)

FAIL is returned if the conversion fails.

Currently T may either be DOM_SET to convert the multiset set into a set (loosing the
multiplicities and the order of the elements of set), or DOM_EXPR or "_exprseq" to
convert set into an expression sequence (see the method "expand" for details).

See also the method "expr".

expr — Multiset conversion into an object of a kernel domain

expr(set)

This method overloads the function expr for multisets, i.e., one may use it in the form
expr(set).

sort — Sorting of multisets

sort(set)

This method overloads the function sort for multisets, i.e., one may use it in the form
sort(set).

Technical Methods

bin_intersect — Intersection of two multisets

bin_intersect(set1, set2)
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This method is called from routines defined in the category Cat::Set, which implements
among others the overloading of the function intersect for multisets. One may
intersect two multisets directly by set1 intersect set2, or in functional notation by
_intersect(set1, set2).

bin_minus — Subtraction of two multisets

bin_minus(set1, set2)

This method is called from routines defined in the category Cat::Set, which implements
among others the overloading of the function minus for multisets. One may subtract two
multisets directly by set1 minus set2, or in functional notation by _minus(set1,
set2).

homog_union — Union of multisets

homog_union(set, …)

This method is called from routines defined in the category Cat::Set, which implements
among others the overloading of the function union for multisets. One may compute
the union of two multisets directly by set1 union set2, or in functional notation by
_union(set1, set2).

nested_union — Union of nested sets

nested_union(setofsets)

This method is called from routines defined in the category Cat::Set, which implements
among others the overloading of the function union for multisets and sets. One may
compute the union of multisets and sets directly by set1 union set2, or in functional
notation by _union(set1, set2).

See Also

MuPAD Domains
Dom::ImageSet | DOM_SET
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Dom::MultivariatePolynomial
Domains of multivariate polynomials

Syntax

Domain Creation

Dom::MultivariatePolynomial(<Vars, <R, <Order>>>)

Element Creation

Dom::MultivariatePolynomial(Vars, R, Order)(p)

Dom::MultivariatePolynomial(Vars, R, Order)(lm)

Description
Dom::MultivariatePolynomial(Vars, R, ..) creates the domain of multivariate
polynomials in the variable list Vars over the commutative ring R in distributed
representation.

Dom::MultivariatePolynomial represents multivariate polynomials over arbitrary
commutative rings.

All usual algebraic and arithmetical polynomial operations are implemented, including
Gröbner basis computation and some classical construction tools used in invariant
theory.

Note: It is highly recommend to use only coefficient rings with unique zero
representation. Otherwise it may happen that, e.g., a polynomial division will not
terminate or a wrong degree will be returned.

Dom::MultivariatePolynomial(Vars, R, Order) creates a domain of
multivariate polynomials in the variable list Vars over a domain R of category
Cat::CommutativeRing in sparse distributed representation with respect to the
monomial ordering Order.
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Dom::MultivariatePolynomial() creates a polynomial domain in the variable list
[x,y,z] over the domain Dom::ExpressionField(normal) with respect to the
lexicographic monomial ordering.

Dom::MultivariatePolynomial(Vars) generates the polynomial domain in the
variable list Vars over the domain Dom::ExpressionField(normal) with respect to
the lexicographic monomial ordering is created.

Note: Only commutative coefficient rings of type DOM_DOMAIN which inherit from
Dom::BaseDomain are allowed. If R is of type DOM_DOMAIN but does not inherit from
Dom::BaseDomain, the domain Dom::ExpressionField(normal) will be used
instead.

In contrast to the domain Dom::DistributedPolynomial,
Dom::MultivariatePolynomial accepts only identifiers (DOM_IDENT) as
indeterminates. This restriction enables some further methods described below.

Please note: For reasons of efficiency not all methods check their arguments, not even
at the interactive level. In particular this is true for many access methods, converting
methods and technical methods. This may cause strange error messages.

Superdomain

Dom::DistributedPolynomial

Axioms

If R has Ax::normalRep, then Ax::normalRep.

If R has Ax::canonicalRep, then Ax::canonicalRep.

Categories

If Vars has a single variable, then Cat::UnivariatePolynomial(R), else
Cat::Polynomial(R).
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Examples

Example 1

To create the ring of multivariate polynomials in x, y and z over the rationals one may
define

MP := Dom::MultivariatePolynomial([x, y, z], Dom::Rational)

The elementary symmetric polynomials of this domain are

s1 := MP(x + y + z)

s2 := MP(x*y + x*z + y*z)

s3:=MP(x*y*z)

A polynomial is called symmetric if it remains unchanged under every possible
permutation of variables as, e.g.:

s3=s3(MP(y), MP(z), MP(x))

These polynomials arise naturally in studying the roots of a polynomial. To show this,
we first have to create an univariate polynomial, e.g., in U over MP, and generate a
polynomial in U with roots in x, y and z.

UP:=Dom::UnivariatePolynomial(U, MP)
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f := UP((U - x)*(U - y)*(U - z))

UP(U^3)-s1*UP(U^2)+s2*UP(U)+(-1)^3*s3

This exemplifies that the coefficients of f are (elementary) symmetric polynomials in its
roots.

From the fundamental theorem of symmetric polynomials we know that every symmetric
polynomial can be written uniquely as a polynomial in the elementary symmetric
polynomials. Thus we can rewrite the following symmetric polynomial s in the
elementary symmetric polynomials s1, s2 and s3,

s:=MP(x^3*y+x^3*z+x*y^3+x*z^3+y^3*z+y*z^3)

S:=MP::rewritePoly(s,[s1=S1,s2=S2,s3=S3])

where these polynomials are represented by the three new variables S1, S2 and S3
respectively. To see that this new polynomial S in the new variables indeed represents
the old original polynomial s, we simply have to plug in the three elementary symmetric
polynomials into S:

poly(S, Expr)(s1,s2,s3)

When one has a given list of polynomials, e.g., like:
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l:=[3*s1,2*s1,s1,s3]

and one wants to sort them in an appropriate order, one may use one of the following two
methods.

MP::sortList(l,Dom::MonomOrdering(DegLex(3)))

MP::stableSort(l,Dom::MonomOrdering(DegLex(3)))

In the first sorted list the order of the three polynomials of the same degree has changed,
while with the second method this order remains stable.

Example 2

Let  be a finite (matrix) subgroup of the general linear group. Then a
polynomial  is called invariant underG, if for all A ∈ G

where . The symmetric polynomials s1, s2 and s3 from the previous

example are invariants under the symmetric group S3. In fact, these three fundamental
invariants yet generate the whole ring of invariants of S3.

Now let us examine the invariants of the famous icosahedral group. One may find a
representation of this group on page 73 of H. F. Blichfeldt: Finite collineation groups,
University of Chicago Press, 1917.
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The group is generated from these three matrices, has 120 elements and is thus a finite
subgroup, even of the special linear group SL(2, ℚ(ε)). It is also well known that

is a fundamental invariant of degree 12 of this group. To declare i1 in MuPAD one has
first to define the polynomial domain.

MP:=Dom::MultivariatePolynomial([x1,x2],Dom::Rational)

i1:=MP(x1*x2^(11)-11*x1^6*x2^6-x1^(11)*x2)

From the invariant i1 one can compute a further fundamental invariant i2 with

i2:=MP::hessianDet(i1)

But to get more simple coefficients we choose i2 as

i2:=-1/121*MP::hessianDet(i1)

instead. Similar we obtain a third fundamental invariant i3 with

i3:=1/20*MP::jacobianDet([i1,i2])

In contrast to the symmetric groups, where all invariants can be uniquely represented by
the fundamental invariants, the fundamental invariants of this group have an algebraic
relation, a so-called syzygy between them. It is possible to represent i3

2 in two ways:

7-317



7 Dom – Domains

MP::rewritePoly(i3^2,[i1=I1,i2=I2,i3=I3])

MP::rewritePoly(i3^2,[i1=I1,i2=I2,i3=I3],Unsorted)

And hence we get the syzygy:

MP::rewritePoly(i3^2,[i1=I1,i2=I2,i3=I3],Unsorted)-

MP::rewritePoly(i3^2,[i1=I1,i2=I2,i3=I3]) = 0

Parameters

Vars

A list of indeterminates. Default: [x,y,z].

R

A commutative ring, i.e., a domain of category Cat::CommutativeRing. Default:
Dom::ExpressionField(normal).

Order

A monomial ordering, i.e., one of the predefined orderings LexOrder, DegreeOrder, or
DegInvLexOrder or any object of type Dom::MonomOrdering. Default: LexOrder.

p

A polynomial or a polynomial expression.

lm

List of monomials, which are represented as lists containing the coefficients together
with the exponents or exponent vectors.
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Entries

"characteristic" The characteristic of this domain.
"coeffRing" The coefficient ring of this domain as

defined by the parameter R.
"key" The name of the domain created.
"one" The neutral element w.r.t. "_mult".
"ordering" The monomial ordering defined by the

parameter Order.
"variables" The list of variables defined by the

parameter Vars.
"zero" The neutral element w.r.t. "_plus".

Methods

Mathematical Methods

D — Differential operator for polynomials

Inherited from Dom::DistributedPolynomial.

Dpoly — Differential operator for polynomials

Inherited from Dom::DistributedPolynomial.

SPolynomial — Compute the S-polynomial of two polynomials

Inherited from Dom::DistributedPolynomial.

_divide — Exact polynomial division

Inherited from Dom::DistributedPolynomial.

_invert — Inverse of an element

Inherited from Dom::DistributedPolynomial.
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_mult — Multiplie polynomials and coefficient ring elements

Inherited from Dom::DistributedPolynomial.

_negate — Negate a polynomial

Inherited from Dom::DistributedPolynomial.

_plus — Add polynomials and coefficent ring elements

Inherited from Dom::DistributedPolynomial.

_power — Nth power of a polynomial

Inherited from Dom::DistributedPolynomial.

_subtract — Subtract a polynomial or a coefficient ring element

Inherited from Dom::DistributedPolynomial.

associates — Test if elements are associates

Inherited from Cat::IntegralDomain.

borderedHessianDet — Bordered Hessian determinant of a polynomial

borderedHessianDet(a, b, <v>)

borderedHessianMat — Bordered Hessian matrix of a polynomial

borderedHessianMat(a, b, <v>)

content — Content of a polynomial

Inherited from Dom::DistributedPolynomial.

decompose — Functional decomposition of a polynomial

Inherited from Dom::DistributedPolynomial.

degLex — Compare two polynomials w.r.t. the graded lexicographical order

degLex(a, b)
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degRevLex — Compare two polynomials w.r.t. the graded reverse lexicographical order

degRevLex(a, b)

diff — Differentiate a polynomial

Inherited from Dom::DistributedPolynomial.

dimension — Dimension of affine variety

Inherited from Dom::DistributedPolynomial.

divide — Divide polynomials

Inherited from Dom::DistributedPolynomial.

divides — Test if elements divides another

Inherited from Cat::IntegralDomain.

equal — Test for mathematical equality

Inherited from Dom::BaseDomain.

equiv — Test for equivalence

Inherited from Cat::BaseCategory.

evalp — Evaluate a polynomial

Inherited from Dom::DistributedPolynomial.

factor — Factor a polynomial

Inherited from Dom::DistributedPolynomial.

func_call — Applie expressions to a polynomial

Inherited from Dom::DistributedPolynomial.

gcd — Greatest common divisor of polynomials

Inherited from Dom::DistributedPolynomial.
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gcdex — Extended Euclidean algorithm for polynomials

Inherited from Dom::DistributedPolynomial.

groebner — Reduced Gröbner basis

Inherited from Dom::DistributedPolynomial.

hessianDet — Hessian determinant of a polynomial

hessianDet(a, <v>)

hessianMat — Hessian matrix of a polynomial

hessianMat(a, <v>)

homogeneousComponents — List of homogeneous components of a polynomial

homogeneousComponents(a)

idealGenerator — Generator of finitely generated ideal

Inherited from Cat::EuclideanDomain.

int — Definite and indefinite integration of a polynomial

Inherited from Dom::DistributedPolynomial.

intmult — Multiplie a polynomial with an integer

Inherited from Dom::DistributedPolynomial.

irreducible — Test if element is irreducible

Inherited from Cat::FactorialDomain.

isHomogeneous — Test if a polynomial is homogeneous

isHomogeneous(a)

isUnit — Test if element is a unit

Inherited from Cat::Polynomial.
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isone — Test for one

Inherited from Dom::DistributedPolynomial.

iszero — Test for zero

Inherited from Dom::DistributedPolynomial.

jacobianDet — Jacobian determinant of a polynomial

jacobianDet(ais, <v>)

jacobianMat — Jacobian matrix of a polynomial

jacobianMat(ais, <v>)

lcm — Least common multiple of polynomials

Inherited from Dom::DistributedPolynomial.

makeIntegral — Make the coefficients fraction free

Inherited from Dom::DistributedPolynomial.

monic — Normalize a polynomial

Inherited from Dom::DistributedPolynomial.

normalForm — Complete reduction modulo an ideal

Inherited from Dom::DistributedPolynomial.

pdioe — Solve polynomial Diophantine equations

Inherited from Dom::DistributedPolynomial.

pdivide — Pseudo-division of polynomials

Inherited from Dom::DistributedPolynomial.

pquo — Pseudo-quotient of polynomials

Inherited from Dom::DistributedPolynomial.
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prem — Pseudo-remainder of polynomials

Inherited from Dom::DistributedPolynomial.

primpart — Return primitive part

Inherited from Cat::Polynomial.

quo — Euclidean quotient

Inherited from Cat::EuclideanDomain.

random — Create a random polynomial

Inherited from Dom::DistributedPolynomial.

rem — Euclidean remainder

Inherited from Cat::EuclideanDomain.

resultant — Resultant of two polynomials

Inherited from Dom::DistributedPolynomial.

rewriteHomPoly — Rewrite a polynomial in terms of other polynomials

rewriteHomPoly(a, ais, v)

All the polynomials a and ais must be homogeneous.

The variables of v should be new variables.

rewritePoly — Rewrite a polynomial in terms of other polynomials

rewritePoly(a, [ai = vi], <Unsorted>)

This method can be used for representing a polynomial with respect to a given
polynomial basis.

When option Unsorted is given, the list [ai=vi] is not sorted. Otherwise, in a
precomputation step this list will be sorted in the ai's w.r.t. the graded lexicographical
order ("degLex").

Please note: the algorithm depends on the order of Vars and ais.
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All the polynomials ai must be homogeneous.

The variables of vi should be new variables.

ringmult — Multiplie a polynomial with a coefficient ring element

Inherited from Dom::DistributedPolynomial.

solve — Zero of polynomials

Inherited from Dom::DistributedPolynomial.

sqrfree — Square-free factorization of polynomials

Inherited from Dom::DistributedPolynomial.

unitNormal — Return unit normal

Inherited from Cat::Polynomial.

unitNormalRep — Return unit normal representation

Inherited from Cat::Polynomial.

Access Methods

coeff — Coefficient of a polynomial

Inherited from Dom::DistributedPolynomial.

degree — Degree of a polynomial

Inherited from Dom::DistributedPolynomial.

degreevec — Vector of exponents of the leading term of a polynomial

Inherited from Dom::DistributedPolynomial.

euclideanDegree — Euclidean degree function

Inherited from Dom::DistributedPolynomial.
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ground — Ground term of a polynomial

Inherited from Dom::DistributedPolynomial.

has — Existence of an object in a polynomial

Inherited from Dom::DistributedPolynomial.

indets — Indeterminate of a polynomial

Inherited from Dom::DistributedPolynomial.

lcoeff — Leading coefficient of a polynomial

Inherited from Dom::DistributedPolynomial.

ldegree — Lowest degree of a polynomial

Inherited from Dom::DistributedPolynomial.

lmonomial — Leading monomial of a polynomial

Inherited from Dom::DistributedPolynomial.

lterm — Leading term of a polynomial

Inherited from Dom::DistributedPolynomial.

mainvar — Main variable of a polynomial

Inherited from Dom::DistributedPolynomial.

mapcoeffs — Applie a function to the coefficients of a polynomial

Inherited from Dom::DistributedPolynomial.

multcoeffs — Multiplie the coefficients of a polynomial with a factor

Inherited from Dom::DistributedPolynomial.

nterms — Number of terms of a polynomial

Inherited from Dom::DistributedPolynomial.
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nthcoeff — N-th coefficient of a polynomial

Inherited from Dom::DistributedPolynomial.

nthmonomial — N-th monomial of a polynomial

Inherited from Dom::DistributedPolynomial.

nthterm — N-th term of a polynomial

Inherited from Dom::DistributedPolynomial.

order — Compare two polynomials w.r.t. a given order

order(a, b, o)

orderedVariableList — Ordered list of indeterminates of a polynomial

Inherited from Dom::DistributedPolynomial.

pivotSize — Size of a pivot element

Inherited from Dom::DistributedPolynomial.

reductum — Reductum of a polynomial

Inherited from Dom::DistributedPolynomial.

sortList — Sort a list of polynomials w.r.t. a given order

sortList(ais, o)

This sorting method may be not stable if o is not a total order.

stableSort — Sort a list of polynomials w.r.t. a given order

stableSort(ais, o)

This sorting method is stable, even if o is not a total order.

subs — Avoid substitution

Inherited from Dom::BaseDomain.

7-327



7 Dom – Domains

subsex — Avoid extended substitution

Inherited from Dom::BaseDomain.

tcoeff — Lowest coefficient of a polynomial

Inherited from Dom::DistributedPolynomial.

References

[1] Winfried Fakler. “Algorithmen zur symbolischen Lösung homogener linearer
Differentialgleichungen”. Diplomarbeit, Universität Karlsruhe, 1994.

See Also

MuPAD Domains
Dom::DistributedPolynomial | Dom::Polynomial |
Dom::UnivariatePolynomial
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Dom::Natural
Semi-ring of natural integer numbers

Syntax
Dom::Natural(x)

Description

Dom::Natural is the semi-ring of integer numbers represented by elements of the
domain DOM_INT.

Dom::Natural is the domain of natural integer numbers represented by expressions of
type DOM_INT.

Elements of Dom::Natural are usually not created explicitly. However, if one creates
elements using the usual syntax, it is checked whether the input is an integer number.
This means that Dom::Natural is a façade domain which creates elements of domain
type DOM_INT.

Viewed as a differential ring Dom::Natural is trivial, it contains constants only.

Dom::Natural has the domain Dom::Numerical as its super domain, i.e., it inherits
each method which is defined by Dom::Numerical and not re-implemented by
Dom::Natural. Methods described below are those implemented by Dom::Natural.

Superdomain

Dom::Numerical

Axioms

Ax::canonicalRep, Ax::systemRep, Ax::canonicalOrder,
Ax::canonicalUnitNormal, Ax::closedUnitNormals,
Ax::efficientOperation("_divide"), Ax::efficientOperation("_mult")
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Categories

Cat::EuclideanDomain, Cat::FactorialDomain, Cat::DifferentialRing,
Cat::OrderedSet

Examples

Example 1

Creating some integer numbers using Dom::Natural. This example also shows that
Dom::Natural is a façade domain.

Dom::Natural(2); domtype(%)

Dom::Natural(2/3)

Error: The arguments are invalid. [Dom::Natural::new]

Example 2

By tracing the method Dom::Natural::testtypeDom we can see the interaction
between testtype and Dom::Natural::testtypeDom.

prog::trace(Dom::Natural::testtypeDom):

delete x:

testtype(x, Dom::Natural);

testtype(3, Dom::Natural);

prog::untrace(Dom::Natural::testtypeDom):

enter Dom::Natural::testtypeDom(x, Dom::Natural)

computed FAIL
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enter Dom::Natural::testtypeDom(3, Dom::Natural)

computed TRUE

Parameters

x

An integer

Methods

Mathematical Methods

_divide — Division of two objects

_divide(x, y)

_divides — Decide if a number divides another one

_divides(x, y)

euclideanDegree — Euclidean degree

euclideanDegree(x)

factor — Factorization

factor(x)

gcd — Gcd computation

gcd(x1, x2, …)
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gcdex — Applie the extended Euclidean algorithm

gcdex(x, y)

_invert — Inverse of an element

_invert(x)

irreducible — Prime number test

irreducible(x)

isUnit — Test if an element is a unit

isUnit(x)

lcm — Compute the lcm

lcm(x1, x2, …)

quo — Compute the euclidean quotient

quo(x, y)

random — Random number generation

random()

random(n)

random(m, …, n)

This methods returns a random number between 0 and n - 1.

This methods returns a random number between m and n.

rem — Compute the Euclidean reminder

rem(x, y)

unitNormal — Unit normal part

unitNormal(x)
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unitNormalRep — Unit normal representation

unitNormalRep(x)

Conversion Methods

convert — Conversion of objects

convert(x)

convert_to — Conversion to other domains

convert_to(x, T)

The following domains are allowed for for T: DOM_INT, Dom::Natural, Dom::Rational,
DOM_FLOAT, Dom::Float and Dom::Numerical.

testtype — Type checking

testtype(x, T)

Usually, this method is called from the function testtype and not directly by the user.
“Example 2” on page 7-330 demonstrates this behavior.

See Also

MuPAD Domains
Dom::Complex | Dom::Float | Dom::Integer | Dom::Numerical | Dom::Rational
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Dom::Numerical

Field of numbers

Syntax

Dom::Numerical(x)

Description

Dom::Numerical is the field of numbers.

Dom::Numerical is the domain of numbers represented by one of the kernel domains
DOM_INT, DOM_RAT, DOM_FLOAT, or DOM_COMPLEX.

Dom::Numerical is of category Cat::Field due to pragmatism. This domain actually
is not a field because bool(1.0 = float(3) / float(3)) returns FALSE, for
example.

Elements of Dom::Numerical are usually not created explicitly. However, if one creates
elements using the usual syntax, it is checked whether the input expression can be
converted into a number (see below).

This means that Dom::Numerical is a façade domain which creates elements of domain
type DOM_INT, DOM_RAT, DOM_FLOAT or DOM_COMPLEX. Every system function dealing
with numbers can be applied, and computations in this domain are performed efficiently.

Dom::Numerical has no normal representation, because 0 and 0.0 both represent zero.

Viewed as a differential ring, Dom::Numerical is trivial. It only contains constants.

If x is a constant arithmetical expression such as sin(2) or PI + 2, the system function
float is applied to convert x into a floating-point approximation.

An error message is issued if the result of this conversion is not of domain type
DOM_FLOAT or DOM_COMPLEX.
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Superdomain

Dom::ArithmeticalExpression

Axioms

Ax::canonicalRep, Ax::systemRep, Ax::efficientOperation("_divide"),
Ax::efficientOperation("_mult"), Ax::efficientOperation("_invert")

Categories

Cat::DifferentialRing, Cat::Field

Examples

Example 1

Dom::Numerical contains numbers of the domains DOM_INT, DOM_RAT, DOM_FLOAT and
DOM_COMPLEX:

Dom::Numerical(2), Dom::Numerical(2/3), 

Dom::Numerical(3.141), Dom::Numerical(2 + 3*I)

Constant arithmetical expressions are converted into a real and complex floating-point
number, respectively, i.e., into an element of the domain DOM_FLOAT or DOM_COMPLEX
(see the function float for details):

Dom::Numerical(exp(5)), Dom::Numerical(sin(2/3*I) + 3)

Note that the elements of this domain are elements of kernel domains, there are no
elements of the domain type Dom::Numerical!
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An error message is issued for non-constant arithmetical expressions:

Dom::Numerical(sin(x))

Error: The arguments are invalid. [Dom::Numerical::new]

Example 2

Dom::Numerical is regarded as a field, and it therefore can be used as a coefficient ring
of polynomials or as a component ring of matrices, for example.

We create the domain of matrices of arbitrary size (see Dom::Matrix) with numerical
components:

MatN := Dom::Matrix(Dom::Numerical)

Next we create a banded matrix, such as:

A := MatN(4, 4, [-PI, 0, PI], Banded)

and a row vector with four components as a 1 ×4 matrix:

v := MatN([[2, 3, -1, 0]])

Vector-matrix multiplication can be performed with the standard operator * for
multiplication:

v * A
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Finally we compute the determinant of the matrix A, using the function det:

det(A)

Parameters

x

An arithmetical expression

Entries

"characteristic" is zero.

Methods

Mathematical Methods

D — Differential operator for numbers

D(a)

See the function D for details and further calling sequences.

diff — Differentiation of numbers

diff(a, x)

See the function diff for details and further calling sequences.

norm — Absolute value of numbers

norm(a)
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random — Random number generation

random()

Conversion Methods

convert — Conversion of objects into numbers

convert(x)

If x is of the domain type DOM_INT, DOM_RAT, DOM_FLOAT or DOM_COMPLEX, x is
returned.

Otherwise float(x) is computed and the result is returned, if it is of the domain type
DOM_FLOAT or DOM_COMPLEX. If it is not, FAIL is returned.

convert_to — Conversion into other domains

convert_to(a, T)

If the conversion fails, FAIL is returned.

It currently handles the following domains for T: DOM_INT, Dom::Integer, DOM_RAT,
Dom::Rational, DOM_FLOAT, Dom::Float and DOM_COMPLEX.

testtype — Type checking

testtype(a, T)

This method is called from the function testtype.

See Also

MuPAD Domains
Dom::Complex | Dom::Float | Dom::Integer | Dom::Rational | Dom::Real
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Dom::Polynomial
Domains of polynomials in arbitrarily many indeterminates

Syntax

Domain Creation

Dom::Polynomial(<R, <Order>>)

Element Creation

Dom::PolynomialRorder(p)

Dom::PolynomialRorder(lm, v)

Description
Dom::Polynomial(R, ..) creates the domain of polynomials in arbitrarily many
indeterminates over the commutative ring R in distributed representation.

Dom::Polynomial represents polynomials in arbitrarily many indeterminates over
arbitrary commutative rings.

It is simply a front end to the domain Dom::DistributedPolynomial([],R,Order)
and thus all usual algebraic and arithmetical polynomial operations are implemented.
Please see the documentation for Dom::DistributedPolynomial for a list of methods.

Dom::Polynomial(R, Order) creates a domain of polynomials in arbitrarily many
indeterminates over a domain of category Cat::CommutativeRing in sparse distributed
representation with respect to the monomial ordering Order.

If Dom::Polynomial is called without any argument, a polynomial domain over the
domain Dom::ExpressionField(normal) with respect to the lexicographic monomial
ordering is created.

Note: Only commutative coefficient rings of type DOM_DOMAIN which inherit from
Dom::BaseDomain are allowed. If R is of type DOM_DOMAIN but does not inherit from
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Dom::BaseDomain, the domain Dom::ExpressionField(normal) will be used
instead.

Only identifiers should be used as polynomial indeterminates, since when creating a new
element from a polynomial or a polynomial expression the function indets is first called
to get the identifiers and then the polynomial is created with respect to these identifiers.

Note: It is highly recommend to use only coefficient rings with unique zero
representation. Otherwise it may happen that, e.g., a polynomial division will not
terminate or a wrong degree will be returned.

Please note that for reasons of efficiency not all methods check their arguments, not even
at the interactive level. In particular, this is true for many access methods, converting
methods and technical methods. Thus, improper use of these methods may result in
confusing error messages.

Superdomain

Dom::DistributedPolynomial

Axioms

Ax::indetElements

Categories

Cat::Polynomial(R)

Examples

Example 1

The following call creates the polynomial domain over the rationals.

7-340



 Dom::Polynomial

PR:=Dom::Polynomial(Dom::Rational)

Since the monomial ordering was not specified, this domain is created with the default
value for this parameter.

It is rather easy to create elements of this domain, as, e.g.,

a := PR(x*(2*x + y^3) - 7/2)

b := PR(x*(2*t + z^3) - 6)

c := a^2-b/3+3

Parameters

R

A commutative ring, i.e., a domain of category Cat::CommutativeRing. Default:
Dom::ExpressionField(normal).

Order

A monomial ordering, i.e., one of the predefined orderings LexOrder, DegreeOrder,
or DegInvLexOrder or an element of the domain Dom::MonomOrdering. Default:
LexOrder.

p

A polynomial or a polynomial expression.
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lm

List of monomials, which are represented as lists containing the coefficients together
with the exponents or exponent vectors.

v

List of indeterminates.

Entries

"characteristic" The characteristic of this domain, which is
the characteristic of R.

"coeffRing" The coefficient ring of this domain as
defined by the parameter R.

"key" The name of the domain created.
"one" The neutral element w.r.t. "_mult", which

is R::one.
"ordering" The monomial order as defined by the

parameter Order.
"zero" The neutral element w.r.t. "_plus", which

is R::zero.

Algorithms

To create polynomials from expressions with no suitable indeterminates the dummy
variable _dummy is introduced. With this variable it is possible to create elements
from constants which otherwise would fail. The drawback of this approach is that two
mathematically equal polynomials may have variable lists which differ by this dummy
variable.

See Also

MuPAD Domains
Dom::DistributedPolynomial | Dom::MultivariatePolynomial |
Dom::UnivariatePolynomial
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Dom::Product
Homogeneous direct products

Syntax

Domain Creation

Dom::Product(Set, <n>)

Dom::ProductSetn(e1, e2, …, en)

Dom::ProductSetn(List)

Description
Dom::Product(Set, n) is an n-fold direct product of the domain Set.

Dom::Product(Set, n)(e1, e2, ..., en) creates the n-tuple (e1, e2, …, en).

The objects e1, e2, ..., en must be convertible into elements of the domain Set, otherwise
an error message is issued.

Dom::Product(Set, n)(List) creates the n-tuple (l1, l2, …, ln).

The n elements li of List must be convertible into elements of the domain Set, otherwise
an error message is issued.

The list must consist of exactly n elements, otherwise an error message is issued.

Following to the definition of a direct product many of the methods such as "D" and
"_negate" just map the operation to all the components of the tuple.

Most n-ary methods like "_plus" and "_mult" apply the operation component-wise to
the tuples.

Superdomain
Dom::BaseDomain
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Axioms

If Set has Ax::canonicalRep, then Ax::canonicalRep.

If Set has Cat::AbelianMonoid, then Ax::normalRep.

Categories

Cat::HomogeneousFiniteProduct(Set)

Examples

Example 1

Define the 3-fold direct product of the rational numbers:

P3 := Dom::Product(Dom::Rational, 3)

and create elements:

a := P3([1, 2/3, 0])

b := P3(2/3, 4, 1/2)

We use the standard arithmetical operators to calculate with such tuples:

a + b, a*b, 2*a
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Some system functions were overloaded for such elements, such as diff, map or zip (see
the description of the corresponding methods "diff", "map" and "zip" above).

For example, to divide each component of a by 2 we enter:

map(a, `/`, 2)

The quoted character `/` is another notation for the function _divide, the functional
form of the division operator /.

Be careful that the mapping function returns elements of the domain the product is
defined over. This is not checked by the function map (for efficiency reasons) and may
lead to “invalid” tuples. For example:

b := map(a, sin); domtype(b)

But the components of b are no longer rational numbers!

Parameters

Set

An arbitrary domain of elements, i.e., a domain of category Cat::BaseCategory

n

The dimension of the product (a positive integer); default is 1

e1e2, en, …

Elements of Set or objects convertible into such
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List

A list of n elements of Set or objects convertible into such

Entries

"dimen" is the dimension of Dom::Product(Set,
n), which is equal to n.

"coeffRing" is the domain S.
"one" is the n-tuple (Set::one,

Set::one, ..., Set::one). This entry
only exists if Set is a monoid, i.e., a domain
of category Cat::Monoid.

"zero" is the n-tuple (Set::zero,
Set::zero, ..., Set::zero).
This entry only exists if Set is an
Abelian group, i.e., a domain of category
Cat::AbelianGroup.

Methods

Mathematical Methods

_divide — Divide tuples

_divide(x, y)

This method only exists if Set is a (multiplicative) group, i.e., a domain of category
Cat::Group.

This method overloads the function _divide for n-tuples, i.e., one may use it in the form
x / y, or in functional notation: _divide(x, y).

_invert — Compute the inverse of a tuple

_invert(x)
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This method only exists if Set is a (multiplicative) group, i.e., a domain of category
Cat::Group.

This method overloads the function _invert for n-tuples, i.e., one may use it in the form
1/x or x^(-1), or in functional notation: _inverse(x).

_less — Less-than relation

_less(x, y)

An implementation is provided only if Set is an ordered set, i.e., a domain of category
Cat::OrderedSet.

This method overloads the function _less for n-tuples, i.e., one may use it in the form x
< y, or in functional notation: _less(x, y).

_mult — Multiplie tuples by tuples and scalars

_mult(x, y, …)

If x is not of the type Dom::Product(Set,n), it is considered as a scalar which is
multiplied to each component of the n-tuple y (and vice versa).

This method only exists if Set is a semigroup, i.e., a domain of category
Cat::SemiGroup.

This method also handles more than two arguments. In this case, the argument list
is split into two parts of the same length which both are multiplied with the function
_mult. These two result are multiplied again with _mult whose result then is returned.

This method overloads the function _mult for n-tuples, i.e., one may use it in the form x
* y, or in functional notation: _mult(x, y).

_negate — Negate an n-tuple

_negate(x)

This method overloads the function _negate for n-tuples, i.e., one may use it in the form
-x, or in functional notation: _negate(x).

_power — ith power of a tuple

_power(x, i)
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An implementation is provided only if Set is a semigroup, i.e., a domain of category
Cat::SemiGroup.

This method overloads the function _power for n-tuples, i.e., one may use it in the form
x^i, or in functional notation: _power(x, i).

_plus — Add tuples

_plus(x, y, …)

The sum of two n-tuples x and y is defined component-wise as (x1 + y1, …, xn + yn).

This method overloads the function _plus for n-tuples, i.e., one may use it in the form x
+ y, or in functional notation: _plus(x, y).

D — Differential operator

D(x)

An implementation is provided only if Set is a partial differential ring, i.e., a domain of
category Cat::PartialDifferentialRing.

This method overloads the operator D for n-tuples, i.e., one may use it in the form D(x).

diff — Differentiation of n-tuples

diff(a, x)

This method overloads the function diff for n-tuples, i.e., one may use it in the form
diff(a, x).

An implementation is provided only if Set is a partial differential ring, i.e., a domain of
category Cat::PartialDifferentialRing.

equal — Test on equality of n-tuples

equal(x, y)

intmult — Multiple of a tuple

intmult(x, k)

An implementation is provided only if Set is an Abelian semigroup, i.e., a domain of
category Cat::AbelianSemiGroup.
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iszero — Test on zero

iszero(x)

Note that there may be more than one representation of the zero n-tuple if R does not
have Ax::canonicalRep.

This method overloads the function iszero for n-tuples, i.e., one may use it in the form
iszero(x).

random — Random tuple generation

random()

Access Methods

_index — Tuple indexing

_index(x, i)

See also the method "op".

This method overloads the function _index for n-tuples, i.e., one may use it in the form
x[i], or in functional notation: _index(x, i).

map — Apply a function to tuple components

map(x, func, <expr, …>)

Note: Note that the function values will not be implicitly converted into elements of the
domain Set. One has to take care that the function calls return elements of the domain
type Set.

This method overloads the function map for n-tuples, i.e., one may use it in the form
map(x, func, ...).

mapCanFail — Apply a function to tuple components

mapCanFail(x, func, <expr, …>)
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op — Component of a tuple

op(x, i)

op(x)

See also the method "_index".

This method overloads the function op for n-tuples, i.e., one may use it in the form op(x,
i).

Returns a sequence of all components of x.

set_index — Assigning tuple components

set_index(x, i, e)

See also the method "subsop".

Note: This method does not check whether e has the correct type.

This method overloads the indexed assignment _assign for n-tuples, i.e., one may use it
in the form x[i] := e, or in functional notation: _assign(x[i], e).

sort — Sorting the components of a tuple

sort(x)

This method overloads function sort for tuples, i.e. one may use it in the form sort(x).

subs — Substitution of tuple components

subs(x, …)

Note: The objects obtained by the substitutions will not be implicitly converted into
elements of the domain Set. One has to take care that the substitutions return elements
of the domain Set.

This method overloads the function subs for n-tuples, i.e., one may use it in the form
subs(x, ...). See subs for details and calling sequences.
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testEach — Check every component for a certain condition

testEach(x, func, <expr, …>)

func must return either TRUE or FALSE, otherwise a runtime error is raised.

testOne — Check an component for a certain condition

testOne(x, func, <expr, …>)

func must return either TRUE or FALSE, otherwise a runtime error is raised.

zip — Combine tuples component-wise

zip(x, y, func, <expr, …>)

Note: The function values will not be implicitly converted into elements of the domain
Set. One has to take care that the function calls return elements of the domain Set.

This method overloads the function zip for n-tuples, i.e., one may use it in the form
zip(x, y, func, ...).

zipCanFail — Combine tuples component-wise

zipCanFail(x, y, func, <expr, …>)

Conversion Methods

convert — Conversion into an n-tuple

convert(List)

convert(e1, <e2, …>)

FAIL is returned if this conversion fails.

Tries to convert the arguments into an element of the domain Dom::Product(Set, n).
This can be done if exactly n arguments are given where each argument can be converted
into an element of the domain Set.
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FAIL is returned if this conversion fails.

expr — Conversion into an object of a kernel domain

expr(x)

This method overloads the function expr for n-tuples, i.e., one may use it in the form
expr(x).
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Dom::Quaternion
Skew field of quaternions

Syntax
Dom::Quaternion(listi)

Dom::Quaternion(ex)

Dom::Quaternion(M)

Description

Domain Dom::Quaternion represents the skew field of quaternions.

Quaternions are usually defined to be complex 2 ×2 matrices of the special form

,

where a, b, c, d are real numbers. Another usual notation is a + bi + cj + dk; the subfield
of those quaternions for which c = d = 0 is isomorphic to the field of complex numbers.

The domain Dom::Quaternion regards these fields as being identical, and it allows both
notations that have been mentioned, as well as simply [a,b,c,d].

If you enter a quaternion as an arithmetical expression ex, the identifiers i, j, and k are
understood in the way mentioned above; I, J, and K may be used alternatively, and you
may also mix small and capital letters. Every subexpression of ex not containing one of
these must be real and constant.

Note: Be sure that you have not assigned a value to one of the identifiers mentioned.

Dom::Quaternion has the domain Dom::BaseDomain as its super domain,
i.e., it inherits each method which is defined by Dom::BaseDomain and not re-
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implemented by Dom::Quaternion. Methods described below are re-implemented by
Dom::Quaternion.

Superdomain

Dom::BaseDomain

Axioms

Ax::canonicalRep

Categories

Cat::SkewField

Examples

Example 1

Creating some quaternions.

Dom::Quaternion([1,2,3,4]),

Dom::Quaternion(11+12*i+13*j+14*k);

M := Dom::Matrix(Dom::Complex)([[3+4*I,-6-2*I],[6-2*I,3-4*I]]):

M, Dom::Quaternion(M)

Example 2

Doing some standard arithmetic.
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a:=Dom::Quaternion([1,2,3,4]):

b:=Dom::Quaternion([11,2,33.3,2/3]):

a*b, a+b, a^2/3, b^3;

Example 3

More mathematical operations:

a:=Dom::Quaternion([1,2,3,4]):

b:=Dom::Quaternion([11,2,33.3,2/3]):

Dom::Quaternion::nthroot(b,3);

abs(a), sign(b)

Example 4

Some miscellaneous operations.

a:=Dom::Quaternion([1,2,3,4]):

Dom::Quaternion::matrixform(a);

map(a, sqrt), map(a, _plus, 1);
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Parameters

listi

A list containing four elements of type Type::Real

ex

Arithmetical expression

M

A matrix of type Dom::Matrix(Dom::Complex). It has to be of a special form described
in the Details section.

Entries

"characteristic" the characteristic of this domain is 0
"one" the unit element; it equals

Dom::Quaternion([1,0,0,0]).
"size" the number of quaternions is infinity.
"zero" The zero element; it equals

Dom::Quaternion([0,0,0,0]).

Methods

Mathematical Methods

_mult — Multiplie quaternions

_mult(x, y, …)

_plus — Add quaternions

_plus(x, y, …)
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_power — n-th power of a quaternion

_power(x, n)

Im — Return the imaginary (vectorial) part of a quaternion.

Im(x)

The result is still a quaternion.

Re — Return the real part of a quaternion.

Re(x)

The result is of type Type::Real.

abs — Absolute value of a quaternion

abs(x)

The result is of type Type::Real.

conjugate — Conjugate element

conjugate(x)

intpower — Multiplie quaternions

intpower(x, {DOM_INT})

The implementation uses “repeated squaring”.

Dom::Quaternion is used by "_power".

nthroot — N-th root of a quaternion

nthroot(x, n)

The implementation uses “repeated squaring”.

Dom::Quaternion is used by "_power".

norm — Norm of a quaternion

norm(x)
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The result is of type Type::Real.

random — Random number generation

random()

scalarmult — Scalar multiplication

scalarmult(s, x)

scalarprod — Inner product

scalarprod(x, y)

sign — Sign of a quaternion

sign(x)

The result is of type Type::Real.

Conversion Methods

convert — Conversion of objects

convert(x)

convert_to — Conversion to other domains

convert_to(x, T)

It currently handles the following domains for T: DOM_EXPR, DOM_LIST,
Dom::Matrix(Dom::Complex).

expr — Convert a quaternion to an object of a kernel domain

expr(x)

The result is an object of the kernel domain DOM_EXPR.

This method overloads the function expr for quaternions, i.e., you may use it in the form
expr(x).
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matrixform — Convert a quaternion to a 2 x 2 matrix with complex entries.

matrixform(x)

The result is an object of the domain Dom::Matrix(Dom::Complex).

Technical Methods

TeX — Generate TeX-formatted string

TeX(x)

map — Apply a function to all components of a quaternion

map(x, f, arg, …)

If optional arguments are present, then each component co of x is replaced by f(co,
arg...). So for the quaternion x := a + bi + cj + dk, Dom::Quaternion(x, f, arg, ...)
returns the quaternion f(a, arg, …) + f(b, arg, …) i + f(c, arg, …) j + f(d, arg, …) k.

simplify — Simplification of a quaternion

simplify(x)

See Also

MuPAD Domains
Dom::Complex
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Dom::Rational
Field of rational numbers

Syntax
Dom::Rational(x)

Description

Dom::Rational is the domain of rational numbers represented by elements of the
domains DOM_INT or DOM_RAT. Dom::Rational represents the field of rational
numbers.

Elements of Dom::Rational are usually not created explicitly. However, if one creates
elements using the usual syntax, it is checked whether the input is of type DOM_INT or
DOM_RAT. This means Dom::Rational is a façade domain which creates elements of
domain type DOM_INT or DOM_RAT.

Viewed as a differential ring Dom::Rational is trivial, it contains constants only.

Dom::Rational has the domain Dom::Numerical as its super domain, i.e., it inherits
each method which is defined by Dom::Numerical and not re-implemented by
Dom::Rational. Methods described below are re-implemented by Dom::Rational.

Superdomain

Dom::Numerical

Axioms

Ax::canonicalRep, Ax::systemRep, Ax::canonicalOrder,
Ax::efficientOperation("_divide"), Ax::efficientOperation("_mult"),
Ax::efficientOperation("_invert")
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Categories

Cat::QuotientField(Dom::Integer), Cat::DifferentialRing,
Cat::OrderedSet

Examples

Example 1

Creating some rational numbers using Dom::Rational. This example also shows that
Dom::Rational is a façade domain.

Dom::Rational(2/3) ; domtype(%)

Dom::Rational(2.0)

Error: The arguments are invalid. [Dom::Rational::new]

Example 2

By tracing the method Dom::Rational::testtypeDom we can see the interaction
between testtype and Dom::Rational::testtypeDom.

prog::trace(Dom::Rational::testtypeDom):

delete x:

testtype(x, Dom::Rational);

testtype(3/4, Dom::Rational);

prog::untrace(Dom::Rational::testtypeDom):

enter Dom::Rational::testtypeDom(x, Dom::Rational)

computed FAIL
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enter Dom::Rational::testtypeDom(3/4, Dom::Rational)

computed TRUE

Parameters

x

An integer or a rational number

Methods

Mathematical Methods

denom — Denominator of a rational number

denom(x)

diff — Differentiates

diff(z, <x, …>)

numer — Numerator of the rational number

numer(x)

random — Random number generation

random()

retract — Retract to an integer element

retract(x)
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Conversion Methods

convert — Conversion of objects

convert(x)

convert_to — Conversion to other domains

convert_to(x, T)

The following domains are allowed for T: DOM_INT, Dom::Integer, Dom::Rational,
DOM_RAT, DOM_FLOAT, Dom::Float and Dom::Numerical.

testtype — Type checking

testtype(x, T)

In general this method is called from the function testtype and not directly by the user.
“Example 2” on page 7-361 demonstrates this behaviour.

See Also

MuPAD Domains
Dom::Complex | Dom::Float | Dom::Numerical | Dom::Rational | Dom::Real
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Dom::Real

Field of real numbers

Syntax

Dom::Real(x)

Description

Dom::Real is the field of real numbers represented by elements of the kernel domains
DOM_INT, DOM_RAT, DOM_FLOAT, and DOM_EXPR.

Dom::Real is the domain of real numbers represented by expressions of type DOM_INT,
DOM_RAT or DOM_FLOAT. An expression of type DOM_EXPR is considered as a real number
if it is of type Type::Arithmetical and if it contains no indeterminates which are not
of type Type::ConstantIdents and if it contains no imaginary part. See “Example 2”
on page 7-365.

Dom::Real has category Cat::Field due to practical reasons. This domain actually is
not a field because bool(1.0 = 1e100 + 1.0 - 1e100) returns FALSE for example.

Elements may not have an unique representation, for example bool(0 = sin(2)^2 +
cos(2)^2 - 1) returns FALSE.

Elements of Dom::Real are usually not created explicitly. However, if one creates
elements using the usual syntax, it is checked whether the input expression can be
converted to a number. This means Dom::Real is a façade domain which creates
elements of domain type DOM_INT, DOM_RAT, DOM_FLOAT, or DOM_EXPR.

Dom::Real has no normal representation, because 0 and 0.0 both represent zero.

Viewed as a differential ring, Dom::Real is trivial, it contains constants only.

Dom::Real has the domain Dom::Complex as its super domain, i.e., it inherits each
method which is defined by Dom::Complex and not re-implemented by Dom::Real.
Methods described below are re-implemented by Dom::Real.
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Superdomain

Dom::Complex

Axioms

Ax::systemRep, Ax::canonicalOrder, Ax::efficientOperation("_divide"),
Ax::efficientOperation("_mult"), Ax::efficientOperation("_invert")

Categories

Cat::DifferentialRing, Cat::Field, Cat::OrderedSet

Examples

Example 1

The following lines demonstrate how to generate elements of Dom::Real. The rational
and the floating-point numbers are elements of the real numbers:

Dom::Real(2/3)

Dom::Real(0.5666)

Example 2

The numbers PI and sin(2) are real numbers whereas sin(2/3 * I) + 3 and
sin(x) for general symbolic x are not real numbers. If we try to create the elements
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Dom::Real(sin(2/3 * I) + 3) and Dom::Real(sin(x)) an error message is
produced.

Dom::Real(PI)

Dom::Real(sin(2))

Dom::Real(sin(2/3 * I) + 3)

Error: The arguments are invalid. [Dom::Real::new]

Dom::Real(sin(x))

Error: The arguments are invalid. [Dom::Real::new]

Parameters

x

An expression of type DOM_INT, DOM_RAT, or DOM_FLOAT. An expression of type
DOM_EXPR is also allowed if it is of type Type::Arithmetical and if it contains no
indeterminates which are not of type Type::ConstantIdents and if it contains no
imaginary part.

Methods

Mathematical Methods

_less — Boolean operator “less”

_less(x, y)
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_leequal — Boolean operator “less or equal”

_leequal(x, y)

_power — Power operator

_power(z, n)

conjugate — Complex conjugate

conjugate(x)

Im — Imaginary part of a real number

Im(x)

random — Random number generation

random()

random(n)

random(m .. n)

This method returns a random number generator which creates positive integer between
0 and n - 1.

This method returns a random number generator which creates positive integer between
m and n.

Re — Real part of a real number

Re(x)

Conversion Methods

convert — Conversion of objects

convert(x)

convert_to — Conversion to other domains

convert_to(x, T)
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The following domains are allowed for T: DOM_INT, Dom::Integer,
DOM_RAT, Dom::Rational, DOM_FLOAT, Dom::Float, Dom::Numerical,
Dom::ArithmeticalExpression, Dom::Complex.

See Also

MuPAD Domains
Dom::Complex | Dom::Float | Dom::Integer | Dom::Numerical | Dom::Rational
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Dom::SquareMatrix
Rings of square matrices

Syntax

Domain Creation

Dom::SquareMatrix(n, <R>)

Element Creation

Dom::SquareMatrix(n, R)(Array)

Dom::SquareMatrix(n, R)(Matrix)

Dom::SquareMatrix(n, R)(<n, n>)

Dom::SquareMatrix(n, R)(<n, n>, ListOfRows)

Dom::SquareMatrix(n, R)(<n, n>, f)

Dom::SquareMatrix(n, R)(<n, n>, List, <Diagonal>)

Dom::SquareMatrix(n, R)(<n, n>, g, <Diagonal>)

Dom::SquareMatrix(n, R)(<n, n>, List, <Banded>)

Description

Domain Creation

Dom::SquareMatrix(n, R) creates a domain which represents the ring of n×n
matrices over a component domain R. The domain R must be of category Cat::Rng (a
ring, possibly without unit).

If the optional parameter R is not given, the domain Dom::ExpressionField() is used
as the component ring for the square matrices.
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For matrices of a domain created by Dom::SquareMatrix(n, R), standard matrix
arithmetic is implemented by overloading the standard arithmetical operators +, -,
*, / and ^. All functions of the linalg package dealing with matrices can also be
applied.

Dom::SquareMatrix(n, R) has the domain Dom::Matrix(R) as its super domain,
i.e., it inherits each method which is defined by Dom::Matrix(R) and not re-
implemented by Dom::SquareMatrix(n, R).

Methods described below are re-implemented by Dom::SquareMatrix.

The domain Dom::Matrix(R) represents matrices over R of arbitrary size, and it
therefore does not have any algebraic structure (except of being a set of matrices).

The domain Dom::MatrixGroup(m, n, R) represents the Abelian group of m×n
matrices over R.

Element Creation

Dom::SquareMatrix(n, R)(Array) and Dom::SquareMatrix(n, R)(Matrix)
create a new matrix formed by the entries of Array and Matrix, respectively.

The components of Array and Matrix, respectively, are converted into elements of the
domain R. An error message is issued if one of these conversions fails.

The call Dom::SquareMatrix(n, R)( n , n ) returns the n×n zero matrix. Note
that the n×n zero matrix is also defined by the entry "zero" (see below).

Dom::SquareMatrix(n, R)( n , n ListOfRows) creates an n×n matrix with
components taken from the nested list ListOfRows. Each inner list corresponds to a
row of the matrix.

If an inner list has less than n entries, the remaining components in the corresponding
row of the matrix are set to zero. If there are less than n inner lists, the remaining lower
rows of the matrix are filled with zeroes.

The entries of the inner lists are converted into elements of the domain R. An error
message is issued if one of these conversions fails.

It might be a good idea first to create a two-dimensional array from that list before
calling Dom::SquareMatrix(n, R). This is due to the fact that creating a matrix from
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an array is the fastest way one can achieve. However, in this case the sublists must have
the same number of elements.

Dom::SquareMatrix(n, R)( n , n f) returns the matrix whose (i, j)th component is
the value of the function call f(i, j). The row and column indices i and j range from 1
to n.

The function values are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Superdomain

Dom::Matrix(R)

Axioms

If R has Ax::canonicalRep, then Ax::canonicalRep.

Categories

Cat::SquareMatrix(R)

Examples

Example 1

A lot of examples can be found on the help page of the domain constructor
Dom::Matrix, and most of them are also examples for working with domains created by
Dom::SquareMatrix.

These examples only concentrate on some differences with respect to working with
matrices of the domain Dom::Matrix(R).

The following command defines the ring of two-dimensional matrices over the rationals:
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SqMatQ := Dom::SquareMatrix(2, Dom::Rational)

SqMatQ::hasProp(Cat::Ring)

The unit is defined by the entry "one", which is the 2×2 identity matrix:

SqMatQ::one

Note that some operations defined by the domain SqMatQ return matrices
which are no longer square. They return therefore matrices of the domain
Dom::Matrix(Dom::Rational), the super-domain of SqMatQ. For example, if we
delete the first row of the matrix:

A := SqMatQ([[1, 2], [-5, 3]])

we get the matrix:

SqMatQ::delRow(A, 1)

which is of the domain type:

domtype(%)
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Example 2

We can convert a square matrix into or from another matrix domain, as shown next:

SqMatR := Dom::SquareMatrix(3, Dom::Real):

MatC := Dom::Matrix(Dom::Complex):

A := SqMatR((i, j) -> sin(i*j))

To convert A into a matrix of the domain MatC, enter:

coerce(A, MatC)

domtype(%)

The conversion is done component-wise, as the following examples shows:

B := MatC([[0, 1], [exp(I), 0]])

The matrix B is square but has one complex component and therefore cannot be
converted into the domain SqMatR:

coerce(B, SqMatR)
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Parameters

n

A positive integer

R

A ring, i.e., a domain of category Cat::Rng; default is Dom::ExpressionField()

Array

An n×n array

Matrix

An n×n matrix, i.e., an element of a domain of category Cat::Matrix

List

A list of matrix components

ListOfRows

A list of at most n rows; each row is a list of at most n matrix components

f

A function or a functional expression with two parameters (the row and column index)

g

A function or a functional expression with one parameter (the row index)

Options

Diagonal

Create a diagonal matrix
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With the option Diagonal, diagonal matrices can be created with diagonal elements
taken from a list, or computed by a function.

Dom::SquareMatrix(n, R)( n , n List, Diagonal) creates the n×n diagonal
matrix whose diagonal elements are the entries of List.

List must have at most n entries. If it has fewer elements, the remaining diagonal
elements are set to zero.

The entries of List are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Dom::SquareMatrix(n, R)( n , n g, Diagonal) returns the matrix whose ith
diagonal element is g(i), where the index i runs from 1 to n.

The function values are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Banded

Create a banded Toeplitz matrix

Dom::SquareMatrix(n, R)( n , n List, Banded) creates an n×n banded Toeplitz
matrix with the elements of List as entries. The number of entries of List must be odd,
say 2 h + 1, and must not exceed n. The resulting matrix has bandwidth at most 2 h + 1.

All elements of the main diagonal of the created matrix are initialized with the middle
element of List. All elements of the ith subdiagonal are initialized with the (h + 1 - i)th
element of List. All elements of the ith superdiagonal are initialized with the (h + 1 +
i)th element of List. All entries on the remaining sub- and superdiagonals are set to
zero.

The entries of List are converted into elements of the domain R. An error message is
issued if one of these conversions fails.

Entries

"one" is the n×n identity matrix. This entry
exists if the component ring R is a domain
of category Cat::Ring, i.e., a ring with
unit.

7-375



7 Dom – Domains

"randomDimen" is set to [n, n].
"zero" is the n×n zero matrix.

Methods

Mathematical Methods

evalp — Evaluating matrices of polynomials at a certain point

evalp(A, x = a, …)

This method is only defined if R is a polynomial ring of category Cat::Polynomial.

This method overloads the function evalp for matrices, i.e., one may use it in the form
evalp(A, x = a).

identity — Identity matrix

identity(k)

Note: The matrix returned is of the domain Dom::Matrix(R) if .

This method only exists if the component ring R is of category Cat::Ring, i.e., a ring
with unit.

matdim — Matrix dimension

matdim(A)

random — Random matrix generation

random()

The components of the random matrix are generated with the method "random" of the
component ring R.
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Access Methods

_concat — Horizontal concatenation of matrices

_concat(A, B, …)

An error message is issued if the given matrices do not have the same number of rows.

Note: The matrix returned is of the domain Dom::Matrix(R)!

This method overloads the function _concat for matrices, i.e., one may use it in the form
A . B . ..., or in functional notation: _concat(A, B, ...).

_index — Matrix indexing

_index(A, i, j)

_index(A, r1 .. r2, c1 .. c2)

If i and j are not integers, then the call of this method returns in its symbolic form (of
type "_index") with evaluated arguments.

Otherwise an error message is given, if i and j are not valid row and column indices,
respectively.

Note: Note that the system function context is used to evaluate the entry in the context
of the calling environment.

Returns the submatrix of A, created by the rows of A with indices from r1 to r2 and the
columns of A with indices from c1 to c2.

Note: The submatrix returned is of the domain Dom::Matrix(R)!

This method overloads the function _index for matrices, i.e., one may use it in the
form A[i, j] and A[r1..r2, c1..c2], respectively, or in functional notation:
_index(A, ...).
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concatMatrix — Horizontal concatenation of matrices

concatMatrix(A, B, …)

col — Extracting a column

col(A, c)

An error message is issued if c is less than one or greater than n.

delCol — Deleting a column

delCol(A, c)

NIL is returned if A only consists of one column.

Note: The matrix returned is of the domain Dom::Matrix(R).

An error message is issued if c is less than one or greater than n.

delRow — Deleting a row

delRow(A, r)

NIL is returned if A only consists of one row.

Note: The matrix returned is of the domain Dom::Matrix(R).

An error message is issued if r is less than one or greater than n.

row — Extracting a row

row(A, r)

An error message is issued if r is less than one or greater than n.

stackMatrix — Vertical concatenation of matrices

stackMatrix(A, B, …)

7-378



 Dom::SquareMatrix

An error message is issued if the given matrices do not have the same number of
columns.

Note: The matrix returned is of the domain Dom::Matrix(R)!

Conversion Methods

create — Defining matrices without component conversions

create(x, …)

This method should be used if the elements of the parameters x, ... are elements of the
domain type R. This is often the case if a matrix is to be created whose components come
from preceding matrix and scalar operations.

See Also

MuPAD Domains
Dom::Matrix | Dom::MatrixGroup
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Dom::SymmetricGroup

Symmetric groups

Syntax

Dom::SymmetricGroup(n)

Dom::SymmetricGroup(n)(l)

Description

Dom::SymmetricGroup(n) creates the symmetric group of order n, that is, the domain
of all the permutations of {1, …, n} elements.

A permutation of n elements is a bijective mapping of the set {1, …, n} onto itself.

The domain element Dom::SymmetricGroup(n)(l) represents the bijective mapping of
the first n positive integers that maps the integer i to l[i], for 1 ≤ i ≤ n.

Superdomain

Dom::BaseDomain

Axioms

Ax::canonicalRep

Categories

Cat::Group
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Examples

Example 1

Consider the group of permutations of the first seven positive integers:

G := Dom::SymmetricGroup(7)

We create an element of G by providing the image of 1, 2, etc.:

a:=G([2,4,6,1,3,5,7])

a(3)

Parameters

n

Positive integer

l

List or array consisting of the first n integers in some order.

Entries

"one" the identical mapping of the set {1, …, n} to
itself.
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Methods

Mathematical Methods

_mult — Product of permutations

_mult(a1, …)

This method overloads the function _mult.

_invert — Inverse of a permutation

_invert(a)

This method overloads the function _invert.

func_call — Function value of a permutation at a point

func_call(a, i)

It computes the function value of a at i, i.e., the integer that i is mapped to by the
permutation a; i must be an integer between 1 and n.

cycles — Cycle representation of a permutation

cycles(a)

order — Order of a permutation

order(a)

inversions — Number of inversions

inversions(a)

sign — Sign of a permutation

sign(a)

random — Random permutation

random()
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Access Methods

allElements — Return all elements of the group

allElements()

size — Return the size of the group

size()

Conversion Methods

convert — Conversion of an object into a permutation

convert(x)

convert_to — Conversion of a permutation into another type

convert_to(a, T)

expr — Convert a permutation into a list

expr(a)
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Dom::UnivariatePolynomial
Domains of univariate polynomials

Syntax

Domain Creation

Dom::UnivariatePolynomial(<Var, <R, <Order>>>)

Element Creation

Dom::UnivariatePolynomial(Var, R, Order)(p)

Dom::UnivariatePolynomial(Var, R, Order)(lm)

Description

Dom::UnivariatePolynomial(Var, R, ..) creates the domain of univariate
polynomials in the variable Var over the commutative ring R.

Dom::UnivariatePolynomial represents univariate polynomials over arbitrary
commutative rings.

All usual algebraic and arithmetical polynomial operations are implemented, including
Gröbner basis computations.

Dom::UnivariatePolynomial(Var, R, Order) creates a domain of univariate
polynomials in the variable Var over a domain of category Cat::CommutativeRing in
sparse representation with respect to the monomial ordering Order.

Dom::UnivariatePolynomial() creates the univariate polynomial domain in the
variable x over the domain Dom::ExpressionField(normal) with respect to the
lexicographic monomial ordering.

Dom::UnivariatePolynomial(Var) creates the univariate polynomial domain in the
variable Var over the domain Dom::ExpressionField(normal) with respect to the
lexicographic monomial ordering.
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Note: Only commutative coefficient rings of type DOM_DOMAIN which inherit from
Dom::BaseDomain are allowed. If R is of type DOM_DOMAIN but inherits not from
Dom::BaseDomain, the domain Dom::ExpressionField(normal) will be used
instead.

For this domain only identifiers are valid variables.

Note: It is highly recommend to use only coefficient rings with unique zero
representation. Otherwise it may happen that, e.g., a polynomial division will not
terminate or a wrong degree will be returned.

Please note that for reasons of efficiency not all methods check their arguments, not even
at the interactive level. In particular this is true for many access methods, converting
methods and technical methods. Therefore, using these methods inappropriately may
result in strange error messages.

Superdomain

Dom::MultivariatePolynomial

Axioms

If R has Ax::normalRep, then Ax::normalRep.

If R has Ax::canonicalRep, then Ax::canonicalRep.

Categories

Cat::UnivariatePolynomial(R)
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Examples

Example 1

To create the ring of univariate polynomials in x over the integers one may define

UP:=Dom::UnivariatePolynomial(x,Dom::Integer)

Now, let us create two univariate polynomials.

a:=UP((2*x-1)^2*(3*x+1))

b:=UP(((2*x-1)*(3*x+1))^2)

The usual arithmetical operations for polynomials are available:

a^2+a*b

The leading coefficient, leading term, leading monomial and reductum of a are

lcoeff(a),lterm(a),lmonomial(a),UP::reductum(a)

and a is of degree

degree(a)
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The method gcd computes the greatest common divisor of two polynomials

gcd(a,b)

and lcm the least common multiple:

lcm(a,b)

Computing the definite and indefinite integral of a polynomial is also possible,

int(a)

which is in the case of indefinite integration simply the antiderivative of the polynomial.

D(int(a)), domtype(D(int(a)))

But, since for representing the indefinite integral of a the coefficient ring chosen as the
integers is not appropriate, the polynomial ring over its quotient field is used instead.

Furthermore, interpreting the polynomials as polynomial functions is also allowed in
applying coefficient ring elements, polynomials of this domain or arbitrary expressions
with option Expr to them:

a(5)
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a(b)

a(sin(x),Expr)

To get a vector of coefficients of a polynomial, which gives the dense representation of it,
one may use the method vectorize.

UP::vectorize(a), UP::vectorize(a,6)

Parameters

Var

An indeterminate given by an identifier; default is x.

R

A commutative ring, i.e. a domain of category Cat::CommutativeRing; default is
Dom::ExpressionField(normal).

Order

A monomial ordering, i.e. one of the predefined orderings LexOrder, DegreeOrder or
DegInvLexOrder or an element of domain Dom::MonomOrdering; default is LexOrder.

p

A polynomial or a polynomial expression.

7-388



 Dom::UnivariatePolynomial

lm

List of monomials, which are represented as lists containing the coefficients together
with the exponents or exponent vectors.

Entries

"characteristic" The characteristic of this domain.
"coeffRing" The coefficient ring of this domain as

defined by the parameter R.
"key" The name of the domain created.
"one" The neutral element w.r.t. "_mult".
"ordering" The monomial order as defined by the

parameter Order.
"variables" The list of the variable as defined by the

parameter Var.
"zero" The neutral element w.r.t. "_plus".

Methods

Access Methods

coeff — Coefficient of a polynomial

coeff(a)

coeff(a, Var, n)

coeff(a, n)

coeff(a, Var, n) returns the coefficient of the term Var^n as an element of R.

coeff(a, n) returns the coefficient of the term Var^n as an element of R.

This method overloads the function coeff for polynomials.
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degree — Degree of a polynomial

Inherited from Dom::DistributedPolynomial.

degreevec — Vector of exponents of the leading term of a polynomial

Inherited from Dom::DistributedPolynomial.

euclideanDegree — Euclidean degree function

Inherited from Dom::DistributedPolynomial.

ground — Ground term of a polynomial

Inherited from Dom::DistributedPolynomial.

has — Existence of an object in a polynomial

Inherited from Dom::DistributedPolynomial.

indets — Indeterminate of a polynomial

Inherited from Dom::DistributedPolynomial.

lcoeff — Leading coefficient of a polynomial

Inherited from Dom::DistributedPolynomial.

ldegree — Lowest degree of a polynomial

Inherited from Dom::DistributedPolynomial.

lmonomial — Leading monomial of a polynomial

Inherited from Dom::DistributedPolynomial.

lterm — Leading term of a polynomial

Inherited from Dom::DistributedPolynomial.

mainvar — Main variable of a polynomial

Inherited from Dom::DistributedPolynomial.
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mapcoeffs — Applie a function to the coefficients of a polynomial

Inherited from Dom::DistributedPolynomial.

multcoeffs — Multiplie the coefficients of a polynomial with a factor

Inherited from Dom::DistributedPolynomial.

nterms — Number of terms of a polynomial

Inherited from Dom::DistributedPolynomial.

nthcoeff — N-th coefficient of a polynomial

Inherited from Dom::DistributedPolynomial.

nthmonomial — N-th monomial of a polynomial

Inherited from Dom::DistributedPolynomial.

nthterm — N-th term of a polynomial

Inherited from Dom::DistributedPolynomial.

order — Compare two polynomials w.r.t. a given order

Inherited from Dom::MultivariatePolynomial.

orderedVariableList — Ordered list of indeterminates of a polynomial

Inherited from Dom::DistributedPolynomial.

pivotSize — Size of a pivot element

Inherited from Dom::DistributedPolynomial.

reductum — Reductum of a polynomial

Inherited from Dom::DistributedPolynomial.

sortList — Sort a list of polynomials w.r.t. a given order

Inherited from Dom::MultivariatePolynomial.
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stableSort — Sort a list of polynomials w.r.t. a given order

Inherited from Dom::MultivariatePolynomial.

subs — Avoid substitution

Inherited from Dom::BaseDomain.

subsex — Avoid extended substitution

Inherited from Dom::BaseDomain.

tcoeff — Lowest coefficient of a polynomial

Inherited from Dom::DistributedPolynomial.

vectorize — Vectorized form of a polynomial

vectorize(a, <n>)

See Also

MuPAD Domains
Dom::DistributedPolynomial | Dom::MultivariatePolynomial |
Dom::Polynomial
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Factored

Objects kept in factored form

Syntax

Factored(list, <type>, <ring>)

Factored(f, <type>, <ring>)

Description

Factored is the domain of objects kept in factored form, such as prime factorization of
integers, square-free factorization of polynomials, or the factorization of polynomials in
irreducible factors.

The argument list must be a list of odd length and of the form [u, f1, e1, f2,
e2, ..., fr, er], where the entries u and fi are elements of the domain ring, or can
be converted into such elements. The ei must be integers. Here, i ranges from 1 to r.

See section “Operands” below for the meaning of the entries of that list.

An error message is reported, if one of the list entries is of wrong type.

An arithmetical expression f given as the first argument is the same as giving the list
[ring::one, f, 1].

See section “Operands” below for the meaning of the entries of that list.

f must be an element of the domain ring, or must be convertible into such an element,
otherwise an error message would be given.

The argument type indicates what is known about the factorization. Currently, the
following types are known:

• "unknown" – nothing is known about the factorization.
• "irreducible" – the fi are irreducible over the domain ring.
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• "squarefree" – the fi are square-free over the domain ring.

If this argument is missing, then the type of the created factored object is set to
"unknown".

The type of factorization is known to any element of Factored. Use the methods
"getType" and "setType" (see below) to read and set the type of factorization of a
given factored object.

The argument ring is the ring of factorization. It must be an integral domain, i.e., a
domain of category Cat::IntegralDomain.

If this argument is missing, then the domain Dom::ExpressionField() is used.

The ring of factorization is known to any element of Factored. Use the methods
"getRing" and "setRing" (see below) to read and set the ring of factorization of a
given factored object.

You can use the index operator [ ] to extract the factors of an element f of the domain
Factored. E.g., for f = u f1

e1 f2
e2 …, you have f [1] = u, f [2] = f1

e1, f [3] = f2
e2 etc.

You can also use the methods "factors" and "exponents" (see below) to access the
operands, i.e., the call Factored::factors(f) returns a list of the factors fi, and
Factored::exponents(g) returns a list of the exponents ei (1 ≤ i ≤ r).

The system functions ifactor, factor and polylib::sqrfree are the main
application of this domain, they return their result in form of such factored objects (see
their help pages for information about the type and ring of factorization).

There may be no need to explicitly create factored objects, but to work with the results of
the mentioned system functions.

Note that an element of Factored is printed like an expression and behaves like that. As
an example, the result of f := factor(x^2 + 2*x + 1) is an element of Factored
and printed as (x + 1)^2. The call type(f) returns "_power" as the expression type
of f.

For an element f of Factored, the call Factored::convert(f, DOM_LIST) gives a
list of all operands of f.
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Examples

Example 1

The following computes the prime factorization of the integer 20:

f := ifactor(20)

The result is an element of the domain Factored:

domtype(f)

which consists of the following five operands:

op(f)

They represent the integer 20 in the following form: 20 = 1 22 5. The factors are prime
numbers and can be extracted via Factor::factors:

Factored::factors(f)

ifactor kept the information that the factorization ring is the ring of integers
(represented by the domain Dom::Integer), and that the factors of f are prime (and
therefore irreducible, because ℤ is an integral domain):

Factored::getRing(f), Factored::getType(f)

We can convert such an object into different forms, such as into a list of its operands:
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Factored::convert_to(f, DOM_LIST)

or into an unevaluated expression, keeping the factored form:

Factored::convert_to(f, DOM_EXPR)

or back into an integer:

Factored::convert_to(f, Dom::Integer)

You may also use the system function coerce here, which has the same effect.

Example 2

We compute the factorization of the integers 108 and 512:

n1 := ifactor(108); n2 := ifactor(512)

The multiplication of these two integers gives the prime factorization of 55296 = 108 512:

n1*n2

Note that the most operations on such objects lead to an un-factored form, such as adding
these two integers:
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n1 + n2

You may apply the function ifactor to the result, if you are interested in its prime
factorization:

ifactor(%)

You an apply (almost) each function to factored objects, functions that mainly expect
arithmetical expressions as their input. Note that, before the operation is applied, the
factored object is converted into an arithmetical expression in un-factored form:

Re(n1)

Example 3

The second system function which deals with elements of Factored, is factor, which
computes all irreducible factors of a polynomial.

For example, if we define the following polynomial of ℤ101:

p := poly(x^12 + x + 1, [x], Dom::IntegerMod(101)):

and compute its factorization into irreducible factors, we get:

f := factor(p)
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If we multiply the factored object with an element that can be converted into an element
of the ring of factorization, then we get a new factored object, which then is of the
factorization type "unknown":

x*f

Factored::getType(%)

You may use the function expand which returns the factored object in expanded form as
an element of the factorization ring:

expand(f)

Example 4

The third system function which return elements of Factored is polylib::sqrfree,
which computes the square-free factorization of polynomials. For example:

f := polylib::sqrfree(x^2 + 2*x + 1)

The factorization type, of course, is "squarefree":

Factored::getType(f)
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Parameters

list

A list of odd length

f

An arithmetical expression

type

A string (default: "unknown")

ring

A domain of category Cat::IntegralDomain (default: Dom::ExpressionField())

Function Calls

Calling a factored object as a function yields the object itself, regardless of the
arguments. The arguments are not evaluated.

Operations

You can apply (almost) every function to factored objects, functions that mainly expect
arithmetical expressions as their input.

For example, one may add or multiply those objects, or apply functions such as expand
and diff to them. But the result of such an operation then is usually not any longer
of the domain Factored, as the factored form could be lost due to the operation (see
examples below).

Call expr(f) to convert the factored object f into an arithmetical expression (as an
element of a kernel domain).

The call coerce(f, DOM_LIST) returns a list of operands of the factored object f (see
method "convert_to" below).
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Operands

An element f of Factored consists of the r + 1 operands u, f1, e1, f2, e2, …, fr, er, such that
f = u f1

e1 f2
e2 … fr

er.

The first operand u and the factors fi are elements of the domain ring. The exponents ei
are integers.

Methods

Mathematical Methods

_mult — Multiply factored objects

_mult(f, g, …)

Suppose that g is an element of the domain ring (or can be converted into such an
element).

If g is a unit of ring or a factor of f, then the result is a factored object of the same
factorization type as f. Otherwise, the result is an element of Factored with the
factorization type "unknown".

If both f and g are factored objects with factorization type "irreducible", then the
result is again a factored object of this type, i.e., the result is still in factored form.

Otherwise, the factored form of f is lost, and the result of this method is an element of
ring.

This method overloads the function _mult for factored objects, i.e., one may use it in the
form f*g*..., or in functional notation: _mult(f, g, ...).

_power — Raise a factored object to a certain power

_power(f, n)

If n is a positive integer and f a factored object with factorization type "irreducible"
or "squarefree", then the result is still a factored object of this type.
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Otherwise, the factored form of f is lost, and the result of this method is an element of
ring.

This method overloads the function _power for factored objects, i.e., one may use it in the
form f^n, or in functional notation: _power(f, n).

expand — Expand a factored object

expand(f)

exponents — Get the exponents of a factored object

exponents(f)

factor — Factor a factored object

factor(f)

If f already is of the factorization type "irreducible", then this method just return f.

Otherwise, this method converts f into an element of the domain ring and calls the
method "factor" of ring.

This method returns a factored object of the domain Factored with factorization type
"irreducible", if the factorization of f can be computed (otherwise, FAIL is returned).

This method overloads the function factor for factored objects, i.e., one may use it in the
form factor(f).

factors — Get the factors of a factored object

factors(f)

irreducible — Test if a factored object is irreducible

irreducible(f)

The test on irreducible is trivial, if f has the factorization type "irreducible".

Otherwise, this method converts f into an element of ring and calls the method
"irreducible" of ring. The value FAIL is returned, if the domain ring cannot test if
f is irreducible.
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iszero — Test on zero for factored objects

iszero(f)

This method overloads the function iszero for factored objects, i.e., one may use it in the
form iszero(f).

sqrfree — Compute a square-free factorization of a factored object

sqrfree(f)

If f already is of the factorization type "squarefree", then this method just return f.

Otherwise, this method converts f into an element of the domain ring and calls the
method "squarefree" of ring.

This method returns a factored object of the domain Factored with factorization type
"squarefree", if the square-free factorization of f can be computed (otherwise, FAIL is
returned).

This method overloads the function polylib::sqrfree for factored objects, i.e., one
may use it in the form polylib::sqrfree(f).

Access Methods

_index — Extract a term of a factored object

_index(f, i)

Responds with an error message, if i is greater than the number of terms of f.

This method overloads the index operator [ ] for factored objects, i.e., one may use it in
the form f[i].

getRing — Get the ring of factorization

getRing(f)

getType — Get the type of factorization

getType(f)
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has — Existence of an object in a factored object

has(f, x, …)

This method overloads the function has for factored objects, i.e., one may use it in the
form has(f, x, ...).

map — Map a function to the operands of factored objects

map(f, func, …)

See the system function map for details.

This method overloads the function map for factored objects, i.e., one may use it in the
form map(f, func, ...).

nops — Number of operands of a factored object

nops(f)

This method overloads the function nops for factored objects, i.e., one may use it in the
form nops(f).

op — Extract an operand of a factored object

op(f, i)

Returns FAIL, if i is greater than the number of operands of f.

This method overloads the function op for factored objects, i.e., one may use it in the form
op(f, i).

select — Select operands of a factored object

select(f, func, …)

This method overloads the function select for factored objects, i.e., one may use it in the
form select(f, func, ...).

set_index — Set/change a term of a factored object

set_index(f, i, x)
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Responds with an error message, if i is greater than the number of terms of f.

Note: Make sure that x either is an element of the domain ring, or an integer.

This method overloads the index operator [ ] for factored objects, i.e., one may use it in
the form f[i] := x.

setRing — Set the ring of factorization

setRing(f, ring)

Note: Use this method with caution! Make sure that the factorization of f is still valid
over the new ring, and that the operands of f have the correct domain type.

ring must be a domain of category Cat::IntegralDomain, which is not checked by
this method.

setType — Set the type of factorization

setType(f, type)

Note: Use this method with caution! Make sure that the factorization type corresponds
with the factorization of f.

subs — Substitute subexpressions in the operands of a factored object

subs(f, x = a, …)

This method overloads the function subs for factored objects, i.e., one may use it in the
form subs(f, x = a, ...).

subsop — Substitute operands of a factored object

subsop(f, i = a, …)

This method overloads the function subsop for factored objects, i.e., one may use it in the
form subsop(f, i = a, ...).
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type — Expression type of factored objects

type(f)

Conversion Methods

convert — Convert an object into a factored object

convert(x)

If the conversion fails, then FAIL is returned.

x may either be a list of the form [u, f1, e1, ..., fr, er] of odd length (where u,
f1, ..., fr are of the domain type ring, or can be converted into such elements, and
e1, ..., er are integers), or an element that can be converted into the domain ring.
The latter case corresponds to the list [ring::one,x,1].

convert_to — Convert factored objects into other domains

convert_to(f, T)

If the conversion fails, then FAIL is returned.

If T is the domain DOM_LIST, then the list of operands of f is returned.

If T is the domain DOM_EXPR, then the unevaluated expression
u*f1^e1*f2^e2*...*fr^er is returned, where u, f1, e1, ... are the operands of
f.

Otherwise, the method "convert" of the domain T is called to convert f into an element
of the domain T (which could return FAIL).

Use the function expr to convert f into an object of a kernel domain (see below).

create — Create simple and fast a factored objects

create(list)

create(x)

This method creates a new factored object with the operands ring::one, x, 1.
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expr — Convert a factored object into a kernel domain

expr(f)

Note: Note that the factored form of f may be lost due to this conversion.

expr2text — Convert a factored object into a string

expr2text(f)

testtype — Type testing for factored objects

testtype(f, T)

This method is called from the system function testtype.

TeX — LaTeX formatting of a factored object

TeX(f)

The method "TeX" of the domain ring is used to get the LaTeX-representation of the
corresponding operands of f.

This method is called from the system function generate::TeX.

Technical Methods

_concat — Concatenate operands of factored objects

_concat(f, g)

f and g must have the same factorization type and factorization ring, otherwise an error
message is given.

maprec — Allow recursive mapping for factored objects

maprec(f, x, …)

First f is converted into the unevaluated expression u*f1^e1*f2^e2*...*fr^er,
where u, f1, e1, ... are the operands of f. Then the function misc::maprec is
called with this expression as its first parameter.
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Note that the result of this method is not longer an object of Factored!

print — Pretty-print routine for factored objects

print(f)

unapply — Create a procedure from a factored object

unapply(f, <x>)

This method overloads the function fp::unapply for factored objects, i.e., one may use it
in the form fp::unapply(f). See fp::unapply for details.
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Series::Puiseux
Truncated Puiseux series expansions

Syntax
Series::Puiseux(f, x, <order>, <dir>)

Series::Puiseux(f, x = x0, <order>, <dir>)

Description

Series::Puiseux is a domain for truncated series expansions. Elements of this domain
represent initial segments of Taylor, Laurent, or Puiseux series expansions, as well as
slightly more general types of series expansions.

The system function series is the main application of this domain. It tries to compute
a Taylor, Laurent, or Puiseux series or a more general series expansion of a given
arithmetical expression, and the result is returned as an element of Series::Puiseux
or, possibly, of the more general domain Series::gseries.

There is usually no need for you to explicitly create elements of this domain. The
methods described on this help page apply if you want to process a result returned by
series further.

Note: If you create elements explicitly as described above, then any special mathematical
function, such as sin or exp, involving the series variable is considered as a coefficient.
Use series to expand such functions as well, and use the constructor only if f does not
contain any special mathematical functions. Cf. “Example 1” on page 7-409.

Use the type specifier Type::Series to determine for an element of this domain, which
kind of series expansion it is.

Note: The coefficients are allowed to depend sublinearly on the variable of the series
expansion. For example, logarithmic terms in the series variable may appear as
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coefficients. Be aware that this is no Puiseux series in the mathematical sense. Cf.
“Example 4” on page 7-417 and the help page for series.

Environment Interactions

The function is sensitive to the global variable ORDER, which determines the default
number of terms of the expansion.

Examples

Example 1

You can create objects of Series::Puiseux in various ways. The standard method is to
use the constructor. The second argument specifies the series variable and the expansion
point, with default 0 if omitted:

Series::Puiseux(x/(1 - x), x);

Series::Puiseux(x/(1 - x), x = 2);

Series::Puiseux(x/(1 - x), x = complexInfinity);

The third argument, if present, specifies the desired number of terms. If it is omitted, the
value of the environment variable ORDER is used:

Series::Puiseux(x/(1 - x), x = 2, 4);

ORDER := 2:

Series::Puiseux(x/(1 - x), x);

delete ORDER:
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The methods const, one, and zero provide shortcuts for creating series expansions with
only a constant term or no non-zero term at all. Specifying the order of the error term is
mandatory:

Series::Puiseux::const(PI, x, 4);

Series::Puiseux::one(x = 2, 3);

Series::Puiseux::zero(x = 0, 3/2);

Series::Puiseux::zero(x = complexInfinity, 5);

Note that, e.g., O(x^(3/2)) is not an element of Series::Puiseux, but can be
converted by the constructor:

f := O(x^(3/2));

g := Series::Puiseux(f, x);

domtype(f), domtype(g)
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Both the constructor Series::Puiseux and the method const regard special
mathematical functions, such as exp or sin, as coefficients:

Series::Puiseux(sin(x)/(1 - x), x, 4);

Series::Puiseux::const(cos(x), x = 1, 3);

Use the system function series if you want to have special functions expanded as well:

series(sin(x)/(1 - x), x, 4);

The constructor returns FAIL, if it cannot convert the input into an element of
Series::Puiseux. Then series may be able to produce a more general expansion:

delete a:

Series::Puiseux(x^a/(1 - x), x);

f := series(x^a/(1 - x), x);

domtype(f);

The method create is a purely syntactical constructor, where the operands are
specified explicitly. The sixth and seventh arguments are optional and default to 0 and
Undirected, respectively:

Series::Puiseux::create(3, 1, 5, [1/2, 5], x) =
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Series::Puiseux::create(3, 1, 5, [1/2, 5], x, 0, Undirected)

Series::Puiseux::create(1, -2, 1, [ln(x), 0, 3], x, complexInfinity);

Example 2

We demonstrate the internal structure of objects of type Series::Puiseux:

f := series(exp(x), x = 1);

g := series(sin(sqrt(1/x)), x = infinity);

h := series(sin(sqrt(-x))/x, x = 0)

op(f);

op(g);

op(h)
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The series f and g are of type 0, while h is of type 1:

op(f, 1), op(g, 1), op(h, 1)

The branching order of f is 1, and the branching order of both g and h is 2:

op(f, 2), op(g, 2), op(h, 2)

The third and the fourth operand determine the order of the leading term and the error
term, respectively:

ldegree(f) = op(f, 3)/op(f, 2),

ldegree(g) = op(g, 3)/op(g, 2),

ldegree(h) = op(h, 3)/op(h, 2);

Series::Puiseux::order(f) = op(f, 4)/op(f, 2),

Series::Puiseux::order(g) = op(g, 4)/op(g, 2),

Series::Puiseux::order(h) = op(h, 4)/op(h, 2);

For series expansions of type 0, the fifth operand contains the coefficients of the
expansion:

op(f, 5) = [coeff(f)];
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op(g, 5) = [coeff(g)];

However, h is an expansion of type 1, and then the fifth operand stores the summands:

op(h, 5);

[coeff(h)];

The sixth operand contains the series variable and the expansion point:

op(f, 6), Series::Puiseux::indet(f), Series::Puiseux::point(f);

op(g, 6), Series::Puiseux::indet(g), Series::Puiseux::point(g);

op(h, 6), Series::Puiseux::indet(h), Series::Puiseux::point(h);

The expansions f and h are undirected, while g is a directed expansion from the left
along the real line to the positive infinity:

op(f, 7) = Series::Puiseux::direction(f),
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op(g, 7) = Series::Puiseux::direction(g),

op(h, 7) = Series::Puiseux::direction(h);

Note: Since the internal structure may be subject to changes, accessing the operands
of and element of Series::Puiseux via op should be avoided. Use the corresponding
access methods instead.

Example 3

Around branch points, the series expansions of type 1 can approximate a function in a
wider range than those of type 0:

f := x -> arcsin(x + 1):

g := series(f(x), x, 2);

h := series(f(x), x, 2, Right);

The expansion g, of type 1, approximates f well in an open disc centered at the origin.
However, the expansion h, of type 0, was requested for positive real values of x only, and
in fact it does not approximate f on the negative real axis and in the upper half plane:

op(g);

op(h);
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DIGITS := 4:

[f(0.01), f(0.01*I), f(-0.01), f(-0.01*I)];

map([g(0.01), g(0.01*I), g(-0.01), g(-0.01*I)], float);

map([h(0.01), h(0.01*I), h(-0.01), h(-0.01*I)], float);

delete DIGITS:

The method convert01 converts a series expansion of type 0 into one of type 1:

h1 := Series::Puiseux::convert01(h);

op(h1);

The reverse conversion, using the method convert10, is in not always possible:

op(Series::Puiseux::convert10(h1));

op(Series::Puiseux::convert10(g));

You can enforce a conversion by using properties:
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assume(x > 0):

op(Series::Puiseux::convert10(g));

unassume(x):

Example 4

Despite the name, elements of Series::Puiseux may contain coefficient functions
depending on the series variable:

f := series(psi(x), x = infinity, 4);

domtype(f), coeff(f, 0)

With respect to differentiation, integration, and composition, such expansions behave like
functions of the series variable and not like formal series:

diff(f, x) = series(diff(psi(x), x), x = infinity, 4)

int(f, x) = series(int(psi(x), x), x = infinity, 4)

f @ series(2*x, x = infinity) = series(psi(2*x), x = infinity, 4)
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Example 5

The basic arithmetical operations are implemented for elements of Series::Puiseux:

f := series(exp(x), x, 4);

g := series(sqrt(x)/(1 - x), x, 4);

h := series(cot(x), x, 4);

f + g + h;

_plus(f, g, h)

f - h = _subtract(f, h);

-g = _negate(g);

f*g*h;
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_mult(f, g, h)

f/g = _divide(f, g);

1/h = _invert(h);

Operands that are not of type Series::Puiseux are implicitly converted into series
expansions with the same expansion point via the constructor before the arithmetical
operation is performed:

f - 1 - x;

h * (sin(x) + x);

An error occurs when the expansion points differ or the directions of expansion are
incompatible:

f := series(arccot(x), x = 0, Left);

g := series(sqrt(sin(x)), x = 0, Right);

f + g

7-419



7 Dom – Domains

Error: Inconsistent direction. [Series::Puiseux::plus]

h := series(1/x, x = 2, 4);

f * h

Error: Both series must use the same variables and expansion points. [Series::Puiseux::mult]

If the directions are compatible, then the direction of the result specifies the minimal
range where all operands are defined:

s := series(tanh(x), x, Real);

f + s;

Series::Puiseux::direction(%)

Example 6

The method scalmult implements multiplication by a constant or a single term:
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f := series(1 + 2*x^3, x);

Series::Puiseux::scalmult(f, 5) = 5*f;

Series::Puiseux::scalmult(f, 5, 3) = 5*x^3*f;

g := series(1 + 2*x^3, x = 2, 3);

Series::Puiseux::scalmult(g, 1, 3) = (x - 2)^3*g

h := series(1 + 2*x^3, x = complexInfinity);

Series::Puiseux::scalmult(h, 1, 1/2) = x^(-1/2)*h

Example 7

Exponentiation is implemented for integral and rational exponents:

f := series(exp(x), x, 3);
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f^2 = _power(f, 2);

f^(1/3) = _power(f, 1/3)

Exponents are allowed to be non-rational, if the series expansion starts with a constant
summand independent of the series variable:

f^I = series(exp(I*x), x, 3);

g := series(sin(-x), x);

g^I

Error: The exponent must be a rational number. [Series::Puiseux::_power]

If the exponent contains the series variable, then an error occurs:

f^x

Error: The exponent must not contain the series variable. [Series::Puiseux::_power]

For undirected expansions and rational exponents that are not integral, the result has
type 1 in general:

g^(1/2);
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op(%, 1);

The result simplifies when you specify one of the directions Left or Right:

g := series(sin(-x), x, Left):

g^(1/2);

op(%, 1);

g := series(sin(-x), x, Right):

g^(1/2);

Example 8

Functional composition of elements of Series::Puiseux is implemented by the method
_fconcat:

f := series(ln(x), x = 1, 4);

g := series(cos(y), y = 0);

f@g = _fconcat(f, g);

series(ln(cos(y)), y = 0, 4);
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If the left argument is not of type Series::Puiseux, it is implicitly expanded around
the limit point of the right argument before the composition:

f := series(sin(-x), x = 0);

sqrt(y) @ f = Series::Puiseux(sqrt(y), y) @ f;

If the right argument is not of type Series::Puiseux, it is implicitly expanded around
the origin via the constructor before the composition:

f @ sqrt(y) = f @ Series::Puiseux(sqrt(y), y)

This may not work if the argument to be converted contains special mathematical
functions, but you can explicitly expand it into a series via series in this case:

f @ tan(y)

f @ series(tan(y), y = 0)
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Mathematically, the composition of series expansions is not defined if the limit point of
the right argument is not the expansion point of the left argument:

g := series(y^2 - 1, y = 0);

f @ g

f @ (y^2 - 1)

f @ series(y^2 - 1, y = 1, 4)

The method revert computes the inverse of a truncated series expansion with respect
to composition. The expansion point of the inverse is the limit point of the input and vice
versa:

f := series(ln(x), x = 1, 4);

revert(f) = series(exp(x), x = 0, 5)

f := series(cot(x), x = 0);

revert(f) = series(arccot(x), x = complexInfinity);

7-425



7 Dom – Domains

f @ revert(f), revert(f) @ f

If the series variable occurs in the coefficients or the type flag is 1, an error occurs:

f := series(ln(sin(x)), x);

g := series(arcsin(x + 1), x, 2);

revert(f)

Error: Cannot compute the functional inverse. [Series::Puiseux::revert]

revert(g)

Error: Cannot compute the functional inverse. [Series::Puiseux::revert]

Example 9

The methods diff and int implement term-by-term differentiation and integration:

f := series(ln(x), x = 1, 4);

g := diff(f, x);

series(1/x, x = 1, 4);

int(g, x);
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If you specify a range of integration, then the result is an arithmetical expression plus a
symbolic definite integral of the O-term:

int(f, x = 1..2);

Example 10

Most special mathematical functions are overloaded for Series::Puiseux:

f := series(x/(1 - x), x, 4);

exp(f) = series(exp(x/(1 - x)), x, 4);

ln(f) = series(ln(x/(1 - x)), x, 4);
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If the system is unable to compute the composition, it returns a symbolic function call
with evaluated arguments:

delete g:

g(f)

exp(series(x + 1/x, x = infinity, 5))

In this case, you can try series to compute the composition:

series(exp(x + 1/x), x = infinity, 5)

Example 11

The system functions Re, Im, and conjugate work for all real series expansions:

f := series(exp(I*x), x, Real);

Re(f) = series(cos(x), x, Real);

Im(f) = series(sin(x), x, Real) + O(x^6);

conjugate(f) = series(exp(-I*x), x, Real);
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Except in trivial cases, a symbolic function call is returned for an undirected expansion:

Re(series(PI, x));

Re(series(exp(I*x), x));

Example 12

The method contfrac converts a series expansion into a continued fraction:

f := series(exp(x), x, 10);

contfrac(f);

g := series(tan(x), x = PI, 10);

contfrac(g);
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If the coefficients of a series expansion depend on the series variable, then so do the
coefficients of the corresponding continued fraction:

h := series(ln(x + 1/x), x = infinity);

contfrac(h)

Example 13

For series expansions around the origin, the method laplace, overloading laplace,
computes the Laplace transform term by term, if the second argument is the series
variable. The result is a series expansion around infinity:

delete s:

f := series(exp(x), x);

g := laplace(f, x, s);

series(laplace(exp(x), x, s), s = infinity);

7-430



 Series::Puiseux

Similarly, the method ilaplace computes the inverse Laplace transform term by term
for series expansions around infinity, if the second argument is the series variable. The
result is a series expansion around 0:

ilaplace(g, s, x)

The Laplace transform and the inverse Laplace transform, respectively, of a series do not
make sense for expansion points other than 0 or infinity, respectively, and in these cases
a symbolic function call is returned:

laplace(series(ln(x), x = 1, 2), x, s);

If the second argument is not the series variable, then the coefficients are transformed:

h := series(sin(x*y), x = 1, 2);

laplace(h, y, s);

Example 14

When called with one argument, the method coeff returns the sequence of all
coefficients of a series expansion:

f := series(tan(x), x);
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coeff(f)

g := series(1/(x - 1)^2, x = infinity);

coeff(g)

When called with two arguments, coeff returns an individual coefficient:

coeff(f, -1), coeff(f, 1), coeff(f, 2), coeff(f, 13/2);

If the second argument exceeds the order of the error term, coeff returns FAIL:

coeff(f, 10)

When the expansion point is complexInfinity, coeff(s, n) returns the coefficient of
, where x is the series variable of s:

coeff(g, 2), coeff(g, -3), coeff(g, -15/2)

Specifying the series variable as second or third argument, respectively, is optional:

coeff(f) = coeff(f, x);
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coeff(f, 3) = coeff(f, x, 3)

For series expansions of type 1, the “coefficients” in general involve the series variable:

h := series(sin(sqrt(-x)), x);

coeff(h);

coeff(h, 3/2);

Example 15

The method ldegree returns the order of the leading term of a series expansion. When
the expansion point is complexInfinity and the leading term is , then this is n:

f := series(x*sin(sqrt(-x)), x);

g := series(cot(x), x = PI);

h := series(2*arccot(x), x = infinity);
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ldegree(f), ldegree(g), ldegree(h)

The method lcoeff returns the coefficient of the leading term. For an expansion of
type 1, it generally involves the series variable:

lcoeff(f), lcoeff(g), lcoeff(h)

The method lterm returns the leading term itself:

lterm(f), lterm(g), lterm(h)

Finally, the method lmonomial returns the whole summand:

lmonomial(f) = lcoeff(f)*lterm(f);

lmonomial(g) = lcoeff(g)*lterm(g);

lmonomial(h) = lcoeff(h)*lterm(h);
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If the series expansion consists only of an O-term, all four methods return FAIL:

s := Series::Puiseux::zero(x, 6);

ldegree(s), lcoeff(s), lterm(s), lmonomial(s)

Example 16

The methods nthcoeff, nthmonomial, and nthterm return the nth non-zero
coefficient, monomial, or term, respectively, of a series expansion. In contrast to
polynomials, they count from the term of lowest order on, i.e., the ordering is ascending
by exponent for finite expansion points and descending by exponent when the expansion
point is complexInfinity:

f := series(x*sin(sqrt(-x)), x);

g := series(cot(x), x = PI);

h := series(2*arccot(x), x = infinity);

nthcoeff(f, 1) = lcoeff(f);

nthmonomial(g, 1) = lmonomial(g);

nthterm(h, 1) = lterm(h);
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nthcoeff(f, 3), nthmonomial(f, 3), nthterm(f, 3);

nthcoeff(g, 3), nthmonomial(g, 3), nthterm(g, 3);

nthcoeff(h, 3), nthmonomial(h, 3), nthterm(h, 3);

If the second argument is not positive or exceeds the number of non-zero summands, all
three methods return FAIL:

nthcoeff(f, -4), nthterm(g, 0), nthmonomial(h, 4)

Example 17

We illustrate the difference between the ordering of terms in polynomials and series
expansions. The ordering of the terms in a polynomial agrees with the ordering of the
terms in a series expansion with expansion point complexInfinity:
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f := poly(2*(x^2 + x)^3);

g := series(f, x = complexInfinity);

[lcoeff(f), lmonomial(f), lterm(f)];

[lcoeff(g), lmonomial(g), lterm(g)];

[nthcoeff(f, 2), nthmonomial(f, 3), nthterm(f, 4)];

[nthcoeff(g, 2), nthmonomial(g, 3), nthterm(g, 4)];

For finite expansion points, however, the ordering of the terms in a series expansion is
the reverse of the ordering of the terms in the corresponding polynomial:

h := series(f, x = 0);  

[lcoeff(h), lmonomial(h), lterm(h)];

[nthcoeff(h, 2), nthmonomial(h, 3), nthterm(h, 4)];
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Example 18

The method iszero checks whether a series expansion has no non-zero summands apart
from the O-term:

f := series(exp(x), x);

g := Series::Puiseux(0, x = 2, 4);

iszero(f), iszero(g)

Example 19

The methods convert tries to convert an arbitrary object into an element of
Series::Puiseux. If the input does not suggest an expansion point, convert uses the
origin:

f := asympt(1/(x + 1), x = infinity);

g := sin(x)/(1 - x);

h := poly((x + 1)^10);

u := O((x - 1)^3, x = 1);
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domtype(f), domtype(g), domtype(h), domtype(u)

F := Series::Puiseux::convert(f);

G := Series::Puiseux::convert(g);

H := Series::Puiseux::convert(h);

U := Series::Puiseux::convert(u);

convert returns FAIL, if it is unable to convert the input, e.g., because the input
contains no or more than one indeterminate:

Series::Puiseux::convert(sin(1)),

Series::Puiseux::convert([1, y, 3])

The method convert_to tries to convert an element of Series::Puiseux into a
specified type:

Series::Puiseux::convert_to(F, Series::gseries);

Series::Puiseux::convert_to(F, contfrac);

Series::Puiseux::convert_to(G, DOM_EXPR);

Series::Puiseux::convert_to(H, DOM_POLY);

Series::Puiseux::convert_to(H, O);

Series::Puiseux::convert_to(U, O);
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convert_to returns FAIL, if it is unable to perform the requested conversion:

Series::Puiseux::convert_to(F, O),

Series::Puiseux::convert_to(F, DOM_LIST)

Example 20

The method expr converts an element of Series::Puiseux into an arithmetical
expression, discarding the O-term. In general, the ordering of the summands is not
preserved:

f := series(exp(x*y), x);

g := series(ln(x), x = 1, 3);
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expr(f);

expr(g);

The method float applies the system function float to all coefficients:

float(f);

float(g);

Example 21

The methods combine, expand, and normal apply the corresponding system functions
to all coefficients:

delete a, y:

f := series(y/(x + y^a), x, 4);

g := combine(f);

expand(g);
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For efficiency reasons, the arithmetical methods of Series::Puiseux usually do not
perform any symbolic simplifications. Use expand or normal to simplify the results:

h := series(exp(x), x, 4)^a;

expand(h);

normal(h);

u := series(arctanh(x + y), x, 4);

normal(u);

Besides normalizing the coefficients, the method normal also removes leading and
trailing zeroes from the coefficient list:

v := Series::Puiseux::create(1, 3, 10,

                             [0, 1/2, 0, 5, 0, 0], x, 2);

coeff(v);

normal(v);
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coeff(%);

The method map applies a given function to all coefficients. E.g., the system function
factor is not overloaded for Series::Puiseux, but you can use map to express all
coefficients in factored form:

map(u, factor);

In the next example, we use map to multiply all coefficients of a series expansion by a
constant:

w := series(exp(x), x, 3);

map(w, _mult, PI) = PI*w

For series expansions of type 1, map applies the function to all non-zero coefficients as
returned by coeff:
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z := series(sin(sqrt(-x)), x);

coeff(z);

map(z, cos);

Example 22

Three different methods can be used to substitute for the series variable: _fconcat,
func_call, and subs. Suppose f is an element of Series::Puiseux and we want
to substitute an expression t for the series variable x. Then _fconcat converts t
into a series expansion around the origin via the constructor, computes the functional
composition, and returns the result as an element of Series::Puiseux:

f := series(exp(x), x = 0, 5);

Series::Puiseux::_fconcat(f, y) = f @ y;

f @ (y^2 + y);
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The composition may fail if the limit point of t around the origin differs from the
expansion point of f or if t contains special mathematical functions:

f @ (y + 1);

f @ sin(y);

Moreover, the composition does not work if the expression t is constant or contains more
than one indeterminate:

f @ PI;

Error: Cannot compute composition. [Series::Puiseux::_fconcat]

f @ (x + y);

Error: Cannot compute composition. [Series::Puiseux::_fconcat]

You can enforce the composition by explicitly converting t into a series:

f @ series(y + 1, y = -1);

f @ series(sin(y), y = 0);

f @ series(x + y, x = -y);
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Substitution with func_call always works. It discards the error term, t is substituted
literally, and the result is an expression and not an object of type Series::Puiseux:

f(5) = Series::Puiseux::func_call(f, 5);

f(y) = Series::Puiseux::func_call(f, y);

f(y^2 + y);

f(y + 1);

f(sin(y));

f(PI);

f(x + y);

Finally, if subs is used to substitute for the series variable, only very special
substitutions are allowed (see the description of subs above for more details). Then a
change of variable is performed, and the result is again of type Series::Puiseux:
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subs(f, x = y^2 + y)

Error: Invalid substitution. [Series::Puiseux::subs]

subs(f, x = y + 1)

subs(f, x = sin(y))

Error: Invalid substitution. [Series::Puiseux::subs]

subs(f, x = PI)

Error: The substitution is invalid. Exactly one indeterminate is expected. [Series::Puiseux::subs]

subs(f, x = x + y)

Error: The substitution is invalid. Exactly one indeterminate is expected. [Series::Puiseux::subs]

All three methods can handle the case where the series variable occurs in the coefficients:

s := series(ln(x^2 + x), x);

s @ (2*y);

s(2*y);

subs(s, x = 2*y);
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Of course, subs can also be used to substitute for other objects than the series variable in
the coefficients and in the expansion point:

g := series(cos(x + y), x, 4);

h := series(1/x, x = y, 4);

subs(g, y = PI) = series(cos(x + PI), x, 4);

subs(h, y = 2) = series(1/x, x = 2, 4);

Even simultaneous substitutions are possible in the coefficients:

subs(g, [hold(sin) = cos, hold(cos) = sin, y = 2])

An error occurs, if the right hand side contains the series variable:

subs(h, y = x)
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Error: The substitution is invalid. The right side must not contain the series variable. [Series::Puiseux::subs]

Example 23

The method has checks, whether an object occurs syntactically in the coefficients, the
series variable, the expansion point, or the direction of an element of Series::Puiseux:

f := series(sin(x + 2*y), x = PI, 2);

has(f, x), has(f, y), has(f, PI), has(f, 2), has(f, Undirected);

has(f, hold(sin)), has(f, 3), has(f, sin(2*y)), has(f, x - PI);

The last call returns FALSE since the expression x - PI occurs only in the screen
output, but not in the internal representation of f.

g := series(sign(x), x, Right);

has(g, Right), has(g, Undirected);

Example 24

The method truncate discards summands up to the given order:

f := series(x*sin(sqrt(x)), x);

Series::Puiseux::truncate(f, 10);

Series::Puiseux::truncate(f, 9/2);

Series::Puiseux::truncate(f, 7/2);

Series::Puiseux::truncate(f, 3);

Series::Puiseux::truncate(f, 3/2);

Series::Puiseux::truncate(f, 1);
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Parameters

f

An arithmetical expression representing a function in x

x

An identifier

x0

The expansion point: an arithmetical expression. If not specified, the default expansion
point 0 is used.
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order

The number of terms to be computed: a nonnegative integer. The default order is given
by the environment variable ORDER (default value 6).

dir

Either Left, Right, Real, or Undirected. This optional argument can be used to
specify that the resulting expansion is possibly valid along the real line only. The default
is Undirected, which means that the expansion is valid in a neighborhood of the
expansion point in the complex plane.

Return Values

an object of domain type Series::Puiseux, or the value FAIL, if the f cannot be
converted, e.g., if powers with non-rational exponents occur in f.

Function Calls

Calling an element of Series::Puiseux as a function discards the error term and
substitutes the first argument for the series variable. See the description of the method
"func_call" and “Example 22” on page 7-444.

Operations

Series::Puiseux implements the basic arithmetic of truncated series expansions. Use
the ordinary arithmetical operators +, -, *, /, ^, and @ for composition.

The arithmetical methods of Series::Puiseux usually do not perform any symbolic
simplifications. Use combine, expand, or normal to request such simplifications
explicitly.

See “Example 5” on page 7-418 and “Example 21” on page 7-441.

Special mathematical functions, such as exp or sin, are overloaded for elements of
Series::Puiseux; cf. “Example 10” on page 7-427.
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The system functions coeff, lcoeff, nthcoeff, ldegree, lmonomial, nthmonomial,
lterm, and nthterm work on truncated series expansions. Note that in contrast to
polynomials, coefficients, monomials, and terms are counted from the term of lowest
order term on. Cf. “Example 17” on page 7-436.

Use the function expr to convert a series expansion to an arithmetical expression (as an
element of a kernel domain).

Operands

A series of the domain type Series::Puiseux has the following seven operands:

1 a type flagt ∈ {0, 1},
2 the branching orderb, a positive integer,
3 an integer v such that  is the order of the leading term,

4 an integer e ≥ v such that  is the order of the error term,

5 a list of coefficients l1, …, ln,
6 the series variablex and the expansion pointx0 in form of an equation x = x0; the

expansion point x0 may be complexInfinity as well,
7 a direction, Undirected, Real, Left, or Right.

The type flag distinguishes between two different internal representations.

If t = 0, then the operands above represent the truncated series expansion

.

If the expansion point x0 is complexInfinity, then the operands represent the
truncated expansion

.
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•
A summand  (or , respectively) is called a monomial of the

expansion,
•

the power  (or , respectively) is called a term,

• li is the corresponding coefficient, and
• the exponent  is the order of the corresponding term or monomial.

If t = 1, then the operands above represent the expansion

.

In this case, the powers of x - x0 are explicitly stored in the list, and li contains only

terms of growth order . The corresponding expansion for x0 =
complexInfinity is

,

and li contains only terms of growth order .

The notions term and order are the same as for t = 0, a summand li is called a monomial,
and the corresponding coefficient is

7-453



7 Dom – Domains

(or

,

respectively).

The latter type of representation serves for correct expansions around branch points.
For example, if we want to expand  around x = 0, then the truncated Puiseux

series  does not approximate f(x) in the lower half of the complex

plane. With t = 1, the expansion , which approximates f(x) also in
the lower part of the complex plane near the origin, can be represented as an object of
domain type Series::Puiseux.

The direction d has the same meaning as the parameter dir of the constructor. If d =
Undirected, the operands above represent an expansion valid in some neighborhood of
the expansion point in the complex plane. Usually, this is an open disc centered at x0. If
d ≠ Undirected and x0 represents a real number, this means that the expansion is valid
for real values of x only. If d = Left or d = Right, then the expansion is valid for x < x0 or x
> x0, respectively.

In the case x_0 = complexInfinity, and if d = Undirected, we have an expansion
valid in the neighborhood of the north pole of the Riemann sphere, i.e., for all  of
sufficiently large absolute value. If d = Left, we have an expansion around the positive
real infinity valid for sufficiently large real values of x. Similarly, if d = Right, we have
an expansion around the negative real infinity valid for sufficiently large negative real
values of x. Finally, if d = Real, the expansion is valid both around infinity and around -
∞.

Cf. “Example 2” on page 7-412.

Element Creation

Typically, objects of type Series::Puiseux are generated by calls to series or
taylor.
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Methods

Mathematical Methods

conjugate — Complex conjugation

conjugate(s)

This method overloads the system function conjugate. Cf. “Example 11” on page
7-428.

contfrac — Conversion into a continued fraction

contfrac(s)

This method overloads the system function contfrac. Cf. “Example 12” on page
7-429.

diff — Differentiation

diff(s, t)

This method overloads the system function diff. Cf. “Example 9” on page 7-426.

_divide — Division

_divide(s, t)

_fconcat — Functional composition

_fconcat(s, t)

If both s and t are of type Series::Puiseux, then the functional composition can only
be defined if the limit point of t for values close to its expansion point is equal to the
expansion point of s. Otherwise, an error occurs.

At least one of the arguments must be of type Series::Puiseux. If one of the
arguments is not of this type, then it is converted into an element of Series::Puiseux
via the constructor. If s is not of type Series::Puiseux, then it is converted into a
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series expansion around the limit point of t. If t is not of type Series::Puiseux, then it
is converted into a series expansion around 0. The implicit conversion is performed only if
the corresponding expression contains exactly one free variable.

This method overloads the system function _fconcat for series expansions, i.e., you
may use it in the form s@t. See “Example 8” on page 7-423 and “Example 22” on page
7-444.

Im — Imaginary part

Im(s)

This method overloads the system function Im. Cf. “Example 11” on page 7-428.

int — Integration

int(s, t | t = a .. b)

This method overloads the system function int. Cf. “Example 9” on page 7-426, and
the help page of int for a description of further optional arguments.

_invert — Reciprocal of a series

_invert(s)

This method overloads the system function _invert, i.e., you may use it in the form 1/s.

ilaplace — Inverse Laplace transform

ilaplace(s, u, v)

If u is not the series variable of s, then the coefficients of s are transformed, but not
the expansion point. Otherwise, the expansion point of s must be infinity, v must be
an identifier, and s is transformed term by term. The result is then a series expansion
around v = 0.

This method overloads the function ilaplace for series expansions. Cf. “Example 13” on
page 7-430.

laplace — Laplace transform

laplace(s, u, v)
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If u is not the series variable of s, then the coefficients of s are transformed, but not the
expansion point. Otherwise, the expansion point of s must be 0, the order of the leading
term of s must be nonnegative, v must be an identifier, and s is transformed term by
term. The result is then a series expansion around v = ∞.

This method overloads the function laplace for series expansions. Cf. “Example 13” on
page 7-430.

_mult — Multiplication

_mult(s, t, , …)

Use the method Series::Puiseux::scalmult to multiply a series expansion s by a
constant or a power of x - x0.

This method overloads the system function _mult for series expansions, i.e., you may use
it in the form s*t*.... Cf. “Example 5” on page 7-418.

_negate — Negation

_negate(s)

This method overloads the system function _negate, i.e., you may use it in the form -s.

_plus — Addition

_plus(s, t, , …)

This method overloads the system function _plus for series expansions, i.e., you may use
it in the form s+t+.... Cf. “Example 5” on page 7-418.

_power — Exponentiation

_power(s, n)

If n is a rational number, the direction of s is Undirected or Real, and the leading
coefficient of s is not positive, then the type flag of the result is 1 in general.

If n is not a rational number, then the leading summand of s must not contain the series
variable. Otherwise, an error occurs.

This method overloads the system function _power for series expansions, i.e., you may
use it in the form s^n. Cf. “Example 7” on page 7-421.
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Re — Real part

Re(s)

This method overloads the system function Re. Cf. “Example 11” on page 7-428.

revert — Functional inversion

revert(s)

The expansion point of the inverse is the limit point of s.

This method overloads the system function revert. Cf. “Example 8” on page 7-423.

scalmult — Multiplication by a single monomial

Series::Puiseux::scalmult(s, a, k)

series — Serie expansion

series(s, y | y = y0, <order>, <dir>)

This method overloads the system function series.

_subtract — Subtraction

_subtract(s, t)

Access Methods

coeff — Extract coefficients

coeff(s, <x>, n)

coeff(s, <x>)

The second call returns the sequence of all coefficients of s, starting with the coefficient
of lowest order. (This is the coefficient of the term with the highest exponent if
x0=complexInfinity.)

Specifying the variable x is optional; if it is present, it must coincide with the series
variable of s.
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This method overloads the system function coeff. Cf. “Example 14” on page 7-431.

direction — Direction of expansion

Series::Puiseux::direction(s)

indet — Serie variable

Series::Puiseux::indet(s)

iszero — Zero test

iszero(s)

This method overloads the system function iszero. Cf. “Example 18” on page 7-438.

lcoeff — Leading coefficient (of lowest order)

lcoeff(s)

This method overloads the system function lcoeff. See “Example 15” on page 7-433
and “Example 17” on page 7-436.

ldegree — Leading degree

ldegree(s)

This method overloads the system function ldegree. See “Example 2” on page 7-412
and “Example 15” on page 7-433.

lmonomial — Leading monomial (of lowest order)

lmonomial(s)

This method overloads the system function lmonomial. See “Example 15” on page
7-433 and “Example 17” on page 7-436.

lterm — Leading term (of lowest order)

lterm(s)

This method overloads the system function lterm. See “Example 15” on page 7-433
and “Example 17” on page 7-436.
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nthcoeff — Extract coefficients

nthcoeff(s, n)

This method overloads the system function nthcoeff. See “Example 16” on page
7-435 and  “Example 17” on page 7-436

nthmonomial — Extract monomials

nthmonomial(s, n)

This method overloads the system function nthmonomial. See “Example 16” on page
7-435 and “Example 17” on page 7-436.

nthterm — Extract terms

nthterm(s, n)

This method overloads the system function nthterm. See “Example 16” on page 7-435
and “Example 17” on page 7-436.

order — Order of the error term

Series::Puiseux::order(s)

point — Expansion point

Series::Puiseux::point(s)

Conversion Methods

convert — Convert any object into a series expansion

convert(f)

If no expansion point can be determined from f, the origin is used. Cf. “Example 19” on
page 7-438.

convert_to — Convert a series expansion into another domain

convert_to(s, T)
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Use the function expr to convert s into an object of a kernel domain.

convert01 — Convert into a series expansion of type 1

Series::Puiseux::convert01(s)

convert10 — Try to convert into a series expansion of type 0

Series::Puiseux::convert10(s)

For undirected expansions, the conversion is not possible in general, and then s is
returned. However, you can enforce a conversion (with a not necessarily equivalent
result) by using properties. Cf. “Example 3” on page 7-415.

expr — Convert a series expansion into an element of a kernel domain

expr(s)

This method overloads the system function expr. Cf. “Example 20” on page 7-440.

float — Convert numeric parts of the coefficients into floats

float(s)

This method overloads the system function float. Cf. “Example 20” on page 7-440.

Technical Methods

combine — Combine coefficients

combine(s)

This method overloads the system function combine; see the corresponding help page for
further optional arguments. Cf. “Example 21” on page 7-441.

const — Convert a constant expression into a truncated series

Series::Puiseux::const(f, x | x = x0, n, <d>)

If the expansion point x0 is omitted, x0 = 0 is assumed. If the direction d is omitted, d
= Undirected is assumed.
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Use with care, since this function does not perform type checking. Cf. “Example 1” on
page 7-409.

create — Syntactical constructor

Series::Puiseux::create(b, v, e, l, x, <x0>, <d>)

If the expansion point x0 is omitted, x0 = 0 is assumed. If the direction d is omitted, d
= Undirected is assumed.

Use with care, since this function does not perform type checking. Cf. “Example 1” on
page 7-409.

expand — Expand coefficients

expand(s)

This method overloads the system function expand; see the corresponding help page for
further optional arguments. Cf. “Example 21” on page 7-441.

func_call — Evaluation at a point

Series::Puiseux::func_call(s, t)

You may also use this method in the form s(t). Cf. “Example 22” on page 7-444.

has — Check whether an object occurs syntactically

has(s, t)

This method overloads the system function has. Cf. “Example 23” on page 7-449.

map — Apply a function to all non-zero coefficients

map(s, f, <arg1, , …>)

This method overloads the system function map. Cf. “Example 21” on page 7-441.

normal — Normal form

normal(s)

This method overloads the system function normal. Cf. “Example 21” on page 7-441.
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one — Create a truncated series with constant term 1

Series::Puiseux::one(x, <x0>, n, <d>)

If the expansion point x0 is omitted, x0 = 0 is assumed. If the direction d is omitted, d
= Undirected is assumed.

Use with care, since this function does not perform type checking. Cf. “Example 1” on
page 7-409.

print — Pretty-print routine

print(s)

truncate — Truncate a series expansion

Series::Puiseux::truncate(s, n)

Cf. “Example 24” on page 7-449.

subs — Replace subexpressions

subs(s, old = new)

subs(s, [old1 = new1, old2 = new2, …])

If the series variable x of s does not occur in the left hand sides old, old1,
old2, ..., then the substitution takes place in the coefficients and in the expansion
point of s. The series variable must not occur in the right hand sides new, new1,
new2, ....

Note: In contrast to the usual behavior of subs, the result of the substitution is subjected
to an additional evaluation.

In the second call, the series variable x of s must not occur anywhere in the substitution
equations. In the first call, x is allowed to occur in old only if old equals x. In this case,
a change of variable is performed, and new must be of the form

x0 + a*(b*y - c)^k

if x0 <> complexInfinity and
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a*(b*y - c)^k

if x0 = complexInfinity, where

• x0 is the expansion point of s
• k is a non-zero rational number
• y is an identifier, which may well be equal to x, and otherwise y must not occur in the

coefficients of s.
• a, b, c are arithmetical expressions not involving y, with a, b being non-zero. If

the direction of s is not Undirected, then a and b must represent real numbers.
• c is zero if either x0 <> complexInfinity and k is positive or x0 =

complexInfinity and k is negative. In this case, the result of the substitution has
expansion point complexInfinity.

• If c is non-zero, then the result of the substitution has expansion point c/b.

Use one of the methods "_fconcat" or "func_call" for more general substitutions for
the series variable.

This method overloads the system function subs; Cf. “Example 22” on page 7-444.

zero — Create a truncated series with an error term only

Series::Puiseux::zero(x, <x0>, n, <d>)

If the expansion point x0 is omitted, x0 = 0 is assumed. If the direction d is omitted, d
= Undirected is assumed.

Note: Although Series::Puiseux::zero(x, n) and O(x^n) are mathematically
equivalent and are printed in the same way, they are different MuPAD objects. The
former is an element of type Series::Puiseux, while the latter is an element of type O.

Use with care, since this function does not perform type checking. Cf. “Example 1” on
page 7-409.

See Also

MuPAD Functions
asympt | series
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MuPAD Domains
Series::gseries
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Series::gseries
Generalized series expansions

Syntax
Series::gseries(f, x, <order>, <Left | Right>)

Series::gseries(f, x = a, <order>, <Left | Right>)

Description

Series::gseries is the domain of series expansions generalizing Taylor, Laurent and
Puiseux expansions.

The call Series::gseries(f, x) computes a series expansion at the right hand side
of x = 0.

The system functions series and asympt are the main application of this domain. The
latter function only returns elements of this domain, whereas series can return an
element of Series::gseries in cases, where a Puiseux series expansion does not exist.

There may be no need to explicitly create elements of this domain, but to work with the
results of the mentioned system functions.

See the help page of the system function asympt for a detailed description of the
parameters and examples for working with elements of the domain Series::gseries.

Note: Note that elements of Series::gseries only represents directional (real) series
expansions.

Environment Interactions

The function is sensitive to the global variable ORDER, which determines the default
number of terms of the expansion.
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Parameters

f

An arithmetical expression

x

The series variable: an identifier

a

The expansion point: an arithmetical expression or ±infinity

order

The truncation order: a nonnegative integer

Options

Left

Compute a series expansion that is valid for real x smaller than a.

Right

Compute a series expansion that is valid for real x larger than a (the default case).

Return Values

Object of domain type Series::gseries, or the value FAIL.

Function Calls

Calling an element of Series::gseries as a function yields the object itself, regardless
of the arguments. The arguments are not evaluated.
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Operations

Series::gseries implements standard arithmetic of generalized series expansions.
Use the ordinary arithmetical operators +, -, *, /, and ^.

The system functions coeff, lcoeff, nthcoeff, lterm, nthterm, lmonomial,
nthmonomial, and ldegree work on generalized series expansions. See the
corresponding help pages of these functions for calling parameters. See the description of
these methods below for further details.

The method "indet" returns the series variable of the series expansion, i.e., if s is an
object of the domain Series::gseries, then s::dom::indet(s) returns the series
variable.

The method "point" returns the expansion point of the series.

Use the function expr to convert a generalized series expansion into an arithmetical
expression (as an element of a kernel domain).

Operands

A series of the domain type Series::gseries consists of four operands:

1 A list of pairs [ci, fi]. Each pair represents a monomialci fi of the series expansion,
where the ci are the coefficients and fi the terms of s. The coefficients do not contain
the series variable.

This list can be empty, if the order of the expansion is zero.
2 An arithmetical expression g representing the error term of the form O(g). It may be

the integer 0, in which case the expansion is exact.
3 The series variable x.
4 The expansion point a.
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Methods

Mathematical Methods

_divide — Divide two series expansions

_divide(s, t)

If the arguments are not of domain type Series::gseries, then they are converted into
such objects. FAIL is returned, if one of these conversions fails.

This method overloads the function _divide for elements of Series::gseries, i.e., you
may use it in the form s/t.

_invert — Multiplicative inverse of a series expansion

_invert(s)

This method overloads the function _invert for elements of Series::gseries, i.e., you
may use it in the form 1/s.

_mult — Multiply series expansions

_mult(s, t, …)

If both s and t are series expansions of the domain Series::gseries, then the result
is a series expansion of the domain Series::gseries, too. Both series expansions must
have the same series variable and expansion point, otherwise FAIL is returned.

If s or t is a series expansion of the domain Series::Puiseux, then it is converted
into an object of Series::gseries. If this fails, then FAIL is returned. Otherwise, the
product is computed and returned as an object of the domain Series::gseries.

If s is a series expansion and t is an arithmetical expression, then t is converted into a
series expansion via the constructor Series::gseries (and vice versa).

Each argument of this method that is not of the domain type Series::gseries is
converted into such an element, i.e., a generalized series expansion is computed. If this
fails, then FAIL is returned.

7-469



7 Dom – Domains

This method overloads the function _mult for elements of Series::gseries, i.e., you
may use it in the form s*t*....

_negate — Negative of a series expansion

_negate(s)

This method overloads the function _negate for elements of Series::gseries, i.e., you
may use it in the form -s.

_plus — Add series expansions

_plus(s, t, …)

If both s and t are series expansions of the domain Series::gseries, then the result
is a series expansion of the domain Series::gseries, too. Both series expansions must
have the same series variable and expansion point, otherwise FAIL is returned.

If s or t is a series expansion of the domain Series::Puiseux, then it is converted into
an object of Series::gseries. If this fails, then FAIL is returned. Otherwise, the sum
is computed and returned as an object of the domain Series::gseries.

If s is a series expansion and t is an arithmetical expression, then t is converted into a
series expansion via the constructor Series::gseries (and vice versa).

Each argument of this method that is not of the domain type Series::gseries is
converted into such an element, i.e., a generalized series expansion is computed. If this
fails, then FAIL is returned.

This method overloads the function _plus for elements of Series::gseries, i.e., you
may use it in the form s+t+ ....

_power — Exponentiation of a series expansion

_power(s, n)

The exponent n must not involve the series variable of s. Otherwise, an error occurs.

If n is a positive integer, then repeated squaring is used for computing the nth power of
s. Otherwise, the binomial theorem is applied after factoring out the leading monomial.

This method overloads the function _power for elements of Series::gseries, i.e., you
may use it in the form s^n.
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_subtract — Subtract two series expansions

_subtract(s, t)

If the arguments are not of domain type Series::gseries, then they are converted into
such objects. FAIL is returned, if one of these conversions fails.

This method overloads the function _subtract for elements of Series::gseries, i.e.,
you may use it in the form s-t.

Access Methods

coeff — Extract coefficients

coeff(s, <n>)

This method overloads the function coeff for elements of Series::gseries.

indet — Serie variable

Series::gseries::indet(s)

Use the method "point" to get the expansion point of s.

iszero — Zero test

iszero(s)

This method overloads the function iszero for elements of Series::gseries.

lcoeff — Leading coefficient

lcoeff(s)

This method overloads the function lcoeff for elements of Series::gseries.

ldegree — Leading degree

ldegree(s)

This method overloads the function ldegree for elements of Series::gseries.
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lmonomial — Leading monomial

lmonomial(s)

This method overloads the function lmonomial for elements of Series::gseries.

lterm — Leading term

lterm(s)

This method overloads the function lterm for elements of Series::gseries.

nthcoeff — Extract a coefficient

nthcoeff(s, n)

This method overloads the function nthcoeff for elements of Series::gseries.

nthmonomial — Extract a monomial

nthmonomial(s, n)

This method overloads the function nthmonomial for elements of Series::gseries.

nthterm — Extract a term

nthterm(s, n)

This method overloads the function nthterm for elements of Series::gseries.

point — Expansion point

Series::gseries::point(s)

Use the method "indet" to get the series variable of s.

Conversion Methods

convert — Convert an object into a generalized series expansion

Series::gseries::convert(x)
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convert_to — Convert a generalized series expansion into other domains

Series::gseries::convert_to(s, T)

T might be the domain DOM_POLY, where the sum of monomials is considered as a
polynomial in the indeterminates of the third operand of s.

If T is the domain DOM_EXPR, then the conversion is the same as implemented by the
method "expr" (see below).

If T is the domain Series::Puiseux, then the system tries to convert s into a Puiseux
series. If the conversion is not possible, FAIL is returned.

Use the function expr to convert s into an object of a kernel domain.

create — Create simple and fast a generalized series expansion

Series::gseries::create(list, errorTerm, x = a)

Note: This method should be used with caution, because no argument checking is
performed. Use it to create, not to compute elements of Series::gseries.

expr — Convert a generalized series expansion into an element of a kernel domain

expr(s)

This method overloads the function expr for elements of Series::gseries.

series — Apply the function series to a generalized series expansion

series(s, x | x = x0, <order>, <dir>)

This method overloads the function series for elements of Series::gseries. See the
corresponding help page for a description of the possible arguments.

Technical Methods

combine — Apply the function combine to all terms

combine(s, <target>)
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This method overloads the system function combine. See the corresponding help page for
a description of the optional argument target.

has — Check whether an object occurs syntactically

has(s, t)

This method overloads the system function has.

map — Map a function to the coefficients

map(s, func, …)

This method overloads the function map for elements of Series::gseries.

print — Pretty-print routine

print(s)

subs — Substitute into a generalized series expansion

subs(s, x = a, …)

This method overloads the function subs for elements of Series::gseries.

TeX — LaTeX formatting

Series::gseries::TeX(s)

This method is called by the system function generate::TeX.

See Also

MuPAD Domains
Series::Puiseux
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export::stl
Export STL data

Syntax
export::stl(filename, [x, y, z], u = umin .. umax, v = vmin .. vmax, options)

export::stl(n, [x, y, z], u = umin .. umax, v = vmin .. vmax, options)

export::stl(filename, object1, <object2, …>, options)

export::stl(n, object1, <object2, …>, options)

Description

export::stl is used to create a triangulation of a parametrized surface and write the
triangulation data in STL format to an external file.

STL files contain triangulation data of 3D surfaces. Each triangle is stored as a unit
normal and three vertices. The normal and the vertices are specified by three coordinates
each, so there is a total of 12 numbers stored for each triangle. Read the “Background”
section of this help page for further details.

If the surface is closed, it is regarded as the boundary of a 3D solid. The normals of the
triangles written into the STL file should point from the inside of the body to the outside.

Note: Note that the direction of the normals that export::stl writes into the STL file
depend on the parametrization x(u, v), y(u, v), z(u, v)!

If p1 = (x(u, v), y(u, v), z(u, v)), p2 = (x(u + du, v), y(u + du, v),
z(u + du, v)), p3 = (x(u, v + dv), y(u, v + dv), z(u, v + dv)) are the
corners of a triangle, the normal associated with this triangle is the cross product of the
side p2 - p1 times the side p3 - p2. The routine export::stl chooses neighboring
values of the surface parameters with du = (`u_{max}` - `u_{min}`)/(n_u - 1)
and dv = (`v_{max}` - `v_{min}`)/(n_v - 1), respectively.
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Note: Thus, if your parametrization is such that the cross product of the vectors p2 -
p1 and p3 - p2 does not point to the outside of your body, you just need to let one of the
parameters (u, say) run from umax to umin instead of from umin to umax. Just replace your
call

export::stl(filename, [x,y,z], u = `u_{min}` .. `u_{max}`, v =

`v_{min}` .. `v_{max}`)

by

export::stl(filename, [x,y,z], u = `u_{max}` .. `u_{min}`, v =

`v_{min}` .. `v_{max}`).

Up to the irrelevant ordering in the STL file, the triangles generated by these calls are
the same apart from the direction of the normal associated with each triangle.

If the file is specified by a character string, the corresponding file is opened and closed,
automatically.

As an alternative to specifying the file by a string, the user may open the file herself via
fopen in Write mode and pass the file descriptor returned by fopen to export::stl.
If binary data are to be written to the file, make sure that it is opened with the Raw, i.e.,
call fopen(filename, Write, Raw).

Note: Note that export::stl does not close the file automatically if it is specified by a
file descriptor. It remains open after export::stl has finished its job. The file needs to
be closed explicitly by the user using fclose.

If the file is specified by a character string, the name may correspond to an absolute or
a relative path name. In particular, the environment variable WRITEPATH is taken into
account. The details on the help page of fopen hold for export::stl, too.

Note: With the option Append, the file is first opened for reading and, after reading
of the data in the file, opened for writing. If no absolute pathname is used to specify
the file, make sure that the environment variables READPATH and WRITEPATH point
to the same folder. Alternatively, it is a good idea to place the file in the same folder
as the MuPAD notebook which you are currently using. If this notebook is saved on
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the disk of your computer, the absolute path is available as the environment variable
NOTEBOOKPATH. Thus, specifying a file named “myfile.stl”, say, by the absolute path
name NOTEBOOKPATH."myfile.stl" ensures that the file is found in the same folder as
your notebook.

Text files generated with the option Text or the equivalent Ascii can be opened and
read with any text editor. However, binary files generated with the option Bin or the
equivalent options Binary or Raw are faster to create and to process.

The file generated by export::stl can be read and visualized in MuPAD using the plot
primitive plot::SurfaceSTL.

If the file name given ends in “.gz”, export::stl writes a compressed file which can be
read by any program supporting gzip compression.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The current value of DIGITS determines the number of
significant decimal digits with which the STL data are written to the specified file. (This
holds for text files. In binary STL files all numerical values have a precision of about 7
decimal digits.) For the internal computation of the data by MuPAD, the value of DIGITS
is temporarily increased by 10 to minimize round-off effects.

The STL data generated by export::stl are written to the specified file.

Examples

Example 1

We generate a sphere given by the following parametrization:

x:= cos(u)*sin(v): 

y:= sin(u)*sin(v): 

z:= cos(v):

We call export::stl to generate the STL data and write them into a file named
“sphere.stl”. The file is to be generated in the same directory as the current MuPAD
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notebook that we are using. Hence, we specify an absolute path name for the file using
the path of the current notebook. If this notebook was saved to the disk of your computer,
this path is available in the environment variable NOTEBOOKPATH:

filename:= NOTEBOOKPATH."sphere.stl":

export::stl(filename, [x, y, z], u = 0 .. 2*PI, v = 0 .. PI, Text)

Since the file was created in Text format, it can be opened with any text editor. It should
look like this:

solid MuPADtoSTL1

 facet normal -0.06540070486 -0.008610166138 -0.9978219344

  outer loop

   vertex 100.0 100.0 300.0

   vertex 112.607862 103.3782664 298.7167292

   vertex 113.0526192 100.0 298.7167292

  endloop

 endfacet

 facet normal -0.1950260058 -0.02567566076 -0.9804619409

  outer loop

   vertex 113.0526192 100.0 298.7167292

   vertex 112.607862 103.3782664 298.7167292

   vertex 125.0 106.6987298 294.8888739

  endloop

 endfacet

 ...

endsolid MuPADtoSTL1

We reimport the STL data and visualize the surface using plot::SurfaceSTL:

plot(plot::SurfaceSTL(filename, MeshVisible))
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We reduce the number of significant output digits to a reasonable size. Further, we
specify a mesh size and request a specific output box:

DIGITS:= 7:

export::stl(filename, [x, y, z], u = 0..2*PI, v = 0..PI,

            Mesh = [10, 10], 

            OutputBox = [-100..100, -100..100, -100..100],

            Text):

The file now should look like this:

solid MuPADtoSTL2

 facet normal -0.1733024 -0.06307691 -0.9828467

  outer loop

   vertex -3.10912 0.000000002143114 100.0

   vertex 24.32249 22.66816 93.96926

   vertex 32.7003 0.000000002143114 93.96926

  endloop

 endfacet

 ...

8-6



 export::stl

endsolid MuPADtoSTL2

We visualize the new content of the file:

plot(plot::SurfaceSTL(filename, MeshVisible))

delete x, y, z, filename, DIGITS:

Example 2

We specify the parametrization of the surface by a mixture of expressions and
procedures:

x:= piecewise([0.1 < u < 0.9, u*cos(v)], [Otherwise, 0]):

y:= (u, v) -> piecewise([0.1 < u < 0.9, u*sin(v)], [Otherwise, 0]):

z:= (u, v) -> if u <= 0.1 then exp(-0.1) 

              elif u < 0.9 then exp(-u)

              else exp(-0.9)
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              end_if:

This is the surface that we wish to export to STL:

plot(plot::Surface([x, y, z], u = 0..1, v = 0..2*PI,

                                  Mesh = [100, 36])):

We assume that there is no external file “sample.stl”. We create it by opening it in Write
mode in the same directory as the current MuPAD notebook that we are using. Hence,
we specify an absolute path name for the file using the path of the current notebook. If
this notebook was saved to the disk drive of your computer, this path is available in the
environment variable NOTEBOOKPATH. The file descriptor n returned by fopen is passed
to export::stl:

filename:= NOTEBOOKPATH."sample.stl":

DIGITS:= 7:

export::stl(filename, [x, y, z], u = 0..1, v = 0..2*PI,

                                       Mesh = [30, 36])

We reimport the STL data and visualize the surface using plot::SurfaceSTL:

plot(plot::SurfaceSTL(filename, MeshVisible))
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We can append a further surface to the file using the option Append:

export::stl(filename, [x, y, -z], u = 0..1, v = 0..2*PI, 

            Mesh = [30, 36],

            OutputBox = [0..100, 0..100, -100..0],

            Append)

We visualize the new content of the file via plot::SurfaceSTL:

plot(plot::SurfaceSTL(filename, MeshVisible))
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delete x, y, z, filename, DIGITS:

Example 3

We wish to create a closed surface consisting of a “bowl” with a “lid”.

bowl:= [u*cos(v), u*sin(v), u^2], u = 0 .. 1, v = 0 .. 2*PI:

lid:=  [u*cos(v), u*sin(v),  1 ], u = 0 .. 1, v = 0 .. 2*PI:

filename:= NOTEBOOKPATH."sample.stl":

DIGITS:= 7:

export::stl(filename, bowl, Mesh = [30, 36]):

export::stl(filename, lid, Mesh = [30, 36], Append):

plot(plot::SurfaceSTL(filename), Scaling = Constrained):
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delete filename, DIGITS:

Example 4

We demonstrate the options Scaling = Constrained and Scaling = Unconstrained.
With Scaling = Constrained, the coordinates given by the parametrization x, y,
z are scaled by the same factor to fit the surface into the output box. Here, we create a
sphere of radius 1. The output box is not a cube: the range for the z coordinate is notably
larger than for x and y. Nevertheless, the sphere stays a sphere when using Scaling =
Constrained. However, the output box is not completely filled by the sphere:

x:= cos(u)*sin(v):

y:= sin(u)*sin(v):

z:= cos(v):

DIGITS:= 7:

filename:= NOTEBOOKPATH."sphere.stl":

export::stl(filename, [x, y, z], u = 0 .. 2*PI, v = 0 .. PI, 

            OutputBox = [-1 .. 1, -1 .. 1, -3 .. 3],

            Scaling = Constrained):
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plot(plot::SurfaceSTL(filename,

                      Scaling = Constrained,

                      MeshVisible))

With Scaling = Unconstrained, the sphere is deformed to an ellipsoid filling the
output box:

export::stl(filename, [x, y, z], u = 0..2*PI, v = 0..PI, 

            OutputBox = [-1..1, -1..1, -3..3],

            Scaling = Unconstrained):

plot(plot::SurfaceSTL(filename,

                      Scaling = Constrained,

                      MeshVisible))
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delete x, y, z, filename, DIGITS:

Parameters

filename

A file name: a non-empty character string

n

A file descriptor provided by fopen: a positive integer

object1, object2, …

3D graphical objects of the plot library

x, y, z

The coordinate functions: arithmetical expressions or piecewise objects depending
on the surface parameters u and v. Alternatively,  procedures that accept 2 input
parameters u, v and return a numerical value when the input parameters are numerical.

8-13



8 export – Export Data

u

The first surface parameter: an identifier or an indexed identifier.

umin .. umax

The range for the parameter u: umin, umax must be numerical real values.

v

The second surface parameter: an identifier or an indexed identifier.

vmin .. vmax

The range for the parameter v: vmin, vmax must be numerical real values.

Options

Mesh

Option, specified as Mesh = [nu, nv]

Sets the mesh size: the integer nu determines, how many equidistant points in the u
direction are used to sample the parametrization x, y, z numerically. Correspondingly,
the integer nv determines, how many equidistant points in the v direction are used.
Thus, a regular mesh of (nu - 1) (nv - 1) rectangles is used. Each rectangle is split into 2
triangles, resulting in a triangulation consisting of 2 (nu - 1) (nv - 1) triangles. The default
is Mesh = [25, 25].

OutputBox

Option, specified as OutputBox = [xmin .. xmax, ymin .. ymax, zmin ..
zmax]

By default, the coordinates of the mesh points defining the STL object are written
into the file as provided by the parametrization of the surface. Thus, if several objects
are written into the file via the option Append, the position of the objects in space is
transparent and can be controlled by the user via a suitable parametrization. However,
many devices such as Rapid Prototyping tools with which the STL file shall be processed,
impose severe restrictions on the data in the STL file. E.g., the original STL specification
requires that the x, y, z coordinates of the mesh points are positive. Many devices require
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that the coordinates must lie in a prescribed range (between 0 and 100, say). The option
OutputBox provides a simple mean to shift and scale the coordinates given by the
parametrization to a prescribed range.

The option OutputBox = [ xmin.. xmax, ymin.. ymax, zmin.. zmax] sets the output
box defined by numerical values xmin, …, zmax. The mathematical coordinates x(u,
v), y(u, v), z(u, v) with u, v ranging from umin to umax and from vmin to vmax,
respectively, are shifted and scaled such that the output coordinates written to the STL
file range between the values xmin and xmax, ymin and ymax, zmin and zmax.

Note: If several objects are written to the file via the option Append, only the very last
call of export::stl should bear the option OutputBox!

This last call shifts and scales all coordinates of all surfaces inside the file such that
the entire scene of objects fits into the output box. The relative size and positions of the
objects are preserved.

See “Example 3” on page 8-10.

This option is rather expensive since all data in the STL file need to be modified!

This option is not available if the file was opened outside export::stl and passed by a
file descriptor n.

Scaling

Option, specified as Scaling = Unconstrained or Scaling = Constrained

With Scaling = Unconstrained, the surface is scaled by different factors in the
x, y, and z direction, such that it fills the output box set by the option OutputBox
- [`x_{min}` .. `x_{max}`, `y_{min}` .. `y_{max}`, `z_{min}` ..

`z_{max}`] . Thus, the output coordinates of a sphere define an ellipsoid with
diameters given by the side lengths of the output box. This is the default setting.

With Scaling = Constrained, the surface is scaled by the same factor in the x,
y, and z direction such that it fits into the output box set by the option OutputBox
= [`x_{min}` .. `x_{max}`, `y_{min}` .. `y_{max}`, `z_{min}` ..

`z_{max}`] . A sphere will remain a sphere even if the sides of the output box have
different lengths.
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This option is ignored if not used in conjunction with the OutputBox option.

Ascii, Bin, Binary, Raw, Text

With the synonymous flags Bin, Binary, or Raw, respectively, the STL file is created as a
binary file. If a binary file is specified by a file descriptor n, make sure that is was opened
by the command n:= fopen(filename, Write, Raw). With the synonymous flags
Text and Ascii, repectively, the STL file is created as a text file. The default is Bin.

Append

With this flag, the STL data of the surface are appended to an existing STL file named
“filename”. If no such file exists, it is created and processed as without Append. This
option is not available if the file was opened outside export::stl and passed by a file
descriptor n.

Return Values

null() object.

Algorithms

There are two storage formats available for STL files, which are ASCII and BINARY.
ASCII files are human-readable while BINARY files are smaller and faster to process.
Both ASCII as well as BINARY files can be generated by export::stl. A typical ASCII
STL file looks like this:

    solid sample

     facet normal -4.470293E-02 7.003503E-01 -7.123981E-01

      outer loop

       vertex -2.812284E+00 2.298693E+01 0.000000E+00

       vertex -2.812284E+00 2.296699E+01 -1.960784E-02

       vertex -3.124760E+00 2.296699E+01 0.000000E+00

      endloop

     endfacet

     ...

    endsolid sample

STL BINARY files have the following format:
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    Bytes  Type   Description

    80     ASCII  header, no data significance

    4      uint   number of facets in file

    4      float  normal  x - start of facet

    4      float  normal  y

    4      float  normal  z

    4      float  vertex1 x

    4      float  vertex1 y

    4      float  vertex1 z

    4      float  vertex2 x

    4      float  vertex2 y

    4      float  vertex2 z

    4      float  vertex3 x

    4      float  vertex3 y

    4      float  vertex3 z

    2      byte   not used  - end of facet

           ...

Facet orientation: The facets define the surface of a 3D object. As such, each facet is part
of the boundary between the interior and the exterior of the object. The orientation of the
facets (which way is "out" and which way is "in") is specified redundantly in two ways
which should be consistent. First, the direction of the normal is outward. Second, which
is most commonly used nowadays, the facet vertices are listed in counter-clockwise order
when looking at the object from the outside (right-hand rule).

Vertex-to-vertex rule: Each triangle must share two vertices with each of its adjacent
triangles. In other words, a vertex of one triangle cannot lie on the side of another.

Axes: The format specifies that all vertex coordinates must be strictly positive numbers.
However, it seems that – with a few exceptions – most software used today (MuPAD
included) allow negative coordinates as well.

Units: The STL file does not contain any scale information; the coordinates may be
interpreted in arbitrary units.

Further details about the STL file format are available in the web, e.g., at:

• www.ennex.com/fabbers/StL.asp,
• www.math.iastate.edu/burkardt/data/stl/stl.html and
• rpdrc.ic.polyu.edu.hk/content/stl/stl_introduction.htm.
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Collections of STL sample files can be found in the web, e.g., at:

• www.wohlersassociates.com/Software-for-Rapid-Prototyping.html and
• www.cs.duke.edu/~edels/Tubes.

Information about rapid prototyping technologies is available in the web, e.g., at:

www.cs.hut.fi/~ado/rp/rp.html.

See Also

MuPAD Functions
fclose | fopen | READPATH | WRITEPATH

MuPAD Graphical Primitives
plot::SurfaceSTL
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fp::apply
Apply function to arguments

Syntax
fp::apply(f, <e, …>)

Description

fp::apply(f,a) returns f(a).

fp::apply applies the function f to the arguments given by e, ....

Environment Interactions

Same side effects as when calling f(e,...) directly.

Examples

Example 1

Apply the function f to x and y:

fp::apply(f, x, y)

Example 2

Apply the functions of the first list to the arguments given by the second list:

zip([sin, cos], [x, y], fp::apply)
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Parameters

f

Function

e

Object used as argument

Return Values

Result of the function call f(e,...).
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fp::bottom
Function that never returns

Syntax
fp::bottom()

Description

fp::bottom() never returns because it raises an error.

Environment Interactions

Raises an error in any case.

Examples

Example 1

Calling fp::bottom is equivalent to calling error with a fixed error string:

fp::bottom()

Error: The bottom is reached. [fp::bottom]

fp::bottom is used to indicate the bottom of a recursion inside a traperror call. In
most cases, programs not using fp::bottom will be more readable.

Return Values

This function never returns.
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fp::curry
Curry an n-ary function

Syntax
fp::curry(f, <n>)

Description

fp::curry(f) returns the higher-order function .

fp::curry returns the curried version of the n-ary function f. If no arity n is given, then
the function is assumend to be binary.

If n is smaller than 2 then f is returned. Otherwise, given a n-ary function f, fp::curry
returns the function 

Examples

Example 1

Create curried versions of binary and 3-nary functions:

cf := fp::curry(f):

cf(x)(y)

cg := fp::curry(g, 3):

cg(x)(y)(z)
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Example 2

A curried version of _plus may be used to create a function which increments its
argument by 1:

inc := fp::curry(_plus)(1):

inc(x)

Parameters

f

n-ary function

n

Nonnegative integer

Return Values

Unary higher-order function.

9-6



 fp::expr_unapply

fp::expr_unapply
Create a functional expression from an expression

Syntax
fp::expr_unapply(e, <x, …>)

Description

fp::expr_unapply(e,x) tries to interpret the expression e as a function in x and to
return a functional expression computing that function.

fp::expr_unapply views the expression e as a function in the indeterminates
x,... and tries to return a functional expression computing that function. If
fp::expr_unapply cannot find a functional expression FAIL is returned.

If no indeterminates are given, any indeterminates of e found by indets are used.

Examples

Example 1

Get the functional expression computing sin(x):

fp::expr_unapply(sin(x), x)

fp::expr_unapply(sin(x[1]), x[1])

Example 2

Get the functional expression computing sin(x)^2+cos(x)^2:
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fp::expr_unapply(sin(x)^2 + cos(x)^2)

Parameters

e

Expression

x

Identifier or indexed identifier

Return Values

Functional expression or FAIL.

See Also

MuPAD Functions
fp::unapply
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fp::fixargs
Create function by fixing all but one argument

Syntax
fp::fixargs(f, n, <e, …>)

Description

fp::fixargs(f,1,y) returns the function .

fp::fixargs returns an unary function, defined by fixing all but the n-th argument of
the function f to the values given by e....

Thus, given a m-ary function f and m - 1 values e1, …, em - 1, fp::fixargs returns the
function

Examples

Example 1

Fix the first and third argument of f to x1 and x3:

fp::fixargs(f, 2, x1, x3)(y)

Example 2

Create a function which increments its argument by one:

9-9



9 fp – Functional Programming

inc := fp::fixargs(_plus, 1, 1):

inc(x)

Example 3

Create a function which tests the identifier x for a type:

type_of_x := fp::fixargs(testtype, 2, x):

map([DOM_INT, DOM_IDENT], type_of_x)

Parameters

f

Function

n

Positive integer defining free argument

e

Object used as fixed argument

Return Values

Unary function.
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fp::fixedpt

Returns fixed point of a function

Syntax

fp::fixedpt(f)

Description

fp::fixedpt(f) returns the fixed point of the unary function f.

fp::fixedpt is implemented as the Y combinator which is defined as follows:

where the function g is defined as

Examples

Example 1

A function computing the Fibonacci numbers is created as a fixed point:

fb2 := (f,n) -> if n <= 2 then 1 else f(n-1) + f(n-2) end:

fib := fp::fixedpt(fp::curry(fb2)):

fib(i) $ i=1..9
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Parameters

f

Unary function

Return Values

Unary function.
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fp::fold
Create function which iterates over sequences

Syntax
fp::fold(f, <e, …>)

Description

fp::fold returns a function which repeatedly applies f to sequences of arguments,
where the expressions e... are used as starting values.

Thus, given the function f and the starting values e1, …, en, fp::fold returns the
function which is defined by

for any positive integer m. If the argument sequence is void (i.e. m = 0) the function
simply returns the sequence (e1, …, en).

Examples

Example 1

A call to fp::fold returns a function, which accepts an arbitrary number of arguments:

fp::fold(f, x)(y1, y2, y3)

Example 2

The function pset returns the power set of the set given by its arguments:
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addelem := (x,y) -> y union map(y, _union, {x}):

pset := fp::fold(addelem, {{}}):

pset(a,b,c)

Parameters

f

Function

e

Object used as starting value

Return Values

Function.
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fp::nest
Repeated composition of function

Syntax
fp::nest(f, n)

Description

fp::nest(f,n) returns the n-fold repeated composition of the function f.

Thus, given the function f, fp::nest returns the identity function id if n is 0 and
otherwise the function

n-fold repeated.

Note that fp::nest is obsolete, one should use the @@ operator or its functional form
_fnest instead. It is only supported for compatibility with former versions of MuPAD.

Examples

Example 1

Apply the 3-fold repeated composition of f to x:

fp::nest(f, 3)(x)

Example 2

Numerically finding a fixed point of the function cos by repeated application:
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p :=fp::nest(cos, 100)(1.0):

p, cos(p)

Parameters

f

Function

n

Nonnegative integer

Return Values

Function.

See Also

MuPAD Functions
_fconcat | _fnest | fp::nestvals
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fp::nestvals
Repeated composition returning intermediate values

Syntax
fp::nestvals(f, n)

Description

fp::nestvals(f, n) returns a function which applies the function fn-fold repeatedly
to its argument and returns the intermediate n + 1 values as a list.

Thus fp::nestvals returns the function 

The function returned is equivalent to [_fnest(f,i) $i=0..n], but more efficient.

Examples

Example 1

Apply f 3 times nested to x:

fp::nestvals(f, 3)(x)

Example 2

Apply cos 4 times nested to 1.0 and return the result and intermediate values:

fp::nestvals(cos, 4)(1.0)
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Parameters

f

Function

n

Nonnegative integer

Return Values

Function.

See Also

MuPAD Functions
_fconcat | _fnest
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fp::unapply
Create a procedure from an expression

Syntax
fp::unapply(e, <x, …>)

Description

fp::unapply views the expression e as a function in the indeterminates x,... and
returns a procedure computing that function.

If no indeterminates are given, any indeterminates of e found by indets are used.

Examples

Example 1

Get the procedure computing sin(x)^2+cos(y)^2:

s := fp::unapply(sin(x)^2 + cos(y)^2, x, y)

Parameters

e

Expression

x

Identifier or indexed identifier
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Return Values

Procedure.

Overloaded By

e

See Also

MuPAD Functions
fp::expr_unapply
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generate::C
Generate C formatted string

Syntax
generate::C(e, <NoWarning>)

Description

generate::C(e) generates C code for the MuPAD expression e.

generate::C returns a C formatted string representing an expression, equation, list of
equations or a matrix.

An equation represents an assignment in C code. The type of the assignment is double.

When generating C code for a matrix, the generator assigns only nonzero elements. See
“Example 3” on page 10-3.

To print an output string to a file, use the fprint function. Use the printing option
Unquoted to remove quotation marks and to expand special characters like line breaks
and tabs.

Use the generate::optimize function to optimize the MuPAD code before converting
it to C code. See “Example 5” on page 10-4.

The NoWarning option lets you suppress warnings. See “Example 6” on page 10-4.

Examples

Example 1

The code generator converts a list of equations to a sequence of assignments:

generate::C([x1 = y2^2*(y1 + sin(z)), x2 = tan(x1^4)]):
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print(Unquoted, %)

  x1 = (y2*y2)*(y1+sin(z));

  x2 = tan(x1*x1*x1*x1);

Example 2

MuPAD matrix and array indexing differs from C array indexing. By default, MuPAD
array indices start with 1, and C array indices start with 0. To create the code compatible
with the default indexing in C, the generate::C function decrements each index by one:

A:= matrix([[1,2],[3,4]]):

generate::C(A)."\n".

  generate::C(hold(Determinante = A[1,1]*A[2,2] - A[1,2]*A[2,1])):

print(Unquoted, %)

  A[0][0] = 1.0;

  A[0][1] = 2.0;

  A[1][0] = 3.0;

  A[1][1] = 4.0;

  Determinante = A[0][0]*A[1][1]-A[0][1]*A[1][0];

Example 3

Generated C code does not include assignments for zero elements of a matrix:

A:= matrix([[1, 0, 0],[0, 0, 1]]):

print(Unquoted, generate::C(A))

  A[0][0] = 1.0;

  A[1][2] = 1.0;

Example 4

If the first index of an array is not 1, the generate::C function issues a warning:

A:= array(1..2, 2..3, [[1,2],[3,4]]):

print(Unquoted, generate::C(A))
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Warning: The array index 'A[1..2, 2..3]' is out of range 1..n. [DOM_ARRAY::CF]

  A[0][1] = 1.0;

  A[0][2] = 2.0;

  A[1][1] = 3.0;

  A[1][2] = 4.0;

Example 5

The generate::C function does not optimize your code:

print(Unquoted,

      generate::C([x = a + b, y = (a + b)^2])):

  x = a+b;

  y = pow(a+b,2.0);

You can use the generate::optimize function before converting your MuPAD
expression to C code. For example, this function can reduce the number of operations by
finding common subexpressions:

print(Unquoted,

      generate::C(

          generate::optimize([x = a + b, y = (a + b)^2])

      )):

  x = a+b;

  y = x*x;

Example 6

By default, the generate::C function can issue warnings:

print(Unquoted, generate::C(f(x)))

Warning: Function 'f' is not verified to be a valid C function.

  t0 = f(x);
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If you started using generate::C recently, the warnings can help you identify the
potential issues in the converted code. If you want to suppress warnings, use the
NoWarning option:

print(Unquoted, generate::C(f(x), NoWarning))

  t0 = f(x);

Parameters

e

An expression, equation, list of equations, or a matrix

Options

NoWarning

Suppress warnings.

Return Values

generate::C returns a string containing C code.

See Also

MuPAD Functions
fprint | generate::optimize | print
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generate::fortran
Generate Fortran formatted string

Syntax
generate::fortran(e, <NoWarning>, <Version = "versionName">)

Description
generate::fortran(e) generates Fortran code for the MuPAD expression e.

generate::fortran returns a Fortran formatted string representing an expression,
equation, list of equations, or a matrix.

An equation represents an assignment in Fortran code. The type of the assignment is
double.

When generating Fortran code for a matrix, the generator assigns only nonzero elements.
See “Example 2” on page 10-7.

To print an output string to a file, use the fprint function. To remove quotation marks
and to expand special characters like line breaks and tabs, use the printing option
Unquoted.

Use the generate::optimize function to optimize the MuPAD code before converting
it to Fortran code. See “Example 4” on page 10-7.

The NoWarning option lets you suppress warnings. See “Example 5” on page 10-8.

The Version option specifies the target version of the Fortran compiler that
generate::fortran uses to generate code. The options are Fortran77 (default),
Fortran90, and Fortran95. See “Example 6” on page 10-9.

Examples

Example 1

The code generator converts a list of equations to a sequence of assignments.
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generate::fortran([x[1] = y[2 + i]^2*(y[1] + sin(z)),

                   x[2] = tan(x[1]^4)]):

print(Unquoted,%)

      x(1) = (sin(z)+y(1))*y(i+2)**2

      x(2) = tan(x(1)**4)

Example 2

Generated Fortran code does not include assignments for zero elements of a matrix.

A:= matrix([[1, 0, 0],[0, 0, 1]]):

print(Unquoted, generate::fortran(A))

      A(1,1) = 1.0D0

      A(2,3) = 1.0D0

Example 3

If the first index of an array is not 1, then the generate::fortran function issues a
warning.

A:= array(1..2, 2..3, [[1,2],[3,4]]):

print(Unquoted, generate::fortran(A))

Warning: The array index 'A[1..2, 2..3]' is out of range 1..n. [DOM_ARRAY::CF]

      A(1,2) = 1.0D0

      A(1,3) = 2.0D0

      A(2,2) = 3.0D0

      A(2,3) = 4.0D0

Example 4

The generate::fortran function does not optimize your code.

print(Unquoted,

      generate::fortran([x = a + b, y = (a + b)^2])):
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      x = a+b

      y = (a+b)**2

You can use the generate::optimize function before converting your MuPAD
expression to Fortran code. For example, this function can reduce the number of
operations by finding common subexpressions.

print(Unquoted,

      generate::fortran(

          generate::optimize([x = a + b, y = (a + b)^2])

      )):

      x = a+b

      y = x**2

Example 5

By default, the generate::fortran function can issue warnings.

print(Unquoted, generate::fortran(gamma(x)))

Warning: Function 'gamma' requires a Fortran2008 compiler.

      t0 = gamma(x)

Warnings help identify potential issues in converted code. To suppress warnings, use the
NoWarning option.

print(Unquoted, generate::fortran(gamma(x), NoWarning))

      t0 = gamma(x)

If the warning specifies that the compiler required is either Fortran90 or Fortran95, then
you can suppress the warning by specifying the correct compiler version using Version.
For example, the ceiling function requires Fortran90 instead of the default Fortran77.

generate::fortran(ceil(x))
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Warning: Function 'ceiling' requires a Fortran90 compiler.

Specify Version as Fortran90. The generate::fortran function does not issue a
warning.

generate::fortran(ceil(x), Version = "Fortran90")

Example 6

By default, the generate::fortran function uses the target Fortran version
Fortran77 to generate code. To specify Fortran90 or Fortran95 as the target version,
use the Version option.

Generate output for the Fortran90 compiler by specifying the Version option as
Fortran90.

f := expand((x+1)^20):

fcode90 := generate::fortran(f, Version = "Fortran90"):

print(Unquoted, fcode90)

      t0 = x*2.0D1+x**2*1.9D2+x**3*1.14D3+x**4*4.845D3+x**5*1.5504D4+x**&

     &6*3.876D4+x**7*7.752D4+x**8*1.2597D5+x**9*1.6796D5+x**10*1.84756D5&

     &+x**11*1.6796D5+x**12*1.2597D5+x**13*7.752D4+x**14*3.876D4+x**15*1&

     &.5504D4+x**16*4.845D3+x**17*1.14D3+x**18*1.9D2+x**19*2.0D1+x**20+1&

     &.0D0

The code formatting for multiline statements in Fortran90 differs from the formatting
in the default target of Fortran77.

Parameters

e

An expression, equation, list of equations, or a matrix
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Options

NoWarning

Suppress warnings.

Version

Specify the Fortran compiler version. The default version is Fortran77. The
Version values are Fortran77, Fortran90, and Fortran95. For example,
generate::fortran(..., Version = "Fortran90") uses compiler version
Fortran90.

Return Values

generate::fortran returns a string containing Fortran code.

See Also

MuPAD Functions
fprint | generate::optimize | print
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generate::MATLAB
Generate MATLAB formatted string

Syntax
generate::MATLAB(e, <NoWarning>)

Description

generate::MATLAB(e) generates MATLAB code for the MuPAD expression e.

generate::MATLAB returns a MATLAB formatted string representing an expression,
equation, list of equations or a matrix.

generate::MATLAB assumes that the type of converted data is double. See “Example
1” on page 10-12.

An equation represents an assignment in MATLAB code. See “Example 4” on page
10-13.

When generating MATLAB code for a matrix, the generator produces a matrix of zeros,
and then it substitutes nonzero elements. See “Example 2” on page 10-12.

Use the generate::optimize function to optimize the MuPAD code before converting
it to the MATLAB syntax. See “Example 5” on page 10-13.

To display generated MATLAB code on screen, use the print function. Use the printing
option Unquoted to remove quotation marks and to expand special characters like line
breaks and tabs. If a generated code line is longer than the TEXTWIDTH setting, the
print function breaks that line into several shorter lines. The inserted line continuation
character (\) is not valid in MATLAB. To avoid inserting line continuation characters,
increase the TEXTWIDTH setting or use the fprint function to write generated code to a
file.

generate::MATLAB does not create a MATLAB function. You can print an output string
to a file using the fprint function with the Unquoted option. See “Example 6” on page
10-14.
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Working from the MATLAB workspace you can create a MATLAB function containing
your expression. To call the MuPAD expression from the MATLAB workspace, use
evalin or feval functions. See “Create MATLAB Functions from MuPAD Expressions”.

If you work with the Simulink® products, you can copy the generated code and paste
it into a Simulink block. Also, you can call the MuPAD expression from the MATLAB
workspace using evalin or feval functions. Working from the MATLAB workspace
you can automatically create a Simulink block containing your expression. See “Create
MATLAB Function Blocks from MuPAD Expressions”.

The NoWarning option lets you suppress warnings. See “Example 7” on page 10-14.

Examples

Example 1

By default, MATLAB stores all numeric values as double-precision floating-point. In
accordance with the default MATLAB data type, generate::MATLAB converts the
elements of expressions, equations, and matrices to the double format:

print(Unquoted, generate::MATLAB(x^2 + y/3 + 1/6))

t0 = y*(1.0/3.0)+x^2+1.0/6.0;

Example 2

The generator produces a matrix of zeros, and then it replaces nonzero elements:

A:= matrix([[1, 0, 0],[0, 0, 1]]):

print(Unquoted, generate::MATLAB(A))

A = reshape([1.0,0.0,0.0,0.0,0.0,1.0],[2,3]);

Example 3

If the first index of an array is not 1, the generate::MATLAB function issues a warning:
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A:= array(1..2, 2..3, [[1,2],[3,4]]):

print(Unquoted, generate::MATLAB(A))

Warning: The array index 'A[1..2, 2..3]' is out of range 1..n. [DOM_ARRAY::CF]

A = reshape([1.0,3.0,2.0,4.0],[2,2]);

Example 4

When generating MATLAB code from equations, you get assignments instead of
equations. For example, generate MATLAB code for the following list of equations:

f := generate::MATLAB([x = exp(t*s), y = sin(t)*cos(s)]):

print(Unquoted, f)

x = exp(s*t);

y = cos(s)*sin(t);

Example 5

The generate::MATLAB function does not optimize your code:

print(Unquoted,

      generate::MATLAB([x = a + b, y = (a + b)^2])):

x = a+b;

y = (a+b)^2;

You can use the generate::optimize function before converting your MuPAD code
to MATLAB syntax. For example, this function can reduce the number of operations by
finding common subexpressions:

f := generate::optimize([x = a + b, y = (a + b)^2]):

print(Unquoted,

      generate::MATLAB(f)):

x = a+b;
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y = x^2;

Example 6

To create a file with a MATLAB formatted string representing a symbolic expression, use
the fprint function:

A:= matrix([[1, 0, 0],[0, 0, 1]]):

fprint(Unquoted, Text, "matrixA.m", generate::MATLAB(A))

If the file matrixA.m already exists, fprint replaces the existing MATLAB code with the
converted symbolic expression. You can open and edit the resulting file.

Example 7

By default, the generate::MATLAB function can issue warnings:

print(Unquoted, generate::MATLAB(g(x)))

Warning: Function 'g' is not verified to be a valid MATLAB function.

t0 = g(x);

If you started using generate::MATLAB recently, the warnings can help you identify
the potential issues in the converted code. If you want to suppress warnings, use the
NoWarning option:

print(Unquoted, generate::MATLAB(g(x), NoWarning))

t0 = g(x);

Parameters

e

An expression, equation, list of equations, or a matrix
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Options

NoWarning

Suppress warnings.

Return Values

generate::MATLAB returns a string containing MATLAB code.

See Also

MuPAD Functions
fprint | generate::optimize | generate::Simscape | print
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generate::MathML
Generate MathML from expressions

Syntax
generate::MathML(expr, options)

Description

generate::MathML(expr) returns the MathML code representing expr. To print this
code to a file, use fprint.

Examples

Example 1

Generate the MathML code from the following expression. Use hold to prevent
evaluation of the integral. By default, generate::MathML returns both Presentation
and Content MathML, and includes annotations.

generate::MathML(hold(int)(exp(x^2)/x, x))

<math xmlns='http://www.w3.org/1998/Math/MathML'>

  <semantics>

    <mrow>

      <mo form='prefix'>&Integral;</mo>

      <mrow/>

      <mfrac>

        <msup>

          <mo>&ee;</mo>

          <msup>

            <mi>x</mi>

            <mn>2</mn>

          </msup>

        </msup>
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        <mi>x</mi>

      </mfrac>

      <mo form='infix'>&DifferentialD;</mo>

      <mi>x</mi>

    </mrow>

    <annotation-xml encoding='MathML-Content'>

      <apply>

        <int/>

        <bvar>

          <ci>x</ci>

        </bvar>

        <apply>

          <divide/>

          <apply>

            <exp/>

            <apply>

              <power/>

              <ci>x</ci>

              <cn type='integer'>2</cn>

            </apply>

          </apply>

          <ci>x</ci>

        </apply>

      </apply>

    </annotation-xml>

    <annotation encoding='MuPAD'>

      int(exp(x^2)/x, x)

    </annotation>

  </semantics>

</math>

Example 2

Show only the Presentation MathML part of the output by setting Content to FALSE.

generate::MathML(hold(int)(exp(x^2)/x, x), 

                         Content = FALSE)

<math xmlns='http://www.w3.org/1998/Math/MathML'>

  <semantics>

    <mrow>

      <mo form='prefix'>&Integral;</mo>

      <mrow/>
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      <mfrac>

        <msup>

          <mo>&ee;</mo>

          <msup>

            <mi>x</mi>

            <mn>2</mn>

          </msup>

        </msup>

        <mi>x</mi>

      </mfrac>

      <mo form='infix'>&DifferentialD;</mo>

      <mi>x</mi>

    </mrow>

    <annotation encoding='MuPAD'>

      int(exp(x^2)/x, x)

    </annotation>

  </semantics>

</math>

Show only the Content MathML part of the output by setting Presentation to FALSE.

generate::MathML(hold(int)(exp(x^2)/x, x), 

                    Presentation = FALSE)

<math xmlns='http://www.w3.org/1998/Math/MathML'>

  <semantics>

    <apply>

      <int/>

      <bvar>

        <ci>x</ci>

      </bvar>

      <apply>

        <divide/>

        <apply>

          <exp/>

          <apply>

            <power/>

            <ci>x</ci>

            <cn type='integer'>2</cn>

          </apply>

        </apply>

        <ci>x</ci>

      </apply>

    </apply>
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    <annotation encoding='MuPAD'>

      int(exp(x^2)/x, x)

    </annotation>

  </semantics>

</math>

Suppress annotations by setting Annotation to FALSE.

generate::MathML(hold(int)(exp(x^2)/x, x), 

                      Annotation = FALSE)

<math xmlns='http://www.w3.org/1998/Math/MathML'>

  <semantics>

    <mrow>

      <mo form='prefix'>&Integral;</mo>

      <mrow/>

      <mfrac>

        <msup>

          <mo>&ee;</mo>

          <msup>

            <mi>x</mi>

            <mn>2</mn>

          </msup>

        </msup>

        <mi>x</mi>

      </mfrac>

      <mo form='infix'>&DifferentialD;</mo>

      <mi>x</mi>

    </mrow>

    <annotation-xml encoding='MathML-Content'>

      <apply>

        <int/>

        <bvar>

          <ci>x</ci>

        </bvar>

        <apply>

          <divide/>

          <apply>

            <exp/>

            <apply>

              <power/>

              <ci>x</ci>

              <cn type='integer'>2</cn>

            </apply>
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          </apply>

          <ci>x</ci>

        </apply>

      </apply>

    </annotation-xml>

  </semantics>

</math>

Example 3

Generate MathML code from the following expression and write the result to
filename.mathml by using fprint.

fprint(Text, "filename.mathml", 

       generate::MathML(hold(int)(exp(x^2)/x, x))):

Parameters

expr

Arithmetical expression

Options

Annotation

Option, specified as Annotation = FALSE.

Suppresses the output of annotations.

Content

Option, specified as Content = FALSE.

Suppresses the MathML Content part of the output.

Presentation

Option, specified as Presentation = FALSE.
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Suppresses the MathML Presentation part of the output.

Return Values

generate::MathML returns an object containing MathML code.

Overloaded By

expr

See Also

MuPAD Functions
fprint | print
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generate::optimize
Generate optimized code

Syntax
generate::optimize(r)

Description

generate::optimize(r) returns a sequence of equations representing an “optimized
computation sequence” for the input expression r. Each equation in the sequence
corresponds to an assignment of a subexpression of the input expression to a “temporary
variable.” Common subexpressions are computed only once, thus reducing the total
operation count.

The number of operations, namely additions (or subtractions), multiplications (or
divisions) and in particular functions calls of the output is usually lower than the number
of such operations of the input. This facility is useful for code generation.

Examples

Example 1

In this first example, we show the effects of optimization for a simple expression:

generate::optimize(cos(x^2) + x^2*sin(x^2) + x^4)

The “blind” computation of the input expression requires 7 multiplications, 2 additions
and 2 function calls. The optimized version introduces a “temporary variable” t2 storing
the subexpression x^2 that is used to compute the final result t1. This reduces the total
cost to 3 multiplications, 2 additions and 2 function calls, albeit using 1 extra assignment
to the temporary variable t2.
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Example 2

Here we repeat the exercise of the first example but with an array of expressions:

generate::optimize(array(1..2, 1..2, [[x^3, x^2],[x^2, x^4]]))

The original input requires 6 multiplications. The optimized version needs only 3
multiplications and 1 extra assignment.

Example 3

We optimize a list of equations representing a computation sequence for 3 variables t,
C[1], C[2]:

generate::optimize([t = u, C[1] = t*(u - w)^2, C[2] = 2*(u - w)^3])

The original computation requires 5 multiplications and 2 subtractions. The optimized
version needs 4 multiplications and 1 subtraction.

Note that since these examples involve small expressions, the computational savings
are slight. In the case of very large expressions, optimization can yield a considerable
dividend.

Parameters

r

An expression, array or list of equations

Return Values

List of equations.
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Algorithms

A number of FORTRAN compilers provide optimizers. However, they use algorithms
of complexity O(n2) and O(n3) where n is the size of the input expressions. For large
amounts of code, these algorithms may “break.” MuPAD provides a reasonably good
scalar (as in non-vectorized and non-parallelized) optimizer which is limited to common
subexpression optimization and using binary powering for integer powers. It uses
hashing of expressions so that given a sub-expression, it can determine in constant time
if this subexpression has already occurred. This results in an overall efficiency which
is of lower complexity namely, O(n) i.e. linear in the size of the input expressions to be
optimized, Hence overall efficiency is not compromised by very large expressions. This
does mean that not all possible optimizations are made but nonetheless a number of
reductions including the exploitation of some symmetries are possible.

It should be understood that “optimization” is meant in the sense of compiler
optimization. The end-result rarely corresponds to the absolute irreducible minimum
number of operations – or as in the case of FORTRAN code generation, the absolute
minimum of floating-point operations (FLOPS). Achieving this limit can be extremely
difficult if not impossible especially for large computational sequences. Nonetheless,
in a number of real-life instances, the MuPAD optimizer can yield a very useful result.
Additionally, MuPAD provides symbolic manipulation tools such as factor which can
yield additional reduction in operation costs.

In many cases of optimization, it is most often a matter of how best to pose the problem
so as to fully exploit every possible symmetry or useful natural property of the given
problem.
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generate::Simscape
Generate Simscape equation

Syntax
generate::Simscape(e, <NoWarning>)

Description

generate::Simscape(e) generates Simscape™ code for the MuPAD expression e.

Simscape software extends the Simulink product line with tools for modeling and
simulating multidomain physical systems, such as those with mechanical, hydraulic,
pneumatic, thermal, and electrical components. Unlike other Simulink blocks, which
represent mathematical operations or operate on signals, Simscape blocks represent
physical components or relationships directly. With Simscape blocks, you build a model
of a system just as you would assemble a physical system. For more information about
Simscape software, see “Simscape”.

You can extend the Simscape modeling environment by creating custom components.
When you define a component, use the equation section of the component file to
establish the mathematical relationships among a component's variables, parameters,
inputs, outputs, time, and the time derivatives of each of these entities. MuPAD and
Simscape software let you perform symbolic computations and use the results of these
computations in the equation section. The generate::Simscape function translates the
results of symbolic computations to Simscape language equations.

generate::Simscape returns a Simscape formatted string representing an expression,
equation, list of expressions or equations, or a matrix.

generate::Simscape converts the identifier t to the variable time in the resulting
Simscape code. However, the name t of a function call does not change during
conversion. See “Example 1” on page 10-27 and “Example 2” on page 10-27.

generate::Simscape converts any derivative with respect to the variable t to the
Simscape notation x.der, where x is the time-dependent variable. See “Example 3” on
page 10-28.
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generate::Simscape assumes that the type of converted data is double. See
“Example 4” on page 10-28.

When generating Simscape code for a matrix, the generator produces a dense matrix. See
“Example 5” on page 10-28.

Use the generate::optimize function to optimize the MuPAD code before converting
it to the Simscape syntax. See “Example 6” on page 10-29.

generate::Simscape converts piecewise expressions to Simscape code by using the if
statements. See “Example 7” on page 10-29.

The equation section of a Simscape component file supports a limited number of
functions. For details and the list of supported functions, see Simscape equations. If a
symbolic equation contains the functions that are not available in the equation section
of a Simscape component file, generate::Simscape cannot correctly convert these
equations to Simscape equations. Such expressions do not trigger an error. The following
types of expressions are prone to invalid conversion:

• Expressions with infinities
• Expressions that contain programming structures, such as loops, coditional

statements (except for the if statement), and map function calls
• Expressions that contain intervals, sets, and lists

To display generated Simscape code on screen, use the print function. To remove
quotation marks and to expand special characters like line breaks and tabs, use the
printing option Unquoted. If a generated code line is longer than the TEXTWIDTH
setting, the print function breaks that line into several shorter lines. The inserted line
continuation character (\) is not valid in Simscape. To avoid inserting line continuation
characters, increase the TEXTWIDTH setting or use the fprint function to write
generated code to a file.

To write generated Simscape code to a file, use the fprint function with the Unquoted
option. See “Example 8” on page 10-30.

The NoWarning option lets you suppress warnings. See “Example 2” on page 10-27.
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Examples

Example 1

The generate::Simscape function replaces all instances of the MuPAD identifier t
with the variable time. For example, convert the following equation to the Simscape
equation:

e := A*sin(w*t) + B*cos(w*t) = 0:

print(Unquoted, generate::Simscape(e))

  B*cos(time*w)+A*sin(time*w) == 0.0;

Example 2

The generate::Simscape function does not change the function name t in function
calls:

print(Unquoted, generate::Simscape([t(), t(0), t(x)]))

Warning: Function 't' is not verified to be a valid Simscape function.

Warning: Function 't' is not verified to be a valid Simscape function.

Warning: Function 't' is not verified to be a valid Simscape function.

  t();

  t(0.0);

  t(x);

This example produces a few identical warnings. If you started using
generate::Simscape recently, warnings can help you identify potential issues in the
converted code. If you want to suppress warnings, use the NoWarning option:

print(Unquoted, generate::Simscape([t(), t(0), t(x)], NoWarning))
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  t();

  t(0.0);

  t(x);

Example 3

When generating Simscape code, the generate::Simscape function converts the
derivatives with respect to the variable t to the Simscape notation x.der. Here x is the
time-dependent variable. For example, generate the Simscape code for the equation e
that has two time-dependent variables:

e := x'(t) + diff(y(t), t) + 2*x + 5 = 0:

print(Unquoted, generate::Simscape(e))

  x*2.0+x.der+y.der+5.0 == 0.0;

Example 4

By default, Simscape stores all numeric values as double-precision floating-point values.
In accordance with this default data type, generate::Simscape converts the elements
of expressions, equations, and matrices to the double format:

print(Unquoted, generate::Simscape(x^2 + y/3 + 1/6))

  y*(1.0/3.0)+x^2+1.0/6.0;

Example 5

generate::Simscape can generate Simscape code for a MuPAD matrix. In contrast
to generate::MATLAB (which produces sparse matrices), the Simscape code generator
produces dense matrices:

A:= matrix([[1, 0, 0],[0, 0, 1]]):

print(Unquoted, generate::Simscape(A))

  [

  1.0 0.0 0.0

  0.0 0.0 1.0

  ];

10-28



 generate::Simscape

Example 6

The generate::Simscape function does not optimize your code:

print(Unquoted,

      generate::Simscape([x = a + b, y = (a + b)^2])):

  x == a+b;

  y == (a+b)^2;

You can use the generate::optimize function before converting your MuPAD code
to Simscape syntax. For example, this function can reduce the number of operations by
finding common subexpressions:

print(Unquoted,

      generate::Simscape(

          generate::optimize([x = a + b, y = (a + b)^2])

      )):

  x == a+b;

  y == x^2;

Example 7

The generate::Simscape function also accepts piecewise expressions. The function
uses if statements when generating Simscape code for piecewise expressions. For
example, the Fourier transform of the following expression is a piecewise function:

FT := fourier(exp(-abs(x)*abs(t))*sin(t)/t, t, s)

generate::Simscape converts this result to a valid Simscape expression:

print(Unquoted, generate::Simscape(FT))

  if (x ~= 0.0)

    -atan((s-1.0)/abs(x))+atan((s+1.0)/abs(x));
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  else

    NaN;

  end

Example 8

To create a text file with a Simscape formatted string representing a symbolic
expression, use the fprint command:

e := x'(t) + 2*x + 5 = 0:

fprint(Unquoted, Text, "eqn.txt", generate::Simscape(e))

If the file eqn.txt already exists, fprint replaces the existing Simscape code with the
converted symbolic expression. You can open and edit the resulting text file.

Parameters

e

An expression, equation, list of equations, or a matrix

Options

NoWarning

Suppress warnings.

Return Values

generate::Simscape returns a string containing Simscape code. In case of invalid
conversion, the returned value is an arbitrary string.

See Also

MuPAD Functions
fprint | generate::MATLAB | generate::optimize | print
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generate::TeX

Generate formatted string from expressions

Syntax

generate::TeX(e)

Description

generate::TeX(e) returns a TeX formatted string representing e. This string may be
printed to a file using fprint. Use the printing option Unquoted to remove quotes and
to expand special characters like newlines and tabs.

The output string may be used in the math-mode of TeX. Note that generate::TeX
doesn't break large formulas into smaller ones.

Examples

Example 1

generate::TeX generates a string containing the TeX code:

generate::TeX(hold(int)(exp(x^2)/x, x))

Use print with option Unquoted to get a more readable output:

print(Unquoted, generate::TeX(hold(int)(exp(x^2)/x, x)))

\int \frac{\mathrm{e}^{x^2}}{x} \,d x
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Example 2

This example shows how to write a "TeX"-method for a domain. The domain elements
represent open intervals. The "TeX"-method makes recursive use of generate::TeX in
order to TeX-format its operands and concatenates the resulting strings to a new string
containing the TeX output of the interval.

Interval := newDomain("Interval"):

Interval::TeX :=

  e -> "\\left]".generate::TeX(extop(e, 1)).

       ", ".generate::TeX(extop(e, 2))."\\right[":

print(Unquoted,

      generate::TeX(new(Interval, 1, x^(a+2)))):

\left]1, x^{a + 2}\right[

Parameters

e

An arithmetical expression

Return Values
generate::TeX returns a string containing TeX code.

Overloaded By
e

Algorithms
The TeX packages amsmath and amssymb are needed.

A domain overloading generate::TeX has to provide a function as its "TeX"-slot
which translates its elements into a TeX formatted string. This function may use
generate::TeX recursively. See “Example 2” on page 10-32.
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See Also

MuPAD Functions
fprint | print
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Graph – Graph Theory

Graph::addEdges
Graph::addVertices
Graph::admissibleFlow
Graph::bipartite
Graph::breadthFirstSearch
Graph::checkForVertices
Graph::chromaticNumber
Graph::chromaticPolynomial
Graph::contract
Graph::convertSSQ
Graph::createCircleGraph
Graph::createCompleteGraph
Graph::createGraphFromMatrix
Graph::createRandomEdgeWeights
Graph::createRandomEdgeCosts
Graph::createRandomGraph
Graph::createRandomVertexWeights
Graph::depthFirstSearch
Graph::getAdjacentEdgesEntering
Graph::getAdjacentEdgesLeaving
Graph::getBestAdjacentEdge
Graph::getEdgeCosts
Graph::getEdgeDescriptions
Graph::getEdges
Graph::getEdgesEntering
Graph::getEdgesLeaving
Graph::getEdgeNumber
Graph::getEdgeWeights
Graph::getSubGraph
Graph::getVertexNumber
Graph::getVertexWeights
Graph::getVertices
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Graph::inDegree
Graph::isConnected
Graph::isDirected
Graph::isEdge
Graph::isVertex
Graph::longestPath
Graph::maxFlow
Graph::minCost
Graph::minCut
Graph::minimumSpanningTree
Graph
Graph::outDegree
Graph::plotBipartiteGraph
Graph::plotCircleGraph
Graph::plotGridGraph
Graph::printEdgeCostInformation
Graph::printEdgeDescInformation
Graph::printEdgeInformation
Graph::printEdgeWeightInformation
Graph::printGraphInformation
Graph::printVertexInformation
Graph::removeEdge
Graph::removeVertex
Graph::residualGraph
Graph::revert
Graph::setEdgeCosts
Graph::setEdgeDescriptions
Graph::setEdgeWeights
Graph::setVertexWeights
Graph::shortestPathAllPairs
Graph::shortestPathSingleSource
Graph::stronglyConnectedComponents
Graph::topSort
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Graph::addEdges
Adds one or several edges to a graph

Syntax
Graph::addEdges(G, Edge)

Graph::addEdges(G, Edge, <EdgeWeights = ew>, <EdgeCosts = ec>, <EdgeDescriptions = ed>)

Description

Graph::addEdges adds one or several edges to an already existing Graph. An edge is
represented by a list containing two vertices of the graph. A warning is raised if one of
the specified edges does already exist in the graph.

Graph::addEdges(G,Edge) adds the edge(s) Edge to the graph G. The two vertices of
each edge must be vertices in the given graph. Otherwise an error is raised. If an edge is
specified that already exists, a warning will be printed that this edge is not used.

With Graph::addEdges(G, Edge,EdgeWeights=ew,EdgeCosts=ec,
EdgeDescriptions=ed) the weight, cost and description of each edge can be set to
every edge additionally. If these specifications are missing, the default value 0(=None)
is assumed. If a specification is used it has to hold exactly the same number of values as
there are edges. Otherwise an error will be raised.

Note: The value None can be used in the specification lists for every edge that is not to be
specified explicitly.

Examples

Example 1

First, an undirected graph with two vertices and no edges is created. Then two edges are
added:
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G := Graph([a, b, c, d], []):

Graph::printEdgeInformation(G):

G := Graph::addEdges(G, [[a, b], [c, d]]):

Graph::printEdgeInformation(G)

No edges.

Edges existing in the graph:

----------------------------

[a, b], [c, d], [b, a], [d, c]

As you can see, [b,a] and [d,c] were inserted automatically.

G2 := Graph::addEdges(G, [[a,d]]):Graph::getEdges(G2)

Now, what happens if an edge is inserted that already exists in the graph?

G := Graph::addEdges(G, [[d, c]])

Warning: The following edges were not used for operation: [[d, c]]. [Graph::selectEdge]

Suppose, we try to insert an edge with a vertex not existing in the graph:

G := Graph::addEdges(G, [[a, 5]])

Error: One or more edges contain vertices that are not in list '[5]'. [Graph::addEdges]

Now let's see what happens when a directed graph is created:

G := Graph([a, b, c, d], [], Directed):

G := Graph::addEdges(G, [[a, b], [b, c], [c, d]], 

                     EdgeWeights = [2/8, -5, PI], 

                     EdgeCosts = [30, -40, None]):

Graph::printGraphInformation(G)

Vertices: [a, b, c, d]
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Edges: [[a, b], [b, c], [c, d]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: [a, b] = 1/4, [b, c] = -5, [c, d] = PI (other existing edges\

 have no weight)

Edge costs: [a, b] = 30, [b, c] = -40 (other existing edges have costs zer\

o)

Adjacency list (out): a = [b], b = [c], c = [d], d = []

Adjacency list (in): a = [], b = [a], c = [b], d = [c]

Graph is directed.

Have a close look at the Edge costs line. The edge [c,d] is not mentioned explicitly due
to the value None:

G2 := Graph::addEdges(G, [[a, b], [a, d]], EdgeWeights=[10, 20], 

                      EdgeCosts = [80, 90], 

                      EdgeDescriptions = ["First way", "Second way"]):

Graph::printGraphInformation(G2)

Warning: The following edges were not used for operation: [[a, b]]. [Graph::selectEdge]

Vertices: [a, b, c, d]

Edges: [[a, d], [a, b], [b, c], [c, d]]

Vertex weights: no vertex weights.

Edge descriptions: [a, d] = "Second way"

Edge weights: [a, b] = 1/4, [b, c] = -5, [c, d] = PI, [a, d] = 20 (other e\

xisting edges have no weight)

Edge costs: [a, b] = 30, [b, c] = -40, [a, d] = 90 (other existing edges h\

ave costs zero)

Adjacency list (out): a = [b, d], b = [c], c = [d], d = []

Adjacency list (in): a = [], b = [a], c = [b], d = [a, c]

Graph is directed.

If an edge has specifications, but exist already in the graph, the specifications will not
change. (see Information for edge [a, b] above)

Parameters

G

Graph
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Edge

List of one or more edges

ew, ec

Lists of numbers

ed

List of texts

b

Boolean value

Options

EdgeWeights

The weight(s) of the new edge(s). Default is 0.

EdgeCosts

The cost(s) of the new edge(s). Default is 0.

EdgeDescriptions

The description(s) for the new edge(s). Default is no text.

Return Values

Graph with the correct edges inserted.
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Graph::addVertices
Adds one or several vertices to a graph

Syntax
Graph::addVertices(G, Vertex, <VertexWeights = vw>)

Description

Graph::addVertices adds one or several vertices to an already existing graph. A
vertex is represented by an arbitrary expression. A warning is raised if one of the
specified vertices does already exist in the graph.

Graph::addVertices(G, Vertex) adds the vertices in Vertex to the graph G. If a
vertex is specified that already exists, a warning will be printed that this vertex (and it's
vertex weight) is not used.

With Graph::addVertices(G, Vertex,VertexWeights=vw) the weight can be
set to every vertex additionally. If these specifications are missing, the default value
0(=None) is assumed. If a specification is used it has to hold exactly the same number of
values as there are vertices. Otherwise an error will be raised.

Note: The value None can be used in the specification lists for every edge that is not to be
specified explicitly.

Examples

Example 1

First, an undirected graph with two vertices and no edges is created. Then two vertices
are added:

G := Graph([a, b, c, d], []):

Graph::printVertexInformation(G):
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G := Graph::addVertices(G, [e, f]):

Graph::printVertexInformation(G)

Vertices existing in the graph:

-------------------------------

Vertex a has weight None

Vertex b has weight None

Vertex c has weight None

Vertex d has weight None

Vertices existing in the graph:

-------------------------------

Vertex a has weight None

Vertex b has weight None

Vertex c has weight None

Vertex d has weight None

Vertex e has weight None

Vertex f has weight None

No weights were specified, so every vertex has weight None. In the algorithms default-
values will be used accordingly.

Now, what happens if a vertex is inserted that already exists in the graph?

G2 := Graph::addVertices(G, [a, g], VertexWeights=[10, 100]):

Graph::printVertexInformation(G2)

Warning: The following vertices already exist: [a]. [Graph::selectVertex]

Vertices existing in the graph:

-------------------------------

Vertex a has weight None

Vertex b has weight None

Vertex c has weight None

Vertex d has weight None

Vertex e has weight None

Vertex f has weight None

Vertex g has weight 100

If a vertex weight is specified for a vertex already existing, it will not be changed (see
Vertex a above)
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Parameters

G

Graph

Vertex

List of one or more vertices

vw

Lists of numbers

Options

VertexWeights

The weight(s) of the new vertex/vertices. Default is 0.

Return Values

Graph with the correct vertices inserted.
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Graph::admissibleFlow
Checks a flow for admissibility in a Graph

Syntax
Graph::admissibleFlow(G, f)

Description

Graph::admissibleFlow(G, f) checks if the flow f is admissible in the Graph G
according to its vertices and their capacities.

Graph::admissibleFlow checks whether a given flow is an admissible flow in the
specified graph. A flow in a graph is a table t, where t[[i,j]] gives the number of
units flowing from vertex i to vertex j. Graph::admissibleFlow returns TRUE if the
flow is admissible. Otherwise FALSE is returned.

Graph::admissibleFlow does not check whether the flow is admissible, if a flow from
vertex i to vertex j is allowed to pass through other vertices. See “Example 2” on page
11-11.

Examples

Example 1

In a cyclic graph with default capacities (1), the flow with one unit flowing from each
vertex to its successor is certainly admissible:

G1 := Graph::createCircleGraph([v1, v2, v3, v4]):

Graph::admissibleFlow(G1, table([v1, v2] = 1,

                                [v2, v3] = 1, 

                                [v3, v4] = 1, 

                                [v4, v1] = 1))
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Example 2

The flow must be specified in whole. Graph::admissibleFlow does not include “hops”,
like skipping vertices in the path:

Graph::admissibleFlow(Graph::createCircleGraph([v1, v2, v3]),

                                   table([v1, v3] = 1))

Parameters

G

Graph

f

The flow, specified in a table

Return Values

Either TRUE or FALSE
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Graph::bipartite
Finds out if a graph is bipartite.

Syntax
Graph::bipartite(G, <Bool | Lists>)

Description

Graph::bipartite(G) finds out whether G is bipartite or not.

Graph::bipartite(G, Sets): If G is bipartite, then a list containing two lists will be
returned. Each of the lists contains the vertices belonging to the set. If G is not bipartite,
then FAIL will be returned instead of any list.

Graph::bipartite(G, Bool) offers the same result as Graph::bipartite(G). If G
is bipartite, then TRUE will be returned, otherwise FALSE.

Examples

Example 1

A small graph containing 3 vertices with 2 edges connecting them is created:

G := Graph([a, b, c], [[a, b], [b, c]]):

Graph::bipartite(G, Lists); 

Graph::bipartite(G, Bool)

Two lists with vertices are shown. Another word for bipartite is two-colorable. This
means that the graph above can be colored with only two colors so that no two vertices
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have the same color if connected with an edge. The bottom output could also be
accomplished without using the parameter Bool:

Graph::bipartite(G)

The following example shows what happens when a graph is not bipartite (an edge is
added to connect the vertices a and c):

G2 := Graph::addEdges(G, [[a, c]]):

Graph::bipartite(G2, Lists); 

Graph::bipartite(G2, Bool)

Parameters

G

Graph

Options

Lists

If Lists is stated the return value will be a list of two lists containing the (sorted) vertices
belonging to each set, or FAIL.

Bool

If Bool is stated the return value will be either TRUE or FALSE. This is the default.

Return Values
Depending on the options either a boolean value or list-sets will be returned.
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Graph::breadthFirstSearch
Makes a breadth first Search in a graph.

Syntax
Graph::breadthFirstSearch(G, <StartVertex = v>)

Description

Graph::breadthFirstSearch traverses through a graph via breadth first search.
The output shows the first time of identification and the predecessor of each vertex. If a
vertex is a single vertex with no predecessor its predecessor is infinity.

Graph::breadthFirstSearch(G, StartVertex = v) traverses through a graph
via breadth first search starting from vertex v. The output shows the first time of
identification and the predecessor of each vertex. If a vertex is a single vertex with no
predecessor its predecessor is infinity.

Examples

Example 1

A typical tree is created and drawn for a better understanding of the algorithm:

G := Graph([a, b, c, d, e, f, g, h, i, j, k, l],

           [[a, b], [a, c], [b, d], [b, e], [c, f], [c, g],

            [d, h], [e, i], [e, j], [f, k], [g, l]],

           Directed):

plot(

  Graph::plotGridGraph(G, VerticesPerLine = [12, 12, 12, 12], 

    VertexOrder = [

  None, None, None, None, None, None,

  a,    None, None, None, None, None,

  None, None, b,    None, None, None,

  None, None, None, c,    None, None,

  None, d,    None, None, e,    None,

  None, f,    None, None, g,    None,
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  h,    None, None, i,    None, j,   

  None, None, k,    None, None, l

    ]

  )

)

Now we call breadthFirstSearch to find out the starting times and predecessors

Graph::breadthFirstSearch(G)
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Vertex a is dicovered first, then vertex b and so on. The right table shows the predecessor
of every vertex. The backtracking from a single vertex is therefore really simple. a as the
first vertex discovered in its component can not be backtracked any further. The distance
of each vertex in its component can be read in the middle table. Root-vertices always
have the value 0 (they are the roots).

Example 2

What happens now, if there exist a vertex that has no connection to any other vertex.
The upper example is taken and a single vertex is added without changing anything else.
Then a breadth first search is invoked on the graph:

G := Graph([a, b, c, d, e, f, g, h, i, j, k, l],

           [[a, b], [a, c], [b, d], [b, e], [c, f], [c, g],

            [d, h], [e, i], [e, j], [f, k], [g, l]],

           Directed):

G2 := Graph::addVertices(G, [m]):

Graph::breadthFirstSearch(G2, StartVertex = [a])

The newly inserted vertex m has no predecessor. The predecessor therefore holds the
value infinity.

Example 3

If we start somewhere in the graph without knowing the root of the DAG, the results are
of course different:
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G := Graph([a, b, c, d, e, f, g, h, i, j, k, l],

           [[a, b], [a, c], [b, d], [b, e], [c, f], [c, g],

            [d, h], [e, i], [e, j], [f, k], [g, l]],

           Directed):

Graph::breadthFirstSearch(G, StartVertex = [c])

The predecessor of c is c, but if we look at the graph it should be a. This is nevertheless
not quite correct. Breadth first search takes the given vertex and uses this as the root
of the graph (no in-vertices!). This explains also why the next call shows a infinity as
predecessor to l.

Parameters

G

Graph

v

List containing one vertex.

Options

StartVertex

Defines a vertex from which to start the breadth first traversal.
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Return Values

List containing three tables. The first table holds the timestamp of the discovery. The
second the distance to the root-vertex. The last table holds the predecessor vertices.
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Graph::checkForVertices
Checks if all vertices in edges really exist.

Syntax
Graph::checkForVertices(Edge, Vertex)

Description

Graph::checkForVertices(Edge, Vertex) checks if all vertices out of Edge are in
Vertex.

Examples

Example 1

What vertices are within the stated edges, but not in the vertex list?

Graph::checkForVertices([[a, b], [1, 2]], [a, 2])

Neither b nor 1 were in the second list. a was in the first edge and 2 in the second.

Example 2

A more complex example. The second list contains a vertex that does not exist in the
graph at all. For the checking it does not matter though. Every vertex NOT in the second
list is to be returned. In the end it does not matter if the vertex-list contains vertices that
are not existent, because only existing vertices are returned.

G := Graph::createCompleteGraph(10):

Graph::checkForVertices(Graph::getEdges(G), [1, 2, 3, 11])
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Parameters

Edge

List of one or more Edges

Vertex

List of one or more vertices

Return Values

List with the vertices out of the Edges that were not stated in Vertex.
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Graph::chromaticNumber
Chromatic number of a graph

Syntax
Graph::chromaticNumber(G)

Description

Graph::chromaticNumber(G) returns the chromatic number of the graph G. The
chromatic number of a graph is defined to be the number of colors necessary to color it
such that no two adjacent vertices have the same color.

Examples

Example 1

We compute the chromatic number of the complete graph with 5 vertices; it must be 5
since any two vertices are adjacent:

Graph::chromaticNumber(Graph::createCompleteGraph(5))

Parameters

G

An undirected graph

Return Values

Positive integer
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Algorithms

Internally, the chromatic polynomial is used to compute the chromatic number.

See Also

MuPAD Functions
Graph::chromaticPolynomial
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Graph::chromaticPolynomial
Calculates a chromatic polynomial

Syntax
Graph::chromaticPolynomial(G, x)

Description

Graph::chromaticPolynomial(G, x) returns the chromatic polynomial of the graph
G. Evaluating the result at x = n, for any integer n, gives the number of possible ways to
color the graph G using n colors such that no two adjacent vertices have the same color.

G must be an undirected graph: if an edge goes from a tob, another edge must go from b
to a, for any two verticesa, b.

Examples

Example 1

We compute the chromatic polynomial of the complete graph with 5 vertices:

f:= Graph::chromaticPolynomial(Graph::createCompleteGraph(5), x)

There are 240 ways to color a complete graph with 5 vertices, since this is the number of
bijective mappings between the set of colors and the set of vertices:

f(5)
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delete f:

Example 2

Now let us delete one edge from a complete graph:

G:= Graph::createCompleteGraph(5):

G:= Graph::removeEdge(G, [[2, 3]]):

G:= Graph::removeEdge(G, [[3, 2]])

Now there are some additional possible colourings: vertices 2 and 3 may now have the
same color, in five different ways; in each case, there must be one of the four remaining
colors that does not occur at all. In each of the 20 cases, we are left with 3 vertices that
form a complete graph and 3 colors, such that there are 6 colourings. Altogether this
gives us 120 additional colourings:

Graph::chromaticPolynomial(G, x)(5)

Parameters

G

An undirected graph

x

An identifier

Return Values

polynomial
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Algorithms

Computing the chromatic polynomial of a graph with n vertices reduces to computing two
chromatic polynomials of graphs with n - 1 vertices. The running time is hence roughly
2n.

References

See Birkhoff and Lewis, Chromatic Polynomials, Trans. AMS, Vol. 60, p.355–451, 1946.
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Graph::contract
Contracts vertices

Syntax
Graph::contract(G, VertexTable)

Description

Graph::contract(G, VertexTable) contracts the vertices for each entry in the table.

Note: The graph to be contracted must not have edge weights, costs or descriptions. If it
has, an error will be raised.

Note: If VertexTable contains vertices not in G, these will be skipped.

Examples

Example 1

A simple example to see how a contraction is done.

ConG := Graph([a, b, c, d, e, f],

              [[a, c], [d, a], [f, c], [d, f], [e, b]], 

              Directed):

Graph::printGraphInformation(ConG)

Vertices: [a, b, c, d, e, f]

Edges: [[a, c], [d, a], [d, f], [e, b], [f, c]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.
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Adjacency list (out): a = [c], b = [], c = [], d = [a, f], e = [b], f = [c]

Adjacency list (in): a = [d], b = [e], c = [a, f], d = [], e = [], f = [d]

Graph is directed.

plot(

  Graph::plotGridGraph(ConG, 

       VerticesPerLine = 3, 

       VertexOrder = [None, b,    None,

                      a,    None, c,

                      None, e,    None,

                      d,    None, f], 

       EdgeColor = RGB::Black))

t := table(A = [a, b, c], 

           B = [d, f])

newG := Graph::contract(ConG, t):
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Graph::printGraphInformation(newG)

Vertices: [A, B, e]

Edges: [[A, A], [B, A], [B, B], [e, A]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): e = [A], A = [A], B = [A, B]

Adjacency list (in): e = [], A = [A, B, e], B = [B]

Graph is directed.

Since vertices a, b, c were contracted to vertex A, edge [a,c] was removed and edge [A,
A] was created. Vertices d, f took care of the deletion of edges [d, a], [d, f], [f, c]. Instead
edges [B, A] and[B, B] were created. In the end edge [e, b] was changed to [e, A] since
vertex b does not exist any longer because it was replaced by A.

plot(Graph::plotGridGraph(newG, 

          VerticesPerLine = 2, 

          VertexOrder = [None, B,

                         A,    None,

                         None, e]))
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Example 2

Graph::contract ignores vertices not in the graph:

Con2 := Graph([], []):

t := table(A = [a, b, c], B = [d, f]):

Graph::printGraphInformation(Graph::contract(Con2, t))

Vertices: no vertices.

Edges: []

Adjacency list (out): no edges.

Adjacency list (in): no edges.

Graph is undirected.

Parameters

G

Graph

VertexTable

A table with the name of the new vertex on the left side and a list of vertices to contract
on the right side.

Return Values

Graph consisting of the new vertices and edges.
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Graph::convertSSQ
Converts a Graph into a single source single sink Graph

Syntax
Graph::convertSSQ(G, q, s)

Description

Graph::convertSSQ(G, q, s) converts the graph G into a directed single source
single sink graph. The specified vertices q and s are added to the graph. It is an error
if they are already predefined. Otherwise they are connected to the other vertices of the
graph in the following way:

A new edge [q,i] is added for every vertex i with a positive weight. A new edge [i,s]
is added for every vertex i with a negative weight. The capacities of these edges are in
each case the weight of node i. The edge weights are zero.

Examples

Example 1

A testexample to show the transformation.

V  := [1, 2, 3, 4]:

Vw := [4, 0, 0, -4]:

Ed := [[1, 2], [1, 3], [2, 3], [2, 4], [3, 4]]:

Ec := [2, 2, 1, 3, 1]:

Ew := [4, 2, 2, 3, 5]:

G1 := Graph(V, Ed, VertexWeights = Vw, 

            EdgeWeights = Ew,EdgeCosts = Ec):

G2 := Graph::convertSSQ(G1, [q], [s]):

Graph::printGraphInformation(G2)
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Vertices: [1, 2, 3, 4, q, s]

Edges: [[1, 2], [1, 3], [2, 1], [2, 3], [2, 4], [3, 1], [3, 2], [3, 4], [4\

, 2], [4, 3], [4, s], [q, 1]]

Vertex weights: 1 = 0, 2 = 0, 3 = 0, 4 = 0, q = 4, s = -4 (other existing \

vertices have no weight)

Edge descriptions: no edge descriptions.

Edge weights: [1, 2] = 4, [1, 3] = 2, [2, 3] = 2, [2, 4] = 3, [3, 4] = 5, \

[2, 1] = 4, [3, 1] = 2, [3, 2] = 2, [4, 2] = 3, [4, 3] = 5, [q, 1] = 4, [4\

, s] = 4 (other existing edges have no weight)

Edge costs: [1, 2] = 2, [1, 3] = 2, [2, 3] = 1, [2, 4] = 3, [3, 4] = 1, [2\

, 1] = 2, [3, 1] = 2, [3, 2] = 1, [4, 2] = 3, [4, 3] = 1, [q, 1] = 0, [4, \

s] = 0 (other existing edges have costs zero)

Adjacency list (out): 1 = [2, 3], 2 = [1, 3, 4], 3 = [1, 2, 4], 4 = [2, 3,\

 s], q = [1], s = []

Adjacency list (in): 1 = [2, 3, q], 2 = [1, 3, 4], 3 = [1, 2, 4], 4 = [2, \

3], q = [], s = [4]

Graph is directed.

The former undirected graph was transformed into a directed one!

Parameters

q, s

Vertices not predefined in the Graph

G

A Graph

Return Values

Directed augmented Graph

Algorithms

Both, Bellman and Dijkstra expect a Graph without negative circles. Only Dijkstra may
return erroneous results when negative edges (either weights or costs) are specified.
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The Bellman algorithm originated from: Ahuja, Magnanti, Orlin: Dom::Graph Flows,
Prentice-Hall, 1993 Section 5.4
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Graph::createCircleGraph
Generates a circle Graph

Syntax
Graph::createCircleGraph(L, <Directed | Undirected>)

Graph::createCircleGraph(N, <Directed | Undirected>)

Description

Graph::createCircleGraph(L) generates a circle Graph

Graph::createCircleGraph([v1,...,vn]) generates a new graph which is
the cycle [v1,v2], [v2,v3], ..., [vn,v1]. The values for the edge weights, edge
costs and vertex weights can be set manually via Graph::setEdgeWeights,
Graph::setEdgeCosts and Graph::setVertexWeights

Graph::createCircleGraph(3) generates a new graph which is the cycle [1,2],
[2,3], [3,1]. The values for the edge weights, edge capacities and vertex weights
can be set manually via Graph::setEdgeWeights, Graph::setEdgeCosts and
Graph::setVertexWeights

Graph::createCircleGraph(3, Undirected) generates a new graph which includes
the vertices [1,2], [2,3], [3,1][2,1], [3,2], [1,3].

Examples

Example 1

A (directed) circle graph with four vertices:

G1 := Graph::createCircleGraph(4):

Graph::printGraphInformation(G1)
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Vertices: [1, 2, 3, 4]

Edges: [[1, 2], [2, 3], [3, 4], [4, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [1]

Adjacency list (in): 1 = [4], 2 = [1], 3 = [2], 4 = [3]

Graph is directed.

Example 2

The same graph but this time with parameter Undirected:

G2 := Graph::createCircleGraph(4, Undirected):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3, 4]

Edges: [[1, 2], [1, 4], [2, 1], [2, 3], [3, 2], [3, 4], [4, 1], [4, 3]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2, 4], 2 = [1, 3], 3 = [2, 4], 4 = [1, 3]

Adjacency list (in): 1 = [2, 4], 2 = [1, 3], 3 = [2, 4], 4 = [1, 3]

Graph is undirected.

Example 3

The circle graph with predefined vertices:

G3 := Graph::createCircleGraph([a, b, c, d, 4, 5, 6]):

Graph::printGraphInformation(G3)

Vertices: [4, 5, 6, a, b, c, d]

Edges: [[4, 5], [5, 6], [6, a], [a, b], [b, c], [c, d], [d, 4]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): a = [b], b = [c], c = [d], d = [4], 4 = [5], 5 = [6]\
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, 6 = [a]

Adjacency list (in): a = [6], b = [a], c = [b], d = [c], 4 = [d], 5 = [4],\

 6 = [5]

Graph is directed.

Parameters

L

List of vertices

N

A positive Integer

Options

Directed

The Graph is created as a directed graph. Default.

Undirected

The Graph is created as an undirected graph.

Return Values

Graph
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Graph::createCompleteGraph

Generates a complete graph

Syntax

Graph::createCompleteGraph(n)

Description

Graph::createCompleteGraph(n) generates the complete Graph with n vertices. A
complete graph has a connection between each pair of vertices (except to itself).

The vertices of the generated graph are labeled with the numbers 1 to n.

Examples

Example 1

The complete Graph with three vertices has 3 2 = 6 edges:

G := Graph::createCompleteGraph(3):

Graph::printGraphInformation(G)

Vertices: [1, 2, 3]

Edges: [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2, 3], 2 = [1, 3], 3 = [1, 2]

Adjacency list (in): 1 = [2, 3], 2 = [1, 3], 3 = [1, 2]

Graph is undirected.
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Parameters

n

A positive integer

Return Values

Graph
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Graph::createGraphFromMatrix
Transfers a squared matrix into a directed graph

Syntax
Graph::createGraphFromMatrix(M)

Description

Graph::createGraphFromMatrix(M) generates a directed Graph where each mi, j
in the matrix defines an edge fromi to j. The value of the cell defines the weight of the
resulting edge.

The vertices of the generated graph are labeled with the numbers 1 to n, where n defines
the column/row-dimension of the matrix. Since the matrix has to be squared, n stays the
same.

Examples

Example 1

A matrix is defined and the resulting squared matrix is transfered into a Graph.

a := matrix([[3, 2, 4], [2, 3, 6], [4, 8, 3]]);

G := Graph::createGraphFromMatrix(a):

Graph::printGraphInformation(G)

Vertices: [1, 2, 3]

Edges: [[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3], [3, 1], [3, 2], [3\

, 3]]
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Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: [1, 1] = 3, [1, 2] = 2, [1, 3] = 4, [2, 1] = 2, [2, 2] = 3, \

[2, 3] = 6, [3, 1] = 4, [3, 2] = 8, [3, 3] = 3 (other existing edges have \

no weight)

Edge costs: no edge costs.

Adjacency list (out): 1 = [1, 2, 3], 2 = [1, 2, 3], 3 = [1, 2, 3]

Adjacency list (in): 1 = [1, 2, 3], 2 = [1, 2, 3], 3 = [1, 2, 3]

Graph is directed.

Parameters

M

A matrix

Return Values

Graph
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Graph::createRandomEdgeWeights
Sets random weights to edges

Syntax
Graph::createRandomEdgeWeights(G, r, <Dom::Integer | Dom::Real>)

Description
Graph::createRandomEdgeWeights(G, x..y) creates random integer edge weights
within the range x..y.

Graph::createRandomEdgeWeights(G, x..y, Dom::Integer) does exactly the
same.

Graph::createRandomEdgeWeights(G, x..y, Dom::Real) creates random real
edge weights within the range x..y.

Note: Already existing edge weights will be changed, too!

Examples

Example 1

Creating edge weights for a small cyclic graph. First, it has no specified weights:

G1 := Graph::createCircleGraph(5):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]
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Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

Now the weights are set within the range -100..50 (your output may differ due random
assignment):

G2 := Graph::createRandomEdgeWeights(G1, -100..50):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: [1, 2] = 47, [2, 3] = -12, [3, 4] = 28, [4, 5] = 1, [5, 1] =\

 -36 (other existing edges have no weight)

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

If the weights should be of type Real it can be set optionally:

G2 := Graph::createRandomEdgeWeights(G1, -100..50, Dom::Real):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: [1, 2] = -67.72964183, [2, 3] = -10.16896282, [3, 4] = -72.8\

4684348, [4, 5] = -61.00518722, [5, 1] = 18.2662729 (other existing edges \

have no weight)

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

Parameters

G

A graph
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r

A range

Return Values

Graph
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Graph::createRandomEdgeCosts
Sets random costs to edges

Syntax
Graph::createRandomEdgeCosts(G, r, <Dom::Integer | Dom::Real>)

Description

Graph::createRandomEdgeCosts(G, x..y) creates random edge weights of type
Integer within the range x..y.

Graph::createRandomEdgeCosts(G, x..y, Dom::Integer) does exactly the same.

Graph::createRandomEdgeCosts(G, x..y, Dom::Real) creates random edge
weights of type Real within the range x..y.

Note: Already existing edge costs will be changed, too!

Examples

Example 1

Creating edge weights for a small cyclic graph. First, it has no specified weights:

G1 := Graph::createCircleGraph(5):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]
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Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

Now the costss are set within the range -100..50 (your output may differ due random
assignment):

G2 := Graph::createRandomEdgeCosts(G1, -100..50):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: [1, 2] = 47, [2, 3] = -12, [3, 4] = 28, [4, 5] = 1, [5, 1] = -\

36 (other existing edges have costs zero)

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

If the costs should be of type Real it can be set optionally:

G2 := Graph::createRandomEdgeCosts(G1, -100..50, Dom::Real):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: [1, 2] = -67.72964183, [2, 3] = -10.16896282, [3, 4] = -72.846\

84348, [4, 5] = -61.00518722, [5, 1] = 18.2662729 (other existing edges ha\

ve costs zero)

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

Parameters

G

A graph
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r

A range

Return Values

Graph
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Graph::createRandomGraph
Generates a random graph.

Syntax
Graph::createRandomGraph(VertexNr, EdgeNr, <Directed | Undirected>)

Description

Graph::createRandomGraph generates a random graph.

Graph::createRandomGraph(VertexNr, EdgeNr) generates a random graph with
VertexNr vertices and EdgeNr edges.

Note: If the number EdgeNr is too great (i.e. ), a complete

graph will be created.

Graph::createRandomGraph(VertexNr, EdgeNr, Undirected) generates a
random graph with VertexNr vertices and 2 EdgeNr edges is created. This is due to the
fact that no odd number of undirected edges could be created otherwise.

Examples

Example 1

The following graph was created randomly, meaning that your results will most
probably differ:

G := Graph::createRandomGraph(5,6):

Graph::printGraphInformation(G)

Vertices: [1, 2, 3, 4, 5]
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Edges: [[1, 4], [2, 1], [2, 4], [2, 5], [3, 1], [3, 4]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [4], 2 = [1, 4, 5], 3 = [1, 4], 4 = [], 5 = []

Adjacency list (in): 1 = [2, 3], 2 = [], 3 = [], 4 = [1, 2, 3], 5 = [2]

Graph is directed.

Example 2

The same number of vertices, but this time the edges are undirected (and therefore the
number of Edges is (2 EdgeNr)). As you can clearly see, the edges differ from the edges
created above:

G := Graph::createRandomGraph(5, 6, Undirected):

Graph::printGraphInformation(G)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 2], [4, 1], [4, 2], [4\

, 5], [5, 1], [5, 2], [5, 4]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [4, 5], 2 = [3, 4, 5], 3 = [2], 4 = [1, 2, 5], 5\

 = [1, 2, 4]

Adjacency list (in): 1 = [4, 5], 2 = [3, 4, 5], 3 = [2], 4 = [1, 2, 5], 5 \

= [1, 2, 4]

Graph is undirected.

Example 3

If the number of edges to be created extends the possible limit ( ), a

complete graph will be returned:

G := Graph::createRandomGraph(3, 6, Undirected):

Graph::printGraphInformation(G)

Warning: Cannot produce the required number of edges. Creating a complete graph instead. [Graph::createRandomGraph]
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Vertices: [1, 2, 3]

Edges: [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2, 3], 2 = [1, 3], 3 = [1, 2]

Adjacency list (in): 1 = [2, 3], 2 = [1, 3], 3 = [1, 2]

Graph is undirected.

Parameters

VertexNr

Positive integer

EdgeNr

Positive integer

Options

Directed

If Directed is stated, a directed Graph is created Default

Undirected

If Undirected is stated, an undirected Graph is created.

Return Values

Graph
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Graph::createRandomVertexWeights
Sets random weights to vertices

Syntax

Graph::createRandomVertexWeights(G, r, <Int | Real>)

Description

Graph::createRandomVertexWeights(G, x..y) creates random vertex weights of
type Integer within the range x..y.

Graph::createRandomVertexWeights(G, x..y, Real) creates random vertex
weights of type Real within the range x..y.

Note: Already existing vertex weights will be changed, too!

Examples

Example 1

Creating vertex weights for a small cyclic graph. First, it has no specified weights:

G1 := Graph::createCircleGraph(5):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]
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Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

Now the weights are set within the range -100..50 (your output may differ due random
assignment):

G2 := Graph::createRandomVertexWeights(G1, -100..50):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: 1 = 47, 2 = -12, 3 = 28, 4 = 1, 5 = -36 (other existing ve\

rtices have no weight)

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

If the weights should be of type Real it can be set optionally:

G2 := Graph::createRandomVertexWeights(G1, -100..50, Real):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: 1 = -67.72964183, 2 = -10.16896282, 3 = -72.84684348, 4 = \

-61.00518722, 5 = 18.2662729 (other existing vertices have no weight)

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

Parameters

G

A graph
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r

A range

Options

Int

If stated, the weights are only of type integer. (Default)

Real

If stated, the weights are only of type real.

Return Values

Graph
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Graph::depthFirstSearch

Makes a depth first Search in a graph.

Syntax

Graph::depthFirstSearch(G, <StartVertex = v>)

Description

Graph::depthFirstSearch traverses through a graph via depth first search. The
output shows the first time of identification, the finishing time and the predecessor of
each vertex. If a vertex is a single vertex with no predecessor its predecessor is infinity.

Graph::depthFirstSearch(G, StartVertex=v) traverses through a graph
via depth first search starting from vertex v. The output shows the first time of
identification, the finishing time and the predecessor of each vertex. If a vertex is a single
vertex with no predecessor its predecessor is infinity.

Examples

Example 1

A typical tree is created and drawn for a better understanding of the algorithm.

G := Graph([a, b, c, d, e, f, g, h, i, j, k, l],

           [[a, b], [a, c], [b, d], [b, e], [c, f], [c, g],

            [d, h], [e, i], [e, j], [f, k], [g, l]], 

           Directed):

plot(

  Graph::plotGridGraph(G, VerticesPerLine = [12, 12, 12, 12],

    VertexOrder = [

  None, None, None, None, None, None,

  a,    None, None, None, None, None,

  None, None, b,    None, None, None,
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  None, None, None, c,    None, None,

  None, d,    None, None, e,    None,

  None, f,    None, None, g,    None,

  h,    None, None, i,    None, j,

  None, None, k,    None, None, l

    ]

  )

)

Now we call Graph::depthFirstSearch to find out the starting times, the finishing
times and the predecessors of each vertex:

Graph::depthFirstSearch(G)
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Vertex a is dicovered first, then vertex b and so on. The table in the middle shows the
finishing times. h for example has the finishing time of 5, meaning that vertices a,
b, c, d and h itself were visited before it was recognized that h is a leaf (finishing
time = starting time + 1). The right table shows the predecessor of every vertex.
The backtacking from a single vertex is therefore really simple. a as the first vertex
discovered in its component can not be backtracked any further.

Example 2

What happens now, if there exist a vertex that has no connection to any other vertex.
The upper example is taken and a single vertex is added without changing anything else.
Then a depth first search is invoked on the graph:

G := Graph([a, b, c, d, e, f, g, h, i, j, k, l],

           [[a, b], [a, c], [b, d], [b, e], [c, f], [c, g],

            [d, h], [e, i], [e, j], [f, k], [g, l]], 

           Directed):

G2 := Graph::addVertices(G, [m]):

Graph::depthFirstSearch(G2, StartVertex = [a])
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The newly inserted vertex m has no predecessor. The predecessor holds therefore the
value infinity.

Example 3

If we start somewhere in the graph without knowing the root of the DAG, the results are
of course different:

G := Graph([a, b, c, d, e, f, g, h, i, j, k, l],

           [[a, b], [a, c], [b, d], [b, e], [c, f], [c, g],

            [d, h], [e, i], [e, j], [f, k], [g, l]], 

           Directed):

Graph::depthFirstSearch(G, StartVertex = [c])
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The predecessor of c is c, but if we look at the graph it should be a. This is nevertheless
not quite correct. Breadth first search takes the given vertex and uses this as the root
of the graph (no in-vertices!). This explains also why the next call shows a infinity as
predecessor to l:

Graph::depthFirstSearch(G, StartVertex = [l])

Parameters

G

Graph

v

List containing one vertex.

Options

StartVertex

Defines a vertex from which to start the depth first traversal.
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Return Values

List containing three tables. The first table holds the first identification timestamp of
each vertex, the second the finishing timestamp and the third the predecessor vertex.
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Graph::getAdjacentEdgesEntering
Returns the incident edges.

Syntax
Graph::getAdjacentEdgesEntering(G, Vertex)

Description

Graph::getAdjacentEdgesEntering(G, Vertex) returns a list with vertices
v1..vn, where [v1, Vertex] .. [vn, Vertex] are incident (incoming) Edges to
Vertex.

Examples

Example 1

First, a complete graph is defined:

G1 := Graph::createCompleteGraph(5):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 1], [2, 3], [2, 4], [2, 5], [3\

, 1], [3, 2], [3, 4], [3, 5], [4, 1], [4, 2], [4, 3], [4, 5], [5, 1], [5, \

2], [5, 3], [5, 4]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2, 3, 4, 5], 2 = [1, 3, 4, 5], 3 = [1, 2, 4, 5]\

, 4 = [1, 2, 3, 5], 5 = [1, 2, 3, 4]

Adjacency list (in): 1 = [2, 3, 4, 5], 2 = [1, 3, 4, 5], 3 = [1, 2, 4, 5],\

 4 = [1, 2, 3, 5], 5 = [1, 2, 3, 4]

Graph is undirected.
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Now we get the vertices that form all incident edges [2, 1] .. [5, 1]:

Graph::getAdjacentEdgesEntering(G1, [1])

Now we get the vertices that form all incident edges [1, 5] .. [4, 5]:

Graph::getAdjacentEdgesEntering(G1, [5])

Parameters

G

A graph

Vertex

One vertex of G.

Return Values

List
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Graph::getAdjacentEdgesLeaving
Returns the adjacent edges.

Syntax
Graph::getAdjacentEdgesLeaving(G, Vertex)

Description

Graph::getAdjacentEdgesLeaving(G, Vertex) returns a list with vertices
v1..vn, where [Vertex, v1] .. [Vertex, vn] are adjacent (outgoing) Edges to
Vertex.

Examples

Example 1

First, a complete graph is defined:

G1 := Graph::createCompleteGraph(5):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 1], [2, 3], [2, 4], [2, 5], [3\

, 1], [3, 2], [3, 4], [3, 5], [4, 1], [4, 2], [4, 3], [4, 5], [5, 1], [5, \

2], [5, 3], [5, 4]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2, 3, 4, 5], 2 = [1, 3, 4, 5], 3 = [1, 2, 4, 5]\

, 4 = [1, 2, 3, 5], 5 = [1, 2, 3, 4]

Adjacency list (in): 1 = [2, 3, 4, 5], 2 = [1, 3, 4, 5], 3 = [1, 2, 4, 5],\

 4 = [1, 2, 3, 5], 5 = [1, 2, 3, 4]

Graph is undirected.
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Now we get the vertices that form all adjacent edges [1, 2] .. [1, 5]:

Graph::getAdjacentEdgesLeaving(G1, [1])

Now we get the vertices that form all adjacent edges [2, 1] .. [2, 5]:

Graph::getAdjacentEdgesLeaving(G1, [2])

Parameters

G

A graph

Vertex

One vertex of G.

Return Values

List
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Graph::getBestAdjacentEdge
Returns the "best" incident edges.

Syntax
Graph::getBestAdjacentEdge(G, Vertex, Vertices, <Min | Max>, <Weights | Costs>)

Description

Graph::getBestAdjacentEdge(G, Vertex) returns the best incident edge according
to specified attributes.

Graph::getBestAdjacentEdge(G, Vertex, Vertices) returns a vertex v out of
Vertices. The best edge is (Vertex, v) according to the specifications.

Examples

Example 1

Let us create a graph and find out the edge with the least weight:

G1 := Graph([1, a, 3, 4], [[1, a], [1, 3], [1, 4]], 

            EdgeWeights = [10, 20, 30],

            EdgeCosts = [30, 20, 10]):

Graph::getBestAdjacentEdge(G1, [1], Graph::getVertices(G1)), 

Graph::getBestAdjacentEdge(G1, [1], Graph::getVertices(G1),

                                             Min, Weights)

The result shows that edge [1, a] has the least weight. It also shows that Min and
Weights are the defaults if omitted. Next, we want to know the edge with maximum
weight:

Graph::getBestAdjacentEdge(G1, [1], Graph::getVertices(G1), Max)
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The vertex with maximum weight is edge [1,4]. Now we have a look at the costs. The
minimum cost edge can be found with:

Graph::getBestAdjacentEdge(G1, [1], Graph::getVertices(G1), Costs)

So the vertex with maximum weight is also the edge with minimum costs. Finally let us
search for the edge with maximum costs:

Graph::getBestAdjacentEdge(G1, [1], Graph::getVertices(G1),

                                               Costs, Max)

Parameters

G

A graph

Vertex

One vertex of G.

Vertices

Vertices in G.

Options

Min

If stated, the edge with the minimum attribute will be found. (Default)
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Max

If stated, the edge with the maximum attribute will be found.

Weights

If stated, edge weights will be used for comparison. (Default)

Costs

If stated, edge costs will be used for comparison.

Return Values

Vertex
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Graph::getEdgeCosts
Returns a table with the edge costs.

Syntax
Graph::getEdgeCosts(G)

Description

Graph::getEdgeCosts(G) returns a table with the edge costs of the graph G. Thus
Graph::getEdgeCosts(G) returns the costs of all edges in G.

Note: Costs will most probably only be defined, if transportation problems occur.

Note: If FAIL is returned, no costs werde defined (this way both, network and graph
algorithms handle this situation correct.)

Examples

Example 1

First lets define a graph without edge costs:

G1 := Graph::createCircleGraph(3):

Graph::getEdgeCosts(G1)

FAIL was returned, because no edge costs were defined.

Graph::getEdges(G1);

G1 := Graph::setEdgeCosts(G1, [[1, 2], [3, 1]], [5, 1/2]):

Graph::getEdgeCosts(G1)
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The first output shows all the edges and the second one the assigned edge costs.

Parameters

G

A graph

Return Values

Table
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Graph::getEdgeDescriptions
Returns a table with the edge descriptions.

Syntax
Graph::getEdgeDescriptions(G)

Description

Graph::getEdgeDescriptions(G) returns a table with the edge descriptions of the
graph G. Thus Graph::getEdgeDescriptions(G) returns the weight of all edges in G.

Note: Descriptions will most probably only be defined, if transportation problems occur.

Note: If FAIL is returned, no descriptions were defined (this way both, network and
graph algorithms handle this situation correct.)

Examples

Example 1

First lets define a graph without edge descriptions:

G1 := Graph::createCircleGraph(3):

Graph::getEdgeDescriptions(G1)

FAIL was returned, because no edge descriptions were defined.

Graph::getEdges(G1);

G1 := Graph::setEdgeDescriptions(G1, [[1, 2], [3, 1]], 

                                 ["Shortcut", "Highway 66"]):
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Graph::getEdgeDescriptions(G1)

The first output shows all the edges and the second one the assigned edge descriptions.

Parameters

G

A graph

Return Values

Table

11-68



 Graph::getEdges

Graph::getEdges
Returns a list with all edges

Syntax
Graph::getEdges(G)

Description

Graph::getEdges(G) returns a list containing all edges of the graph G. Each edge is
represented by a list containing the two connected vertices.

Examples

Example 1

Graph::getEdges only returns the edges, without their capacities:

G1 := Graph::createCircleGraph([v1, v2, v3, v4]):

Graph::getEdges(G1)

G2 := Graph::createCompleteGraph(3):

Graph::getEdges(G2)

Parameters

G

A Graph
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Return Values

List of all edges, a list of lists
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Graph::getEdgesEntering
Returns the incoming edges

Syntax
Graph::getEdgesEntering(G)

Description

Graph::getEdgesEntering(G) returns a table with the adjacency lists for incident
(incoming) edges. Thus Graph::getEdgesEntering(G) returns a table containing all
those vertices w for which there is an edge [w, v] in G.

Examples

Example 1

A small directed graph is created to show the incoming (incident) edges:

V := [1, 2, 3, 4, 5]:

Ed := [[1, 2], [1, 3], [2, 3], [2, 4], [3, 4], [3, 5], [4, 5]]:

G1 := Graph(V, Ed, Directed):

Graph::getEdgesEntering(G1)

In an undirected graph the output could look like this:

G1 := Graph::createCompleteGraph(5):
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Graph::getEdgesEntering(G1)

Parameters

G

A graph

Return Values

Table
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Graph::getEdgesLeaving
Returns the outgoing edges

Syntax
Graph::getEdgesLeaving(G)

Description

Graph::getEdgesLeaving(G) returns a table with the adjacency lists for adjacent
(outgoing) edges. Thus Graph::getEdgesLeaving(G) returns a table containing all
those vertices w for which there is an edge [v,w] in G.

Examples

Example 1

A small directed graph is created to show the outgoing (adjacent) edges:

V := [1, 2, 3, 4, 5]:

Ed := [[1, 2], [1, 3], [2, 3], [2, 4], [3, 4], [3, 5], [4, 5]]:

G1 := Graph(V, Ed, Directed):

Graph::getEdgesLeaving(G1)

In an undirected graph the output could look like this:

G1 := Graph::createCompleteGraph(5):
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Graph::getEdgesLeaving(G1)

Parameters

G

A graph

Return Values

Table
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Graph::getEdgeNumber
Returns the number of edges.

Syntax
Graph::getEdgeNumber(G)

Description

Graph::getEdgeNumber(G) returns a number representing the number of edges in G.

Examples

Example 1

Let us create a graph and find out the number of edges:

G1 := Graph([1, a, 3, 4], [[1, a], [1, 3], [1, 4]]):

Graph::getEdgeNumber(G1)

We know that a complete graph consists of |Vertices|2 - |Vertices| edges:

G2 := Graph::createCompleteGraph(4):

Graph::getEdgeNumber(G2)

Parameters

G

A graph
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Return Values

Number
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Graph::getEdgeWeights
Returns a table with the edge weights.

Syntax
Graph::getEdgeWeights(G)

Description

Graph::getEdgeWeights(G) returns a table with the edge weights of the graph G.
Thus Graph::getEdgeWeights(G) returns the weight of all edges in G.

Note: Weights will most probably only be defined, if transportation problems occur.

Note: If FAIL is returned, no weights were defined (this way both, network and graph
algorithms handle this situation correct.)

Examples

Example 1

First lets define a graph without edge weights:

G1 := Graph::createCircleGraph(3):

Graph::getEdgeWeights(G1)

FAIL was returned, because no edge weights were defined.

Graph::getEdges(G1);

G1 := Graph::setEdgeWeights(G1, [[1, 2], [3, 1]], [5, 1/2]):

Graph::getEdgeWeights(G1)
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The first output shows all the edges and the second one the assigned edge weights.

Parameters

G

A graph

Return Values

Table
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Graph::getSubGraph
Returns a subgraph.

Syntax
Graph::getSubGraph(G, Vertex)

Description

Graph::getSubGraph(G, Vertex) returns a subgraph according to the specified
vertices.

Graph::getSubGraph(G) returns a graph that only holds the specified vertices and the
belonging edges.

Examples

Example 1

First, a complete graph is defined with some additional settings:

G1 := Graph::createCompleteGraph(5):

G1 := Graph::setEdgeWeights(G1, [[1,2]], [20]):

G1 := Graph::setEdgeCosts(G1, [[1, 2]], [20]):

G1 := Graph::setEdgeDescriptions(G1, [[1, 2]], ["Shortcut"]):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [1, 3], [1, 4], [1, 5], [2, 1], [2, 3], [2, 4], [2, 5], [3\

, 1], [3, 2], [3, 4], [3, 5], [4, 1], [4, 2], [4, 3], [4, 5], [5, 1], [5, \

2], [5, 3], [5, 4]]

Vertex weights: no vertex weights.

Edge descriptions: [1, 2] = "Shortcut", [2, 1] = "Shortcut"

Edge weights: [1, 2] = 20, [2, 1] = 20 (other existing edges have no weigh\

t)

Edge costs: [1, 2] = 20, [2, 1] = 20 (other existing edges have costs zero)
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Adjacency list (out): 1 = [2, 3, 4, 5], 2 = [1, 3, 4, 5], 3 = [1, 2, 4, 5]\

, 4 = [1, 2, 3, 5], 5 = [1, 2, 3, 4]

Adjacency list (in): 1 = [2, 3, 4, 5], 2 = [1, 3, 4, 5], 3 = [1, 2, 4, 5],\

 4 = [1, 2, 3, 5], 5 = [1, 2, 3, 4]

Graph is undirected.

Now we get the subgraph for the vertices 1,2,4:

G2 := Graph::getSubGraph(G1, [1, 2, 4]):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 4]

Edges: [[1, 2], [1, 4], [2, 1], [2, 4], [4, 1], [4, 2]]

Vertex weights: no vertex weights.

Edge descriptions: [1, 2] = "Shortcut", [2, 1] = "Shortcut"

Edge weights: [1, 2] = 20, [2, 1] = 20 (other existing edges have no weigh\

t)

Edge costs: [1, 2] = 20, [2, 1] = 20 (other existing edges have costs zero)

Adjacency list (out): 1 = [2, 4], 2 = [1, 4], 4 = [1, 2]

Adjacency list (in): 1 = [2, 4], 2 = [1, 4], 4 = [1, 2]

Graph is undirected.

The subgraph for the vertices 1,3,4 looks like:

G2 := Graph::getSubGraph(G1, [1, 3, 4]):

Graph::printGraphInformation(G2)

Vertices: [1, 3, 4]

Edges: [[1, 3], [1, 4], [3, 1], [3, 4], [4, 1], [4, 3]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [3, 4], 3 = [1, 4], 4 = [1, 3]

Adjacency list (in): 1 = [3, 4], 3 = [1, 4], 4 = [1, 3]

Graph is undirected.

Parameters

G

A graph
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Vertex

A list containing one or more vertices of G.

Return Values

Graph
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Graph::getVertexNumber
Returns the number of vertices.

Syntax
Graph::getVertexNumber(G)

Description

Graph::getVertexNumber(G) returns a number representing the number of vertices
in G.

Examples

Example 1

An example with 100 vertices:

G1 := Graph::createCompleteGraph(100):

Graph::getVertexNumber(G1)

Parameters

G

A graph

Return Values

Number

11-82



 Graph::getVertexWeights

Graph::getVertexWeights
Returns a table with the vertex weights.

Syntax
Graph::getVertexWeights(G)

Description

Graph::getVertexWeights(G) returns a table with the vertex weights of the graph G.
Thus Graph::getVertexWeights(G) returns the weight of all vertices in G.

Note: If FAIL is returned, no weights were defined (this way both, network and graph
algorithms handle this situation correct.)

Examples

Example 1

First lets define a graph without vertex weights:

G1 := Graph::createCircleGraph(3):

Graph::getVertexWeights(G1)

FAIL was returned, because no vertex weights were defined.

Graph::getVertices(G1);

G1 := Graph::setVertexWeights(G1, [1, 3], [5, 1/2]):

Graph::getVertexWeights(G1)
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The first output shows all the vertices and the second one the assigned vertex weights.

Parameters

G

A graph

Return Values

Table
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Graph::getVertices
Returns a list with all vertices

Syntax
Graph::getVertices(G)

Description

Graph::getVertices(G) returns the list of all vertices of the Graph G.

Examples

Example 1

A small creation of two different graphs and the output getVertices generates:

G1 := Graph::createCompleteGraph(10):

Graph::getVertices(G1)

G2 := Graph::createCircleGraph([x.i $ i = 1..12]):

Graph::getVertices(G2)

Parameters

G

A graph
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Return Values

List
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Graph::inDegree
Returns the indegree of one or more vertices.

Syntax
Graph::inDegree(G, <Vertex>)

Description

Graph::inDegree(G, Vertex) returns the indegree of the vertex Vertex in the
Graph G, i.e., the number of edges [u,Vertex].

Graph::inDegree(G, [v1, v2, ..., vn]) returns a table in which the keys are
v1, v2, ..., vn and the corresponding values are the indegrees.

Graph::inDegree(G) returns a table in which each node of G is mapped to
its indegree. Graph::inDegree(G) is equivalent to Graph::inDegree(G,
Graph::getVertices(G)).

Examples

Example 1

In a complete graph of n vertices, each vertex has indegree n - 1:

G := Graph::createCompleteGraph(5):

Graph::inDegree(G, [2, 4, 5]), Graph::inDegree(G), 

Graph::inDegree(G, Graph::getVertices(G))
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The first table shows what happens, if some vertices are specified. The second and third
table return all indegrees, but with two different calls (the second is redundant).

Example 2

Remember that also only one vertex needs to be specified as a list!

G := Graph::createCompleteGraph(5):

Graph::inDegree(G, [2])

Parameters

G

A Graph

Vertex

A list containing one or more vertices.

Return Values

Table containing all the indegrees of the specified vertices.
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Graph::isConnected
Finds out if the graph is connected

Syntax
Graph::isConnected(G)

Description

Graph::isConnected(G) returns TRUE if G is connected, FALSE otherwise.

Examples

Example 1

A circle graph is made to create a connected Graph:

G1 := Graph::createCircleGraph(3):

Graph::isConnected(G1)

After adding a single vertex to the graph, it is not connected any more:

G2 := Graph::addVertices(G1, [4]):

Graph::isConnected(G2)

Parameters

G

A graph
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Return Values

TRUE or FALSE
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Graph::isDirected

Finds out if the graph is directed

Syntax

Graph::isDirected(G)

Description

Graph::isDirected(G) returns TRUE if G is directed, FALSE otherwise.

Examples

Example 1

A circle graph is made to create a directed Graph:

G1 := Graph::createCircleGraph(3):

Graph::isDirected(G1)

Example 2

Now a complete graph is created in order to get an undirected graph:

G1 := Graph::createCompleteGraph(3):

Graph::isDirected(G1)
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Parameters

G

A graph

Return Values

TRUE or FALSE
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Graph::isEdge
Finds out if the edges exists

Syntax
Graph::isEdge(G, Edge)

Description

Graph::isEdge(G) returns TRUE if ALL specified edges exist in G, FALSE otherwise.

Examples

Example 1

A circle graph is made to create a directed Graph:

G1 := Graph::createCircleGraph(3):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3]

Edges: [[1, 2], [2, 3], [3, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [1]

Adjacency list (in): 1 = [3], 2 = [1], 3 = [2]

Graph is directed.

First let us check for an existing single edge:

Graph::isEdge(G1, [[1, 2]] )
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Now we check if several edges exist:

Graph::isEdge(G1, [[1, 2], [2, 3]] )

What about a non existing edge?

Graph::isEdge(G1, [[3, 2]] )

Finally a list of some existing and non existing edges is checked:

Graph::isEdge(G1, [[1, 2], [2, 3], [3, 2]])

Parameters

G

A graph

Edge

A list containing one or more edges

Return Values

TRUE or FALSE
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Graph::isVertex
Finds out if special vertices exist in the Graph

Syntax
Graph::isVertex(G, Vertex)

Description

Graph::isVertex(G) returns TRUE if ALL specified vertices exist in G, FALSE
otherwise.

Examples

Example 1

A circle graph is made to create a directed Graph:

G1 := Graph::createCircleGraph(3):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3]

Edges: [[1, 2], [2, 3], [3, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [1]

Adjacency list (in): 1 = [3], 2 = [1], 3 = [2]

Graph is directed.

First, let us check for an existing vertex:

Graph::isVertex(G1, [1])
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Now we check if several vertices exist:

Graph::isVertex(G1, [1, 2])

What about a non existing vertex?

Graph::isVertex(G1, [4])

Finally a list of some existing and non existing vertices is checked:

Graph::isVertex(G1, [1, 2, 4])

Parameters

G

A graph

Vertex

A list containing one or more vertices

Return Values

TRUE or FALSE

11-96



 Graph::longestPath

Graph::longestPath

Longest paths from one single node

Syntax

Graph::longestPath(G, v, <w>, <Length>, <Path>)

Description

Graph::longestPath(G, v) returns a table with the length of longest paths from v to
all other nodes in the Graph with respect to the edge weight.

Graph::longestPath(G, v, w) returns the length of a longest path from v to w.

If the optional argument Path is given, a table with longest paths is returned. If both
Length and Path are given, then both the length of the longest paths and the paths are
returned. Paths are given as lists of nodes in reverse order.

If Path is not given, the option Length has no effect.

Note: The Graph G must be directed and should not contain cycles.

Examples

Example 1

We construct a Graph and try a few calls to Graph::longestPath:

V  := [1, 2, 3, 4, 5]:

Ed := [[1, 2], [1, 3], [2, 3], [2, 4], [3, 4], [3, 5], [4, 5]]:

Ew := [7, 6, 5, 4, 2, 2, 1]:

G  := Graph(V, Ed, EdgeWeights = Ew, Directed):

Graph::longestPath(G, 1)

11-97



11 Graph – Graph Theory

Graph::longestPath(G, 1, Path)

Parameters

G

A Graph

v, w

Vertices in G

Options

Length

Return a table with the lengths of shortest paths

Path

Return a table with the paths themselves

Return Values

Table, an integer or a list of nodes
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Algorithms

The implemented algorithm is a variation of the algorithm of Bellman.
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Graph::maxFlow

Computes a maximal flow through a graph

Syntax

Graph::maxFlow(G, s, t)

Description

Graph::maxFlow(G,s,t) computes a maximal flow from s to t in G with respect to the
edge capacities. s and t must be nodes in G.

Graph::maxFlow(G,s,t) returns a sequence containing the flow value, that is the
inflow of s, which equals the outflow of s, and the flow itself in form of table tbl with the
flow from vertex v to vertex w is tbl[[v,w]].

Examples

Example 1

In the complete Graph with four vertices and default capacities of 1, the maximum
flow from one vertex to another one consists of sending one unit through each of the
remaining vertices and one directly, which makes three units altogether:

G1 := Graph::createCompleteGraph(4):

Graph::maxFlow(G1, [1], [4])
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Example 2

As a more complex example, the following graph shows that this function also finds
flows through multiple edges, unlike Graph::admissibleFlow, which only works on
completely described flows:

V := [1, 2, 3, s, t]:

Edge := [[s, 1], [t, 2], [1, 2], [1, 3], [2, 3], [3, t]]:

up := [5, 5, 2, 6, 6, 1]:

G2 := Graph(V, Edge, EdgeCosts = up, Directed):

Graph::maxFlow(G2, [s], [t])
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Parameters

G

Graph

s, t

Expressions (vertices in G)

Return Values

List, containing a number and a table

Algorithms

The implemented algorithm is the preflow-push algorithm of Goldberg &Tarjan with
the FIFO selection strategy and an exact distance labeling (“A new approach to the
maximum-flow problem”, Journal of the ACM 35(4), 1988).

The running time is O(n3), where n is the number of vertices in the Graph.
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Graph::minCost
Computes a minimal cost flow

Syntax
Graph::minCost(G)

Description

Graph::minCost(G) computes a minimum cost flow in G with respect to the edge
capacities, the edge weights and the vertex weights of G.

The vertex weights are interpreted as supply and demand. The edge weights give
restrictions for the flow on every edge. The edge costs are the cost for one unit flow over
an edge.

The algorithm computes a flow, if there is any, which is possible and satisfactory, i.e.,
it is within the supply and demand range, which respects the capacities and which has
minimal cost. For details, see “Algorithms” on page 11-104.

Examples

Example 1

We construct a Graph with five vertices and seven edges. One of the vertices is a pure
source (1), another one is a pure sink (5). No other vertices supply or demand any goods,
they only serve as transportation junctions:

V  := [1, 2, 3, 4, 5]:

Vw := [25, 0, 0, 0, -25]:

edges := [[1, 2], [1, 3], [2, 3], [2, 4], [3, 4], [3, 5], [4, 5]]:

Ec := [7, 6, 5, 4, 2, 2, 1]:

Ew := [30, 20, 25, 10, 20, 25, 20]:

G1 := Graph(V, edges, EdgeCosts = Ec, EdgeWeights = Ew,

            VertexWeights = Vw, Directed):

Graph::minCost(G1)
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All 25 units could be transported from vertex 1 to vertex 5, for a total cost of 220. The
cost for each edge can be found in the first table, the accumulated costs in the second and
the last table holds the dual prices. For example 6 units flow over edge [1, 3] since 6 20 =
120 and 7 units flow over edge [1, 2] since 7 5 = 35.

Parameters

G

Graph

Return Values

Sequence, consisting of three tables and a number. The first table holds the amount
flowing over the edges, the second the accumulated costs for each used edge and the
number is the sum of all edge-costs for the flow. The last table holds the dual prices for
each vertex.

Algorithms

The implemented algorithm is the relaxation algorithm due to Bertsekas (taken from
Bertsekas, “Linear Network Optimization”, MIT Press, Cambridge(Mass.)-London, 1991)
which is known to be one of the fastest algorithms in practice.

The minimum cost flow tries to minimize the cost of a certain amount of flow through a
graph. Specifically, the minimum cost flow minimizes
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If the vertex weights si do add up to 0 then Graph::minCost errors.

If constraints (1.1) and (1.2) cannot be satisfied with si and ci,j, then Graph::minCost
throws an error.
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Graph::minCut
Computes a minimal cut

Syntax
Graph::minCut(G, q, s)

Description

Graph::minCut(G,q,s) computes a minimal cut in G that separates q from s, i.e., a
subset T of the set S of edges of G such that every path from q tos contains at least one
edge in T. The cut is minimal with respect to the capacities of the edges.

Graph::minCut(G,q,s) returns a sequence consisting of the cut value (the sum of the
edge weights of the cut edges) and a list with the edges of the cut.

Note that q is separated from s, not vice versa.

Examples

Example 1

In a complete graph, a vertex can be separated from another one only by cutting all edges
starting at the first vertex:

G1 := Graph::createCompleteGraph(4):

Graph::minCut(G1, [1], [4])

Example 2

In the following example, the edge from vertex q to vertex 1 could have been used
as well, but its edge capacity is higher than that of the edge used, so the minimality
condition precludes this choice:
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V := [1, 2, 3, q, s]:

Edge := [[q, 1], [1, 2], [1, 3], [2, 3], [3, s]]:

up := [5, 2, 6, 6, 1]:

G2 := Graph(V, Edge, EdgeWeights = up, Directed):

Graph::minCut(G2, [q], [s])

There is no path from vertex s to vertex q (or any other vertex of the Graph), so no cut is
necessary to separate s from q:

Graph::minCut(G2, [s], [q])

Parameters

q, s

Vertices that have to be defined within G

G

Graph

Return Values

Sequence, consisting of the “cut value” and a list of edges cut
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Graph::minimumSpanningTree
Creates a MST

Syntax
Graph::minimumSpanningTree(G, <SearchFor = Weights | Costs>, <ReturnAsTable>)

Description
Graph::minimumSpanningTree(G) creates a minimum spanning tree of Graph G
according to the weights of the edges and returns a Graph consisting only of them. The
same result would be achieved using Graph::minimumSpanningTree(G, SearchFor
= Weights)

Graph::minimumSpanningTree(G, SearchFor = Costs) creates a minimum
spanning tree according to the costs of the edges and returns a Graph consisting only of
them.

Graph::minimumSpanningTree(G, ReturnAsTable) creates a minimum spanning
tree according to the weights of the edges and returns a list with two objects. The first
is a table consisting of the used edges and their weights. The second object is a number
containing the sum of all the edge weights.(The same result can be achieved using:
Graph::minimumSpanningTree(G, SearchFor=Weights, ReturnAsTable).)

Graph::minimumSpanningTree(G, SearchFor=Costs, ReturnAsTable) creates
a minimum spanning tree according to the costs of the edges and returns a list with two
objects. The first is a table consisting of the used edges and their costs. The second object
is a number containing the sum of all the edge costs.

Examples

Example 1

The following graph G will be used throughout all the examples. For details on the format
of G, see Graph. (Have a look at the edge [c, f]. This edge is responsible for the different
outputs whether Costs or Weights was chosen.)
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G := Graph([a, b, c, d, e, f, g, h, i],

           [[a, b], [a, h], [b, h], [b, c], [c, d], [d, f], [d, e],

            [f, e], [h, g], [g, f], [c, i], [h, i], [g, i], [c, f]], 

         EdgeWeights = [4, 8, 11, 8, 7, 14, 9, 10, 1, 2, 2, 7, 6,  4], 

         EdgeCosts   = [4, 8, 11, 8, 7, 14, 9, 10, 1, 2, 2, 7, 6, 12]):

We will plot this graph and all graphs derived from it using Graph::plotGridGraph
with the following options:

plotOptions := 

  VerticesPerLine=7,

  VertexOrder = [

     None, b,    None, c,    None, d,    None,

     a,    None, i,    None, None, None, e,

     None, h,    None, g,    None, f,    None]:

plot(Graph::plotGridGraph(G, plotOptions))

Now we use this Graph to create a minimum spanning tree according to the weights of
the edges and have a look which edges were used:

Graph::minimumSpanningTree(G, SearchFor = Weights, ReturnAsTable),
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Graph::minimumSpanningTree(G, ReturnAsTable)

Both calls return exactly the same tables. That was expected and just to show that it is of
no importance if the additional SearchFor=Weights is omitted.

Now we want to get the minimum spanning tree returned as a Graph so we can have a
look how it looks like

weightMST := Graph::minimumSpanningTree(G):

plot(Graph::plotGridGraph(weightMST, plotOptions,

                         EdgeColor = RGB::Green))
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There are two ways of displaying both graphs at the same time:

plot(

  Graph::plotGridGraph(G, plotOptions, EdgeColor = RGB::Black),

  Graph::plotGridGraph(weightMST, plotOptions,

                       EdgeColor = RGB::Green)

)
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edgesWeightMST := Graph::getEdges(weightMST):

plot(Graph::plotGridGraph(G, plotOptions,

         EdgeColor = RGB::Black,

         SpecialEdges = edgesWeightMST,

         SpecialEdgeColor = RGB::Green))
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Example 2

Maybe instead of the weights there is an interest in getting the MST for the costs of the
edges.

G := Graph([a, b, c, d, e, f, g, h, i],

           [[a, b], [a, h], [b, h], [b, c], [c, d], [d, f], [d, e],

            [f, e], [h, g], [g, f], [c, i], [h, i], [g, i], [c, f]], 

         EdgeWeights = [4, 8, 11, 8, 7, 14, 9, 10, 1, 2, 2, 7, 6,  4], 

         EdgeCosts   = [4, 8, 11, 8, 7, 14, 9, 10, 1, 2, 2, 7, 6, 12]):

Graph::minimumSpanningTree(G, SearchFor = Costs, ReturnAsTable)
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Plotting this spanning tree is just as easy as above:

costMST := Graph::minimumSpanningTree(G, SearchFor = Costs):

plot(Graph::plotGridGraph(costMST, plotOptions,

                        EdgeColor = RGB::Blue))
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To combine both spanning trees, we use different line widths, to avoid one graph being
completely covered by the other:

plot(

  plot::Group2d(

    Graph::plotGridGraph(costMST, plotOptions,

                       EdgeColor = RGB::Blue),

    LineWidth = 2.5

  ),

  plot::Group2d(

    Graph::plotGridGraph(G, plotOptions,

                EdgeColor = RGB::Black),

    Graph::plotGridGraph(weightMST, plotOptions,

                        EdgeColor = RGB::Green),

    PointSize = 5,

    LineWidth = 1

  )

)
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Parameters

G

Graph

Options

SearchFor

Can either be Costs or Weights. Default is Weights

ReturnAsTable

If omitted, a Graph is returned, otherwise a list containing a table and the sum of the
edge weights/costs.
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Return Values

Graph consisting of the MST. Only if ReturnAsTable was specified, a list containing a
table and a number are returned. The table holds the edges with either the weights or
costs of each edge and the number is the sum of all edges.
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Graph
Creates new graph

Syntax
Graph(V, E, <VertexWeights = vw>, <EdgeDescriptions = ed>, <EdgeWeights = ew>, <EdgeCosts = ec>, <Directed | Undirected>)

Description

Graph(V, E) creates a graph.

Graph([v1,...,vn],[e1,...,em]) generates a new undirected graph with n vertices
and m edges.

Graph([1,a,3], [[1,a],[1,3]], Directed) generates a new directed graph with
the vertices 1, a, 3 and the edges [1,a], [1,3].

Graph([a,b,3], [[a,b],[b,3]], VertexWeights = [1,2,3], EdgeWeights

= [4,5]) generates a new directed graph where the vertices have the values a=1, b=2,
3=3 and the edges [a,b]=4, [b,3]=5.

Graph([a,b,3], [[a,b],[b,3]], VertexWeights = [1,None,3],

EdgeWeights = [4, None]) generates a new directed graph where the vertices have
the values a=1, 3=3 and the edges [a,b]=4. The difference to the example directly above
is that the keyword None can be used to not assign a value to a vertex or edge.

Examples

Example 1

An (undirected) graph with four vertices:

G1 := Graph([1,a,3], [[1,a],[1,3]]):

Graph::printGraphInformation(G1)
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Vertices: [1, 3, a]

Edges: [[1, 3], [1, a], [3, 1], [a, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [3, a], a = [1], 3 = [1]

Adjacency list (in): 1 = [3, a], a = [1], 3 = [1]

Graph is undirected.

Example 2

The same graph but this time with parameter Directed:

G1 := Graph([1,a,3], [[1,a],[1,3]], Directed):

Graph::printGraphInformation(G1)

Vertices: [1, 3, a]

Edges: [[1, 3], [1, a]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [3, a], a = [], 3 = []

Adjacency list (in): 1 = [], a = [1], 3 = [1]

Graph is directed.

Example 3

The circle graph with predefined vertices:

G3 := Graph([a,b,3], [[a,b],[b,3]],

           VertexWeights = [1,2,3],

               EdgeWeights = [4,5]):

Graph::printGraphInformation(G3)

Vertices: [3, a, b]

Edges: [[3, b], [a, b], [b, 3], [b, a]]

Vertex weights: a = 1, b = 2, 3 = 3 (other existing vertices have no weigh\

t)

Edge descriptions: no edge descriptions.
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Edge weights: [a, b] = 4, [b, 3] = 5, [b, a] = 4, [3, b] = 5 (other existi\

ng edges have no weight)

Edge costs: no edge costs.

Adjacency list (out): a = [b], b = [3, a], 3 = [b]

Adjacency list (in): a = [b], b = [3, a], 3 = [b]

Graph is undirected.

Example 4

The circle graph with predefined vertices:

G3 := Graph([a,b,3,7], [[a,b],[b,3],[3,7]], 

VertexWeights = [1,2,3,4], EdgeWeights = [-1,-2,-5], 

EdgeDescriptions = ["Small", None, "Smallest"]):

Graph::printGraphInformation(G3)

Vertices: [3, 7, a, b]

Edges: [[3, 7], [3, b], [7, 3], [a, b], [b, 3], [b, a]]

Vertex weights: a = 1, b = 2, 3 = 3, 7 = 4 (other existing vertices have n\

o weight)

Edge descriptions: [a, b] = "Small", [3, 7] = "Smallest", [b, a] = "Small"\

, [7, 3] = "Smallest"

Edge weights: [a, b] = -1, [b, 3] = -2, [3, 7] = -5, [b, a] = -1, [3, b] =\

 -2, [7, 3] = -5 (other existing edges have no weight)

Edge costs: no edge costs.

Adjacency list (out): a = [b], b = [3, a], 3 = [7, b], 7 = [3]

Adjacency list (in): a = [b], b = [3, a], 3 = [7, b], 7 = [3]

Graph is undirected.

If you look at the edge descriptions, the keyword None can be used for every edge which
is not supposed to have a description.

Parameters

V

List of vertices

E

List of edges
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vw, ew, ec

List of numbers

ed

List of strings

Options

Directed

The Graph is created as a directed graph.

Undirected

The Graph is created as an undirected graph. Default.
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Graph::outDegree
Returns the outdegree of one or more vertices.

Syntax
Graph::outDegree(G, <Vertex>)

Description
Graph::outDegree(G) returns the number of edges leaving each vertex Vertex of the
Graph G.

Graph::outDegree(G, Vertex) returns the outdegree of the vertex Vertex in the
Graph G, i.e., the number of edges [Vertex, u].

Graph::outDegree(G, [v1, v2, ..., vn]) returns a table in which the keys are
v1, v2, ..., vn and the corresponding values are the outdegrees.

Graph::outDegree(G) returns a table in which each node of G is mapped to
its outdegree. Graph::outDegree(G) is equivalent to Graph::outDegree(G,
Graph::getVertices(G)).

Examples

Example 1

In a complete graph of n vertices, each vertex has outdegree n - 1:

G := Graph::createCompleteGraph(5):

Graph::outDegree(G, [2, 4, 5]), Graph::outDegree(G), 

Graph::outDegree(G, Graph::getVertices(G))
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The first table shows what happens, if some vertices are specified. The second and third
table return all indegrees, but with two different calls (the second is redundant).

Example 2

Remember that also only one vertex needs to be specified as a list !

G := Graph::createCompleteGraph(5):

Graph::outDegree(G, [2])

Parameters

G

A Graph

Options

Vertex

A list containing one or more vertices.

Return Values

Table containing all the outdegrees of the specified vertices.
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Graph::plotBipartiteGraph

Plots a Graph in a bipartite layout

Syntax

Graph::plotBipartiteGraph(G, <PointSize = n>, <SpecialVertices = [v1, …,vn]>, <SpecialEdges = [e1, …,en]>, <EdgeColor = RGB>, <SpecialEdgeColor = RGB>, <SpecialVertexColor = RGB>, <Vertex1Color = RGB>, <Vertex2Color = RGB>)

Description

Graph::plotBipartiteGraph(G) returns a plot::Group2d object in which the
vertices are ordered in two rows (from bottom to top). The first vertex in the left row
is drawn in blue and the second (the first vertex in the right row) in green. All other
vertices are drawn in red. The width of the points is predefined with 40.

Examples

Example 1

A random graph is created and plotted (your output may differ due to random creation):

G1 := Graph::createRandomGraph(110, 10, Undirected):

plot(Graph::plotBipartiteGraph(G1)):
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Example 2

If some edges are to be emphasized they can be drawn in a special color:

G2 := Graph([1, 2, 3, 4, 5, 6],

            [[1, 2], [2, 3], [3, 4], [4, 5], [1, 6]]):

Graph::bipartite(G2, Lists)

edges := [[6, 1], [1, 2]]:

plot(Graph::plotBipartiteGraph(G2, SpecialEdges = edges,

                               SpecialEdgeColor = RGB::Blue))
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Parameters

G

Graph

n

a positive integer

[v1, …,vn]

a list of vertices

[e1, …,en]

a list of edges
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Options

PointSize

Defines the thickness in which the points are drawn. Default is 40.

SpecialVertices

Defines a set of vertices. This option makes only sense if used with the option
SpecialVertexColor.

SpecialEdges

Defines a set of edges. This option makes only sense if used with the option
SpecialEdgeColor.

EdgeColor

Defines a color with which to draw the edges. Default is RGB ::Red.

SpecialEdgeColor

Defines a color to be used to draw the set of edges specified. This option makes only sense
if used with the option SpecialEdges.

VertexColor

Defines a color with which to draw the vertices. If this option is specified, the first two
vertices are set to this color, too. They can be given different colors via Vertex1Color
and Vertex2Color. Default is RGB::Red.

SpecialVertexColor

Defines a color to be used to draw the set of vertices specified. This option makes only
sense if used with the option SpecialVertices.

Vertex1Color

Defines a color with which to draw the first vertex with (the starting vertex at the bottom
of the first set). Default is RGB::Blue.
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Vertex2Color

Defines a color with which to draw the second vertex with (the starting vertex at the
bottom of the second set). Default is RGB::Green.

Return Values

plot::Group2d
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Graph::plotCircleGraph

Plots a Graph in a circle layout

Syntax

Graph::plotCircleGraph(G, <PointSize = n>, <SpecialVertices = [v1, …,vn]>, <SpecialEdges = [e1, …,en]>, <EdgeColor = RGB>, <SpecialEdgeColor = RGB>, <SpecialVertexColor = RGB>, <Vertex1Color = RGB>, <Vertex2Color = RGB>)

Description

Graph::plotCircleGraph(G) returns a plot::Group2d object in which the vertices
are ordered in a circle (rightmost position upwards). The first vertex is drawn in blue
and the second in green. All other vertices are drawn in red. The edges are drawn in red.
The width of the points is predefined with 40. If a vertex points to itself it will be drawn
outside

Examples

Example 1

A random graph is created and plotted (your output may differ due random creation):

G1 := Graph::createRandomGraph(20, 10, Undirected):

plot(Graph::plotCircleGraph(G1))
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Next, a complete graph will be plotted.

G1 := Graph::createCompleteGraph(20):

plot(Graph::plotCircleGraph(G1))
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Example 2

If some edges are to be emphasized they can be drawn in a special color:

G2 := Graph([1, 2, 3, 4, 5],

            [[1, 2], [2, 3], [3, 4], [4, 5],

             [1, 3], [1, 4], [1, 5]]):  

edges := [[1, 3], [1, 4]]:

plot(Graph::plotCircleGraph(G2, 

                SpecialEdges = edges, SpecialEdgeColor = RGB::Blue))
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Parameters

G

Graph

n

a positive integer

[v1, …,vn]

a list of vertices

[e1, …,en]

a list of edges
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Options

PointSize

Defines the thickness in which the points are drawn. Default is 40.

SpecialVertices

Defines a set of vertices. This option makes only sense if used with the option
SpecialVertexColor.

SpecialEdges

Defines a set of edges. This option makes only sense if used with the option
SpecialEdgeColor.

EdgeColor

Defines a color with which to draw the edges. Default is RGB::Red

SpecialEdgeColor

Defines a color to be used to draw the set of edges specified. This option makes only sense
if used with the option SpecialEdges

VertexColor

Defines a color with which to draw the vertices. If this option is specified, the first
two vertices are set to this color, too. They must be specified via Vertex1Color and
Vertex2Color to distinct them again. Default is RGB::Red

SpecialVertexColor

Defines a color to be used to draw the set of vertices specified. This option makes only
sense if used with the option SpecialVertices

Vertex1Color

Defines a color with which to draw the uppermost left (first) vertex with (the starting
vertex). Default is RGB::Blue

Vertex2Color

Defines a color with which to draw the second vertex with. Default is RGB::Green
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Return Values

plot::Group2d
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Graph::plotGridGraph

Plots a Graph in a grid layout

Syntax

Graph::plotGridGraph(G, <PointSize = n>, <VerticesPerLine = n>, <VertexOrder = [n1, …,nm]>, <SpecialVertices = [v1, …,vn]>, <SpecialEdges = [e1, …,en]>, <EdgeColor = RGB>, <SpecialEdgeColor = RGB>, <SpecialVertexColor = RGB>, <Vertex1Color = RGB>, <Vertex2Color = RGB>)

Description

Graph::plotGridGraph(G) returns a plot::Scene object in which the vertices are
square ordered (topmost left to downmost right). The number of vertices per line is
the floor of the squareroot of the number of the vertices. The first vertex is drawn in
RGB::Blue and the second in RGB::Green. All other vertices are drawn in RGB::Red. The
edges are drawn in RBG::Red. The width of the points is predefined with 40. If the last
line contains only one vertex, it will be drawn centered in the middle of the line.

Graph::plotGridGraph(G, VerticesPerLine=n) returns a plot::Scene object like
described above with one exception. In every line there are exactly n vertices. They
appear in sorted order depending on their name. If the last row consists of only one
vertex, this one will be centered.

Graph::plotGridGraph(G, VerticesPerLine=[v1..vn]) returns a plot::Scene
object like described above with one exception. In line 1 there are exactly v1 vertices
placed. In line 2 there are v2 vertices and so on. The last line contains vn vertices. They
appear in sorted order depending on their name. The sum of the numbers specified in
VerticesPerLine must equal the number of vertices in the graph.

Graph::plotGridGraph(G, VerticesPerLine=n, VertexOrder=[v1..vn])

returns a plot::Scene object like described above with one exception. In every line
there are exactly n vertices. They appear in sorted order depending on the order that
was specified in VertexOrder. vi can consist of any vertex defined as well as the
substitute None. Nevertheless the number of vertices in G must not exceed the number of
VerticesPerLine. If the last line holds only one vertex, it will be centered.
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Examples

Example 1

First, a small graph is created and plotted with the default values:

G := Graph([a, b, c, d], [[a, b], [b, c], [c, d], [d, a]]):

plot(Graph::plotGridGraph(G))

Now, we exchange the two vertices c and d. The order given above was [a, b, c, d]:

plot(Graph::plotGridGraph(G, VertexOrder = [a, b, d, c]))
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If only one vertex is placed in the last line, it will be centered:

plot(Graph::plotGridGraph(G, VertexOrder = [a, b, d, c],

                          VerticesPerLine = 3))
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The same result can be gained by defining the Vertices per line specifically (in this case
the number of vertices must be no less than the number of vertices in the graph):

plot(Graph::plotGridGraph(G, VertexOrder = [a, b, d, c],

                          VerticesPerLine = [3, 1]))

11-138



 Graph::plotGridGraph

Now we get to the point, why the plot routine got the name Grid. The substitute None
can be used whenever a place should be skipped. Think of some drawing paper with
caskets. The layout is exactly the same. In this case it would consist of 3 caskets in each
row. None leaves it blank, while a vertex from the Graph is drawn. Because the first
casket is empty, the first color is omitted, too. The vertex a which is placed in the second
casket is drawn as predefined in Vertex2Color (RGB::Green):

plot(Graph::plotGridGraph(G, 

       VertexOrder = [None, a,    None, 

                      b,    None, c,

                      None, d,    None], 

       VerticesPerLine = 3))
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Example 2

With the knowledge obtained so far, it is possible to get deeper into the art of creating
objects. One of the most usefull outputs is that of a tree. Thus a Graph is created to be
used for the tree output:

TreeGraph := Graph([a, b, c, d, e, f, g, h, i, j, k, l],

             [[a, b], [a, c], [b, d], [b, e], [c, f], [c, g],

              [d, h], [e, i], [e, j], [f, k], [g, l]], Directed):

Next we define a special vertex order, because the vertices are not drawn the way they
were defined:

vOrder := 

[None, None, None, None, None, None,

 a,    None, None, None, None, None,

 None, None, b,    None, None, None,

 None, None, None, c,    None, None,

 None, d,    None, None, e,    None,

 None, f,    None, None, g,    None,

 h,    None, None, i,    None, j,   
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 None, None, k,    None, None, l    ]:

Now it is time to have a look at how the tree looks:

plot(Graph::plotGridGraph(TreeGraph,

              VerticesPerLine = 12, VertexOrder = vOrder))

Now we want to see the path from vertex a to Vertexb. For this example it will be given
explicitly. For bigger graphs one of the shortestPath procedures is recommended:

specialPath := [[a, c], [c, f], [f, k]]:

Finally we draw the path inside the Graph and have a good overview about the path it
takes:

plot(Graph::plotGridGraph(TreeGraph,

         VerticesPerLine = 12, VertexOrder = vOrder, 

         SpecialEdges = specialPath, SpecialEdgeColor = RGB::Blue))
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Example 3

To show what can be done with more detailed and complex examples a small outer face
is being drawn (have a close look ath the Vertices which are not drawn, because the color
is set to RBG::White and thus equals the background-color). Additionaly, the “eyes” have
been colored differently, so the usage of SpecialVertexColor could be presented:

Smile := Graph([1,2,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

               21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36],

         [[1,4],[2,5],[4,5],[7,4],[5,8],[7,10],[9,10],[10,14],[9,13],

          [13,19],[19,20],[20,14],[14,15],[15,16],[16,17],[17,11],

          [ 8,11],[11,12],[12,18],[18,22],[22,21],[21,17],[21,24],

          [24,28],[28,32],[32,36],[36,35],[35,34],[34,33],[33,29],

          [29,25],[25,23],[23,20],[26,30],[30,31],[31,27]]):

plot(

  Graph::plotGridGraph(Smile, VerticesPerLine = 10, 

     VertexOrder = [

       None,None,None,   1,None,None,   2,None,None,None,

       None,None,None,None,   4,   5,None,None,None,None,

       None,None,None,   7,None,None,   8,None,None,None,

       None,   9,  10,None,None,None,None,  11,  12,None,
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         13,None,None,  14,  15,  16,  17,None,None,  18,

       None,  19,  20,None,None,None,None,  21,  22,None,

       None,None,  23,None,None,None,None,  24,None,None,

       None,None,  25,  26,None,None,  27,  28,None,None,

       None,None,  29,None,  30,  31,None,  32,None,None,

       None,None,None,  33,  34,  35,  36,None,None,None],

     SpecialEdges = [[13,9],[9,10],[10,14],[14,20],[20,19],[19,13],

       [14,15],[15,16],[16,17],[17,21],[21,22],[22,18],[18,12],[12,11],

       [11,17]],

     SpecialVertices = [1,2,4,5,7,8,23,24,25,26,27,28,29,30,31,

       32,33,34,35,36], 

     VertexColor = RGB::White, 

     SpecialVertexColor = RGB::Green, EdgeColor = RGB::Green, 

     SpecialEdgeColor = RGB::Black)

)

Example 4

The next example is a complete graph drawn with the vertices ordered in a square so
that all vertices can be connected inside the square:
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CG := Graph::createCompleteGraph(30):

plot(Graph::plotGridGraph(CG,

       VerticesPerLine = [8, 2, 2, 2, 2, 2, 2, 2, 8], 

       Vertex1Color = RGB::Red, Vertex2Color = RGB::Red))

Using the default values in every line vertices are drawn and the graph looks not as
“dense” as the above one:

plot(Graph::plotGridGraph(CG, Vertex1Color = RGB::Red, 

                          Vertex2Color = RGB::Red))
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Example 5

The last example shows a small kite inside a frame:

Shield := Graph([1, 2, 3, 4, 5, 6, 7, 8, 9],

          [[1, 2], [1, 8], [2, 9], [8, 9], [3, 5], [4, 5],

           [5, 6], [5, 7], [3, 6], [6, 7], [3, 4], [4, 7]]):

plot(Graph::plotGridGraph(Shield, Vertex1Color = RGB::White, 

       Vertex2Color = RGB::White, VertexColor = RGB::White,

       VerticesPerLine = 7, 

       VertexOrder = [

           1,None,None,None,None,None,   2,

        None,None,None,   3,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,   4,None,   5,None,   6,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,
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        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,None,None,None,None,

        None,None,None,   7,None,None,None,

           8,None,None,None,None,None,   9],

       SpecialVertices = [3, 4, 5, 6, 7], 

       SpecialVertexColor = RGB::Blue,

       SpecialEdges = [[3, 5], [4, 5], [5, 6], [5, 7],

                       [3, 6], [6, 7], [3, 4], [4, 7]],

       SpecialEdgeColor = RGB::Blue))

Parameters

G

Graph

11-146



 Graph::plotGridGraph

n

a positive integer

[n1, …,nm]

a list of positive integers

[v1, …,vn]

a list of vertices

[e1, …,en]

a list of edges

Options

PointSize

Defines the thickness in which the points are drawn. Default is 40.

VerticesPerLine

If specified as single number, this many vertices are placed in every row. If specified as
list, the number of vertices per line are read out of the list. If the vertices are specified
as list, the number of vertices must match either the number of vertices defined in the
graph, or, if specified, the number defined in VertexOrder.

VertexOrder

Defines an order in which the vertices are to be placed. It starts in the upper left and
ends in the lower right. The number of specified vertices must match the number of
vertices defined in the graph or the sum of the vertices specified in VerticesPerLine.

SpecialVertices

Defines a set of vertices. This option makes only sense if used with the option
SpecialVertexColor.
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SpecialEdges

Defines a set of edges. This option makes only sense if used with the option
SpecialEdgeColor.

EdgeColor

Defines a color with which to draw the edges. Default is RGB::Red

SpecialEdgeColor

Defines a color to be used to draw the set of edges specified. This option makes only sense
if used with the option SpecialEdges

VertexColor

Defines a color with which to draw the vertices. If this option is specified, the first
two vertices are set to this color, too. They must be specified via Vertex1Color and
Vertex2Color to distinct them again. Default is RGB::Red

SpecialVertexColor

Defines a color to be used to draw the set of vertices specified. This option makes only
sense if used with the option SpecialVertices

Vertex1Color

Defines a color with which to draw the uppermost left (first) vertex with (the starting
vertex). If VertexOrder holds a None for this vertex, it will be skipped. Default is
RGB::Blue

Vertex2Color

Defines a color with which to draw the second vertex with. If VertexOrder holds a None
for this vertex, it will be skipped. Default is RGB::Green

Return Values

Plot::Scene.
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Graph::printEdgeCostInformation

Prints the edge costs of a graph

Syntax

Graph::printEdgeCostInformation(G)

Description

Graph::printEdgeCostInformation prints the edge costs of a graph.

Graph::printEdgeCostInformation(G) prints the edge costs of the graph G

Examples

Example 1

A circle graph is created and the edge costs of it printed to screen:

G := Graph::createCircleGraph(3):

Graph::printEdgeCostInformation(G)

No edge costs defined.

G := Graph::setEdgeCosts(G, [[1, 2], [2, 3], [3, 1]], [10, 20, 30]):

Graph::printEdgeCostInformation(G)

Edge costs existing in the graph:

----------------------------------------

Edge [1, 2] has cost 10

Edge [2, 3] has cost 20

Edge [3, 1] has cost 30
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Parameters

G

Graph

Return Values

Text containing information about the edge costs of a graph.
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Graph::printEdgeDescInformation
Prints the edge descriptions of a graph

Syntax
Graph::printEdgeDescInformation(G)

Description

Graph::printEdgeDescInformation prints the edge descriptions of a graph.

Graph::printEdgeDescInformation(G) prints the edge descriptions of the graph G

Examples

Example 1

A circle graph is created and the edge descriptions of it printed to screen:

G := Graph::createCircleGraph(3):

Graph::printEdgeDescInformation(G)

No edge descriptions defined.

G := Graph::setEdgeDescriptions(G, [[1, 2], [2, 3], [3, 1]],

                                ["Shortcut","Highway","Speedup"]):

Graph::printEdgeDescInformation(G)

Edge descriptions existing in the graph:

----------------------------------------

Edge [1, 2] = "Shortcut"

Edge [2, 3] = "Highway"

Edge [3, 1] = "Speedup"
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Parameters

G

Graph

Return Values

Text containing information about the edge descriptions of a graph.
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Graph::printEdgeInformation
Prints the edges of a graph

Syntax
Graph::printEdgeInformation(G)

Description

Graph::printEdgeInformation prints the edges of a graph.

Graph::printEdgeInformation(G) prints the edges used in the graph G.

Examples

Example 1

A circle graph is created and the edges of it printed to screen:

G := Graph::createCircleGraph(3):

Graph::printEdgeInformation(G)

Edges existing in the graph:

----------------------------

[1, 2], [2, 3], [3, 1]

Example 2

A complete graph is created and the edges of it printed to screen:

G := Graph::createCompleteGraph(3):

Graph::printEdgeInformation(G)

Edges existing in the graph:
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----------------------------

[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]

Parameters

G

Graph

Return Values

Text containing information about the edges of a graph.

11-154



 Graph::printEdgeWeightInformation

Graph::printEdgeWeightInformation

Prints the edge weights of a graph

Syntax

Graph::printEdgeWeightInformation(G)

Description

Graph::printEdgeWeightInformation prints the edge weights of a graph.

Graph::printEdgeWeightInformation(G) prints the edge weights of the graph G

Examples

Example 1

A circle graph is created and the edge weights of it printed to screen:

G := Graph::createCircleGraph(3):

Graph::printEdgeWeightInformation(G)

No edge weights defined.

G := Graph::setEdgeWeights(G, [[1, 2], [2, 3], [3, 1]], [10, 20, 30]):

Graph::printEdgeWeightInformation(G)

Edge weights existing in the graph:

----------------------------------------

Edge [1, 2] has weight 10

Edge [2, 3] has weight 20

Edge [3, 1] has weight 30
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Parameters

G

Graph

Return Values

Text containing information about the edge weights of a graph.
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Graph::printGraphInformation
Prints the edges of a graph

Syntax
Graph::printGraphInformation(G)

Description

Graph::printGraphInformation prints a summary of various information about a
graph.

Graph::printGraphInformation(G) prints a summary of the graph G

Examples

Example 1

A circle graph is created and a summary of it printed to screen:

G := Graph::createCircleGraph(3):

Graph::printGraphInformation(G)

Vertices: [1, 2, 3]

Edges: [[1, 2], [2, 3], [3, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [1]

Adjacency list (in): 1 = [3], 2 = [1], 3 = [2]

Graph is directed.

Example 2

A complete graph is created and a summary of it printed to screen:
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G := Graph::createCompleteGraph(3):

Graph::printGraphInformation(G)

Vertices: [1, 2, 3]

Edges: [[1, 2], [1, 3], [2, 1], [2, 3], [3, 1], [3, 2]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2, 3], 2 = [1, 3], 3 = [1, 2]

Adjacency list (in): 1 = [2, 3], 2 = [1, 3], 3 = [1, 2]

Graph is undirected.

Parameters

G

Graph

Return Values

Text containing information about the graph.
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Graph::printVertexInformation
Prints vertex information of a graph

Syntax
Graph::printVertexInformation(G)

Description

Graph::printVertexInformation prints the edges of a graph.

Graph::printVertexInformation(G) prints the edges of the graph G

Examples

Example 1

A circle graph is created and information of the vertices printed to screen:

G := Graph::createCircleGraph(3):

Graph::printVertexInformation(G)

Vertices existing in the graph:

-------------------------------

Vertex 1 has weight None

Vertex 2 has weight None

Vertex 3 has weight None

Example 2

A complete graph is created and information of the vertices printed to screen:

G := Graph::createCompleteGraph(3):

Graph::printVertexInformation(G)
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Vertices existing in the graph:

-------------------------------

Vertex 1 has weight None

Vertex 2 has weight None

Vertex 3 has weight None

Parameters

G

Graph

Return Values

Text containing information about the vertices of a graph.
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Graph::removeEdge

Removes one or several edges from a graph

Syntax

Graph::removeEdge(G, e)

Graph::removeEdge(G, l)

Description

Graph::removeEdge(G, [e1, ..., en]) removes edges e1...en from graph G.

Graph::removeEdge deletes one or several edges from a graph. An edge is represented
by a list containing two vertices of the graph. A warning is printed if the specified edge is
not contained in the graph.

Graph::removeEdge(G, e) removes the edge e from the graph G.

Graph::removeEdge(G, l) removes all edges in list l from graph G.

Examples

Example 1

Removing an edge from a cyclic graph results in a (degenerated) tree:

G1 := Graph::createCircleGraph(5):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.
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Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

plot(Graph::plotCircleGraph(G1))

G2 := Graph::removeEdge(G1, [[5, 1]]):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = []

Adjacency list (in): 1 = [], 2 = [1], 3 = [2], 4 = [3], 5 = [4]
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Graph is directed.

plot(Graph::plotCircleGraph(G2))

If more than one edge is to be removed they must also be specified in a list:

edges := [[2, 3], [4, 5]]: 

G3 := Graph::removeEdge(G1, edges):

Graph::printGraphInformation(G3)

Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [3, 4], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [], 3 = [4], 4 = [], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [], 4 = [3], 5 = []

Graph is directed.

plot(Graph::plotCircleGraph(G3))
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Parameters

l

A list of edges

e

An edge

G

A graph

Return Values

Graph
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Graph::removeVertex
Removes one or several vertices from a graph

Syntax
Graph::removeVertex(G, v)

Graph::removeVertex(G, l)

Description

Graph::removeVertex(G, v) removes vertex v from graph G.

Graph::removeVertex(G, [v1, ..., vn]) removes vertices v1...vn from graph G.

Graph::removeVertex deletes one or several vertices from a graph. A warning is
printed if the specified vertex is not contained in the graph.

Note: If a vertex is connected to other vertices with edges, they will be removed from the
graph, too!

Graph::removeVertex(G, v) removes the vertex v from the graph G.

Graph::removeVertex(G, l) removes all vertices in list l from graph G.

Examples

Example 1

Removing a vertex from a cyclic graph removes also two edges:

G1 := Graph::createCircleGraph(5):

Graph::printGraphInformation(G1)
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Vertices: [1, 2, 3, 4, 5]

Edges: [[1, 2], [2, 3], [3, 4], [4, 5], [5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [2], 2 = [3], 3 = [4], 4 = [5], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [1], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

plot(Graph::plotCircleGraph(G1))

G2 := Graph::removeVertex(G1, [1]):

Graph::printGraphInformation(G2)

Vertices: [2, 3, 4, 5]

Edges: [[2, 3], [3, 4], [4, 5]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 2 = [3], 3 = [4], 4 = [5], 5 = []
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Adjacency list (in): 2 = [], 3 = [2], 4 = [3], 5 = [4]

Graph is directed.

plot(Graph::plotCircleGraph(G2))

If more than one vertex is to be removed they must also be specified in a list:

vertices := [2, 4]:

G3 := Graph::removeVertex(G1, vertices):

Graph::printGraphInformation(G3)

Vertices: [1, 3, 5]

Edges: [[5, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: no edge weights.

Edge costs: no edge costs.

Adjacency list (out): 1 = [], 2 = [], 3 = [], 5 = [1]

Adjacency list (in): 1 = [5], 2 = [], 3 = [], 5 = []

Graph is directed.

plot(Graph::plotCircleGraph(G3))
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Parameters

l

A list of vertices

v

A vertex

G

A graph

Return Values

Graph
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Graph::residualGraph

Computes the residual graph

Syntax

Graph::residualGraph(G, f, <Extended>)

Description

Graph::residualGraph(G, flow) computes the residual of the graph G with respect
to the flow flow, meaning the graph that remains when the flow flow is “subtracted”
from G.

Graph::residualGraph computes the residual graph with respect to a given flow. A
flow in a Graph is a table tbl, where tbl[[i,j]] gives the number of units flowing
from vertex i to vertex j.

If the optional argument Extended is given, then also those edges with a zero residual
capacity are considered, otherwise these edges are omitted.

Examples

Example 1

In the following call, G2 is the graph consisting of the remaining transport capacities
after a given flow:

G1 := Graph::createCompleteGraph(3):

G2 := Graph::residualGraph(G1,

     table( [1, 2] = 1, [2, 1] = 1/2,

            [1, 3] = 0, [3, 1] = 0.5,

            [2, 3] = 1, [3, 2] = 0 ) ):

Graph::getEdgeWeights(G2)
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The algorithm detects the lack of edge weights and edge costs and sets all edge weights
and costs to default values of 1.

Example 2

The resulting graph depends on whether the option Extended is used:

V := [1, 2, 3, q, s]:

Edge := [[q, 1], [1, 2], [1, 3], [2, 3], [3, s]]:

up := [5, 4, 4, 2, 5]:

G := Graph(V,Edge,EdgeWeights = up, Directed):

flow := table([q, 1] = 5, [3, s] = 5, [1, 2] = 1, 

              [1, 3] = 4, [2, 3] = 1):

G1 := Graph::residualGraph(G, flow):

Graph::printGraphInformation(G1);

Vertices: [1, 2, 3, q, s]

Edges: [[2, 1], [3, 1], [3, 2], [s, 3], [1, q], [1, 2], [2, 3]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: [1, 2] = 3, [2, 3] = 1, [2, 1] = 1, [3, 1] = 4, [3, 2] = 1, \

[s, 3] = 5, [1, q] = 5 (other existing edges have no weight)

Edge costs: [1, 2] = 1, [2, 3] = 1, [2, 1] = -3, [3, 1] = 0, [3, 2] = -1, \

[s, 3] = 0, [1, q] = 0 (other existing edges have costs zero)

Adjacency list (out): 1 = [2, q], 2 = [1, 3], 3 = [1, 2], q = [], s = [3]

Adjacency list (in): 1 = [2, 3], 2 = [1, 3], 3 = [2, s], q = [1], s = []

Graph is directed.

Edge Weights contain the residual graph with all the flows. Edge Costs show the flow
that was subtracted or added. For example edge [1, 2] had weight 4. After a flow of 3 was
sent over it, the residual edge [2, 1] contains the flow of -3 and the residual edge [1, 2]
contains the flow of 1. Since the negative flow of the reverted edge plus the flow of the
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edge in the residual graph have to sum up to the flow it shows that the flow is calculated
correctly. (- (- 3) + 1 = 4)

G1 := Graph::residualGraph(G, flow, Extended):

Graph::printGraphInformation(G1);

Vertices: [1, 2, 3, q, s]

Edges: [[2, 1], [3, 1], [3, 2], [s, 3], [1, q], [1, 2], [1, 3], [2, 3], [3\

, s], [q, 1]]

Vertex weights: no vertex weights.

Edge descriptions: no edge descriptions.

Edge weights: [q, 1] = 5, [1, 2] = 4, [1, 3] = 4, [2, 3] = 2, [3, s] = 5, \

[2, 1] = -4, [3, 1] = -4, [3, 2] = -2, [s, 3] = -5, [1, q] = -5 (other exi\

sting edges have no weight)

Edge costs: [1, 2] = 3, [1, 3] = 0, [2, 3] = 1, [3, s] = 0, [q, 1] = 0, [2\

, 1] = 1, [3, 1] = 4, [3, 2] = 1, [s, 3] = 5, [1, q] = 5 (other existing e\

dges have costs zero)

Adjacency list (out): 1 = [2, 3, q], 2 = [1, 3], 3 = [1, 2, s], q = [1], s\

 = [3]

Adjacency list (in): 1 = [2, 3, q], 2 = [1, 3], 3 = [1, 2, s], q = [1], s \

= [3]

Graph is directed.

Parameters

G

Graph

flow

The predefined flow

Options

Extended

Include edges with zero capacities
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Return Values

Graph
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Graph::revert
Reverts the edges of a graph.

Syntax
Graph::revert(G)

Description

Graph::revert(G) returns a graph in which all edges [u, v] and their properties belong
to edges [v, u].

Graph::revert overloads the system function revert.

Examples

Example 1

First, a circle graph is defined with some additional settings:

G1 := Graph::createCircleGraph(3):

G1 := Graph::setEdgeWeights(G1, [[1, 2]], [20]):

G1 := Graph::setEdgeCosts(G1, [[1, 2]], [20]):

G1 := Graph::setEdgeDescriptions(G1, [[1, 2]], ["Shortcut"]):

Graph::printGraphInformation(G1)

Vertices: [1, 2, 3]

Edges: [[1, 2], [2, 3], [3, 1]]

Vertex weights: no vertex weights.

Edge descriptions: [1, 2] = "Shortcut"

Edge weights: [1, 2] = 20 (other existing edges have no weight)

Edge costs: [1, 2] = 20 (other existing edges have costs zero)

Adjacency list (out): 1 = [2], 2 = [3], 3 = [1]

Adjacency list (in): 1 = [3], 2 = [1], 3 = [2]

Graph is directed.
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Now we revert the graph:

G2 := revert(G1):

Graph::printGraphInformation(G2)

Vertices: [1, 2, 3]

Edges: [[1, 3], [2, 1], [3, 2]]

Vertex weights: no vertex weights.

Edge descriptions: [2, 1] = "Shortcut"

Edge weights: [2, 1] = 20 (other existing edges have no weight)

Edge costs: [2, 1] = 20 (other existing edges have costs zero)

Adjacency list (out): 1 = [3], 2 = [1], 3 = [2]

Adjacency list (in): 1 = [2], 2 = [3], 3 = [1]

Graph is directed.

Parameters

G

A graph

Return Values

Graph
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Graph::setEdgeCosts
Assigns edge costs to edges.

Syntax
Graph::setEdgeCosts(G, Edge, EdgeCosts, <OnlySpecifiedEdges>)

Description

Graph::setEdgeCosts(G, Edges, EdgeCosts) returns a graph where Edges have
the edge costs EdgeCosts.

Note: If OnlySpecifiedEdges is stated and an undirected graph is to be changed,
only the edges specified are used and not the inverted ones. For example if a call
Graph::setEdgeCosts(G, [[u,v]], [1]) is invoked, only the edge [u, v] gets 1. The
edge [v, u] will not be changed.

Note: The substitute None can be used when a specified edge should not get the assigned
costs.

Examples

Example 1

First lets define a graph without edge costs:

G1 := Graph::createCircleGraph(3):

Graph::getEdgeCosts(G1)

FAIL was returned, because no edge costs werde defined.
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Graph::getEdges(G1);

G1 := Graph::setEdgeCosts(G1, [[1, 2], [3, 1]], [5, 1/2]):

Graph::getEdgeCosts(G1)

The first output shows all the edges and the second one the assigned edge costs.

G1 := Graph::setEdgeCosts(G1, [[2, 3]], [infinity]):

Graph::getEdgeCosts(G1)

It is easy to see that only the edge cost of [2,3] was changed.

Example 2

First lets define a graph without edge costs:

G1 := Graph::createCompleteGraph(3):

Graph::getEdgeCosts(G1)

FAIL was returned, because no edge costs werde defined.

Graph::getEdges(G1);

G2 := Graph::setEdgeCosts(G1, [[1, 2], [3, 1]], [5, 1/2]):

Graph::getEdgeCosts(G2)
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The first output shows all the edges (the graph is undirected !) and the second one the
assigned edge costs. Not only the specified edges were set, but also the reverted edges.

Graph::getEdges(G1);

G2 := Graph::setEdgeCosts(G1, [[1, 2], [3, 1]], [5, 1/2], 

                          OnlySpecifiedEdges):

Graph::getEdgeCosts(G2)

It is easy to see that only the specified edge costs were changed and not the reverted
edges, too.

Example 3

There exist also the possibility to set the costs via a table instead of a list.

tbl := table([1, 2] = 15, [1, 3] = 20):

G2 := Graph::createCompleteGraph(3):

G2 := Graph::setEdgeCosts(G2, [[1, 2], [3, 1]], tbl):

Graph::getEdgeCosts(G2)
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And again, but this time only the specified edges:

tbl := table([1, 2] = 15, [1, 3] = 20):

G2 := Graph::createCompleteGraph(3):

G2 := Graph::setEdgeCosts(G2, [[1, 2], [3, 1]], tbl, 

                          OnlySpecifiedEdges):

Graph::getEdgeCosts(G2)

Parameters

G

A graph

Edge

A list of one or more edges

EdgeCosts

A list of one or more numbers, or a table consisting of the edges with their costs.

Options

OnlySpecifiedEdges

Only the edges specified in Edge will be set.
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Return Values

New graph with the corrected edge costs.
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Graph::setEdgeDescriptions
Assigns edge Descriptions to edges.

Syntax
Graph::setEdgeDescriptions(G, Edge, EdgeDescriptions, <OnlySpecifiedEdges>)

Description

Graph::setEdgeDescriptions(G, Edges, EdgeDescriptions) returns a graph
where Edges have the edge descriptions EdgeDescriptions.

Note: If OnlySpecifiedEdges is stated and an undirected graph is to be changed,
only the edges specified are used and not the inverted ones. For example if a call
Graph::setEdgeDescriptions(G, [[u,v]], [1]) is invoked, only the edge [u, v]
gets 1. The edge [v, u] will not be changed.

Note: The substitute None can be used when a specified edge should not get the assigned
description.

Examples

Example 1

First lets define a graph without edge descriptions:

G1 := Graph::createCircleGraph(3):

Graph::getEdgeDescriptions(G1)

FAIL was returned, because no edge descriptions werde defined.
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Graph::getEdges(G1);

G1 := Graph::setEdgeDescriptions(G1, [[1, 2],[3, 1]], 

                                 ["Route 66", "Speedway"]):

Graph::getEdgeDescriptions(G1)

The first output shows all the edges and the second one the assigned edge descriptions.

G1 := Graph::setEdgeDescriptions(G1, [[2, 3]], ["Shortcut"]):

Graph::getEdgeDescriptions(G1)

It is easy to see that only the edge description of [2,3] was changed.

Example 2

First lets define a graph without edge Descriptions:

G1 := Graph::createCompleteGraph(3):

Graph::getEdgeDescriptions(G1)

FAIL was returned, because no edge descriptions werde defined.

Graph::getEdges(G1);

G2 := Graph::setEdgeDescriptions(G1, [[1, 2], [3, 1]], 

                                 ["Route 66", "Speedway"]):

Graph::getEdgeDescriptions(G2)

11-181



11 Graph – Graph Theory

The first output shows all the edges (the graph is undirected !) and the second one the
assigned edge Descriptions. Not only the specified edges were set, but also the reverted
edges.

Graph::getEdges(G1);

G2 := Graph::setEdgeDescriptions(G1, [[1, 2], [3, 1]], 

                                 ["Route 66", "Speedway"], 

                                 OnlySpecifiedEdges):

Graph::getEdgeDescriptions(G2)

It is easy to see that only the specified edge Descriptions were changed and not the
reverted edges, too.

Example 3

There exist also the possibility to set the Descriptions via a table instead of a list.

tbl := table([1, 2] = "Highway", [1, 3] = "Road to nowhere"):

G2 := Graph::createCompleteGraph(3):

Graph::getEdgeDescriptions(G2):

G2 := Graph::setEdgeDescriptions(G2, [[1, 2], [3, 1]], tbl):

Graph::getEdgeDescriptions(G2)
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And again, but this time only the specified edges:

tbl := table([1, 2] = "Highway", [1, 3] = "Road to nowhere"):

G2 := Graph::createCompleteGraph(3):

Graph::getEdgeDescriptions(G2):

G2 := Graph::setEdgeDescriptions(G2, [[1, 2], [3, 1]], tbl, 

                                 OnlySpecifiedEdges):

Graph::getEdgeDescriptions(G2)

Parameters

G

A graph

Edge

A list of one or more edges

EdgeDescriptions

A list of one or more numbers, or a table consisting of the edges with their descriptions.

Options

OnlySpecifiedEdges

Only the edges specified in Edge will be set.
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Return Values

New graph with the corrected edge Descriptions.
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Graph::setEdgeWeights
Assigns edge weights to edges.

Syntax
Graph::setEdgeWeights(G, Edge, EdgeWeights, <OnlySpecifiedEdges>)

Description

Graph::setEdgeWeights(G, Edges, EdgeWeights) returns a graph where Edges
have the edge weights EdgeWeights.

Note: If OnlySpecifiedEdges is stated and an undirected graph is to be changed,
only the edges specified are used and not the inverted ones. For example if a call
Graph::setEdgeWeights(G, [[u,v]], [1]) is invoked, only the edge [u, v] gets 1.
The edge [v, u] will not be changed.

Note: The substitute None can be used when a specified edge should not get the assigned
weights.

Examples

Example 1

How to set edge weights with a list:

G1 := Graph::createCircleGraph(3):

Graph::getEdgeWeights(G1)

FAIL was returned, because no edge weights were defined.
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Graph::getEdges(G1);

G1 := Graph::setEdgeWeights(G1, [[1, 2], [3, 1]], [5, 1/2]):

Graph::getEdgeWeights(G1)

The first output shows all the edges and the second one the assigned edge weights.

G1 := Graph::setEdgeWeights(G1, [[2, 3]], [infinity]):

Graph::getEdgeWeights(G1)

It is easy to see that only the edge weight of [2, 3] was changed.

Example 2

How to set edge weights with a table:

G1 := Graph::createCompleteGraph(3):

Graph::getEdgeWeights(G1)

FAIL was returned, because no edge weights were defined.

Graph::getEdges(G1);

G2 := Graph::setEdgeWeights(G1, [[1, 2], [3, 1]], [5, 1/2]):

Graph::getEdgeWeights(G2)
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The first output shows all the edges (the graph is undirected !) and the second one the
assigned edge weights. Not only the specified edges were set, but also the reverted edges.

Graph::getEdges(G1);

G2 := Graph::setEdgeWeights(G1, [[1, 2], [3, 1]], [5, 1/2], 

                            OnlySpecifiedEdges):

Graph::getEdgeWeights(G2)

It is easy to see that only the specified edge Weights were changed and not the reverted
edges, too.

Example 3

There exist also the possibility to set the weights via a table instead of a list.

tbl := table([1, 2] = 15, [1, 3] = 20):

G2 := Graph::createCompleteGraph(3):

G2 := Graph::setEdgeWeights(G2, [[1, 2], [3, 1]], tbl):

Graph::getEdgeWeights(G2)
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And again, but this time only the specified edges:

tbl := table([1, 2] = 15, [1, 3] = 20):

G2 := Graph::createCompleteGraph(3):

G2 := Graph::setEdgeWeights(G2, [[1, 2], [3, 1]], tbl,  

                            OnlySpecifiedEdges):

Graph::getEdgeWeights(G2)

Parameters

G

A graph

Edge

A list of one or more edges

EdgeWeights

A list of one or more numbers, or a table consisting of the edges with their weights.

Options

OnlySpecifiedEdges

Only the edges specified in Edge will be set.
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Return Values

New graph with the corrected edge weights.
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Graph::setVertexWeights
Assigns vertex weights to vertices.

Syntax
Graph::setVertexWeights(G, Vertex, VertexWeights)

Description

Graph::setVertexWeights(G, Vertex, VertexWeights) returns a graph where
the vertices in Vertex have the vertex weights VertexWeights.

Note: The substitute None can be used when a specified edge should not get the assigned
weights.

Examples

Example 1

How to set vertex weights with a list:

G1 := Graph::createCircleGraph(3):

Graph::getVertexWeights(G1)

FAIL was returned, because no vertex weights were defined.

Graph::getVertices(G1);

G1 := Graph::setVertexWeights(G1, [1, 3], [5, 1/2]):

Graph::getVertexWeights(G1)
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The first output shows all vertices and the second the assigned vertex weights.

Example 2

How to set vertex weights with a table:

G1 := Graph::createCompleteGraph(3):

Graph::getVertexWeights(G1)

FAIL was returned, because no vertex weights were defined.

G2 := Graph::createCompleteGraph(3):

tbl := table(1 = 15, 3 = 20):

G2 := Graph::setVertexWeights(G2, [1, 3], tbl):

Graph::getVertexWeights(G2)

Parameters

G

A graph

Vertex

A list of one or more vertices

VertexWeights

A list of one or more numbers, or a table consisting of the vertices with their weights.
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Return Values

New graph with the corrected vertex weights.
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Graph::shortestPathAllPairs

Shortest paths from and to all vertices

Syntax

Graph::shortestPathAllPairs(G, <SearchFor = Weights | Costs>)

Description

Graph::shortestPathAllPairs(G) returns a table with all paths between all
vertices.

Graph::shortestPathAllPairs(G, SearchFor=Costs) returns a table with all
paths according to the edge costs.

Graph::shortestPathAllPairs(G, SearchFor=Weights) returns a table with all
paths according to the edge weights. (Default)

Examples

Example 1

A small graph to be used for the algorithms:

G := Graph([a, b, c, d], [[a, b], [a, c], [b, c], [c, d]], 

           EdgeWeights = [2, 1, 3, 2],

           EdgeCosts = [1, 3,1, 2],

           Directed):

Now the shortest path between all vertices is found according to the edge weights,
because no specification was given and defaults are used.

Graph::shortestPathAllPairs(G)
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The interpretation of the table is as follows:

The first table holds each path: (FromVertex, ToVertex) = weight/cost. The second table
is a bit more tricky. The left hand side again is the path itself. On the right hand side
though, the vertex that was found before the final vertex was reached is stated. If for
example the path from a to d is to be found with all vertices that are used within this
path it is done in the following way: First take the path itself (a, d). The predecessor
is c. Now have a look for the path (a, c). It's predecessor is a. Since the predecessor
equals the first vertex in the path to be found, the search is over and the path a -> c
-> d is found. To search the graph for costs the option SearchFor=Costs has to be
added.

Graph::shortestPathAllPairs(G, SearchFor = Costs)
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Example 2

Now the weights of the graph are changed, so that negative edge weights are assigned.
You will see that this does not influence the correctness of the results the algorithm
returns (like for example Dijkstra).

G := Graph([a, b, c, d], [[a, b], [a, c], [b, c], [c, d]], 

           EdgeWeights = [2, 1, 3, 2],

           EdgeCosts = [1, 3,1, 2],

           Directed):

G := Graph::setEdgeWeights(G, Graph::getEdges(G), [2, 1, -3, 2]):

Graph::shortestPathAllPairs(G)
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Parameters

G

Graph

Options

SearchFor

Defines whether the weights of the graph are considered or the costs. Default is
Weights.
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Return Values

List consisting of two tables. The first table holds the sum of the path weights or costs
and the second the predecessors for every path (to find the complete path).

Algorithms

The algorithm is also known as Floyd-Warshall or Roy-Warshall algorithm. The idea
behind it is to solve the problem by continuous matrix multiplication. he only difference
is that Floyd uses the assignment ai, j := min(ai, j, ai, k + ak, j).

References

[1] Ahuja, Magnanti, Orlin: Network Flows, Prentice-Hall, 1993 Section 5.6
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Graph::shortestPathSingleSource
Shortest paths from one single vertex

Syntax
Graph::shortestPathSingleSource(G, StartVertex, <EndVertex = v>, <SearchWith = Dijkstra | Bellman>, <SearchFor = Weights | Costs>, <ReturnAsGraph>)

Description

Graph::shortestPathSingleSource(G, StartVertex=vertex) gives the length of
a shortest path from StartVertex to every other vertex in G.

Graph::shortestPathSingleSource(G, StartVertex=sv) returns a table with all
paths from sv to any other.

Graph::shortestPathSingleSource(G, StartVertex=sv, ReturnAsGraph)

returns a table with all paths from sv to any other because EndVertex has to be set in
order to get a Graph as return value.

With Graph::shortestPathSingleSource(G, StartVertex=sv, EndVertex=ev,
SearchWith=Dijkstra, SearchFor=Costs) returns a table from vertex sv to vertex
ev according to Dijkstra which used the edge-costs for its algorithm.

Note: Using Dijkstra for shortest path can be erroneus if the graph contains negative
edges.

Note: If ReturnAsGraph is stated and EndVertex omitted, a table is returned
nevertheless.

Examples

Example 1

A small graph to be used for the algorithms:
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G := Graph([a, b, c, d], [[a, b], [a, c], [b, c], [c, d]],

           EdgeWeights = [2, 1, 3, 2], 

           EdgeCosts = [1, 3, 1, 2], Directed):

Now the shortest path is found according to Bellman using edge weights, because no
specification was given and defaults are used:

Graph::shortestPathSingleSource(G, StartVertex = [a])

To search the graph with Bellman for costs the option SearchFor=Costs has to be
added:

Graph::shortestPathSingleSource(G, StartVertex = [a], 

                                SearchFor=Costs)

Example 2

Now the weights of the graph are changed, so that negative edge weights are assigned.
After this the procedure is called again with Bellman and afterwards with Dijkstra to
compare the results:

G := Graph([a, b, c, d], [[a, b], [a, c], [b, c], [c, d]],

           EdgeWeights = [2, 1, 3, 2], 

           EdgeCosts = [1, 3, 1, 2], Directed):

G := Graph::setEdgeWeights(G, Graph::getEdges(G),

                           [2, 1, -3, 2]):

Graph::shortestPathSingleSource(G, StartVertex = [a], 
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                                SearchWith = Bellman),

Graph::shortestPathSingleSource(G, StartVertex = [a], 

                                SearchWith = Dijkstra)

This is a typical example where Dijkstra can make a mistake because he does not correct
earlier solutions (a so called greedy strategy). Although vertex c gets the correct value
-1, at the time d got the value 3, vertex c still held the value 1. This happens because
Dijkstra first searches the best solutions (a->c = 1) then traverses further (c->d = 1 + 2 =
3). In spite of changing the value of vertex c the value for d is never to be changed again
(because no other path ever reaches it again):

It might be interesting to see a shortest path inside the graph. Here are two steps that
accomplish this task:

Fist step (creation of a shortest path graph [in this case with Dijkstra]):

dijk := Graph::shortestPathSingleSource(G, StartVertex = [a], 

                                        EndVertex = [d], 

                                        SearchWith = Dijkstra, 

                                        ReturnAsGraph):

Second step (combination of the graphs using plotGridGraph):

plot(Graph::plotGridGraph(G, VerticesPerLine = 4, 

       VertexOrder = [None, b, None, d, a, None, c, None],

       VertexColor = RGB::Red, 

       SpecialEdges = Graph::getEdges(dijk),

       SpecialEdgeColor = RGB::Blue))
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The same with Bellman to show the differences:

Fist step (creation of a shortest path graph [in this case with Dijkstra]):

bellm := Graph::shortestPathSingleSource(G, StartVertex = [a], 

                                         EndVertex = [d], 

                                         SearchWith = Bellman, 

                                         ReturnAsGraph):

Second step (combination of the graphs using plotGridGraph):

plot(Graph::plotGridGraph(G, VerticesPerLine = 4, 

       VertexOrder = [None, b, None, d, a, None, c, None], 

       VertexColor = RGB::Red, 

       SpecialEdges = Graph::getEdges(bellm), 

       SpecialEdgeColor = RGB::Blue))
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Parameters
G

Graph

vertex

A vertex in G

Options
EndVertex

Specifies a single vertex to which the shortest path is to be found.

SearchWith

Defines the algorithm to use. Dijkstra can be erroneus if the graph consists of negative
edges. Default is Bellman
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SearchFor

Defines whether the weights of the graph are considered or the costs. Default is
Weights.

ReturnAsGraph

If stated and EndVertex is set, the path is returned as a Graph. If stated and EndVertex
is not set, this option is omitted.

Return Values

Either a list consisting of two tables or a Graph. The first table holds the weights or cost
for each vertex and the second the predecessors for every vertex (to find the path)

Algorithms

Both, Bellman and Dijkstra expect a Graph without negative circles. Only Dijkstra may
return erroneous results when negative edges (either weights or costs) are specified.

The Bellman algorithm originated from: Ahuja, Magnanti, Orlin: Graph Flows, Prentice-
Hall, 1993 Section 5.4
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Graph::stronglyConnectedComponents

Finds the strongly connected components

Syntax

Graph::stronglyConnectedComponents(G)

Description

Graph::stronglyConnectedComponents(G) finds the strongly connected components
of G

Graph::stronglyConnectedComponents returns all the strongly connected
components of a graph. Single vertices form a component of themselves.

Examples

Example 1

Two obvious components pointing to a single vertex:

G1 := Graph([a, b, c, d, e, f, g], 

            [[a, b], [b, g], [g, a], [b, c],

             [d, c], [e, d], [d, f], [f, e]], Directed):

plot(Graph::plotGridGraph(G1,

       VertexOrder = [a,    None, None, None, e,

                      None, b,    c,    d,    None,

                      g,    None, None, None, f],

       VerticesPerLine=5))
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The graphical output reveals the two "big" components [a, b, g] and [d, e, f]. The
single vertex [c] forms a component of itself:

G2 := Graph::stronglyConnectedComponents(G1)

A list containing three Graphs is returned. Now we find out which vertices belong to each
component:

Graph::getVertices(op(G2, 1))

Graph::getVertices(op(G2, 2))
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Graph::getVertices(op(G2, 3))

Example 2

A complete graph is returned as a single component:

G3 := Graph::createCompleteGraph(5):

plot(Graph::plotCircleGraph(G3))

G4 := Graph::stronglyConnectedComponents(G3):

plot(Graph::plotCircleGraph(op(G4)))
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It was necessary to use op(G4), because G4 is a list containing a graph!

Parameters

G

A graph

Return Values

List of graphs containing the strongly connected components.
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Graph::topSort

Topological sorting of the vertices

Syntax

Graph::topSort(G)

Description

Graph::topSort(G) computes a topological sorting of the graph G, i.e., a numbering
T of the vertices, such that Ti < Tj whenever there is an edge [i, j] in the graph. Single
vertices are positioned at the beginning.

Graph::topSort returns a list containing two tables. The first table holds the ordering
of the vertices. The second table shows the predecessors of each vertex. If several vertex
ui precede a vertex v, the first vertex in the ordering of ui is the predecessor of v. If no
predecessor exist, the value will be infinity.

Note: If G contains any cycle then a topological sorting does not exist and the call of
Graph::topSort results in an error.

Examples

Example 1

A "butterfly" graph that is decomposed in three strongly connected components:

G1 := Graph([a, b, c, d, e, f],

            [[a, b], [a, c], [a, d], [c, e], [d, e]],

            Directed):

Graph::topSort(G1)
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The first table shows the ordering of the vertices. The left side holds the order for each
vertex, whereas the right side holds the name of the vertex. The second table shows
the predecessors of each vertex. If no predecessor exist, the right side holds infinity.
Otherwise the right side holds the vertex that is the direct predecessor of the vertex on
the left side. To see how the graph looks a graphical plotting helps:

plot(Graph::plotGridGraph(G1, 

         VertexOrder = [None, b,    f,

                        a,    c,    None,

                        None, None, e,

                        None, d,    None], 

         VerticesPerLine=3))
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Parameters

G

A graph

Return Values

List containing two tables.
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groebner::dimension
Dimension of the affine variety generated by polynomials

Syntax
groebner::dimension(polys, <order>)

Description

groebner::dimension(polys) computes the dimension of the affine variety generated
by the polynomials in the set or list polys.

The rules laid down in the introduction to the groebner package concerning the
polynomial types and the ordering apply.

The polynomials in the list polys must all be of the same type. In particular, do not mix
polynomials created via poly and polynomial expressions!

Examples

Example 1

An example from the book of Cox, Little and O'Shea (see below):

groebner::dimension([y^2*z^3, x^5*z^4, x^2*y*z^2])

Parameters

polys

A list or set of polynomials or polynomial expressions of the same type. The coefficients in
these polynomials and polynomial expressions can be arbitrary arithmetical expressions.

12-2



 groebner::dimension

order

One of the identifiers DegInvLexOrder, DegreeOrder, and LexOrder, or a user-
defined term ordering of type Dom::MonomOrdering. The default ordering is
DegInvLexOrder.

Return Values

Nonnegative integer

Algorithms

First, the Gröbner basis of the given polynomials with respect to the given monomial
ordering is computed using groebner::gbasis. This Gröbner basis is then used to
compute the dimension of the affine variety generated by the polynomials.

References

The implemented algorithm is described in Cox, Little, O'Shea: “Ideals, Varieties and
Algorithms”, Springer, 1992, Chapter 9.

See Also

MuPAD Functions
groebner::gbasis | poly
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groebner::eliminate

Eliminate variables

Syntax

groebner::eliminate(sys, vars)

Description

groebner::eliminate(sys, vars) returns a list of polynomial expressions obtained
by eliminating the elements of vars from sys. In other words, the return value does not
contain the variables in vars, every zero of the original system sys must be a zero of
the return value, and every tuple of numbers that makes the return value zero can be
extended to a solution of sys.

Examples

Example 1

Suppose that x2 + y = 0 and x + y = 0, what does this imply for y?

groebner::eliminate({x^2 +y, y+x}, {x})

We infer that for every pair (x, y) solving the system, y must satisfy y2 + y = 0, that is, y =
0 or y = - 1. Indeed:

solve({x^2 +y, y+x}, {x, y})
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Parameters

sys

A set or list of polynomial expressions. The coefficients in these polynomial expressions
can be arbitrary arithmetical expressions.

vars

A set or list of identifiers

Return Values

List of polynomial expressions

Algorithms

groebner::eliminate proceeds by computing a lexical-order Gröbner basis. Hence the
computation complexity grows fast when increasing the number of variables.

See Also

MuPAD Functions
groebner::gbasis
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groebner::gbasis
Computation of a reduced Gröbner basis

Syntax
groebner::gbasis(polys, <order>, options)

Description

groebner::gbasis(polys) computes a reduced Gröbner basis of the ideal generated
by the polynomials in the list polys.

The rules laid down in the introduction to the groebner package concerning the
polynomial types and the ordering apply.

The polynomials in the list polys must all be of the same type. In particular, do not mix
polynomials created via poly and polynomial expressions!

The ordering strategy indicated by Reorder is used automatically when polynomial
expressions are used.

Examples

Example 1

We demonstrate the effect of various input formats. First, we use polynomial expressions
to define the polynomial ideal. The Gröbner basis is returned as a list of polynomial
expressions:

groebner::gbasis([x^2 - y^2, x^2 + y], LexOrder)

Next, the same polynomials are defined via poly. Note that poly fixes the ordering of
the variables.
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groebner::gbasis([poly(x^2 - y^2, [x, y]),

                  poly(x^2 + y, [x, y])], LexOrder)

Changing the ordering of the variables in poly changes the lexicographical ordering.
This results in a different basis:

groebner::gbasis([poly(x^2 - y^2, [y, x]),

                  poly(x^2 + y, [y, x])], LexOrder)

With Reorder the ordering of the variables may be changed internally:

groebner::gbasis([poly(x^2 - y^2, [x, y]),

                  poly(x^2 + y, [x, y])], LexOrder, Reorder)

Example 2

Polynomials over arbitrary fields are allowed. In particular, you can use the field of
rational functions in some given variable(s):

F := Dom::Fraction(Dom::DistributedPolynomial([y])):

F::Name := "Q(y)": 

groebner::gbasis(

[poly(y*z^2 + 1, [x, z], F),

poly((y^2 + 1)*x^2 - y - z^3, [x, z], F)])

delete F:
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Parameters

polys

A list or set of polynomials or polynomial expressions of the same type. The coefficients in
these polynomials and polynomial expressions can be arbitrary arithmetical expressions.
If polys are polynomials over an arbitrary domain, then their coefficients must be
domain elements and the domain must be a field.

order

One of the identifiers DegInvLexOrder, DegreeOrder, and LexOrder, or a user-
defined term ordering of type Dom::MonomOrdering. The default ordering is
DegInvLexOrder.

Options

Factor

With this option, groebner::gbasis returns a set of lists, such that each list is the
Gröbner basis of an ideal. The union of these ideals is a superset of the ideal given as
input, and a subset of the radical of that ideal. In other words, it has the same variety
(only the multiplicity of points can change).

IgnoreSpecialCases

With this option, groebner::gbasis handles all coefficients in all intermediate results
as nonzero unless these coefficients are equal to zero for all parameter values. In other
words, if the coefficients are rational functions of the free parameters, then results are
correct on all of the parameter space except on an algebraic variety of lower dimension.

Reorder

With this option groebner::gbasis internally may change the lexicographical ordering
of variables to decrease running time.

With this option the variables are sorted internally such that they have a “heuristic
optimal” ordering. Consequently, the ordering of the variables in the output polynomials
may differ from their ordering in the input polynomials. For details on the ordering
strategy, see W. Boege, R. Gebauer und H. Kredel: “Some Examples for Solving Systems
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of Algebraic Equations by Calculating Groebner Bases” im J. Symbolic Comp. (1986)
Vol. 1, 83-98.

Re-ordering is always applied when polynomial expressions are used for input.

Monic

Option, specified as Monic = N

This option sets the normalizing routine to N. For every polynomial f in the polynomial
ring, N(f, o) must return some associate of f, where o is the chosen order.

The method N should be chosen such that it produces simple output.

By default, polylib::primpart is used for polynomials with integer coefficients; other
polynomials are divided by their leading coefficient.

Order

Option, specified as Order = order

This option is equivalent to passing order as an argument.

Return Values

List of polynomials. The output polynomials have the same type as the polynomials of the
input list.

Algorithms

In most cases, groebner::gbasis computes the basis via the Buchberger algorithm
with the “sugar” selection strategy being used.

References

For general information, see T. Becker and V. Weispfenning: “Gröbner Bases”, Springer
(1993). For details on the sugar selection strategy, see A. Giovini, T. Mora, G. Niesi,
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L. Robbiano, C. Traverso: “One sugar cube, please — or Selection strategies in the
Buchberger algorithm”, Proc. ISSAC '91, Bonn, 49-54 (1991).

See Also

MuPAD Functions
poly
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groebner::normalf
Complete reduction modulo a polynomial ideal

Syntax
groebner::normalf(p, polys, <order>)

Description

groebner::normalf(p, polys) computes a normal form of the polynomial p by
complete reduction modulo all polynomials in the list polys.

The rules laid down in the introduction to the groebner package concerning the
polynomial types and the ordering apply.

The polynomials in the list polys must all be of the same type as p. In particular, do not
mix polynomials created via poly and polynomial expressions.

Examples

Example 1

We consider the ideal generated by the following polynomials:

p1 := poly(x^2 - x + 2*y^2, [x,y]):

p2 := poly(x + 2*y - 1, [x,y]):

We compute the normal form of the following polynomial p modulo the ideal generated by
p1, p2 with respect to lexicographical ordering:

p :=  poly(x^2*y - 2*x*y + 1, [x,y]):

groebner::normalf(p, [p1, p2], LexOrder);

12-11



12 groebner – Gröbner bases

Note that p1, p2 do not form a Gröbner basis. The corresponding Gröbner basis leads to a
different normal form of p:

groebner::normalf(p, groebner::gbasis([p1, p2]), LexOrder)

delete p1, p2, p:

Parameters

p

A polynomial or a polynomial expression. The coefficients in this polynomial and
polynomial expression can be arbitrary arithmetical expressions.

polys

A list of polynomials of the same type as p. In particular, if p is a polynomial expression,
polys must be a list of polynomial expressions.

order

One of the identifiers DegInvLexOrder, DegreeOrder, and LexOrder, or a user-
defined term ordering of type Dom::MonomOrdering. The default ordering is
DegInvLexOrder.

Return Values

Polynomial of the same type as the input polynomials. If polynomial expressions are used
as input, then a polynomial expression is returned.

Algorithms

A polynomial g is a reduced form of a polynomial p modulo a list of polynomials p1,
…, pn, if  and none of the leading terms of the pi divides the leading term of p, or
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if — for some i — g is a reduced form of p - q pi, where q is the quotient of the leading
monomial of p and the leading monomial of pi. A reduced form always exists, but need
not be unique. It is unique, if the pi form a Gröbner basis.

In the implementation of groebner::normalf, reduction modulo some pi of largest
possible total degree is preferred, if reduction modulo several pi is possible.

See Also

MuPAD Functions
groebner::gbasis | poly
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groebner::spoly
The S-polynomial of two polynomials

Syntax
groebner::spoly(p1, p2, <order>)

Description

groebner::spoly(p1, p2) computes the S-polynomial of the polynomials p1 and p2.

The rules laid down in the introduction to groebner concerning the polynomial types and
the ordering apply.

The polynomials must be of the same type. In particular, do not mix polynomials created
via poly and polynomial expressions!

Examples

Example 1

The polynomials

p1 := poly(x^2 - x + 2*y^2, [x, y]):

p2 := poly(x + 2*y - 1, [x, y]):

generate the following S-polynomial with respect to lexicographical ordering:

groebner::spoly(p1, p2, LexOrder)

delete p1, p2:
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Parameters

p1, p2

A list or set of polynomials or polynomial expressions of the same type. The coefficients in
these polynomials and polynomial expressions can be arbitrary arithmetical expressions.

order

One of the identifiers DegInvLexOrder, DegreeOrder, and LexOrder, or a user-
defined term ordering of type Dom::MonomOrdering. The default ordering is
DegInvLexOrder.

Return Values

Polynomial of the same type as the input polynomials. If polynomial expressions are used
as input, then a polynomial expression is returned.

Algorithms

The S-polynomial of two polynomials p1, p2 is defined to be

,

where lterm and lmonomial are used in the same sense as the MuPAD functions
of the same name. This formula is constructed such that the leading terms of the two
summands cancel.

See Also

MuPAD Functions
poly
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groebner::stronglyIndependentSets
Strongly independent set of variables

Syntax
groebner::stronglyIndependentSets(G)

Description

groebner::stronglyIndependentSets(G) computes a strongly independent set of
variables modulo the ideal generated by G.

A set of variables S is strongly independent modulo an ideal I if no leading term of an
element of the Gröbner basis of I consists entirely of elements of S. A set is maximally
strongly independent if no proper superset of it is strongly independent. Two maximally
strongly independent set may be of different size.

groebner::stronglyIndependentSets accepts Gröbner bases in the format returned
by groebner::gbasis.

Examples

Example 1

The following example has been given by Moeller and Mora in 1983.

G:=map([X0^8*X2, X0*X3, X1^8*X3, X1^7*X3^2, X1^6*X3^3,     

  X1^5*X3^4, X1^4*X3^5, X1^3*X3^6, X1^2*X3^7, X1*X3^8],

  poly, [X3, X2, X1, X0]):

groebner::stronglyIndependentSets(G)

delete G:
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Parameters

G

The Gröbner basis of an ideal: a list.

Return Values

List of the form [d, S, M], where d is an integer equal to the dimension of the ideal
generated by G, S is the greatest strongly independent set of variables, and M is a set
consisting of all maximal strongly independent sets of variables or a piecewise consisting
of such lists.

References

[1] Kredel H. and V. Weispfenning, “Computing dimension and independent sets for
polynomial ideals”, JSC volume 6 (1988), 231-247.

See Also

MuPAD Functions
groebner::gbasis
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import::csv
Read CSV data from an ASCII file

Syntax
import::csv(filename, <separator>, <NonNested>, <Trim>, <DecimalComma>)

import::csv(n, <separator>, <NonNested>, <Trim>, <DecimalComma>)

Description

import::csv is used to read CSV (“Comma Separated Values” or “Character Separated
Values”) data files produced by external programs, like Microsoft Excel®. CSV is an
ASCII based tabular data file format, formally defined in RfC 4180, that has fields
separated by the comma character.

Note: Some localized versions of Microsoft Excel use semicolons instead of commas! Set
the parameter separator to change the default separator.

import::csv(filename) reads the data in the file filename. File data separated by
a comma are regarded as different data elements. The result is a list of lists, each sublist
representing one line of the file.

import::csv(filename, separator) reads the data in the file filename. File data
separated by the character separator are regarded as different data elements. The
result is a list of lists, each sublist representing one line of the file.

import::csv(filename, separator, NonNested) reads the data in the file
filename as a single data record. File data separated by the character separator are
regarded as different data elements. The result is a plain non-nested list containing the
data of all lines of the file.

In contrast to finput, the data must not be ended by a colon or semicolon. Data
separated by separator are interpreted as single data items. The default separator is a
comma.
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Empty lines are ignored.

All data elements in the file that cannot be converted to valid MuPAD numbers are
imported as MuPAD strings.

import::csv tries to convert a number contained in the CSV file to a valid MuPAD
number. For example: 1,234.56 or 1 234.56 are converted to the MuPAD number 1234.56.
Many countries use a comma to separate the integral and fractional part instead of the
dot used in England and the US. For example: 1234,56 or 1.234,56 are converted to
1234.56. import::csv expects this number format if the option DecimalComma is given.

Note: A comma as CSV separator doesn't make sense if the comma is used to separate
thousands in a number or the decimal comma is used. In most cases, the CSV file uses a
semicolon to separate data. So, a semicolon should be used as separator.

Note: All numbers contained in the CSV file must use the same radix separator, mixed
formats cannot be converted.

With NonNested, the result will be a list containing all data. Otherwise, the result is a
list of list, each “inner” list representing a line of the CSV file.

With Trim, leading and trailing blanks in strings are removed.

If the file is specified by a string, the corresponding file is opened and closed,
automatically. If the user has opened a text file in Read mode and passes the file
descriptor to import::readdata, the file remains open and needs to be closed by the user.

Files compressed with gzip or in a compatible format, whose names end in “.gz”, are
automatically decompressed while being read by import::csv.

import::csv(filename) searches for the file in various directories:

• First, the name is interpreted as a relative file name: filename is concatenated to
each directory given by the environment variable READPATH.

• Then the file name is interpreted as an absolute path name.
• Then the file name is interpreted relative to the “working directory”.
• Last, the file name is concatenated to the directory path.

If a file can be opened with one of this names, then the file is read.
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Note that the meaning of “working directory” depends on the operating system. On
Microsoft Windows systems and on Apple Mac OS X systems, the “working directory”
is the folder where MuPAD is installed. On UNIX systems, it is the current working
directory in which MuPAD was started; when started from a menu or desktop item, this
is typically the user's home directory.

A path separator (“/”) is inserted as necessary when concatenating a given path and
filename.

If a file is specified by a file name, there is no need to open or close the file via fopen and
fclose, respectively. This is done automatically by import::readdata.

Instead of a file name, also a file descriptor of a file opened via fopen can be used. Note
that the file must have been opened in Read mode by fopen. If a file descriptor is used,
the corresponding file is not closed automatically but must be closed by the user via
fclose.

Examples

Example 1

We wish to read CSV data into a MuPAD session. Assume that the file “datafile.csv”
contains the following two columns of ASCII data:

a ,12.5

  a-b   ,1234.56

import::csv returns the following list representing the data in the file:

data := import::csv("datafile.csv")

data := import::csv("datafile.csv", Trim)

data := import::csv("datafile.csv", NonNested)
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Example 2

Let us assume that the file “datafile.csv” contains the following ASCII data:

a ;12.5

a-b;1,234.56 

a b; -12345.6789E-02

We specify the data separator ";" for reading the data:

import::csv("datafile.csv", ";")

Example 3

Let us assume that the file “datafile.csv” contains the following ASCII data:

abc;12,5

a-b;1.234,56 

a b; -12345.6789E-02

We specify the data separator ";" and the option DecimalComma for reading the data:

import::csv("datafile.csv", ";", DecimalComma)

Parameters

filename

The file name: a non-empty character string
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n

A file descriptor provided by fopen: a positive integer

separator

The separator between data elements: a character string of length 1 (a single character).
The default separator is a comma (the single character string ",").

Options

NonNested

Return all file data as a single data record in a non-nested list. The data of all lines are
ordered sequentially in this list.

Trim

Leading and trailing blanks in strings are removed.

DecimalComma

A decimal comma instead of a decimal point is used as the radix separator in the CSV
file.

Return Values

Nested list of lists. The sublists contain the data of the individual lines. With the option
NonNested, a plain list containing all data elements from every line in the file.

See Also

MuPAD Functions
FILEPATH | fopen | import::readdata | readbytes | READPATH
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import::readbitmap
Read bitmap data

Syntax
import::readbitmap(filename, <ReturnType = DOM_HFARRAY | DOM_ARRAY | DOM_LIST>)

Description

import::readbitmap is used for reading ASCII or binary data files storing bitmap
images of pictures. The following standard graphical formats can be read: BMP, DCX,
DDS, WAD, GIF, ICO, JPG, LIF, MDL, PCD, PCX, PIC, PIX, PNG, PNM, PSD, PSP,
PXR, RAW, SGI, TGA, TIF, WAL, XPM. The format of the pixel data is determined
automatically from the contents of the file. The return value [w, h, colordata]
provides the pixel height h, the pixel width w, and the color data of the bitmap image.

Either the complete return value or just the third element, colordata, can be passed
to the function plot::Raster to generate a plot object that can be used in a MuPAD
graphics. E.g., the command

plot(plot::Raster(import::readbitmap("mypicture.jpeg")))

creates a MuPAD graphics of the bitmap stored in the JPG file “mypicture.jpeg”.

Note: Most of the standard graphical formats store the pixel data row by row in the usual
reading order starting with the upper left corner of the image. The pixel data in the
returned array colordata (if requesting ReturnType = DOM_ARRAY), however, are to
be interpreted as follows:

colordata[1, 1] is the RGB color of the lower left corner.

colordata[h, 1] is the RGB color of the upper left corner.

colordata[1, w] is the RGB color of the lower right corner.

colordata[h, w] is the RGB color of the upper right corner.
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The interpretation of the other return types is analogous, see below for details on the
return types.

This is consistent with the interpretation of a color array by plot::Raster.

import::readbitmap(filename) searches for the file in various directories:

• First, the name is interpreted as a relative file name: filename is concatenated to
each directory given by the environment variable READPATH.

• Then the file name is interpreted as an absolute path name.
• Then the file name is interpreted relative to the “working directory.”
• Last, the file name is concatenated to the directory path.

If a file can be opened with one of this names, then the file is read.

Note that the meaning of “working directory” depends on the operating system. On
Microsoft Windows systems and on Apple Mac OS X systems, the “working directory”
is the folder where MuPAD is installed. On UNIX systems, it is the current working
directory in which MuPAD was started; when started from a menu or desktop item, this
is typically the user's home directory.

A path separator (“/”) is inserted as necessary when concatenating a given path and
filename.

import::readbitmap does not accept file handles returned by fopen. Nor can it handle
files which have been compressed by gzip, but since most bitmap formats employ high
quality compression in any case, there is little reason to try compressing them again in
any case.

Examples

Example 1

We import a PGM (portable graymap) picture:

[w, h, Norton] := import::readbitmap("Norton.pgm"):

The bitmap image is to be embedded in a MuPAD graphics. We use the width w and
the height h to place the bitmap in a rectangle whose sides have the same ratio as the
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original bitmap. With Scaling = Constrained we make sure that this aspect ratio is
also used in the final graphics:

xmin := 2: xmax := xmin + w/100:

ymin := 0.5: ymax := ymin + h/100:

plot(plot::Function2d(x*sin(PI/x), x = -1..4.5, AdaptiveMesh = 2),

     plot::Raster(Norton, x = xmin ..xmax, y = ymin .. ymax),

     Scaling = Constrained, Footer = "Work And Play"):

Parameters
filename

The file name: a non-empty character string

Options
ReturnType

Option, specified as ReturnType = DOM_HFARRAY | DOM_ARRAY | DOM_LIST
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Set the type of the actual color data returned as colordata.

If set to DOM_LIST, colordata is a nested list, the outermost list containing h lists, each
of which represents one row of image data and contains w lists of three floating-point
numbers, each of which represents an “RGB Colors” color.

If set to DOM_ARRAY, colordata is an array containing lists with color information, as in
array(2, 1..h, 1..w, [color1, color2, …] ). The interpretation is analogous to
the nested lists described above.

If set to DOM_HFARRAY, which is the default setting, colordata is a DOM_HFARRAY of
dimensions hfarray(3, 1..h, 1..w, 1..3, [actual data]). The interpretation
of these floating-point values is as described above for the DOM_LIST case.

Return Values

list[w, h, colordata]. The integer w is the pixel width of the bitmap. The integer h is
the pixel height of the bitmap. colordata provides the RGB colors of the bitmap. Its type
depends on the setting of the option ReturnType.

See Also

MuPAD Functions
import::readdata | readbytes | READPATH

MuPAD Graphical Primitives
plot::Raster
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import::readdata

Read data from an ASCII file

Syntax

import::readdata(filename | n, <separator>, <NonNested>)

Description

import::readdata(filename) reads the data in the file filename. File data
separated by whitespace are regarded as different data elements. The result is a list of
lists, each sublist representing one line of the file.

import::readdata(filename, separator) reads the data in the file filename. File
data separated by the character separator are regarded as different data elements. The
result is a list of lists, each sublist representing one line of the file.

import::readdata(filename, separator, NonNested) reads the data in the file
filename as a single data record. File data separated by the character separator are
regarded as different data elements. The result is a plain non-nested list containing the
data of all lines of the file.

import::readdata(filename) searches for the file in various directories:

• First, the name is interpreted as a relative file name: filename is concatenated to
each directory given by the environment variable READPATH.

• Then the file name is interpreted as an absolute path name.
• Then the file name is interpreted relative to the “working directory.”
• Last, the file name is concatenated to the library directory.

If a file can be opened with one of this names, then the file is read.

Note that the meaning of “working directory” depends on the operating system. On
Microsoft Windows systems and on Apple Mac OS X systems, the “working directory”
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is the folder where MuPAD is installed. On UNIX systems, it is the current working
directory in which MuPAD was started; when started from a menu or desktop item, this
is typically the user's home directory.

A path separator (“/”) is inserted as necessary when concatenating a given path and
filename.

If a file is specified by a file name, there is no need to open or close the file via fopen and
fclose, respectively. This is done automatically by import::readdata.

Instead of a file name, also a file descriptor of a file opened via fopen can be used. Note
that the file must have been opened in Read mode by fopen. If a file descriptor is used,
the corresponding file is not closed automatically but must be closed by the user via
fclose.

Files compressed by gzip or a compatible program (having a name ending in “.gz”) are
decompressed automatically upon reading.

All data elements in the file are interpreted as MuPAD objects. If a data element cannot
be interpreted as a MuPAD object, it is imported as a MuPAD string. Otherwise, the
corresponding MuPAD object is inserted into the list returned by import::readdata.

Note: Note that the MuPAD objects corresponding to the data elements are evaluated
after reading. E.g., the data element “sin(0)” in the file is evaluated and imported as
the MuPAD integer 0. Beware: the characters “;” and “:” have a specific meaning if
not specified as separators in import::readdata: they separate MuPAD commands.
Hence, if a read data element contains one of this characters, MuPAD interprets this
data element as a sequence of statements and, upon evaluation, returns the value of the
last statement as the MuPAD object corresponding to the data element. Cf. “Example 3”
on page 13-14.

In contrast to finput, the data elements in the file do not have to be ended by a colon or
a semicolon.

Empty lines in the file are ignored.
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Examples

Example 1

We wish to read statistical data into a MuPAD session to test the correlation of two data
samples. Assume that the file “datafile” contains the following two columns of ASCII
data (each column representing a data sample):

      0.12    0.2534

      2.324   5.72

      1.02    2.2232

      4.02    7.321

      7.4    14.9

     -7.4   -15.1

import::readdata returns the following list representing the data in the file:

data := import::readdata("datafile")

The data structure stats::sample converts this nested list into two data columns:

s := stats::sample(data)

 0.12  0.2534

2.324    5.72

 1.02  2.2232

 4.02   7.321

  7.4    14.9

 -7.4   -15.1

The following computation shows that there is a very strong correlation between the data
in the first column and the data in the second column:

stats::correlation(s, 1, 2)
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If the data in the file are supposed to represent a single sample (data record), we may
ignore the fact that the numbers are arranged on several lines. With NonNested, the
data are read as a single sample:

data := import::readdata("datafile", NonNested)

Mean and standard deviation of the data are:

stats::mean(data), stats::stdev(data)

delete data, s:

Example 2

Let us assume that the file “datafile” contains the following ASCII data:

      1 | 2   | 3

      4| 5 | 6.65786

      7| 8 |9| 5 | "ahfjd" | ab100|-23

We specify the data separator "|" for reading the data:

import::readdata("datafile", "|")

Note that whitespace inside the data elements as well as the empty line in the file are
ignored.

Example 3

We first create the ASCII data files that will be used in this example. We recall that
x degrees Celsius are  degrees Fahrenheit. First, two data files are created
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containing the matching temperatures from - 5 degrees Celsius to 30 degrees Celsius in
steps of 5 degrees Celsius:

n1 := fopen(Text, "data1", Write):

n2 := fopen(Text, "data2", Write):

for celsius from -5 to 20 step 5 do 

  fahrenheit := 9/5*celsius + 32:

  fprint(Unquoted, n1, celsius, " ", fahrenheit):

  fprint(n2, celsius, fahrenheit):

end_for:

fclose(n1):

fclose(n2):

The file “data1” now contains the following data:

-5 23

0 32

5 41

10 50

15 59

20 68

The file “data2” contains the following data:

-5:23:

0:32:

5:41:

10:50:

15:59:

20:68:

Now, we import the data:

import::readdata("data1")

Reading data from the file “data2” yields an unexpected result:

import::readdata("data2")
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What went wrong? Remember that the default data separator is whitespace.
Consequently, MuPAD reads the expression -5:23: as the only data element in the
first line. When MuPAD evaluates this data element, it interprets it as a sequence of
two MuPAD statements. The result of the statement sequence is the result of the last of
the two statements, i.e., the number 23. This is the first datum in the resulting list. For
getting the data as desired, an appropriate separator must be specified. The file “data2”
should be read as follows:

import::readdata("data2", ":")

We use the option NonNested to get a plain list containing all data elements without
putting each record (line) in a sublist of its own:

import::readdata("data2", ":", NonNested)

delete n1, n2:

Example 4

Here we can see that the data are evaluated after reading. First, we create the data file:

n1 := fopen(Text, "data3", Write) :

fprint(Unquoted, n1, a, " 12 ", b):

fclose(n1):

Now, the data are read:

import::readdata("data3")

If a and b have values, we get:

a := 3:  b := 34:  import::readdata("data3")
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delete n1, a, b:

Example 5

First, we create a data file with random floating-point data that a separated by blank
characters:

n := fopen(Text, "data4", Write):

for i from 1 to 3 do

    fprint(Unquoted, n, (frandom(), " ") $ j = 1..4);

end_for;

fclose(n):

This file is reopened for reading with fopen:

n := fopen(Text, "data4", Read)

The file descriptor n returned by fopen can be passed to import::readdata:

import::readdata(n)

Note, however, that the file was opened explicitly by the user with fopen and is not
closed automatically by import::readdata. Consequently, the user is supposed to close
the file explicitly via fclose:

fclose(n):

delete i, n:

Parameters

filename

The file name: a non-empty character string
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n

A file descriptor provided by fopen: a positive integer

separator

The separator between data elements: a character string of length 1 (a single character).
The default separator is whitespace.

Options

NonNested

Return all file data as a single data record in a non-nested list. The data of all lines are
ordered sequentially in this list.

Return Values

Nested list of lists. The sublists contain the data of the indiviual lines. With the option
NonNested, a plain list containing all data elements from every line in the file.

See Also

MuPAD Functions
finput | fopen | fread | ftextinput | import::csv | import::readbitmap |
pathname | read
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import::readlisp
Parse Lisp-formatted string

Syntax
import::readlisp(s)

Description

import::readlisp(s) parses the Lisp-formatted string s and returns the
corresponding MuPAD expression.

import::readlisp returns the constructed MuPAD expression as an unevaluated call.
So the result of import::readlisp is in every case of type DOM_EXPR.

If the parsed string s contains only white spaces, then the unevaluated null()
expression is returned.

Examples

Example 1

A first example:

import::readlisp("(INTEGRATE (EXPT X -1) X)")

import::readlisp("(EXP 2.0)")
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Example 2

In “Example 1” on page 13-19 above we can see that the corresponding MuPAD
expression is not evaluated. Let us have a closer look at this behavior:

domtype(import::readlisp("(INTEGRATE (EXPT X -1) X)")),

eval(import::readlisp("(INTEGRATE (EXPT X -1) X)")), 

domtype(import::readlisp("(EXP 2.0)")),

eval(import::readlisp("(EXP 2.0)"))

Example 3

Another example demonstrating that import::readlisp returns an unevaluated call:

x := 2:  import::readlisp("(* x (/ 2 y))")

eval(import::readlisp("(* x (/ 2 y))"))

Example 4

An empty string is converted into an unevaluated call of null():

type(import::readlisp(""))

We try to convert an illegal Lisp string:

import::readlisp("(* 2(EXP 3)")
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Error: The closing parenthesis is missing. [import::parseLambda]

Parameters

s

A string

Return Values

MuPAD expression of type DOM_EXPR
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intlib::byparts
Integration by parts

Syntax
intlib::byparts(integral, du)

Description

intlib::byparts(integral, du) performs on integral the integration by
parts, where du is the part to be integrated and returns an expression containing the
unevaluated partial integral.

Mathematically, the rule of integration by parts is formally defined for indefinite
integrals as

and for definite integrals as

.

intlib::byparts works for indefinite as well as for definite integrals.

If MuPAD cannot solve the integral for du in case of definite integration, the function call
is returned unevaluated.

The first argument should contain a symbolic integral of type "int". Such an expression
can be obtained with hold or freeze (cf. “Example 1” on page 14-3).

The second argument du should typically be a partial expression of the integrand in
integral.
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Examples

Example 1

As a first example we apply the rule of integration by parts to the integral . By
using the function hold we ensure that the first argument is of type "int":

intlib::byparts(hold(int)(x*exp(x), x = a..b), exp(x))

In this case the ansatz is chosen as  and thus v(x) = x.

Example 2

In the following we give a more advanced example using the method of integration
by parts for solving the integral . For this we have to prevent that
the integrator already evaluates the integrals. Thus we first inactivate the requested
integral with the function freeze

F := freeze(int)(exp(a*x)*sin(b*x), x)

and apply afterwards partial integration with :

F1 := intlib::byparts(F, exp(a*x))

This result contains another symbolic integral, which MuPAD can solve directly:

eval(F1)
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Example 3

Here we demonstrate the difference between indefinite and definite integration by
parts. If in the indefinite case the partial part cannot be solved, simply the unevaluated
integral is plugged into the integration rule:

intlib::byparts(hold(int)(x*f(x), x),f(x))

This is no longer true for the definite case:

intlib::printWarnings(TRUE):

intlib::byparts(hold(int)(x*f(x), x=a..b),f(x))

Warning: No closed form for 'int(f(x), x)' is found. [intlib::byparts]

Parameters

integral

Integral: an arithmetical expression containing a symbolic "int" call of the form
int(du*v, x) or int(du*v, x = a..b)

du

The part to be integrated: an arithmetical expression
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Return Values

Arithmetical expression.

See Also

MuPAD Functions
intlib::changevar | subs

14-5



14 intlib – Integration Utilities

intlib::changevar
Change of variable

Syntax
intlib::changevar(integral, eq, <var>)

Description

intlib::changevar(integral, eq) performs a change of variable for indefinite and
definite integrals.

Mathematically, the substitution rule is formally defined for indefinite integrals as

and for definite integrals as

intlib::changevar(integral, eq) performs in integral the change of variable
defined by eq and returns an unevaluated new integral. You can use the eval command
to find the closed form of this new integral providing that the closed form exists.

intlib::changevar works for indefinite as well as for definite integrals.

The first argument should contain a symbolic integral of type "int". Such an expression
can be obtained with hold or freeze. See “Example 1” on page 14-7.

If more than two variables occur in eq, the new variable must be given as third
argument.
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If MuPAD cannot solve the given equation eq an error will occur.

Examples

Example 1

As a first example we perform a change of variable for the integral . By
using the hold function we ensure that the first argument is of type "int":

intlib::changevar(hold(int)(f(x + c), x = a..b), 

                  t = x + c, t)

Note that in this case the substitution equation has two further variables besides x. Thus
it is necessary to specify the new integration variable as third argument.

Example 2

In the following example we use the change of variable method for solving the integral
. First we perform the transformation t = ln(x):

f1 := intlib::changevar(hold(int)(cos(ln(x)), x), 

                        t = ln(x), t)

Now we can evaluate the integral with the MuPAD integrator:

f2:=eval(f1)
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Finally we change the variable t back to x and get the result:

F := simplify(f2 | t = ln(x))

We can also verify the solution of the integral:

simplify(diff(F,x) - cos(ln(x)))

Parameters

integral

The integral: an arithmetical expression containing a symbolic "int" call

eq

Equation defining the new integration variable in terms of the old one: an equation

var

The new integration variable: an identifier

Return Values

Arithmetical expression.

See Also

MuPAD Functions
intlib::byparts | subs
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intlib::intOverSet
Integration over a set

Syntax
intlib::intOverSet(f, x, S)

Description

intlib::intOverSet(f, x, S) computes the integral  where iS(x) is

the indicator function of the set S.

If S is an interval  with a ≤ b, the call is equivalent to int(f, x=a..b). However,
by definition, interchanging the borders to int(f, x=b..a) just reverses the sign of the
latter while  is empty and any integral over the empty set is zero.

The function may return unevaluated if the integral could not be computed.

Examples

Example 1

For intervals, calling intlib::intOverSet is just equivalent to calling definite
integration:

int(1/x, x=1..2), intlib::intOverSet(1/x, x, Dom::Interval(1, 2))

If the lower border is greater than the upper, this does not hold anymore:

int(1/x, x=2..1), intlib::intOverSet(1/x, x, Dom::Interval(2, 1))
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Example 2

In more complex cases, the function returns unevaluated:

intlib::intOverSet(1/x^2, x, solve(t > sin(t), t))

Parameters

f

Arithmetical expression

x

Identifier

S

Set-theoretic expression

Return Values

Arithmetical expression.

See Also

MuPAD Functions
int
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intlib::printWarnings

Enable or disable warnings

Syntax

intlib::printWarnings(TRUE)

intlib::printWarnings(FALSE)

intlib::printWarnings()

Description

intlib::printWarnings lets you enable or disable warnings.

By default, MuPAD does not display warnings during integration. To enable warnings,
use the intlib::printWarnings(TRUE) function call. If later you want to disable
warnings, use the intlib::printWarnings(FALSE) function call. See “Example 1” on
page 14-11.

The intlib::printWarnings() function call shows whether warnings are enabled or
disabled. See “Example 1” on page 14-11.

The output of intlib::printWarnings displays the previous setting. You can save this
previous setting and switch to a new setting in a single function call. See “Example 2” on
page 14-12.

Examples

Example 1

Enable the warnings by setting the value of intlib::printWarnings to TRUE:

intlib::printWarnings(TRUE):
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Compute the integral of |x| under the assumption that x is an integer. MuPAD cannot
integrate the expression over a discrete subset of the real numbers. The system issues a
warning and integrates over the set  of real numbers:

int(abs(x), x) assuming x in Z_

Warning: Cannot integrate when 'x' has property 'Z_'. The assumption that 'x' has the property 'R_' is used for integration. [intlib::int]

If you evaluate the same integral again, MuPAD does not recalculate the integral. The
system remembers the previous result and returns it, skipping the warning:

int(abs(x), x) assuming x in Z_

To check whether the warnings are enabled or disabled, use the
intlib::printWarnings() function call:

intlib::printWarnings()

Disable the warnings for further computations:

intlib::printWarnings(FALSE):

Example 2

Enable the warnings and save the previous setting in a single function call:

old := intlib::printWarnings(TRUE):

Assume that x is positive. Then, integrate x over the interval [- 2, 1]. In this case, the
system issues a warning, temporarily disregards the assumption x > 0, and integrates
over the interval [- 2, 1]:
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assume(x > 0):

int(x, x = -2..1)

Warning: The assumption that 'x' has property 'Dom::Interval([-2], [1])' instead of given property 'Dom::Interval(0, infinity)' is used for integration. [int]

Restore the setting of intlib::printWarnings:

intlib::printWarnings(old):

The warnings are disabled now:

intlib::printWarnings()

For further computations, clear the assumption on the variable x:

unassume(x):

Return Values

Previously set value TRUE or FALSE

See Also

MuPAD Functions
int

More About
• “Integration”
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linalg::addCol
Linear combination of matrix columns

Syntax
linalg::addCol(A, c1, c2, s1)

linalg::addCol(A, c1, c2, s1, s2)

Description

linalg::addCol(A, c1, c2, s1) adds s1 times column c1 to column c2, in the matrix
A.

linalg::addCol(A, c1, c2, s) returns a copy of the matrix A in which column c2 of
A is replaced by s col(A, c1) + col(A, c2).

linalg::addCol(A, c1, c2, s1, s2) returns a copy of the matrix A in which column
c2 of A is replaced by s1 col(A, c1) + s2 col(A, c2).

Examples

Example 1

The following defines a 3×3 matrix over the integers:

A := Dom::Matrix(Dom::Integer)( 

  [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 

)

We replace the 2nd column by - col(A, 1) + col(A, 2), i.e., we subtract the first column
from the second:
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linalg::addCol(A, 1, 2, -1)

Example 2

The following defines a 2×3 matrix over the reals:

B := Dom::Matrix(Dom::Real)(

  [[sin(2), 0, 1], [1, PI, 0]]

)

If s is an expression that does not represent a real number then an error message is
reported. The following tries to replace the 1st column by x col(B, 3) + col(B, 1), where x is
an identifier which cannot be converted to the component ring Dom::Real of B:

delete x: linalg::addCol(B, 3, 1, x)

Error: Cannot convert 'x'. [linalg::addCol]

Example 3

If symbolic expressions are involved, then one may define matrices over a component ring
created by Dom::ExpressionField. The following example defines a matrix over this
default component ring:

delete a11, a12, a21, a22, x:

C := matrix([[a11, a12], [a21, a22]])

We retry the input from the previous example:

linalg::addCol(C, 2, 1, x)
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Parameters

A

An m×n matrix of a domain of category Cat::Matrix

c1, c2

The column indices: positive integers less or equal to n

s1, s2

Expressions that can be converted to the component ring of A

Return Values

Matrix of the same domain type as A.

See Also

MuPAD Domains
Dom::Matrix

MuPAD Functions
linalg::addRow | linalg::col | linalg::multCol | linalg::multRow
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linalg::addRow
Linear combination of matrix rows

Syntax
linalg::addRow(A, r1, r2, s)

linalg::addRow(A, r1, r2, s1, s2)

Description

linalg::addRow(A, r1, r2, s1) adds s1 times row r1 to row r2, in the matrix A.

linalg::addRow(A, r1, r2, s) returns a copy of the matrix A in which row r2 of A is
replaced by s row(A, r1) + row(A, r2).

linalg::addRow(A, r1, r2, s1, s2) returns a copy of the matrix A in which row r2
of A is replaced by s1 row(A, r1) + s2 row(A, r2).

Examples

Example 1

The following defines a 3×3 matrix over the integers:

A := Dom::Matrix(Dom::Integer)( 

  [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 

)

We replace the 2nd row by - row(A, 1) + row(A, 2), i.e., we subtract the first row from the
second:
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linalg::addRow(A, 1, 2, -1)

Example 2

The following defines a 2×3 matrix over the reals:

B := Dom::Matrix(Dom::Real)( 

  [[sin(2), 0, 1], [1, PI, 0]] 

)

If s is an expression that does not represent a real number then an error message is
reported. The following tries to replace the 1st row by x row(B, 2) + row(B, 1), where x is
an identifier which cannot be converted to the component ring Dom::Real of B:

delete x: linalg::addRow(B, 2, 1, x)

Error: Cannot convert 'x'. [linalg::addRow]

Example 3

If symbolic expressions are involved, then one may define matrices over the component
ring created by Dom::ExpressionField. The following example defines a matrix over
this default component ring:

delete a11, a12, a21, a22, x:

C := matrix([[a11, a12], [a21, a22]])

We retry the input from the previous example:

linalg::addRow(C, 2, 1, x)
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Parameters

A

An m×n matrix of a domain of category Cat::Matrix

r1, r2

The row indices: positive integers less or equal to m

s, s1, s2

Expressions that can be converted to the component ring of A

Return Values

Matrix of the same domain type as A.

See Also

MuPAD Functions
linalg::addCol | linalg::multCol | linalg::multRow | linalg::row
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linalg::adjoint
Adjoint of a matrix

Syntax
linalg::adjoint(A)

Description

linalg::adjoint(A) computes the adjoint Adj(A) of the n×n matrix A. The adjoint
matrix satisfies the equation , where In is the n×n identity matrix.

The component ring of A must be of category Cat::CommutativeRing.

Examples

Example 1

We define a matrix over the rationals:

MatQ := Dom::Matrix(Dom::Rational):

A := MatQ([[0, 2, 1], [2, 1, 0], [1, 0, 2]])

Then the adjoint matrix of A is given by:

Ad := linalg::adjoint(A)
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We check the property of the adjoint matrix Ad mentioned above:

A * Ad = det(A)*MatQ::identity(3)

Parameters

A

A square matrix of a domain of category Cat::Matrix

Return Values

Matrix of the same domain type as A.

Algorithms

The adjoint of a square matrix A is the matrix whose (i, j)-th entry is the (j, i)-th cofactor
of A.

The (j, i)-th cofactor of A is defined by , where Aij is the submatrix

of A obtained from A by deleting the i-th row and j-th column.

See Also

MuPAD Functions
det
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linalg::angle

Angle between two vectors

Syntax

linalg::angle(u, v)

Description

linalg::angle(u,v) computes the angle φ between the two vectors u and v, defined
by

,

where  denotes the scalar product of two vectors given by

linalg::scalarProduct, and  the 2-norm of a vector, i.e., .

linalg::angle does not check if the computation is defined in the corresponding
component ring. This can lead to an error message, as shown in “Example 2” on page
15-14.

The following relationship between the angle between  and  and the angle between 
and  holds: .

An error message is returned if the vectors are not defined over the same component
ring.
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Examples

Example 1

We compute the angle between the two vectors  and :

phi := linalg::angle( 

  matrix([2, 5]), matrix([-3, 3]) 

)

We use the function float to get a floating-point approximation of this number:

float(phi)

We give two further examples:

linalg::angle(

  matrix([1, -1]), matrix([1, 1])

)

linalg::angle(

  matrix([1, 1]), matrix([-1, -1])

)
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Example 2

linalg::angle does not check whether the term  is defined in the

corresponding component ring.

As an example, we try to compute the angle between two vectors with components in ℤ7:

MatZ7 := Dom::Matrix(Dom::IntegerMod(7))

The following call leads to an error because the 2-norm cannot be computed:

linalg::angle(MatZ7([1, 1]), MatZ7([-1, -1]))

Error: An integer exponent is expected. [(Dom::IntegerMod(7))::_power]

Note that the domain Dom::IntegerMod(7) does not implement the square root of an
element, therefore in MuPAD you cannot compute the angle of any two vectors over ℤ7.

Parameters

u, v

Vectors of the same dimension; a vector is a n×1 or 1 ×n matrix of a domain of category
Cat::Matrix

Return Values

Arithmetical expression.

See Also

MuPAD Functions
arccos | linalg::scalarProduct | linalg::vecdim
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linalg::basis
Basis for a vector space

Syntax
linalg::basis(S)

Description

linalg::basis(S) returns a basis for the vector space spanned by the vectors in the
set or list S.

linalg::basis(S) removes those vectors in S that are linearly dependent on other
vectors in S. The result is a basis for the vector space spanned by the vectors in S.

For an ordered basis of vectors, S should be a list of vectors.

The vectors in S must be defined over the same component ring.

The component ring of the vectors in S must be a field, i.e., it must be of category
Cat::Field.

Examples

Example 1

We define the domain of matrices over ℚ:

MatQ := Dom::Matrix(Dom::Rational):

and compute a basis for the vector space spanned by the vectors ,  and

:
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v1 := MatQ([3, -2]): 

v2 := MatQ([1, 0]): 

v3 := MatQ([5, -3]):

linalg::basis([v1, v2, v3])

If not a list but a set of vectors is given, then the basis returned may not consist of the
same vectors as above. The order of the vectors in the set depends on the internal order
(see sysorder and DOM_SET), i.e., the order of the vectors appears to be random:

b := linalg::basis({v1, v2, v3}):

op(b, 1)

Parameters

S

A set or list of n-dimensional vectors; a vector is a n×1 or 1 ×n matrix of a domain of
category Cat::Matrix

Return Values

Set or a list of vectors, respectively.

See Also

MuPAD Functions
linalg::intBasis | linalg::sumBasis | lllint
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linalg::charmat
Characteristic matrix

Syntax
linalg::charmat(A, x)

Description

linalg::charmat(A, x) returns the characteristic matrix x In - A of the n×n matrix A,
where In denotes the n×n identity matrix.

The component ring of A must be a commutative ring, i.e., a domain of category
Cat::CommutativeRing.

The characteristic matrix M = x In - A of A can be evaluated at a point x = u via
evalp(M, x = u). See “Example 2” on page 15-18.

Examples

Example 1

We define a matrix over the rational numbers:

A := Dom::Matrix(Dom::Rational)([[1, 2], [3, 4]])

and compute the characteristic matrix of A in the variable x:

MA := linalg::charmat(A, x)
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The determinant of the matrix MA is a polynomial in x, the characteristic polynomial of
the matrix A:

pA := det(MA)

domtype(pA)

Of course, we can compute the characteristic polynomial of A directly via
linalg::charpoly:

linalg::charpoly(A, x)

The result is of the same domain type as the polynomial pA.

Example 2

We define a matrix over the complex numbers:

B := Dom::Matrix(Dom::Complex)([[1 + I, 1], [1, 1 - I]])

The characteristic matrix of B in the variable z is:

MB := linalg::charmat(B, z)

We evaluate MB at z = i and get the matrix:
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evalp(MB, z = I)

Note that this is a matrix of the domain type Dom::Matrix(Dom::Complex):

domtype(%)

Parameters

A

A square matrix of a domain of category Cat::Matrix

x

An identifier

Return Values

Matrix of the domain Dom::Matrix(Dom::DistributedPolynomial([x], R)) or
of Dom::DenseMatrix(Dom::DistributedPolynomial([x], R)), where R is the
component ring of A.

See Also

MuPAD Functions
linalg::charpoly
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linalg::charpoly
Characteristic polynomial of a matrix

Syntax
linalg::charpoly(A, x)

Description

linalg::charpoly(A, x) computes the characteristic polynomial of the matrix A. The
characteristic polynomial of a n×n matrix is defined by , where In

denotes the n×n identity matrix.

The component ring of A must be a commutative ring, i.e., a domain of category
Cat::CommutativeRing.

Examples

Example 1

We define a matrix over the rational numbers:

A := Dom::Matrix(Dom::Rational)([[1, 2], [3, 4]])

Then the characteristic polynomial pA(x) is given by:

linalg::charpoly(A, x)
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It is of the domain type:

domtype(%)

Example 2

We define a matrix over ℤ7:

B := Dom::Matrix(Dom::IntegerMod(7))([[1, 2], [3, 0]])

The characteristic polynomial pB(x) of B is given by:

p := linalg::charpoly(B, x)

We compute the zeros of pB(x), i.e., the eigenvalues of the matrix B:

solve(p)

Parameters

A

A square matrix of a domain of category Cat::Matrix

x

An identifier
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Return Values

Polynomial of the domain Dom::DistributedPolynomial([x],R), where R is the
component ring of A.

Algorithms

linalg::charpoly implements Hessenberg's algorithm to compute the characteristic
polynomial of a square matrix A. See: Henri Cohen: A Course in Computational Algebraic
Number Theory, GTM 138, Springer Verlag.

This algorithm works for any field and requires only O(n3) field operations, in contrast to
O(n4) when computing the determinant of the characteristic matrix of A.

Since the size of the components of A in intermediate computations of Hessenberg's
algorithm can swell extremely, it is only applied for matrices over Dom::Float and
Dom::IntegerMod.

For any other component ring, the characteristic polynomial is computed using the
Berkowitz algorithm.

References

Reference: Jounaidi Abdeljaoued, The Berkowitz Algorithm, Maple and Computing the
Characteristic Polynomial in an Arbitrary Commutative Ring, MapleTech Vol 4 No 3, pp
21-32, Birkhäuser, 1997.

See Also

MuPAD Functions
det | linalg::charmat | linalg::hessenberg | linalg::minpoly
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linalg::col
Extract columns of a matrix

Syntax
linalg::col(A, c)

linalg::col(A, c1 .. c2)

linalg::col(A, list)

Description

linalg::col(A, c) extracts the c-th column vector of the matrix A.

linalg::col(A, c1.. c2) returns a list of column vectors whose indices are in the
range c1.. c2. If c2< c1 then the empty list [] is returned.

linalg::col(A, list) returns a list of column vectors whose indices are contained in
list (in the same order).

Examples

Example 1

We define a matrix over ℚ:

A := Dom::Matrix(Dom::Rational)(

  [[1, 1/5, 2], [-3/2, 0, 5]]

)
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and illustrate the three different input formats for linalg::col:

linalg::col(A, 2)

linalg::col(A, [2, 1, 3])

linalg::col(A, 2..3)

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

c

The column index: a positive integer less or equal to n

c1 .. c2

A range of column indices (positive integers less or equal to n)

list

A list of column indices (positive integers less or equal to n)
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Return Values

Single column vector or a list of column vectors; a column vector is an m×1 matrix of
category Cat::Matrix(R), where R is the component ring of A.

See Also

MuPAD Functions
linalg::delCol | linalg::delRow | linalg::row | linalg::setCol |
linalg::setRow
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linalg::companion
Companion matrix of a univariate polynomial

Syntax
linalg::companion(p, <x>)

Description

linalg::companion(p) returns the companion matrix associated with the polynomial
p.

p must be monic and of degree one at least.

If p is a polynomial, i.e., an object of type DOM_POLY, then specifying x has no effect.

If p is a polynomial, then the component ring of the returned matrix is the coefficient
ring of p, except in two cases for built-in coefficient rings: if the coefficient ring of p
is Expr then the domain Dom::ExpressionField() is the component ring of the
companion matrix. If it is IntMod(m) then the companion matrix is defined over the ring
Dom::IntegerMod(m) (see “Example 2” on page 15-27).

If p is a polynomial expression, then the companion matrix is defined over
Dom::ExpressionField().

If p is a polynomial expression containing several symbolic indeterminates then x must
be specified and distinguishes the indeterminate x from the other symbolic parameters.

Examples

Example 1

We start with the following polynomial expression:

delete a_0, a_1, a_2, a_3: 

p := x^4 + a_3*x^3 + a_2*x^2 + a_1*x + a_0

15-26



 linalg::companion

To compute the companion matrix of p with respect to x we must specify the second
parameter x, because the expression p contains the indeterminates a0, a1, a2, a3 and x:

linalg::companion(p)

Error: The polynomial expression is multivariate. Specify the indeterminate as second argument. [linalg::companion]

linalg::companion(p, x)

Of course, we can compute the companion matrix of p with respect to a0 as well:

linalg::companion(p, a_0)

The following fails with an error message, because the polynomial p is not monic with
respect to a1:

linalg::companion(p, a_1)

Error: Polynomial is not monic. [linalg::companion]

Example 2

If we enter a polynomial over the built-in coefficient domain Expr, then the companion
matrix is defined over the standard component ring for matrices (the domain
Dom::ExpressionField()):
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C := linalg::companion(poly(x^2 + 10*x + PI, [x]))

domtype(C)

If we define a polynomial over the build-in coefficient domain IntMod(m),
then the companion matrix is defined over the corresponding component ring
Dom::IntegerMod(m), as shown in the next example:

p := poly(x^2 + 10*x + 7, [x], IntMod(3))

C := linalg::companion(p)

domtype(C)

Parameters

p

An univariate polynomial, or a polynomial expression

x

An identifier
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Return Values

Matrix of the domain Dom::Matrix(R).

Algorithms

The companion matrix of the polynomial xn + an1 xn - 1 + … + a1 x + a0 is the matrix:

.

The companion matrix of a univariate polynomial p of degree n is an n×n matrix C with
pC = p, where pC is the characteristic polynomial of C.
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linalg::concatMatrix
Join matrices horizontally

Syntax
linalg::concatMatrix(A, B1, <B2, …>)

Description

linalg::concatMatrix(A, B1, B2, dots ) returns the matrix formed by joining
the matrices A, B1, B2, … horizontally.

The matrices B1, B2, dots are converted into the matrix domain Dom::Matrix(R),
where R is the component ring of A.

An error message is raised if one of these conversions fails, or if the matrices do not have
the same number of rows as the matrix A.

A short form of linalg::concatMatrix is available through the dot operator ., i.e.,
instead of linalg::concatMatrix(A, B) one may use the short form A . B.

Examples

Example 1

We define the matrix:

A := matrix([[sin(x), x], [-x, cos(x)]])

and append the 2×2 identity matrix to the right of A:
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I2 := matrix::identity(2): 

linalg::concatMatrix(A, I2)

The short form for this operation is:

A . I2

Example 2

We define a matrix from the ring of 2×2 square matrices:

SqMatQ := Dom::SquareMatrix(2, Dom::Rational): 

A := SqMatQ([[1, 2], [3, 4]])

Note the following operation:

AA := A . A

returns a matrix of a different domain type as the input matrix:

domtype(AA)
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Parameters

A, B1, B2, …

Matrices of a domain of category Cat::Matrix

Return Values

Matrix of the domain type Dom::Matrix(R), where R is the component ring of A.

See Also

MuPAD Functions
linalg::stackMatrix
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linalg::cond
Condition number of a matrix

Syntax
linalg::cond(M, <1 | 2 | Spectral | Infinity | Frobenius>)

Description

linalg::cond(M) computes the condition number of a matrix, defined by .

By default the matrix norm Infinity is used by linalg::cond.

linalg::cond(M) is the short form of linalg::cond(M, Infinity).

linalg::cond(M, k) computes the condition number of the matrix M, defined by
.

For further details see the help page of norm.

Examples

Example 1

We define the 3×3 matrix A.

A := matrix(3,3, [[1,0,3],[-4,2,0],[0,3,-2]])

Now we calculate the condition number of A for some matrix norms.

linalg::cond(A)
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linalg::cond(A, Infinity)

linalg::cond(A, 1)

linalg::cond(A, Frobenius)

The result for the spectral norm is too complex, so we want the floating valuation. The
tiny imaginary part is a rounding artifact:

linalg::cond(A, 2);

float(%)

If A contains at least one floating-point number, the result will be computed numerically.

15-34



 linalg::cond

B := A: 

B[1,1] := float(B[1,1]): 

linalg::cond(B, 2)

Example 2

We define the 2×2 matrix C.

C := matrix([[1,-2],[3,-4]])

Now we calculate the condition number of C for some matrix norms.

linalg::cond(C,1)

linalg::cond(C,Infinity)

linalg::cond(C,Frobenius); Simplify(%);

Example 3

Hilbert matrices are very ill-conditioned:

linalg::cond( linalg::hilbert(3) )
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linalg::cond( linalg::hilbert(5) )

linalg::cond( linalg::hilbert(7) )

Parameters

M

Square matrix of domain type Dom::Matrix

Options

Frobenius, Infinity, Spectral

The index of the matrix norm.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
norm
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linalg::crossProduct
Cross product of three-dimensional vectors

Syntax
linalg::crossProduct(u, v)

Description

linalg::crossProduct(u, v) computes the cross product of the three-dimensional
vectors  and . This is the vector

.

The vectors must be defined over the same component ring.

Examples

Example 1

We define two vectors:

a := matrix([[1, 2, 3]]);

b := matrix([[-1, 0, 1]])
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The cross product of these two vectors is a vector  which is orthogonal to  and :

c:= linalg::crossProduct(a, b)

linalg::scalarProduct(a, c), linalg::scalarProduct(b, c)

Parameters

u, v

3-dimensional vectors, i.e., either two 3 ×1 or two 1 ×3 matrices of a domain of category
Cat::Matrix

Return Values

Vector of the same domain type as u.

See Also

MuPAD Functions
linalg::scalarProduct
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linalg::delCol
Delete matrix columns

Syntax
linalg::delCol(A, c)

linalg::delCol(A, c1 .. c2)

linalg::delCol(A, list)

Description

linalg::delCol(A, c) returns a copy of the matrix A in which the column with index
c is deleted.

linalg::delCol(A, c1.. c2) deletes those columns whose indices are in the range
c1.. c2. If c2< c1 then the input matrix A is returned.

linalg::delCol(A, list) deletes those columns whose indices are contained in
list.

If all columns are deleted then NIL is returned.

Examples

Example 1

We define the following matrix:

A := matrix([[1, 2, 3, 4], [5, 6, 7, 8]])
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and demonstrate the three different input formats for linalg::delCol:

linalg::delCol(A, 2)

linalg::delCol(A, [1, 3])

linalg::delCol(A, 2..4)

Example 2

We compute the inverse of the 2×2 matrix:

MatQ := Dom::Matrix(Dom::Rational): 

A := MatQ([[3, 2], [5, -4]])

by appending the 2×2 identity matrix to the right side of A and applying the Gauss-
Jordan algorithm provided by the function linalg::gaussJordan:

B := linalg::gaussJordan(A . MatQ::identity(2))

We get the inverse of A by deleting the first two columns of the matrix B:
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AI := linalg::delCol(B, 1..2)

Finally, we check the result:

A * AI, AI * A

Note: The inverse of A can be computed directly by entering 1/A.

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

c

The column index: a positive integer less or equal to n

c1 .. c2

A range of column indices (positive integers less or equal to n)

list

A list of column indices (positive integers less or equal to n)

Return Values

Matrix of a domain of category Cat::Matrix(R), where R is the component ring of A, or
NIL.
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See Also

MuPAD Functions
linalg::col | linalg::delRow | linalg::row

More About
• “Swap and Delete Rows and Columns”
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linalg::delRow
Delete matrix rows

Syntax
linalg::delRow(A, r)

linalg::delRow(A, r1 .. r2)

linalg::delRow(A, list)

Description

linalg::delRow(A, r) returns a copy of the matrix A in which the row with index r is
deleted.

linalg::delRow(A, r1.. r2) deletes those rows whose indices are in the range r1..
r2. If r2< r1 then the input matrix A is returned.

linalg::delRow(A, list) deletes those rows whose indices are contained in list.

If all rows are deleted then NIL is returned.

Examples

Example 1

We define the following matrix:

A := matrix([[1, 2], [3, 4], [5, 6], [7, 8]])
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and illustrate the three different input formats for linalg::delRow:

linalg::delRow(A, 2)

linalg::delRow(A, [1, 4])

linalg::delRow(A, 2..4)

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

r

The row index: a positive integer less or equal to m

r1 .. r2

A range of row indices (positive integers less or equal to m)

list

A list of row indices (positive integers less or equal to m)

Return Values

Matrix of a domain of category Cat::Matrix(R), where R is the component ring of A or
NIL.
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See Also

MuPAD Functions
linalg::col | linalg::delCol | linalg::row

More About
• “Swap and Delete Rows and Columns”
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linalg::eigenvalues
Eigenvalues of a matrix

Syntax
linalg::eigenvalues(A, <Multiple>)

Description

linalg::eigenvalues(A) returns a list of the eigenvalues of the matrix A.

A floating-point approximation of the eigenvalues is computed with
numeric::eigenvalues, if the matrix A is defined over the component ring
Dom::Float (see “Example 1” on page 15-46). In this case it is recommended to call
numeric::eigenvalues directly for a better efficiency.

The eigenvalues are obtained by computing the zeros of the characteristic polynomial of
A. The solver solve must be able to compute the roots of the characteristic polynomial
over the component ring of A.

Examples

Example 1

We compute the eigenvalues of the matrix

:

A := matrix([[1, 4, 2], [1, 4, 2], [2, 5, 3]]):

linalg::eigenvalues(A)
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If we consider the matrix over the domain Dom::Float, then the call of
linalg::eigenvalues(A) results in a numerical computation of the eigenvalues of A
via numeric::eigenvalues:

B := Dom::Matrix(Dom::Float)(A):

linalg::eigenvalues(B)

Example 2

With the option Multiple we get the information about the algebraic multiplicity of
each eigenvalue:

C := Dom::Matrix(Dom::Rational)(4, 4, [[-3], [0, 6]])

linalg::eigenvalues(C, Multiple)

Parameters

A

A square matrix of a domain of category Cat::Matrix

Options

Multiple

Returns a list of sublists, where each sublist contains an eigenvalue of A and its algebraic
multiplicity. Note that due to rounding errors, this may lead to wrong results in cases
where multiple eigenvalues exist and numeric::eigenvalues is used.
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Return Values

Set of the eigenvalues of A, or a list of inner lists when the option Multiple is given (see
below).

See Also

MuPAD Functions
linalg::charpoly | linalg::eigenvectors | numeric::eigenvalues | solve

15-48



 linalg::eigenvectors

linalg::eigenvectors

Eigenvectors of a matrix

Syntax

linalg::eigenvectors(A)

Description

linalg::eigenvectors(A) computes the eigenvalues and eigenvectors of the matrix
A.

A floating-point approximation of the eigenvalues and the eigenvectors is computed
using numeric::eigenvectors, if the matrix A is defined over the component ring
Dom::Float (see “Example 1” on page 15-50). In this case it is recommended to call
numeric::eigenvalues directly for a better efficiency.

linalg::eigenvectors works as follows: For each eigenvalue λ of the n×n matrix A,
a basis for the kernel of (λ In - A), the eigenspace of A with respect to the eigenvalue λ,
is computed using the Gauss-Jordan algorithm (see linalg::gaussJordan). Here, In
denotes the n×n identity matrix.

The eigenvectors are of the domain Dom::Matrix(R), where R is the component ring of
A.

The component ring of the matrix A must be a field, i.e., a domain of category
Cat::Field, for which the solver solve is able to compute the zeros of a polynomial.

It can happen that a basis for the eigenspace of A with respect to a certain eigenvalue
cannot be computed (e.g., if the component ring does not have a canonical representation
of the zero element). In this case linalg::eigenvectors answers with a warning
message and returns FAIL.
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Examples

Example 1

We compute the eigenvalues and the eigenvectors of the matrix

:

A := Dom::Matrix(Dom::Rational)(

  [[1, -3, 3], [6, -10, 6], [6, 6, 4]]

):

Ev:= linalg::eigenvectors(A)

The matrix A is diagonalizable. Hence, we extract the eigenvectors and combine them to
a matrix P such that P^-1 * A * P is the diagonal matrix whose diagonal entries are
given by the corresponding eigenvalues:

Eigenvectors:= Ev[1][3][1], Ev[2][3][1], Ev[3][3][1]

P:= Eigenvectors[1].Eigenvectors[2].Eigenvectors[3]
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P^-1 * A * P

A more skillful way of extracting the above eigenvectors from the output generated by
linalg::eigenvectors is the following:

map(Ev, op@op, 3)

If we consider the matrix A over the domain Dom::Float, the call of
linalg::eigenvectors(A) results in a numerical computation of the eigenvalues and
the eigenvectors of A via the function numeric::eigenvectors:

B := Dom::Matrix(Dom::Float)(A): 

linalg::eigenvectors(B)

Parameters

A

A square matrix of a domain of category Cat::Matrix

15-51



15 linalg – Linear Algebra

Return Values

List of sublists, where each sublist consists of an eigenvalue λ of A, its algebraic
multiplicity and a basis for the eigenspace of λ. If a basis of an eigenspace cannot be
computed, FAIL is returned.

See Also

MuPAD Functions
linalg::eigenvalues | linalg::nullspace | numeric::eigenvectors
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linalg::expr2Matrix

Construct a matrix from equations

Syntax

linalg::expr2Matrix(eqns, <vars, R>, <Include>)

Description

linalg::expr2Matrix(eqns, vars) constructs the extended coefficient matrix

 of the system of m linear equations in eqns with respect to the n indeterminates

in vars. The vector  is the right-hand side of this system.

linalg::expr2Matrix returns the extended coefficient matrix . The right-

hand side vector  can be extracted from the matrix M by linalg::col(M, n + 1).

The coefficient matrix A can be extracted by linalg::delCol(M, n + 1).

Arithmetical expressions in eqns are considered as equations with right hand-sides zero.

If no variables are given, then the indeterminates of the equations are determined with
the function indets and the option PolyExpr, i.e., the left-hand sides of the equations
are considered as polynomial expressions.

If no component ring R is given then the standard domain Dom::ExpressionField() is
chosen as the component ring of the extended coefficient matrix.

The coefficients of the linear equations are converted into elements of the component ring
R. An error message is returned if this is not possible.
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Examples

Example 1

The extended coefficient matrix of the system x + y + z = 1, 2 y - z + 5 = 0 of linear
equations in the variables x, y, z is the following 2×4 matrix:

delete x, y, z:

Ab := linalg::expr2Matrix(

  [x + y + z = 1, 2*y - z + 5], [x, y, z], Dom::Real

)

We use linalg::matlinsolve to compute the general solution of this system:

linalg::matlinsolve(Ab)

The coefficient matrix or the right-hand side vector can be be extracted from the matrix
Ab in the following way:

A := linalg::delCol(Ab, 4); b := linalg::col(Ab, 4)
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Example 2

The following two inputs lead to different linear systems:

delete x, y, z:

linalg::expr2Matrix([x + y + z = 1, 2*y - z + 5 = x]),

linalg::expr2Matrix([x + y + z = 1, 2*y - z + 5 = x], [x, y])

Example 3

Note the difference between calling linalg::expr2Matrix with and without option
Include:

delete x, y:

linalg::expr2Matrix([x + y = 1, 2*x - y = 3], [x, y])

linalg::expr2Matrix([x + y = 1, 2*x - y = 3], [x, y], Include)

Parameters

eqns

The system of linear equations, i.e. a set or list of expressions of type "_equal"

vars

A set or list of indeterminates
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R

A commutative ring, i.e., a domain of category Cat::CommutativeRing

Options

Include

Appends the negative of the right-hand side vector  to the coefficient matrix A of the

given system of linear equations. The result is the m×(n + 1) matrix .

Return Values

m×(n + 1) matrix of the domain Dom::Matrix(R).

See Also

MuPAD Functions
indets | linalg::matlinsolve | linsolve
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linalg::factorCholesky
The Cholesky decomposition of a matrix

Syntax
linalg::factorCholesky(A, <NoCheck>, <Real>)

Description
linalg::factorCholesky(A) computes the Cholesky factorization of a Hermitian
positive definite matrix A and returns a lower triangular matrix L, such that L LH = A.
Here, LH is the Hermitian conjugate of L (the complex conjugate of the transpose).

The component ring of A must be a field (a domain of category Cat::Field).

If A is not a Hermitian positive definite matrix, then linalg::factorCholesky throws
an error. If you use NoCheck, linalg::factorCholesky does not check whether the
matrix is Hermitian positive definite. See “Example 2” on page 15-58.

If you use Real, then linalg::factorCholesky assumes that A is real and symmetric
and, therefore, does not apply complex conjugate in the course of the algorithm.

linalg::factorCholesky returns FAIL if it fails to compute the matrix L over the
component ring of A. (The algorithm requires the computation of square roots of some
elements in L).

Environment Interactions
Properties of identifiers are taken into account.

Examples

Example 1

Define matrix S as follows:
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S := Dom::Matrix(Dom::Rational)(

  [[4, -2, 4, 2], [-2, 10, -2, -7], [4, -2, 8, 4], [2, -7, 4, 7]] 

)

Compute the Cholesky factorization of S:

L := linalg::factorCholesky(S)

Verify the result:

is(L * htranspose(L) = S)

Example 2

Define matrix H as follows:

H := matrix([[a, b], [b, a]])

linalg::factorCholesky cannot compute the Cholesky factorization because it
cannot prove that H is a Hermitian matrix:

linalg::factorCholesky(H)

Error: A Hermitian matrix is expected. [linalg::factorCholesky]
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If you assume that a and b are real, then matrix H is Hermitian. Still,
linalg::factorCholesky cannot compute the Cholesky factorization:

linalg::factorCholesky(H) assuming a in R_ and b in R_

Error: Cannot check whether the matrix component is positive. [linalg::factorCholesky]

Use the NoCheck option to skip checking whether this matrix is Hermitian positive
definite. Now, linalg::factorCholesky computes the factorization:

L := linalg::factorCholesky(H, NoCheck)

This result is not generally valid:

L*htranspose(L) = H

It is valid for 0 < a < b:

simplify(L*htranspose(L) = H) assuming 0 < b < a

Example 3

Compute the Cholesky factorization of matrix H using NoCheck to skip checking whether
it is Hermitian positive definite. By default, linalg::factorCholesky computes a
Hermitian factorization A = L LH . Thus, the result contains complex conjugates (implied
by |a| = a*ā).
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H := matrix([[a, b], [b, a]]):

L := linalg::factorCholesky(H, NoCheck)

To avoid complex conjugates in the result, use Real:

L := linalg::factorCholesky(H, NoCheck, Real)

With this option, linalg::factorCholesky computes a symmetric factorization
A = L Lt instead of a Hermitian factorization A = L LH :

simplify(L*transpose(L) = H)

Parameters

A

Square matrix of a domain of category Cat::Matrix.

Options

NoCheck

Skip checking whether A is Hermitian positive definite. When you use this option, the
identity L LH = A is guaranteed to hold only if A is a Hermitian positive definite matrix.
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Real

Compute the Cholesky factorization assuming that matrix A is symmetric and all its
symbolic parameters are real. In this case, the transpose of the matrix is its Hermitian
transpose. Use this option if A contains symbolic parameters, and you want to avoid
complex conjugates. When using this option, the identity L LT = A is guaranteed to hold.

Return Values

Matrix of the same domain type as A, or the value FAIL.

Algorithms

The Cholesky factorization of a Hermitian positive definite n×n matrix A is a
decomposition of A in a product L LH = A, such that L is a lower triangular matrix with
positive entries on the main diagonal. L is called the “Cholesky factor” of A.

If L = (li, j), where 1 ≤ i ≤ n, 1 ≤ j ≤ n, is the Cholesky factor of A, then .

See Also

MuPAD Functions
linalg::isHermitian | linalg::isPosDef
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linalg::factorLU

LU-decomposition of a matrix

Syntax

linalg::factorLU(A)

Description

linalg::factorLU(A) computes an LU-decomposition of an m×n matrix A, i.e.,
a decomposition of the A into an m×m lower triangular matrix L and an m×n upper
triangular matrix U such that P A = L U, where P is a permutation matrix.

The diagonal entries of the lower triangular matrix L are equal to one (Doolittle-
decomposition). The diagonal entries of U are the pivot elements used during the
computation.

The matrices L and U are unique.

pivindex is a list [ r1, r2, ...] representing the row exchanges of A in the pivoting
steps, i.e., B = P A = L U, where bij = ari, j.

A floating-point approximation of the decomposition is computed using
numeric::factorLU, if the matrix A is defined over the component ring Dom::Float.
In this case it is recommended to call numeric::factorLU directly for a better
efficiency.

The algorithm also works for singular A. In this case either L or U is singular.

L and U are nonsingular if and only if A is nonsingular.

The component ring of the matrix A must be a field, i.e., a domain of category
Cat::Field.
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Examples

Example 1

We compute an LU-decomposition of the real matrix:

A := Dom::Matrix(Dom::Real)(

  [[2, -3, -1], [1, 1, -1], [0, 1, -1]]

)

[L, U, pivlist] := linalg::factorLU(A)

The lower triangular matrix L is the first element und the upper triangular matrix U is
the second element of the list LU. The product of these two matrices is equal to the input
matrix A:

L * U

Example 2

An LU-decomposition of the 3×2 matrix:

A := Dom::Matrix(Dom::Real)([[2, -3], [1, 2], [2, 3]])
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gives a 3×3 lower triangular matrix and a 3×2 upper triangular matrix:

[L, U, pivlist] := linalg::factorLU(A)

L * U

Example 3

To compute the LU-decomposition of the matrix:

A := matrix([[1, 2, -1], [0, 0, 3], [0, 2, -1]])

one row interchange is needed, and we therefore get a non-trivial permutation list:

[L, U, pivlist] := linalg::factorLU(A)

15-64



 linalg::factorLU

The corresponding permutation matrix is the following:

P := linalg::swapRow(matrix::identity(3), 3, 2)

Hence, we have a decomposition of A into the product of the three matrices , L and U as

follows:

P^(-1) * L * U

Example 4

You may compute an LU-decomposition of a matrix with symbolic components, such as:

delete a, b, c, d:

A := matrix([[a, b], [c, d]])

The diagonal entries of the matrix U are the pivot elements used during the computation.
They must be non-zero, if the inverse of U is needed:

[L, U, pivlist] := linalg::factorLU(A)
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For example, if we use this decomposition to solve the linear system  for

arbitrary vectors , then the following result is only correct for a ≠ 0 and

:

delete b1, b2:

linalg::matlinsolveLU(L, U, matrix([b1, b2]))

Parameters

A

A matrix of a domain of category Cat::Matrix

Return Values

List [L, U, pivindex] with the two matrices L and U of the domain
Dom::Matrix(R) and a list pivindex of positive integers. R is the component ring of A.

Algorithms

The following algorithm for solving the system  with a nonsingular matrix A uses
LU-decomposition:

1 Compute a LU-decomposition of A: A = L U.
2 Solve  by forward substitution.
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3 Solve  by backward substitution.

The LU-decomposition of a matrix A is useful for solving several systems of linear

equations  with the same coefficient matrix A and several right-hand side vectors

, because then step one of the algorithm above needs to be done only once.

See Also

MuPAD Functions
linalg::factorCholesky | linalg::factorQR | linalg::inverseLU |
linalg::matlinsolveLU | lllint | numeric::factorLU
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linalg::factorQR

QR-decomposition of a matrix

Syntax

linalg::factorQR(A)

Description

linalg::factorQR(A) computes an QR-decomposition of an m×n matrix A, i.e., a
decomposition of A into an m×m unitary matrix Q and an m×n upper triangular matrix R
such that Q R = A.

linalg::factorQR uses Gram-Schmidt orthonormalization to compute the
decomposition.

For a singular or non-square matrix A the QR-decomposition of A is not unique.

The columns of Q form an orthonormal basis with respect to the scalar product of two
vectors, defined by linalg::scalarProduct, and the 2-norm of two vectors (see the
method "norm" of the domain constructor Dom::Matrix).

If the component ring of A does not define the method "conjugate", then the factor Q is
orthogonal instead of unitary.

If the columns of A cannot be orthonormalized then FAIL is returned.

If A is a matrix over the domain Dom::Float and the computations are based on the
standard scalar product, then the use of the corresponding function from the numeric
library (numeric::factorQR) is recommended.

Even if A is defined over the real or the complex numbers the call of
numeric::factorQR with the option Symbolic is recommended for better efficiency.

The component ring of the matrix A must be a field, i.e., a domain of category
Cat::Field.
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Examples

Example 1

We compute the QR-decomposition of a real matrix:

A := Dom::Matrix(Dom::Real)(

  [[2, -3, -1], [1, 1, -1], [0, 1, -1]]

)

QR := linalg::factorQR(A)

The orthogonal matrix Q is the first element und the upper triangular matrix R is the
second element of the list QR. The product of these two matrices is equal to the input
matrix A:

QR[1] * QR[2]

Example 2

The QR-decomposition of the 3×2 matrix:
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B := Dom::Matrix(Dom::Real)(

  [[2, -3], [1, 2], [2, 3]]

)

yields a 3×3 orthogonal matrix and a 3×2 upper triangular matrix:

QR := linalg::factorQR(B)

QR[1] * QR[2]

For this example we may call numeric::factorQR(B, Symbolic) instead, which in
general is faster than linalg::factorQR:

QR := numeric::factorQR(B, Symbolic)
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Parameters

A

A matrix of a domain of category Cat::Matrix

Return Values

List [Q, R] of the two matrices Q and R (of the same domain type as A), or the value
FAIL.

Algorithms

The QR-decomposition can be used to generate a least square solution to an

overdetermined system of linear equations. If , then  can be solved via
backward substitution.

See Also

MuPAD Functions
linalg::factorCholesky | linalg::factorLU | lllint | numeric::factorQR
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linalg::frobeniusForm
Frobenius form of a matrix

Syntax
linalg::frobeniusForm(A, <All>)

Description

linalg::frobeniusForm(A) returns the Frobenius form of the matrix A, also called
the Rational Canonical form of A.

linalg::frobeniusForm(A, All) computes the Frobenius form R of A and a
transformation matrix P such that P R P- 1.

The Frobenius form as computed by linalg::frobeniusForm is unique (see below).

The component ring of A must be a field, i.e., a domain of category Cat::Field.

Examples

Example 1

The Frobenius form of the following matrix over ℂ:

A := Dom::Matrix(Dom::Complex)( 

  [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

)

is the matrix:
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R := linalg::frobeniusForm(A)

The transformation matrix P can be selected from the list [R, P], which is the result of
linalg::frobeniusForm with option All:

P := linalg::frobeniusForm(A, All)[2]

We check the result:

P * R * P^(-1)

Parameters

A

A square matrix of a domain of category Cat::Matrix

Options

All

Returns the list [R, P] with the Frobenius form R of A and a transformation matrix P
such that A = P R P- 1.
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Return Values
Matrix of the same domain type as A, or the list [R, P] when the option All is given.

Algorithms
The Frobenius form of a square matrix A is the matrix

,

where R1, …, Rr are known as companion matrices and have the form:

.

In the last column of the companion matrix Ri, you see the coefficients of its minimal
polynomial in ascending order, i.e., the polynomial mi := Xni + ani - 1 Xni - 1 + … + a1 X + a0 is
the minimal polynomial of the matrix Ri.

For these polynomials the following holds: mi + 1 divides mi for i = 1, …, r - 1, and the
product of all mi for i = 1, …, r gives a factorization of the characteristic polynomial of the
matrix A. The Frobenius form defined in this way is unique.

References
Reference: P. Ozello: Calcul exact des formes de Jordan et de Frobenius d'une matrice, pp.
30–43. Thèse de l'Universite Scientifique Technologique et Medicale de Grenoble, 1987
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See Also

MuPAD Functions
linalg::hermiteForm | linalg::jordanForm | linalg::minpoly |
linalg::smithForm
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linalg::gaussElim
Gaussian elimination

Syntax
linalg::gaussElim(A, <All>)

Description

linalg::gaussElim(A) performs Gaussian elimination on the matrix A to reduce A to
a similar matrix in upper row echelon form.

A row echelon form of A returned by linalg::gaussElim is not unique. See
linalg::gaussJordan for computing the reduced row echelon form.

The component ring R of A must be an integral domain, i.e., a domain of category
Cat::IntegralDomain.

If R is a field, i.e., a domain of category Cat::Field, ordinary Gaussian elimination is
used. Otherwise, linalg::gaussElim applies fraction-free Gaussian elimination to A.

linalg::gaussElim serves as an interface function for the method "gaussElim" of
the matrix domain of A, i.e., one may call A::dom::gaussElim(A) directly instead of
linalg::gaussElim(A, All)

Refer to the help page of Dom::Matrix for details about the computation strategy of
linalg::gaussElim.

Examples

Example 1

We apply Gaussian elimination to the following matrix:

A := Dom::Matrix(Dom::Rational)( 
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  [[1, 2, 3, 4], [-1, 0, 1, 0], [3, 5, 6, 9]] 

)

which reduces A to the following row echelon form:

linalg::gaussElim(A)

Example 2

We apply Gaussian elimination to the matrix:

B := Dom::Matrix(Dom::Integer)( 

  [[1, 2, -1], [1, 0, 1], [2, -1, 4]] 

)

and get the following result:

linalg::gaussElim(B, All)

We see that rank(B) = 3 and .
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Parameters

A

A matrix of a domain of category Cat::Matrix

Options

All

Returns a list  where T is a row echelon form of A and {j1,
…, jr} is the set of characteristic column indices of T.

If A is not square, then the value FAIL is given instead of .

Return Values

a matrix of the same domain type as A, or the list [T, rank(A), det(A),
{j_1,dots,j_r}] when the option All is given (see below).

Algorithms

Let T = (ti, j)1 ≤ i ≤ m, 1 ≤ j ≤ n be an m×n matrix. Then T is a matrix in an upper row echelon
form, if r ∈ {0, 1, …, n} and indices j1, j2, …, jr ∈ {1, …, n} exist with:

1 j1 < j2 < ··· < jr.
2 For each i ∈ {1, …, r}: ti, 1 = ti, 2 = ··· = ti, ji - 1 = 0.
3 For each i ∈ {r + 1, …, m}: ti, j = 0 for each j ∈ {1, …, n}.

The indices j1, j2, …, jr are the characteristic column indices of the matrix T.

See Also

MuPAD Functions
linalg::gaussJordan | lllint
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linalg::gaussJordan
Gauss-Jordan elimination

Syntax
linalg::gaussJordan(A, <All>)

Description

linalg::gaussJordan(A) performs Gauss-Jordan elimination on the matrix A, i.e., it
returns the reduced row echelon form of A.

The component ring R of A must be an integral domain, i.e., a domain of category
Cat::IntegralDomain.

If R is a field, i.e., a domain of category Cat::Field, then the leading entries of the
matrix T in reduced row echelon form are equal to one.

If R is a ring providing the method "gcd", then the components of each row of T do not
have a non-trivial common divisor.

If the component ring of A is a field, then the reduced row echelon form is unique.

Examples

Example 1

We apply Gauss-Jordan elimination to the following matrix:

A := Dom::Matrix(Dom::Rational)( 

  [[1, 2, 3, 4], [-5, 0, 3, 0], [3, 5, 6, 9]] 

)
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linalg::gaussJordan(A, All)

We see that rank(B) = 3. Because the determinant of a matrix is only defined for square
matrices, the third element of the returned list is the value FAIL.

Example 2

If we consider the matrix from “Example 1” on page 15-79 as an integer matrix and
apply the Gauss-Jordan elimination we get the following matrix:

B := Dom::Matrix(Dom::Integer)( 

  [[1, 2, 3, 4], [-5, 0, 3, 0], [3, 5, 6, 9]] 

):

linalg::gaussJordan(B)

Parameters

A

A matrix of a domain of category Cat::Matrix

Options

All

Returns a list  where T is the reduced row echelon form
of A and {j1, …, jr} is the set of characteristic column indices of T.
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If A is not square, then the value FAIL is given instead of .

Return Values

a matrix of the same domain type as A, or the list [T, rank(A), det(A),
{j_1,dots,j_r}] when the option All is given (see below).

Algorithms

Let T = (ti, j)1 ≤ i ≤ m, 1 ≤ j ≤ n be an m×n matrix. Then T is a matrix in reduced row echelon
form, if r ∈ {0, 1, …, n} and indices j1, j2, …, jr ∈ {1, …, n} exist with:

1 j1 < j2 < ··· < jr.
2 For each i ∈ {1, …, r}: ti, 1 = ti, 2 = ··· = ti, ji - 1 = 0. In addition, if A is defined over a

field: ti, ji = 1.
3 For each i ∈ {r + 1, …, m}: ti, j = 0 for each j ∈ {1, …, n}.
4 For each i ∈ {1, …, r}: tk, ji = 0 for each k ∈ {1, …, i - 1}.

The indices j1, j2, …, jr are the characteristic column indices of the matrix T.

See Also

MuPAD Functions
linalg::gaussElim
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linalg::hermiteForm
Hermite normal form of a matrix

Syntax
linalg::hermiteForm(A, <var>, <All>)

Description

linalg::hermiteForm(A) returns the Hermite normal form of a nonsingular integer
square matrix A. The Hermite normal form of a matrix is an upper-triangular matrix
H, such that Hjj ≥ 0 and  for j > i. If matrix A is not square or singular,

linalg::hermiteForm simply returns an upper-triangular matrix.

If matrix A is not of the domain Dom::Matrix(Dom::Integer) then
linalg::hermiteForm converts A into a matrix of this domain for intermediate
computations. If this conversion fails, then linalg::hermiteForm issues an error
message.

linalg::hermiteForm(A, var) returns the Hermite normal form of A assuming that
the elements of A are univariate polynomials in the variable var. If A does not contain
var, then hermiteForm(A) and hermiteForm(A,var) return different results.

linalg::hermiteForm(A, <var>, All) returns the list [H, U], where H is the
Hermite normal form of A, and U is a unimodular transformation matrix, such that H =
U*A. You can use the All option with or without specifying the variable var.

Examples

Example 1

Create the following matrix of integers.

A := matrix([[9, -36, 30], [-36, 192, -180], [30, -180, 180]])
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Find the Hermite normal form of this matrix.

linalg::hermiteForm(A)

Use the All option to find the corresponding transformation matrix.

[H, U] := linalg::hermiteForm(A, All)

Verify that H = U*A.

H = U*A

Example 2

Create the following matrix of polynomials.

B := matrix([[-(x - 3)^2*(x - 2),(x - 3)*(x - 2)*(x - 4)],

             [(x - 3)*(x - 2)*(x - 4),-(x - 3)^2*(x - 4)]

            ])
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Find the Hermite normal form of this matrix.

linalg::hermiteForm(B)

Use the All option to find the corresponding transformation matrix.

[H, U] := linalg::hermiteForm(B, All)

Example 3

If a matrix does not contain a particular variable, and you call linalg::hermiteForm
specifying that variable as the second argument, then the result differs from what you
get without specifying that variable. For example, create a matrix that does not contain
any variables.

A := matrix([[9, -36, 30], [-36, 192, -180], [30, -180, 180]])

Call linalg::hermiteForm specifying variable x as the second argument. In this case,
linalg::hermiteForm assumes that the elements of A are univariate polynomials in x.

linalg::hermiteForm(A, x)
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Call linalg::hermiteForm without specifying variables. In this case,
linalg::hermiteForm treats A as a matrix of integers.

linalg::hermiteForm(A)

Parameters

A

An integer matrix of category Cat::Matrix

Options

All

Returns the list [H, U], where H is the Hermite normal form of A, and U is a
corresponding transformation matrix.

Return Values

Matrix of the same domain type as A. With the option All, linalg::hermiteForm
returns the list [H, U], where H is a matrix of the same domain type as A, and U is a
corresponding transformation matrix.

Algorithms

If A is an n×n matrix with coefficients in ℤ then its Hermite normal form is an n×n
matrix H = (hij), such that H = AU with .

The Hermite normal form H is unique if A is matrix of full row rank. The matrix U is not
unique.
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If A is a square matrix, then the product of the diagonal elements of its Hermite normal
form is, up to the sign, the determinant of A.

See Also

MuPAD Functions
linalg::frobeniusForm | linalg::jordanForm | linalg::smithForm | lllint
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linalg::hessenberg
Hessenberg matrix

Syntax
linalg::hessenberg(A, <All>)

Description

linalg::hessenberg(A) returns an (upper) Hessenberg matrix H.

linalg::hessenberg uses Gaussian elimination without pivoting. There is no special
implementation for matrices with floating-point components.

The component ring of A must be a field, i.e., a domain of category Cat::Field.

Examples

Example 1

Consider the matrix:

A := Dom::Matrix(Dom::Rational)(

  [[0, 1, 0, -1], [-4/3, 2/3, 5/3, -1/3],

   [-1, 2, 0, 0], [-5/3, 4/3, 1/3, 1/3]]

)
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The following Hessenberg matrix is similar to A:

H := linalg::hessenberg(A)

If the corresponding transformation matrix is needed as well, call linalg::hessenberg
with option All:

[H, P] := linalg::hessenberg(A, All)

Then P is a nonsingular matrix such that the product P A P- 1 is equal to H:

P * A * P^(-1)
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Parameters

A

A square matrix of a domain of category Cat::Matrix

Options

All

Returns the list [H, P] with a Hessenberg matrix H similar to A and the corresponding
nonsingular transformation matrix P such that H = P A P- 1.

Return Values

Matrix of the same domain type as A, or the list [H, P] when the option All is given.

Algorithms

An n×n matrix A = (ai, j)1 ≤ i ≤ n, 1 ≤ j ≤ n is called an (upper) Hessenberg matrix, if the
following holds: ai, j = 0 for all i, j ∈ {1, …, n} with i > j.

For each square matrix A over a field there exists a Hessenberg matrix similar to A. In
general, the upper Hessenberg matrix is not unique.

References

Reference: K.-H. Kiyek, F. Schwarz: Lineare Algebra. Teubner Studienbücher
Mathematik, B.G. Teubner Stuttgart, Leipzig, 1999.

See Also

MuPAD Functions
linalg::charpoly
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linalg::hilbert
Hilbert matrix

Syntax
linalg::hilbert(n, <R>)

Description

linalg::hilbert(n) returns the n×n Hilbert matrix H = (hi, j)1 ≤ i ≤ m, 1 ≤ j ≤ n defined by
.

The entries of Hilbert matrices are rational numbers. Note, however, that the returned
matrix is not defined over the component domain Dom::Rational, but over the standard
component domain Dom::ExpressionField(). Thus, no conversion is necessary when
working with other functions that expect or return matrices over that component domain.

Use linalg::hilbert(n, Dom::Rational) to define the n×n Hilbert matrix over the
field of rational numbers.

Examples

Example 1

We construct the 3×3 Hilbert matrix:

H := linalg::hilbert(3)
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This is a matrix of the domain Dom::Matrix().

If you prefer a different component ring, the matrix may be converted to the desired
domain after construction (see coerce, for example). Alternatively, one can specify
the component ring when creating the Hilbert matrix. For example, specification of the
domain Dom::Float generates floating-point entries:

H := linalg::hilbert(3, Dom::Float)

domtype( H )

Parameters

n

The dimension of the matrix: a positive integer

R

The component ring: a domain of category Cat::Rng; default:
Dom::ExpressionField()

Return Values

n×n matrix of the domain Dom::Matrix(R).

Algorithms

Hilbert matrices are symmetric and positive definite.
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Hilbert matrices of large dimension are notoriously ill-conditioned challenging any
numerical inversion scheme. However, their inverse can also be computed by a closed
formula (see linalg::invhilbert).

See Also

MuPAD Functions
linalg::invhilbert | linalg::invpascal | linalg::invvandermonde
| linalg::pascal | linalg::toeplitz | linalg::toeplitzSolve |
linalg::vandermonde | linalg::vandermondeSolve
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linalg::htranspose
Hermitian transpose of a matrix

Syntax
linalg::htranspose(M)

Description

linalg::htranspose(M) computes the Hermitian transpose of the matrix M.

The Hermitian transpose of M is computed. The result is an n×m matrix.

The [i, j]th element of the result is equal to the conjugate of the [j, i]th element of M.

Examples

Example 1

We define a 3×4 matrix:

A := matrix([[1, 2, 3, 4], [-I, 0, 1+I, 0], [3, 5, 6, 9]])

Then the Hermitian transpose of A is the 4 ×3 matrix:

linalg::htranspose(A)

15-93



15 linalg – Linear Algebra

Parameters

M

m×n matrix of domain Dom::Matrix

Return Values

n×m matrix of domain Dom::Matrix.

Overloaded By

M

Algorithms

Let A = (ai, j)1 ≤ i ≤ m, 1 ≤ j ≤ n be an m×n matrix. Then the Hermitian transpose of A is the
n×m matrix:

.

See Also

MuPAD Functions
conjugate | linalg::transpose
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linalg::intBasis
Basis for the intersection of vector spaces

Syntax
linalg::intBasis(S1, S2, …)

Description

linalg::intBasis( S1, S2, ...) returns a basis for the intersection of the vector
spaces spanned by the vectors in S1, S2, ….

The domain type of the vectors of the returned set is the domain type of the first
parameter S1.

A basis for the zero-dimensional space is the empty set or empty list, respectively.

The given vectors must be defined over the same component ring which must be a field,
i.e., a domain of category Cat::Field.

Examples

Example 1

We define three vectors  in ℚ
2:

MatQ := Dom::Matrix(Dom::Rational):

v1 := MatQ([[3, -2]]); v2 := MatQ([[1, 0]]); v3 := MatQ([[5, -3]])
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A basis for the vector space V1 ∩ V2 ∩ V3 with

• V1 generated by 

• V2 generated by 

• V3 generated by 

is:

linalg::intBasis([v1, v2, v3], [v1, v3], [v1 + v2, v2, v1 + v3])

Example 2

The intersection of the two vector spaces spanned by the vectors in S1 and S2,
respectively:

S1 := {matrix([[1, 0, 1, 0]]), matrix([[0, 1, 0, 1]])};

S2 := {matrix([[1, 2, 1, 1]]), matrix([[-1, -2, 1, 0]])}

is the zero-dimensional space:

linalg::intBasis(S1, S2)

Parameters

S1, S2, …

Either sets or lists of n-dimensional vectors (a vector is an n×1 or 1 ×n matrix of a
domain of category Cat::Matrix)
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Return Values

Set or a list of vectors, according to the domain type of the parameter S1.

See Also

MuPAD Functions
linalg::basis | linalg::sumBasis
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linalg::inverseLU
Computing the inverse of a matrix using LU-decomposition

Syntax
linalg::inverseLU(A)

linalg::inverseLU(L, U, pivindex)

Description

linalg::inverseLU(A) computes the inverse  of the square matrix A using LU-

decomposition.

linalg::inverseLU(L, U, pivindex) computes the inverse of the matrix A = P-

1 L U where L, U and pivindex are the result of an LU-deomposition of the (nonsingular)
Matrix A, as computed by linalg::factorLU.

The matrix A must be nonsingular.

pivindex is a list [r[1], r[2], ...] representing a permutation matrix P such that
B = PA = LU, where bij = ari, j.

It is not checked whether pivindex has such a form.

The component ring of the input matrices must be a field, i.e., a domain of category
Cat::Field.

Examples

Example 1

We compute the inverse of the matrix:

A := Dom::Matrix(Dom::Real)(
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  [[2, -3, -1], [1, 1, -1], [0, 1, -1]]

)

using LU-decomposition:

Ai := linalg::inverseLU(A)

We check the result:

A * Ai, Ai * A

We can also compute the inverse of A in the usual way:

1/A

linalg::inverseLU should be used for efficiency reasons in the case where an LU
decomposition of a matrix already is computed, as the next example illustrates.
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Example 2

If we already have an LU decomposition of a (nonsingular) matrix, we can compute the
inverse of the matrix A = P- 1 L U as follows:

LU := linalg::factorLU(linalg::hilbert(3))

linalg::inverseLU(op(LU))

linalg::inverseLU then only needs to perform forward and backward substitution to
compute the inverse matrix (see also linalg::matlinsolveLU).

Parameters

A, L, U

A square matrix of a domain of category Cat::Matrix

pivindex

A list of positive integers

Return Values

Matrix of the same domain type as A or L, respectively.
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See Also

MuPAD Functions
_invert | linalg::factorLU | linalg::matlinsolveLU

15-101



15 linalg – Linear Algebra

linalg::invhilbert
Inverse of a Hilbert matrix

Syntax
linalg::invhilbert(n, <R>)

Description

linalg::invhilbert(n) returns the inverse of the n×n Hilbert matrix H. The n×n
Hilbert matrix H = (hi, j)1 ≤ i ≤ m, 1 ≤ j ≤ n is defined by .

linalg::invhilbert uses an explicit formula for the inverse.

Note that the entries of the inverse of a Hilbert matrix are integers. But the returned
matrix is defined over the standard component domain Dom::ExpressionField() so
that no conversion is necessary when working with other functions that expect or return
matrices over that component domain.

linalg::invhilbert(n,Dom::Integer) returns the inverse of the n×n Hilbert
matrix defined over the integers.

Examples

Example 1

We compute the inverse of the 3×3 Hilbert matrix:

A := linalg::invhilbert(3)
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This is a matrix of the domain Dom::Matrix().

If you prefer a different component ring, the matrix may be converted into the
desired domain afterwards (see coerce, for example). Alternatively, one can specify
the component ring when calling linalg::invhilbert, for example the domain
Dom::Float:

A := linalg::invhilbert(3, Dom::Float)

domtype( A )

Parameters

n

The dimension of the matrix: a positive integer

R

The component ring: a domain of category Cat::Rng; default:
Dom::ExpressionField()

Return Values

n×n matrix of the domain Dom::Matrix(R).

Algorithms

Hilbert matrices of large dimension are notoriously ill-conditioned, challenging any
numerical inversion scheme.
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linalg::invhilbert uses the formula

where

for the inverse of the n×n Hilbert matrix H. All entries of  are integers.

References

N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM 1996

See Also

MuPAD Functions
linalg::hilbert | linalg::invpascal | linalg::invvandermonde
| linalg::pascal | linalg::toeplitz | linalg::toeplitzSolve |
linalg::vandermonde | linalg::vandermondeSolve
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linalg::invpascal
Inverse of a Pascal matrix

Syntax
linalg::invpascal(n, <R>)

Description

linalg::invpascal(n) returns the inverse of the n×n Pascal matrix.

The entries of inverse Pascal matrices are integer numbers. Note, however, that the
returned matrix is not defined over the component domain Dom::Integer, but over
the standard component domain Dom::ExpressionField(). Thus, no conversion is
necessary when working with other functions that expect or return matrices over that
component domain.

The runtime to compute the inverse n×n Pascal matrix via linalg::invpascal is
O(n2). This is much faster than inverting the Pascal matrix by a generic inversion
algorithm.

The Pascal matrices are provided by linalg::pascal.

Examples

Example 1

We construct the inverse 3×3 Pascal matrix:

linalg::invpascal(3)
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This is a matrix of the domain Dom::Matrix().

If you prefer a different component ring, the matrix may be converted to the desired
domain after construction (see coerce, for example). Alternatively, one can specify the
component ring when creating the inverse Pascal matrix. For example, specification of
the domain Dom::Float generates floating-point entries:

linalg::invpascal(3, Dom::Float)

domtype(%)

Parameters

n

The dimension of the matrix: a positive integer

R

The component ring: a domain of category Cat::Rng; default:
Dom::ExpressionField()

Return Values

n×n matrix of the domain Dom::Matrix(R).

Algorithms

Pascal matrices and their inverses are symmetric and positive definite.
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The determinant of a Pascal matrix and its inverse is 1.

The inverse of a Pascal matrix has integer entries.

If λ is an eigenvalue of a Pascal matrix/inverse Pascal matrix, then  is also an

eigenvalue of the matrix.

The entries Qij of the inverse n×n Pascal matrix Q satisfy the linear relation

.

This relation is used by linalg::invpascal to compute the matrix.

See Also

MuPAD Functions
linalg::hilbert | linalg::invhilbert | linalg::invvandermonde
| linalg::pascal | linalg::toeplitz | linalg::toeplitzSolve |
linalg::vandermonde | linalg::vandermondeSolve
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linalg::isHermitian
Checks whether a matrix is Hermitian

Syntax
linalg::isHermitian(A)

Description

linalg::isHermitian(A) determines whether the matrix A is Hermitian, i.e.,
whether , where  denotes the conjugate matrix.

If the component ring of the matrix A does not provide the method "conjugate", then
A is tested for symmetry, i.e., linalg::isHermitian returns TRUE if and only if A
satisfies the equation A = At.

Examples

Example 1

Here is an example of a Hermitian matrix:

A := Dom::Matrix(Dom::Complex)([[1, I], [-I, 1]])

linalg::isHermitian(A)

The following matrix is not Hermitian:
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B := Dom::Matrix(Dom::Complex)([[1, -I], [-I, 1]])

linalg::isHermitian(B)

The reason is the following:

linalg::transpose(conjugate(B)) <> B

Example 2

Here is an example of a symmetric matrix over the integers:

C := Dom::Matrix(Dom::Integer)([[1, 2], [2, -1]])

linalg::isHermitian(C)

Parameters

A

A square matrix of a domain of category Cat::Matrix
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Return Values

Either TRUE or FALSE.

See Also

MuPAD Functions
linalg::isPosDef
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linalg::isPosDef
Test a matrix for positive definiteness

Syntax
linalg::isPosDef(A)

Description
linalg::isPosDef(A) checks whether the matrix A is positive definite, so that

 for arbitrary vectors .

The component ring of A must be a field, i.e., a domain of category Cat::Field.

An error message is returned, if a result of an intermediate computation cannot be
checked for being positive (which could happen, for example, if components of A are
symbolic).

Environment Interactions
Properties of identifiers are taken into account.

Examples

Example 1

Here is an example of a positive definite matrix:

MatR := Dom::Matrix( Dom::Real ):

A := MatR([[14, 6, 9], [6, 17, -4], [9, -4, 13]])
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linalg::isPosDef(A)

The following matrix is not positive definite:

B := MatR([[1, 2, 3], [2, 3, 4], [5, 6, 7]])

linalg::isPosDef(B)

Example 2

linalg::isPosDef in general does not work for matrices with symbolic entries. It may
respond with an error message (because the system in general cannot decide whether a
symbolic component is positive), such as for the following matrix:

delete a, b:

C := matrix([[a, b], [b, a]])

linalg::isPosDef(C)

Error: Cannot check whether the matrix component is positive. [linalg::factorCholesky]

However, properties of identifiers are taken into account, so that, for example,
linalg::isPosDef is able to perform the test correctly for the following matrix:

assume(a > 1): C := matrix([[a, 1], [1, a]]):

linalg::isPosDef(C)
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Note that such computations depend on the power of the underlying property mechanism
implemented in the property library.

Parameters

A

A matrix of a domain of category Cat::Matrix

Return Values

Either TRUE or FALSE.

See Also

MuPAD Functions
linalg::factorCholesky | linalg::isHermitian
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linalg::isUnitary
Test whether a matrix is unitary

Syntax
linalg::isUnitary(A)

Description

linalg::isUnitary tests whether the matrix A is a unitary matrix. An n×n matrix A
is unitary, if , where In is the n×n identity matrix.

The square matrix A is a unitary matrix, if and only if the columns of A form an
orthonormal basis with respect to the scalar product linalg::scalarProduct of two
vectors.

The correctness of the result FALSE of linalg::isUnitary can only be guaranteed if
the elements of the component ring R of the matrix A are canonically represented, i.e., if
each element of R has only one unique representation.

The axiom Ax::canonicalRep states that a domain has this property. Hence,
linalg::isUnitary returns FALSE or UNKNOWN, respectively, depending on whether
the component ring of A has the axiom Ax::canonicalRep.

If the component ring of A does not define the method "conjugate" then it is checked
whether A is an orthogonal matrix such that A At = En, where En is the n×n identity
matrix.

Examples

Example 1

The following matrix is unitary:

A := 1/sqrt(5) * matrix([[1, 2], [2, -1]])
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linalg::isUnitary(A)

Parameters

A

A square matrix of a domain of category Cat::Matrix

Return Values

Either TRUE, FALSE, or UNKNOWN.

See Also

MuPAD Functions
linalg::orthog | linalg::scalarProduct
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linalg::jordanForm
Jordan normal form of a matrix

Syntax
linalg::jordanForm(A, <All>)

Description

linalg::jordanForm(A) returns the Jordan normal form J of the matrix A.

linalg::jordanForm computes a nonsingular transformation matrix P and a matrix J
such that A = P J P- 1 with J = diag(J1, …, Jr) and Jordan matrices J1, …, Jr.

The Jordan normal form of a square matrix A over a field F exists if the characteristic
polynomial of A splits over F into linear factors. If this is not the case for the matrix A,
then linalg::jordanForm returns FAIL.

The Jordan normal form is unique up to permutations of the Jordan matrices J1, …, Jr.

The implemented method computes the eigenvalues of A. It returns FAIL if this is not
possible (see linalg::eigenvalues).

The component ring of A must be a field, i.e., a domain of category Cat::Field.

Examples

Example 1

The Jordan normal form of the matrix:

A := Dom::Matrix(Dom::Complex)([[1, 2], [4, 5]])
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is the following matrix:

J := linalg::jordanForm(A)

The corresponding transformation matrix P can be obtained from the result [J, P] of
linalg::jordanForm with the option All:

P := linalg::jordanForm(A, All)[2]

We check the result:

map(P * J * P^(-1), radsimp)

To get this result we must apply the function radsimp to each component of the matrix
that is returned by the matrix product P J P- 1.

Parameters

A

A square matrix of a domain of category Cat::Matrix

Options

All

Returns the list [J, P] with the Jordan normal form J of A and the corresponding
transformation matrix P such that A = P J P- 1.
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Return Values

Either a matrix of the same domain type as A, the list [J, P] when the option All is
given, or the value FAIL.

See Also

MuPAD Functions
linalg::eigenvalues | linalg::frobeniusForm | linalg::hermiteForm |
linalg::smithForm
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linalg::kroneckerProduct
Kronecker product of matrices

Syntax
linalg::kroneckerProduct(A, <B, …>)

Description

linalg::kroneckerProduct(A, B) computes the Kronecker product of two matrices
A and B.

The Kronecker product (direct matrix product) of an m×n matrix A and a p×q matrix B is
the (m p) ×(n q) matrix  given in block form as

.

Componentwise:  with I = p (i - 1) + k, J = q (j - 1) + l.

If A and B are matrices of the same matrix domain with the same component ring, the
result is a matrix of the same type as A and B. If the domains or the component rings of A
and B differ, linalg::kroneckerProduct tries to convert B into the domain type of A
by A::dom::coerce. If this fails, conversion of A to the domain type of B is attempted. If
no conversion is possible, an error is raised.

Note: Note that the Kronecker product is only implemented for matrices over the
domains Dom::Matrix, Dom::SquareMatrix or Dom::MatrixGroup. In particular,
this includes matrices created by matrix.
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A call with more than two arguments produces linalg::kroneckerProduct(A, B,
C) = linalg::kroneckerProduct(linalg::kroneckerProduct(A, B), C) etc.

A call with only one argument is possible. It returns the input matrix.

Examples

Example 1

We consider two matrices A and B with symbolic components:

A:= matrix([[a11, a12], [a21, a22]]);

B:= matrix([[b11, b12, b13], [b21, b22, b23]]);

The Kronecker product of A and B is computed by multiplying the matrix B with each of
the components of the matrix A. The resulting block matrix is returned as a matrix of
larger dimension:

linalg::kroneckerProduct(A, B);

delete A, B:

Example 2

An n×n matrix H with components in {- 1, 1} is called a Hadamard matrix if H multiplied
with its transpose equals n times the n×n identity matrix. The matrix H defined below is
a Hadamard matrix:
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H:= matrix([[1, 1], [1, -1]]);

H * linalg::transpose(H) = 2 * matrix::identity(2);

Hadamard matrices play a role in the field of error correcting codes. A basic property of
this type of matrices is that the Kronecker product of two Hadamard matrices is again a
Hadamard matrix. We verify this statement for the matrix H:

H2:= linalg::kroneckerProduct(H, H);

Indeed, the matrix H2 is a again a Hadamard matrix:

H2 * linalg::transpose(H2) = 4 * matrix::identity(4);

delete H, H2:

Parameters

A, B, …

Matrices of the domains Dom::Matrix, Dom::SquareMatrix or Dom::MatrixGroup
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Return Values

Matrix of the same type as A or B.
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linalg::matdim
Dimension of a matrix

Syntax
linalg::matdim(A)

Description

linalg::matdim(A) returns the dimension of the matrix A, i.e., the number of rows
and columns of A.

linalg::matdim is an interface function for the method "matdim" of the matrix
domain of A, i.e., instead of linalg::matdim(A) one may call A::dom::matdim(A)
directly.

Examples

Example 1

The dimension of the matrix:

A := matrix([[1, 2, 3, 4], [3, 1, 4], [5, 6]])

can be determined by:

linalg::matdim(A)

15-123



15 linalg – Linear Algebra

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

Return Values

List [m, n], where m is the number of rows and n is the number of columns of A.

See Also

MuPAD Functions
linalg::ncols | linalg::nrows | linalg::vecdim
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linalg::matlinsolve
Solving systems of linear equations

Syntax
linalg::matlinsolve(A, b, <list>, options)

linalg::matlinsolve(A, B, options)

linalg::matlinsolve(A, options)

Description

linalg::matlinsolve(A, b) computes the general solution of the equation .

linalg::matlinsolve(A, b) returns the solution vector  of the system  if it
is a unique solution.

linalg::matlinsolve(A, b) returns a list  if the system 

has more than one solution, where  is one particular solution, i.e.,  and
 form a basis of the kernel of A, i.e., the solution space of the homogenous

system .

Each solution  has the form (r ≤ n) with certain scalars s1, …, sr.

A list of n scalars [s1, …, sn] may be passed as the additional parameter list. This
extracts the solution  with 

from the solution space of the system , where j1, …, jl are the characteristic
column indices of A (see linalg::gaussJordan).

The entries of list are converted to elements of the component ring of A (an error
message is returned if this is not possible).
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Note: This option should only be used for exact and symbolic computations. In the case
that A or b contains floating-point entries, it should not be used.

If the system  has no solution, then the empty list [] is returned.

linalg::matlinsolve(A) solves the matrix equation , where  is the last
column of A and C is A with the last column deleted.

linalg::matlinsolve(A, B) returns the solution X of the matrix equation A X = B, if
it has exactly one solution. Otherwise the empty list [] is returned.

The vector b and the matrix B respectively, are converted into the domain
Dom::Matrix(R), where R is the component ring of A. Solution vectors also belong to
this domain.

The component ring of A must be an integral domain, i.e., a domain of category
Cat::IntegralDomain.

linalg::matlinsolve can compute the general solution for systems with more than
one solution only over fields, i.e., component rings of category Cat::Field. If in this case
the component ring of A does not have a canonical representation of the zero element,
then it may happen that linalg::matlinsolve does not find a basis for the null space.
In such a case, a wrong result is returned.

linalg::matlinsolve does exploit a sparse structure of A. (A matrix is sparse if it has
many zero components). See “Example 5” on page 15-132.

Use the function numeric::matlinsolve to solve a linear system numerically.

Examples

Example 1

Solve the linear system:
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over the reals. First, enter the coefficient matrix and the right side:

MatR := Dom::Matrix(Dom::Real):

A := MatR([[1, 2], [-1, 2]]); b := MatR([1, -1])

Next, call linalg::matlinsolve to solve the system:

x := linalg::matlinsolve(A, b)

The system has exactly one solution. The vector x satisfies the matrix equation given
above:

A * x

Example 2

The system:

does not have a solution over ℝ (in fact, over no component domain):

MatR := Dom::Matrix(Dom::Real):
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A := MatR([[1, 2], [-1, -2]]): b := MatR([1, 0]):

linalg::matlinsolve(A, b)

Example 3

Solve the linear system:

over the rational numbers. First, enter the coefficient matrix and the right side:

MatQ := Dom::Matrix(Dom::Rational):

A := MatQ([[1, 1, -4, -7, -6], [0, 1, -3, -5, -7]]);

b := MatQ([30, 17])

Next, call linalg::matlinsolve to solve the system:

sol:= linalg::matlinsolve(A, b)

The result is to be interpreted as follows: The first vector of the list sol is a particular
solution of the linear system:
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A * sol[1]

The second entry of the list contains a basis for the null space of A, i.e., the solution space

of the corresponding homogenous system  (the kernel of A). The basis returned
is given as a list of vectors.

The following input checks this fact by computing the product  for each vector  of
the list sol[2]:

map(sol[2], x -> A * x)

Any solution of the linear system can be represented as a sum of a particular solution
(here: sol[1]) and a linear combination of the basis vectors of the kernel of A. Hence the
input system has an infinite number of solutions.

For example, another solution of the system is given by:

x := sol[1] + 1*sol[2][1] + 1/2*sol[2][2] - 2*sol[2][3]

A * x
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If you identify the columns of the coefficient matrix A of the linear system with the
variables x1, x2, x3, x4, x5, then you see from the general solution that the variables x3,
x4, x5 act as free parameters. They can be assigned arbitrary rational values to obtain a
unique solution.

By giving a list of values for these variables as a third parameter to
linalg::matlinsolve, you can select a certain vector from the set of all solutions of
the linear system. For example, to select the same vector x as chosen in the previous
input, enter:

linalg::matlinsolve(A, b, [0, 0, 1, 1/2, -2])

If you are only interested in a particular solution and do not need the general solution of
the linear system, enter:

linalg::matlinsolve(A, b, Special)

This call suppresses the computation of the kernel of A.

Example 4

If the linear system is given in the form of equations the function
linalg::expr2Matrix can be used to form the corresponding matrix equation:

delete x, y, z:
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Ab := linalg::expr2Matrix(

  [x + y + z = 6, 2*x + y + 2*z = 10, x + 3*y + z = 10]

)

The result here is the extended coefficient matrix of the input system, that is, the right

side vector  is the 4th column vector of the matrix Ab. Since you did not specify a
component ring for this matrix, the standard component ring for matrices, the domain
Dom::ExpressionField(), was chosen.

To solve the linear system, call:

linalg::matlinsolve(Ab)

The system has an infinite number of solutions. The third variable z acts as a free
parameter and therefore can have any (complex) value.

To get the general solution in parameter form, you can use parameters for the variables
x, y, z of the input system:

delete u, v, w:

sol := linalg::matlinsolve(Ab, [u, v, w])

This is possible here because you perform the matrix computations over
Dom::ExpressionField() which lets you compute with symbolical (arithmetical)
expressions.

To select a certain vector from the set of solutions, for example, the solution for w = 1,
enter:
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x := subs(sol, w = 1)

Example 5

Consider a system of linear equations with a sparse structure, that is, the coefficient
matrix has many zero components:

eqs := {x1 + x5 = 0, x2 - x4 = 1, x3 + 2*x5 = 2, x4 - x5 = -1}:

Ab := linalg::expr2Matrix(eqs, [x1, x2, x3, x4, x5])

linalg::matlinsolve exploits the sparsity of the coefficient matrix if it is passed as a
matrix of type Dom::Matrix. Alternatively, you can use the function linsolve which
allows sparse input and output via symbolic equations:

linsolve(eqs)

You also can use the function numeric::matlinsolve with the option Symbolic
instead of linalg::matlinsolve:

A := linalg::delCol(Ab, 6):

b := linalg::col(Ab, 6):

numeric::matlinsolve(A, b, Symbolic)
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Note that the function numeric::matlinsolve always works over a subfield of the
complex numbers and does not let you specify the domain of computation. Without
the option Symbolic, numeric::matlinsolve converts input data to floating-point
numbers.

Example 6

Check whether the matrix equation

has a unique solution over the integers.

Start by entering the coefficient matrix and the right side matrix:

MatZ := Dom::Matrix(Dom::Integer):

A := MatZ([[1, 2], [-2, 3]]); B := MatZ([[4, 2], [6, 3]])

Next, solve the matrix equation:

X := linalg::matlinsolve(A, B)

The equation indeed has a unique solution (otherwise the answer of
linalg::matlinsolve would be the empty list []). Check the result:

A * X
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Example 7

If you use the Normal option, linalg::matlinsolve calls the normal function
for final results. This call ensures that linalg::matlinsolve returns results in
normalized form:

A := matrix([[1, s], [t, -1]]):

b := matrix([s + 1, t - 1]):

x := linalg::matlinsolve(A, b)

If you specify Normal = FALSE, linalg::matlinsolve does not call normal for the
final result:

x := linalg::matlinsolve(A, b, Normal = FALSE)

Example 8

Solve this system:

A := matrix([[1, s], [1, t]]):

b := matrix([1, 1]):

linalg::matlinsolve(A, b)

Note that more solutions exist for t = s. linalg::matlinsolve omits these solutions
because it makes some additional assumptions on symbolic parameters of this system. To
see the assumptions that linalg::matlinsolve made while solving this system, use
the ShowAssumptions option:

linalg::matlinsolve(A, b, ShowAssumptions)
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Parameters

A

m×n matrix of a domain of category Cat::Matrix

B

m×k matrix of a domain of category Cat::Matrix

b

m-dimensional column vector, i.e., a m×1 matrix of a domain of category Cat::Matrix

list

List of n elements of the component ring of A

Options

Normal

Option, specified as Normal = b

Return normalized results. The value b must be TRUE or FALSE. By default, Normal =
TRUE, meaning that linalg::matlinsolve guarantees normalization of the returned
results. Normalizing results can be computationally expensive.

By default, linalg::matlinsolve calls normal before returning results. This
additional internal call ensures that the final result is normalized. This call can be
computationally expensive. This option affects the output only if the solution contains
variables or exact expressions, such as sqrt(5) or sin(PI/7).

To avoid this additional call, specify Normal = FALSE. In this case,
linalg::matlinsolve also can return normalized results, but does not guarantee such
normalization. See “Example 7” on page 15-134.
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ShowAssumptions

Return information about internal assumptions that linalg::matlinsolve made on
symbolic parameters in eqs.

With ShowAssumptions, linalg::matlinsolve returns a list [S, KernelBasis,
Constraints, Pivots]. The lists Constraints and Pivots contain equations and
inequalities involving symbolic parameters in A and b (or B). Internally, these were
assumed to hold true when solving the system. See “Example 8” on page 15-134.

When Gaussian elimination produces an equation 0 = c with nonzero c,
linalg::matlinsolve without ShowAssumptions returns []. If c involves symbolic
parameters, try using linalg::matlinsolve with ShowAssumptions to solve
such systems. If the system is solvable, you will get the solution. In this case, an
equation 0 = c is returned in the Constraints list. If the system is not solvable,
linalg::matlinsolve with ShowAssumptions returns [[], [], [], []].

Special

Only one particular solution w of the system  is returned. This supresses the
computation of a basis for the kernel of A.

Unique

Checks whether the system has a unique solution and returns it. The return value NIL
means that the system has more than one solution.

Return Values

Without ShowAssumptions, linalg::matlinsolve can return a vector or a list [S,
KernelBasis] (possibly empty), where S is a solution vector and KernelBasis is a list
of basis vectors for the kernel of A. It also can return a matrix or the value NIL.

The matrix and the vectors, respectively, are of the domain type Dom::Matrix(R),
where R is the component ring of A.

With ShowAssumptions, linalg::matlinsolve returns a list [S, KernelBasis,
Constraints, Pivots]. The lists Constraints and Pivots contain equations
and inequalities involving symbolic parameters in A and b (or B). Internally, these
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were assumed to hold true when solving the system. If the system is not solvable,
linalg::matlinsolve with ShowAssumptions returns [[], [], [], []].

Algorithms

Let A be an m×n matrix with components from a field F and  an m-dimensional vector

over F. Let  be the extended coefficient matrix of the linear system .

Then the following holds:

• The linear system  has a solution, if and only if .

• It has exactly one solution, if and only if .

• If  is a solution of the system and  a basis of the kernel of A,

then

is the set of all solutions of the linear system , the general solution of the
(inhomogeneus) linear system.

The kernel of the matrixA is defined as:

.

The kernel of A is a vector space over F of dimension n - rank(A).

See Also

MuPAD Functions
linalg::expr2Matrix | linalg::matlinsolveLU | linalg::nullspace |
linalg::wiedemann | linsolve | numeric::matlinsolve
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More About
• “Solve Algebraic Systems”
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linalg::matlinsolveLU
Solving the linear system given by an LU decomposition

Syntax
linalg::matlinsolveLU(L, U, b)

linalg::matlinsolveLU(L, U, B)

Description

linalg::matlinsolveLU(L, U, b) solves the linear system , where the
matrices L and U form an LU-decomposition, as computed by linalg::factorLU.

If the third parameter is an n×k matrix B then the result is an n×k matrix X satisfying
the matrix equation L U X = B.

The system to be solved always has a unique solution.

The diagonal entries of the lower diagonal matrix L must be equal to one (Doolittle-
decomposition, see linalg::factorLU).

linalg::matlinsolveLU expects L and U to be nonsingular.

linalg::matlinsolveLU does not check on any of the required properties of L and U.

The component ring of the matrices L and U must be a field, i.e., a domain of category
Cat::Field.

The parameters must be defined over the same component ring.

Examples

Example 1

We solve the system
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:

MatR := Dom::Matrix(Dom::Real):

A  := MatR([[2, -3, -1], [1, 1, -1], [0, 1, -1]]); 

I3 := MatR::identity(3)

We start by computing an LU-decomposition of A:

LU := linalg::factorLU(A)

Now we solve the system A X = I3, which gives us the inverse of A:

Ai := linalg::matlinsolveLU(LU[1], LU[2], I3)

A * Ai, Ai * A
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Parameters

L

An n×n lower triangular matrix of a domain of category Cat::Matrix

U

An n×n upper triangular form matrix of the same domain as L

B

An n×k matrix of a domain of category Cat::Matrix

b

An n-dimensional column vector, i.e., an n×1 matrix of a domain of category
Cat::Matrix

Return Values

n-dimensional solution vector or n×k dimensional solution matrix, respectively, of the
domain type Dom::Matrix(R), where R is the component ring of A.

See Also

MuPAD Functions
linalg::factorLU | linalg::inverseLU | linalg::matlinsolve
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linalg::minpoly
Minimal polynomial of a matrix

Syntax
linalg::minpoly(A, x)

Description

linalg::minpoly(A, x) computes the minimal polynomial of the square matrix A in
x, i.e., the monic polynomial of lowest degree annihilating the matrix A.

The minimal polynomial of A divides the characteristic polynomial of A, by Cayley-
Hamilton theorem.

If the matrix is defined over Dom::Float, then due to numerical errors the computed
polynomial can have a degree higher than the dimension of the matrix. In such cases,
linalg::minpoly returns the value FAIL. See “Example 3” on page 15-144.

The component ring of A must be a field, i.e., a domain of category Cat::Field.

Examples

Example 1

We define the following matrix over the rational numbers:

A := Dom::Matrix(Dom::Rational)(

  [[0, 2, 0], [0, 0, 2], [2, 0, 0]]

)

The minimal polynomial of the matrix A in the variable x is then given by:
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delete x:  linalg::minpoly(A, x)

In this case, the minimal polynomial is in fact equal to the characteristic polynomial of A:

linalg::charpoly(A, x)

Example 2

The minimal polynomial of the matrix:

B := matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]])

is a polynomial of degree 2:

m := linalg::minpoly(B, x)

The characteristic polynomial of B has degree 3 and is divided by the minimal polynomial
of B:

p := linalg::charpoly(B, x)

p / m
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Example 3

For the following example, MuPAD is not able to compute the minimal polynomial, and
thus FAIL is returned:

C := Dom::Matrix(Dom::Float)([

   [7, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 2, 0, 0, 0], 

   [1, 2, 3, 0, 0], [1, 2, 3, 4, 7]

])

delete x:  linalg::minpoly(C, x)

Warning: Cannot compute the minimal polynomial. [linalg::minpoly]

In fact, for this example MuPAD is not able to check for zero equivalence during
Gaussian elimination and therefore chose a wrong pivot element.

If you perform the computation over the coefficient
domainDom::ExpressionField(normal) instead, then in most cases the minimal
polynomial can be computed:

C := matrix([

   [7, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 2, 0, 0, 0],

   [1, 2, 3, 0, 0], [1, 2, 3, 4, 7]

])

linalg::minpoly(C, x)
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However, in general this problem regarding zero recognition cannot be avoided.

Parameters

A

A square matrix of a domain of category Cat::Matrix

x

An indeterminate

Return Values

Polynomial of the domain Dom::DistributedPolynomial([x],R), where R is the
component ring of A, or the value FAIL.

See Also

MuPAD Functions
linalg::charpoly | linalg::frobeniusForm
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linalg::multCol
Multiply columns with a scalar

Syntax
linalg::multCol(A, c, s)

linalg::multCol(A, c1 .. c2, s)

linalg::multCol(A, list, s)

Description

linalg::multCol(A, c, s) returns a copy of the matrix A resulting from A by
multiplying the c-th column of A with the scalar s.

linalg::multCol(A, c1.. c2, s) returns a copy of the matrix A obtained from A by
multiplying those columns whose indices are in the range c1.. c2 with the scalar s.

linalg::multCol(A, list, s) returns a copy of the matrix A obtained from matrix A
by multiplying those columns whose indices are contained in list with the scalar s.

The scalar s is converted into an element of the component ring of the matrix A. An error
message is returned if the conversion fails.

Examples

Example 1

We define the following matrix:

A := matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
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and illustrate the three different input formats for linalg::multCol:

linalg::multCol(A, 2, -1)

linalg::multCol(A, 1..2, 2)

linalg::multCol(A, [3, 1], 0)

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

c

The column index: a positive integer less or equal to n

c1 .. c2

A range of column indices (positive integers less or equal to n)

list

A list of column indices (positive integers less or equal to n)
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Return Values

Matrix of the same domain type as A.

See Also

MuPAD Functions
linalg::addCol | linalg::addRow | linalg::multRow
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linalg::multRow
Multiply rows with a scalar

Syntax
linalg::multRow(A, r, s)

linalg::multRow(A, r1 .. r2, s)

linalg::multRow(A, list, s)

Description

linalg::multRow(A, r, s) returns a copy of the matrix A resulting from A by
multiplying the r-th row of A with the scalar s.

linalg::multRow(A, r1.. r2, s) returns a copy of the matrix A obtained from A by
multiplying those rows whose indices are in the range r1.. r2 with the scalar s.

linalg::multRow(A, list, s) returns a copy of the matrix A obtained from matrix A
by multiplying those rows whose indices are contained in list with the scalar s.

The scalar s is converted into an element of the component ring of the matrix A. An error
message is returned if the conversion fails.

Examples

Example 1

We define the following matrix:

A := matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
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and illustrate the three different input formats for linalg::multRow:

linalg::multRow(A, 2, -1)

linalg::multRow(A, 1..2, 2)

linalg::multRow(A, [3, 1], 0)

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

r

The row index: a positive integer less or equal to m

r1 .. r2

A range of row indices (positive integers less or equal to m)

list

A list of row indices (positive integers less or equal to m)

Return Values

Matrix of the same domain type as A.
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See Also

MuPAD Functions
linalg::addCol | linalg::addRow | linalg::multCol
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linalg::ncols
Number of columns of a matrix

Syntax
linalg::ncols(A)

Description

linalg::ncols(A) returns the number of columns of the matrix A.

Examples

Example 1

The matrix:

A:= matrix([[1, 2, 3, 4], [3, 1, 4], [5, 6]])

has four columns:

linalg::ncols(A)

Parameters

A

A matrix of a domain of category Cat::Matrix
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Return Values

Positive integer.

See Also

MuPAD Functions
linalg::matdim | linalg::nrows | linalg::vecdim
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linalg::nonZeros
Number of non-zero elements of a matrix

Syntax

linalg::nonZeros(A)

Description

linalg::nonZeros(A) returns the number of non-zero components of the matrix A.

Examples

Example 1

The matrix

MZ7 := Dom::Matrix(Dom::IntegerMod(7)):

A := MZ7([[18, -1], [4, 81]])

has four non-zero entries:

linalg::nonZeros(A)

The matrix:

B := MZ7([[21, 2], [-1, 14]])
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has only two non-zero entries:

linalg::nonZeros(B)

Parameters

A

A matrix of a domain of category Cat::Matrix

Return Values

Nonnegative integer
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linalg::normalize
Normalize a vector

Syntax
linalg::normalize(v)

Description

linalg::normalize(v) normalizes the vector  with respect to the 2-norm

( ).

The result of linalg::normalize(v) is a vector that has norm 1 and the same
direction as v.

The scalar product  for a vector  is implemented by the function
linalg::scalarProduct.

The norm of a vector is computed with the function norm, which is overloaded for vectors.
See the method "norm" of the domain constructor Dom::Matrix for details.

If the norm is an object that cannot be converted into an element of the component ring of
v, then an error occurs (see “Example 2” on page 15-157).

Examples

Example 1

We define the following vector:

u := matrix([[1, 2]])
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Then the vector of norm 1 with the same direction as u is given by:

linalg::normalize(u)

Example 2

The following computation fails because the vector (1, 2) cannot be normalized over the
rationals:

v := Dom::Matrix(Dom::Rational)([[1, 2]]):

linalg::normalize(v)

Error: Cannot normalize the given vector over its component ring. [linalg::normalize]

If we define v over the real numbers, then we get the normalized vector of v as follows:

w := Dom::Matrix(Dom::Real)(v): linalg::normalize(w)

Parameters

v

A vector, i.e., an n×1 or 1 ×n matrix of a domain of category Cat::Matrix

Return Values

Vector of the same domain type as v.

See Also

MuPAD Functions
linalg::scalarProduct | norm
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linalg::nrows
Number of rows of a matrix

Syntax
linalg::nrows(A)

Description

linalg::nrows(A) returns the number of rows of the matrix A.

Examples

Example 1

The matrix:

A := matrix([[1, 2, 3, 4], [3, 1, 4], [5, 6]])

has three rows:

linalg::nrows(A)

Parameters

A

A matrix of a domain of category Cat::Matrix
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Return Values

Positive integer.

See Also

MuPAD Functions
linalg::matdim | linalg::ncols | linalg::vecdim
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linalg::nullspace
Basis for the null space of a matrix

Syntax

linalg::nullspace(A)

Description

linalg::nullspace(A) returns a basis for the null space of the matrix A, i.e., a list B

of linearly independent vectors such that  if and only if  is a linear combination
of the vectors in B.

The component ring of the matrix A must be a field, i.e., a domain of category
Cat::Field.

If the component ring of A does not have a canonical representation of the zero element, it
can happen that linalg::nullspace does not find a basis for the null space. In such a
case, a wrong result is returned.

Examples

Example 1

The kernel of the matrix:

A := Dom::Matrix(Dom::Real)( 

  [[3^(1/2)*2 - 2, 2], [4, 3^(1/2)*2 + 2]] 

)
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is one-dimensional, and a basis is :

linalg::nullspace(A)

Parameters

A

A matrix of a domain of category Cat::Matrix

Return Values

List of (column) vectors of the domain Dom::Matrix(R), where R is the component ring
of A.

See Also

MuPAD Functions
linalg::basis | linalg::matlinsolve | linsolve | numeric::matlinsolve
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linalg::ogCoordTab
Table of orthogonal coordinate transformations

Syntax
linalg::ogCoordTab[ogName](u1, u2, u3, <c>)

linalg::ogCoordTab[ogName,

  Transformation](u1, u2, u3, <c>)

linalg::ogCoordTab[ogName,

  InverseTransformation](u1, u2, u3, <c>)

linalg::ogCoordTab[ogName,

  UnitVectors](u1, u2, u3, <c>)

linalg::ogCoordTab[ogName,

  Scales](u1, u2, u3, <c>)

linalg::ogCoordTab[ogName, Ranges](<c>)

linalg::ogCoordTab[ ogName , Dimension]

Description
linalg::ogCoordTab is a table of predefined orthogonal coordinate transformations in

.

The entry associated with ogName defines a coordinate transformation  which
maps the orthogonal parameters  to a vector  in Cartesian
coordinates.

The coordinate systems EllipticCylindrical and Torus are defined with a constant
parameter c which has to be passed as an additional argument. See “Example 2” on page
15-166.

The following coordinate transformations are stored in linalg::ogCoordTab. They are
invertible for the indicated parameter values:

• Cartesian:

15-162



 linalg::ogCoordTab

u1 ∈ ℝ, u2 ∈ ℝ, u3 ∈ ℝ:

.
• Spherical:

0 < u1 < ∞, 0 ≤ u2 ≤  π, 0 ≤ u3 < 2π:

.
• Spherical[LeftHanded]:

0 < u1 < ∞, 0 ≤ u2 < 2 π, 0 ≤ u3 ≤ π:

.
• Cylindrical:

0 < u1 < ∞, 0 ≤ u2 < 2 π, u3 ∈ ℝ:

.
• EllipticCylindrical:

0 < u1 < ∞, 0 ≤ u2 < 2 π, u3 ∈ ℝ (with a real constant c):

.
• ParabolicCylindrical:

0 < u1 < ∞, u2 ∈ ℝ, u3 ∈ ℝ:

.
• RotationParabolic:

0 < u1 < ∞, 0 < u2 < ∞, 0 ≤ u3 < 2 π:
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.
• Torus:

0 < u1 < c, 0 ≤ u2 < 2 π, 0 ≤ u3 < 2 π (with a positive constant c):

.

linalg::ogCoordTab is used by functions such as curl, divergence, gradient, and
laplacian to perform computations in non-Cartesian coordinates.

Examples

Example 1

The following call returns the Cartesian vector  in terms of the right-handed
spherical coordinates :

linalg::ogCoordTab[Spherical, Transformation](u1, u2, u3)

The spherical coordinates expressed by the Cartesian coordinates:

linalg::ogCoordTab[Spherical, InverseTransformation](x, y, z)
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Note the sign(y) in the expression for u3. This ensures that the correct angle is
returned for any value of y:

assume(y > 0):

linalg::ogCoordTab[Spherical, InverseTransformation](x, y, z)

linalg::ogCoordTab[Spherical, InverseTransformation](1, 1, 0),

linalg::ogCoordTab[Spherical, InverseTransformation](-1, 0, 1),

linalg::ogCoordTab[Spherical, InverseTransformation](1, 0, 2),

linalg::ogCoordTab[Spherical, InverseTransformation](1, -1, 3)

These parameter values are from the following ranges:

linalg::ogCoordTab[Spherical, Ranges]()

The following orthonormal vectors are tangent to the spherical parameter lines:

linalg::ogCoordTab[Spherical, UnitVectors](u1, u2, u3)

The `scaling factors' are:

linalg::ogCoordTab[Spherical,Scales](u1, u2, u3)
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There is the following relationship between the Jacobian of the transformation 
from the orthogonal coordinates to the Cartesian coordinates:

xyz:= linalg::ogCoordTab[Spherical, Transformation](u1, u2, u3):

unitvectors:= linalg::ogCoordTab[Spherical, UnitVectors](u1, u2, u3):

scales:= linalg::ogCoordTab[Spherical, Scales](u1, u2, u3):

linalg::transpose(jacobian(xyz, [u1, u2, u3])) = 

  matrix(3, 3, scales, Diagonal)* matrix(unitvectors)

delete y, xyz, unitvectors, scales:

Example 2

The following call returns the Cartesian vector  in terms of elliptic cylindrical
coordinates  involving a parameter c:

linalg::ogCoordTab[EllipticCylindrical, Transformation](u, v, z, c)

We compute the gradient of the function f(u, v, w) = x(u, v, w) in elliptic cylindrical
coordinates .

f:= (c*cos(v)*cosh(u))^2:

For computing the components of the gradient with respect to an orthogonal system, it is
sufficient to know the 'scale parameters':
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linalg::ogCoordTab[EllipticCylindrical, Scales](u, v, w, c)

gradf := gradient(f, [u, v, w], %)

These are the coefficients of the gradient with respect to the orthonormal basis
 returned via the option UnitVectors:

[e_u, e_v, e_w] :=

linalg::ogCoordTab[EllipticCylindrical, UnitVectors](u, v, w, c)

We convert the lists e_u, e_v, e_w into column vectors via matrix. Thus, in the
standard basis of ℝ3, the gradient vector field is:

G :=   gradf[1]*matrix(e_u)

     + gradf[2]*matrix(e_v) 

     + gradf[3]*matrix(e_w)
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We simplify this expression using the identities sin2 (v) = 1 - cos2 (v), sinh2 (u) = cosh2 (u) -
1:

normal(subs(G, sin(v)^2 = 1 - cos(v)^2, 

               sinh(u)^2 = cosh(u)^2 - 1))

This is the gradient of the function f(x, y, z) = x2 with x expressed by elliptic cylindrical
coordinates:

G := gradient(x^2, [x, y, z])

[x, y, z] := 

linalg::ogCoordTab[EllipticCylindrical, Transformation](u, v, w, c)
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map(G, eval)

delete f, gradf, e_u, e_v, e_w, G, x, y, z:

Parameters

ogName

The name of a predefined coordinate system. The following 3 dimensional coordinate
systems are available: Cartesian, Spherical, Spherical[LeftHanded],
Cylindrical, EllipticCylindrical, ParabolicCylindrical,
RotationParabolic, Torus.

u1, u2, u3

The coordinates of the orthogonal system: identifiers, indexed identifiers, or arithmetical
expressions.

x1, x2, x3

Cartesian coordinates: identifiers, indexed identifiers, or arithmetical expressions.

c

An arithmetical expression. The default value is c = 1.

Options

Transformation

linalg::ogCoordTab [ogName, Transformation]( u1, u2, u3, c ) returns a
list of arithmetical expressions [ x1( u1, u2, u3), x2( u1, u2, u3), x3( u1, u2,
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u3)] defining the transformation from the orthogonal coordinates ui to the Cartesian
coordinates xj. The transformation is invertible if the coordinates ui are from the range
ai < ui < bi where [a1..b1, a2..b2, a3..b3] = linalg::ogCoordTab [ogName,
Ranges](c).

InverseTransformation

linalg::ogCoordTab [ogName, InverseTransformation]( x1, x2, x3, c )

returns a list of arithmetical expressions [ u1( x1, x2, x3), u2( x1, x2, x3),
u3( x1, x2, x3)] defining the inverse transformation. The inverse transformation
produces parameter values ui in the range ai ≤ ui ≤ bi given by [a1..b1, a2..b2,
a3..b3] = linalg::ogCoordTab [ogName, Ranges](c).

UnitVectors

linalg::ogCoordTab [ogName, UnitVectors]( u1, u2, u3, c ) returns a
list of orthonormal vectors , where each vector is represented by a list of

three arithmetical expressions. These vectors  with  are the unit

vectors tangent to the parameter lines ui.

Scales

linalg::ogCoordTab [ogName, Scales]( u1, u2, u3, c ) returns a list [ s1,
s2, s3] of “scaling factors” of the transformation . The “scales” are the Euclidean
lengths  of the vectors  tangent to the parameter lines ui.

Return Values

Most of the entries in linalg::ogCoordTab are functions:

linalg::ogCoordTab [ogName, Transformation]( u1, u2, u3, c ) returns a
list of arithmetical expressions [ x1( u1, u2, u3), x2( u1, u2, u3), x3( u1, u2,
u3)] defining the transformation from the orthogonal coordinates ui to the Cartesian
coordinates xj.
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linalg::ogCoordTab [ogName, InverseTransformation]( x1, x2, x3, c )

returns a list of arithmetical expressions [ u1( x1, x2, x3), u2( x1, x2, x3),
u3( x1, x2, x3)] defining the inverse transformation.

linalg::ogCoordTab [ogName, UnitVectors]( u1, u2, u3, c ) returns a list of
orthogonal unit “vectors.” The “vectors” are given as lists of arithmetical expressions.

linalg::ogCoordTab [ogName, Scales]( u1, u2, u3, c ) returns a list of
arithmetical expressions.

linalg::ogCoordTab [ogName, Ranges]( c ) returns a list of ranges [ a1.. b1,
a2.. b2, a3.. b3]. The transformation is invertible for parameter values ai < ui < bi.

linalg::ogCoordTab [ogName, Dimension] yields the dimension of the space
parametrized by the orthogonal coordinates. Presently, all predefined systems
parametrize ℝ3, i.e., the dimension is 3 in all cases.

The call linalg::ogCoordTab [ogName]( u1, u2, u3, c ) is identical to the call
linalg::ogCoordTab [ogName, UnitVectors]( u1, u2, u3, c ).

See Also

MuPAD Functions
curl | divergence | gradient | hessian | jacobian | laplacian
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linalg::orthog
Orthogonalization of vectors

Syntax
linalg::orthog(S, <Real>)

Description

linalg::orthog(S) orthogonalizes the vectors in S using the Gram-Schmidt
orthogonalization algorithm.

The vectors in S are orthogonalized with respect to the scalar product
linalg::scalarProduct.

If O is the returned set, then the vectors of O span the same subspace as the vectors in S,
and they are pairwise orthogonal, i.e.:  for all  with .

The vectors returned are not normalized. To normalize them use map(O,
linalg::normalize).

For an ordered set of orthogonal vectors, S should be a list.

The vectors in S must be defined over the same component ring.

The component ring of the vectors in S must be a field, i.e., a domain of category
Cat::Field.

If you use the Real option, linalg::orthog computes an orthogonal basis using a real
scalar product in the orthogonalization process.

Examples

Example 1

The following list of vectors is a basis of the vector space ℝ3:
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MatR := Dom::Matrix(Dom::Real):

S := [MatR([2, 1, 0]), MatR([-3, 1, 1]), MatR([-1, -1, -1])]

The Gram-Schmidt algorithm then returns an orthogonal basis for ℝ3. We get an
orthonormal basis with the following input:

ON:= linalg::orthog(S)

The vectors can be normalized using linalg::normalize:

map(ON, linalg::normalize)

We may also build a matrix from the vectors in S an apply linalg::orthog to this
matrix. The result is the matrix whose columns are given by the above elements of the
list ON:

A:= S[1].S[2].S[3]
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linalg::orthog(A)

Example 2

The orthogonalization of the vectors:

T := {matrix([[-2, 5, 3]]), matrix([[0, 2, 1]])}

gives:

linalg::orthog(T)

Example 3

The result of linalg::orthog is a list or set of linearly independent vectors, even if the
input contains linearly dependent vectors:

MatQ := Dom::Matrix(Dom::Rational):

S := [MatQ([2, 1]), MatQ([3, 4]), MatQ([-1, 1])]

linalg::orthog(S)
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Example 4

Compute an orthogonal basis of this matrix:

A := matrix([[a, 1], [1, a]]):

linalg::orthog(A)

To avoid complex conjugates, use the Real option:

linalg::orthog(A, Real)

Parameters

S

A set or list of vectors of the same dimension (a vector is an n×1 or 1 ×n matrix of a
domain of category Cat::Matrix) or a matrix

Options

Real

Avoid using a complex scalar product in the orthogonalization process.
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Return Values

Set or a list of vectors, respectively.

See Also

MuPAD Functions
linalg::factorQR | linalg::isUnitary | linalg::normalize |
linalg::scalarProduct | lllint | norm
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linalg::pascal
Pascal matrix

Syntax
linalg::pascal(n, <R>)

Description

linalg::pascal(n) returns the n×n Pascal matrix P given by , 1 ≤ i, j

≤ n.

The entries of Pascal matrices are integer numbers. Note, however, that the returned
matrix is not defined over the component domain Dom::Integer, but over the standard
component domain Dom::ExpressionField(). Thus, no conversion is necessary when
working with other functions that expect or return matrices over that component domain.

Use linalg::pascal(n, Dom::Integer) to define the n×n Pascal matrix over the
ring of integer numbers.

Inverse Pascal matrices are provided by linalg::invpascal.

Examples

Example 1

We construct the 3×3 Pascal matrix:

linalg::pascal(3)
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This is a matrix of the domain Dom::Matrix().

If you prefer a different component ring, the matrix may be converted to the desired
domain after construction (see coerce, for example). Alternatively, one can specify
the component ring when creating the Pascal matrix. For example, specification of the
domain Dom::Float generates floating-point entries:

linalg::pascal(3, Dom::Float)

domtype(%)

Example 2

The Cholesky factor of a Pascal matrix consists of the elements of Pascal's triangle:

linalg::factorCholesky(linalg::pascal(4))

Parameters

n

The dimension of the matrix: a positive integer

R

The component ring: a domain of category Cat::Rng; default:
Dom::ExpressionField()
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Return Values

n×n matrix of the domain Dom::Matrix(R).

Algorithms

Pascal matrices are symmetric and positive definite.

The determinant of a Pascal matrix is 1.

The inverse of a Pascal matrix has integer entries.

If λ is an eigenvalue of a Pascal matrix, then  is also an eigenvalue of the matrix.

See Also

MuPAD Functions
linalg::hilbert | linalg::invhilbert | linalg::invpascal |
linalg::invvandermonde | linalg::toeplitz | linalg::toeplitzSolve |
linalg::vandermonde | linalg::vandermondeSolve
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linalg::permanent
Permanent of a matrix

Syntax
linalg::permanent(A)

Description
linalg::permanent(A) computes the permanent of the square matrix A.

The component ring of the matrix A must be a commutative ring, i.e., a domain of
category Cat::CommutativeRing.

Examples

Example 1

We compute the permanent of the following matrix:

delete a11, a12, a21, a22:

A := matrix([[a11, a12], [a21, a22]])

which gives us the general formula for the permanent of an arbitrary 2 ×2 matrix:

linalg::permanent(A)

Example 2

The permanent of a matrix can be computed over arbitrary commutative rings. Let us
create a random matrix defined over the ring ℤ6, the integers modulo 6:
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B := linalg::randomMatrix(5, 5, Dom::IntegerMod(6))

The permanent of this matrix is:

linalg::permanent(B)

Its determinant is:

det(B)

Parameters

A

A square matrix of a domain of category Cat::Matrix

Return Values

Element of the component ring of A.

Algorithms

The permanent of an n×n matrix A = (ai, j)1 ≤ i ≤ n, 1 ≤ j ≤ n is defined similary as the
determinant of A, only the signs of the permutations do not enter the definition:
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.

(Sn is the symmetric group of all permutations of {1, …, n}.)

In contrast to the computation of the determinant, the computation of the permanent
takes time O(n2 2n).

See Also

MuPAD Functions
det
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linalg::pseudoInverse
Moore-Penrose inverse of a matrix

Syntax
linalg::pseudoInverse(A)

Description
linalg::pseudoInverse(A) computes the Moore-Penrose inverse of A.

If the Moore-Penrose inverse of A does not exist, then FAIL is returned.

The component ring of the matrix A must be a field, i.e., a domain of category
Cat::Field.

Examples

Example 1

The Moore-Penrose inverse of the 2×3 matrix:

A := Dom::Matrix(Dom::Complex)([[1, I, 3], [1, 3, 2]])

is the 3×2 matrix:

Astar := linalg::pseudoInverse(A)
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Note that in this example, only:

A * Astar

yields the identity matrix, but not (see “Backgrounds” below):

Astar * A

Parameters

A

A matrix of category Cat::Matrix

Return Values

Matrix of the same domain type as A, or the value FAIL.

Algorithms

For an invertible matrix A, the Moore-Penrose inverse A* of A coincides with the inverse
of A. In general, only A A* A = A and A* A A* = A* holds.

If A is of dimension m×n, then A* is of dimension n×m.

The computation of the Moore-Penrose inverse requires the existence of a scalar product
on the vector space Kn, where K is the coefficient field of the matrix A. This is only the
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case for some fields K in theory, but linalg::scalarProduct works also for vectors
over other fields (e.g. finite fields). The computation of a Moore-Penrose inverse may fail
in such cases.

See Also

MuPAD Functions
_invert
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linalg::randomMatrix
Generate a random matrix

Syntax
linalg::randomMatrix(m, n, <R>, <bound>, <Diagonal | Unimodular>)

Description

The call linalg::randomMatrix(m, n) returns a random m×n matrix over the default
component ring for matrices, i.e., over the domain Dom::ExpressionField().

The matrix components are generated by the method "random" of the domain R (see
“Example 2” on page 15-187).

The parameter bound is given as a parameter to the method "random" of the domain R
in order to bound the size of the components of the random matrix. The correct type of
bound is determined by the method "random". The parameter has no effect if the slot
"random" does not have a size argument.

Examples

Example 1

We create a random square matrix over the integers. Because the matrix is random the
created matrix can vary:

linalg::randomMatrix(2, 2, Dom::Integer)

If you want to bound the size of its components, say between -2 and 2, enter:

linalg::randomMatrix(2, 2, Dom::Integer, -2..2)
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Example 2

The following input creates a random vector over the component ring Dom::FloatIV of
floating-point intervals. Because the vector is random the created vector can vary:

v := linalg::randomMatrix(1, 4, Dom::FloatIV)

domtype(v)

The components of this matrix are random floating-point intervals created by the
"random" method of the domain constructor Dom::FloatIV.

Example 3

To create a random diagonal matrix over the rationals we enter, for example:

linalg::randomMatrix(3, 3, Dom::Rational, Diagonal)

Example 4

The following command creates a random unimodular matrix over the integers so that its
determinant is either 1 or -1:
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A := linalg::randomMatrix(3, 3, Dom::Integer, Unimodular)

det(A)

We can bound the size of the components. The following input returns a unimodular
matrix A = (aij) with |aij| ≤ 2 for i, j = 1, 2, 3:

A := linalg::randomMatrix(3, 3, 2, Unimodular)

Since we did not specifiy the component ring, the matrix is defined over the standard
component ring for matrices (the domain Dom::ExpressionField()):

domtype(A)

Parameters

m, n

Positive integers

R

The component ring, i.e., a domain of category Cat::Rng; default:
Dom::ExpressionField()

15-188



 linalg::randomMatrix

bound

An arithmetical expression

Options

Diagonal

Creates a random m×n diagonal matrix over R.

Unimodular

Creates a random m×m unimodular matrix over R, so that its determinant is a unit in R.

Note: Note that this option is only available for square matrices.

The norm of each component of the matrix returned does not exceed bound, which must
be a positive integer, if specified. The default value of bound is 10.

Return Values

Matrix of the domain Dom::Matrix(R).

References

For generating random unimodular matrices, see Jürgen Hansen: Generating Problems
in Linear Algebra, MapleTech, Volume 1, No.2, 1994.

See Also

MuPAD Domains
Dom::Matrix

MuPAD Functions
random
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linalg::rank
Rank of a matrix

Syntax
linalg::rank(A)

linalg::rank(S)

Description
linalg::rank(A) computes the rank of the matrix A.

linalg::rank(S) computes the rank of the matrix whose columns are the vectors in S.

The row rank of a matrix is the maximal number of linearly independent row vectors of
that matrix. The column rank of a matrix is the maximal number of linearly independent
column vectors of that matrix. For each matrix, its row rank is equal to its column rank.
This number is called the rank of a matrix.

The component ring of A or of the vectors given in S must be an integral domain (a
domain of category Cat::IntegralDomain).

linalg::rank replaces symbolic elements of a matrix by random integer numbers
between 1 and 1010. Then the function computes the rank of the resulting numeric matrix
by Gaussian elimination (see linalg::gaussElim). This approach introduces a tiny
chance of getting a wrong result.

Note: linalg::rank does not simplify special functions and algebraic numbers. For
some matrices, this approach leads to wrong results. See “Example 3” on page 15-191.

Examples

Example 1

Define the following matrix A over ℤ:
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MatZ := Dom::Matrix(Dom::Integer):

A := MatZ([[1, 2, 3, 4], [-1, 0, 1, 0], [3, 5, 6, 9]])

Compute the rank of the matrix A:

linalg::rank(A)

Example 2

Use the three vectors  to define the columns of the matrix A. Compute

the rank of A:

MatZ := Dom::Matrix(Dom::Integer):

S:= { MatZ([0,1,1]), MatZ([0,1,0]), MatZ([0,0,1]) }:

linalg::rank(S)

Example 3

The linalg::rank function does not use any simplification rules for special functions,
algebraic numbers (radicals), and so on. If linalg::rank computes intermediate
expressions that can be simplified to zero, the function can return incorrect results. For
example, create the following matrices:

A := matrix([[exp(x + y), exp(x)], [exp(y), 1]]);

B := matrix([[sin(x)^2 + cos(x)^2, 1], [1, 1]]);

C := matrix([[sqrt(6), sqrt(2)], [sqrt(3), 1]])
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There is only one independent row in each of these matrices. The rank of the matrices
A, B, and C is 1. The linalg::rank function returns 2 because it does not simplify the
expressions , sin2 + cos2 - 1, and :

linalg::rank(A), linalg::rank(B), linalg::rank(C)

Parameters

A

A matrix of a domain of category Cat::Matrix

S

A list or set of column vectors of the same dimension (a column vector is an n×1 matrix of
a domain of category Cat::Matrix)

Return Values

Nonnegative integer

See Also

MuPAD Functions
det | linalg::gaussElim
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linalg::row
Extract rows of a matrix

Syntax
linalg::row(A, r)

linalg::row(A, r1 .. r2)

linalg::row(A, list)

Description

linalg::row(A, r) extracts the r-th row vector of the matrix A.

linalg::row(A, r1.. r2) returns a list of row vectors whose indices are in the range
r1.. r2. If r2< r1 then the empty list [] is returned.

linalg::row(A, list) returns a list of row vectors whose indices are contained in
list (in the same order).

Examples

Example 1

We define a matrix over ℚ:

A := Dom::Matrix(Dom::Rational)( 

  [[1, 1/5], [-3/2, 5], [2, -3]] 

)
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and illustrate the three different input formats for the function linalg::row:

linalg::row(A, 2)

linalg::row(A, [2, 1, 3])

linalg::row(A, 2..3)

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

r

The row index: a positive integer less or equal to m

r1 .. r2

A range of row indices (positive integers less or equal to m)

list

A list of row indices (positive integers less or equal to m)

Return Values

Single row vector or a list of row vectors; a row vector is a 1×n matrix of category
Cat::Matrix(R), where R is the component ring of A.
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See Also

MuPAD Functions
linalg::col | linalg::delCol | linalg::delRow | linalg::setCol |
linalg::setRow
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linalg::scalarProduct

Scalar product of vectors

Syntax

linalg::scalarProduct(u, v, <Real>)

Description

linalg::scalarProduct(u, v) computes the scalar product of the vectors
 and  with respect to the standard basis, i.e., the sum
.

The scalar product is also called “inner product” or “dot product”.

If the component ring of the vectors u and v does not define the entry "conjugate" or if
the option Real is specified, then linalg::scalarProduct uses the definition u1 v1 +
… + un vn of the scalar product.

The vectors u and v must be defined over the same component ring.

linalg::scalarProduct can be redefined to a different scalar product. This also
affects the behaviour of functions such as linalg::angle, linalg::factorQR,
linalg::isUnitary, norm (for vectors and matrices), linalg::orthog and
linalg::pseudoInverse depend on the definition of linalg::scalarProduct. See
“Example 3” on page 15-198.

Environment Interactions

Properties of identifiers are taken into account.
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Examples

Example 1

We compute the scalar product of the vectors (i, 1) and (1, - i):

MatC := Dom::Matrix(Dom::Complex):

u := MatC([I, 1]): v := MatC([1, -I]):

linalg::scalarProduct(u, v)

Example 2

We compute the scalar product of the vectors  and  with the
symbolic entries u1, u2, v1, v2 over the standard component ring for matrices:

delete u1, u2, v1, v2:

u := matrix([u1, u2]): v := matrix([v1, v2]):

linalg::scalarProduct(u, v)

You can use assume to tell the system that the symbolic components are to represent
real numbers:

assume([u1, u2, v1, v2], Type::Real):

Then the scalar product of  and  simplifies to:

linalg::scalarProduct(u, v)

Alternatively, the option Real can be specified:

unassume(u1, u2, v1, v2):
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linalg::scalarProduct(u, v, Real)

Example 3

One particular scalar product in the real vector space of continuous functions on the
interval [0, 1] is defined by

.

To compute an orthogonal basis corresponding to the polynomial basis 1, t, t2, t3, … with
respect to this scalar product, we replace the standard scalar product by the following
procedure:

standardScalarProduct := linalg::scalarProduct:

unprotect(linalg):

linalg::scalarProduct := proc(u, v) 

    local F, f, t;

begin

    // (0)

    f := expr(u[1] * v[1]);

     // (1)

    t := indets(f);

    if t = {} then t := genident("t") else t := op(t, 1) end_if;

     // (2)

    F := int(f, t = 0..1);

     // (3)

    u::dom::coeffRing::coerce(F)

end:

We start with step (0) to convert f(t) g(t) to an expression of a basic domain type, such
that the system function int in step (2) can handle its input (this is not necessary if
the elements of the component ring of the vectors are already represented by elements of
basic domains).
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Step (1) extracts the indeterminate of the polynomials, step (2) computes the scalar
product as defined above and step (3) converts the result back to an element of the
component ring of vectors u and v.

Note that we need to unprotect the write protected identifier linalg, otherwise the
assignment would lead to an error message.

We next create the matrix which consists of the first five of the above polynomials:

P := matrix([[1, t, t^2, t^3, t^4]])

If we now perform the Gram-Schmidt orthogonalization procedure on the columns of P
with the function linalg::orthog, we get:

S := linalg::orthog(linalg::col(P, 1..4))

Each vector in S is orthogonal to the other vectors in S with respect to the modified scalar
product. We check this for the first vector:

linalg::scalarProduct(S[1], S[j]) $ j = 2..nops(S)

Finally, we undo the redefinition of the scalar product, so as not to run into trouble with
subsequent computations:

linalg::scalarProduct := standardScalarProduct:

protect(linalg, Error):

Parameters

u, v

Vectors of the same dimension (a vector is an n×1 or 1 ×n matrix of a domain of category
Cat::Matrix)
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Options

Real

Use u1 v1 + … + un vn as the definition of the scalar product, i.e., suppress the use of
conjugate.

Return Values

Element of the component ring of u and v.

See Also

MuPAD Functions
linalg::angle | linalg::crossProduct | linalg::factorQR |
linalg::isUnitary | linalg::orthog | norm
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linalg::setCol
Change a column of a matrix

Syntax
linalg::setCol(A, p, c)

Description

linalg::setCol(A, p, c) returns a copy of matrix A with the p-th column replaced
by the column vector .

If c is a list with at most m elements, then c is converted into a column vector. An
error message is returned if the conversion is not possible (e.g., if an element of the list
cannot be converted into an object of the component ring of A; see “Example 2” on page
15-202).

Examples

Example 1

We define a matrix over the rationals:

MatQ := Dom::Matrix(Dom::Rational): 

A := MatQ([[1, 2], [3, 2]])

and replace the 2nd column by the 2×1 zero vector:

linalg::setCol(A, 2, MatQ([0, 0]))
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Example 2

We create the 2×2 zero matrix over ℤ6:

B := Dom::Matrix(Dom::IntegerMod(6))(2, 2)

and replace the 2nd column by the vector . We give the column vector in form of a

list. Its elements are converted implicitly into objects of the component ring of B:

linalg::setCol(B, 2, [1, -1])

The following input leads to an error message because the number 1/3 can not be
converted into an object of type Dom::IntegerMod(6):

linalg::setCol(B, 1, [1/3, 0])

Error: The column vector is invalid. [linalg::setCol]

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

c

A column vector, or a list that can be converted into a column vector of the domain
Dom::Matrix(R), where R is the component ring of A (a column vector is an m×1
matrix)
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Return Values

Matrix of the same domain type as A.

See Also

MuPAD Functions
linalg::col | linalg::delCol | linalg::delRow | linalg::row |
linalg::setRow
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linalg::setRow
Change a row of a matrix

Syntax
linalg::setRow(A, p, r)

Description

linalg::setRow(A, p, r) returns a copy of the matrix A with the p-th row replaced
by the row vector .

If r is a list with at most n elements, then r is converted into a row vector. An error
message is returned if the conversion is not possible (e.g., if an element of the list
cannot be converted into an object of the component ring of A; see “Example 2” on page
15-205).

Examples

Example 1

We define a matrix over the rationals:

MatQ := Dom::Matrix(Dom::Rational): 

A := MatQ([[1, 2], [3, 2]])

and replace the 2nd row by the 1×2 zero vector:

linalg::setRow(A, 2, MatQ(1, 2, [0, 0]))
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Example 2

We create the 2×4 zero matrix over ℤ6:

B := Dom::Matrix(Dom::IntegerMod(6))(2, 4)

and replace the 2nd row by the vector (1, - 1, 1, - 1). We give the row vector in form of a
list. Its elements are converted implicitly into objects of the component ring of B:

linalg::setRow(B, 2, [1, -1, 1, -1])

The following input leads to an error message because the number  can not be

converted into an object of type Dom::IntegerMod(6):

linalg::setRow(B, 1, [1/3, 0, 1, 0])

Error: The row vector is invalid. [linalg::setRow]

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

r

A row vector or a list that can be converted into a row vector the domain
Dom::Matrix(R), where R is the component ring of A (a row vector is a 1 ×n matrix)

Return Values
Matrix of the same domain type as A.
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See Also

MuPAD Functions
linalg::col | linalg::delCol | linalg::delRow | linalg::row |
linalg::setCol
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linalg::smithForm
Smith normal form of a matrix

Syntax
linalg::smithForm(A, <var>, <All>)

Description
linalg::smithForm(A) computes the Smith normal form of the n-dimensional square
matrix A, that is an n×n diagonal matrix S, such that Si - 1, i - 1 divides Si, i for i = 2, …, n.

The Smith normal form of a matrix A is unique.

The component ring of A must be a Euclidean ring, that is, a domain of category
Cat::EuclideanDomain.

linalg::smithForm(A, var) returns the Smith normal form of A, assuming that the
elements of A are univariate polynomials in the variable var. If A does not contain var,
then smithForm(A) and smithForm(A,var) return different results.

linalg::smithForm(A, <var>, All) returns the list [S, U, V], where S is the
Smith normal form of A, and U and V are unimodular transformation matrices, such that
S = U*A*V. You can use the All option with or without specifying the variable var.

Examples

Example 1

Create the following matrix of integers.

A := matrix([[9, -36, 30], [-36, 192, -180], [30, -180, 180]])

15-207



15 linalg – Linear Algebra

Find the Smith normal form of this matrix.

linalg::smithForm(A)

Use the All option to find the corresponding transformation matrices.

[S, U, V] := linalg::smithForm(A, All)

Verify that S = U*A*V.

S = U*A*V

Example 2

Create the following matrix of polynomials.

B := matrix([[-(x - 3)^2*(x - 2),(x - 3)*(x - 2)*(x - 4)],

             [(x - 3)*(x - 2)*(x - 4),-(x - 3)^2*(x - 4)]

            ])

Find the Smith normal form of this matrix.

linalg::smithForm(B)
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Use the All option to find the corresponding transformation matrices.

[U, S, V] := linalg::smithForm(B, All)

Example 3

If a matrix does not contain a particular variable, and you call linalg::smithForm
specifying that variable as the second argument, then the result differs from what you
get without specifying that variable. For example, create a matrix that does not contain
any variables.

A := matrix([[9, -36, 30], [-36, 192, -180], [30, -180, 180]])

Call linalg::smithForm specifying variable x as the second argument. In this case,
linalg::smithForm assumes that the elements of A are univariate polynomials in x.

linalg::hermiteForm(A, x)

Call linalg::smithForm without specifying variables. In this case,
linalg::smithForm treats A as a matrix of integers.
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linalg::hermiteForm(A)

Parameters

A

A square matrix of a domain of category Cat::Matrix

Options

All

Returns the list [S, U, V], where S is the Smith normal form of A, and U and V are
unimodular transformation matrices, such that S = U*A*V.

Return Values

Matrix of the same domain type as A. With the option All, linalg::smithForm returns
the list [S, U, V], where S is a matrix of the same domain type as A, and U and V are
corresponding transformation matrices.

Algorithms

An n×n matrix S = (sij) with coefficients in a Euclidean ring is the Smith normal form of a
matrix if S is a diagonal matrix (with nonnegative coefficients in case of the ring ℤ), such
that si, i divides si + 1, i + 1 for all i < n.

See Also

MuPAD Functions
linalg::frobeniusForm | linalg::hermiteForm | linalg::jordanForm
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linalg::sqrtMatrix
Square root of a matrix

Syntax
linalg::sqrtMatrix(A, <sqrtfunc>)

Description

linalg::sqrtMatrix(A) returns the square root of the matrix A.

If A has an eigenvalue 0 of algebraic multiplicity larger than its geometric multiplicity,
then the square root of A does not exist.

Examples

Example 1

A square root of a diagonal matrix is given by the diagonal matrix, whose diagonal
entries are just the square roots of the original matrix.

Compute the square root of the matrix

:

A := matrix([[4, 0, 0], [0, 2, 0], [0, 0, -1]]):

S := linalg::sqrtMatrix(A)
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Check the correctness of the result:

S^2

Example 2

Compute the square root of the matrix

:

A := matrix([[2, -2, 0], [-1, 3, 0], [-1/3, 5/3, 2]]):

S := linalg::sqrtMatrix(A)

If you compute the square of the matrix S and simplify the result, you obtain the matrix
A:

simplify(S^2)
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Using the function x -> -sqrt(x) as second argument for the computation of the
square root of the matrix A, obtain a different matrix, whose components are just the
negative components of the original square root computed above:

S:= linalg::sqrtMatrix(A, x -> -sqrt(x)): 

S, simplify(S^2);

Parameters

A

A square matrix of a domain of category Cat::Matrix

sqrtfunc

A function satisfying sqrtfunc(a)2 = a for every element a of the coefficient ring of A (i.e.
the square root function of the coefficient domain of A).

Return Values

Matrix B with B2 = A such that the eigenvalues of B are the square roots of the
eigenvalues of A or FAIL if the square root of the matrix does not exist

See Also

MuPAD Functions
funm | linalg::eigenvalues | linalg::eigenvectors | linalg::jordanForm
| numeric::eigenvalues | numeric::eigenvectors | numeric::expMatrix |
numeric::fMatrix | solve
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linalg::stackMatrix

Join matrices vertically

Syntax

linalg::stackMatrix(A, <B1, B2, …>)

Description

linalg::stackMatrix(A, B1, B2, ...) returns the matrix formed by joining the
matrices A, B1, B2, ... vertically.

The matrices B1, B2, ... are converted into the matrix domain Dom::Matrix(R),
where R is the component ring of A.

An error message is raised if one of these conversions fails, or if the matrices do not have
the same number of columns as the matrix A.

Examples

Example 1

We define a matrix:

A:= matrix( [[sin(x),x], [-x,cos(x)]] )

and append the 2×2 identity matrix to the lower end of the matrix A:

linalg::stackMatrix(A, matrix::identity(2))
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Example 2

We define a matrix from the ring of 2×2 square matrices:

SqMatQ := Dom::SquareMatrix(2,Dom::Rational): 

A := SqMatQ([[1, 2], [3, 4]])

Note that the following operation:

AA := linalg::stackMatrix(A, A)

returns a matrix of a different domain type as the input matrix:

domtype(AA)

Parameters

A, <B1, B2, …>

Matrices of a domain of category Cat::Matrix
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Return Values

Matrix of the domain type Dom::Matrix(R), where R is the component ring of A.

See Also

MuPAD Functions
linalg::concatMatrix
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linalg::submatrix

Extract a submatrix or a subvector from a matrix or a vector, respectively

Syntax

linalg::submatrix(A, r1 .. r2, c1 .. c2)

linalg::submatrix(A, rlist, clist)

linalg::submatrix(v, i1 .. i2)

linalg::submatrix(v, list)

Description

linalg::submatrix(A, r1.. r2, c1.. c2) returns a copy of the submatrix of the
matrix A obtained by selecting the rows r1, r1 + 1, …, r2 and the columns c1, c1 + 1, …, c2.

linalg::submatrix(v, i1.. i2) returns a copy of the subvector of the vector 
obtained by selecting the components with indices i1, i1 + 1, …, i2.

The index notation A[ r1.. r2, c1.. c2] and v[ i1.. i2], respectively, can be used
instead of linalg::submatrix(A, r1.. r2, c1.. c2) and linalg::submatrix(v,
i1.. i2).

linalg::submatrix(A,rlist,clist) returns the submatrix of the matrix A whose (i,
j)-th component is arlisti, clistj.

linalg::submatrix(v,list) returns the subvector of the vector v whose i-th
component is vlisti.

If v is a row vector or a column vector, then linalg::submatrix(v, 1..1, i1.. i2)
and linalg::submatrix(v, i1.. i2, 1..1), respectively, are valid inputs, and they
both are equivalent to the call linalg::submatrix(v, i1.. i2).
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Examples

Example 1

We define the following matrix:

A := matrix([[1, x, 0], [0, x^2, 1]])

The submatrix (a1, j)1 ≤ j ≤ 2 of A is given by:

linalg::submatrix(A, 1..1, 1..2)

Equivalent to the use of the index operator we obtain:

A[1..1, 1..2]

We extract the first and the third column of A and get the 2×2 identity matrix:

linalg::submatrix(A, [1, 2], [1, 3])

Example 2

Vector components can be accessed by a single index or a range of indices. For example,
to extract the first two components of the following vector:

v := matrix([1, 2, 3])
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just enter the command:

v[1..2]

Of course, the same subvector can be extracted with the command
linalg::submatrix(v, 1..2).

The following input returns the vector comprising the first and the third component of v:

linalg::submatrix(v, [1, 3])

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

v

A vector with k components, i.e., a k×1 or 1 ×k matrix of a domain of category
Cat::Matrix

r1 .. r2, c1 .. c2

Ranges of row/column indices: positive integers less or equal to m and n, respectively

rlist, clist

Lists of row/column indices: positive integers less or equal to m and n, respectively

i1 .. i2

A range of vector indices: positive integers less or equal to k
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list

A list of vector indices: positive integers less or equal to k

Return Values

Matrix of the same domain type as A or a vector of the same domain type as v,
respectively.

See Also

MuPAD Functions
linalg::col | linalg::row | linalg::substitute
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linalg::substitute
Replace a part of a matrix by another matrix

Syntax
linalg::substitute(B, A, m, n)

Description

linalg::substitute(B, A, m, n) returns a copy of the matrix B, where entries
starting at position [m, n] are replaced by the entries of the matrix A, i.e., Bmn is A11.

If the matrices are defined over different component domains, then the entries of A
are converted into elements of the component domain of the matrix B. If one of these
conversions fails, then an error message is returned.

Examples

Example 1

We define the following matrix:

B := matrix(

  [[1, 2, 3, 4], [5, 6, 7, 8],

   [9, 10, 11, 12], [13, 14, 15, 16]]

)

and copy the 2×2 zero matrix into the matrix B, beginning at position [3, 3]:

A := matrix(2, 2):
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linalg::substitute(B, A, 3, 3)

Matrix entries out of range are ignored:

linalg::substitute(B, A, 4, 4)

Parameters

A, B

Matrices of a domain of category Cat::Matrix

m, n

Positive integers

Return Values

Matrix of the same domain type as B.

See Also

MuPAD Functions
linalg::concatMatrix | linalg::setCol | linalg::setRow |
linalg::stackMatrix | linalg::submatrix
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linalg::sumBasis
Basis for the sum of vector spaces

Syntax
linalg::sumBasis(S1, S2, …)

Description

linalg::sumBasis( S1, S2, ...) returns a basis of the vector space V1 + V2 + …,
where Vi denotes the vector space spanned by the vectors in Si.

To obtain an ordered basis, S1, S2, ... should be given as lists of vectors.

A basis of the zero-dimensional space is the empty set or list, respectively.

The given vectors must be defined over the same component ring, which must be a field,
i.e., a domain of category Cat::Field.

Examples

Example 1

We define three vectors  over ℚ:

MatQ := Dom::Matrix(Dom::Rational):

v1 := MatQ([[3, -2]]); v2 := MatQ([[1, 0]]); v3 := MatQ([[5, -3]])

15-223



15 linalg – Linear Algebra

A basis of the vector space V1 + V2 + V3 with

• V1 generated by 

• V2 generated by 

• V3 generated by 

is:

linalg::sumBasis([v1, v2, v3], [v1, v3], [v1 + v2, v2, v1 + v3])

Example 2

The following set of two vectors:

MatQ := Dom::Matrix(Dom::Rational):

S1 := {MatQ([1, 2, 3]), MatQ([-1, 0, 2])}

is a basis of a two-dimensional subspace of ℚ3:

linalg::rank(S1)

The same holds for the following set:

S2 := {MatQ([0, 2, 3]), MatQ([2, 4, 6])};

linalg::rank(S2)

15-224



 linalg::sumBasis

The sum of the corresponding two subspaces is the vector space ℚ3:

Q3 := linalg::sumBasis(S1, S2)

Parameters

S1, S2, …

A set or list of vectors of the same dimension (a vector is a n×1 or 1 ×n matrix of a
domain of category Cat::Matrix)

Return Values

Set or a list of vectors, according to the domain type of the parameter S1.

See Also

MuPAD Functions
linalg::basis | linalg::intBasis | linalg::rank
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linalg::swapCol
Swap two columns in a matrix

Syntax
linalg::swapCol(A, c1, c2)

linalg::swapCol(A, c1, c2, r1 .. r2)

Description

linalg::swapCol(A, c1, c2) returns a copy of the matrix A with the columns with
indices c1 and c2 interchanged.

The effect of linalg::swapCol(A, c1, c2, r1.. r2) is that only the components
from row r1 to row r2 of column c1 are interchanged with the corresponding components
of column c2.

Examples

Example 1

We consider the following matrix:

A := matrix(3, 3, (i, j) -> 3*(i - 1) + j)

The following command interchanges the first and the second column of A. The result is
the following matrix:

linalg::swapCol(A, 1, 2)
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If only the components in the first two rows should be affected, we enter:

linalg::swapCol(A, 1, 2, 1..2)

The third row remains unchanged.

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

c1, c2

The column indices: positive integers less or equal to n

r1 .. r2

A range of row indices (positive integers less or equal to m)

Return Values

Matrix of the same domain type as A.

See Also

MuPAD Functions
linalg::col | linalg::delCol | linalg::delRow | linalg::row |
linalg::setCol | linalg::setRow | linalg::swapRow
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More About
• “Swap and Delete Rows and Columns”
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linalg::swapRow
Swap two rows in a matrix

Syntax
linalg::swapRow(A, r1, r2)

linalg::swapRow(A, r1, r2, c1 .. c2)

Description

linalg::swapRow(A, r1, r2) returns a copy of the matrix A with the rows with
indices r1 and r2 interchanged.

The effect of linalg::swapRow(A, r1, r2, c1.. c2) is that only the components
from column c1 to column c2 of row r1 are interchanged with the corresponding
components of row r2.

Examples

Example 1

We consider the following matrix:

A := matrix(3, 3, (i, j) -> 3*(i - 1) + j)

The following command interchanges the first and the second row of A. The result is the
following matrix:

linalg::swapRow(A, 1, 2)
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If only the components in the first two columns should be affected, we enter:

linalg::swapRow(A, 1, 2, 1..2)

The third column remains unchanged.

Parameters

A

An m×n matrix of a domain of category Cat::Matrix

r1, r2

The row indices: positive integers less or equal to m

c1 .. c2

A range of column indices (positive integers less or equal to n)

Return Values

Matrix of the same domain type as A.

See Also

MuPAD Functions
linalg::col | linalg::delCol | linalg::delRow | linalg::row |
linalg::setCol | linalg::setRow | linalg::swapCol
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More About
• “Swap and Delete Rows and Columns”
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linalg::sylvester
Sylvester matrix of two polynomials

Syntax
linalg::sylvester(p, q)

linalg::sylvester(f, g, x)

Description

linalg::sylvester(p, q) returns the Sylvester matrix of the two polynomials p and
q.

If no variable is specified, then the polynomials p and q must be either of the domain
DOM_POLY or from a domain of category Cat::Polynomial. Polynomial expressions are
not allowed.

If the polynomials p and q are of the domain DOM_POLY, then they must be univariate
polynomials. The component ring of the Sylvester matrix is the common coefficient
ring R of p and q, except in the following two cases for built-in coefficient rings: If R
is Expr then the domain Dom::ExpressionField() is the component ring of the
Sylvester matrix. If R is IntMod(m), then the Sylvester matrix is defined over the ring
Dom::IntegerMod(m) (see “Example 2” on page 15-233).

Otherwise, if the polynomials p and q are from a domain of category Cat::Polynomial,
then the Sylvester matrix is computed with respect to the main variable of p and q (see
the method "mainvar" of the category Cat::Polynomial). In the case of univariate
polynomials the Sylvester matrix is defined over the common coefficient ring of p and
q. In the case of multivariate polynomials, the Sylvester matrix is defined over the
component ring Dom::DistributedPolynomial(ind, R), where ind is the list of all
variables of p and q except x, and R is the common coefficient ring of the polynomials.

If f and g are polynomial expressions or multivariate polynomials of type DOM_POLY,
then you must specifiy the variable x.

In the case of polynomial expressions, the component ring of the Sylvester matrix is the
domain Dom::ExpressionField() (see “Example 3” on page 15-234).
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In the case of multivariate polynomials the Sylvester matrix is defined over the
component ring Dom::DistributedPolynomial(ind, R), where ind is the list of all
variables of f and g except x, and R is the common coefficient ring of the polynomials (see
“Example 4” on page 15-234).

At least one of the input polynomials must have positive degree with respect to the main
variable or x, respectively, but it is not necessary that both of them have positive degree.

Examples

Example 1

The Sylvester matrix of the two polynomials p = x2 + 2 x - 1 and q = x4 + 1 over ℤ is the
following 6×6 matrix:

delete x: Z := Dom::Integer:

S := linalg::sylvester(poly(x^2 + 2*x - 1, Z), poly(x^4 + 1, Z))

Example 2

If the polynomials have the built-in coefficient ring IntMod(m), then the Sylvester
matrix is defined over the domain Dom::IntegerMod(m):

delete x: 

S:= linalg::sylvester( 

  poly(x + 1, IntMod(7)), poly(x^2 - 2*x + 2, IntMod(7)) 

)
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domtype(S)

Example 3

The Sylvester matrix of the following two polynomial expressions with respect to the
variable x is:

delete x, y: 

S := linalg::sylvester(x + y^2, 2*x^3 - 1, x)

domtype(S)

The Sylvester matrix of these two polynomials with respect to y is the following 2×2
matrix:

linalg::sylvester(x + y^2, 2*x^3 - 1, y)

Example 4

Here is an example for computing the Sylvester matrix of multivariate polynomials:

delete x, y: Q := Dom::Rational:

T := linalg::sylvester(poly(x^2 - x + y, Q), poly(x + 2, Q), x)

15-234



 linalg::sylvester

domtype( T )

The Sylvester matrix of these two multivariate polynomials with respect to y is:

linalg::sylvester(poly(x^2 - x + y, Q), poly(x + 2, Q), y)

Parameters

p, q

Polynomials

f, g

Polynomials or polynomial expressions of positive degree

x

A variable

Return Values

Matrix of the domain Dom::Matrix(R), where R is the coefficient domain of the
polynomials (see below).

See Also

MuPAD Functions
polylib::discrim | polylib::resultant
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linalg::tr
Trace of a matrix

Syntax
linalg::tr(A)

Description

linalg::tr(A) returns the trace of the square matrix A, i.e., the sum of the diagonal
elements of A.

Examples

Example 1

We compute the trace of the following matrix:

A := Dom::Matrix(Dom::Integer)

  (3, 3, (i, j) -> 3*(i - 1) + j)

linalg::tr(A)

Parameters

A

A square matrix of a domain of category Cat::Matrix
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Return Values

Element of the component ring of A.

See Also

MuPAD Functions
det

More About
• “Compute Determinants and Traces of Square Matrices”
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linalg::toeplitz
Toeplitz matrix

Syntax
linalg::toeplitz(m, n, [t-k, …,t k], <R>)

linalg::toeplitz(n, [t-k, …,t k], <R>)

linalg::toeplitz(c, r)

linalg::toeplitz(r)

Description

linalg::toeplitz(m, n, [t-k, ..., t-1, t0, t1, ..., tk]) returns the m×n
Toeplitz matrix

.

linalg::toeplitz(n, [t-k, ..., tk]) returns the square Toeplitz matrix of
dimension n×n.

A number of entries [t-k, …, tk] must be an odd number 2 k + 1. There must be at least
k diagonal bands above the diagonal and k diagonal bands below the diagonal: k must
satisfy k ≤ min(m, n) - 1. Entries with matrix indices (i, j) satisfying |i - j| > k are set to
0.

Toeplitz matrices of dimension n×n can be inverted with O(n2) operations. See
linalg::toeplitzSolve.
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linalg::toeplitz(c, r) generates a nonsymmetric Toeplitz matrix having c as its
first column and r as its first row. If the first elements of c and r differ, toeplitz issues
a warning and uses the first element of the column.

linalg::toeplitz(r) generates a symmetric Toeplitz matrix if r is real. If r is
complex, but its first element is real, then this syntax generates the Hermitian Toeplitz
matrix formed from r. If the first element of r is complex, then the resulting matrix is
Hermitian off the main diagonal, meaning that Tij = conjugate(Tji) for i ≠ j.

When you use matrices in MuPAD computations, both computational efficiency and
memory use can depend on whether the matrix is sparse or dense. The first two
syntaxes are optimized for generating sparse matrices and, therefore, these syntaxes are
preferable. For details about improving performance when working with matrices, see
“Use Sparse and Dense Matrices”.

Examples

Example 1

Construct a 4×4 Toeplitz matrix with three bands:

linalg::toeplitz(4, [-1, 2, 1])

Construct a 3×5 Toeplitz matrix with symbolic entries:

linalg::toeplitz(3, 5, [a, b, c])
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Example 2

Construct a Toeplitz matrix by using a vector to specify its first row. For a real vector,
the resulting matrix is symmetric:

r := matrix([1, 2, 3]):

linalg::toeplitz(r)

For a complex vector, the resulting matrix is Hermitian off the main diagonal:

r := matrix([1 + I, 2 + I, 3 + I]):

T := linalg::toeplitz(r);

htranspose(T)

Example 3

Construct a Toeplitz matrix by using two vectors to specify its first column and first row:

c := matrix([1, a/2, b/2]):

r := [1, a, b]:

linalg::toeplitz(c, r)
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If the first elements of the vectors differ, linalg::toeplitz issues a warning and uses
the first element of the column:

c := matrix([1, a/2, b/2]):

r := [2, a, b]:

linalg::toeplitz(c, r)

Warning: First element of input column does not match first element of input row. Column wins diagonal conflict. [linalg::toeplitz]

Parameters
m, n

Row and column dimensions of the matrix: positive integers.

t-k,…,tk

Arithmetical expressions or elements of the component ring R.

R

Component ring: a domain of category Cat::Rng. The default ring is
Dom::ExpressionField().

c

Vector specifying the first column of a Toeplitz matrix.

r

Vector specifying the first row of a Toeplitz matrix.

Return Values
Matrix of the domain Dom::Matrix(R).
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See Also

MuPAD Functions
linalg::hilbert | linalg::invhilbert | linalg::invpascal |
linalg::invvandermonde | linalg::pascal | linalg::toeplitzSolve |
linalg::vandermonde | linalg::vandermondeSolve
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linalg::toeplitzSolve
Solve a linear Toeplitz system

Syntax
linalg::toeplitzSolve(t, y)

Description

linalg::toeplitzSolve(t, y) returns the solution  of the linear Toeplitz system
 with i = 1, …, n.

linalg::toeplitzSolve(t, y) with t = [tk, …, t0, …, t- k] and y = [y1, …, yn] solves
the n×n Toeplitz system

with 2 k + 1 bands.

linalg::toeplitzSolve implements the Levinson algorithm. It uses O(n2)
elementary operations to solve the Toeplitz system. The memory requirements are
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O(n). For dense Toeplitz systems, it is faster than the general solver solve and
the linear solvers linsolve, numeric::linsolve, linalg::matlinsolve and
numeric::matlinsolve.

Note: Note that the Levinson algorithm requires that all principal minors

are non-singular.

If linalg::toeplitzSolve does not manage to find the solution due to this limitation,
or if the system is very sparse with k smaller than , we recommend to generate the
corresponding Toeplitz matrix via linalg::toeplitz and compute the solution via
linalg::matlinsolve or numeric::matlinsolve, respectively. Cf. “Example 2” on
page 15-245

linalg::toeplitzSolve can solve Toeplitz systems over arbitrary coefficient rings.
Just make sure that both the Toeplitz entries t as well as the components of the 'right
hand side' y are elements of the desired coefficient ring. Cf. “Example 3” on page
15-246.

Examples

Example 1

The Toeplitz entries t and the right hand side y of the linear system are entered as row
vectors:

t := matrix([4, 2, 1, 3, 5]): 

y := matrix([y1, y2, y3]):

The solution of the Toeplitz system is returned as a vector of the same type as the input
vector y:
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x := linalg::toeplitzSolve(t, y): x, domtype(x)

If the input vector is a list, the output is a list, too:

x := linalg::toeplitzSolve(t, [y1, y2, y3]): x, domtype(x)

delete t, y, x:

Example 2

The Levinson algorithm cannot solve the following Toeplitz system because the first
principal minor of the Toeplitz matrix (the central element of the Toeplitz entries)
vanishes:

linalg::toeplitzSolve([1, 0, 1], [y1, y2, y3, y4])

This does not necessarily imply that the Toeplitz system is not solvable. We
generate the corresponding Toeplitz matrix and use a generic linear solver such as
linalg::matlinsolve:

T := linalg::toeplitz(4, 4, [1, 0, 1])
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linalg::matlinsolve(T, matrix([y1, y2, y3, y4]))

Example 3

We solve a Toeplitz system over the field ℤ7 (the integers modulo 7) represented by the
domain Dom::IntegerMod(7):

R := Dom::IntegerMod(7):

t := [R(5), R(3), R(2), R(5), R(1)]:

y := [R(1), R(2), R(3)]:

linalg::toeplitzSolve(t, y)

delete R, t, y:

Parameters

t

A vector or a list with 2 k + 1 elements. (A vector is a (2 k + 1)×1 or a 1 ×(2 k + 1) matrix
of category Cat::Matrix).

y

A vector or a list with n elements

Return Values

Vector or list with n elements of the same domain type as the elements of y. FAIL is
returned if the algorithm does not succeed in finding a solution.
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See Also

MuPAD Functions
linalg::hilbert | linalg::invhilbert | linalg::invpascal |
linalg::invvandermonde | linalg::matlinsolve | linalg::pascal |
linalg::toeplitz | linalg::vandermonde | linalg::vandermondeSolve |
linsolve | numeric::linsolve | numeric::matlinsolve | solve
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linalg::transpose
Transpose of a matrix

Syntax
linalg::transpose(A)

Description

linalg::transpose(A) returns the transpose At of the matrix A.

linalg::transpose is an interface function for the method "transpose" of
the matrix domain of A, i.e., instead of linalg::transpose(A) one may call
A::dom::transpose(A) directly.

Examples

Example 1

We define a 3×4 matrix:

A := matrix([[1, 2, 3, 4], [-1, 0, 1, 0], [3, 5, 6, 9]])

Then the transpose of A is the 4 ×3 matrix:

linalg::transpose(A)
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Parameters

A

A matrix of a domain of category Cat::Matrix

Return Values

Matrix of the same domain type as A.

Algorithms

Let A = (ai, j)1 ≤ i ≤ m, 1 ≤ j ≤ n be an m×n matrix. Then the transpose of A is the n×m matrix:

.
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linalg::vandermonde
Vandermonde matrix

Syntax
linalg::vandermonde([v1, v2, …], <R>)

Description

linalg::vandermonde(v1, v2, ... , vn) returns the n×n Vandermonde matrix V
with entries Vij = vi

j - 1.

Use linalg::vandermonde([v1, ..., vn], R) to define the n×n Vandermonde
matrix over the field R. Note that the Vandermonde nodes vi must be elements of R or
must be convertible to elements of R.

Vandermonde matrices of dimension n×n can be inverted with O(n2) operations.
Linear equations with a Vandermonde coefficient matrix can be solved via
linalg::vandermondeSolve.

Examples

Example 1

Create a 3×3 Vandermonde matrix:

V := linalg::vandermonde([v1, v2, v3])

V is a matrx of the domain Dom::Matrix().

domtype(V)
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You can specify a special component ring for the matrices, provided the nodes can be
converted to elements of the ring. For example, specification of the domain Dom::Float
generates floating-point entries:

V := linalg::vandermonde([2, PI, 1/3], Dom::Float)

domtype(V)

delete V

Parameters

v1, v2, …

The Vandermonde nodes: arithmetical expressions

R

The component ring: a domain of category Cat::Rng; default:
Dom::ExpressionField()

Return Values

n×n matrix of the domain Dom::Matrix(R).

Algorithms

Vandermonde matrices are notoriously ill-conditioned. The inverses of large floating-
point Vandermonde matrices are subject to severe round-off effects.
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See Also

MuPAD Functions
linalg::hilbert | linalg::invhilbert | linalg::invpascal |
linalg::invvandermonde | linalg::pascal | linalg::toeplitz |
linalg::toeplitzSolve | linalg::vandermondeSolve

15-252



 linalg::invvandermonde

linalg::invvandermonde
Vandermonde matrices and their inverses

Syntax
linalg::invvandermonde([v1, v2, …], <R>)

Description

linalg::invvandermonde(v1, v2, ... , vn) returns the inverse of the
Vandermonde matrix with nodes vi.

Use linalg::invvandermonde([v1, ..., vn], R) to define the n×n inverse
Vandermonde matrix over the field R. Note that the nodes vi must be elements of R or
must be convertible to elements of R.

Vandermonde matrices of dimension n×n can be inverted with O(n2) operations.
Linear equations with a Vandermonde coefficient matrix can be solved via
linalg::vandermondeSolve.

Examples

Example 1

Create a 3×3 Vandermonde matrix:

V := linalg::vandermonde([v1, v2, v3])

The inverse of this matrix is:
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invV := linalg::invvandermonde([v1, v2, v3])

V and its inverse are matrices of the domain Dom::Matrix().

domtype(V), domtype(invV)

You can specify a special component ring for the matrices, provided the nodes can be
converted to elements of the ring. For example, specification of the domain Dom::Float
generates floating-point entries:

V := linalg::vandermonde([2, PI, 1/3], Dom::Float)

domtype(V)
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It is faster to compute the inverse via linalg::invvandermonde than inverting the
Vandermonde matrix by a generic inversion algorithm implemented by V^(-1):

V^(-1) = linalg::invvandermonde([2, PI, 1/3], Dom::Float)

delete V, invV

Parameters

v1, v2, …

The Vandermonde nodes: arithmetical expressions

R

The component ring: a domain of category Cat::Rng; default:
Dom::ExpressionField()

Return Values

n×n matrix of the domain Dom::Matrix(R).

Algorithms

Vandermonde matrices are notoriously ill-conditioned. The inverses of large floating-
point Vandermonde matrices are subject to severe round-off effects.
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See Also

MuPAD Functions
linalg::hilbert | linalg::invhilbert | linalg::invpascal |
linalg::pascal | linalg::toeplitz | linalg::toeplitzSolve |
linalg::vandermonde | linalg::vandermondeSolve
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linalg::vandermondeSolve
Solve a linear Vandermonde system

Syntax
linalg::vandermondeSolve(v, y, <Transposed>)

Description

linalg::vandermondeSolve(v, y) returns the solution  of the linear Vandermonde
system  with i = 1, …, n.

linalg::vandermondeSolve uses O(n2) elementary operations to solve
the Vandermonde system. It is faster than the general solver solve and the
linear solvers linsolve, numeric::linsolve, linalg::matlinsolve and
numeric::matlinsolve.

The solution  returned by linalg::vandermondeSolve([v[i] $
i=1..n], [y[i] $ i=1..n]) yields the coefficients of the polynomial p(v) = x1 + x2 v +
··· + xn vn - 1 interpolating the data table (v1, y1), …, (vn, yn), i.e.,

.

See “Example 1” on page 15-257.

Examples

Example 1

The Vandermonde points v and the right hand side y of the linear system are entered as
vectors:
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delete y0, y1, y2:

v := matrix([[0, 1, 2]]); 

y := matrix([[y0, y1, y2]])

The solution vector is:

x := linalg::vandermondeSolve(v, y)

The solution yields the coefficients of the interpolating polynomial:

P := v -> _plus(x[i+1]*v^i $ i=0..2):

through the points (0, y0), (1, y1), (2, y2):

P(v[1]), P(v[2]), P(v[3])

With the optional argument Transposed, the linear system with the transposed
Vandermonde matrix corresponding to v is solved:

linalg::vandermondeSolve(v, y, Transposed)

delete v, y, x, P:

Example 2

The Vandermonde points v and the right hand side y of the linear system are entered as
2×1 matrices:
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Mat := Dom::Matrix(Dom::ExpressionField(normal)):

delete v1, v2, y1, y2:

v := Mat([v1, v2]): 

y := Mat([y1, y2]):

We define the vectors over the domain Dom::ExpressionField(normal) in order to
simplify intermediate computations.

Next, we compute the solution of the corresponding Vandermonde system:

x := linalg::vandermondeSolve(v, y)

We construct the Vandermonde matrix V and verify the result:

V := Mat([[1, v[1]], [1, v[2]]])

V * x

delete Mat, v, y, x, V:

Example 3

We solve a Vandermonde system over the field ℤ7 (the integers modulo 7) represented by
the domain Dom::IntegerMod(7):

MatZ7 := Dom::Matrix(Dom::IntegerMod(7)):

v := MatZ7([1, 2, 3]): y := MatZ7([0, 1, 2]):
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linalg::vandermondeSolve(v, y)

delete MatZ7, v, y:

Parameters

v

A vector with distinct elements (a vector is an n×1 or 1 ×n matrix of category
Cat::Matrix). Alternatively, a list with n distinct elements is also accepted.

y

A vector of the same dimension and domain type as v. Alternatively, a list with n
elements is also accepted.

Options

Transposed

Returns the solution  of the transposed system  with i = 1, …, n.

Return Values

Vector of the same domain type as y.

Algorithms

The Vandermonde matrix
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generated by v = [v1, …, vn] is invertible if and only if the vi are distinct.

The vector  returned by linalg::vandermondeSolve(x, y) is the unique solution
of .

The vector x returned by linalg::vandermondeSolve(x, y, Transposed) is the
unique solution of .

See Also

MuPAD Functions
interpolate | linalg::invhilbert | linalg::invpascal |
linalg::invvandermonde | linalg::matlinsolve | linalg::pascal |
linalg::toeplitz | linalg::toeplitzSolve | linalg::vandermonde
| linalg::vandermondeSolve | linsolve | numeric::linsolve |
numeric::matlinsolve | solve
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linalg::vecdim
Number of components of a vector

Syntax
linalg::vecdim(v)

Description

linalg::vecdim(v) returns the number of elements of the vector .

Examples

Example 1

We define a column vector with two elements and a row vector with four elements:

v1 := matrix([1, 0]); v2 := matrix([[1, 2, 3, 4]])

linalg::vecdim gives us the number of elements, i.e., the dimension of these vectors:

linalg::vecdim(v1), linalg::vecdim(v2)

In contrast, the function linalg::matdim returns the number of rows and columns of
these vectors:
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linalg::matdim(v1), linalg::matdim(v2)

Parameters

v

A vector, i.e., an n×1 or 1 ×n matrix of a domain of category Cat::Matrix

Return Values

Positive integer.

See Also

MuPAD Functions
linalg::matdim | linalg::ncols | linalg::nrows
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linalg::vectorOf
Type specifier for vectors

Syntax
linalg::vectorOf(R)

linalg::vectorOf(R, n)

Description

linalg::vectorOf(R) is a type specifier representing all objects of a domain of
category Cat::Matrix with component ring R and number of rows or number of columns
equal to one.

linalg::vectorOf(R,n) is a type specifier representing all objects of a domain of
category Cat::Matrix with component ring R and number of rows equal to n and
number of columns equal to one, or vice versa.

linalg::vectorOf(Type::AnyType,n) is a type specifier representing all objects of
a domain of category Cat::Matrix with an arbitrary component ring R and number of
rows equal to n and number of columns equal to one, or vice versa.

Examples

Example 1

linalg::vectorOf can be used together with testtype to check whether a MuPAD
object is a vector:

MatZ := Dom::Matrix(Dom::Integer): 

v := MatZ([1, 0, -1])
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The following yields FALSE because v is 3-dimensional vector:

testtype(v, linalg::vectorOf(Dom::Integer, 4))

The following yields FALSE because v is defined over the integers:

testtype(v, linalg::vectorOf(Dom::Rational))

Of course, v can be converted into a vector over the rationals, as shown by the following
call:

bool(coerce(v, Dom::Matrix(Dom::Rational)) <> FAIL)

This shows that testtype in conjunction with linalg::vectorOf(R) does not check
whether an object can be converted into a vector over the specified component ring R. It
checks only if the object is a vector whose component ring is R.

The following test returns TRUE because v is a 3-dimensional vector:

testtype(v, linalg::vectorOf(Type::AnyType, 3))

Example 2

linalg::vectorOf can also be used for checking parameters of procedures. The
following procedure computes the orthogonal complement of a 2-dimensional vector:

orth := proc(v:linalg::vectorOf(Type::AnyType, 2))

begin

    [v[1], v[2]] := [-v[2],v[1]];

    return(v)

end:
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 u := matrix([[1, 2]]); u_ := orth(u)

Calling the procedure orth with an invalid parameter leads to an error message:

orth([1, 2])

Error: The object '[1, 2]' is incorrect. The type of argument number 1 must be 'slot(Type, vectorOf)(Type::AnyType, 2)'.

  Evaluating: orth

Parameters

R

The component ring: a library domain

n

A positive integer

Return Values

Type expression of the domain type Type.

See Also

MuPAD Functions
testtype
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linalg::wiedemann
Solving linear systems by Wiedemann's algorithm

Syntax
linalg::wiedemann(A, b, <mult>, <prob>)

Description

linalg::wiedemann(A, b, mult, ...) tries to find a vector  that satisfies the

equation  by using Wiedemann's algorithm.

The parameter mult must be a function such that the result of mult(A,y) equals 
for every n-dimensional column vector . The parameter y is of the same domain type
as A. The argument mult does not need to handle other types of parameters, nor does it
need to handle other matrices than A.

linalg::wiedemann uses a probabilistic algorithm. For a deterministic variant enter
FALSE for the optional parameter prob.

If the system  does not have a solution, then linalg::wiedemann returns
FAIL.

If the system  has more than one solution, then a random one is returned.

Due to the probabilistic nature of Wiedemann's algorithm, the computation may fail with
small probability. In this case FAIL is returned. If the deterministic variant is chosen,
then the algorithm may be slower for a small number of matrices.

The vector b must be defined over the component ring of A.

The coefficient ring of A must be a field, i.e., a domain of category Cat::Field.

It is recommended to use linalg::wiedemann only if mult uses significantly less than
O(n2) field operations.
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Examples

Example 1

We define a matrix and a column vector over the finite field with 29 elements:

MatZ29 := Dom::Matrix(Dom::IntegerMod(29)):

A := MatZ29([[1, 2, 3], [4, 7, 8], [9, 12, 17]]); 

b := MatZ29([1, 2, 3])

Since A does not have a special form that would allow a fast matrix-vector multiplication,
we simply use _mult. Wiedemann's algorithm works in this case, although it is less
efficient than Gaussian elimination:

linalg::wiedemann(A, b, _mult)

Example 2

Now let us define another matrix that has a special form:

MatZ29 := Dom::Matrix(Dom::IntegerMod(29)):

A := MatZ29([[1, 0, 0], [0, 1, 2], [0, 0, 1]]);
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b := MatZ29(3, 1, [1, 2, 3]):

For this particular matrix, it is easy to define an efficient multiplication method:

mult := proc(dummy, y) 

begin 

    y[2]:=y[2]+2*y[3];

    y

end:

linalg::wiedemann(A, b, mult)

Parameters

A

An n×n matrix of a domain of category Cat::Matrix

b

An n-dimensional column vector, i.e., an n×1 matrix of a domain of category
Cat::Matrix

mult

A matrix-vector multiplication method: function or functional expression; default: _mult

prob

TRUE or FALSE (default: TRUE)
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Return Values

Either the list [x, TRUE] if a solution for the system  has been found, or the list

[x, FALSE] if a non-zero solution for the corresponding homogeneous system 
has been found, or the value FAIL (see below).

Algorithms

The expected running time for the probabilistic algorithm is O(n2 + n M), and the running
time for the deterministic variant is O(n2 M) in the worst case, but only O(n2 + n M) on
average. Here, M is the number of field operations that the matrix-vector multiplication
routine mult uses.

The basic idea of the algorithm is to solve a linear system  by finding the

minimal polynomial f(y) that solves . If the constant coefficient c = f(0) is non-

zero and g(y) := f(y) - c, the equality  implies that  is the

solution.

The polynomial f is found by looking for the minimal polynomial h satisfying

 for some randomly chosen row vector . This may yield h ≠ f in unlucky
cases, but in general the probability for this is small.

References

[1] Douglas Wiedemann: “Solving Sparse Linear equations over Finite Fields”, IEEE
Transactions on Information Theory, vol. 32, no.1, Jan. 1986.

See Also

MuPAD Functions
linalg::matlinsolve | linalg::vandermondeSolve
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linopt::corners

Return the feasible corners of a linear program

Syntax

linopt::corners([constr, obj], vars, <All>, <Logic>)

linopt::corners([constr, obj, <NonNegative>, <seti>], vars, <All>, <Logic>)

linopt::corners([constr, obj, <NonNegative>, <All>], vars, <All>, <Logic>)

linopt::corners([constr, obj, <setn>, <seti>], vars, <All>, <Logic>)

linopt::corners([constr, obj, <setn>, <All>], vars, <All>, <Logic>)

Description

linopt::corners([constr, obj], vars) returns all valid corners of the linear
program.

linopt::corners([constr, obj], vars, All) returns all corners of the linear
program.

[constr, obj] is a linear program of the same structure like in linopt::maximize. The
second parameter vars specifies the order in which the components of the corners found
are printed; if e.g. {x=1, y=2} is a corner and [x,y] was entered, [1,2] will be returned.

As options, for finding the corners, one may use All and/or Logic. All causes the output
of non-feasible corners, too, Logic allows the algorithm to search for corners in planes
like x=0, too, although x ≥ 0 is not part of the input. This guarantees that for all non-
empty feasible regions a corner will be found.

As the result of linopt::corners a triple consisting of the set of corners, the maximal
objective function value found and the corner associated to it is returned. If there is no
feasible corner found, only the empty set is returned.
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Examples

Example 1

We compute all valid corners of a small linear program:

k := [{4 <= 2*x + 2*y, -2 <= 4*y - 2*x, -8 <= y - 2*x,

       y - 2*x <= -2, y <= 6}, x + y]:

linopt::corners(k, [x, y])

Now we compute all corners, also the ones which are not valid. We see that we now get
e.g. also the corner which is given by the cut of - 2 x + 4 y = 2 and - 2 x + y ≤ - 2. Here we
see that the invalid corner (13,6) has the maximal objective function value 19:

k := [{4 <= 2*x + 2*y, -2 <= 4*y - 2*x, -8 <= y - 2*x,

       y - 2*x <= -2, y <= 6}, x + y]:

linopt::corners(k, [x, y], All)

delete k:

Example 2

As one can see the linear program given by the constraints x + y ≥ - 1 and x + y ≤ 3 and
the linear objective function x + 2 y has no corners:

l := [{-1 <= x + y, x + y <= 3}, x + 2*y]:

linopt::corners(l,[x,y]), linopt::corners(l,[x,y], All)

If one also assumes a cut with a coordinate plane as a corner, some corners exist. One can
use linopt::plot_data to visualize this problem:

linopt::corners(l, [x,y], Logic)
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delete l:

Parameters

constr

A set or list of linear constraints

obj

A linear expression

seti

A set which contains identifiers interpreted as indeterminants

setn

A set which contains identifiers interpreted as indeterminants

vars

A list containing the variables of the linear program described by constr and obj and
the existing options

Options

All

This option can appear at two different places in the call of linopt::corners. If it is
part of the linear program it means that all variables are constrained to be integers. If it
appears as the third or forth argument of the call it means that all corners, not only the
valid ones should be computed by linopt::corners.

NonNegative

All variables are constrained to be nonnegative
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Logic

This allows the algorithm to search for corners in planes like x=0 too, although x ≥ 0 is
not part of the linear program.

Return Values

Set or a list with 3 elements.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::maximize | linopt::minimize | linopt::plot_data
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linopt::maximize
Maximize a linear or mixed-integer program

Syntax
linopt::maximize([constr, obj], <DualPrices>)

linopt::maximize([constr, obj, <NonNegative>, <seti>])

linopt::maximize([constr, obj, <NonNegative>, <All>])

linopt::maximize([constr, obj, <setn>, <seti>])

linopt::maximize([constr, obj, <setn>, <All>])

linopt::maximize([constr, obj, <NonNegative>], DualPrices)

linopt::maximize([constr, obj, <set>], DualPrices)

Description

linopt::maximize([constr, obj]) returns the solution of the linear or mixed-
integer program given by the constraints constr and the linear objective function obj
which should be maximized.

The expression obj is the linear objective function to be maximized subject to the linear
constraints constr. The function linopt::maximize returns a triple consisting of the
state of the output, OPTIMAL, EMPTY or UNBOUNDED, a set of equations which describes
the optimal solution of the specified linear program, which is empty or depends on a free
variable Φ subject to the state, and finally the maximal objective function value, which
can be either a number, -infinity or a linear function in Φ.

The states OPTIMAL, EMPTY or UNBOUNDED have the following meanings. OPTIMAL means
an optimal solution for the linear program was found. If the state is EMPTY no optimal
solution was found and if it is UNBOUNDED then the solution has no upper bound.

If the option NonNegative is used all variables are constrained to be nonnegative. If
instead of NonNegative a set setn is given then only the variables from setn are
constrained to be nonnegative.
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If the option All is used all variables are constrained to be integers. If instead of All a
set seti is given, then only the variables from seti are constrained to be integers.

As a second parameter for linopt::maximize the option DualPrices is provided for
the linear case (the first parameter therefore must not have more than three elements).
This option causes the output of the dual-prices in addition to the solution-tripel. In this
case the result of linopt::maximize is a sequence of a list containing the solution-
tripel and a set containing the dual prices. See “Example 4” on page 16-8.

Examples

Example 1

We try to solve the linear program

with the linear objective function c1 + 2 c2:

linopt::maximize([{2*c1 <= 1, 2*c2 <= 1}, c1 + 2*c2])

Example 2

Now let's have a look at the linear program

with the linear objective function - x + y + 2 z. If we make no restriction to the variables
the result is unbounded:
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c := [{3*x + 4*y - 3*z <= 23, 5*x - 4*y - 3*z <= 10, 

       7*x + 4*y + 11*z <= 30}, -x + y + 2*z]:

linopt::maximize(c)

But if all variables are constrained to be nonnegative, we get a result. That's also the
case if only x and y are constrained to be nonnegative:

linopt::maximize(append(c, NonNegative));

linopt::maximize(append(c, {x, y}))

delete c:

Example 3

The following linear program do not have a solution:

linopt::maximize([{x <= -1, x >= 0}, x])

Example 4

The output of the dual prices can be enforced with the option DualPrices:

linopt::maximize([{2*c1 <= 1, 2*c2 <= 1},c1 + 2*c2], 

                 DualPrices)
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Example 5

We have a look at the knapsack problem with x1, x2, x3, x4 ∈ {0, 1}:

c := {20*x1 + 15*x2 + 20*x3 + 5*x4 <= 25}: 

c := c union {x1 <= 1, x2 <= 1, x3 <= 1, x4 <= 1}:

f := 10*x1 + 15*x2 + 16*x3 + x4:

linopt::maximize([c, f, NonNegative, All])

delete c, f:

Parameters

constr

A set or list of linear constraints

obj

A linear expression

seti

A set which contains identifiers interpreted as indeterminates

setn

A set which contains identifiers interpreted as indeterminates

Options

All

All variables are constrained to be integers

NonNegative

All variables are constrained to be nonnegative
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DualPrices

This option is only available in the linear case. It causes the output of the dual-prices in
addition to the solution-triple.

Return Values

List or a sequence of a list and a set containing the solution of the linear or mixed-integer
program.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::corners | linopt::minimize | linopt::plot_data
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linopt::minimize
Minimize a linear or mixed-integer program

Syntax
linopt::minimize([constr, obj], <DualPrices>)

linopt::minimize([constr, obj, <NonNegative>, <seti>])

linopt::minimize([constr, obj, <NonNegative>, <All>])

linopt::minimize([constr, obj, <setn>, <seti>])

linopt::minimize([constr, obj, <setn>, <All>])

linopt::minimize([constr, obj, <NonNegative>], DualPrices)

linopt::minimize([constr, obj, <set>], DualPrices)

Description

linopt::minimize([constr, obj]) returns the solution of the linear or mixed-
integer program given by the constraints constr and the linear objective function obj
which should be minimized.

The expression obj is the linear objective function to be minimized subject to the linear
constraints constr. The function linopt::minimize returns a triple consisting of the
state of the output, OPTIMAL, EMPTY or UNBOUNDED, a set of equations which describes
the optimal solution of the specified linear program, which is empty or depends on a free
variable Φ subject to the state, and finally the minimal objective function value, which
can be either a number, infinity or a linear function in Φ.

The states OPTIMAL, EMPTY or UNBOUNDED have the following meanings. OPTIMAL means
an optimal solution for the linear program was found. If the state is EMPTY no optimal
solution was found and if it is UNBOUNDED then the solution has no upper bound.

If the option NonNegative is used all variables are constrained to be nonnegative. If
instead of NonNegative a set setn is given then only the variables from setn are
constrained to be nonnegative.
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If the option All is used all variables are constrained to be integers. If instead of All a
set seti is given, then only the variables from seti are constrained to be integers.

As a second parameter for linopt::minimize the option DualPrices is provided for
the linear case (the first parameter therefore must not have more than three elements).
This option causes the output of the dual-prices in addition to the solution-tripel. In this
case the result of linopt::minimize is a sequence of a list containing the solution-
tripel and a set containing the dual prices. See “Example 4” on page 16-13.

Examples

Example 1

We try to solve the linear program

with the linear objective function - c1 - c2:

linopt::minimize([{c1 + c2 <= 3, c2 <= 9}, -c1 - c2])

Example 2

Now let's have a look at the linear program

with the linear objective function - x + y + 2 z. If we make no restriction to the variables
the result is unbounded:
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c := [{3*x + 4*y - 3*z <= 23, 5*x - 4*y - 3*z <= 10, 

       7*x + 4*y + 11*z <= 30}, -x + y + 2*z]:

linopt::minimize(c)

But if all variables are constrained to be nonnegative, we get a result. That's also the
case if only x and y are constrained to be nonnegative:

linopt::minimize(append(c, NonNegative));

linopt::minimize(append(c, {x, y}))

delete c:

Example 3

The following linear program does not have a solution:

linopt::minimize([{x <= -1, x >= 0}, x])

Example 4

The output of the dual prices can be enforced with the option DualPrices:

linopt::minimize([{c1 + c2 <= 3, c2 <= 9}, -c1 - c2],

                 DualPrices)
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Parameters

constr

A set or list of linear constraints

obj

A linear expression

seti

S set which contains identifiers interpreted as indeterminates

setn

A set which contains identifiers interpreted as indeterminates

Options

All

All variables are constrained to be integer

NonNegative

All variables are constrained to be nonnegative

DualPrices

This option is only available in the linear case. It causes the output of the dual-prices in
addition to the solution-tripel.

Return Values

List or a sequence of a list and a set containing the solution of the linear or mixed-integer
program.
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References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.
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Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::corners | linopt::maximize | linopt::plot_data
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linopt::plot_data

Plot the feasible region of a linear program

Syntax

linopt::plot_data([constr, obj, <NonNegative>, <seti>], vars)

linopt::plot_data([constr, obj, <NonNegative>, <All>], vars)

linopt::plot_data([constr, obj, <setn>, <seti>], vars)

linopt::plot_data([constr, obj, <setn>, <All>], vars)

Description

linopt::plot_data([constr, obj], vars) returns a graphical description of the
feasible region of the linear program [constr, obj], and the line vertical to the objective
function vector through the corner with the maximal objective function value found.

[constr, obj] is a linear program with exactly two variables. The problem has the
same structure like in linopt::maximize. The second parameter vars specifies which
variable belongs to the horizontal and vertical axis.

Examples

Example 1

We plot the feasible region of the given linear program. Here the valid corners of the
linear program are easy to see:

k := [{2*x + 2*y >= 4, -2*x + 4*y >= -2, -2*x + y >= -8,

       -2*x + y <= -2, y <= 6}, x + y, NonNegative]:

g := linopt::plot_data(k, [x, y]):

plot(g):
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In this example there is no difference if the Option NonNegative is given for the linear
program or not:

k := [{2*x + 2*y >= 4, -2*x + 4*y >= -2, -2*x + y >= -8,

       -2*x + y <= -2, y <= 6}, x + y]:

g := linopt::plot_data(k, [x, y]):

plot(g):
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delete k, g:

Example 2

Now we give an example where one can see a difference if the variables are constrained
to be nonnegative:

k := [{x + y >= -1, x + y <= 3}, x + 2*y]:   

g := linopt::plot_data(k, [x, y]):

plot(g):
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k := [{x + y >= -1, x + y <= 3}, x + 2*y, NonNegative]:

g := linopt::plot_data(k, [x, y]):

plot(g):
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delete k, g:

Parameters

constr

A set or list of linear constraints

obj

A linear expression

seti

A set which contains identifiers interpreted as indeterminates

setn

A set which contains identifiers interpreted as indeterminates
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vars

A list containing the two variables of the linear program described by constr and obj
and the existing options

Options

All

All variables are constrained to be integer

NonNegative

All variables are constrained to be nonnegative

Return Values

Expression describing a graphical object which can be used by plot.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.
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Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::corners | linopt::maximize | linopt::minimize
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linopt::Transparent
Return the ordinary simplex tableau of a linear program

Syntax
linopt::Transparent([constr, obj, <NonNegative>, <seti>])

linopt::Transparent([constr, obj, <NonNegative>, <All>])

linopt::Transparent([constr, obj, <setn>, <seti>])

linopt::Transparent([constr, obj, <setn>, <All>])

Description

linopt::Transparent([constr, obj]) returns the ordinary simplex tableau of the
given linear program given by the constraints constr and the linear objective function
obj.

[constr, obj] is a Linear Optimization Problem of the same structure like in
linopt::maximize. As the result the ordinary simplex tableau of the given problem is
returned; this means that equations will be replaced by two unequations and unbounded
variables will be replaced by two new variables.

Internally the tableau returned consists of more information than viewable on the screen.
Therefore linopt::Transparent::convert is provided to perform the transduction
into the structure of the screen-tableau. (This can be necessary if the returned tableau
shall serve as an input-parameter for another function — e.g. a user defined procedure
for the selection of pivot elements.) If an ordinary simplex with two phases is wished, the
next step should be the call of linopt::Transparent::phaseI_tableau.

All functions of the linopt library using the tableau returned by linopt::Transparent
try to minimize the problem! Therefore it can be necessary to multiply the objective
function with -1 first.

In the simplex tableau returned a special notation is used. "linopt" stands for the tableau
them self, "obj" describes the linear objective function, "restr" stands for the vector of
restrictions, slk[1], slk[2], ... are the slack variables and the names of the other variables

16-23



16 linopt – Linear Optimization

stand for themselves. Variables which are given as row labels indicate that they are part
of the base.

Examples

Example 1

First a small example, returning the ordinary simplex tableau of the given linear
program. One can see that the slack variables are forming the basis:

k := [{x + y >= -1, x + y <= 3}, x + 2*y, NonNegative]:   

linopt::Transparent(k)

It follows a little bit larger example:

k := [{3*x + 4*y - 3*z <= 23, 5*x - 4*y - 3*z <= 10, 

       7*x + 4*y + 11*z <= 30}, -x + y + 2*z, NonNegative]:

linopt::Transparent(k)

The result of linopt::Transparent is of domain type linopt::Transparent.
So it can be used as input for other linopt::Transparent::* function, e.g. for
linopt::Transparent::suggest:
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k := [{x + y >= -1, x + y <= 3}, x + 2*y, NonNegative]:   

t := linopt::Transparent(k):                       

domtype(t), linopt::Transparent::suggest(t)

delete k, t:

Parameters

constr

A set or list of linear constraints

obj

A linear expression

seti

A set which contains identifiers interpreted as indeterminates

setn

A set which contains identifiers interpreted as indeterminates

Options

All

All variables are constrained to be integer

NonNegative

All variables are constrained to be nonnegative

Return Values

Simplex tableau of domain type linopt::Transparent.
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See Also

MuPAD Functions
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linopt::Transparent::autostep
Perform the next simplex step

Syntax
linopt::Transparent::autostep(tableau)

Description

linopt::Transparent::autostep(tableau) performs the next step of the simplex
algorithm. This is the same step that linopt::Transparent::suggest would suggest
for the given simplex tableau tableau.

Normally linopt::Transparent::autostep returns the next simplex tableau. If the
calculation of the simplex algorithm is finished linopt::Transparent::autostep
returns a set containing a solution of the given linear program described by tableau.

Examples

Example 1

The ordinary simplex tableau of a given linear program is created:

k := [{x + y >= 2}, x, NonNegative]:

t := linopt::Transparent(k)

The next two steps of the simplex algorithm are executed for the given simplex tableau:

linopt::Transparent::autostep(t);
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linopt::Transparent::autostep(%)

delete k, t:

Example 2

The ordinary simplex tableau of a given linear program is created:

k := [{x + y >= -1, x + y <= 3}, x + 2*y, NonNegative]:   

t := linopt::Transparent(k)

If the end of the simplex algorithm is reached, linopt::Transparent::autostep
returns a solution of the given linear program:

linopt::Transparent::suggest(t), 

linopt::Transparent::autostep(t)

delete k, t:
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Parameters

tableau

A simplex tableau of domain type linopt::Transparent

Return Values

Simplex tableau of domain type linopt::Transparent or a set which contains the
solution of the linear program.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::Transparent | linopt::Transparent::convert |
linopt::Transparent::dual_prices |
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linopt::Transparent::phaseI_tableau | linopt::Transparent::result
| linopt::Transparent::simplex | linopt::Transparent::suggest |
linopt::Transparent::userstep
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linopt::Transparent::clean_basis

Delete all slack variables of the first phase from the basis

Syntax

linopt::Transparent::clean_basis(tableau)

Description

linopt::Transparent::clean_basis(tableau) removes the additional slack
variables of the phase one of the simplex algorithm from the optimal basic (described
by tableau) calculated by linopt::Transparent::phaseI_tableau and
linopt::Transparent::simplex.

At the end of the phase one of the 2-phase simplex algorithm, explicitly
started by using linopt::Transparent::phaseI_tableau, it is necessary
to eliminate all artificial variables from the optimal basis before phase two
can be started by using linopt::Transparent::phaseII_tableau.
linopt::Transparent::clean_basis performs some pivot steps until all phase one
slack variables do not occur in the basis any longer.

Examples

Example 1

In this example we first compute an optimal basis for the first phase of the simplex
algorithm:

t := linopt::Transparent([{x <= 1,y <= 1,x + y >= 2},

                          0,NonNegative]):

t := linopt::Transparent::phaseI_tableau(t):

t := linopt::Transparent::simplex(t)
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As we can see the artificial slack variable slk[6] is an element of the optimal basis. An
error message is returned if we apply linopt::Transparent::phaseII_tableau or
linopt::Transparent::simplex to this simplex tableau:

linopt::Transparent::phaseII_tableau(t);

Error: Clean the basis from phase I slack variables first. [linopt::Transparent::phaseII_tableau]

So we have to use linopt::Transparent::clean_basis before continuing with the
appropriate function:

t := linopt::Transparent::clean_basis(t);

linopt::Transparent::phaseII_tableau(t)

delete t:
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Parameters

tableau

A simplex tableau of domain type linopt::Transparent

Return Values

Simplex tableau of domain type linopt::Transparent.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::Transparent | linopt::Transparent::autostep |
linopt::Transparent::convert | linopt::Transparent::dual_prices |
linopt::Transparent::phaseII_tableau | linopt::Transparent::result
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| linopt::Transparent::simplex | linopt::Transparent::suggest |
linopt::Transparent::userstep
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linopt::Transparent::convert
Transform the given tableau into a structure printable on screen

Syntax
linopt::Transparent::convert(tableau)

Description

linopt::Transparent::convert converts tableau into a two dimensional array
which corresponds with the screen-tableau. One can now access the element in the i-th
row and j-th column of the simplex tableau by accessing the corresponding element of the
array.

Internally the given tableau of domain type linopt::Transparent contains a lot
of more information than the simplex tableau which is printed by some functions of
the linopt library, e.g. linopt::Transparent::simplex, and which is visible on
the screen. Furthermore it is not possible to access the element in the i-th row and j-th
column of tableau to get the corresponding element from the simplex tableau which is
visible on the screen.

While the internal structure of tableau is not known the structure of the two
dimensional array is well defined. So it can be easily used in own procedures. See
“Example 2” on page 16-36.

Examples

Example 1

We convert a simplex tableau of domain type linopt::Transparent into a two
dimensional array:

k := [{x + y >= 2}, x, NonNegative]:

t := linopt::Transparent(k):

a := linopt::Transparent::convert(t):

t, domtype(t);
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a, domtype(a)

delete a, k, t:

Example 2

We will write another simplex routine mysimplex for solving a linear program. For
this we define the function eigenpivot for finding the pivot element of a given simplex
tableau. eigenpivot assumes that the simplex tableau is given as a two dimensional
array.

Here is the procedure eigenpivot, which is not coded in every detail, e.g., the error
checking isn't implemented completely:

eigenpivot := proc(T: DOM_ARRAY)

   local i,j,m,n,k,l,mini;

   begin

     m := op(T,[0,2,2]):

     n := op(T,[0,3,2]):

     k := 0:

     l := 0:

     mini := unbesetzt:

      for j from 3 to n do

       if T[2,j] < 0 then

         l := j:

         break

       end_if:

     end_for:

     if l=0 then return(OPTIMAL) end_if:

     for i from 3 to m do
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       if T[i,l] > 0 and (mini=unbesetzt or T[i,2]/T[i,l] < mini) then

         k := i:

         mini := T[k,2]/T[k,l]

       end_if

     end_for:

     if k=0 then return(UNBOUNDED) end_if:

     return(T[k,1],T[1,l]):

end_proc:

This is the new simplex algorithm mysimplex which uses eigenpivot and some
function from the linopt library:

mysimplex := proc(P)

   local T;

   begin

     T := linopt::Transparent(P):

     T := linopt::Transparent::phaseI_tableau(T):

     piv := eigenpivot(linopt::Transparent::convert(T)):

     while piv <> OPTIMAL and piv <> UNBOUNDED do

       T := linopt::Transparent::userstep(T,piv):

       piv := eigenpivot(linopt::Transparent::convert(T))

     end_while:

      if piv = UNBOUNDED then

       error(" Phase I unbounded ?!?")

     end_if:

     if T[2,2] <> 0

        then return(EMPTY)

     end_if:

     T := linopt::Transparent::clean_basis(T):

      T := linopt::Transparent::phaseII_tableau(T):

     piv := eigenpivot(linopt::Transparent::convert(T)):

     while piv <> OPTIMAL and piv <> UNBOUNDED do

       T := linopt::Transparent::userstep(T,piv):

       piv := eigenpivot(linopt::Transparent::convert(T))

     end_while:

      if piv = OPTIMAL

       then return(linopt::Transparent::result(T))

       else return(UNBOUNDED)

     end_if

end_proc:

We now apply mysimplex to a linear program:
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k := [{2*x + 2*y >= 4, -2*x + 4*y >= -2, -2*x + y>= -8,

       -2*x + y <= -2, y <= 6}, -x - y]:

k := append(k, NonNegative):

mysimplex(k);

delete k, eigenpivot, mysimplex:

Parameters

tableau

A simplex tableau of domain type

Return Values

Two dimensional array, representing the given simplex tableau tableau.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.
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Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::Transparent | linopt::Transparent::autostep
| linopt::Transparent::phaseI_tableau |
linopt::Transparent::phaseII_tableau | linopt::Transparent::suggest |
linopt::Transparent::userstep
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linopt::Transparent::dual_prices

Get the dual solution belonging to the given tableau

Syntax

linopt::Transparent::dual_prices(tableau)

Description

linopt::Transparent::dual_prices(tableau) returns the dual solution of the
linear optimization problem given by tableau.

This procedure returns the dual solution belonging to the given tableau in form of a set of
lists containing two elements, the first one is a restriction and the second one is the value
belonging to the slack variable connected to the restriction in the dual solution.

Examples

Example 1

Here it is demonstrated that the dual solution of the final tableau is similar to the second
element of the result of linopt::minimize using the option DualPrices:

First we compute the final tableau of the simplex algorithm:

k := [{x <= 2, y <= 2, x + 2*y >= 4}, - x + y, NonNegative]:

t := linopt::Transparent(k):

t := linopt::Transparent::simplex(t)
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Now we compute the solutions:

linopt::Transparent::dual_prices(t);

linopt::minimize(k, DualPrices)[2]

delete k, t:

Example 2

We compute the dual solution of another linear program:

k := [{x <= 2, y <= 2, x + 2*y >= 4}, -x + y, NonNegative]:

t := linopt::Transparent(k);

linopt::Transparent::dual_prices(t)
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delete k, t:

Parameters

tableau

A simplex tableau of domain type linopt::Transparent

Return Values

Set of lists, each containing 2 elements.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.
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See Also

MuPAD Functions
linopt::Transparent | linopt::Transparent::result
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linopt::Transparent::phaseI_tableau

Start an ordinary phase one of a 2-phase simplex algorithm

Syntax

linopt::Transparent::phaseI_tableau(tableau)

Description

linopt::Transparent::phaseI_tableau explicitly starts an (ordinary) phase one of
the simplex algorithm , i.e. rows associated with infeasible basic variables are multiplied
with -1 and another identity matrix with new slack variables is added to the given
tableau. As soon as an optimal tableau with relative costs 0 is found the calculation can
be continued with linopt::Transparent::clean_basis and the second phase of the
simplex algorithm (linopt::Transparent::phaseII_tableau).

Examples

Example 1

The first simplex tableau is created and the first phase of the simplex algorithm is
started:

t := linopt::Transparent([{x + y >= 2}, x, NonNegative]);

t := linopt::Transparent::phaseI_tableau(t)
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We can see that a new slack variable, slk2, was added to the tableau. And if we now
execute linopt::Transparent::simplex we can see that we have just finished the
first phase of the simplex algorithm:

linopt::Transparent::suggest(t);

t := linopt::Transparent::simplex(t):

linopt::Transparent::suggest(t)

We continue the simplex algorithm by executing
linopt::Transparent::clean_basis,
linopt::Transparent::phaseII_tableau and linopt::Transparent::simplex.
Observe in this special case linopt::Transparent::clean_basis is not necessary:

t := linopt::Transparent::clean_basis(t):

t := linopt::Transparent::phaseII_tableau(t):

t := linopt::Transparent::simplex(t);

linopt::Transparent::suggest(t)

delete t:
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Parameters

tableau

A simplex tableau of domain type linopt::Transparent

Return Values

Simplex tableau of domain type linopt::Transparent.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::Transparent | linopt::Transparent::autostep |
linopt::Transparent::clean_basis | linopt::Transparent::convert |
linopt::Transparent::dual_prices |
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 linopt::Transparent::phaseI_tableau

linopt::Transparent::phaseII_tableau | linopt::Transparent::result
| linopt::Transparent::simplex | linopt::Transparent::suggest |
linopt::Transparent::userstep
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linopt::Transparent::phaseII_tableau
Start phase two of a 2-phase simplex algorithm

Syntax
linopt::Transparent::phaseII_tableau(tableau)

Description

linopt::Transparent::phaseII_tableau(tableau) starts the second phase of the
simplex algorithm on the given simplex tableau tableau.

After the explicitly started first phase of the simplex algorithm (see
linopt::Transparent::phaseI_tableau) terminated with an optimal
tableau with associated costs 0 and no phase one slack variables in the basis (see
linopt::Transparent::clean_basis) this procedure can be used to start phase II.
The procedure eliminates all artificial variables of phase I and their associated columns
and reenters the old objective function modified for the new basis.

Examples

Example 1

The first simplex tableau is created and the first phase of the simplex algorithm is
finished:

t := linopt::Transparent([{x + y >= 2}, x, NonNegative]):

t := linopt::Transparent::simplex(

        linopt::Transparent::phaseI_tableau(t))
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One sees that the artificial slack variable slk[2] of the first phase is removed by
linopt::Transparent::phaseII_tableau. In this example it is not necessary to use
linopt::Transparent::clean_basis for cleaning the basis:

linopt::Transparent::phaseII_tableau(t)

delete t:

Example 2

Again the first simplex tableau is created and the first phase of the simplex algorithm is
finished:

t := linopt::Transparent([{x <= 1, y <= 1, x + y >= 2},

                         0, NonNegative]):

t := linopt::Transparent::phaseI_tableau(t):

t := linopt::Transparent::simplex(t)

In this example the artificial slack variable slk[6] is an element of the optimal basis.
So we have to use linopt::Transparent::clean_basis before continuing with
linopt::Transparent::phaseII_tableau, otherwise we will get an error message:

linopt::Transparent::phaseII_tableau(t)

Error: Clean the basis from phase I slack variables first. [linopt::Transparent::phaseII_tableau]
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t := linopt::Transparent::clean_basis(t):

linopt::Transparent::phaseII_tableau(t)

delete t:

Parameters

tableau

A simplex tableau of domain type linopt::Transparent

Return Values

Simplex tableau of domain type linopt::Transparent.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.
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 linopt::Transparent::phaseII_tableau

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::Transparent | linopt::Transparent::autostep |
linopt::Transparent::clean_basis | linopt::Transparent::convert |
linopt::Transparent::dual_prices |
linopt::Transparent::phaseI_tableau | linopt::Transparent::result
| linopt::Transparent::simplex | linopt::Transparent::suggest |
linopt::Transparent::userstep
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linopt::Transparent::result
Get the basic feasible solution belonging to the given simplex tableau

Syntax
linopt::Transparent::result(tableau)

Description

linopt::Transparent::result(tableau) returns the basic feasible solution
belonging to the given simplex tableau tableau.

Only the user defined variables are taken into account - the dual prices can be achieved
by use of linopt::Transparent::dual_prices.

Examples

Example 1

We first compute an edge for an initial simplex tableau:

k := [{x <= 1, y <= 1, x + y >= 2}, 0, NonNegative]:

t := linopt::Transparent(k):

linopt::Transparent::result(t)

Now we compute the edge for the final tableau, which is identical to the optimal
solution of the linear program given by k. We get the final simplex tableau by using
linopt::Transparent::simplex:

t := linopt::Transparent(k):

t := linopt::Transparent::simplex(t):

linopt::Transparent::result(t)
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linopt::minimize(k)

delete k, t:

Parameters

tableau

A simplex tableau of domain type linopt::Transparent

Return Values

Set containing the values of the user defined variables for the feasible solution.

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.

Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.
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Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::Transparent | linopt::Transparent::dual_prices
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linopt::Transparent::simplex
Finish the current phase of the 2-phase simplex algorithm

Syntax
linopt::Transparent::simplex(tableau)

Description

linopt::Transparent::simplex runs the current phase of the 2-phase
simplex algorithm until the end, i.e. if phase I was explicitly started (see
linopt::Transparent::phaseI_tableau) the first phase will lead the optimal
tableau. Sometimes it can be necessary to eliminate some slack variables of phase one by
using linopt::Transparent::clean_basis.

If there was no phase I started by the user, (linopt::Transparent)::simplex
returns the last optimal tableau or the empty set if there was no feasible solution found.

Examples

Example 1

We apply linopt::Transparent::simplex to an ordinary simplex tableau of a linear
program and we get the optimal tableau:

k := [{x + y >= 2}, x, NonNegative]:    

t := linopt::Transparent(k);

t := linopt::Transparent::simplex(t)
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Let us proof the obtained result:

linopt::Transparent::suggest(t)

delete k, t:

Example 2

If the first phase of the simplex algorithm was started
explicitly,linopt::Transparent::simplex returns only the optimal tableau of the
first phase:

k := [{x + y >= 2}, y, NonNegative]:    

t := linopt::Transparent(k):

t := linopt::Transparent::phaseI_tableau(t);

t := linopt::Transparent::simplex(t)

The next step of the simplex algorithm is computed:

linopt::Transparent::suggest(t)
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With linopt::Transparent::autostep we execute the first step of the second phase
of the simplex algorithm. One can see that the simplex algorithm is not finished yet:

t := linopt::Transparent::autostep(t):

linopt::Transparent::suggest(t);

If we then apply linopt::Transparent::simplex again we get the optimal solution.
Here we don't had to use linopt::Transparent::clean_basis, before using
linopt::Transparent::autostep, because there are no artificial variables in the
basis computed by the first linopt::Transparent::simplex call above:

t := linopt::Transparent::simplex(t);

linopt::Transparent::suggest(t)

delete k, t:

Parameters

tableau

A simplex tableau of domain type linopt::Transparent

Return Values

Simplex tableau of domain type linopt::Transparent or the empty set if there was no
feasible solution found.
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References
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MuPAD Functions
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linopt::Transparent::suggest

Suggest the next step in the simplex algorithm

Syntax

linopt::Transparent::suggest(tableau)

Description

linopt::Transparent::suggest(tableau) suggests the next step in the simplex
algorithm for the given simplex tableau tableau.

Normally this suggestion will be a pivot element, i.e. a sequence of a basic
and a non-basic variable. If a phase I of the 2-phase simplex algorithm was
started explicitly (see linopt::Transparent::phaseI_tableau) and the
current tableau belongs to a feasible solution the suggestion will be the string
"linopt::Transparent::phaseII_tableau". At the end of the calculation the
'suggestion' is the identifier OPTIMAL.

The result of linopt::Transparent::suggest can be influenced if the global
identifier OPTIMAL has a value. For this reason the identifier OPTIMAL is protected.

Examples

Example 1

We have a look at a linear program where the ordinary simplex tableau of the given
problem is not the last tableau during the computation of the simplex algorithm. Looking
at the ordinary simplex tableau we see that the element of the slk[2]-labeled row and the
x-labeled column is a pivot element:

k := [{3*x + 4*y - 3*z <= 23, 5*x - 4*y - 3*z <= 10, 

       7*x + 4*y + 11*z <= 30}, -x + y + 2*z, NonNegative]:

t := linopt::Transparent(k);
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linopt::Transparent::suggest(t)

delete k, t:

Example 2

Here the ordinary simplex tableau still contains the solution of the linear program
if the linear objective function is to minimize (see linopt::Transparent for more
information):

k := [{x+y>=-1, x+y<=3}, x+2*y, NonNegative]:   

t := linopt::Transparent(k);                      

linopt::Transparent::suggest(t)

delete k, t:
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Example 3

Here we explicitly start the first phase of the simplex algorithm. If we want a solution of
the original linear program we have to apply the second phase of the simplex algorithm:

k := [{3*x + 4*y - 3*z <= 23, 5*x -4*y -3*z <= 10,

       7*x + 4*y + 11*z <= 30}, -x + y + 2*z, NonNegative]:

t := linopt::Transparent(k):

t := linopt::Transparent::phaseI_tableau(t):

t := linopt::Transparent::simplex(t):

linopt::Transparent::suggest(t)

delete k, t:

Parameters

tableau

A simplex tableau of domain type linopt::Transparent

Return Values

Sequence of 2 identifiers, the identifier OPTIMAL or the string
"linopt::Transparent::phaseII_tableau".

References

Papadimitriou, Christos H; Steiglitz, Kenneth: Combinatorial Optimization; Algorithms
and Complexity. Prentice-Hall, 1982.

Nemhauser, George L; Wolsey, Laurence A: Integer and Combinatorial Optimization.
New York, Wiley, 1988.

Salkin, Harvey M; Mathur, Kamlesh: Foundations of Integer Programming. North-
Holland, 1989.
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Neumann, Klaus; Morlock, Martin: Operations-Research. Munich, Hanser, 1993.

Duerr, Walter; Kleibohm, Klaus: Operations Research; Lineare Modelle und ihre
Anwendungen. Munich, Hanser, 1992.

Suhl, Uwe H: MOPS - Mathematical OPtimization System. European Journal of
Operational Research 72(1994)312-322. North-Holland, 1994.

Suhl, Uwe H; Szymanski, Ralf: Supernode Processing of Mixed Integer Models. Boston,
Kluwer Academic Publishers, 1994.

See Also

MuPAD Functions
linopt::Transparent | linopt::Transparent::autostep |
linopt::Transparent::convert | linopt::Transparent::dual_prices |
linopt::Transparent::phaseI_tableau | linopt::Transparent::result |
linopt::Transparent::simplex | linopt::Transparent::userstep
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linopt::Transparent::userstep
Perform a user defined simplex step

Syntax
linopt::Transparent::userstep(tableau, basvar, nonbasbar)

Description

linopt::Transparent::userstep(tableau, basvar, nonbasbar) performs a
user defined simplex step in the tableau with the pivot element defined by basvar and
nonbasvar.

Examples

Example 1

We execute the simplex step given by the pivot element (slk[1],x):

k := [{x + y >= 2}, x, NonNegative]:

t:= linopt::Transparent(k);

linopt::Transparent::userstep(t, slk[1], x)

16-63



16 linopt – Linear Optimization

Example 2

If we specify a wrong pivot element, we will get an error message:

k := [{3*x + 4*y - 3*z <= 23, 5*x - 4*y - 3*z <= 10, 

       7*x + 4*y + 11*z <= 30}, -x + y + 2*z, NonNegative]:

t:= linopt::Transparent(k);

linopt::Transparent::userstep(t, x, y)

Error: The pivot element is not specified or specified incorrectly. [linopt::Transparent::userstep]

delete k, t:

Parameters

tableau

A simplex tableau of domain type linopt::Transparent

basvar

A basic variable represented by an identifier that has to leave the basis

nonbasvar

A non-basic variable represented by an identifier that has to enter the basis

Return Values

Simplex tableau of domain type linopt::Transparent.
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MuPAD Functions
linopt::Transparent | linopt::Transparent::autostep |
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listlib::insert
Insert an element into a list

Syntax
listlib::insert(list, element, <function>)

Description
listlib::insert(list, element) inserts element into list.

With the function listlib::insert any element can be inserted into any list.

With the third optional argument a function can be given that compare the elements of
the list with the element to insert and therewith determines the position, the element is
inserted. The given function is called with two elements and have to return TRUE, if the
two elements are in the right order, otherwise FALSE (see next paragraph).

The given function is called step by step with an element of the list as first argument and
the given element as second argument, until it returns FALSE. Then the given element
is inserted into the list in front of the last proved element (see “Example 2” on page
17-3).

Note: The list must be ordered with regard to the order function, otherwise the element
could be inserted at the wrong place.

If no third argument is given the function _less is used. If no order of the elements with
regard to _less is defined, a function must be given, otherwise an error appears. The
system function sysorder always can be used.

Examples

Example 1

Insert 3 into the given ordered list:
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listlib::insert([1, 2, 4, 5, 6], 3)

Insert 3 into the given descending ordered list. The insert function represents and
preserves the order of the list:

listlib::insert([6, 5, 4, 2, 1], 3, _not@_less)

Because identifiers cannot be ordered by _less, another function must be given, e.g., the
function that represents the systems internal order:

listlib::insert([a, b, d, e, f], c, sysorder)

Example 2

Because no function is given as third argument, the function _less is used. _less is
called: _less(1, 3), _less(2, 3), _less(4, 3) and then 3 is inserted in front of 4:

listlib::insert([1, 2, 4], 3)

If the list is not ordered right, then the insert position could be wrong:

listlib::insert([4, 1, 2], 3)

Example 3

The following example shows, how expressions can be ordered by a user defined priority.
This order is given by the function named priority, which returns a smaller number,
when the expression has a type with higher priority:
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priority := X -> contains(["_power", "_mult", "_plus"], type(X)):

priority(x^2), priority(x + 2)

The function sortfunc returns TRUE, if the both given arguments are in the right order,
i.e., the first argument has a higher (or equal) priority than the second argument:

sortfunc := (X, Y) -> bool(priority(Y) > priority(X)):

sortfunc(x^2, x + 2), sortfunc(x + 2, x*2)

Now the expression x*2 is inserted at the “right” place in the list:

listlib::insert([x^y, x^2, x*y, -y, x + y], x*2, sortfunc)

Parameters

list

MuPAD list

element

MuPAD expression to insert

function

Function that determines the insert position

Return Values

Given list enlarged with the inserted element
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See Also

MuPAD Functions
_concat | append | listlib::insertAt
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listlib::insertAt
Insert an element into a list at a given position

Syntax
listlib::insertAt(list, element, <pos>)

Description

listlib::insertAt(list, element, pos) inserts element into list at position
pos.

With the function listlib::insertAt any element can be inserted into any list at a
specified place.

The third argument (the “insert index”) determines the place to insert the element into
the given list.

If the insert index is less than 1 the element is inserted in front of the list. If the
insertion index is greater than nops(list) the element is appended to the list. To
append an element to a list the kernel function append is faster.

If no third argument is given, the given element is inserted in front of the list.

If the argument element is a list too, the elements of this list will be inserted (or
appended) instead of the whole list by preserving the order.

Examples

Example 1

Insertion 2 at the third place of the given list:

listlib::insertAt([1, 1, 1], 2, 3)
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Insertion of an element in front of a list. The third argument is optional in this case:

listlib::insertAt([1, 1, 3, 1], 2, 0), listlib::insertAt([1, 1, 3, 1], 2)

Appending of an element. This could be done faster with append:

listlib::insertAt([1, 2, 3], 4, 1000), append([1, 2, 3], 4)

Parameters

list

A list

element

Any MuPAD object

pos

Any integer

Return Values

Given list enlarged with the inserted element

See Also

MuPAD Functions
_concat | append | listlib::insert
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listlib::merge
Merging two ordered lists

Syntax
listlib::merge(list1, list2, <function>)

Description

listlib::merge(list1, list2) merges both lists into one list.

With the third optional argument a function can be given that compare the elements of
the lists and therewith determines the order of the elements. The given function is called
with two elements and have to return TRUE, if the two elements are in the right order,
otherwise FALSE (see next paragraph).

The given function is called step by step with an element of the first list as first
argument and an element of the second list as second argument, until it returns FALSE.
Then the element of the second list is inserted into the first list in front of the last proved
element (see “Example 2” on page 17-9).

Note: The lists must be ordered with regard to the order function, otherwise the elements
could be inserted at the wrong place.

If no third argument is given the function _less is used. If no order of the elements with
regard to _less is defined, a function must be given, otherwise an error appears. The
system function sysorder always can be used.

Examples

Example 1

Merging two ascending ordered lists:
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listlib::merge([1, 3, 5, 7], [2, 4, 6, 8])

Merging two descending ordered lists:

listlib::merge([7, 5, 3, 1], [8, 6, 4, 2], _not@_less)

Example 2

The following example shows, how expressions can be ordered by a user defined priority.
This order is given by the function named priority, which returns a smaller number,
when the expression has a type with higher priority:

priority := X -> contains(["_power", "_mult", "_plus"], type(X)):

priority(x^2), priority(x + 2)

The function sortfunc returns TRUE, if the both given arguments are in the right order,
i.e., the first argument has a higher (or equal) priority than the second argument:

sortfunc := (X, Y) -> bool(priority(Y) > priority(X)):

sortfunc(x^2, x + 2), sortfunc(x + 2, x*2)

Now the both lists are merged with regard to the given priority:

listlib::merge([x^y, x*2, -y], [x^2, x*y, x + y], sortfunc)

delete priority, sortfunc:
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Parameters

list1, list2

A MuPAD list

function

A function that determines the merging order

Return Values

Ordered list that contains the elements of both lists

See Also

MuPAD Functions
_concat | listlib::insert | listlib::singleMerge | zip
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listlib::removeDuplicates
Removes duplicate entries

Syntax
listlib::removeDuplicates(list, <KeepOrder>)

Description

listlib::removeDuplicates(list) removes all duplicates of each entry of the list
list. The new list is build up from right to left with the order of the last occurrence of
each entry in list. Cf. “Example 1” on page 17-11.

A faster possibibliy to remove duplicate entries is to convert the list into a set and back
into a list. You will loose the order of the list entries in this case. Cf. “Example 3” on page
17-12.

Examples

Example 1

Per default listlib::removeDuplicates removes duplicate entries in reverse order:

list:= [1, 1, 1, 3, 1, 5, 5, 1, 3, 3, 1, 7]:

listlib::removeDuplicates(list)

Example 2

With option KeepOrder entries are selected in the order of their occurrence:

list:= [1, 1, 1, 3, 1, 5, 5, 1, 3, 3, 1, 7]:

listlib::removeDuplicates(list, KeepOrder)
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Example 3

If you don't need the order of list entries any more, you may convert the list into a set
and back into a list, this is much faster:

list:= [1, 1, 1, 3, 1, 5, 5, 1, 3, 3, 1, 7]:

[op({op(list)})]

Parameters

list

A MuPAD list

Options

KeepOrder

listlib::removeDuplicates(list, KeepOrder) returns a list of the entries of
list in the order of their first occurrence. The list is build up from left to right. See
“Example 2” on page 17-11.

Return Values

List that contains each entry only once

See Also

MuPAD Domains
DOM_LIST
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MuPAD Functions
listlib::removeDupSorted
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listlib::removeDupSorted

Remove duplicates of any element from ordered lists

Syntax

listlib::removeDupSorted(list)

Description

listlib::removeDupSorted(list) removes all duplicates of any element of the
ordered list list.

listlib::removeDupSorted does the same as listlib::removeDuplicates, but it
assumes that the list is sorted and, therefore, it is faster. A notable gain will only occur, if
there are only few duplicates in a long list.

Examples

Example 1

listlib::removeDupSorted removes all duplicates from the given list:

listlib::removeDupSorted([1, 1, 1, 3, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7])

If the list is not ordered, listlib::removeDupSorted fails:

listlib::removeDupSorted([1, 3, 5, 7, 1, 3, 5, 7, 1, 3, 5, 7])
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Parameters

list

An ordered MuPAD list

Return Values

List that contains every element only once

See Also

MuPAD Functions
listlib::removeDuplicates
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listlib::setDifference
Remove elements from a list

Syntax
listlib::setDifference(list1, list2)

Description
listlib::setDifference(list1, list2) removes all elements from list1, that
are given by list2.

Note: The order of the list is not preserved.

Examples

Example 1

listlib::setDifference removes 2, 4, 6 and 8 from the given list:

listlib::setDifference([1, 2, 3, 4, 5, 6, 7, 8], [2, 4, 6, 8])

Parameters
list1, list2

A MuPAD list

Return Values
First list without all elements of the second list
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See Also

MuPAD Functions
minus
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listlib::singleMerge

Merging of two ordered lists without duplicates

Syntax

listlib::singleMerge(list1, list2, <function>)

Description

listlib::singleMerge(list1, list2) merges the both lists into one list. It is
assumed that the lists are “disjunct”, no element appears in both lists. Otherwise such
elements are inserted only once in the result list.

With the third optional argument a function can be given that compare the elements of
the lists and therewith determines the order of the elements. The given function is called
with two elements and have to return TRUE, if the two elements are in the right order,
otherwise FALSE (see next paragraph).

The given function is called step by step with an element of the first list as first
argument and an element of the second list as second argument, until it returns FALSE.
Then the element of the second list is inserted into the first list in front of the last proved
element (see “Example 3” on page 17-19).

Note: The lists must be ordered with regard to the order function, otherwise the elements
could be inserted at the wrong place.

If no third argument is given the function _less is used. If no order of the elements with
regard to _less is defined, a function must be given, otherwise an error appears. The
system function sysorder always can be used.
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Examples

Example 1

Merging two ascending ordered lists:

listlib::singleMerge([1, 3, 5, 7], [2, 4, 6, 8])

Merging two descending ordered lists:

listlib::singleMerge([7, 5, 3, 1], [8, 6, 4, 2], _not@_less)

Example 2

Merging two ascending ordered lists with duplicates:

listlib::singleMerge([1, 2, 5, 7], [2, 5, 6, 8])

But the following lists does not contain mutual equal elements:

listlib::singleMerge([1, 1, 3, 3], [2, 2, 4, 4])

Example 3

The following example shows, how expressions can be ordered by a user defined priority.
This order is given by the function named priority, which returns a smaller number
when the expression has a type with higher priority:

priority := X -> contains(["_power", "_mult", "_plus"], type(X)):

priority(x^2), priority(x + 2)
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The function sortfunc returns TRUE, if the both given arguments are in the right order,
i.e., the first argument has a higher (or equal) priority than the second argument:

sortfunc := (X, Y) -> bool(priority(Y) > priority(X)):

sortfunc(x^2, x + 2), sortfunc(x + 2, x*2)

Now the both lists are merged with regard to the given priority:

listlib::singleMerge([x^y, x*2, -y], [x^2, x*y, x + y], sortfunc)

delete priority, sortfunc:

Parameters

list1, list2

A MuPAD list

function

A function that determines the merging order

Return Values

Ordered list that contains the elements of both lists

See Also

MuPAD Functions
_concat | listlib::insert | listlib::merge | zip
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listlib::sublist
Search sublists

Syntax
listlib::sublist(list1, list2, <index>, <Consecutive>)

Description

listlib::sublist(list1, list2) determines, whether the list list1 contains
another list list2.

With listlib::sublist the position of the first appearance of a list in another list can
be determined.

The position that was found is returned as integer. If the given list does not contain the
given sublist, the number 0 is returned.

If an index is given, the search starts at this position. There with multiple occurrence of a
sublist can be determined.

With the option Consecutive, the list must contain the sublist in one piece without
elements in between.

Examples

Example 1

The sublist is a part of the list, but not in one piece:

listlib::sublist([1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 5, 6])

listlib::sublist([1, 2, 3, 4, 5, 6, 7, 8], [2, 3, 5, 6], Consecutive)
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The list contains the sublist, coherent and incoherent:

listlib::sublist([1, 2, 3, 4, 5, 1, 3, 5], [1, 3, 5])

listlib::sublist([1, 2, 3, 4, 5, 1, 3, 5], [1, 3, 5], Consecutive)

Example 2

Find the last occurrence of the sublist inside of the list:

POS:= 0:

while listlib::sublist([1, 2, 3, 1, 3, 1, 2, 3], [1, 2, 3], POS + 1) > 0 do

  POS:= listlib::sublist([1, 2, 3, 1, 3, 1, 2, 3], [1, 2, 3], POS + 1)

end_while:

POS

delete POS:

Parameters

list1, list2

MuPAD list

index

Integer that determines the first search position
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Options

Consecutive

Determines that the sublist list2 is containing coherent in list1

Return Values

Position of the first element of the containing sublist or zero

See Also

MuPAD Functions
contains | op
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misc::breakmap
Stops the mapping currently done by maprec

Syntax
misc::breakmap()

Description

misc::breakmap() stops the recursive application of a function to all subexpressions of
an expression that misc::maprec is just working on.

misc::breakmap is useful as a command inside the procedure mapped by
misc::maprec in case we know that we are finished with our work and the remaining
recursive mapping is not necessary.

Examples

Example 1

We want to know whether a given expression contains a particular type t. As soon as we
have found the first occurrence of t, we can terminate our search.

myfound := FALSE:

misc::maprec(hold(((23+5.0)/3+4*I)*PI),

            {DOM_COMPLEX}=proc()

                          begin

                            myfound := misc::breakmap();

                            args()

                          end_proc):

myfound

What did we do? We told misc::maprec just to go down the expression tree and look
for subexpressions of type DOM_COMPLEX; and, whenever such subexpression should be
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found, to apply a certain procedure to it. That procedure stops the recursive mapping,
remembers that we have found the type we had searched for, and returns exactly its
argument such that the result returned by misc::maprec equals the input. In the
example below, we test whether our given expression contains the type DOM_POLY.

myfound := FALSE:

misc::maprec(hold(((23+5.0)/3+4*I)*PI),

             {DOM_POLY}=proc() 

                        begin

                          myfound := misc::breakmap();

                          args()

                        end_proc):

myfound

Note that you do not need to use this method when searching for subexpressions of a
given type; calling hastype is certainly more convenient.

Return Values

misc::breakmap always returns TRUE.

See Also

MuPAD Functions
misc::maprec
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misc::genassop
Generates an n-ary associative operator from a binary one

Syntax
misc::genassop(binaryop, zeroelement)

Description

misc::genassop(binaryop, zeroelement) generates an n-ary associative operator
from the binary operator binaryop, where zeroelement is a neutral element for
binaryop.

binaryop must be a function taking two arguments (no matter of what kind)
and returning a valid argument to itself. It must satisfy the associative law
binaryop(binaryop(a, b), c) = binaryop(a, binaryop(b, c)).

zeroelement is an object such that binaryop(a, zeroelement) = a holds for every
a.

misc::genassop returns a procedure which returns zeroelement if it is called without
arguments and the argument if it is called with one argument.

Note: misc::genassop doesn't check whether binaryop is really associative and
whether zeroelement is really a neutral element for binaryop.

Examples

Example 1

We know that _plus is an n-ary operator anyway, but let us assume that _plus was
only a binary operator. We can create an own n-ary addition as follows:

myplus := misc::genassop(_plus, 0)
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Now we make myplus add some values.

myplus(3, 4, 8), myplus(-5), myplus()

As mentioned in the “Details” section, myplus returns the argument if is called
with exactly one argument, and it returns the zeroelement 0 if it is called without
arguments.

Parameters

binaryop

A function

zeroelement

An object

Return Values

misc::genassop returns a procedure f. That procedure accepts an arbitrary number
of arguments of the same kind binaryop does; it returns zeroelement if it is called
without argument, and its only argument if it is called with one argument; its value
on n arguments is inductively defined by f(x1, ..., xn)=f(binaryop(x1,x2),
x3,...,xn).

See Also

MuPAD Functions
operator
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misc::maprec
Map a function to subexpressions of an expression

Syntax
misc::maprec(ex, selector = funci, …, <PreMap | PostMap>, <NoOperators>, <Unsimplified>)

Description

misc::maprec(ex, selector=funci) maps the function funci to all subexpressions
of the expression ex that satisfy a given criterion (defined by selector) and replaces
each selected subexpression s by funci(s).

Several different functions may be mapped to subexpressions satisfying different
selection criteria.

misc::maprec(ex, selector1 = funci1, …, selectorn = funcin) does
two steps: it tests whether ex meets a selection criterion defined by some selector
selector_k (and, if yes, replaces ex by funci_k(ex)); and it applies itself recursively
to all operands of ex. The order of these steps is determined by the options PreMap and
PostMap.

Selectors are applied from left to right; if the expression meets some selection criterion,
no further selectors are tried.

selector can have two forms. It can be a set {t1, …, tn}. Here a subexpression s of ex is
selected if type(s1) is one of the types t1, …, tn. If it is not a set, a subexpression s of ex is
selected if p(s) returns TRUE. As every MuPAD object may be applied as a function to s, p
may be of any type in the latter case.

In order not to select a subexpression, the selector need not return FALSE; it suffices that
it does not return TRUE.

If neither the option PreMap nor the option PostMap is given, then PreMap is used.

Use a misc::breakmap command inside funci in order to stop the recursive mapping.
See the help page of misc::breakmap for an example.
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Note: Only subexpressions of domain type DOM_ARRAY, DOM_EXPR, DOM_LIST, DOM_SET,
and DOM_TABLE are mapped recursively, as well as domain elements of a domain T
for which a slot T::enableMaprec exists and equals TRUE; a slot T::map working
properly must then exist, too. To subexpressions of other types, selector is applied,
but misc::maprec is not mapped to their operands. (This is to avoid unwanted
substitutions.) If you want to recurse on them, either add an enableMaprec-slot, or use
a selector that selects such subexpressions, and make funci initiate another recursive
mapping.

misc::maprec is overloadable. If the domain of a subexpression has a method
"maprec", then this method is called with the subexpression and the other arguments of
the call.

Note: The subexpression is replaced by the result, but misc::maprec is not mapped to
its operands; such recursive mapping must be done by the domain method if desired.

Note: The operators of expressions (op(expression, 0)) are also mapped recursively
like all the other operands. Use NoOperators to switch this off.

Examples

Example 1

In the following example every integer of the given expression a+3+4 is substituted by
the value 10. Since 10(n) returns 10 for every integer n, it suffices to write 10 instead of
n -> 10 here.

misc::maprec(hold(a+3+4), {DOM_INT} = 10)

In the example above, we used hold to suppress the evaluation of the expression because
otherwise a+3+4 is evaluated to a+7 and we get the result:

misc::maprec(a+3+4, {DOM_INT} = 10)
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The simplification of the resulting 10 + 10 to 20 can be avoided by using the option
Unsimplified:

misc::maprec(hold(a+3+4), {DOM_INT} = 10, Unsimplified)

Example 2

Now we give an example where the selector is a function. We want to eleminate all the
prime numbers from an expression.

misc::maprec(hold(_plus)(i $ i=1..20), isprime= null(), PostMap)

Here isprime returns TRUE for every prime number between 1 and 20. Every prime
number between 1 and 20 is replaced by null() (since null()(p) gives null()) which
means the above call computes the sum of all non-prime numbers between 1 and 20.

Example 3

Normally, misc::maprec recurses also into the operators of subexpressions. This may
be unwanted in many cases:

misc::maprec(a+b, {DOM_IDENT}= (x -> x.1))

We just wanted to replace the summands, but not the operator. Using the option
NoOperators helps:

misc::maprec(a+b, {DOM_IDENT}= (x -> x.1), NoOperators)
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Parameters

ex

Any MuPAD object

selector

Any MuPAD object

funci

Any MuPAD object

Options

PreMap

For each subexpressions s of ex, the selector is applied to it after visiting all of
its subexpressions; s may have changed at that time due to substitutions in the
subexpressions.

PostMap

For each subexpressions s of ex, the selector is applied to it before visiting its
subexpressions. If s is selected by selector, it is replaced by funci(s), and
misc::maprec is not recursively applied to the operands of funci(s); otherwise,
misc::maprec is recursively applied to the operands of s.

NoOperators

The selector is not applied to the operator of ex.

Unsimplified

The resulting expressions are not further simplified.

Return Values

misc::maprec may return any MuPAD object.
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Overloaded By

ex

See Also

MuPAD Functions
map | mapcoeffs | misc::breakmap

18-10



 misc::pslq

misc::pslq
Heuristic detection of relations between real numbers

Syntax
misc::pslq(numberlist, precision)

Description

misc::pslq(numberlist, precision) returns a list of integers [k1, ..., kn]
such that — denoting the elements of numberlist by a1, ..., an — the absolute
value of  is less than  times the Euclidean norm of numberlist, or

FAIL if such integers could not be detected.

This method can be used to get an idea about linear dependencies, before proving them.

Environment Interactions

misc::pslq is not affected by the current value of DIGITS. Numerical computations are
carried out with more significant digits such that the output meets the specification given
above.

Examples

Example 1

Does π satisfy a polynomial equation of degree at most 2 ?

misc::pslq([1, PI, PI^2], 20)
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Example 2

Having forgotten the relation between sine and cosine, we can try the heuristic way.

misc::pslq([1, sin(0.32), sin(0.32)^2, cos(0.32), cos(0.32)^2], 10)

Parameters

numberlist

List of real numbers or objects that can be converted to real numbers by the function
float.

precision

Positive integer

Return Values

List of integers, or FAIL

Algorithms

This function has been written by Raymond Manzoni.

The algorithm has been taken from Bailey and Plouffe, Recognizing numerical constants.
See also Helaman R.P. Ferguson and David Bailey, A Polynomial Time, Numerically
Stable Integer Relation Algorithm, RNR Technical Report RNR-92-032.
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numeric::butcher
numeric::complexRound
numeric::cubicSpline
numeric::cubicSpline2d
numeric::det
numeric::eigenvalues
numeric::eigenvectors
numeric::expMatrix
numeric::factorCholesky
numeric::factorLU
numeric::factorQR
numeric::fft
numeric::invfft
numeric::fMatrix
numeric::fsolve
numeric::gaussAGM
numeric::gldata
numeric::gtdata
numeric::indets
numeric::int
numeric::inverse
numeric::leastSquares
numeric::linsolve
numeric::matlinsolve
numeric::ncdata
numeric::odesolve
numeric::odesolve2
numeric::odesolveGeometric
numeric::ode2vectorfield
numeric::odeToVectorField
numeric::polyrootbound
numeric::polyroots
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numeric::polysysroots
numeric::product
numeric::quadrature
numeric::rank
numeric::rationalize
numeric::realroot
numeric::realroots
numeric::rotationMatrix
numeric::singularvalues
numeric::singularvectors
numeric::svd
numeric::solve
numeric::sort
numeric::spectralradius
numeric::spectralRadius
numeric::sum
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numeric::butcher
Butcher parameters of Runge-Kutta schemes

Syntax
numeric::butcher(EULER1 | RKF43 | xRKF43 | RK4 | RKF34 | xRKF34 | RKF54a | xRKF54a | RKF54b | xRKF54b | DOPRI54 | xDOPRI54 | CK54 | xCK54 | RKF45a | xRKF45a | RKF45b | xRKF45b | DOPRI45 | xDOPRI45 | CK45 | xCK45 | DOPRI65 | xDOPRI65 | DOPRI56 | xDOPRI56 | BUTCHER6 | RKF87 | xRKF87 | RKF78 | xRKF78 | DOPRI87 | xDOPRI87 | DOPRI78 | xDOPRI78 | GAUSS(s) | GAUSS = s, <digits>)

Description
numeric::butcher(method) returns the Butcher parameters of the Runge-Kutta
scheme named method.

An s-stage Runge-Kutta method for the numerical integration of a dynamical system
 with step size h is a map

.

The “intermediate stages” k1, …, ks are defined as the solutions of the algebraic equations

.

If the s×s “Butcher matrix” aij is strictly lower triangular, the method is called “explicit”.
In this case, the intermediate stages are computed recursively as:

.

Various numerical schemes arise from different choices of the Butcher parameters: the
s×s-matrix aij, the weights b = [b1, …, bs] and the abscissae c = [c1, c2, …, cs].
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Embedded pairs of Runge-Kutta methods consist of two methods that share the matrix aij
and the abscissae ci, but use different weights bi.

The returned list [s, c, a, b1, b2, order1, order2] contains the Butcher data of
the method: s is the number of stages, c is the list of abscissae, a is the Butcher matrix,
b1 and b2 are lists of weights. The integers order1 and order2 are the orders of the
scheme when using the weights b1 or b2, respectively, in conjunction with the matrix a
and the abscissae c.

The methods EULER1 (order 1), RK4 (order 4) and BUTCHER6 (order 6) are single methods
with b1 = b2 and order1 = order2. All other methods are embedded pairs of Runge-
Kutta-Fehlberg (RKFxx), Dormand-Prince (DOPRIxx) or Cash-Karp (CKxx) type. The
names indicate the orders of the subprocesses, e.g., CK45 is the Cash-Karp pair of
orders 4 and 5. CK54 is the same pair with reversed ordering of the subprocesses. The
second subprocess is used to produce a time step of the Runge-Kutta method, the first
subprocess is used for estimating the error of the time step.

The methods GAUSS(s) or, equivalently, GAUSS = s are the implicit Gauss methods
with s stages of order 2 s.

The data of all explicit methods are returned as exact rational numbers. The data of the
Gauss methods are returned as floating-point numbers.

The Butcher data are called by the routines numeric::odesolve,
numeric::odesolve2, and numeric::odesolveGeometric.

Environment Interactions

When computing the data for GAUSS(s), the function is sensitive to the environment
variable DIGITS, which determines the numerical working precision.

Examples

Example 1

The Butcher data of the classical 4 stage, 4th order Runge-Kutta scheme are:

19-4



 numeric::butcher

numeric::butcher(RK4)

Note that the weights b1 and b2 coincide: this classical method does not provide an
embedded pair.

The Butcher data of the (implicit) 3 stage Gauss method:

DIGITS := 5:

numeric::butcher(GAUSS(3));

delete DIGITS:

Example 2

The Butcher data of the embedded Runge-Kutta-Fehlberg pair RKF34 of orders 3 and 4
are:

[s, c, a, b1, b2, order1, order2] := numeric::butcher(RKF34):

The number of stages s of the 4th order subprocess is 5, the abscissae c and the matrix a
are given by:
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s, c, a

Using these parameters with the weights

b1, b2

yields a numerical scheme of order 3 or 4, respectively:

order1, order2

delete s, c, a, b1, b2, order1, order2:

Example 3

We plot the stability regions of the two sub-methods of DOPRI78. The stability function of
a Runge-Kutta scheme with Butcher parameters (c, a, b) is given by

,

where e is the column vector (1, 1, …, 1)T. For an explicit s-stage scheme (the matrix a is
strictly lower triangular), this stability function reduces to the polynomial
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.

We compute the coefficients of the stability polynomials associated with the Butcher
matrix a and the weights b1 and b2 of the sub-methods of DOPRI78:

[s, c, a, b1, b2, order1, order2] := numeric::butcher(DOPRI78):

e := matrix([1 $ s]):

a := float(matrix(a)):

b1 := linalg::transpose(float(matrix(b1))):

b2 := linalg::transpose(float(matrix(b2))):

for i from 1 to s do

    c1[i] := (b1*a^(i-1)*e)[1, 1];

    c2[i] := (b2*a^(i-1)*e)[1, 1];

end_for:

We define the stability polynomials:

z := x + I*y:

p1 := 1 + _plus(c1[i]*z^i $ i = 1..s):

p2 := 1 + _plus(c2[i]*z^i $ i = 1..s):

The boundary of the stability region  is the curve defined by |p(z)|
= 1. We plot these implicit curves associated with the stability polynomials p1(z) and
p2(z) defined above:

plot(plot::Implicit2d(abs(p1) = 1, x = -6..1, y = 0..6,

                      Color = RGB::Red, Legend = "Order 7"),

     plot::Implicit2d(abs(p2) = 1, x = -6..1, y = 0..6,

                      Color = RGB::Blue, Legend = "Order 8"),

     Scaling = Constrained):
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delete s, c, a, b1, b2, order1, order2, e, c1, c2, z, p1, p2:

Parameters

s

The number of stages of the Gauss method: a positive integer

digits

The number of significant digits with which the Butcher data of the methods GAUSS(s)
are computed. The default value for digits is the current value of the environment
variable DIGITS. This argument is only relevant for the Gauss methods.

Return Values

A list [s, c, a, b1, b2, order1, order2] is returned.

19-8



 numeric::butcher

Algorithms

The Butcher parameters provided in this original paper consist of rational
approximations of solutions of the order equations of Runge-Kutta systems. The
parameters provided by numeric::butcher are exact rational solutions of the order
equations. The approximations given by Prince and Dormand coincide with the MuPAD
exact values through 16 decimal digits.

References

J.C. Butcher: The Numerical Analysis of Ordinary Differential Equations, Wiley,
Chichester (1987).

E. Hairer, S.P. Norsett and G. Wanner: Solving Ordinary Differential Equations I,
Springer, Berlin (1993).

The methods DOPRI87 and DOPRI78 correspond to the method RK8(7)13M published in:

P.J. Prince and J.R.Dormand: High order embedded Runge-Kutta formulae, Journal of
Computational and Applied Mathematics 7(1), 1981.

See Also

MuPAD Functions
numeric::odesolve | numeric::odesolve2 | numeric::odesolveGeometric
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numeric::complexRound

Round a complex number towards the real or imaginary axis

Syntax

numeric::complexRound(z, <eps>)

Description

numeric::complexRound(z) discards small real or imaginary parts of complex
floating-point numbers z.

If the real part of z satisfies ℜ(z) < eps |z|, then it is replaced by zero and ℑ(z) i is
returned.

If the imaginary part of z satisfies ℑ(z) < eps |z|, then it is replaced by zero and ℜ(z) is
returned.

With the default of eps=10^-DIGITS, this rounding changes a complex floating-point
number by less than the relative standard precision.

Only precisions eps >= 10^-DIGITS are accepted.

Numerical expressions such as eps =  etc. are accepted as eps.

This function removes small real or imaginary parts of complex floating-points numbers
generated by numerical roundoff. It is used to simplify the floating-point output
of numeric::fsolve, numeric::polyroots, numeric::polysysroots and
numeric::sum.

Environment Interactions

The function is sensitive to the environment variable DIGITS.
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Examples

Example 1

Exact numbers are not changed:

numeric::complexRound(2 + I/10^20)

Also the following number has an exact imaginary part and is not rounded:

numeric::complexRound(2.0 + sqrt(2)*I/10^20)

Rounding occurs for complex floats, if this does not change its value significantly:

numeric::complexRound(1.0 + 2.0*I/10^10),

numeric::complexRound(1.0 + 2.0*I/10^11)

Note that rounding is based on relative precision, i.e., only the ratio of real and
imaginary parts is relevant:

numeric::complexRound((1.0 + 2.0*I)/10^100)

numeric::complexRound((1.0 + 1.0/10^11*I)/10^100)

The relative precision for rounding may be reduced by the optional parameter eps:
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numeric::complexRound(2.0/10^10 + I),

numeric::complexRound(2.0/10^10 + I, PI/10^5)

Parameters

z

An arbitrary MuPAD object

eps

A real number no less than 

Return Values

If z is a complex floating-point number, then a real or complex floating-point number is
returned. For all other types, z is returned unchanged.

See Also

MuPAD Functions
ceil | floor | frac | round | trunc
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numeric::cubicSpline
Interpolation by cubic splines

Syntax
numeric::cubicSpline([x0, y0], [x1, y1], …, <BoundaryCondition>, <Symbolic>, <NoWarning>)

numeric::cubicSpline([x0, x1, …], [y0, y1, …], <BoundaryCondition>, <Symbolic>, <NoWarning>)

numeric::cubicSpline([[x0, x1, …], [y0, y1, …]], <BoundaryCondition>, <Symbolic>, <NoWarning>)

Description

numeric::cubicSpline([x0, y0], [x1, y1], …) returns the cubic spline function
interpolating a sequence of coordinate pairs [xi, yi].

The call S := numeric::cubicSpline([x0, y0], …, [xn, yn]) yields the
cubic spline function S interpolating the data [x0, y0], …, [xn, yn], i.e., S(xi) = yi for i =
0, …, n. The spline function is a piecewise polynomial of degree ≤ 3 on the intervals

. S and its first two derivatives  are continuous

at the points x1, …, xn - 1. Note that S extends the polynomial representation on ,

 to  and , respectively.

By default, NotAKnot boundary conditions are assumed, i.e., the third derivative
 is continuous at the points x1 and xn - 1. With this boundary condition, S is a cubic

polynomial on the intervals  and .

By default, all input data are converted to floating-point numbers. This conversion may
be suppressed by the option Symbolic.

Without the option Symbolic, the abscissae xi must be numerical real values in
ascending order. If these data are not ordered, then numeric::cubicSpline reorders
the abscissae internally, issuing a warning. The warning may be switched off by the
option NoWarning.
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The function S returned by numeric::cubicSpline may be called with one, two or
three arguments:

• The call S(z) returns an explicit expression or a number, if z is a real number.
Otherwise, the symbolic call S(z) is returned.

• The call S(z, [k]) with a nonnegative integer k returns the k-th derivative of S. Cf.
“Example 4” on page 19-17. For k > 3, zero is returned for any z.

• The call S(z, i) is meant for symbolic arguments z. The argument i must be an
integer. Internally, z is assumed to satisfy xi ≤ z < xi + 1, and S(z, i) returns the
polynomial expression in z representing the spline function on this interval.

• The call S(z, i, [k]) with an integer i and a nonnegative integer k returns the
polynomial representation of the k-th derivative of the spline function on the interval
xi ≤ z < xi + 1.

If S is generated with symbolic abscissae xi (necessarily using the option Symbolic),
then the call S(z) with numerical z leads to an error. The call S(z, i) must be used for
symbolic abscissae!

Note: Note that the interpolation of 2 points (x0, y0), (x1, y1) must be
specified by numeric::cubicSpline( [x0, y0] , [x1, y1] ), not by
numeric::cubicSpline( [x0, x1] , [y0, y1] )!

Examples

Example 1

We demonstrate some calls with numerical input data:

data := [i, sin(i*PI/20)] $ i= 0..40:

S1 := numeric::cubicSpline(data):

S2 := numeric::cubicSpline(data, Natural):

S3 := numeric::cubicSpline(data, Periodic):

S4 := numeric::cubicSpline(data, Complete = [3, PI]):

At the abscissae, the corresponding input data are reproduced:

float(data[6][2]), S1(5), S2(5), S3(5), S4(5)
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Interpolation between the abscissae depends on the boundary condition:

S1(4.5), S2(4.5), S3(4.5), S4(4.5)

These are the cubic polynomials in z defining the spline on the interval x0 = 0 ≤ z < x1 = 1:

expand(S1(z, 0)); expand(S2(z, 0));

expand(S3(z, 0)); expand(S4(z, 0))

delete data, S1, S2, S3, S4:

Example 2

We demonstrate some calls with symbolic data:
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S := numeric::cubicSpline([i, y.i] $ i = 0..3):

S(1/2)

This is the cubic polynomial in z defining the spline on the interval x0 = 0 ≤ z < x1 = 1:

S(z, 0)

With the option Symbolic, exact arithmetic is used:

S := numeric::cubicSpline([i, y.i] $ i = 0..3, Symbolic):

S(1/2)

Also symbolic boundary data are accepted:

S := numeric::cubicSpline([i, exp(i)] $ i = 0..10,

                               Complete = [a, b]):

S(0.1)

S := numeric::cubicSpline([0, y0], [1, y1], [2, y2],

                        Symbolic, Complete = [a, 5]):

collect(S(z, 0), z)
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delete S:

Example 3

We demonstrate the use of symbolic abscissae. Here the option Symbolic is mandatory.

S := numeric::cubicSpline([x.i, y.i] $ i = 0..2, Symbolic):

The spline function S can only be called with 2 arguments. This is the cubic polynomial in
z defining the spline on the interval x0 ≤ z < x1:

S(z, 0)

delete S:

Example 4

We plot a spline function together with its first three derivatives. The spline
approximates the function sin(x):

n := 10:

x := array(0..n, [i/n*2*PI $ i = 0..n]):

S := numeric::cubicSpline([x[i], sin(x[i])] $ i = 0..n, Natural):

delete x:

plot(

   plot::Function2d(S(x), x = 0..2*PI, Color = RGB::Black),

   plot::Function2d(S(x, [1]), x = 0..2*PI, Color = RGB::Red),
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   plot::Function2d(S(x, [2]), x = 0..2*PI, Color = RGB::Green,

                    Mesh = 1000),

   plot::Function2d(S(x, [3]), x = 0..2*PI, Color = RGB::Blue,

                    Mesh = 1000)

)

delete n, S:

Example 5

We demonstrate how to generate a phase plot of the differential equation
, with initial conditions . First, we use

numeric::odesolve to compute a numerical mesh of solution points
 with n + 1 equidistant time nodes t0, …, tn in the interval [0, 20]:

DIGITS := 4: n := 100:

for i from 0 to n do t[i] := 20/n*i: end_for:

f := (t, x) -> [x[2], sin(t) - x[1]^3]:

x[0] := 0: y[0] := 0:

for i from 1 to n do

  [x[i], y[i]] := 
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  numeric::odesolve(t[i-1]..t[i], f, [x[i-1], y[i-1]]):

end_for:

The mesh of the  phase plot consists of the following points:

Plotpoints := [[x[i], y[i]] $ i = 0..n]:

We wish to connect these points by a spline curve. We define a spline interpoland Sx(t)
approximating the solution x(t) by interpolating the data [t0, x0], …, [tn, xn]. A spline
interpoland Sy(t) approximating  is obtained by interpolating the data [t0, y0], …, [tn,
yn]:

Sx := numeric::cubicSpline([t[i], x[i]] $ i = 0..n):

Sy := numeric::cubicSpline([t[i], y[i]] $ i = 0..n):

Finally, we plot the mesh points together with the interpolating spline curve:

plot(

     plot::PointList2d(Plotpoints, PointColor = RGB::Black),

     plot::Curve2d([Sx(z), Sy(z)], z = 0..20, Mesh = 5*(n - 1) + 1,

                    LineColor = RGB::Red)

    )
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The functions plot::Ode2d and plot::Ode3d serve for displaying numerical solutions
of ODEs. In fact, they are implemented as indicated by the previous commands. The
following call produces the same plot:

plot(plot::Ode2d(

 [t[i] $ i = 0..n], f, [x[0], y[0]],

 [(t, x) -> [x[1], x[2]], Style = Points, Color = RGB::Black],

 [(t, x) -> [x[1], x[2]], Style = Splines, Color = RGB::Red])):

delete DIGITS, n, i, t, f, x, y, Plotpoints, Sx, Sy:

Parameters

x0, x1, …

Numerical real values in ascending order

y0, y1, …

Arbitrary expressions
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BoundaryCondition

The type of the boundary condition: either NotAKnot, Natural, Periodic, or Complete
= [a, b] with arbitrary arithmetical expressions a, b.

Options

Symbolic

With this option, no conversion of the input data to floating point numbers occurs.

Symbolic abscissae xi are accepted.

The ordering x0 < x1 < … < xn is assumed by numeric::cubicSpline. This ordering is
not checked, even if the abscissae are numerical!

NoWarning

The x-values of the interpolation points must be in ascending order. If the input data
violate this condition, the routine issues a warning and reorders the data automatically.
With this option, the warning is switched off.

NotAKnot

With the default boundary condition NotAKnot, the third derivative  of the spline
function is continuous at the points x1 and xn - 1. With this boundary condition, S is a
polynomial on the intervals  and .

Natural

The boundary condition Natural produces a spline function S satisfying
.

Periodic

The boundary condition Periodic produces a spline function S satisfying S(x0) = S(xn),
, . With this option, the input data y0, yn must coincide,

otherwise an error is raised.
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Complete

Option, specified as Complete = [a, b]

The boundary condition Complete = [a, b] produces a spline function S satisfying
, . Symbolic data a, b are accepted.

Return Values

Spline interpoland: a MuPAD procedure.

See Also

MuPAD Functions
interpolate | numeric::cubicSpline2d
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numeric::cubicSpline2d
Interpolation by 2-dimensional bi-cubic splines

Syntax
numeric::cubicSpline2d([x0, x1, …, xn], [y0, y1, …, ym], z, <[xBC, yBC]>, <Symbolic>)

Description

numeric::cubicSpline2d([ x0, x1, ...], [ y0, y1, ...], z) returns the bi-
cubic spline function interpolating data zi, j over a rectangular mesh (xi, yj).

The call S := numeric::cubicSpline2d([x0, …, xn], [y0, …, yn], z,
Option) yields the cubic spline function S interpolating the data (xi, yj, zi, j), i.e, S(xi, yj)
= zi, j for i = 0, …, n, j = 0, …, m. The spline function is a piecewise bi-cubic polynomial: on
the ‘patch’

,

it has the representation

with suitable coefficients ai, j
(u, v) depending on the patch. The spline S and its partial

derivatives Sx, Sy, Sxx, Sxy, Syy, Sxxy, Sxyy, Sxxyy are continous functions over the entire x,
y plane. In the x-direction, S extends the polynomial representation on the boundary
patches  and  to  and , respectively. The same holds

with respect to the y-direction.

By default, NotAKnot boundary conditions are assumed, i.e., the partial derivatives
Sxxx, Syyy, …, Sxxxyyy, are continuous at the points with x-coordinates x1 and xn - 1 or y-
coordinates y1 and ym - 1.
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By default, all input data are converted to floating-point numbers. This conversion may
be suppressed by the option Symbolic.

Without the option Symbolic, the abscissae xi, yj must be numerical real values in
ascending order. If these data are not ordered, then numeric::cubicSpline2d
reorders the abscissae internally, issuing a warning.

The function S returned by numeric::cubicSpline2d may be called with two, three,
four, or five arguments, respectively:

• The call S(x, y) returns an arithmetical expression if x and y are numerical
expressions. A float is returned if either x or y is a float and all parameters involved
can be converted to floats.

If either x or y contains symbolic objects, the symbolic call S(x, y) is returned.
• The call S(x, y, [u, v]) with nonnegative integers u, v returns the partial

derivative  of the spline. If either x or y contain symbolic objects, the

symbolic call S(x, y, [u, v]) is returned. The result is 0 if either u > 3 or v > 3.
The calls S(x, y, [0, 0]) and S(x, y) are equivalent.

• The call S(x, y, i, j) with nonnegative integers i, j returns the polynomial
representation of the spline on the patch pi, j. Here, x and y may be arbitrary
numerical or symbolic arithmetical expressions. Internally, (x, y) are assumed to lie in
the patch pi, j.

• The call S(x, y, i, j, [u, v]) with nonnegative integers i, j, u, v returns the
polynomial representation of the partial derivatives of the spline function. In this call,
x and y may be arbitrary numerical or symbolic arithmetical expressions which are
assumed to lie in the patch pi, j. The result is 0 if either u > 3 or v > 3. The calls S(x,
y, i, j, [0, 0]) and S(x, y, i, j) are equivalent.

If S is generated with symbolic abscissae xi, yj (necessarily using the option Symbolic),
the call S(x, y, [ u , v ]) is returned symbolically. The call S(x, y, i, j,
[ u , v ]) must be used for symbolic abscissae!
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Examples

Example 1

We demonstrate some calls with numerical input data. The function f(x, y) = sin(2 π (x +
y)) with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 is to be interpolated by n + 1 = 11 equidistant points in the x-
direction and m + 1 = 13 equidistant points in the y-direction:

f := (x, y) -> sin((x + y)*2*PI):

n := 10: x := [i/n $ i = 0..n]:

m := 12: y := [j/m $ j = 0..m]:

z := array(0..n, 0..m, [[f(i/n, j/m) $ j = 0..m] $ i = 0..n]):

S1 := numeric::cubicSpline2d(x, y, z, [NotAKnot, NotAKnot]):

S2 := numeric::cubicSpline2d(x, y, z, [Natural, Natural]):

S3 := numeric::cubicSpline2d(x, y, z, [NotAKnot, Periodic]):

We consider Complete boundary conditions in the y-direction. They consist of the values
fy(xi, y0) = fy(xi, 0) = 2 π cos(2 π xi) and fy(xi, ym) = fy(xi, 1) = 2 π cos(2 π xi):

ybc:= [[2*PI*cos(2*PI*i/n) $ i = 0..n], 

       [2*PI*cos(2*PI*i/n) $ i = 0..n]]:

S4 := numeric::cubicSpline2d(x, y, z, [Periodic, Complete = ybc]):

At the mesh points (xi, yj), the input data zi, j are reproduced:

x := 4/n: y := 8/m:

float(f(x, y)), S1(x, y), S2(x, y), S3(x, y), S4(x, y)

Interpolation between the mesh points depends on the boundary condition:

x := 0.92: y:= 0.55: S1(x, y), S2(x, y), S3(x, y), S4(x, y)

The approximation of the function value f(0.92, 0.55) is good for the NotAKnot,
Periodic, and Complete boundary conditions. The Natural boundary conditions are
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less appropriate because the second partial derivatives of the function f do not vanish
at the boundaries. Consequently, the approximation error of S2 is larger than the other
approximation errors:

z := float(f(x, y)): 

S1(x, y) - z, S2(x, y) - z, S3(x, y) - z, S4(x, y) - z

This is the bi-cubic polynomial in X, Y defining the spline S1 on the patch
, :

expand(S1(X, Y, 0, 3))

delete f, n, m, ybc, x, y, z, S1, S2, S3, S4:

Example 2

We demonstrate some calls with symbolic data. With the option Symbolic, exact
arithmetic is used:

S := numeric::cubicSpline2d(

       [i $ i = 0..3], 

       [j $ j = 0..4],

       array(0..3, 0..4, [[z.i.j $ j = 0..4] $ i = 0..3]),

       Symbolic

    ):

S(1/2, 3/2)
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This is the bi-cubic polynomial in X, Y defining the spline with x0 = 0 ≤ X ≤ x1 = 1, y1 = 1 ≤
Y ≤ y2 = 2:

expand(S(X, Y, 0, 1))

delete S:

Example 3

We consider a spline interpolation of the function  with - 1 ≤ x ≤ 1, - 1 ≤ y

≤ 1:

n := 10: xmesh := [-1 + 2*i/n $ i = 0..n]: 

m := 12: ymesh := [-1 + 2*j/n $ j = 0..m]:

f := (x, y) -> exp(-x^2 - y^2):

z := array(0..n, 0..m, 

     [[f(-1 + 2*i/n, -1 + 2*j/m) $ j=0..m] $ i = 0..n]):

S := numeric::cubicSpline2d(xmesh, ymesh, z):

We plot the spline function S(x, y):

plotfunc3d(S(x, y), x = -1 .. 1, y = -1 .. 1):
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We plot the partial derivative Sxxxyyy(x, y). It is constant on each patch with jumps at
the boundaries of the patches. The renderer uses [5 n + 1, 5 m + 1] mesh points: in each
direction, 4 extra points between adjacent mesh points of the spline are used for the
graphical representation:

plotfunc3d(S(x, y, [3, 3])/10, x = -1 .. 1, y = -1 .. 1,

           Mesh = [5*n + 1, 5*m+ 1])
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delete n, xmesh, m, ymesh, f, z, S:

Example 4

We demonstrate the spline interpretation of a surface. We consider a sphere
parametrized by spherical coordinates u, v with 0 ≤ u ≤ 2 π, 0 ≤ v ≤ π:

.

We interpolate the functions x, y, z over a rectangular mesh in the u-v-plane. Since x, y
and (trivally) z are 2 π-periodic in u, we choose Periodic boundary conditions for u. For
v, we choose Complete boundary conditions with boundary values of the first partial v-
derivative fitting the parametrization:

x:= (u, v) -> cos(u)*sin(v): x_v := diff(x(u, v), v):

y:= (u, v) -> sin(u)*sin(v): y_v := diff(y(u, v), v):

z:= (u, v) -> cos(v): z_v := diff(z(u, v), v):

n := 4: umesh := [i*2*PI/n $ i = 0..n]:

m := 4: vmesh := [j*PI/m $ j = 0..m]:
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vBC := Complete = [

    [subs(x_v, u = umesh[i], v = vmesh[1]) $ i = 1 .. n+1],

    [subs(x_v, u = umesh[i], v = vmesh[n + 1]) $ i = 1 .. n+1]]:

X := numeric::cubicSpline2d(umesh, vmesh,

  array(0..n, 0..m, [[x(i*2*PI/n, j*PI/m) $ j=0..m] $ i=0..n]),

  [Periodic, vBC]):

vBC := Complete = [

    [subs(y_v, u = umesh[i], v = vmesh[1]) $ i = 1 .. n+1],

    [subs(y_v, u = umesh[i], v = vmesh[n + 1]) $ i = 1 .. n+1]]:

Y := numeric::cubicSpline2d(umesh, vmesh,

   array(0..n, 0..m, [[y(i*2*PI/n, j*PI/m) $ j=0..m] $ i=0..n]),

   [Periodic, vBC]):

vBC := Complete = [

    [subs(z_v, u = umesh[i], v = vmesh[1]) $ i = 1 .. n+1],

    [subs(z_v, u = umesh[i], v = vmesh[n + 1]) $ i = 1 .. n+1]]:

Z := numeric::cubicSpline2d(umesh, vmesh,

   array(0..n, 0..m, [[z(i*2*PI/n, j*PI/m) $ j=0..m] $ i=0..n]),

   [Periodic, vBC]):

With only (n + 1)×(m + 1) = 5×5 mesh points, the spline surface yields a respectable
approximation of a sphere. The interpolation nodes are added to the plot as blue points:

plot(

  plot::Surface([X(u, v), Y(u, v), Z(u, v)], 

                 u = 0..2*PI, v = 0..PI,

                 Mesh = [5*n + 1, 5*m + 1],

                 Color = RGB::Red),

  plot::Point3d(x(umesh[i], vmesh[j]), 

                y(umesh[i], vmesh[j]), 

                z(umesh[i], vmesh[j]),

                PointSize = 2*unit::mm,

                Color = RGB::Blue

               ) $ i = 1..n+1 $ j = 1..m+1

):
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delete x, x_v, y, y_v, z, z_v, n, m, 

       umesh, vmesh, vBC, X, Y, Z:

Parameters
x0, x1, …, xn

The x-coordinates of the nodes: distinct numerical real values in ascending order

y0, y1, …, ym

The y-coordinates of the nodes: distinct numerical real values in ascending order

z

The function values: an array of the form array(0..n, 0..m, [...]) with numerical
or symbolic arithmetical expressions.

xBC, yBC

The type of the boundary condition: the boundary condition in the x- or y-direction may
be one of the flags NotAKnot, Natural, Periodic or Complete = [...].
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Complete boundary conditions consist of prescribed values for the derivatives Sx or Sy,
respectively, along the mesh boundaries in the x- or y-direction, respectively. In the x-
direction, these value may be passed in the form Complete = [[a0, …, am], [b0, …,
bm]] with arbitrary numerical or symbolic arithmetical expressions a0, …, bm.

In the y-direction, these value may be passed in the form Complete = [[a0, …, an],
[b0, …, bn]] with arbitrary numerical or symbolic arithmetical expressions a0, …, bn.

Options

Symbolic

With this option, no conversion of the input data to floating point numbers occurs.

Symbolic abscissae xi, yj are accepted.

The ordering x0 < x1 < … < xn, y0 < y1 < … < ym is assumed. This ordering is not checked
even if the node coordinates are numerical!

NotAKnot

With the default boundary condition xBC = yBC = NotAKnot, all partial derivatives
of the spline function are continuous at the nodes with x-coordinates x1 and xn - 1 or y-
coordinates y1 and ym - 1, respectively. With this boundary condition, S is a polynomial
on the union of the patches p0, j, p1, j and pn - 2, j, pn - 1, j or pi, 0, pi, 1 and pi, m - 2, pi, m - 1,
respectively.

This boundary condition is recommended if no information on the behaviour of the data
near the mesh boundaries is available.

Natural

The boundary condition Natural produces a spline function S with vanishing second
partial derivatives at the boundary of the mesh.

This boundary condition is recommended if it is known that the data correspond to a
surface with vanishing curvature near the mesh boundaries.

Periodic

The boundary condition Periodic produces a spline function S satisfying
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Or

,

Respectively. With this option, the input data z0, j, zn, j, respectively zi, 0, zi, m, must
coincide. Otherwise, an error is raised.

This boundary condition is recommended if the interpolation is to represent a periodic
function.

Complete

Option, specified as Complete = [...]

The xBC boundary condition Complete = [[a0, …, am], [b0, …, bm]] produces a
spline function S satisfying Sx(x0, yj) = aj, Sx(xn, yj) = bj, j = 0, …, m.

The yBC boundary condition Complete = [[a0, …, an], [b0, …, bn]] produces a
spline function S satisfying Sy(xi, y0) = ai, Sy(xi, ym) = bi, i = 0, …, n.

Symbolic data ak, bk are accepted.

This boundary condition is recommended if the data zi, j correpond to a function with
known values of the first partial derivatives at the mesh boundaries.

Return Values

Spline function: a MuPAD procedure.

See Also

MuPAD Functions
interpolate | numeric::cubicSpline
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numeric::det
Determinant of a matrix

Syntax
numeric::det(A, <mode>, <MinorExpansion>, <NoWarning>)

Description
numeric::det(A) returns the determinant of the matrix A.

Without the option Symbolic, all entries of A must be numerical. Numerical expressions
such as ,  etc. are accepted and converted to floats. If symbolic entries are found in
the matrix, numeric::det automatically switches to Symbolic issuing a warning.

The option Symbolic should be used if the matrix contains symbolic objects that cannot
be converted to floating point numbers.

Note: Matrices A of a matrix domain such as Dom::Matrix(...) or
Dom::SquareMatrix(...) are internally converted to arrays over expressions via
expr(A). Note that det must be used, when the determinant is to be computed over the
component domain. See “Example 2” on page 19-36. Note that the option Symbolic
should be used if the entries cannot be converted to numerical expressions.

Environment Interactions
Without the option Symbolic, the function is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Examples

Example 1

Numerical matrices can be processed with or without the option Symbolic:
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A := array(1..3, 1..3,[[1, 1, I], [1, exp(1), I], [1, 2, 2]]): 

numeric::det(A), numeric::det(A, Symbolic)

The option Symbolic must be used when the matrix has non-numerical entries:

A := array(1..2, 1..2, [[1/(x + 1),  1], [1/(x + 2), PI]]):

numeric::det(A, Symbolic)

If the option MinorExpansion is used, symbolic entries are accepted, even if the option
Symbolic is not specified:

detN := numeric::det(A, MinorExpansion);

detS := numeric::det(A, Symbolic, MinorExpansion)

Simplify these results using Simplify:

Simplify(detN), Simplify(detS)

delete A:
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Example 2

The following matrix has domain components:

A := Dom::Matrix(Dom::IntegerMod(7))([[6, -1], [1, 6]])

Note that numeric::det computes the determinant of the following matrix:

expr(A), numeric::det(A)

det must be used, if the determinant is to be computed over the component domain
Dom::IntegerMod(7):

det(A)

delete A:

Example 3

We demonstrate the use of hardware floats. Hilbert matrices are notoriously ill-
conditioned: the computation of the determinant is subject to severe cancellation effects.
The following results, both with HardwareFloats as well as with SoftwareFloats, are
marred by numerical roundoff:

A := linalg::hilbert(15):

float(numeric::det(A, Symbolic)),

numeric::det(A, HardwareFloats),

numeric::det(A, SoftwareFloats)
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delete A:

Parameters

A

A square matrix of domain type DOM_ARRAY, or DOM_HFARRAY, or of category
Cat::Matrix

mode

One of the flags Hard, HardwareFloats, Soft, SoftwareFloats, or Symbolic

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.
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If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill conditioned matrices the results returned with HardwareFloats and
SoftwareFloats may differ significantly! See “Example 3” on page 19-36.

Symbolic

This option prevents conversion of the input data to floats. With this option, symbolic
entries are accepted. It overrides the option HardwareFloats.

Note: This option should not be used for floating-point matrices! The Symbolic
algorithm does not implement safeguards against numerical instabilities in floating-point
operations.
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MinorExpansion

With this option, recursive minor expansion along the columns is used. This option may
be useful for small matrices with symbolic entries.

This option implies SoftwareFloats.

With this option, symbolic entries are accepted even if the option Symbolic is not used.

NoWarning

Suppresses warnings

Return Values

By default, the determinant is returned as a floating-point number. With the option
Symbolic, an expression is returned.

Algorithms

Without the option Symbolic, QR-factorization of A via Householder transformations is
used.

With Symbolic, LU-factorization of A is used.

See Also

MuPAD Functions
det
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numeric::eigenvalues

Numerical eigenvalues of a matrix

Syntax

numeric::eigenvalues(A, options)

Description

numeric::eigenvalues(A) returns numerical eigenvalues of the matrix A.

All entries of A must be numerical. Numerical expressions such as  etc. are
accepted and converted to floats. Non-numerical symbolic entries lead to an error.

Note: Matrices A of a matrix domain such as Dom::Matrix(...) or
Dom::SquareMatrix(..) are internally converted to arrays over expressions via
expr(A). Note that linalg::eigenvalues must be used, when the eigenvalues are to
be computed over the component domain. Cf. “Example 2” on page 19-42.

The eigenvalues are sorted by numeric::sort.

Note: Eigenvalues are approximated with an absolute precision of , where r is

the spectral radius of A (i.e., r is the maximum of the absolute values of the eigenvalues).
Consequently, large eigenvalues should be computed correctly to DIGITS decimal places.
The numerical approximations of the small eigenvalues are less accurate.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.
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Examples

Example 1

We compute the eigenvalues of the 3×3 Hilbert matrix:

numeric::eigenvalues(linalg::hilbert(3))

The following matrix is ill-conditioned. It has very large as well as very small
eigenvalues:

A := array(1..3, 1..3,

           [[   I     ,     PI   ,  exp(1)  ],

            [   2     ,  10^100  ,    1     ],

            [10^(-100), 10^(-100), 10^(-100)]

           ]):

Precision goal and working precision are set by DIGITS. With the standard setting of
DIGITS = 10, the following result is computed with HardwareFloats:

numeric::eigenvalues(A)

Note that small eigenvalues may be influenced by roundoff. We increase the working
precision by increasing DIGITS. The smallest of the eigenvalues is computed more
accurately:

DIGITS := 200: 

eigenvals := numeric::eigenvalues(A):

DIGITS := 5:   

eigenvals;
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delete A, eigenvals, DIGITS:

Example 2

The following matrix has domain components:

A := Dom::Matrix(Dom::IntegerMod(7))(

    [[6, -1, 4], [0,  3, 3], [0,  0, 3]])

Note that numeric::eigenvalues computes the eigenvalues of the following matrix:

expr(A), numeric::eigenvalues(A)

If the eigenvalues are to be computed over the component domain
Dom::IntegerMod(7), linalg::eigenvalues should be used:

linalg::eigenvalues(A, Multiple)

delete A:

Example 3

We demonstrate the use of hardware floats. Hilbert matrices are notoriously ill-
conditioned: the computation of small eigenvalues is subject to severe roundoff effects. In
the following results, both with HardwareFloats as well as with SoftwareFloats, the
small eigenvalues are marred by numerical roundoff:

A := linalg::hilbert(15):
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numeric::eigenvalues(A, HardwareFloats),

numeric::eigenvalues(A, SoftwareFloats)

delete A:

Parameters

A

A numerical matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category
Cat::Matrix.

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.
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If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill conditioned matrices the results returned with HardwareFloats and
SoftwareFloats may differ significantly! See “Example 3” on page 19-42.

NoWarning

Suppresses warnings
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Return Values

Ordered list of numerical eigenvalues

Algorithms

The function implements standard numerical algorithms from the Handbook of
Automatic Computation by Wilkinson and Reinsch.

See Also

MuPAD Functions
linalg::eigenvalues | linalg::eigenvectors | numeric::eigenvectors
| numeric::singularvalues | numeric::singularvectors |
numeric::spectralradius
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numeric::eigenvectors
Numerical eigenvalues and eigenvectors of a matrix

Syntax
numeric::eigenvectors(A, options)

Description
numeric::eigenvectors(A) returns numerical eigenvalues and eigenvectors of the
matrix A.

All entries of the matrix must be numerical. Numerical expressions such as  etc.
are accepted and converted to floats. Non-numerical symbolic entries lead to an error.

The eigenvalues are sorted by numeric::sort.

The matrix X provides the eigenvectors: the i-th column of X is a numerical eigenvector
corresponding to the eigenvalue di. Each column is either zero or normalized to the
Euclidean length 1.0.

For matrices with multiple eigenvalues and an insufficient number of eigenvectors, some
of the eigenvectors may coincide or may be zero, i.e., X is not necessarily invertible.

The list of residues res = [res1, res2, …] provides some control over the quality of the
numerical spectral data. The residues are given by

,

where xi is the normalized eigenvector (the i-th column of X) associated with the
numerical eigenvalue di. For Hermitian matrices, resi provides an upper bound for the
absolute error of di.

With the option NoResidues, the computation of the residues is suppressed, the
returned value is NIL.

If no return type is specified via the option ReturnType = t, the domain type of the
eigenvector matrix X depends on the type of the input matrix A:
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• The eigenvectors of an array are returned as an array.
• The eigenvectors of an hfarray are returned as an hfarray.
• The eigenvectors of a dense matrix of type Dom::DenseMatrix() are returned as a

dense matrix of type Dom::DenseMatrix() over the ring of expressions.
• For all other matrices of category Cat::Matrix, the eigenvectors are returned

as matrices of type Dom::Matrix() over the ring of MuPAD expressions. This
includes input matrices A of type Dom::Matrix(...), Dom::SquareMatrix(...),
Dom::MatrixGroup(...) etc.

Note: Matrices A of a matrix domain such as Dom::Matrix(...) or
Dom::SquareMatrix(...) are internally converted to arrays over expressions via
expr(A). Note that linalg::eigenvectors must be used, when the eigenvalues/
vectors are to be computed over the component domain. Cf. “Example 3” on page
19-49.

Note: Eigenvalues are approximated with an absolute precision of , where r is

the spectral radius of A (i.e., r is the maximal singular value of A). Consequently, large
eigenvalues should be computed correctly to DIGITS decimal places. The numerical
approximations of the small eigenvalues are less accurate.

Note: For a numerical algorithm, it is not possible to distinguish between
badly separated distinct eigenvalues and multiple eigenvalues. For this reason,
numeric::eigenvectors and linalg::eigenvectors use different return formats:
the latter can provide information on the multiplicity of eigenvalues due to its internal
exact arithmetic.

Use numeric::eigenvalues if only eigenvalues are to be computed.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.
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Examples

Example 1

We compute the spectral data of the 2×2 Hilbert matrix:

A := linalg::hilbert(2)

[d, X, res] := numeric::eigenvectors(A):

The eigenvalues:

d

The eigenvectors:

  X

Hilbert matrices are Hermitian, i.e., computing the spectral data is a numerically stable
process. This is confirmed by the small residues:

res

The routine linalg::hilbert provides the input as a matrix of type Dom::Matrix().
Consequently, the eigenvectors also consist of such a matrix. For further processing, we
convert the list of eigenvalues to a diagonal matrix:
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d := matrix(2, 2, d, Diagonal):

We reconstruct the matrix from its spectral data:

X*d*X^(-1)

We extract an eigenvector from the matrix X and doublecheck its numerical quality:

eigenvector1 := X::dom::col(X, 1);

norm(A*eigenvector1 - d[1, 1]*eigenvector1)

delete A, d, X, res, eigenvector1:

Example 2

We demonstrate a numerically ill-conditioned case. The following matrix has only one
eigenvector and cannot be diagonalized. Numerically, the zero vector is returned as the
second column of the eigenvector matrix:

A := array(1..2, 1..2, [[5, -1], [4, 1]]):

DIGITS := 6:

numeric::eigenvectors(A)

delete A, DIGITS:

Example 3

The following matrix has domain components:
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A := Dom::Matrix(Dom::IntegerMod(7))([[6, -1], [0,  3]])

Note that numeric::eigenvectors computes the spectral data of the following matrix:

expr(A)

numeric::eigenvectors(A, NoResidues)

The routine linalg::eigenvectors should be used if the spectral data are to be
computed over the component domain Dom::IntegerMod(7):

linalg::eigenvectors(A)

delete A:

Example 4

We demonstrate the use of hardware floats. The following matrix is degenerate: it
has rank 1. For the double eigenvalue 0, different base vectors of the corresponding
eigenspace are returned with HardwareFloats and SoftwareFloats, respectively:

A := array(1..3, 1..3, [[1, 2, 3], [2, 4, 6],

                 [3*10^12, 6*10^12, 9*10^12]]):

[d1, X1, res1] := numeric::eigenvectors(A, HardwareFloats):
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d1, X1

[d2, X2, res2] := numeric::eigenvectors(A, SoftwareFloats):

d2, X2

delete A, d1, X1, res1, d2, X2, res2:

Parameters

A

A numerical matrix of domain type DOM_ARRAY, or DOM_HFARRAY, or of category
Cat::Matrix.

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.
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With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.
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The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill conditioned matrices the results returned with HardwareFloats and
SoftwareFloats may differ significantly! See “Example 4” on page 19-50.

NoResidues

Suppresses the computation of error estimates

If no error estimates are required, this option may be used to suppress the computation
of the residues res. The return values for these data are NIL.

The alternative option name NoErrors used in previous MuPAD versions is still
available.

ReturnType

Option, specified as ReturnType = t

Return the eigenvectors as a matrix of domain type t. The following return types t are
available: DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or Dom::DenseMatrix().

NoWarning

Suppresses warnings

Return Values

List [d, X, res]. The list d = [d1, d2, …] contains the numerical eigenvalue. The
i-th column of the matrix X is the eigenvector associated with the eigenvalue di. The
list of residues res = [res1, res2, …] provides error estimates for the numerical
eigenvalues.

Algorithms

The routine implements standard numerical algorithms from the Handbook of Automatic
Computation by Wilkinson and Reinsch.
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See Also

MuPAD Functions
linalg::eigenvalues | linalg::eigenvectors | numeric::eigenvalues
| numeric::singularvalues | numeric::singularvectors |
numeric::spectralradius
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numeric::expMatrix

Exponential of a matrix

Syntax

numeric::expMatrix(A, <mode>, <method>, options)

numeric::expMatrix(A, x, <mode>, <method>, options)

numeric::expMatrix(A, X, <mode>, <method>, options)

Description

numeric::expMatrix(A) returns the exponential  of a square matrix A.

numeric::expMatrix(A, x) with a vector x returns the vector .

numeric::expMatrix(A, X) with a matrix X returns the matrix .

If no return type is specified via the option ReturnType = d, the domain type of the
result depends on the type of the input matrix A:

• For an array A, the result is returned as an array.
• For an hfarray A, the result is returned as an hfarray.
• For a dense matrixA of type Dom::DenseMatrix(Ring), the result is again a matrix

of type Dom::DenseMatrix() over the ring of expressions.
• For all other matrices A of category Cat::Matrix, the result is returned as

a matrix of type Dom::Matrix() over the ring of expressions. This includes
input matrices A of type Dom::Matrix(Ring), Dom::SquareMatrix(Ring),
Dom::MatrixGroup(Ring) etc.

The components of A must not contain symbolic objects which cannot be converted to
numerical values via float. Numerical symbolic expressions such as π, ,  etc. are
accepted. They are converted to floats.
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The specification of a method such as TaylorExpansion etc. implies SoftwareFloats,
i.e., the result is computed via the software arithmetic of the MuPAD kernel.

The methods Diagonalization and Interpolation do not work for all matrices (see
below).

With SoftwareFloats, special algorithms are implemented for traceless 2×2 matrices
and skew symmetric 3×3 matrices. Specification of a particular method does not have any
effect for such matrices.

If  or  is required, one should not compute  first and then
multiply the resulting matrix with the vector/matrix x/X. In general, the call
numeric::expMatrix(A, x) or numeric::expMatrix(A, X), respectively, is faster.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We consider a lower triangular matrix given by an array:

A := array(1..2, 1..2, [[1, 0] , [1, PI]]):

expA := numeric::expMatrix(A)

We consider a vector given by a list x1 and by an equivalent 1-dimensional array x2,
respectively:

x1 := [1, 1]:

x2 := array(1..2, [1, 1]):
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Further, an equivalent input vector X of type Dom::Matrix() is used:

X := matrix(x1):

The following three calls all yield a vector represented by an 2×1 array corresponding to
the type of the input matrix A:

numeric::expMatrix(A, x1),

numeric::expMatrix(A, x2, Krylov),

numeric::expMatrix(A, X, Diagonalization)

For further processing, the array expA is converted to an element of the matrix domain
Dom::Matrix():

expA := matrix(expA):

Now, the overloaded arithmetical operators +, *, ^ etc. can be used for further
computations:

expA*X

delete A, expA, x1, x2, X:

Example 2

We demonstrate the different precision goals of the methods. Note that software
arithmetic is used when a method is specified:

A := array(1..3, 1..3, [[ 1000,    1,    0 ], 

                        [   0,     1,    1 ], 

                        [1/10^100, 0, -1000]]):

The default method TaylorExpansion computes each component of  correctly:
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numeric::expMatrix(A, SoftwareFloats)

The method Diagonalization produces a result, which is accurate in the sense that
 holds. Indeed, the largest components of  are correct.

However, Diagonalization does not even get the right order of magnitude of the
smaller components:

numeric::expMatrix(A, Diagonalization)

Note that  is very sensitive to small changes in A. After elimination of the small lower
triangular element, both methods yield the same result with correct digits for all entries:

B := array(1..3, 1..3, [[ 1000, 1,    0 ],

                        [   0 , 1,    1 ],

                        [   0 , 0, -1000]]):

numeric::expMatrix(B, SoftwareFloats)

numeric::expMatrix(B, Diagonalization)
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delete A, B:

Example 3

Hilbert matrices  have real positive eigenvalues. For large dimension, most of

these eigenvalues are small and may be regarded as a single cluster. Consequently, the
option Krylov is useful:

numeric::expMatrix(linalg::hilbert(100), [1 $ 100], Krylov)

Parameters

A

A square n×n matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category
Cat::Matrix

x

A vector represented by a list [x1, …, xn] or a 1-dimensional array array(1..n,
[x1, …, xn] ), or a 1-dimensional hfarray hfarray(1..n, [x1, …, xn] )

X

An n×m matrix of domain type DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(Ring) or
Dom::DenseMatrix(Ring) with a suitable coefficient ring Ring

mode

One of the flags Hard, HardwareFloats, Soft, or SoftwareFloats
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method

One of the flags Diagonalization, Interpolation, Krylov, or TaylorExpansion

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
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• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Diagonalization, Interpolation, Krylov, TaylorExpansion

The specification of a method implies SoftwareFloats, i.e., the result is always
computed via the software arithmetic of the MuPAD kernel.

The method TaylorExpansion is the default algorithm. It produces fast results for
matrices with small norms.

The default method TaylorExpansion computes each individual component of , ,
 to a relative precision of about 10^(-DIGITS), unless numerical roundoff prevents

reaching this precision goal. Roughly speaking: all digits of all components of the result
are reliable up to roundoff effects.

Note: The methods Diagonalization, Interpolation, and Krylov compute the
result to a relative precision w.r.t. the norm: . Consequently, if the

result has components of different orders of magnitude, then the smaller components
have larger relative errors than the large components. Not all digits of the small
components are reliable! Cf. “Example 2” on page 19-57.

Note: The method Diagonalization only works for diagonalizable matrices. For
matrices without a basis of eigenvectors, numeric::expMatrix may either produce an
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error or the returned result is dominated by roundoff effects. For symmetric/Hermitian or
skew/skew-Hermitian matrices, this method produces reliable results.

Note: The method Interpolation may become numerically unstable for certain
matrices. The algorithm tries to detect such instabilities and stops with an error
message.

The method Krylov is only available for computing  with a vector x. Also vectors
represented by n×1 matrices are accepted.

This method is fast when x is spanned by few eigenvectors of A. Further, if A has only
few clusters of similar eigenvalues, then this method can be much faster than the other
methods. Cf. “Example 3” on page 19-59.

NoWarning

Suppresses warnings

ReturnType

Option, specified as ReturnType = d

Return the result matrix or vector as a matrix of domain type d. The following
return types are available: DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or
Dom::DenseMatrix().

Return Values

All results are float matrices/vectors. For an n×n matrix A:

• numeric::expMatrix(A, method) returns  as an n×n matrix,
• numeric::expMatrix(A, x, method) returns  as an n×1 matrix,
• numeric::expMatrix(A, X, method) returns  as an n×m matrix.

The domain type of the result depends on the domain type of the input matrix A unless a
return type is requested explicitly via ReturnType = d.
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Algorithms

The method TaylorExpansion sums the usual Taylor series

in a suitable numerically stable way.

The method Diagonalization computes  by a

diagonalization A = T diag(λ1, λ2, …) T- 1.

The method Interpolation computes a polynomial P interpolating the function exp at
the eigenvalues of A. Evaluation of the matrix polynomial yields .

The method Krylov reduces A to a Hessenberg matrix H and computes an
approximation of  from . Depending on A and x, the dimension of H may be smaller
than the dimension of A.

numeric::expMatrix uses polynomial arithmetic to multiply matrices and vectors.
Thus, sparse matrices are handled efficiently based on the MuPAD internal sparse
representation of polynomials.

References

Y. Saad, “Analysis of some Krylov Subspace Approximations to the Matrix Exponential
Operator”, SIAM Journal of Numerical Analysis 29 (1992).

See Also

MuPAD Functions
exp | funm | linalg::sqrtMatrix | numeric::fMatrix
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numeric::factorCholesky
Cholesky factorization of a matrix

Syntax
numeric::factorCholesky(A, options)

Description

numeric::factorCholesky(A) returns the factor L of the Cholesky factorization A =
L LH of a positive definite Hermitian matrix A.

numeric::factorCholesky(A, Symmetric) returns the factor L of a Cholesky type
factorization A = L LT of a symmetric matrix A.

The Cholesky factorization of a square Hermitian matrix is A = L LH, where L is a
regular complex lower triangular matrix and LH is the Hermitian transpose of L (i.e., the
complex conjugate of the transpose of L). Such a factorization only exists if A is positive
definite.

By default, a numerical factorization is computed. If the option Symbolic is not used,
all components of the matrix are converted to floating-point numbers. In this case, the
matrix must not contain symbolic objects that cannot be converted to floats. Numerical
symbolic expressions such as π, ,  etc. are accepted.

If no return type is specified via the option ReturnType = d, the domain type of the
Cholesky factor L depends on the type of the input matrix A:

• The factor of an array is returned as an array.
• The factor of an hfarray is returned as an hfarray.
• The factor of a dense matrix of type Dom::DenseMatrix() is a dense matrix of type

Dom::DenseMatrix() over the ring of MuPAD expressions.
• For all other matrices of category Cat::Matrix, the factor L is returned as a

matrix of type Dom::Matrix() over the ring of MuPAD expressions. This includes
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input matrices A of type Dom::Matrix(...), Dom::SquareMatrix(...),
Dom::MatrixGroup(...) etc.

The Cholesky factor returned by numeric::factorCholesky is normalized such that
its diagonal elements are real and positive.

Environment Interactions

Without the option Symbolic, the function is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Examples

Example 1

We consider the matrix

A := array(1..2, 1..2, [[1, I] , [-I, PI]]):

We compute a numerical factorization

numeric::factorCholesky(A)

and a symbolic factorization:

L := numeric::factorCholesky(A, Symbolic)

For further processing, the Cholesky factor (of domain type DOM_ARRAY) is converted to
an element of the matrix domain Dom::Matrix():
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L := matrix(L):

Now, the overloaded arithmetical operators +, *, ^ etc. can be used for further
computations:

L*linalg::transpose(conjugate(L))

delete A, L:

Example 2

The following matrix is not positive definite:

A := matrix([[-2, sqrt(2)], [sqrt(2), 1]]):

numeric::factorCholesky(A)

Error: The matrix is not positive definite within working precision. [stdlib::hfa::factorCh]

  Evaluating: numeric::factorCholesky

However, a symmetric factorization with a complex Cholesky factor does exist:

numeric::factorCholesky(A, Symmetric)

delete A:

Example 3

The option NoCheck should be used when the matrix contains symbolic objects:

assume(x > 0): assume(z > 0):

A := array(1..2, 1..2, [[x, conjugate(y)], [y, z]]):

numeric::factorCholesky(A, Symbolic, NoCheck)
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Note that with NoCheck, it is assumed that the matrix is Hermitian and positive
definite! All upper triangular entries are ignored. The following result implicitly assumes
u = conjugate(y):

A := array(1..2, 1..2, [[x, u], [y, z]]):

numeric::factorCholesky(A, Symbolic, NoCheck)

delete A:

Example 4

We demonstrate the use of hardware floats. Hilbert matrices are notoriously ill-
conditioned and difficult to factor with low values of DIGITS. The following results, both
with HardwareFloats as well as with SoftwareFloats, are marred by numerical
roundoff. Consequently, the factorization with and without hardware floats, respectively,
differ significantly:

A := linalg::hilbert(13):

L1 := numeric::factorCholesky(A, HardwareFloats):

L2 := numeric::factorCholesky(A, SoftwareFloats):

L1[13, 13] <> L2[13, 13]

All Hilbert matrices are positive definite. However, in the following call, numerical
roundoff makes the hardware floating-point tool think that the matrix is not definite:

numeric::factorCholesky(linalg::hilbert(14), HardwareFloats):
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Error: The matrix is not positive definite within working precision. [stdlib::hfa::factorCh]

  Evaluating: numeric::factorCholesky

A factorization is computed successfully with SoftwareFloats:

L := numeric::factorCholesky(linalg::hilbert(14), SoftwareFloats):

norm(linalg::hilbert(14) - L*linalg::transpose(L))

delete A, L1, L2, L:

Parameters

A

A square matrix of domain type  DOM_ARRAY, DOM_HFARRAY, or of category
Cat::Matrix

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
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hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill conditioned matrices the results returned with HardwareFloats and
SoftwareFloats may differ significantly! See “Example 4” on page 19-67.
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Symbolic

Prevents the conversion of the input data to floating-point numbers. Exact arithmetic is
used. This option overrides HardwareFloats and SoftwareFloats.

The usual arithmetic for MuPAD expressions is used. With this option, the matrix A may
contain symbolic objects. Note that the option NoCheck must be used for the Hermitian
factorization when non-numerical symbolic objects are present.

Symmetric

Makes numeric::factorCholesky compute a symmetric factorization A = L LT rather
than a Hermitian factorization A = L LH

The symmetric Cholesky factorization of a square symmetric matrix is A = L LT, where
L is a regular complex lower triangular matrix and LT is the transpose of L. The matrix
A does not have to be positive definite. Consequently, with the option Symmetric no
internal check is performed whether A is positive definite. Note that the symmetric
factorization with regular L does not exist for all matrices.

For real symmetric positive definite matrices A the Cholesky factor L is real and the
Hermitian factorization A = L LH coincides with the symmetric factorization A = L LT.

NoCheck

Prevents numeric::factorCholesky from checking that the matrix is Hermitian and
positive definite

Without the option Symmetric, numeric::factorCholesky checks that the matrix A
is Hermitian and positive definite. The option NoCheck may be used to suppress these
checks. It must be used when the matrix contains symbolic objects. Elements in the
upper triangular part of the matrix will never be touched by the algorithm!

Note: With this option, numeric::factorCholesky returns a result for matrices that
are not Hermitian or not positive definite (i.e., no Cholesky factorization exists)! When
using this option, it is the user's responsibility to make sure that the input matrix is
appropriate.

This option has no effect when the option Symmetric is used.
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NoWarning

Suppresses warnings

If symbolic coefficients are found, numeric::factorCholesky automatically switches
to the Symbolic mode with a warning. With this option, this warning is suppressed;
the routine still uses the symbolic mode for symbolic coefficients, i.e., exact arithmetic
without floating-point conversions is used.

ReturnType

Option, specified as ReturnType = d

Return the Cholesky factor as a matrix of domain type d. The following return types are
available: DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or Dom::DenseMatrix().

Return Values

Depending on the type of the input matrix A, the lower triangular Cholesky factor L is
returned as a matrix of domain type DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or
Dom::DenseMatrix(). Its components are real or complex floats, unless the option
Symbolic is used. Without the option NoCheck, an error is raised if the matrix is not
Hermitian or not positive definite.

See Also

MuPAD Functions
linalg::factorCholesky | numeric::factorLU | numeric::factorQR
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numeric::factorLU
LU factorization of a matrix

Syntax
numeric::factorLU(A, options)

Description

numeric::factorLU(A) returns a LU factorization of the matrix A.

The LU factorization of a real or complex m×n matrix A is P A = L U. The m×m
matrix L is lower triangular, normalized to 1 along the diagonal. The m×n matrix
U is upper triangular, i.e., Uij = 0 for j < i. The list p = [p1, …, pm] returned by
numeric::factorLU is a permutation of the numbers 1, …, m corresponding to row
exchanges of A. It represents the following m×m permutation matrix P (we assume that
the matrix indices range from 1 to m):

.

Left multiplication of matrices and vectors with P is realized easily using the
permutation list p: Yi, j := Xpi, j defines the row permutation Y = P X of a matrix X, yi := xpi

defines the row permutation y = P x of a vector x.

By default, a numerical factorization with partial pivoting is computed. If the option
Symbolic is not used, all components of the matrix are converted to floating-point
numbers. In this case, the matrix must not contain symbolic objects that cannot be
converted to floats. Numerical symbolic expressions such as π, ,  etc. are accepted.

The factorization depends on the pivoting strategy. The results obtained with/without
the option Symbolic may differ. See “Example 2” on page 19-74. For numerical
factorizations, the results obtained with HardwareFloats and SoftwareFloats,
respectively, may differ. See “Example 3” on page 19-75.
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If no return type is specified via the option ReturnType = d, the domain type of the
factors L and U depends on the type of the input matrix A:

• The factors of an array are returned as arrays.
• The factors of an hfarray are returned as hfarrays.
• The factors of a dense matrix of type Dom::DenseMatrix() are again dense matrices

of type Dom::DenseMatrix() over the ring of MuPAD expressions.
• For all other matrices of category Cat::Matrix, the factors are returned as

matrices of type Dom::Matrix() over the ring of MuPAD expressions. This
includes input matrices A of type Dom::Matrix(...), Dom::SquareMatrix(...),
Dom::MatrixGroup(...) etc.

Environment Interactions

Without the optional argument Symbolic, the function is sensitive to the environment
variable DIGITS, which determines the numerical working precision.

Examples

Example 1

We factor a matrix specified by an array:

A := array(1..3, 1..3, [[1, 2, 3], [2, 4, 6], [4, 8, 9]]):

[L, U, p] := numeric::factorLU(A)

The factors (of domain type DOM_ARRAY) are converted to elements of the matrix domain
Dom::Matrix(). After the conversion, the overloaded arithmetical operators +, *, ^ etc.
can be used for further processing:

L := matrix(L): U := matrix(U):
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L*U

The product L U coincides with A after exchanging the rows according to the permutation
stored in the list p:

PA := array(1..3, 1..3, [[A[p[i], j] $ j=1..3] $ i=1..3])

delete A, L, U, p, PA:

Example 2

We consider a non-square matrix of dimension 3 ×2:

A := matrix([[3*I, 10], [I, 1], [I, 1]]):

[L1, U1, p1] := numeric::factorLU(A)

Note that the symbolic factorization is different, because a different pivoting strategy is
used:

[L2, U2, p2] := numeric::factorLU(A, Symbolic)
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Here, the matrix factors are of type Dom::Matrix(), because the input matrix A was
of this type. We can use the overloaded arithmetic directly. We convert the permutation
lists p1, p2 to matrices and verify the relation P A = L U for the factorization:

P1 := matrix(3, 3):

P2 := matrix(3, 3):

for i from 1 to 3 do

  P1[i, p1[i]] := 1;

  P2[i, p2[i]] := 1;

end_for:

P1*A - L1*U1, P2*A - L2*U2

delete A, L1, U1, p1, L2, U2, p2:

Example 3

We demonstrate the use of hardware floats. The internal rounding of HardwareFloats
and SoftwareFloats differs. Consequently, the following results do not coincide:

n := 14:

A := linalg::hilbert(n):

[L1, U1, p1] := numeric::factorLU(A, HardwareFloats):

[L2, U2, p2] := numeric::factorLU(A, SoftwareFloats):

p1, p2

However, both factorizations satisfy P A = L U numerically:

P1A := matrix([[A[p1[i], j] $ j = 1..n] $ i = 1..n]):

P2A := matrix([[A[p2[i], j] $ j = 1..n] $ i = 1..n]):

norm(P1A - L1*U1), norm(P2A - L2*U2)

delete n, A, L1, U1, p1, L2, U2, p2, P1A, P2A:
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Parameters

A

An m×n matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category Cat::Matrix

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.
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There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill conditioned matrices the results returned with HardwareFloats and
SoftwareFloats may differ significantly! See “Example 3” on page 19-75.

Symbolic

Prevents the conversion of the input data to floating-point numbers. Exact arithmetic is
used. This option overrides HardwareFloats and SoftwareFloats.

The usual arithmetic for MuPAD expressions is used. With this option, the matrix A may
contain symbolic objects.

With this option, no row exchanges are performed in the internal Gaussian elimination
unless necessary.

NoWarning

Suppresses warnings

If symbolic coefficients are found, numeric::factorLU automatically switches to
the Symbolic mode with a warning. With this option, this warning is suppressed;
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the routine still uses the symbolic mode for symbolic coefficients, i.e., exact arithmetic
without floating-point conversions is used.

ReturnType

Option, specified as ReturnType = d

Return the factors as matrices of domain type d. The following return types are available:
DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or Dom::DenseMatrix().

Return Values

List [L, U, p] is returned. The domain type of the m×m matrix L and the m×n matrix
U depends on the type of the input matrix A; p is a list with m elements consisting of a
permutation of the integers 1, …, m. It represents row exchanges in pivoting steps. The
components of L and U are real or complex floats, unless the option Symbolic is used.

See Also

MuPAD Functions
linalg::factorLU | numeric::factorCholesky | numeric::factorQR
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numeric::factorQR

QR factorization of a matrix

Syntax

numeric::factorQR(A, options)

Description

numeric::factorQR(A) returns a QR factorization A = Q R of the matrix A.

The QR factorization of a real/complex m×n matrix is A = Q R, where the m×m matrix Q
is orthogonal/unitary and the m×n matrix R is upper triangular (i.e., Rij = 0 for j < i).

By default, a numerical factorization is computed. The matrix must not contain symbolic
objects that cannot be converted to floats. Numerical symbolic expressions such as π, ,

 etc. are accepted. They will be converted to floats, unless the option Symbolic is
used.

The R factor is normalized such that its diagonal elements Rii with i = 1, …, min(m, n)
are real and nonnegative.

If no return type is specified via the option ReturnType = d, the domain type of the
factors Q and R depends on the type of the input matrix A:

• The factors of an array are returned as arrays.
• The factors of an hfarray are returned as hfarrays.
• The factors of a dense matrix of type Dom::DenseMatrix() are dense matrices of

type Dom::DenseMatrix() over the ring of expressions.
• For all other matrices of categoryCat::Matrix, the factors are returned as matrices

of type Dom::Matrix() over the ring of MuPAD expressions. This includes
input matrices A of type Dom::Matrix(...), Dom::SquareMatrix(...),
Dom::MatrixGroup(...), etc.
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Environment Interactions

Without the option Symbolic, the function is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Examples

Example 1

We consider a quadratic matrix:

A := array(1..2, 1..2, [[1, 0] , [1, PI]]):

First, we compute a numerical factorization:

[Q1, R1] := numeric::factorQR(A)

Next, the symbolic factorization is computed:

[Q2, R2] := numeric::factorQR(A, Symbolic)

For further processing, the factors (of domain type DOM_ARRAY) are converted to
elements of the matrix domain Dom::Matrix():

Q1 := matrix(Q1): R1 := matrix(R1):

Q2 := matrix(Q2): R2 := matrix(R2):

Now, the overloaded arithmetical operators +, *, ^ etc. can be used for further
computations:

Q1*R1, Q2*R2
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We finally verify the othogonality of the factors Q1 and Q2:

Q1 * linalg::transpose(Q1), Q2 * linalg::transpose(Q2)

delete A, Q1, R1, Q2, R2:

Example 2

We consider a non-square matrix of rank 1:

A := array(1..3, 1..2, [[0, 0], [I, 1], [I, 1]]):

numeric::factorQR(A, Symbolic)

In this case, the QR factorization is not unique. Note that the numerical factorization
yields different factors:

numeric::factorQR(A)
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delete A:

Example 3

We demonstrate the difference between hardware floats and software floats. For rank
deficient matrices, the QR factorization is not unique. Depending on the options, different
results are returned for the following matrix of rank 1:

A := matrix([[1, 1], [10^4, 10^4], [10^8, 10^8]]):

[Q1, R1] := float(numeric::factorQR(A, Symbolic))

[Q2, R2] := numeric::factorQR(A, SoftwareFloats)

[Q3, R3] := numeric::factorQR(A, HardwareFloats)
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However, all factorizations satisfy A = Q R numerically:

norm(A - Q1*R1), norm(A - Q2*R2), norm(A - Q3*R3)

delete A, Q1, R1, Q2, R2, Q3, R3:

Parameters

A

An m×n matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category Cat::Matrix

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
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SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.
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Note: For ill conditioned matrices the results returned with HardwareFloats and
SoftwareFloats may differ significantly! See “Example 3” on page 19-82.

Symbolic

Prevents the conversion of the input data to floating-point numbers. Exact arithmetic is
used. This option overrides HardwareFloats and SoftwareFloats.

The usual arithmetic for MuPAD expressions is used. With this option, the matrix A may
contain symbolic objects.

NoWarning

Suppresses warnings

If symbolic coefficients are found, numeric::factorQR automatically switches to
the Symbolic mode with a warning. With this option, this warning is suppressed;
the routine still uses the symbolic mode for symbolic coefficients, i.e., exact arithmetic
without floating-point conversions is used.

ReturnType

Option, specified as ReturnType = d

Return the Cholesky factor as a matrix of domain type d. The following return types are
available: DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or Dom::DenseMatrix().

Return Values

List [Q, R] with matrices Q and R is returned. The domain type of the orthogonal/
unitary m×m matrix Q and the upper triangular m×n matrix R depends on the type of the
input matrix A. The components of Q and R are real or complex floats, unless the option
Symbolic is used.

Algorithms

Householder transformations are used to compute the numerical factorization. With the
option Symbolic, Gram-Schmidt orthonormalization of the columns of A is used.
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For an invertible square matrix A, the QR factorization is unique up to scaling factors
of modulus 1. The normalization of R to real positive diagonal elements determines
the factorization uniquely. Consequently, the results obtained with/without the option
Symbolic coincide for invertible square matrices.

For singular or non-square matrices, the factorization is not unique and the results
obtained with/without the option Symbolic may differ. Cf. “Example 2” on page
19-81.

See Also

MuPAD Functions
linalg::factorQR | numeric::factorCholesky | numeric::factorLU
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numeric::fft
Fast Fourier Transform

Syntax
numeric::fft(L, <mode>, <ReturnType = t>, <Clean>)

numeric::fft(M, <mode>, <ReturnType = t>, <Clean>)

numeric::fft(A, <mode>, <ReturnType = t>, <Clean>)

Description

numeric::fft(data) returns the discrete Fourier transform of data.

The one-dimensional discrete Fourier transform F = fft(L) of N data elements Lj stored in
the list L = [L1, …, LN] is the list F = [F1, …, FN] given by

.

fft transforms the data by a Fast Fourier Transform (FFT) algorithm.

The d-dimensional discrete Fourier transform F = fft(A) of N = n1×···×nd data elements
(Aj1, …, jd) stored in the array A is the array F = (Fk1, …, kd) given by

with k1 = 1, …, n1, …, kd = 1, …, nd.

Data provided by a list, or one-dimensional array, or hfarray are transformed
according to the one-dimensional transform. Data provided by matrices are transformed
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according to the twp-dimensional transform. Data provided by multidimensional arrays
or hfarrays are transformed according to the multi-dimensional transform matching the
format of the input array.

If the data size N factorizes as N = p q, the discrete Fourier transform can be computed
by p different Fourier transforms of subsets of the data, each subset having the data
size q. The corresponding 'divide and conquer' algorithm is known as FFT ('Fast Fourier
Transform'). The fft routine employs the FFT algorithm. It is most efficient, when the
data size N is an integer power of 2 ('radix 2 FFT'). In this case, the algorithm needs

 elementary operations.

Note: More generally, FFT is efficient, if the data size is the product of many small
factors.

Following Bluestein, the Fourier transform is written as a convolution if the data size N
is a prime. The data are zero-padded to a data length that is an integer power of 2. The
convolution is then computed via radix 2 FFTs. Thus, the algorithm needs 
elementary operations even if N is a prime.

Environment Interactions

Without the option Symbolic, the function is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Examples

Example 1

Compute one-dimensional transformations using lists. By default, numerical expressions
are converted to floating-point values:

L := [1, 2^(1/2), 3*I, PI]: 

F := numeric::fft(L)
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To use exact arithmetic, specify the option Symbolic:

F := numeric::fft(L, Symbolic)

numeric::fft accepts symbolic expressions. Internally, the default method
HardwareFloats (with DIGITS < 16) fails because of the symbolic parameter x. The
following results are computed with the software arithmetic provided by the MuPAD
kernel:

L := [x, 2, 3, x]: 

numeric::fft(L)

numeric::fft(L, Symbolic)

delete L, F

Example 2

Compute the following multidimensional transformations. First, compute a two-
dimensional transformation using an array with two indices:

A := array(1..2, 1..4, [[1, 2, 3, 4], [a, b, c, d]]):

numeric::fft(A, Symbolic)

Next, compute a transformation for a three-dimensional array:

A := array(1..2, 1..4, 1..2,

           [[[sin(j1*PI/2)*cos(j2*3*PI/4)*sin(j3*PI/2)

           $ j3 = 1..2 ] $ j2 = 1..4 ] $ j1 = 1..2]):
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numeric::fft(A)

array(1..2, 1..4, 1..2,

  (1, 1, 1) = -1.0

  (1, 1, 2) = -1.0

  (1, 2, 1) = - 1.414213562 - 1.0 I

  (1, 2, 2) = - 1.414213562 - 1.0 I

  (1, 3, 1) = 1.0

  (1, 3, 2) = 1.0

  (1, 4, 1) = - 1.414213562 + 1.0 I

  (1, 4, 2) = - 1.414213562 + 1.0 I

  (2, 1, 1) = -1.0

  (2, 1, 2) = -1.0

  (2, 2, 1) = - 1.414213562 - 1.0 I

  (2, 2, 2) = - 1.414213562 - 1.0 I

  (2, 3, 1) = 1.0

  (2, 3, 2) = 1.0

  (2, 4, 1) = - 1.414213562 + 1.0 I

  (2, 4, 2) = - 1.414213562 + 1.0 I

)

delete A

Example 3

Data of arbitrary length can be transformed:

L := [1, 2 + I, PI/3]:
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numeric::fft(L)

delete L

Parameters

L

A list, or a one-dimensional array(1 .. N, [Symbol::hellip]), or a one-dimensional
hfarray(1 .. N, [Symbol::hellip]) of arithmetical expressions.

M

A matrix of category Cat::Matrix of arithmetical expressions.

A

A d-dimensional array( 1..n_1,Symbol::hellip,1..n_d, [Symbol::hellip] )
or a d-dimensional hfarray( 1..n_1,Symbol::hellip,1..n_d,
[Symbol::hellip] ) of arithmetical expressions.

mode

One of the flags Hard, HardwareFloats, Soft, SoftwareFloats, or Symbolic

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware floating-
point arithmetic from within a MuPAD session. Hard and HardwareFloats are
equivalent. With this option, the input data are converted to hardware floating-point
values and processed by compiled C code. The result is reconverted to MuPAD floating-
point values and returned to the MuPAD session.

With Soft (or SoftwareFloats) computations are done using software floating-point
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
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SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats can be much faster. Note, however, that the precision of hardware
arithmetic is limited to about 15 digits. Further, the size of floating-point numbers can
not be larger than approximately 10308 and not smaller than approximately 10- 308.

If no HardwareFloats or SoftwareFloats are specified, the following strategy is
used. If the current value of DIGITS is smaller than 16 or if the matrix A is a hardware
floating-point array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floating-point values, software
arithmetic by the MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware arithmetic first.

There can be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floating-point values.

If neither HardwareFloats nor SoftwareFloats is specified, the function does not
indicate whether hardware floating-point values or software floating-point values are
used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

With Soft and SoftwareFloats, symbolic objects are accepted even if they cannot
be converted to floating-point numbers. The result consists of arithmetical expressions
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involving both floating-point numbers as well as symbolic objects. See “Example 1” on
page 19-88.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats can differ.

Symbolic

This option prevents conversion of the input data to floating-point values.

Without this option, the floating-point converter float is applied to all input data. Use
this option if no such conversion is desired. Exact arithmetic is used to compute the
Fourier transformation.

ReturnType

Option, specified as ReturnType = t

Return the result in a container of domain type t. The following return types t are
available: DOM_LIST, or DOM_ARRAY, or DOM_HFARRAY, or matrix, or densematrix.

This option determines the domain type t of the result.

If no return type is specified by this option, the result if of the same type and format as
the input data.

If the return type DOM_LIST is specified, the result is always a plain list of floating-
point numbers. If the input data are given by a matrix or a multidimensional array, the
returned list represents the operands of the multidimensional Fourier data. For example,
if an n1×n2 matrix is entered, the return value is a list with n1 n2 values representing
the entries of a n1×n2 matrix. The first n2 entries of the list represent the first row of the
result, the next n2 entries represent the second row, and so on.

With ReturnType = matrix or ReturnType = densematrix, only the results of one-
and two-dimensional Fourier transformations can be represented.

Clean

Reduce roundoff garbage in the result. All entries of the result with absolute values
smaller than 10^(-DIGITS) times the maximal absolute value of all operands of the
result are set to 0.0. Further, the routine numeric::complexRound is applied to all
entries of the result.
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Note: The postprocessing of the result is done on the software level. When using
hardware floating-point values, this option can increase the runtime significantly.

This option is ignored when used in conjunction with the option Symbolic.

Return Values

List, array, hfarray, or matrix of the same length and format as the first input parameter
L, A, or M, respectively. The type of the return value can be changed with the option
ReturnType.

See Also

MuPAD Functions
numeric::invfft

More About
• “Discrete Fourier Transforms”
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numeric::invfft
Inverse Fast Fourier Transform

Syntax
numeric::invfft(L, <mode>, <ReturnType = t>, <Clean>)

numeric::invfft(M, <mode>, <ReturnType = t>, <Clean>)

numeric::invfft(A, <mode>, <ReturnType = t>, <Clean>)

Description

numeric::invfft(data) returns the inverse discrete Fourier transform.

The one-dimensional inverse discrete Fourier transform L = invfft(F) of N data elements
Fk stored in the list F = [F1, …, FN] is the list L = [L1, …, LN] given by

.

invfft transforms the data by a Fast Fourier Transform (FFT) algorithm.

The d-dimensional inverse discrete Fourier transform A = invfft(F) is given by

with j1 = 1, …, n1, …, jd = 1, …, nd.

Data provided by a list, or one-dimensional array, or hfarray are transformed
according to the one-dimensional transform. Data provided by matrices are transformed
according to the two-dimensional transform. Data provided by multidimensional arrays
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or hfarrays are transformed according to the multidimensional transform matching the
format of the input array.

If the data size N factorizes as N = p q, the inverse discrete Fourier transform can be
computed by p different inverse Fourier transforms of subsets of the data, each subset
having the data size q. The corresponding 'divide and conquer' algorithm is known as
FFT ('Fast Fourier Transform'). The invfft routine employs the FFT algorithm. It is
most efficient, when the data size N is an integer power of 2 ('radix 2 FFT'). In this case,
the algorithm needs  elementary operations.

Note: More generally, FFT is efficient, if the data size is the product of many small
factors.

Following Bluestein, the inverse Fourier transform is written as a convolution if the data
size N is a prime. The data are zero-padded to a data length that is an integer power
of 2. The convolution is then computed via radix 2 FFTs. Thus, the algorithm needs

 elementary operations even if N is a prime.

Environment Interactions

Without the option Symbolic, the function is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Examples

Example 1

Compute one-dimensional transformations using lists. By default, numerical expressions
are converted to floating-point values:

L := [1, 2^(1/2), 3*I, PI]: 

F := numeric::fft(L)
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numeric::invfft(F)

numeric::invfft(F, Clean)

To use exact arithmetic, specify the option Symbolic:

F := numeric::fft(L, Symbolic)

numeric::invfft(F, Symbolic)

numeric::invfft accepts symbolic expressions. Internally, the default method
HardwareFloats (with DIGITS < 16) fails because of the symbolic parameter x. The
following results are computed with the software arithmetic provided by the MuPAD
kernel:

L := [x, 2, 3, x]: 

numeric::fft(L)

numeric::invfft(F)
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numeric::fft(L, Symbolic)

numeric::invfft(F, Symbolic)

delete L, F:

Example 2

Compute the following two-dimensional transformation using an array with two indices:

A := array(1..2, 1..4, [[1, 2, 3, 4], [a, b, c, d]]):

F := numeric::fft(A, Symbolic)

numeric::invfft(F, Symbolic)

delete A, F

Example 3

Data of arbitrary length can be transformed:

L := [1, 2 + I, PI/3]:

numeric::fft(L)
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delete L

Parameters

L

A list, or a one-dimensional array(1 .. N, [Symbol::hellip]), or a one-dimensional
hfarray(1 .. N, [Symbol::hellip]) of arithmetical expressions.

M

A matrix of category Cat::Matrix of arithmetical expressions.

A

A d-dimensional array( 1..n_1,Symbol::hellip,1..n_d, [Symbol::hellip] )
or a d-dimensional hfarray( 1..n_1,Symbol::hellip,1..n_d,
[Symbol::hellip] ) of arithmetical expressions.

mode

One of the flags Hard, HardwareFloats, Soft, SoftwareFloats, or Symbolic

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware floating-
point arithmetic from within a MuPAD session. Hard and HardwareFloats are
equivalent. With this option, the input data are converted to hardware floating-point
values and processed by compiled C code. The result is reconverted to MuPAD floating-
point values and returned to the MuPAD session.

With Soft (or SoftwareFloats) computations are done using software floating-point
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats can be much faster. Note, however, that the precision of hardware
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arithmetic is limited to about 15 digits. Further, the size of floating-point numbers can
not be larger than approximately 10308 and not smaller than approximately 10- 308.

If no HardwareFloats or SoftwareFloats are specified, the following strategy is
used. If the current value of DIGITS is smaller than 16 or if the matrix A is a hardware
floating-point array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floating-point values, software
arithmetic by the MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware arithmetic first.

There can be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floating-point values.

If neither HardwareFloats nor SoftwareFloats is specified, the function does not
indicate whether hardware floating-point values or software floating-point values are
used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

With Soft and SoftwareFloats, symbolic objects are accepted even if they cannot
be converted to floating-point numbers. The result consists of arithmetical expressions
involving both floating-point numbers as well as symbolic objects. See “Example 1” on
page 19-88.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats can differ.
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Symbolic

This option prevents conversion of the input data to floating-point values.

Without this option, the floating-point converter float is applied to all input data. Use
this option if no such conversion is desired. Exact arithmetic is used to compute the
Fourier transformation.

ReturnType

Option, specified as ReturnType = t

Return the result in a container of domain type t. The following return types t are
available: DOM_LIST, or DOM_ARRAY, or DOM_HFARRAY, or matrix, or densematrix.

This option determines the domain type t of the result.

If no return type is specified by this option, the result if of the same type and format as
the input data.

If the return type DOM_LIST is specified, the result is always a plain list of floating-
point numbers. If the input data are given by a matrix or a multidimensional array, the
returned list represents the operands of the multidimensional Fourier data. For example,
if an n1×n2 matrix is entered, the return value is a list with n1 n2 values representing
the entries of a n1×n2 matrix. The first n2 entries of the list represent the first row of the
result, the next n2 entries represent the second row, and so on.

With ReturnType = matrix or ReturnType = densematrix, only the results of one-
and two-dimensional Fourier transformations can be represented.

Clean

Reduce roundoff garbage in the result. All entries of the result with absolute values
smaller than 10^(-DIGITS) times the maximal absolute value of all operands of the
result are set to 0.0. Further, the routine numeric::complexRound is applied to all
entries of the result.

Note: The postprocessing of the result is done on the software level. When using
hardware floating-point values, this option can increase the runtime significantly.

This option is ignored when used in conjunction with the option Symbolic.
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Return Values

List, array, hfarray, or matrix of the same length and format as the first input parameter
L, A, or M, respectively. The type of the return value can be changed with the option
ReturnType.

See Also

MuPAD Functions
numeric::fft

More About
• “Discrete Fourier Transforms”
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numeric::fMatrix
Functional calculus for numerical square matrices

Syntax
numeric::fMatrix(f, A, p1, p2, …, options)

Description

numeric::fMatrix(f, A) computes the matrix f(A) with a function f and a square
matrix A.

If no return type is specified via the option ReturnType = d, the domain type of the
result depends on the type of the input matrix A:

• For an array A, the result is returned as an array.
• For an hfarray A, the result is returned as an array.
• For a dense matrix A of type Dom::DenseMatrix() the result is a dense matrix of

type Dom::DenseMatrix() over the ring of MuPAD expressions.
• For all other matrices A of category Cat::Matrix, the result is returned as a

matrix of type Dom::Matrix() over the ring of MuPAD expressions. This includes
input matrices A of type Dom::Matrix(...), Dom::SquareMatrix(...),
Dom::MatrixGroup(...) etc.

The components of A must not contain symbolic objects which cannot be converted to
numerical values via float. Numerical symbolic expressions such as π, ,  etc. are
accepted. They are converted to floats.

Note: When you use numeric::fMatrix, the matrix must be diagonalizable, and all its
elements must be convertible to floating-point numbers. Otherwise, use funm.

If numeric::fMatrix detects numerically that A is not diagonalizable, it aborts with
an error message . Nevertheless, the numerical algorithm often fails to detect that
the matrix is not diagonalizable, and the returned matrix is dominated by round-off
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effects. When usingnumeric::fMatrix, ensure the diagonalization is possible and well
conditioned.

Symmetric/Hermitian and skew/skew Hermitian matrices can always be diagonalized in
a numerically stable way; numeric::fMatrix produces reliable numerical results for
such matrices.

The procedure f must accept complex floating-point numbers as first argument. It may
return arbitrary MuPAD expressions, provided these can be multiplied with floating-
point numbers.

The parameters p1, p2, … may be numerical or symbolic objects. They must be accepted
by f as 2nd argument, 3rd argument etc.

In contrast to the components of A, numerical symbolic objects such as π,  etc. passed
as parameters p1, p2, … are not converted to floats.

Inversion or exponentiation of a matrix may be realized with the functions 

and exp, respectively. However, it is recommended to use the specialized algorithms
numeric::inverse and numeric::expMatrix instead. Also matrix evaluation of low
degree polynomials should be done with standard matrix arithmetic rather than with
numeric::fMatrix.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We compute the matrix power A100:

A := array(1..2, 1..2, [[2, PI], [exp(-10), 0]]):

numeric::fMatrix(x -> x^100, A)
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Alternatively, you may use the function _power which takes the exponent as a second
parameter:

numeric::fMatrix(_power, A, 100)

delete A:

Example 2

We compute the square root of a matrix:

A := matrix([[0, 1], [-1, 1]]):

B := numeric::fMatrix(sqrt, A)

The small imaginary parts are caused by numerical round-off. We eliminate them by
extracting the real parts of the components:

B := map(B, Re)

We verify that B^2 is A. Since A was passed as a matrix of type Dom::Matrix(), the
matrix B is also of this type. We may compute the square by the overloaded standard
arithmetic using the operator ^:
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B^2

delete A, B:

Example 3

We compute  with a symbolic parameter t:

A := array(1..2, 1..2, [[0, 1], [-1, 0]]):

numeric::fMatrix(exp@_mult, A, t*PI)

delete A:

Example 4

We demonstrate the difference between HardwareFloats and SoftwareFloats. The
diagonalization of the following matrix is ill-conditioned. The result is dominated by
round-off effects:

A := array(1..3, 1..3, [[10, 1,    1    ],

                        [ 0, 1,    1    ],

                        [ 1, 0, 10^(-14)]]):

numeric::fMatrix(ln, A, SoftwareFloats)
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numeric::fMatrix(ln, A, HardwareFloats)

In the following case, the round-off effects of SoftwareFloats makes the algorithm
think that the matrix cannot be diagonalized. Consequently, FAIL is returned. With
HardwareFloats, however, a result is computed:

A := array(1..3, 1..3, [[   1     , 1 ,    1    ],

                        [   0     , 1 ,    1    ],

                        [ 10^(-30), 0 , 10^(-30)]]):

numeric::fMatrix(ln, A, SoftwareFloats)

numeric::fMatrix(ln, A, HardwareFloats)

delete A:

Parameters

f

A procedure representing a scalar function  or , where P
is a set of parameters
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A

A square matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category Cat::Matrix

p1, p2, …

Arbitrary MuPAD objects accepted by f as additional input parameters

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
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specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note: For ill-conditioned matrices, the result is subject to round-off errors. The results
returned with HardwareFloats and SoftwareFloats may differ! See “Example 4” on
page 19-106.

NoWarning

Suppresses warnings

ReturnType

Option, specified as ReturnType = d

Return the result as a matrix of domain type d. The following return types are available:
DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or Dom::DenseMatrix().

Return Values

Depending on the type of the input matrix A, the matrix f(A) is returned as a matrix
of type DOM_ARRAY, DOM_HFARRAY, Dom::Matrix() or Dom::DenseMatrix(). If the
algorithm thinks that A is not diagonalizable, then FAIL is returned.

19-109



19 numeric – Numerical Algorithms

Algorithms

A numerical diagonalization A = X diag(λ1, λ2, …) X- 1 is computed. The columns of X
are the (right) eigenvectors of A, the diagonal entries λ1, λ2, … are the corresponding
eigenvalues. The function f is mapped to the eigenvalues, the matrix result is computed
by

.

The eigenvector matrix X may be obtained via numeric::eigenvectors(A)[2].

The condition number  of the eigenvector matrix is a measure indicating

how well conditioned the diagonalization of the matrix A is. If this number is larger than
10DIGITS, then not a single digit of the diagonalization data is trustworthy.

The call numeric::fMatrix(exp, A) corresponds to numeric::expMatrix(A,
Diagonalization).

See Also

MuPAD Functions
funm | linalg::sqrtMatrix | numeric::expMatrix | numeric::inverse
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numeric::fsolve
Search for a numerical root of a system of equations

Syntax
numeric::fsolve(eq, x, options)

numeric::fsolve(eq, x = a, options)

numeric::fsolve(eq, x = a .. b, options)

numeric::fsolve(eqs, [x1, x2, …], options)

numeric::fsolve(eqs, {x1, x2, …}, options)

numeric::fsolve(eqs, [x1 = a1, x2 = a2, …], options)

numeric::fsolve(eqs, {x1 = a1, x2 = a2, …}, options)

numeric::fsolve(eqs, [x1 = a1 .. b1, x2 = a2 .. b2, …], options)

numeric::fsolve(eqs, {x1 = a1 .. b1, x2 = a2 .. b2, …}, options)

Description
numeric::fsolve(eqs, ...) returns a numerical approximation of a solution of the
system of equations eqs.

This is the MuPAD numerical solver for non-linear systems of equations.

Note: By default, this routine returns only one numerical solution!

The equations must not contain symbolic objects other than the unknowns that cannot
be converted to numerical values via float. Symbolic objects such as π or  etc. are
accepted. The same holds true for starting values and search ranges. Search ranges may
contain . Cf. “Example 2” on page 19-115.

numeric::fsolve implements a purely numerical Newton type root search with a
working precision set by the environment variable DIGITS. Well separated simple roots
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should be exact within this precision. However, multiple roots or badly separated roots
may be computed with a restricted precision. Cf. “Example 3” on page 19-115.

Note: For systems of equations, the expressions defining the equations must have a
symbolic derivative!

Overdetermined systems (i.e., more equations than indeterminates) are not accepted.
However, there may be more indeterminates than equations. Cf. “Example 4” on page
19-116.

Specifying indeterminates [x1, x2, …] without starting values or search ranges
is equivalent to the search ranges [x_1 = -infinity .. infinity, x_2 =
-infinity .. infinity, dots]. Note, however, that the user should assist
numeric::fsolve by providing specific search ranges whenever possible! If a complex
starting point or a search range involving a complex number is specified for at least one
of the unknowns, the search is extended to the entire complex plane for all variables for
which no explicit search interval is given.

For real equations and real starting points or search ranges, the internal Newton
iteration will usually produce real values, i.e., numeric::fsolve searches for real roots
only (unless square roots, logarithms etc. happen to produce complex values from real
input). Use complex starting points or search ranges to search for complex roots of real
equations. Cf. “Example 5” on page 19-116.

Starting values and search ranges can be mixed. Cf. “Example 6” on page 19-117.

Search ranges should only be provided if a solution is known to exist inside the search
range. Otherwise, the search may take some time before numeric::fsolve gives up.

Specification of a search range primarily means that starting points from this range are
used for the internal Newton search. For sufficiently small search ranges enclosing a
solution the search will usually pick out this solution. However, it may also happen that
the Newton iteration drifts towards other solutions.

With the default search strategy RestrictedSearch, only solutions from the search
range are accepted, even if solutions outside the search range are found internally. More
specifically, if a search range such as x = a .. b is specified for the variable x, then
solutions satisfying min(#(a), #(b)) ≤ #(x) ≤ max(#(a), #(b)) and min(#(a),
#(b)) ≤ #(x) ≤ max(#(a), #(b)) are searched for. Thus, the values a, b specify
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the bottom left and top right corner of a rectangular search area in the complex plane
when the RestrictedSearch strategy is used.

With the search strategy UnrestrictedSearch, any solution inside or outside the
search range is accepted and returned. Cf. “Example 7” on page 19-117.

If starting values for all indeterminates are provided, then a single Newton iteration with
these initial data is launched. It either leads to a solution or numeric::fsolve gives up
and returns FAIL. The same holds true if search ranges x = a .. a or [x_1 = a_1 ..
a_1, x_2 = a_2 .. a_2, dots] of zero length are specified.

Note: The risk of failure is high when providing bad starting values! Starting values are
appropriate only if a sufficiently good approximation of the solution is known! On the
other hand, providing good starting values is the fastest way to a solution. Cf. “Example
8” on page 19-118.

If at least one of the indeterminates has a non-trivial search range, then
numeric::fsolve uses several Newton iterations with different starting values from
the search range. Cf. “Example 9” on page 19-118. Search ranges in conjunction with
the option UnrestrictedSearch provide a higher chance of detecting roots than (bad)
starting values!

Note: User defined assumptions such as assume(x > 0) are not taken into account in
the numerical search! Provide search ranges instead! Cf. “Example 2” on page 19-115.

Note: Convergence may be slow for multiple roots! Furthermore, numeric::fsolve
may fail to detect such roots!

Use linsolve or numeric::linsolve for systems of linear equations.

Use numeric::realroots, if all real roots of a single non-polynomial real equation in a
finite range are desired.

Use polylib::realroots, if all real roots of a real univariate polynomial are desired.

Use numeric::polyroots, if all real and complex roots of a univariate polynomial are
desired.
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Use numeric::solve, if all roots of a multivariate polynomial system are desired.

The routine numeric::solve provides a common interface to all these numerical
solvers.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We compute roots of the sine function:

numeric::fsolve(sin(x) = 0, x)

With the option Random, several calls may result in different roots:

numeric::fsolve(sin(x), x, Random)

numeric::fsolve(sin(x), x, Random)

Particular solutions can be chosen by an appropriate starting point close to the wanted
solution, or by a search interval:

numeric::fsolve(sin(x), x = 3), 

numeric::fsolve(sin(x), x = -4 .. -3)
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The solutions found by numeric::fsolve can be used in subs and assign to substitute
or assign the indeterminates:

eqs := [x^2 = sin(y), y^2 = cos(x)]:

solution := numeric::fsolve(eqs, [x, y])

eval(subs(eqs, solution))

assign(solution): x, y

delete eqs, solution, x, y:

Example 2

We demonstrate the use of search ranges. The following system has solutions with
positive and negative x. The solution with x ≥ 0 is obtained with the search interval x =
0 .. infinity:

numeric::fsolve([x^2 = exp(x*y), x^2 = y^2], [x = 0 .. infinity, y])

We search for a solution with x ≤ 0:

numeric::fsolve([x^2 = exp(x*y), x^2 = y^2], [x = -infinity .. 0, y])

Example 3

Multiple roots can only be computed with a restricted precision:
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numeric::fsolve(expand((x - 1/3)^5), x = 0.3)

Example 4

The following system of equations is degenerate and has a 1-parameter family of
solutions. Each call to numeric::fsolve picks out one random solution:

numeric::fsolve([x^2 - y^2, x^2 - y^2], [x, y], Random) $ i = 1 .. 3

The equation may also be specified as an underdetermined system:

numeric::fsolve([x^2 - y^2], [x, y])

Example 5

The following equation has no real solution. Consequently, the numerical search with
real starting values fails:

numeric::fsolve(sin(x) + cos(x)^2 = 3, x)

With a complex starting value, a solution is found:

numeric::fsolve(sin(x) + cos(x)^2 = 3, x = I)

Also complex search ranges may be specified. In the following, the internal starting point
is a random value on the line from 2 + I to 3 + 2*I. Solutions are accepted if they lie
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in the complex rectangle with the bottom left corner 2 + I and the top right corner 3 +
2*I:

numeric::fsolve(sin(x) + cos(x)^2 = 3, x = 2 + I .. 3 + 2*I)

Example 6

Starting values and search intervals can be mixed:

numeric::fsolve([x^2 + y^2 = 1, y^2 + z^2 = 1, x^2 + z^2 = 1],

                [x = 1, y = 0 .. 10, z])

Example 7

With UnrestrictedSearch, search intervals are only used for choosing starting values
for the internal Newton search. The numerical iteration may drift towards a solution
outside the search range:

eqs := [x*sin(10*x) = y^3, y^2 = exp(-2*x/3)]: 

numeric::fsolve(eqs, [x = 0 .. 1, y = -1 .. 0], UnrestrictedSearch)

With the default strategy RestrictedSearch, only solutions inside the search range are
accepted:

numeric::fsolve(eqs, [x = 0 .. 1, y = -1 .. 0])

In the last search, also the previous solution outside the search range was found. With
the option MultiSolutions, numeric::fsolve returns a sequence of all solutions that
were found in the internal search:

numeric::fsolve(eqs, [x = 0 .. 1, y = -1 .. 0], MultiSolutions)
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delete eqs:

Example 8

Usually, most of the time is spent internally searching for some (crude) approximations
of the root. If high precision roots are required, it is recommended to compute first
approximations with moderate values of DIGITS and use them as starting values for a
refined search:

eq := exp(-x) = x:

DIGITS := 10: 

firstApprox := numeric::fsolve(eq, x)

This output is suitable as input defining a starting value for x:

DIGITS := 1000: numeric::fsolve(eq, firstApprox)

delete eq, firstApprox, DIGITS:

Example 9

Specifying starting values for the indeterminates launches a single Newton iteration.
This may fail, if the starting values are not sufficiently close to the solution:

eq := [x*y = x + y - 4, x/y = x - y + 4]:

numeric::fsolve(eq, [x = 1, y = 1])

If a search range is specified for at least one of the unknowns, then several Newton
iterations with random starting values in the search range are used, until a solution is
found or until numeric::fsolve gives up:

19-118



 numeric::fsolve

numeric::fsolve(eq, [x = 1, y = 0 .. 10])

delete eq:

Parameters

eq

An arithmetical expression or an equation in one indeterminate x. An expression eq is
interpreted as the equation eq = 0.

eqs

A list, set, array, or matrix (Cat::Matrix) of expressions or equations in several
indeterminates x1, x2, ... Expressions are interpreted as homogeneous equations.

x, x1, x2, …

Identifiers or indexed identifiers to be solved for.

a, a1, a2, …

Real or complex numerical starting values for the internal search. Typically, crude
approximations of solution.

a .. b, a1 .. b1, a2 .. b2, …

Ranges of numerical values defining search intervals for the numerical root.

Options

RestrictedSearch

Makes numeric::fsolve return only numerical roots in the user-defined search range
x = a .. b and [x_1 = a_1 .. b_1, x_2 = a_2 .. b_2, Symbol::hellip],
respectively. This is the default search strategy, if a search range is specified for at least
one of the unknowns.
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Once a root with components (r1, r2, …) is found, it is checked whether min(ℜ(ai), ℜ(bi))
≤ ℜ(ri) ≤ max(ℜ(ai), ℜ(bi)) and min(ℑ(ai), ℑ(bi)) ≤ ℑ(ri) ≤ max(ℑ(ai), ℑ(bi)) is satisfied. If
the root is not inside the search range, the search is continued. Note that solutions
outside the search range may be found internally. These may be accessed with the option
MultiSolutions. See “Example 7” on page 19-117.

UnrestrictedSearch

Allows numeric::fsolve to find and return solutions outside the specified search
range. With this option, the search range is only used to choose random starting points
for the internal numerical search.

This option switches off the search strategy RestrictedSearch. With
UnrestrictedSearch, numeric::fsolve stops its internal search whenever a root
is found, even if the root is not inside the specified search range. Starting points for the
internal Newton search are taken from the search range.

MultiSolutions

Makes numeric::fsolve return all solutions found in the internal search

This option only has an effect when used with the default search strategy
RestrictedSearch. A sequence of all roots found in the internal search is returned. Cf.
“Example 7” on page 19-117.

Random

With this option, several calls to numeric::fsolve with the same input parameters
may produce different roots.

With this option, random starting values are chosen for the internal search.
Consequently, calling numeric::fsolve several times with the same parameters may
lead to different solutions. This may be useful when several roots of one and the same
equation or set of equations are desired.

Return Values

Single numerical root is returned as a list of equations [x = value] or [x1 = value1,
x2 = value2, …], respectively. FAIL is returned if no solution is found. With the option
MultiSolutions, sequences of solutions may be returned.
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Algorithms

Internally the set of equations f(x) = 0 is solved by a modified Newton iteration
 with some adaptively chosen step size t. For degenerate or ill-

conditioned Jacobians  a minimization strategy for  is implemented. For scalar
real equations, numeric::realroot is used, if a real finite search range is specified.

See Also

MuPAD Functions
linsolve | numeric::linsolve | numeric::polyroots |
numeric::polysysroots | numeric::realroot | numeric::realroots |
numeric::solve | polylib::realroots | solve

More About
• “Solve Equations Numerically”
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numeric::gaussAGM
Gauss' arithmetic geometric mean

Syntax

numeric::gaussAGM(a, b)

Description

numeric::gaussAGM(a, b) computes the arithmetic geometric mean of the numbers a
and b.

The iteration

with the starting values a0 = a, b0 = b converges quadratically to some value
. This limit is called Gauss' arithmetic geometric mean of the

starting values a, b.

If both arguments a and b can be converted to real or complex floating-point numbers,
then a floating point value is computed and returned. Otherwise, the symbolic call
numeric::gaussAGM(a, b) is returned.

If a = 0 or b = 0 or a + b = 0, then 0.0 is returned, even if a or b are symbolic objects.

The following relation to elliptic integrals holds for all complex values a and b:

numeric::gaussAGM

ellipticK
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a b

a b

a b
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Environment Interactions

The function is sensitive to the environment variable DIGITS.

Examples

Example 1

A floating-point number is returned if the arguments can be converted to floating-point
numbers:

numeric::gaussAGM(0, 5)

numeric::gaussAGM(sqrt(2), PI)

numeric::gaussAGM(-10, PI)

numeric::gaussAGM(1 + I, 1 + 2*I)

A symbolic call is returned if one of the arguments cannot be converted to a float:

numeric::gaussAGM(1, b)

For the special cases a = 0, b = 0 and a + b = 0, the result 0.0 is returned even for
symbolic arguments:
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numeric::gaussAGM(a, 0)

numeric::gaussAGM(a, -a)

Parameters

a, b

arithmetical expressions

Return Values

Floating point number or a symbolic call numeric::gaussAGM(a, b).

See Also

MuPAD Functions
ellipticK
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numeric::gldata

Weights and abscissae of Gauss-Legendre quadrature

Syntax

numeric::gldata(n, digits)

Description

numeric::gldata(n, digits) returns the weights and the abscissae of the Gauss-
Legendre quadrature rule with n nodes with a precision of digits decimal digits.

The Gauss-Legendre quadrature rule  produces the exact integral

 for all polynomial integrands f(x) through degree 2 n - 1. The weights bi and
abscissae ci are related to the roots of the n-th Legendre polynomial.

The weights and abscissae are computed by a straightforward numerical algorithm with
a working precision set by the argument digits. The resulting floating-point numbers
are correct to digits leading decimal places.

Typically, the argument digits is chosen as the current value of the environment
variable DIGITS.

The data for n = 20, 40, 80, 160 with digits <= 200 are stored internally. They are
returned immediately without any computational costs.

Due to the internal remember mechanism, only the first call to numeric::gldata leads
to computational costs. For any further call with the same arguments, the data are
returned immediately.

For odd n, the abscissa  and the corresponding weight  are rational

numbers.
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Environment Interactions

numeric::gldata is not sensitive to changes of the environment variable DIGITS,
because the numerical working precision is specified by the second argument digits.

The function uses option remember.

Examples

Example 1

The following call computes the Gauss-Legendre data with a precision given by the
current value of the environment variable DIGITS (the default value is DIGITS = 10):

[b, c] := numeric::gldata(4, DIGITS)

The Gauss-Legendre data with 4 nodes provide exact numerical quadrature results for
polynomials through degree 7:

f := x -> x^7:

int(f(x), x= 0..1) = _plus(b[i]*f(c[i]) $ i=1..4)

delete b, c, f:

Example 2

For odd n, exact rational data for  and  are returned. The other data are

computed as floating-point approximations:

DIGITS := 4: numeric::gldata(5, DIGITS)
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delete DIGITS:

Parameters

n

The number of nodes: a positive integer

digits

The number of decimal digits: a positive integer

Return Values

List [b, c] is returned. The lists b = [b1, …, bn] and c = [c1, …, cn] are
numerical approximations of the weights and abscissae with digits significant digits.

Algorithms

The numerical integrator numeric::quadrature calls numeric::gldata to provide
the data for Gaussian quadrature.

See Also

MuPAD Functions
numeric::gtdata | numeric::int | numeric::ncdata | numeric::quadrature
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numeric::gtdata

Weights and abscissae of Gauss-Tschebyscheff quadrature

Syntax

numeric::gtdata(n)

Description

numeric::gtdata(n) returns the weights and the abscissae of the Gauss-
Tschebyscheff quadrature rule with n nodes.

The Gauss-Tschebyscheff quadrature rule  produces the exact integral

 for all integrands of the form  with polynomials p(x) through

degree 2 n - 1.

The exact weights b = [b1, …, bn] and abscissae c = [c1, …, cn] are given by

.

Environment Interactions

numeric::gtdata is not sensitive to the environment variable DIGITS.

The function uses option remember.
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Examples

Example 1

The following call produces exact data for the quadrature rule with two nodes:

numeric::gtdata(2)

Parameters

n

The number of nodes: a positive integer

Return Values

List [b,c] is returned. The lists b = [b1, …, bn] and c = [c1, …, cn] are the exact
weights and abscissae of the Gauss-Tschebyscheff quadrature rule, respectively.

Algorithms

The numerical integrator numeric::quadrature calls numeric::gtdata to provide
the data for Gauss-Tschebyscheff quadrature.

See Also

MuPAD Functions
numeric::gldata | numeric::int | numeric::ncdata | numeric::quadrature
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numeric::indets
Search for indeterminates

Syntax
numeric::indets(object)

Description

numeric::indets(object) returns a set of the indeterminates contained in the
object.

This is an auxiliary routine used by numeric::polyroots, numeric::quadrature,
numeric::realroots, numeric::solve etc. to find indeterminates.

It recursively searches the operands of object for indeterminates. In particular, the
search is applied to the elements of lists, sets, arrays, tables, etc.

Following objects are regarded as indeterminates: identifiers, indexed identifiers and the
indeterminates of DOM_POLY objects. Also coefficients of such polynomials are searched
for indeterminates.

The following objects are not regarded as indeterminates: the numerical constants PI,
EULER, and CATALAN (cf. Type::ConstantIdents) and zero operands of expressions
and subexpressions (i.e., the function names in unevaluated function calls such as f(2),
sin(PI/13) etc.). Also integration variables in unevaluated calls of int, numeric::int
and numeric::quadrature and summation indices in unevaluated calls of sum and
numeric::sum are not considered.

Examples

Example 1

Identifiers and indexed identifiers are regarded as indeterminates:
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numeric::indets([{a + b*PI}, sin(c + sqrt(2) + EULER), 

                 table(1 = d - cos(e), 2 = f + 0.1*I),

                 array(1..2, [g, h]), F(i[2], i[2]), 

                 D([1], G)(j[1]), k[3 + L[4]]])

Both indeterminates as well as symbolic coefficients are considered in polynomials of
domain type DOM_POLY:

numeric::indets(poly(a[1]*x^2 + a[2]*x +a, [x, y]))

Example 2

The zero operands of unevaluated function calls such as f(…) or sin(…) are not
regarded as indeterminates:

numeric::indets(f(a + sin(b) + PI + EULER))

Integration variables and summation indices are not regarded as indeterminates:

numeric::indets({int(f(x), x = a..b), 

                 sum(f(i), i = c..infinity)})

Parameters

object

An arbitrary MuPAD object
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Return Values

Set of indeterminates is returned, if the argument is an object of some basic data type of
the kernel. The empty set is returned, if the object is from some library domain.

See Also

MuPAD Functions
freeIndets | indets
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numeric::int
Numerical integration (the Float attribute of Int )

Syntax
numeric::int(f(x), x = a .. b, options)

float(holdint(f(x), x = a .. b, options))

float(freezeint(f(x), x = a .. b, options))

Description

numeric::int(f(x), x = a..b) computes a numerical approximation of .

The calls numeric::int(...), float ( freeze(int)(...)), and float
( hold(int)(...)) are equivalent.

The calls numeric::int(...) and numeric::quadrature(...) are almost
equivalent: numeric::int calls numeric::quadrature. A numerical result produced
by numeric::quadrature is returned as is. Otherwise, hold(numeric::int)(...) is
returned.

See the help page of numeric::quadrature for details.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We demonstrate some equivalent calls for numerical integration:
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numeric::int(exp(x^2), x = -1..1),

float(hold(int)(exp(x^2), x = -1..1)),

float(freeze(int)(exp(x^2), x = -1..1)),

numeric::quadrature(exp(x^2), x = -1..1)

numeric::int(max(1/10, cos(PI*x)), x = -2..0.0123),

float(hold(int)(max(1/10, cos(PI*x)), x = -2..0.0123)),

float(freeze(int)(max(1/10, cos(PI*x)), x = -2..0.0123)),

numeric::quadrature(max(1/10, cos(PI*x)), x = -2..0.0123)

numeric::int(exp(-x^2), x = -2..infinity),

float(hold(int)(exp(-x^2), x = -2..infinity)),

float(freeze(int)(exp(-x^2), x = -2..infinity)),

numeric::quadrature(exp(-x^2), x = -2..infinity)

numeric::int(sin(x)/x, x = -1..10, GaussLegendre = 5),

float(hold(int)(sin(x)/x, x = -1..10, GaussLegendre = 5)),

float(freeze(int)(sin(x)/x, x = -1..10, GaussLegendre = 5)),

numeric::quadrature(sin(x)/x, x = -1..10, GaussLegendre = 5)

The calls numeric::int(...), float(hold(int)(...)), and
numeric::quadrature(...) are equivalent in multiple numerical integrations, too:

numeric::int(numeric::int(x*y, x = 0..y), y = 0..1),

numeric::int(numeric::quadrature(x*y, x = 0..y), y = 0..1),

float(freeze(int)(numeric::int(x*y, x = 0..y), y = 0..1)),

float(hold(int)(numeric::quadrature(x*y, x = 0..y), y = 0..1)),

numeric::quadrature(numeric::int(x*y, x = 0..y), y = 0..1),

numeric::quadrature(numeric::quadrature(x*y, x = 0..y), y = 0..1)
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Example 2

The following integral do not exist. Consequently, numerical integration runs into
problems:

numeric::quadrature(1/x, x = 0..infinity)

Warning: Precision goal is not achieved after 10000 function calls. Increase 'MaxCalls' and try again for a more accurate result. [numeric::quadrature]

Note that numeric::int handles errors produced by numeric::quadrature and
returns a symbolic call to numeric::int:

numeric::int(1/x, x = 0..infinity)

Parameters

f(x)

An arithmetical expression in x

x

An identifier or an indexed identifier

a, b

arithmetical expressions

Options

All options of numeric::quadrature can be used.
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Return Values

Floating point number or a symbolic call numeric::int(f(x), x = a..b) if the
integral cannot be evaluated numerically.

See Also

MuPAD Functions
int | numeric::quadrature

More About
• “Integration”
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numeric::inverse
Inverse of a matrix

Syntax
numeric::inverse(A, options)

Description

numeric::inverse(A) returns the inverse of the matrix A.

If no return type is specified via the option ReturnType = t, the domain type of the
inverse depends on the type of the input matrix A:

• The inverse of an array is returned as an array.
• The inverse of an hfarray is returned as an hfarray.
• The inverse of a dense matrix of type Dom::DenseMatrix() is a dense matrix of type

Dom::DenseMatrix() over the ring of MuPAD expressions.
• For all other matrices of category Cat::Matrix, the inverse is returned as a

matrix of type Dom::Matrix() over the ring of MuPAD expressions. This includes
input matrices A of type Dom::Matrix(...), Dom::SquareMatrix(...),
Dom::MatrixGroup(...) etc.

The option Symbolic should be used if the matrix contains symbolic objects that cannot
be converted to floating point numbers.

Without the option Symbolic, all entries of A must be numerical. Floating point
arithmetic is used, the working precision is set by the environment variable DIGITS.
Exact numerical expressions such as , sin(3) etc. are accepted and converted to
floats. If symbolic entries are found in the matrix, numeric::inverse automatically
switches to Symbolic, issuing a warning. This warning may be suppressed via the
option NoWarning.

Note: Invertibility of the matrix can only be safely detected with exact arithmetic, i.e.,
using the option Symbolic. See “Example 2” on page 19-139.
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Note: Matrices A of a matrix domain such as Dom::Matrix(..) or
Dom::SquareMatrix(..) are internally converted to arrays over expressions via
expr(A). Note that Symbolic should be used if the entries cannot be converted to
numerical expressions.

Note that 1/A must be used, when the inverse is to be computed over the component
domain. See “Example 3” on page 19-141.

We recommend to use numeric::linsolve or numeric::matlinsolve if a sparse
system of linear equations is to be solved. In particular, these routines are more efficient
than numeric::inverse for large sparse systems.

numeric::linsolve uses sparse input and output via symbolic equations and features
internal sparse arithmetic.

Alternatively, sparse matrices of domain type Dom::Matrix() may be used with
numeric::matlinsolve.

Environment Interactions
Without the option Symbolic, the function is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Examples

Example 1

Numerical matrices can be processed with or without the option Symbolic. In the
following, the inverses are returned as arrays because the input matrix is an array:

A := array(1..2, 1..2, [[1, 2], [3, PI]]):

numeric::inverse(A), numeric::inverse(A, Symbolic)
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Matrices of category Cat::Matrix are accepted. The inverse is returned as a
corresponding matrix:

A := Dom::Matrix()([[2, PI], [0, 1]]):

numeric::inverse(A); domtype(%)

delete A:

Example 2

The following matrix is not invertible:

A := linalg::hilbert(6):

A[6,6] := 5773/63504:

A

With exact arithmetic, numeric::inverse detects this fact:

numeric::det(A, Symbolic), numeric::inverse(A, Symbolic)

Due to internal round-off, the matrix is regarded as invertible if float arithmetic is used:
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numeric::det(A, HardwareFloats), numeric::inverse(A, HardwareFloats);

19-140



 numeric::inverse

With SoftwareFloats, the internal rounding is slightly different and the kernel of the
matrix is detected:

numeric::det(A, SoftwareFloats), numeric::inverse(A, SoftwareFloats)

delete A:

Example 3

The following matrix has domain components:

A := Dom::Matrix(Dom::IntegerMod(7))([[6, -1], [1, 6]])

Note that numeric::inverse computes the inverse of the following matrix:

expr(A), numeric::inverse(A)

The overloaded arithmetic should be used if the inverse is to be computed over the
component domain Dom::IntegerMod(7):

1/A

delete A:
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Example 4

The option Symbolic should not be used for float matrices because no internal pivoting
is used to stabilize the numerical algorithm:

A := matrix([[1.0/10^20, 1.0], [1.0, 1.0]]):

bad = numeric::inverse(A, Symbolic),

good = numeric::inverse(A)

delete A:

Example 5

We demonstrate the use of hardware floats. Hilbert matrices are notoriously ill-
conditioned and difficult to invert with low values of DIGITS. The following results, both
with HardwareFloats as well as with SoftwareFloats, are marred by numerical
round-off. Consequently, the inverses with and without hardware floats, respectively,
differ significantly:

A := linalg::hilbert(10):

DIGITS := 10:

B1 := numeric::inverse(A, HardwareFloats):

B2 := numeric::inverse(A, SoftwareFloats):

B1[8, 8] <> B2[8, 8]

norm(B1 - B2)

delete A, B1, B2:
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Parameters
A

A square matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category Cat::Matrix

Options
Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

19-143



19 numeric – Numerical Algorithms

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill-conditioned matrices, the result is subject to round-off errors. The results
returned with HardwareFloats and SoftwareFloats may differ! See “Example 2” on
page 19-139 and “Example 5” on page 19-142.

Symbolic

Prevents the conversion of the input data to floating-point numbers. Exact arithmetic is
used. This option overrides HardwareFloats and SoftwareFloats.

This option prevents conversion of the input data to floats. With this option, symbolic
entries are accepted.

Note: This option should not be used for floating-point matrices! No internal pivoting is
used, unless necessary. Consequently, numerical instabilities may occur in floating-point
operations. See “Example 4” on page 19-142.

NoWarning

Without the option Symbolic, numeric::inverse automatically switches to the
Symbolic mode with a warning if symbolic coefficients are found. With the option
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NoWarning, this warning is suppressed. Note, however, that numeric::inverse still
uses the symbolic mode for symbolic coefficients, i.e., exact arithmetic without floating-
point conversions is used.

ReturnType

Option, specified as ReturnType = t

Return the inverse as a matrix of domain type t. The following return types are
available: DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or Dom::DenseMatrix().

Return Values

Depending on the type of the input matrix A, the inverse is returned as a matrix of
domain type DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or Dom::DenseMatrix().
FAIL is returned if the inverse cannot be computed.

Algorithms

Gaussian elimination with partial pivoting is used. Partial pivoting is switched off by the
option Symbolic.

See Also

MuPAD Functions
linalg::matlinsolve | linsolve | numeric::linsolve |
numeric::matlinsolve | solve
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numeric::leastSquares

Least squares solution of linear equations

Syntax

numeric::leastSquares(A, B, <mode>, <method>, options)

Description

numeric::leastSquares(A, B) computes a matrix X that solves the linear matrix
equation A X = B in the least squares sense: the columns Xj of X minimize 

where the Bj are the columns of B.

For a given vector B, a vector X minimizes  if and only if X is a solution of

the “normal equations” AH A X = AH B, where AH is the Hermitian transpose of the m×n
matrix A. The solution is unique if rank(A) = n.

numeric::leastSquares allows to solve several least squares problems
simultaneously by combining several ‘right hand sides’ Bj columnwise to a matrix B.

If no return type is specified via the option ReturnType = d, the domain type of the
return data depends on the type of the input matrix A:

• The special solution X as well as the kernel of an array A are returned as arrays.
• The special solution and the kernel of an hfarray of domain type DOM_HFARRAY are

returned as hfarrays.
• For a dense matrix A of type Dom::DenseMatrix(), both the special solution X as

well as the kernel are returned as matrices of type Dom::DenseMatrix() over the
ring of MuPAD expressions.

• For all other matrices of category Cat::Matrix, both the special solution X as well
as the kernel are returned as matrices of type Dom::Matrix() over the ring of
MuPAD expressions. This includes input matrices A of type Dom::Matrix(...),
Dom::SquareMatrix(...), Dom::MatrixGroup(...) etc.
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Without Symbolic, the input data are converted to floating-point numbers. The matrix
A must not contain non-convertible parameters, unless Symbolic is used. If such objects
are found, numeric::leastSquares automatically switches to its symbolic mode,
issuing a warning. This warning may be suppressed via NoWarning.

Symbolic parameters in B are accepted without warning. However, HardwareFloats
cannot be used if there are any symbolic parameters in A or B.

If AH A has a non-trivial kernel, the least squares solution X is not unique. The return
value X is a special solution of the equation AH A X = AH B. With the SVD method, X is the
special solution with columns of minimal Euclidean length.

Note: The result computed with HardwareFloats may differ from the solution
computed with SoftwareFloats or Symbolic! In particular, this is the case for systems
with a non-trivial kernel. Further, the The results computed with QRD and SVD may
differ.

The kernel is computed only in the symbolic mode (option Symbolic). All floating-point
methods return the value NIL for the kernel.

With Symbolic, the n×d matrix KernelBasis is the most general solution of AH A X = 0.
Its columns span the d-dimensional kernel of AH A.

If the kernel is 0-dimensional, the return value of KernelBasis is the integer
0. If KernelBasis is returned as an array, the dimension d of the kernel is d =
op(KernelBasis, [0, 3, 2]]). If KernelBasis is returned as a matrix of type
Dom::Matrix() or Dom::DenseMatrix(), the dimension d of the kernel is d =
KernelBasis::dom::matdim(KernelBasis)[2].

Note: Without the option Symbolic, the implemented algorithms take care of numerical
stabilization.

With Symbolic, exact data are assumed. The least squares solutions is computed via
numeric::matlinsolve( A

H

 A, A
H

 B , Symbolic). The symbolic strategy tries do
maximize speed and does not take care of numerical stabilization! Do not use Symbolic
for systems involving floating-point entries! In particluar, due to round-off, it may
happen that no solution of AH A X = AH B is found. In such a case, [FAIL, NIL, NIL] is
returned. Cf. “Example 4” on page 19-151.
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All entries of A and B must be arithmetical expressions.

Note: Apart from matrices of type Dom::Matrix(...), Cat::Matrix objects A from
matrix domains such as Dom::DenseMatrix(...) or Dom::SquareMatrix(...)
are internally converted to arrays over expressions via expr(A). Note that the option
Symbolic should be used if the entries cannot be converted to numerical expressions.

The same holds true for matrices B passed as Cat::Matrix objects.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We consider a matrix A of rank 1:

A := array(1..3, 1..2, [[1, 2], [1, 2], [1, 2]]):

B := [3, 4, 5]:

The normal equations have a 1-parameter set of of solutions:

[X, KernelBasis, Res] := numeric::leastSquares(A, B, Symbolic)

The numerical method QRD produces a special solution:

[X, KernelBasis, Res] := numeric::leastSquares(A, B, QRD)
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The numerical method SVD produces a solution X of minimal norm:

[X, KernelBasis, Res] := numeric::leastSquares(A, B, SVD)

delete A, B, X, KernelBasis, Res:

Example 2

We consider an ill-conditioned least squares problem. By construction, the following
overdetermined system has an exact solution X = [1, 2, …, n]:

m := 10: n := 8:

A := array(1..m, 1..n, [[1/(i + j + 100) $ j=1..n] $ i=1..m]):

B := array(1..m, [_plus(A[i,j]*j $ j=1..n) $ i=1..m]):

numeric::leastSquares(A, B, Symbolic)

The coefficient matrix A is rather ill-conditioned:

singvals := numeric::singularvalues(A): 

conditionOfA := max(op(singvals))/min(op(singvals))

Consequently, round-off has a drastic effect in a numerical approximation. The methods
yield results of different quality:

numeric::leastSquares(A, B, QRD)
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numeric::leastSquares(A, B, SVD)

delete m, n, A, B, singvals, conditionOfA:

Example 3

This example involves a symbolic parameter c in the matrix A. The option Symbolic
must be used:

A:= matrix([[c, 2], [1/3, 2/3], [1/7, 2/7]]):

B:= [1, 2, 3]:

numeric::leastSquares(A, B, Symbolic)
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normal(%)

delete A, B:

Example 4

Floating point entries may cause problems in conjunction with the option Symbolic,
because the computation is not stabilized numerically in the symbolic node. The following
matrix A has rank 2:

A := matrix([[1, 30], [10.0^(-15), 31*10.0^(-15)]]):

However, due to round-off, the ‘normal matrix’ AH A has rank 1. No solution is found with
Symbolic:

A::dom::transpose(A) * A

numeric::leastSquares(A, [31, 32*10^5], Symbolic)

No such problem arises in the numerical schemes. Note, however, that the numerical
methods yield different results in this extremely ill-conditioned problem:

numeric::leastSquares(A, [31, 32*10^5], QRD)
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numeric::leastSquares(A, [31, 32*10^5], SVD)

delete A:

Parameters

A

An m×n matrix of domain type DOM_ARRAY or of category Cat::Matrix

B

An m×p matrix of domain type DOM_ARRAY or of category Cat::Matrix. Column vectors
B may also be represented by a 1-dimensional array(1..m, [B1, B2, …] ) or by a list
[B1, B2, …].

mode

One of the flags Hard, HardwareFloats, Soft, SoftwareFloats, or Symbolic

method

One of the flags QRD, SVD

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
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SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

19-153



19 numeric – Numerical Algorithms

Symbolic

Prevents the conversion of the input data to floating-point numbers. Exact arithmetic is
used. This option overrides HardwareFloats and SoftwareFloats.

This option must be used, if the matrix A contains symbolic parameters that cannot be
converted to floating-point numbers.

The normal equations AH A X = AH B are passed to numeric::matlinsolve with the
option Symbolic.

If the least squares problem does not have a unique solution, a special solution X is
returned together with the kernel of AH A. Cf. “Example 1” on page 19-148.

Note: This option should not be used for systems with floating-point coefficients!
Numerical instabilities may occur in floating-point operations. Further, if the rank of
A is not maximal, then numeric::leastSquares may fail to find a solution due to
numerical round-off. In such a case, [FAIL, NIL, NIL] is returned. Cf. “Example 4” on
page 19-151.

QRD

Use a QR decomposition. All entries of A must be convertible to floating-point values.

This is the default method.

The matrix A must not contain symbolic parameters that cannot be converted to floating
point numbers. If such objects are found, then numeric::leastSquares automatically
switches to its Symbolic mode, issuing a warning. The computation proceeds with exact
arithmetic, using the input data without floating-point conversions.

The warning may be suppressed by the option NoWarning.

Symbolic parameters in B are accepted without warning. They are processed by the
floating-point algorithm.

Numerical expressions such as  etc. are accepted and converted to floats.

If the least squares problem does not have a unique solution, only a special solution is
returned. The kernel is not computed: it is returned as NIL.
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The method QRD provides a numerically stable way of solving the normal equations
AH A X = AH B by a QR decomposition. In extremely ill-conditioned situations, it may be
worthwhile to consider the slower, yet more stable method SVD.

The conditioning is given by the ratio of the largest singular value of A divided by the
smallest singular value of A. If this value is large, the problem is ill-conditioned.

Cf. “Example 2” on page 19-149.

SVD

Use a singular value decomposition. All entries of A must be convertible to floating-point
values.

The matrix A must not contain symbolic parameters that cannot be converted to floating
point numbers. If such objects are found, then numeric::leastSquares automatically
switches to its symbolic mode, issuing a warning. The computation proceeds with exact
arithmetic, using the input data without floating point conversions.

The warning may be suppressed by the option NoWarning.

Symbolic parameters in B are accepted without warning. They are processed by the
floating-point algorithm.

Numerical expressions such as  etc. are accepted and converted to floats.

If the least squares problem does not have a unique solution, the columns Xj of the
solution X have a minimal Euclidean length .

The kernel is not computed: it is returned as NIL.

A singular value decomposition A = U D VH is used to solve the normal equations in the
form D2 VH X = D UH B. For small or zero singular values dj in D = diag(d1, d2, …), the
corresponding components of VH x are set to zero.

Usually, the numerical method SVD is slower than the default method QRD. However, in
ill-conditioned situations, it is numerically more stable.

The conditioning is given by the ratio of the largest singular value of A divided by the
smallest singular value of A. If this value is large, the problem is ill-conditioned.
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NoWarning

Suppresses warnings

If symbolic coefficients are found in A, numeric::leastSquares automatically switches
to the Symbolic mode with a warning. With this option, this warning is suppressed.

ReturnType

Option, specified as ReturnType = d

Return the (special) solution and the kernel as matrices of domain type d. The following
return types d are available: DOM_ARRAY, or DOM_HFARRAY, Dom::Matrix(), or
Dom::DenseMatrix().

Return Values

A list [X, KernelBasis, Residues] is returned.

The (special) least squares solution X is an n×p matrix.

With Symbolic, KernelBasis is an n×d matrix (d is the dimension of the kernel of
AH A). Its columns span the kernel of AH A. If the kernel is trivial, KernelBasis is the
integer 0.

Without Symbolic, the kernel is not computed. The value NIL is returned for the
KernelBasis.

The list of arithmetical expressions Residues consists of the minimized least squares
deviations  corresponding to the columns of X and B.

See Also

MuPAD Functions
numeric::factorQR | numeric::linsolve | numeric::matlinsolve |
numeric::singularvalues | numeric::singularvectors
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numeric::linsolve

Solve a system of linear equations

Syntax

numeric::linsolve(eqs, <vars>, options)

Description

numeric::linsolve(eqs, vars) solves a system of linear equations eqs for the
unknowns vars.

numeric::linsolve is a fast numerical linear solver. It is also a recommended solver
for linear systems with exact or symbolic coefficients (using Symbolic).

Expressions are interpreted as homogeneous equations. E.g., the input [x = y - 1, x
- y] is interpreted as the system of equations [x = y - 1, x - y = 0].

Note: Without the option Symbolic, the input data are converted to floating-point
numbers. The coefficient matrix A of the system A x = b represented by eqs must
not contain non-convertible parameters, unless the option Symbolic is used! If such
objects are found, then numeric::linsolve automatically switches to its symbolic
mode, issuing a warning. This warning may be suppressed via NoWarning. Symbolic
parameters in the “right hand side” b are accepted without warning.

The numerical working precision is set by the environment variable DIGITS.

The solutions are returned as a list of solved equations of the form

,

where x1, x2, … are the unknowns. These simplified equations should be regarded as
constraints on the unknowns. E.g., if an unknown x1, say, does not turn up in the form [x1
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= …, …] in the solution, then there is no constraint on this unknown; it is an arbitrary
parameter. Generally, all unknowns that do not turn up on the left hand side of the
solved equations are arbitrary parameters spanning the solution space. Cf. “Example 9”
on page 19-166.

In particular, if the empty list is returned as the solution, there are no constraints
whatsoever on the unknowns, i.e., the system is trivial.

The ordering of the solved equations corresponds to the ordering of the unknowns vars.
It is recommended that the user specifies vars by a a list of unknowns. This guarantees
that the solved equations are returned in the expected order. If vars are specified by a
set, or if no vars are specified at all, then an internal ordering is used.

If no unknowns are specified by vars, numeric::linsolve solves for all symbolic
objects in eqs. The unknowns are determined internally by indets(eqs, PolyExpr).

numeric::linsolve returns the general solution of the system eqs. It is valid for
arbitrary complex values of the symbolic parameters which may be present in eqs. If no
such solution exists, FAIL is returned. Solutions that are valid only for special values
of the symbolic parameters may be obtained with the option ShowAssumptions. See
“Example 2” on page 19-160, “Example 3” on page 19-161, “Example 4” on page
19-161, and “Example 11” on page 19-168.

The solved equations representing the solution are suitable as input for assign and
subs. See “Example 8” on page 19-165.

numeric::linsolve is suitable for solving large sparse systems. See “Example 6” on
page 19-163.

If eqs represents a system with a banded coefficient matrix, then this is detected and
used by numeric::linsolve. Note that in this case, it is important to specify both
the equations as well as the unknowns by lists to guarantee the desired form of the
coefficient matrix. When using sets, the data may be reordered internally leading
to a loss of band structure and, consequently, of efficiency. See “Example 6” on page
19-163.

Note: numeric::linsolve is tuned for speed. For this reason, it does not check
systematically that the equations eqs are indeed linear in the unknowns! For non-linear
equations, strange things may happen; numeric::linsolve might even return wrong
results! See “Example 5” on page 19-162.
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Note: numeric::linsolve does not react to any properties of the unknowns or of
symbolic parameters that are set via assume.

Note: Gaussian elimination with partial pivoting is used. Without the option Symbolic,
floating-point arithmetic is used and the pivoting strategy takes care of numerical
stabilization. With Symbolic, exact data are assumed and the pivoting strategy tries
do maximize speed, not taking care of numerical stabilization! See “Example 7” on page
19-165.

Environment Interactions

Without the option Symbolic, the function is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Examples

Example 1

Equations and variables may be entered as sets or lists:

numeric::linsolve({x = y - 1, x + y = z}, {x, y});

numeric::linsolve([x = y - 1, x + y = z], {x, y});

numeric::linsolve({x = y - 1, x + y = z}, [x, y]);

numeric::linsolve([x = y - 1, x + y = z], [x, y])
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With the option Symbolic, exact arithmetic is used. The following system has a 1-
parameter set of solution; the unknown x3 is arbitrary:

numeric::linsolve([x[1] + x[2] = 2, x[1] - x[2] = 2*x[3]],

                  [x[1], x[2], x[3]], Symbolic)

The unknowns may be expressions:

numeric::linsolve([f(0) - sin(x + 1) = 2, f(0) = 1 - sin(x + 1)],

                  [f(0), sin(x + 1)])

The following system does not have a solution:

numeric::linsolve([x + y = 1, x + y = 2], [x, y])

Example 2

We demonstrate some examples with symbolic coefficients. Note that the option
Symbolic has to be used:

eqs := [x + a*y = b, x + A*y = b]:

numeric::linsolve(eqs, [x, y], Symbolic)

Note that for a = A, this is not the general solution. Using the option ShowAssumptions,
it turns out that the above result is the general solution subject to the assumption a ≠ A:

numeric::linsolve(eqs, [x, y], Symbolic, ShowAssumptions)
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delete eqs:

Example 3

We give a further demonstration of the option ShowAssumptions. The following system
does not have a solution for all values of the parameter a:

numeric::linsolve([x + y = 1, x + y = a], [x, y], Symbolic)

With ShowAssumptions, numeric::linsolve investigates under which conditions (on
the parameter a) there is a solution:

numeric::linsolve([x + y = 1, x + y = a], [x, y], Symbolic,

                  ShowAssumptions)

We conclude that there is a 1-parameter set of solutions for a = 1. The constraint in a is
a linear equation, since the parameter a enters the equations linearly. If a is regarded as
an unknown rather than as a parameter, the constraint becomes part of the solution:

numeric::linsolve([x + y = 1, x + y = a], [x, y, a], Symbolic,

                  ShowAssumptions)

Example 4

With exact arithmetic, PI is regarded as a symbolic parameter. The following system has
a solution subject to the constraint PI = 1:

numeric::linsolve([x = x - y + 1, y = PI], [x, y],
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                  Symbolic, ShowAssumptions)

With floating-point arithmetic, PI is converted to 3.1415.... The system has no
solution:

numeric::linsolve([x = x - y + 1, y = PI], [x, y], 

                  ShowAssumptions)

Example 5

Since numeric::linsolve does not do a systematic internal check for non-linearities,
the user should make sure that the equations to be solved are indeed linear in the
unknowns. Otherwise, strange things may happen. Garbage is produced for the following
non-linear systems:

a := sin(x):

numeric::linsolve([y = 1 - a, x = y], [x, y], Symbolic)

numeric::linsolve([a*x + y = 1, x = y], [x, y], Symbolic)

Polynomial non-linearities are usually detected. Regarding x, y, c as unknowns, the
following quadratic system yields an error:

numeric::linsolve([x*c + y = 1, x = y], Symbolic)
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Error: This system does not seem to be linear. [numeric::linsolve]

 Error:

This system does not seem to be linear. [numeric::linsolve] 

This system is linear in x, y if c is regarded as a parameter:

numeric::linsolve([x*c + y = 1, x = y], [x, y], Symbolic)

delete a:

Example 6

We solve a large sparse system. The coefficient matrix has only 3 diagonal bands. Note
that both the equations as well as the variables are passed as lists. This guarantees that
the band structure is not lost internally:

n := 500: x[0] := 0: x[n + 1] := 0:

eqs := [x[i-1] - 2*x[i] + x[i+1] = 1 $ i = 1..n]:

vars := [x[i] $ i = 1..n]:

numeric::linsolve(eqs, vars)

The band structure is lost if the equations or the unknowns are specified by sets. The
following call takes more time than the previous call:

numeric::linsolve({op(eqs)}, {x[i] $ i = 1..n})
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delete n, x, eqs, vars:

Example 7

The option Symbolic should not be used for equations with floating-point coefficients,
because the symbolic pivoting strategy favors efficiency instead of numerical stability.

eqs := [x + 10^20*y = 10^20, x + y = 0]:

The float approximation of the exact solution is:

map(numeric::linsolve(eqs, [x, y], Symbolic), map, float)

We now convert the exact coefficients to floating-point numbers:

feqs := map(eqs, map, float)

The default pivoting strategy stabilizes floating-point operations. Consequently, one gets
a correct result:

numeric::linsolve(feqs, [x, y])

With Symbolic, the pivoting strategy optimizes speed, assuming exact arithmetic.
Numerical instabilities may occur if floating-point coefficients are involved. The following
incorrect result is caused by internal round-off effects (“cancellation”):

numeric::linsolve(feqs, [x, y], Symbolic)

delete eqs, feqs:

Example 8

We demonstrate that the simplified equations representing the solution can be used for
further processing with subs:
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eqs := [x + y = 1, x + y = a]:

[Solution, Constraints, Pivots] := 

  numeric::linsolve(eqs, [x, y], ShowAssumptions)

subs(eqs, Solution)

The solution can be assigned to the unknowns via assign:

assign(Solution):

x, y, eqs

delete eqs, Solution, Constraints, Pivots, x:

Example 9

If the solution of the linear system is not unique, then some of the unknowns are used as
“free parameters” spanning the solution space. In the following example, the unknowns
z, w are such parameters. They do not turn up on the left hand side of the solved
equations:

eqs := [x + y = z, x + 2*y = 0, 2*x - z = -3*y, y + z = 0]:

vars := [x, y, z, w]:

Solution := numeric::linsolve(eqs, vars, Symbolic)

You may define a function such as the following NewSolutionList to rename your
free parameters to “myName1”, “myName2” etc. and fill up your list of solved equations
accordingly:

NewSolutionList := 

proc(Solution : DOM_LIST, vars : DOM_LIST, myName : DOM_STRING)

local i, solvedVars, newEquation;

begin

  solvedVars := map(Solution, op, 1);
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  for i from 1 to nops(vars) do

     if not has(solvedVars, vars[i]) then

        newEquation := vars[i] = genident(myName);

        Solution := listlib::insertAt(

            subs(Solution, newEquation), newEquation, i) 

     end_if 

  end_for:

  Solution

end_proc:

NewSolutionList(Solution, vars, "FreeParameter")

delete eqs, vars, Solution, NewSolutionList:

Example 10

We demonstrate the difference between hardware and software arithmetic. The following
problem is very ill-conditioned. The results, both with HardwareFloats as well as with
SoftwareFloats, are marred by numerical round-off:

n:= 10:

eqs:= [(_plus(x[j]/(i + j -1) $ j = 1..n) = 1) $ i = 1..n]:

vars:= [x[i] $ i = 1..n]:

numeric::linsolve(eqs, vars, SoftwareFloats);

numeric::linsolve(eqs, vars, HardwareFloats)
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This is the exact solution:

numeric::linsolve(eqs, vars, Symbolic);

delete eqs, vars:

Example 11

We demonstrate how a complete solution of the following linear system in x, y with
symbolic parameters a, b, c, d may be found:

eqs := [x + y = d, a*x + b*y = 1, x + c*y = 1]:

numeric::linsolve(eqs, [x, y], Symbolic, ShowAssumptions)

This is the general solution, assuming a ≠ b. We now set b = a to investigate further
solution branches:

eqs := subs(eqs, b = a):

numeric::linsolve(eqs, [x, y], Symbolic, ShowAssumptions)

This is the general solution for a = b, assuming c ≠ 1. We finally set c = 1 to obtain the
last solution branch:

eqs := subs(eqs, c = 1):

numeric::linsolve(eqs, [x, y], Symbolic, ShowAssumptions)

From the constraints on the symbolic parameters a and d, we conclude that there is a
special 1-parameter solution x = 1 - y for a = b = c = d = 1.
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delete eqs:

Parameters

eqs

A list, set, array, or matrix (Cat::Matrix) of linear equations or arithmetical
expressions

vars

A list or set of unknowns to solve for. Unknowns may be identifiers or indexed identifiers
or arithmetical expressions.

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.
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If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill-conditioned systems, the result is subject to round-off errors. The results
returned with HardwareFloats and SoftwareFloats may differ significantly!
See“Example 10” on page 19-167.

Symbolic

Prevents conversion of input data to floating-point numbers. This option overrides
HardwareFloats and SoftwareFloats.

This option must be used if the coefficients of the equations contain symbolic parameters
that cannot be converted to floating-point numbers.
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Note: This option should not be used for equations with floating-point coefficients!
Numerical instabilities may occur in floating-point operations. See “Example 7” on page
19-165.

ShowAssumptions

Returns information on internal assumptions on symbolic parameters in eqs.

This option is only useful if the equations contain symbolic parameters. Consequently, it
should only be used in conjunction with the option Symbolic.

Note: The format of the return value is changed to [Solution, Constraints,
Pivots].

Solution is a set of simplified equations representing the general solution subject to
Constraints and Pivots.

Constraints is a list of equations for symbolic parameters in eqs, which are necessary
and sufficient to make the system solvable.

Such constraints arise if Gaussian elimination of the original equations leads to
equations of the form 0 = c, where c is some expression involving symbolic parameters
in the “right hand side” of the system. All such equations are collected in Constraints.
numeric::linsolve assumes that these equations are satisfied and returns a solution.

If no such constraints arise, the return value of Constraints is the empty list.

Pivots is a list of inequalities involving symbolic parameters in the coefficient matrix
A of the linear system A x = b represented by eqs. Internally, division by pivot elements
occurs in the Gaussian elimination. The expressions collected in Pivots are the
numerators of the pivot elements that contain symbolic parameters. If only numerical
pivot elements were used, the return value of Pivots is the empty list.

Note: The option ShowAssumptions changes the return strategy for “unsolvable”
systems. Without the option Symbolic, FAIL is returned whenever Gaussian
elimination produces an equation 0 = c with non-zero c. With ShowAssumptions, such
equations are returned via Constraints, provided c involves symbolic parameters.
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If c is a purely numerical value, then [FAIL, [], []] is returned.

See  “Example 2” on page 19-160, “Example 3” on page 19-161, “Example 4” on page
19-161, and “Example 11” on page 19-168.

NoWarning

Suppresses warnings

If symbolic coefficients are found, numeric::linsolve automatically switches to
the Symbolic mode with a warning. With this option, this warning is suppressed;
numeric::linsolve still uses the symbolic mode for symbolic coefficients, i.e., exact
arithmetic without floating-point conversions is used.

Return Values

Without the option ShowAssumptions, a list of simplified equations is returned. It
represents the general solution of the system eqs. FAIL is returned if the system is not
solvable.

With ShowAssumptions, a list [Solution, Constraints, Pivots] is returned.
Solution is a list of simplified equations representing the general solution of eqs. The
lists Constraints and Pivots contain equations and inequalities involving symbolic
parameters in eqs. Internally, these were assumed to hold true when solving the system.

[FAIL, [], []] is returned if the system is not solvable.

See Also

MuPAD Functions
isolate | linalg::matlinsolve | linsolve | numeric::fsolve |
numeric::inverse | numeric::matlinsolve | numeric::polyroots |
numeric::polysysroots | numeric::realroots | polylib::realroots | solve
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numeric::matlinsolve
Solve a linear matrix equation

Syntax
numeric::matlinsolve(A, B, options)

Description

numeric::matlinsolve(A, B) returns the matrix solution X of the matrix equation
A X = B together with the kernel of the matrix A.

numeric::matlinsolve is a fast numerical linear solver for both sparse and dense
systems. It is also a recommended solver for linear systems with exact or symbolic
coefficients (use option Symbolic).

If no return type is specified via the option ReturnType = d, the domain type of the
return data depends on the type of the input matrix A:

• The special solution X as well as the kernel of an array A are returned as arrays.
• The special solution X as well as the kernel of an hfarray A are returned as hfarrays.
• For a dense matrixA of type Dom::DenseMatrix(), both the special solution X as

well as the kernel of A are returned as matrices of type Dom::DenseMatrix() over
the ring of MuPAD expressions.

• For all other matrices of category Cat::Matrix, both the special solution X as well
as the kernel of A are returned as matrices of type Dom::Matrix() over the ring of
MuPAD expressions. This includes input matrices A of type Dom::Matrix(...),
Dom::SquareMatrix(...), Dom::MatrixGroup(...) etc.

Without Symbolic, exact numerical input data such as PI + sqrt(2), sin(3) etc.
are converted to floating-point numbers. Floating point arithmetic is used. Its precision
is given the environment variable DIGITS. If symbolic data are found that cannot be
converted to floating-point numbers, numeric::matlinsolve automatically switches to
its symbolic mode, issuing a warning. This warning may be suppressed via NoWarning.

With Symbolic, symbolic parameters in the coefficient matrix A as well as in the right
hand side B are accepted and processed without a warning.
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With SofwareFloats, the right hand side B may contain symbolic parameters that
cannot be converted to floating-point numbers. All entries of the coefficient matrix A,
however, must be convertible to floating-point numbers.

With HardwareFloats, neither A nor B must contain symbolic parameters that cannot
be converted to floating-point numbers.

X is a special solution of the equation A X = B. If A has a non-trivial kernel, the solution X
is not unique.

Note: The result computed with HardwareFloats may differ from the solution
computed with SoftwareFloats or Symbolic! In particular, this is the case for systems
with a non-trivial kernel.

Cf. “Example 9” on page 19-182.

The n×d matrix KernelBasis is the most general solution of A X = 0. Its columns span
the d-dimensional kernel of A.

Thus, the kernel of A may be computed via numeric::matlinsolve(A, [0, ...,
0])[2].

If the kernel is 0-dimensional, the return value of KernelBasis is the integer
0. If KernelBasis is returned as an array, the dimension d of the kernel is d =
op(KernelBasis, [0, 3, 2]]). If KernelBasis is returned as a matrix of type
Dom::Matrix() or Dom::DenseMatrix(), the dimension d of the kernel is d =
KernelBasis::dom::matdim(KernelBasis)[2].

Note: Due to round-off errors, some or all basis vectors in the kernel of A may be missed
in the numerical modes.

The special solution X in conjunction with KernelBasis provides the general solution
of A X = B. Solutions generated without the option ShowAssumptions are valid for
arbitrary complex values of the symbolic parameters which may be present in A and B. If
no such solution exists, then [FAIL,NIL] is returned. Solutions that are valid only for
special values of the symbolic parameters may be obtained with ShowAssumptions. See
“Example 3” on page 19-177, “Example 4” on page 19-178, and “Example 7” on page
19-180.
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numeric::matlinsolve internally uses a sparse representation of the matrices. It is
suitable for solving large sparse systems. See “Example 5” on page 19-178.

Note: numeric::matlinsolve does not react to any assumptions on symbolic
parameters in A,B that are set via assume.

Note: Gaussian elimination with partial pivoting is used. Without the option Symbolic,
the pivoting strategy takes care of numerical stabilization. With Symbolic, exact data
are assumed. The symbolic pivoting strategy tries do maximize speed and does not
take care of numerical stabilization! Do not use Symbolic for linear systems involving
floating-point entries! See “Example 6” on page 19-179.

Note: Apart from matrices of type Dom::Matrix(...), Cat::Matrix objects A from
matrix domains such as Dom::DenseMatrix(...) or Dom::SquareMatrix(...)
are internally converted to arrays over expressions via expr(A). Note that the option
Symbolic should be used if the entries cannot be converted to numerical expressions.

Note that linalg::matlinsolve must be used, when the solution is to be computed
over the component domain. See . “Example 8” on page 19-181.

Environment Interactions

Without the option Symbolic, the function is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Examples

Example 1

We use equivalent input formats (B1, B2) to represent a vector with components [a, π].
First, this vector is defined as a 2-dimensional array:

A := array(1..2, 1..3, [[1, 2, 3],[1, 1, 2]]):

B1 := array(1..2, 1..1, [[a], [PI]]):
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numeric::matlinsolve(A, B1)

Next, we use a 1-dimensional array and compute an exact solution:

B2 := array(1..2, [a, PI]):

numeric::matlinsolve(A, B2, Symbolic)

Now, a list is used to specify the vector. No internal assumptions were used by
numeric::matlinsolve to obtain the solution:

B3 := [a, PI]:

numeric::matlinsolve(A, B3, ShowAssumptions)

Finally, we use Dom::Matrix objects to specify the system. Note that the results are
returned as corresponding matrix objects:

A := matrix([[1, 2, 3],[1, 1, 2]]):

B4 := matrix([a, PI]):

numeric::matlinsolve(A, B4)
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delete A, B1, B2, B3, B4:

Example 2

We invert a matrix by solving A X = 1:

A := hfarray(1..3, 1..3, [[1, 1, 0], [0, 1, 1], [0, 0, 1]]):

B := matrix::identity(3, 3):

InverseOfA := numeric::matlinsolve(A, B, Symbolic)[1]

delete A, B, InverseOfA:

Example 3

We solve an equation with a symbolic parameter x:

A := matrix([[2, 2, 3], [1, 1, 2], [3, 3, 5]]):

B := matrix([sin(x)^2, cos(x)^2, 0]):

[X, Kernel, Constraints, Pivots] :=

 numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

This solution holds subject to the constraint sin(x)2 + cos(x)2 = 0 on the parameter x.
numeric::matlinsolve does not investigate the Constraints and does not realize
that they cannot be satisfied. We check the consistency of the “result” by inserting the
solution into the original system. Since the input matrix A was of type Dom::Matrix(),
the results X and Kernel were returned as corresponding matrices. The overloaded
operators * and - for matrix multiplication and subtraction can be used:

A*X - B, A*Kernel
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delete A, B, X, Kernel, Constraints, Pivots:

Example 4

We give a further demonstration of the option ShowAssumptions. The following system
does not have a solution for all values of the parameter a:

A := array(1..2, 1..2, [[1, 1], [1, 1]]):

B := array(1..2, 1..1, [[1], [a]]):

numeric::matlinsolve(A, B, Symbolic)

With ShowAssumptions, numeric::matlinsolve investigates under which conditions
(on the parameter a a) there is a solution:

numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

We conclude that there is a 1-dimensional solution space for a = 1.

delete A, B:

Example 5

We solve a sparse system with 3 diagonal bands:

n := 100: 

A := matrix(n, n, [1, -2, 1], Banded):

B := array(1..n, [1 $ n]): 
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numeric::matlinsolve(A, B)

delete n, A, B:

Example 6

The option Symbolic should not be used for equations with floating-point coefficients,
because the symbolic pivoting strategy favors efficiency instead of numerical stability.

A := array(1..2, 1..2, [[1, 10^20], [1, 1]]):

B := array(1..2, 1..1, [[10^20], [0]]):

The float approximation of the exact solution is:

map(numeric::matlinsolve(A, B, Symbolic)[1], float)

We now convert the exact input data to floating-point approximations:

A := map(A, float): B := map(B, float):

The default pivoting strategy of the floating-point algorithm stabilizes floating-point
operations. Consequently, one gets a correct result:

numeric::matlinsolve(A, B)[1]
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With the option Symbolic, however, the pivoting strategy optimizes speed, assuming
exact arithmetic. Numerical instabilities may occur if floating-point coefficients are
involved. The following result is caused by internal round-off effects (“cancellation”):

numeric::matlinsolve(A, B, Symbolic)[1]

We need to increase DIGITS to obtain a better result:

DIGITS := 20:

numeric::matlinsolve(A, B, Symbolic)[1]

delete A, B, DIGITS:

Example 7

We demonstrate how a complete solution of the following linear system with symbolic
parameters may be found:

A := array(1..3, 1..2, [[1, 1], [a, b], [1, c]]):

B := array(1..3, 1..1, [[1], [1], [1]]):

numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

This is the general solution assuming a ≠ b. We now set b = a to investigate further
solution branches:

A := subs(A, b = a):

numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)
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This is the general solution for a = b, assuming c ≠ 1. We finally set c = 1 to obtain the
last solution branch:

A := subs(A, c = 1):

numeric::matlinsolve(A, B, Symbolic, ShowAssumptions)

From the constraint on a, we conclude that there is a 1-dimensional solution space for the
special values a = b = c = 1 of the symbolic parameters.

delete A, B:

Example 8

Matrices from a domain such as Dom::Matrix(...) are converted to arrays with
numbers or expressions. Hence, numeric::matlinsolve finds no solution for the
following system:

M := Dom::Matrix(Dom::IntegerMod(7)):

A := M([[1, 4], [6, 3], [3, 2]]): 

B := M([[9], [5], [0]]):

numeric::matlinsolve(A, B)

Use linalg::matlinsolve to solve the system over the coefficient field of the matrices.
A solution does exist over the field Dom::IntegerMod(7):

linalg::matlinsolve(A, B)
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delete M, A, B:

Example 9

We demonstrate the difference between Symbolic, HardwareFloats, and
SoftwareFloats. The following matrix A has a 1-dimensional kernel. Due to round-
off, a further spurious kernel vector appears with SoftwareFloats. No kernel vector is
detected with HardwareFloats:

A := matrix([[2*10^14 + 2, 2*10^(-9), 2*10^(-4)], 

             [3*10^15 + 3, 3*10^(-8), 3*10^(-3)],

             [4*10^16 + 4, 4*10^(-7), 4*10^(-2)]

            ]): 

b := matrix([2*10^(-9), 3*10^(-8), 4*10^(-7)]):

float(numeric::matlinsolve(A, b, Symbolic));

numeric::matlinsolve(A, b, SoftwareFloats);

numeric::matlinsolve(A, b, HardwareFloats)

delete A, b:

Parameters

A

An m×n matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category Cat::Matrix
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B

An m×p matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category Cat::Matrix.
Column vectors B may also be represented by a 1-dimensional array(1..m, [B1, B2,
…] ), a 1-dimensional hfarray(1..m, [B1, B2, …] ), or by a list [B1, B2, …].

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.
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There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill-conditioned matrices, the results returned with HardwareFloats and
SoftwareFloats may differ significantly! See “Example 9” on page 19-182.

Symbolic

Prevents the conversion of the input data to floating-point numbers. Exact arithmetic is
used. This option overrides HardwareFloats and SoftwareFloats.

This option must be used if the matrix A contains symbolic parameters that cannot be
converted to floating-point numbers.

Note: This option should not be used for matrices with floating-point entries! Numerical
instabilities may occur in floating-point operations. Cf. “Example 6” on page 19-179.

ShowAssumptions

Returns information on internal assumptions on symbolic parameters in A and B. With
this option, either exact arithmetic or SoftwareFloats are used.
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This option is only useful if the matrices contain symbolic parameters. Consequently, it
should only be used in conjunction with the option Symbolic.

Note: This option changes the format of the return value to [X, KernelBasis,
Constraints, Pivots].

X and KernelBasis represent the general solution subject to Constraints and
Pivots.

Constraints is a list of equations for symbolic parameters in B which are necessary and
sufficient for A X = B to be solvable.

Such constraints arise if Gaussian elimination leads to equations of the form 0 = c, where
c is some expression involving symbolic parameters contained in B. All such equations
are collected in Constraints; numeric::matlinsolve assumes that these equations
are satisfied and returns a special solution X.

If no such constraints arise, the return value of Constraints is the empty list.

Pivots is a list of inequalities involving symbolic parameters in A. Internally, division
by pivot elements occurs in the Gaussian elimination. The expressions collected in
Pivots are the numerators of those pivot elements that involve symbolic parameters
contained in A. If only numerical pivot elements are used, then the return value of
Pivots is the empty list.

Note: Constraints usually is a list of non-linear equations for the symbolic parameters.
It is not investigated by numeric::matlinsolve, i.e., solutions may be returned, even
if the Constraints cannot be satisfied. See “Example 3” on page 19-177.

Note: This option changes the return strategy for “unsolvable” systems. Without the
option ShowAssumptions, the result [FAIL,NIL] is returned, whenever Gaussian
elimination produces an equation 0 = c with non-zero c. With ShowAssumptions, such
equations are returned via Constraints, provided c involves symbolic parameters. If c
is a purely numerical value, then [FAIL, NIL, [], []] is returned.

See “Example 3” on page 19-177, “Example 4” on page 19-178, and “Example 7” on
page 19-180.
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NoWarning

Suppresses warnings

If symbolic coefficients are found, numeric::matlinsolve automatically switches
to the Symbolic mode with a warning. With this option, this warning is suppressed;
numeric::matlinsolve still uses the symbolic mode for symbolic coefficients, i.e., exact
arithmetic without floating-point conversions is used.

ReturnType

Option, specified as ReturnType = d

Return the (special) solution and the kernel as matrices of domain type d. The
following return types d are available: DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or
Dom::DenseMatrix().

Sparse

Use a sparse internal representation for matrices.

This option only has an effect when used in conjunction with HardwareFloats. With
the Sparse option, the linear solver uses a sparse representation of the matrices to save
memory and increase efficiency. However, if the coefficient matrix is not sparse, this
option will cost some additional memory and runtime.

Return Values

Without the option ShowAssumptions, a list [X, KernelBasis] is returned.
The (special) solution X is an n×p matrix. KernelBasis is an n×d matrix (d is the
dimension of the kernel of A). Its columns span the kernel of A. If the kernel is trivial,
KernelBasis is the integer 0.

[FAIL, NIL] is returned if the system is not solvable.

With ShowAssumptions, a list [X, KernelBasis, Constraints, Pivots] is
returned. The lists Constraints and Pivots contain equations and inequalities
involving symbolic parameters in A and B. Internally these were assumed to hold true
when solving the system. [FAIL, NIL, [], []] is returned if the system is not
solvable.
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See Also

MuPAD Functions
linalg::matlinsolve | linsolve | numeric::inverse | numeric::linsolve |
solve
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numeric::ncdata
Weights and abscissae of Newton-Cotes quadrature

Syntax
numeric::ncdata(n)

Description

numeric::ncdata(n) returns the weights and the abscissae of the Newton-Cotes
quadrature rule with n equidistant nodes.

The Newton-Cotes quadrature rule  produces the exact integral 

for all polynomials f through degree n - 1. If n is odd, then the quadrature rule is exact
through degree n.

The equidistant abscissae c = [c1, …, cn] are given by .

Environment Interactions

numeric::ncdata is not sensitive to the environment variable DIGITS.

The function uses option remember.

Examples

Example 1

The following call produces exact data for the quadrature rule with four nodes:

numeric::ncdata(4)
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Parameters

n

The number of nodes: a positive integer

Return Values

List [b,c] is returned. The lists b = [b1, …, bn] and c = [c1, …, cn] are the
rational weights and abscissae of the Newton-Cotes quadrature rule, respectively.

Algorithms

The numerical integrator numeric::quadrature calls numeric::ncdata to provide
the data for Newton-Cotes quadrature.

See Also

MuPAD Functions
numeric::gldata | numeric::gtdata | numeric::int | numeric::quadrature
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numeric::odesolve
Numerical solution of an ordinary differential equation

Syntax
numeric::odesolve(f, t0 .. t, Y0, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <MaxStepsize = hmax>, <Alldata = n>, <Symbolic>)

numeric::odesolve(t0 .. t, f, Y0, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <MaxStepsize = hmax>, <Alldata = n>, <Symbolic>)

Description

numeric::odesolve(f, t0..t, Y0) returns a numerical approximation of the
solution Y(t) of the first order differential equation (dynamical system) , Y(t0)

= Y0 with  and .

numeric::odesolve is a general purpose solver able to deal with initial
value problems of various kinds of ordinary differential equations. Equations

 of order p can be solved by numeric::odesolve after
reformulation to dynamical system form. This can always be achieved by writing the
equation as a first order system

for the vector . See “Example 4” on page 19-195.

The following single-step Runge-Kutta-type methods are implemented:

• EULER1 (order 1)
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• RKF43 (order 3)
• xRKF43 (order 3)
• RKF34 (order 4)
• xRKF34 (order 4)
• RK4 (order 4)
• RKF54a (order 4)
• RKF54b (order 4)
• DOPRI54 (order 4)
• xDOPRI54 (order 4)
• CK54 (order 4)
• xRKF54a (order 4)
• xRKF54b (order 4)
• xCK54 (order 4)
• RKF45a (order 5)
• RKF45b (order 5)
• DOPRI45 (order 5)
• CK45 (order 5)
• xRKF45a (order 5)
• xRKF45b (order 5)
• xDOPRI45 (order 5)
• xCK45 (order 5)
• DOPRI65 (order 5)
• xDOPRI65 (order 5)
• DOPRI56 (order 6)
• xDOPRI56 (order 6)
• BUTCHER6 (order 6)
• RKF87 (order 7)
• xRKF87 (order 7)
• DOPRI87 (order 7)
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• xDOPRI87 (order 7)
• RKF78 (order 8)
• xRKF78 (order 8)
• DOPRI78 (order 8)
• xDOPRI78 (order 8)
• GAUSS(s) (order 2 s)
• GAUSS = s

For the Gauss methods, GAUSS(s) is equivalent to GAUSS = s. The positive integer s
indicates the number of stages. The order of the s stage Gauss method is 2 s.

The utility function numeric::ode2vectorfield may be used to produce the input
parameters f, t0, Y0 from a set of differential expressions representing the ODE. See
“Example 1” on page 19-194.

The input data t0, t and Y0 must not contain symbolic objects which cannot be converted
to floating point values via float. Numerical expressions such as ,  etc. are
accepted.

The vector field f defining the dynamical system  must be represented
by a procedure with two input parameters: the scalar time t and the vector Y.
numeric::odesolve internally calls this function with real floating-point values t and
a list Y of floating-point values. It has to return the vector f(t, Y) either as a list or as a
1-dimensional array. The output of f may contain numerical expressions such as π, 
etc. However, all values must be convertible to real or complex floating point numbers by
float.

Autonomous systems, where f(t, Y) does not depend on t, must also be represented by a
procedure with 2 arguments t and Y.

Scalar functions Y also must be represented by a list or an array with one element. For
instance, the input data for the scalar initial value problem  may be
of the form

f := proc(t,Y) /* Y is a 1-dimensional vector */
local y; /* represented by a list with */
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begin /* one element: Y = [y]. */
   y := Y[1];

   [t*sin(y)] /* the output is a list with 1 element */
end_proc:

Y0 := [1]: /* the initial value */

The numerical precision is controlled by the global variable DIGITS: an adaptive control
of the step size keeps local relative discretization errors below rtol=10^-DIGITS, unless
a different tolerance is specified via the option RelativeError = rtol. For small
values of the solution vector Y, the absolute discretization error can be bounded by the
threshold atol specified via the option AbsoluteError = atol.

If AbsoluteError is not specified, only relative discretization errors are controlled and
kept below rtol.

The error control may be switched off by specifying a fixed Stepsize = h.

Note: Only local errors are controlled by the adaptive mechanism. No control of the
global error is provided!

With Y := t -> numeric::odesolve(f, t_0..t, Y_0), the numerical solution can
be repesented by a MuPAD function: the call Y(t) will start the numerical integration
from t0 to t. A more sophisticated form of this function may be generated via Y :=
numeric::odesolve2(f, t0, Y0).

This equips Y with a remember mechanism that uses previously computed values to
speed up the computation. See “Example 2” on page 19-194.

For systems of the special form  with a matrix valued function f(t, Y), there
is a special solver numeric::odesolveGeometric which preserves geometric features
of the system more faithfully than numeric::odesolve.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.
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Examples

Example 1

We compute the numerical solution y(10) of the initial value problem , y(0) =
2:

f := proc(t, Y) begin [t*sin(Y[1])] end_proc:

numeric::odesolve(f, 0..10, [2])

Alternatively, the utility function numeric::ode2vectorfield can be used to generate
the input parameters in a more intuitive way:

[f, t0, Y0] :=

  [numeric::ode2vectorfield({y'(t) = t*sin(y(t)), y(0) = 2}, [y(t)])]

numeric::odesolve(f, t0..10, Y0)

delete f, t0, Y0:

Example 2

We consider , y(0) = 1. The numerical solution may be represented by the function

Y := t -> numeric::odesolve((t,Y) -> Y, 0..t, [1]):

Calling Y(t) starts the numerical integration:

Y(-5), Y(0), Y(1), Y(PI)
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delete Y:

Example 3

We compute the numerical solution Y(π) = [x(π), y(π)] of the system

.

f := (t, Y) -> [Y[1] + Y[2], Y[1] - Y[2]]: Y0 := [1, I]:

numeric::odesolve(f, 0..PI, Y0)

The solution of a linear dynamical system  with a constant matrix A is
. The solution of the system above can also be computed by:

t := PI: tA := array(1..2, 1..2, [[t, t], [t, -t]]):

numeric::expMatrix(tA, Y0)

delete f, Y0, t, tA:

Example 4

We compute the numerical solution y(1) of the differential equation  with initial
conditions y(0) = 0, . The second order equation is converted to a first order
system for the vector :

.
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f := proc(t, Y) begin [Y[2], Y[1]^2] end_proc:

Y0 := [0, 1]:

numeric::odesolve(f, 0..1, Y0)

delete f, Y0:

Example 5

We demonstrate how numerical data can be obtained on a user defined time mesh t[i].
The initial value problem is , y(0) = 1, the sample points are t0 = 0.0, t1 =
0.1, …, t100 = 10.0. First, we define the differential equation and the initial condition:

f := (t, Y) -> [sin(t) - Y[1]]:

Y[0] := [1]:

We define the time mesh:

for i from 0 to 100 do t[i] := i/10 end_for:

The equation is integrated iteratively from t[i-1] to t[i] with a working precision of 4
significant decimal places:

DIGITS := 4:

for i from 1 to 100 do  

  Y[i] := numeric::odesolve(f, t[i-1]..t[i], Y[i-1])

end_for:

The following mesh data are produced:

[t[i], Y[i]] $ i = 0..100
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These data can be displayed by a list plot:

plotpoints := [[t[i], op(Y[i])] $ i = 0..100]:

plot(plot::PointList2d(plotpoints, PointColor = RGB::Black)):

The same plot can be obtained directly via plot::Ode2d:

plot(plot::Ode2d(

    [t[i] $ i = 0..100], f, Y[0], 

    [(t, Y) -> [t, Y[1]], Style = Points, Color = RGB::Black]))
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delete f, t, DIGITS, Y, plotpoints:

Example 6

We compute the numerical solution y(1) of  by the classical 4-th order
Runge-Kutta method RK4. By internal local extrapolation, its effective order is 5:

f := (t, Y) -> Y:

DIGITS := 13:

numeric::odesolve(f, 0..1, [1], RK4)

Next, we use local extrapolation xRKF78 of the 8-th order submethod of the Runge-Kutta-
Fehlberg pair RKF78. This scheme has effective order 9:

numeric::odesolve(f, 0..1, [1], xRKF78)
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Both methods yield the same result because of the internal adaptive error control.
However, due to its higher order, the method xRKF78 is faster.

delete f, DIGITS:

Example 7

We consider the stiff ODE . The default method DOPRI78 is
explicit and not very efficient in solving very stiff problems:

f := (t, Y) -> [10^4*(cos(t) - Y[1])]: 

t0 := time():

numeric::odesolve(f, 0..1, [1]), (time() - t0)*msec

We use the implicit A-stable method GAUSS(6). For this stiff problem, it is more efficient
than the default method DOPRI78:

t0 := time():

numeric::odesolve(f, 0..1, [1], GAUSS(6)), (time() - t0)*msec

delete t0:

Example 8

We consider the initial value problem , y(0) = 1. We note that
the numerical evaluation of the right hand side of the equation suffers from cancellation
effects, when |y| is small.

f := (t, Y) -> [-10^20*Y[1]*(1 - cos(Y[1]))]: 

Y0 := [1]:

We first attempt to compute y(1) with a working precision of 6 digits using the default
setting RelativeError = 10^-DIGITS=10^(-6):

DIGITS := 6: numeric::odesolve(f, 0..1, Y0)
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Due to numerical round-off in the internal steps, no digit of this result is correct. Next,
we use a working precision of 20 significant decimal places to eliminate roundoff effects:

DIGITS := 20:

numeric::odesolve(f, 0..1, Y0, RelativeError = 10^(-6))

Since relative local discretization errors are of the magnitude 10- 6, not all displayed
digits are trustworthy. We finally use a working precision of 20 digits and constrain the
local relative discretization errors by the tolerance 10- 10:

numeric::odesolve(f, 0..1, Y0, RelativeError = 10^(-10))

delete f, Y0, DIGITS:

Example 9

We compute the numerical solution y(1) of , y(0) = 1 with various methods
and various constant step sizes. We compare the result with the exact solution

.

f := (t, Y) -> Y:

Y0 := [1]:

We first use the Euler method of order 1 with two different step sizes:

Y := numeric::odesolve(f, 0..1, Y0, EULER1, Stepsize = 0.1):

Y, globalerror = float(exp(1)) - Y[1]

Decreasing the step size by a factor of 10 should reduce the global error by a factor of 10.
Indeed:

Y := numeric::odesolve(f, 0..1, Y0, EULER1, Stepsize = 0.01):
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Y, globalerror = float(exp(1)) - Y[1]

Next, we use the classical Runge-Kutta method of order 4 with two different step sizes:

Y := numeric::odesolve(f, 0..1, Y0, RK4, Stepsize = 0.1):

Y, globalerror = float(exp(1)) - Y[1]

Decreasing the step size by a factor of 10 in a 4-th order scheme should reduce the global
error by a factor of 104. Indeed:

Y := numeric::odesolve(f, 0..1, Y0, RK4, Stepsize = 0.01):

Y, globalerror = float(exp(1)) - Y[1]

delete f, Y0, Y:

Example 10

We integrate , y(0) = 1 over the interval t ∈ [0, 0.99] with a working precision of 4
digits. The exact solution is . Note the singularity at t = 1.

DIGITS := 4:

f := (t, Y) -> [Y[1]^2]:

Y0 := [1]:

The option Alldata, equivalent to Alldata = 1, yields all mesh data generated during
the internal adaptive process:

numeric::odesolve(f, 0..0.99, Y0, Alldata)

With Alldata = 2, only each second point is returned:
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numeric::odesolve(f, 0..0.99, Y0, Alldata = 2)

One can control the time mesh using the option Stepsize = h:

numeric::odesolve(f, 0..0.99, Y0, Stepsize=0.1, Alldata = 1)

However, with the option Stepsize = h, no automatic error control is provided by
numeric::odesolve. Note the poor approximation y(t) = 94.3 for t = 0.99 (the exact
value is y(0.99) = 100.0). The next computation with smaller step size yields better
results:

numeric::odesolve(f, 0..0.99, Y0, Stepsize = 0.01, Alldata = 10)

“Example 5” on page 19-196 demonstrates how accurate numerical data on
a user defined time mesh can be generated using the automatic error control of
numeric::odesolve.

delete DIGITS, f, Y0:

Example 11

The second order equation  is written as the dynamical system ,
 for the vector Y = [y, z]. A single symbolic step

of the Euler method is computed:

f := proc(t, Y) begin [Y[2], -sin(Y[1])] end_proc:

numeric::odesolve(f, t0..t0+h, [y0, z0], EULER1, Symbolic)
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delete f:

Parameters

f

A procedure representing the vector field

t0

A numerical real value for the initial time

t

A numerical real value (the “time”)

Y0

A list or 1-dimensional array of numerical values representing the initial condition

method

One of the Runge-Kutta schemes listed below.

Options

BUTCHER6, CK45, CK54, DOPRI45, DOPRI54, DOPRI56, DOPRI65, DOPRI78, DOPRI87,
EULER1, RK4, RKF34, RKF43, RKF45a, RKF45b, RKF54a, RKF54b, RKF78, RKF87, xCK45,
xCK54, xDOPRI45, xDOPRI54, xDOPRI56, xDOPRI65, xDOPRI78, xDOPRI87, xRKF34,
xRKF43, xRKF45a, xRKF45b, xRKF54a, xRKF54b, xRKF78, xRKF87

Name of the Runge-Kutta scheme. See “Example 6” on page 19-199. For details on
these schemes, see the Algorithms section.

GAUSS

Name of the Runge-Kutta scheme specified as GAUSS(s) or GAUSS = s.
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The methods GAUSS(s) or, equivalently, GAUSS = s are the implicit Gauss methods
with s stages of order 2 s.

These methods are implicit A-stable schemes. The time steps are rather costly to
compute. The Gauss methods are useful for integrating stiff ODEs. For non-stiff ODEs,
there is usually no need to change the default method DOPRI78. This method is an
embedded Runge-Kutta pair of orders 7 and 8.

Further, the Gauss methods are symplectic methods. When used with constant step
size (Stepsize = h), numerical integration of Hamiltonian systems benefits from this
property.

See “Example 7” on page 19-200.

RelativeError, AbsoluteError

Option specified as RelativeError = rtol forces internal numerical Runge-Kutta
steps to use step sizes with relative local discretization errors below rtol. This tolerance
must be a positive numerical real value not smaller than . The default tolerance

is RelativeError = 10^(-DIGITS).

Option specified as AbsoluteError = atol forces internal numerical Runge-
Kutta steps to use step sizes with absolute local discretization errors below atol.
This tolerance must be a nonnegative numerical real value. The default tolerance is
AbsoluteError = 10^(-10*DIGITS).

The internal control mechanism estimates the local discretization error of a Runge-Kutta
step and adjusts the step size adaptively to keep this error below the specified tolerances
rtol or atol, respectively. The code uses the criterion

For accepting a solution vector Y. Roughly speaking, the relative error is controlled
when the solution Y is sufficiently large. For very small solution values Y, absolute
discretization errors are kept below the threshold atol.

Specify AbsoluteError = 0 if only control of the relative discretization errors is desired.

The error control may be switched off by specifying a fixed Stepsize = h.
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The default setting of ,  ensures that the local

discretization errors are of the same order of magnitude as numerical roundoff.

Usually there is no need to use these options to change this setting. However,
occasionally the numerical evaluation of the Runge-Kutta steps may be ill-conditioned or
step sizes are so small that the time parameter cannot be incremented by the step size
within working precision. In such a case these options may be used to bound the local
discretization errors and use a higher working precision given by DIGITS.

Only positive real numerical values  are accepted.

Note: The global error of the result returned by numeric::odesolve is usually larger
than the local errors bounded by rtol, atol, respectively. Although the result is
displayed with DIGITS decimal places one should not expect that all of them are correct.
The relative precision of the final result is rtol at best!

See “Example 8” on page 19-200.

Stepsize

Option, specified as Stepsize = h

Switches off the internal error control and uses a Runge-Kutta iteration with constant
step size h which must be a positive numerical value.

By default, numeric::odesolve uses an adaptive step size control mechanism in the
numerical iteration. The option Stepsize = h switches off this adaptive mechanism
and uses the Runge-Kutta method specified (or the default method DOPRI78) with
constant step size h.

A final step with smaller step size is used to match the end t of the integration interval

t_0..t if  is not an integer.

Note: With this option, there is no automatic error control! Depending on the problem
and on the order of the method the result may be a poor numerical approximation of the
exact solution.
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There is usually no need to invoke this option. However, occasionally the built-in
adaptive error control mechanism may fail when integrating close to a singularity. In
such a case this option may be used to customize a control mechanism for the global
error by using different step sizes and investigating the convergence of the corresponding
results.

Cf. “Example 9” on page 19-201.

MaxStepsize

Option, specified as MaxStepsize = hmax

Restricts adaptive step sizes to values not larger than h_max; h_max must be a positive
numerical value.

By default, numeric::odesolve uses an adaptive step size control mechanism in the
numerical iteration. The option MaxStepsize = hmax restricts the adaptive step size to
values no larger than hmax.

If a larger stepsize h is requested explicitly by Stepsize = h, the option MaxStepsize
= hmax reduces h to hmax.

Alldata

Option, specified as Alldata = n

Makes numeric::odesolve return a list of numerical mesh points generated by the
internal Runge-Kutta iteration. The integer n controls the size of the output list.

With this option, numeric::odesolve returns a list of numerical mesh points [[t0, Y0],
[t1, Y1], …, [t, Y(t)]] generated by the internal Runge-Kutta iteration.

The integer n controls the size of the output list. For n = 1, all internal mesh points are
returned. This case may also be invoked by entering the simplified option Alldata,
which is equivalent to Alldata = 1. For n > 1, only each n-th mesh point is stored in
the list. The list always contains the initial point [t0, Y0] and the final point [t, Y(t)]. For n
≤ 0, only the data [[t0, Y0], [t, Y(t)]] are returned.

The output list may be useful to inspect the internal numerical process. Also further
graphical processing of the mesh data may be useful.

Cf. “Example 10” on page 19-202.
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Symbolic

Makes numeric::odesolve return a vector of symbolic expressions representing a
single symbolic step of the Runge-Kutta iteration.

The call numeric::odesolve(f, t0..t, Y0, < method >, Symbolic) returns a
vector (list or array) of expressions representing a single step of the numerical scheme
with step size t - t0. In this mode symbolic values for t0, t and the components of Y0 are
accepted.

This option may be useful if the specified numerical method applied to a given
differential equation is to be investigated symbolically.

Cf. “Example 11” on page 19-203.

Return Values

The solution vector Y(t) is returned as a list or as a 1-dimensional array of floating-point
values. The type of the result vector coincides with the type of the input vector Y0.

With the option Alldata, a list of mesh data is returned.

Algorithms

All methods presently implemented are adaptive versions of Runge-Kutta type single
step schemes.

The methods RKF43, RKF34, RKF54a, RKF54b, RKF45a, RKF45b, RKF87, RKF78,
DOPRI54, DOPRI45, DOPRI65, DOPRI56, DOPRI87, DOPRI78, CK54, CK45 are embedded
pairs of Runge-Kutta-Fehlberg, Dormand-Prince and Cash-Karp type, respectively.
Estimates of the local discretization error are obtained in the usual way by comparing
the results of the two submethods of the pair. The names indicate the orders of the
subprocesses. For instance, RKF34 and RKF43 denote the same embedded Runge-Kutta-
Fehlberg pair with orders 3 and 4. In RKF34 the result of the fourth order submethod is
accepted, whereas RKF43 advances using the result of the third order submethod. In both
cases the discretization error of the lower order subprocess is estimated and controlled.

For the single methods EULER1 (the first order Euler scheme), RK4 (the classical fourth
order Runge-Kutta scheme) and BUTCHER6 (a Runge-Kutta scheme of order 6), the
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relative local error is controlled by comparing steps with different step sizes. The
effective order of these methods is increased by one through local extrapolation.

Local extrapolation is also available for the submethods of the embedded pairs. For
instance, the method xRKF78 uses extrapolation of the 8-th order subprocess of RKF78,
yielding a method of effective order 9. The 7-th order subprocess is ignored. The cheap
error estimate based on the embedded pair is not used implying some loss of efficiency
when comparing RKF78 (order 8) and xRKF78 (effective order 9).

The call numeric::butcher(method) returns the Butcher data of the methods
used in numeric::odesolve. Here method is one of EULER1, RKF43, RK4, RKF34,
RKF54a, RKF54b, DOPRI54, CK54, RKF45a, RKF45b, DOPRI45, CK45, DOPRI65, DOPRI56,
BUTCHER6, RKF87, DOPRI87, RKF78, DOPRI78.

Note: Only local errors are controlled by the adaptive mechanism. No control of the
global error is provided!

Note: The run time of the numerical integration with a method of order p grows like

, when DIGITS is increased. Computations with high precision goals are
very expensive! High order methods such as the default method DOPRI78 should be used.

Presently, only single step methods of Runge-Kutta type are implemented. Stiff problems
cannot be handled efficiently with explicit methods such as the default method DOPRI78.
For stiff problems, one may use one of the implicit A-stable methods GAUSS(s). See
“Example 7” on page 19-200.

For problems of the special type  with a matrix valued function f(t, Y),
there is a specialized (“geometric”) integration routine numeric::odesolveGeometric.
Generally, numeric::odesolve is faster than the geometric integrator. However,
odesolveGeometric preserves certain invariants of the system more faithfully.

References

J.C. Butcher: “The Numerical Analysis of Ordinary Differential Equations”, Wiley,
Chichester (1987).
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E. Hairer, S.P. Norsett and G. Wanner: “Solving Ordinary Differential Equations I”,
Springer, Berlin (1993).

See Also

MuPAD Functions
numeric::butcher | numeric::odesolve2 | numeric::odesolveGeometric

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d

More About
• “Solve Equations Numerically”
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numeric::odesolve2
Numerical solution of an ordinary differential equation

Syntax
numeric::odesolve2(f, t0, Y0, <method>, <RememberLast>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <MaxStepsize = hmax>)

Description

numeric::odesolve2( f, t0, Y0, … ) returns a function representing the
numerical solution Y(t) of the first order differential equation (dynamical system)

, Y(t0) = Y0 with  and .

The utility function numeric::ode2vectorfield may be used to produce the input
parameters f, t0, Y0 from a set of differential expressions representing the ODE. Cf.
“Example 1” on page 19-212.

The function generated by Y := numeric::odesolve2(f, t0, Y0) is essentially

Y := t -> numeric::odesolve(t_0..t, f, Y_0).

Numerical integration is launched, when Y is called with a real numerical argument. The
call Y(t) returns the solution vector in a format corresponding to the type of the initial
condition Y0 with which Y was defined: Y(t) either yields a list or a 1-dimensional array.

If t is not a real numerical value, then Y(t) returns a symbolic function call.

See the help page of numeric::odesolve for details on the parameters and the options.

The options Alldata = n and Symbolic accepted by numeric::odesolve have no
effect: numeric::odesolve2 ignores these options.

Note: Without RememberLast, the function Y remembers all values it has computed.
When calling Y(T), it searches its remember table for the time t0 < T < t closest to t,
and integrates from T to t using the previously computed Y(T) as initial value. Here,
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t0 is the time for which the initial value of the ODE is given. This reduces the costs
of a call considerably, if Y must be evaluated many times, for example, when plotting
the ODE solution. The best approach is to call Y only with a monotonically increasing
(or decreasing) sequence of values t starting from t0. Further, the function must be re-
initialized whenever DIGITS is increased. See “Example 3” on page 19-214.

Environment Interactions

The function returned by numeric::odesolve2 is sensitive to the environment variable
DIGITS, which determines the numerical working precision.

Without RememberLast, the function returned by numeric::odesolve2 uses option
remember.

Examples

Example 1

The numerical solution of the initial value problem , y(0) = 2 is represented by
the following function Y = [y]:

f := (t, Y) -> [t*sin(Y[1])]:

Alternatively, the utility function numeric::ode2vectorfield can be used to generate
the input parameters in a more intuitive way:

[f, t0, Y0] :=

  [numeric::ode2vectorfield({y'(t) = t*sin(y(t)), y(0) = 2}, [y(t)])]

Y := numeric::odesolve2(f, t0, Y0)

The procedure Y starts the numerical integration when called with a numerical
argument:
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Y(-2), Y(0), Y(0.1), Y(PI + sqrt(2))

Calling Y with a symbolic argument yields a symbolic call:

Y(t), Y(t + 5), Y(t^2 - 4)

eval(subs(%, t = PI))

The numerical solution can be plotted. Note that Y(t) returns a list, so we plot the list
element Y(t)[1]:

plotfunc2d(Y(t)[1], t = -5..5):
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delete f, t0, Y0, Y:

Example 2

We consider the differential equation  with initial conditions y(0) = 0, .
The second order equation is converted to a first order system for :

.

f := (t, Y) -> [Y[2], Y[1]^2]:

t0 := 0: Y0 := [0, 1]:

Y := numeric::odesolve2(f, t0, Y0): 

Y(1), Y(PI)

delete f, t0, Y0, Y:

Example 3

We consider the system

:

f := (t, Y) -> [Y[1] + Y[2], Y[1] - Y[2]]:

Y := numeric::odesolve2(f, 0, [1, I]):

DIGITS := 5:

Y(1)

Increasing DIGITS does not lead to a more accurate result because of the remember
mechanism:

DIGITS := 15: Y(1)
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This is the previous value computed with 5 digits, printed with 15 digits. Indeed, only 5
digits are correct. For getting a result that is accurate to full precision, one has to erase
the remember table via Y:=subsop(Y,5=NIL). Alternatively, one may create a new
numerical solution with a fresh (empty) remember table:

Y := numeric::odesolve2(f, 0, [1, I]): 

Y(1)

delete f, Y, DIGITS:

Example 4

We demonstrate the effect of the option RememberLast. We consider the ODE

:

f := (t, Y) -> [-Y[1] + sin(t)]:

Y := numeric::odesolve2(f, 0, [1]):

Z := numeric::odesolve2(f, 0, [1], RememberLast):

After many calls of Y, its remember table has grown large. In each call, searching the
remember table for input parameters close to the present time value becomes expensive.
Created with RememberLast, the procedure Z does not remember all its previously
computed values apart from the last one. Consequently, it becomes faster than Y:

time(for i from 1 to 1000 do Y(i/100) end)*msec,

time(for i from 1 to 1000 do Z(i/100) end)*msec

Apart from the efficiency, the values returned by Y and Z coincide:

Y(10.5), Z(10.5)
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delete f, Y, Z, i:

Parameters

f

A procedure representing the vector field of the dynamical system

t0

A numerical real value for the initial time

Y0

A list or 1-dimensional array of numerical values representing the initial value

method

One of the Runge-Kutta schemes listed below.

Options

BUTCHER6, CK45, CK54, DOPRI45, DOPRI54, DOPRI56, DOPRI65, DOPRI78, DOPRI87,
EULER1, GAUSS, RK4, RKF34, RKF43, RKF45a, RKF45b, RKF54a, RKF54b, RKF78, RKF87,
xCK45, xCK54, xDOPRI45, xDOPRI54, xDOPRI56, xDOPRI65, xDOPRI78, xDOPRI87,
xRKF34, xRKF43, xRKF45a, xRKF45b, xRKF54a, xRKF54b, xRKF78, xRKF87

Option, specified as GAUSS = s

Name of the Runge-Kutta scheme. For details, see the documentation of
numeric::odesolve.

RememberLast

Modifies the internal remember mechanism: the procedure returned by
numeric::odesolve2 does not remember the results of all previous calls, but only the
result of the last call.

Without this option, the procedure returned by numeric::odesolve2 employs
option remember to remember the results of all preceding calls. If the function is
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called very often (hundreds or thousands of times), the remember table grows large
and searching this table for entries close to the current time value may become costly.
With RememberLast, the procedure returned by numeric::odesolve2 does not use
option remember to remember all previous results but implements a very simple and
inexpensive mechanism to remember only the result of the very last call.

This option is highly recommended when the numerical procedure returned by
numeric::odesolve2 is to be called often (hundreds of thousands of times) with
monotonically increasing or decreasing time values. Cf. “Example 4” on page 19-215.

RelativeError

Option, specified as RelativeError = rtol

Forces internal numerical Runge-Kutta steps to use step sizes with relative local
discretization errors below rtol. This tolerance must be a positive numerical real value
not smaller than . The default tolerance is RelativeError = 10^(-DIGITS).

See the help page of numeric::odesolve for further details.

AbsoluteError

Option, specified as AbsoluteError = atol

Forces internal numerical Runge-Kutta steps to use step sizes with absolute local
discretization errors below atol. This tolerance must be a non-negative numerical real
value. The default tolerance is AbsoluteError = 10^(-10*DIGITS). See the help
page of numeric::odesolve for further details.

Stepsize

Option, specified as Stepsize = h

Switches off the internal error control and uses a Runge-Kutta iteration with constant
step size h. h must be a positive real value. See the help page of numeric::odesolve for
further details.

MaxStepsize

Option, specified as MaxStepsize = hmax

Restricts adaptive step sizes to values not larger than hmax; hmax must be a positive
numerical value. See the help page of numeric::odesolve for further details.
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Return Values

Procedure.

See Also

MuPAD Functions
numeric::ode2vectorfield | numeric::odesolve |
numeric::odesolveGeometric

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d

More About
• “Solve Equations Numerically”
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numeric::odesolveGeometric
Numerical solution of an ordinary differential equation on a homogeneous manifold

Syntax
numeric::odesolveGeometric(f, t0 .. t, Y0, <LieGroupAction = LAMBDA>, <method>, <RelativeError = tol>, <Stepsize = h>, <Alldata = n>)

numeric::odesolveGeometric(t0 .. t, f, Y0, <LieGroupAction = LAMBDA>, <method>, <RelativeError = tol>, <Stepsize = h>, <Alldata = n>)

Description

numeric::odesolveGeometric(f, t_0..t, Y_0 ) approximates the solution of
, where f(t, Y(t)) returns n×n matrices and .

numeric::odesolveGeometric is a “geometrical integrator” for ordinary differential
equations on homogeneous manifolds embedded in the space of n×m matrices.

The call numeric::odesolveGeometric(f, t_0..t, Y_0 ) returns a numerical
approximation of the solution Y(t) of the first order differential equation (dynamical
system)

with . Here, Y(t) is a curve of n×m matrices ( or vectors in  or ). The
function f must produce n×n matrices as return values.

The following geometrical feature is preserved by the numerical solution: If
the matrices produced by f lie in some Lie subalgebra g of the n×n matrices,
then, within the numerical working precision, the approximation produced by
numeric::odesolveGeometric stays on the homogeneous manifold ,
where G is the matrix Lie group of g.

As an introductory example, consider the ODE , where Y is a vector in 

and f produces skew symmetric matrices. The solution lies on the orbit of the orthogonal

19-219



19 numeric – Numerical Algorithms

group SO(n) generated by the skew symmetric matrices through the initial point
. Here, SO(n) acts on  by standard matrix multiplication. The homogeneous

manifold given by the orbit of SO(n) through Y0 is the sphere

.

Using standard numerical schemes, the numerical solution drifts away from this
manifold in the course of the integration. The geometrical “Lie group” integrator
numeric::odesolveGeometric, however, produces a numerical solution that stays on
this manifold, preserving the invariants of the group action. In this case, the invariant

 is preserved numerically. See “Example 1” on page 19-223.

With Y(t) = G(t) Y0, the matrix ODE

is solved on the space  of the complex n×n matrices (1n, n is the identity matrix).
Following Munthe-Kaas [1], the ansatz  reduces a time step for the ode above
to the solution of the matrix ODE

,

where  and [u, f] = u f - f u is the commutator on the Lie algebra

of n×n matrices. In each step, the ODE for u is solved numerically in a classical
way by the Runge-Kutta scheme specified by the parameter method. Finally,
numeric::odesolveGeometric performs the time step  by computing

.

If the matrices produced by f(t, Y) lie in a Lie subalgebra g of the n×n matrices, then the
numerical solution u also lies in g. The matrix  is an element of the corresponding
Lie group, and Y = G Y0 lies on the orbit of the Lie group through the initial value Y0.
Thus, the geometrical invariants of the homogeneous manifold are preserved in the
course of the numerical integration.
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The input data t0 and t must not contain symbolic objects which cannot be converted to
floating point values via float. Numerical expressions such as ,  etc. are accepted.

The initial condition Y0 defines the space in which the homogeneous manifold containing
the solution is embedded.

If Y0 is a list with n entries or a 1-dimensional array array(1..n), then the solution
Y(t) consists of vectors from a submanifold of  or , respectively.

If Y0 is specified as a 2-dimensional array(1..n, 1..m) or as a matrix of the
corresponding dimension generated by the function matrix, then the solution Y(t)
consists of matrices from a submanifold of the space  of n×m matrices.

Internally, 2-dimensional n×m arrays are used to represent the points on the manifold
where m = 1 for vectors in  or . It is recommended to specify Y0 in the form
array(1..n, 1..m) in order to avoid the overhead of internal conversions.

The “vector field” f defining the dynamical system  must be represented

by a procedure with two input parameters: the scalar time t and the matrix or vector Y.
Internally, f is called with real floating-point values t and matrices/vectors Y of the same
domain type as the initial condition Y0.

The procedure f has to return an n×n matrix either as an array(1..n, 1..n) or as
a corresponding matrix object of category Cat::Matrix (generated by the function
matrix).

It is recommended that the procedure returns an array of the type array(1..n, 1..n).
This avoids the overhead of internal conversions.

The return value of f may contain numerical expressions such as π,  etc. However, all
values must be convertible to real or complex floating point numbers by float.

Autonomous systems, where f(t, Y) does not depend on t, must be represented by a
procedure with two arguments t and Y, too.

The optional arguments method, RelativeError = tol, and Stepsize = h
determine how the ODE  is solved. They correspond to the methods of

the classical ODE solver numeric::odesolve.
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The numerical precision is controlled by the global variable DIGITS: an adaptive control
of the step size keeps local relative discretization errors below , unless a

different tolerance is specified via the option RelativeError = tol. The error control
may be switched off by specifying a fixed Stepsize = h.

Note: Only local errors are controlled by the adaptive mechanism. No control of the
global error is provided!

With Y := t -> numeric::odesolveGeometric(f, t_0..t, Y_0), the numerical
solution can be repesented by a MuPAD function: the call Y(t) will start the numerical
integration from t0 to t.

Classical integration preserves the geometrical invariants up to the relative precision of
the solution whereas the geometrical integrator preserves the invariants independent of
tol up to the working precision set by DIGITS: departure from the homogeneous manifold
is a pure roundoff effect.

numeric::odesolveGeometric is useful when a tolerance tol much largerthan
 is specified by RelativeError = tol. For small tolerances, you may consider

to use the classical solver numeric::odesolve instead.

Since classical integration is significantly faster, larger values of DIGITS and
smaller tolerances for the discretization error may be used in numeric::odesolve.
Depending on the concrete problem, this may lead to better results than produced by
numeric::odesolveGeometric.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.
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Examples

Example 1

We consider the initial value problem

for  with fixed parameters , J2 = 1, J3 = 2. Writing this ODE

as

,

it is clear that the solution is restricted to the orbit of the orthogonal group SO(3)
through the initial point (f1 produces skew symmetric matrices). The invariant of this
action is , i.e., the solution is restricted to a sphere.
Writing the ODE as
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,

it is clear that the solution is also restricted to the orbit of the “J-orthogonal” group
SO(J, 3) through the initial point. This group consists of matrices G satisfying
GT J G = J, where J = diag(J1, J2, J3). The invariant of this group action is

, i.e., the solution is restricted to an ellipsoid.

We consider the first representation and compute a numerical solution that is restricted
to a sphere:

f1 := proc(t, Y) begin 

      array(1..3, 1..3, [ [   0    , -J3*Y[3],  J2*Y[2]],

                          [ J3*Y[3],    0    , -J1*Y[1]],

                          [-J2*Y[2],  J1*Y[1],    0    ]])

end_proc:

J1 := 1/2: J2 := 1: J3 := 2: 

tol := 10^(-2):

Gsolve:= (f, t0_t, Y0) -> 

  numeric::odesolveGeometric(f, t0_t, Y0, RelativeError = tol):

Y(0) := [1.0, 1.0, 1.0];

Y(1) := Gsolve(f1, 0..1, Y(0));

Y(2) := Gsolve(f1, 1..2, Y(1));

Y(3) := Gsolve(f1, 2..3, Y(2));

Y(4) := Gsolve(f1, 3..4, Y(3));

Y(5) := Gsolve(f1, 4..5, Y(4))

19-224



 numeric::odesolveGeometric

The invariant H1 is preserved numerically up to the working precision set by DIGITS:

H1 := Y -> Y[1]^2 + Y[2]^2 + Y[3]^2:

H1(Y(i)) - H1(Y(0)) $ i = 1..5

The invariant H2 is only preserved within the relative precision of the solution set by the
option RelativeError = tol:

H2 := Y -> J1*Y[1]^2 + J2*Y[2]^2 + J3*Y[3]^2:

H2(Y(i)) - H2(Y(0)) $ i = 1..5

Now, we solve the ODE using the second representation:

f2 := proc(t, Y) begin 

      array(1..3, 1..3, [ [   0    ,  J2*Y[3], -J3*Y[2]],

                          [-J1*Y[3],    0    ,  J3*Y[1]],

                          [ J1*Y[2], -J2*Y[1],    0    ]])

end_proc:

Y(0) := [1.0, 1.0, 1.0];

Y(1) := Gsolve(f2, 0..1, Y(0));

Y(2) := Gsolve(f2, 1..2, Y(1));

Y(3) := Gsolve(f2, 2..3, Y(2));
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Y(4) := Gsolve(f2, 3..4, Y(3));

Y(5) := Gsolve(f2, 4..5, Y(4))

Now, the invariant H2 is preserved to working precision, whilst H1 is only preserved to
the tolerance specified by RelativeError = tol:

H2(Y(i)) - H2(Y(0)) $ i = 1..5

H1(Y(i)) - H1(Y(0)) $ i = 1..5

delete J1, J2, J3, Gsolve, f1, f2, Y, H1, H2:
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Example 2

We consider the “Toda lattice equations”

,

with a0 = an = 0. Introducing the tridiagonal n×n matrices

,

these equations can be encoded by the matrix ODE . The solution

Y(t) is known to be “isospectral”, i.e., the eigenvalues of Y(t) do not depend on the time
parameter t. As mentioned in the description of the option LieGroupAction, the
solution of this type of matrix ODE is given by the group action Y(t) = G(t) Y(0) G(t)- 1 =
G(t) Y(0) G(t)T, where G(t) are orthogonal matrices (note that f(Y) is skew symmetric). The
eigenvalues of the matrices Y(t) are invariants of the group action.

The exact dynamics also preserves the tridiagonal form of the matrices. The numerical
dynamics, however, fills in further elements. The following vector field f ignores alle
elements outside the central bands:

f := proc(t, Y) 

local i, r;

begin

  r := array(1..n, 1..n, [[0 $ n] $ n]);

  for i from 1 to n - 1 do

    r[i + 1, i] :=  Y[i, i + 1];

    r[i, i + 1] := -Y[i, i + 1];
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  end_for;

  return(r)

end_proc:

In the following, the initial value Y(0) is specified by a matrix generated by the function
matrix. Consequently, both arguments G and Y are passed to the Lie group action
LAMBDA as corresponding matrices. They can be multiplied by the multiplication operator
*:

LAMBDA:= proc(G, Y)

begin

  G*Y*(G::dom::transpose(G))

end_proc:

We define the initial value:

n := 3:

Y(0) := matrix(n, n, [1, 1, 1], Banded)

Now, the dynamics is integrated from t = 0 to t = 1:

tol := 10^(-4):

Y(1) := numeric::odesolveGeometric(f, 0..1, Y(0),

        LieGroupAction = LAMBDA, RelativeError = tol)

The invariants of the dynamics are the eigenvalues of the matrices Y(t). They are
preserved numerically:

numeric::eigenvalues(Y(0)) = numeric::eigenvalues(Y(1))
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For comparison, we also solve the Toda lattice equations by classical numerics using
numeric::odesolve. The system is encoded by a vector Y = [b1, …, bn, a1, …, an - 1] in

:

f := proc(t, Y) 

local a, b, i;

begin

  b := [Y[i] $ i = 1..n];

  a := [Y[n + i] $ i = 1..n-1];

  [-2*a[1]^2,                           // = d/dt b[1]

    2*(a[i-1]^2 - a[i]^2) $ i = 2..n-1, // = d/dt b[i]

    2*a[n-1]^2,                         // = d/dt b[n]

    a[i]*(b[i] - b[i+1]) $ i = 1..n-1   // = d/dt a[i]

  ]

end_proc:

solution := numeric::odesolve(f, 0..1, [1 $ 2*n - 1],

                              RelativeError = tol);

The invariants are only preserved up to the precision of the solution determined by the
tolerance set via RelativeError = tol:

Y(1) := array(1..n, 1..n, [[0 $ n] $ n]):

for i from 1 to n do

  Y(1)[i, i] := solution[i];

end_for:

for i from 1 to n-1 do

  Y(1)[i, i + 1] := solution[n + i];

  Y(1)[i + 1, i] := solution[n + i];

end_for:

Y(1)

numeric::eigenvalues(Y(1))
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Comparing these data with the previously computed eigenvalues of the initial condition
Y(0), one sees that the invariants are not preserved numerically to the working precision
determined by DIGITS.

delete f, LAMBDA, n, Y, tol, solution, i:

Parameters

f

A procedure accepting two parameters (t, Y)

t0

A numerical real value for the initial time

t

A numerical real value (the “time”)

Y0

The initial condition: a list, a 1-dimensional array(1..n), a 2-dimensional
array(1..n, 1..m), or an n×m matrix of category Cat::Matrix with numerical
entries

Options

LieGroupAction

Option, specified as LieGroupAction = LAMBDA

The procedure LAMBDA = proc(G, Y) ... end_proc defines the action of the group
element G (an n×n matrix) on the point Y on the homogeneous manifold (an n×m matrix
or an n dimensional vector). This procedure must return a corresponding point (a matrix
or a vector).
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The default action is the usual matrix multiplication .

With this option, the default group action LAMBDA:  of the n×n matrices
G acting on the n×m matrices or n dimensional vectors Y by left multiplication may be
replaced by other group actions.

As a group action, the procedure LAMBDA must satisfy LAMBDA(1n, n, Y) = Y and

.

numeric::odesolveGeometric computes the solution of the matrix ODE

On the space  of the n×n matrices and returns Y(t) = LAMBDA(G(t), Y0).

For the standard group action LAMBDA(G, Y) = G Y, this is the solution of the ODE
.

For homogeneous manifolds embedded in the n×n matrices, the group action
LAMBDA(G, Y) = G Y G- 1 may be considered. For this action, the curve Y(t) =
LAMBDA(G(t), Y0) returned by numeric::odesolveGeometric is the solution of the
ODE . Cf. “Example 2” on page 19-227.

LAMBDA(G, Y) is called with n×m matrices or n dimensional vectors Y of the same
domain type as the initial condition Y0. If Y0 is a matrix generated by the function
matrix, then also the n×n matrix G is passed to LAMBDA as such a matrix object. In all
other cases, G is passed as a 2-dimensional array(1..n, 1..n).

The procedure LAMBDA should return a 2-dimensional array(1..n, 1..m) or a
corresponding matrix of category Cat::Matrix.

If the initial condition Y0 is specified by a list or a 1-dimensional array(1..n), LAMBDA
may also return a corresponding list or array.

Internally, the return value of LAMBDA is converted to a 2-dimensional array(1..n,
1..m) where m = 1 if a list or a 1-dimensional array is returned.
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It is recommended that LAMBDA returns a 2-dimensional array(1..n, 1..m) in order
to avoid the overhead of internal conversions.

RelativeError

Option, specified as RelativeError = tol

Forces internal numerical Runge-Kutta steps to use step sizes with local discretization
errors below tol. This tolerance must be a numerical real value . The default

tolerance is .

The internal control mechanism estimates the local relative discretization error of a
Runge-Kutta step and adjusts the step size adaptively to keep this error below tol.

The default setting of  ensures that the local discretization errors are of the

same order of magnitude as numerical roundoff.

Usually there is no need to use this option to change this setting. However, occasionally
the numerical evaluation of the Runge-Kutta steps may be ill-conditioned or step
sizes are so small that the time parameter cannot be incremented by the step size
within working precision. In such a case, this option may be used to bound the local
discretization error by tol and use a higher working precision given by DIGITS.

Only real numerical values  are accepted.

Note: Usually, the global error of the numeric approximation returned by
numeric::odesolveGeometric is larger than the local errors bounded by tol.
Although the result is displayed with DIGITS decimal places, one should not expect that
all of them are correct. The relative precision of the final result is tol at best!

Stepsize

Option, specified as Stepsize = h

Switches off the internal error control and uses a Runge-Kutta iteration with constant
step size h. h must be a numerical real value.
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By default, numeric::odesolveGeometric uses an adaptive step size control
mechanism in the numerical iteration. The option Stepsize = h switches off this
adaptive mechanism and uses the Runge-Kutta method specified by method (or the
default method DOPRI78) with constant step size h.

A final step with smaller step size is used to match the end t of the integration interval

, if  is not an integer.

Note: With this option, there is no automatic error control! Depending on the problem
and on the order of the method, the result may be a poor numerical approximation of the
exact solution.

There is usually no need to invoke this option. However, occasionally the builtin adaptive
error control mechanism may fail when integrating close to a singularity. In such a case,
this option may be used to customize a control mechanism for the global error by using
different step sizes and investigating the convergence of the corresponding results.

Alldata

Option, specified as Alldata = n

With this option, numeric::odesolveGeometric returns a list of numerical mesh
points [[t0, Y0], [t1, Y1], …, [t, Y(t)]] generated by the internal Runge-Kutta iteration.

The integer n controls the size of the output list. For n = 1, all internal mesh points are
returned. This case may also be invoked by entering the simplified option Alldata,
which is equivalent to Alldata = 1. For n > 1, only each n-th mesh point is stored in
the list. The list always contains the initial point [t0, Y0] and the final point [t, Y(t)]. For n
≤ 0, only the data [[t0, Y0], [t, Y(t)]] are returned.

The output list may be useful to inspect the internal numerical process. Also further
graphical processing of the mesh data may be useful.

Return Values

The solution Y(t) is returned as a list or as an array of floating-point values. The type of
the result matrix/vector coincides with the type of the input matrix/vector Y0.
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With the option Alldata, a list of mesh data is returned.

References

[1] H. Munthe-Kaas and A. Zanna: “Numerical integration of differential equations on
homogeneous manifolds”, in F. Cucker (ed.), Foundations of Computational Mathematics,
Springer (1997), pp. 305-315.

See Also

MuPAD Functions
numeric::butcher | numeric::odesolve | numeric::odesolve2

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d
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numeric::ode2vectorfield
Convert an ode system to vectorfield notation

Syntax
numeric::ode2vectorfield(IVP, fields)

Description

numeric::ode2vectorfield converts a system of ordinary differential equations of
arbitrary order to a vector field representation suitable for the numerical ODE solver
numeric::odesolve2.

numeric::ode2vectorfield is a utility function to generate input parameters for
the numerical ODE solver numeric::odesolve2. This solver requires a procedure
representing the vectorfield f(t, Y) of a first order system of differential equations
(dynamic system)  and initial data Y0 = Y(t0). Given an initial value

problem IVP consisting of (possibly higher order) differential expressions together with
initial conditions, numeric::ode2vectorfield converts the higher order equations
to an equivalent system of first order ODEs and returns the input parameters for
numeric::odesolve2.

Higher-order differential equations can always be represented as an equivalent dynamic
system  with some vector Y. E.g., the n-th order equation

may be written as the first order system

for the vector .
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The input list fields correponds to the vector Y. It must be a complete specification
of all functions and their derivatives through but not including the highest derivates
of the unknown functions. E.g., for the second order differential equation ,
the appropriate list of unknown fields is . The differential equations

 are of second order in y and of first order in z. Hence, the
appropriate list of unknown fields is [y(t), y'(t), z(t)].

The ordering of the fields in list determines the ordering of the components of the
list that the numerical solver produces as the solution vector. Cf. “Example 2” on page
19-237.

The differential equations must be linear in the highest derivatives of the unknown
functions involved. E.g., the ODE  is not admitted. However, equations
such as  are accepted and converted to

.

A complete specification of initial conditions must be contained in IVP: for each
component in list, an initial value must be provided. The initial conditions may be
specified by linear equations which will be solved for the initial values of the unknown
fields automatically. E.g., for fields = [y(t), y'(t), z(t)], initial conditions
may be specified explicitly by y(t0) = 1, y'(t_0) = 2, z(t0) = 3, say, or via linear
equations such as y(t_0) + z(t_0) = y'(t_0), y(t0) = z(t0), z(t0) = 2 y(t0).
Cf. “Example 3” on page 19-238.

The differential equations, the initial ‘time’ t0, and the initial conditions may involve
symbolic parameters. However, such parameters must evaluate to numerical objects,
when the sequence returned by numeric::ode2vectorfield is passed to the
numerical solver.

The vectorfield procedure f and the initial values Y0 returned by
numeric::ode2vectorfield can also be used by the functions numeric::odesolve,
plot::Ode2d, plot::Ode3d. Cf. “Example 3” on page 19-238.

numeric::ode2vectorfield and numeric::odeToVectorField are equivalent.
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Examples

Example 1

We consider the initial value problem

.

The solver numeric::odesolve2 requires the procedure f:
for the 1-dimensional vector Y = [y(t)] specified by fields. The utility
numeric::ode2vectorfield accepts a more convenient representation via
arithmetical expressions:

IVP := {y'(t) = t*sin(y(t)), y(t0) = y0}:

fields := [y(t)]:

IVP := numeric::ode2vectorfield(IVP, fields)

This sequence may be passed to the numerical solver which returns a procedure
representing the numerical solution:

t0 := 0: y0 := 1: 

Y := numeric::odesolve2(IVP)

Calling the numerical solution Y invokes the numerical integration from the initial ‘time’
t0 = 0 to the ‘time’ specified in the call to Y:

Y(0), Y(1), Y(2), Y(3)

delete IVP, fields, Y:

Example 2

We consider the second order initial value problem

19-237



19 numeric – Numerical Algorithms

.

The corresponding vectorfield representation involves the vector 
specified by fields:

IVP := {y''(t) = t*sin(y(t)), y(0) = 1, y'(0) = 0}:

fields := [y(t), y'(t)]:

numeric::ode2vectorfield(IVP, fields)

This sequence is accepted by numeric::odesolve2. The numerical solution Y returns
lists representing the components of the vector specified by fields:

Y := numeric::odesolve2(%):

Y(5)

With a reordering of the unknown fields, the numerical solver returns the solution vector
with rearranged components:

fields := [y'(t), y(t)]:

Y := numeric::odesolve2(numeric::ode2vectorfield(IVP, fields)):

Y(5)

delete IVP, fields, Y:

Example 3

The following IVP involves the unknown fields u(t), v(t), w(t). Since it is of second order in
u, of first order in v and of third order in w, the list of unknowns [y(t), y'(t), v(t),
w(t), w'(t), w''(t)] is appropriate:

IVP := {u''(t) - u(t)*v'(t) = exp(-t)*v'(t), v'(t) = w''(t),

        u'(t)*w'''(t) = t + u''(t), 
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        u(PI) = 3, u'(PI) = 1, 

        v(PI) = 0, 

        w(PI) = w'(PI), w'(PI) = 2 - w(PI), w''(PI) = 3*w(PI)}:

fields := [u(t), u'(t), v(t), w(t), w'(t), w''(t)]:

ivp := numeric::ode2vectorfield(IVP, fields)

Y := numeric::odesolve2(ivp):

Y(5)

We plot the components v, w, and  of the solution vector:

plotfunc2d(Y(t)[3], Y(t)[4], Y(t)[6], t = PI .. 5,

           Colors = [RGB::Red, RGB::Green, RGB::Blue]):

Alternatively, we use the vectorfield procedure ivp[1] and the initial conditions ivp[3]
as input parameters for plot::Ode2d:

19-239



19 numeric – Numerical Algorithms

plot(plot::Ode2d([PI + i*(5 - PI)/30 $ i = 0..30],

                 ivp[1], ivp[3],

                 [(t, Y) -> [t, Y[3]], Color = RGB::Red],

                 [(t, Y) -> [t, Y[4]], Color = RGB::Green],

                 [(t, Y) -> [t, Y[6]], Color = RGB::Blue])):

delete IVP, fields, ivp, Y:

Parameters

IVP

The initial value problem: a list or a set of equations involving univariate function calls
y1(t), y2(t) etc. and derivates , , …, ,  etc. The differential equations
must be quasi-linear: the highest derivative of each of the dependent functions y1(t),
y2(t) etc. must enter the equations linearly. IVP must also contain corresponding initial
conditions specified by linear equations in the expressions y1(t0), , …, y2(t0), 
etc. Alternatively, arithmetical expressions may be specified which are interpreted as
equations with vanishing right hand side.
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fields

The vector of the dynamical system equivalent to IVP: a list of symbolic function calls
such as [y_1(t), y_1'(t), dots, y_2(t), y_2'(t), dots] representing the
unknown fields to be solved for.

Return Values

Sequence f, t0, Y0. These data represent the dynamical system  with the

initial condition Y(t0) = Y0 equivalent to IVP. The vectorfield f:  is a
procedure, t0 is a numerical expression representing the initial ‘time’, and Y0 is a list of
numerical expressions representing the components of the initial vector Y0.

See Also

MuPAD Functions
numeric::odesolve | numeric::odesolve2 | numeric::odesolveGeometric |
numeric::odeToVectorField

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d

More About
• “Solve Equations Numerically”

19-241



19 numeric – Numerical Algorithms

numeric::odeToVectorField
Convert an ode system to vectorfield notation

Syntax
numeric::odeToVectorField(IVP, fields)

Description
numeric::odeToVectorField and numeric::ode2vectorfield are equivalent. For
details and examples, see numeric::ode2vectorfield.

Parameters

IVP

The initial value problem: a list or a set of equations involving univariate function calls
y1(t), y2(t) etc. and derivates , , …, ,  etc. The differential equations
must be quasi-linear: the highest derivative of each of the dependent functions y1(t),
y2(t) etc. must enter the equations linearly. IVP must also contain corresponding initial
conditions specified by linear equations in the expressions y1(t0), , …, y2(t0), 
etc. Alternatively, arithmetical expressions may be specified which are interpreted as
equations with vanishing right hand side.

fields

The vector of the dynamical system equivalent to IVP: a list of symbolic function calls
such as [y_1(t), y_1'(t), dots, y_2(t), y_2'(t), dots] representing the
unknown fields to be solved for.

Return Values

Sequence f, t0, Y0. These data represent the dynamical system  with the

initial condition Y(t0) = Y0 equivalent to IVP. The vectorfield f:  is a
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procedure, t0 is a numerical expression representing the initial ‘time’, and Y0 is a list of
numerical expressions representing the components of the initial vector Y0.

See Also

MuPAD Functions
numeric::ode2vectorfield | numeric::odesolve | numeric::odesolve2 |
numeric::odesolveGeometric

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d

More About
• “Solve Equations Numerically”
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numeric::polyrootbound

Bound for the roots of a univariate polynomial

Syntax

numeric::polyrootbound(p)

Description

numeric::polyrootbound(p) returns a bound b, such that all real and complex roots z
of the univariate polynomial p satisfy |z| ≤ b.

The coefficients of p may be real or complex numbers. Also exact numerical coefficients
such as π,  etc. are accepted if they can be converted to floats.

For non-zero constant polynomials, numeric::polyrootbound returns infinity.

For monomials p(x) = cn xn with n > 0, numeric::polyrootbound returns 0.0.

Consider the polynomial p(z) = zn + cn - 1 zn - 1 + ··· + c0. If max(|cn - 1|, …, |c0|) > 0, the
polynomial

has a single real root b > 0 which is an upper bound for the absolute values of all real and
complex roots of p. The bound returned by numeric::polyrootbound(p) approximates
b to about 3 leading decimal digits.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.
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Examples

Example 1

Both polynomial expressions as well as DOM_POLY objects may be used to specify the
polynomial:

p := x^3 + PI*x - sqrt(2): numeric::polyrootbound(p)

p := poly(p, [x]): numeric::polyrootbound(p)

The absolute values of all real and complex roots of p are bounded by this number:

numeric::polyroots(p)

max(abs(z) $ z in %)

delete p:

Parameters

p

A univariate polynomial expression or a univariate polynomial of domain type
DOM_POLY.

Return Values

Nonnegative real floating-point number or infinity.
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See Also

MuPAD Functions
numeric::fsolve | numeric::polyroots | numeric::polysysroots |
numeric::realroot | numeric::realroots | polylib::realroots | RootOf |
solve
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numeric::polyroots

Numerical roots of a univariate polynomial

Syntax

numeric::polyroots(eqs, <FixedPrecision>, <SquareFree>, <Factor>, <NoWarning>)

Description

numeric::polyroots(eqs) returns numerical approximations of all real and complex
roots of the univariate polynomials eqs.

The coefficients may be real or complex numbers. Also symbolic coefficients are accepted
if they can be converted to floats.

The trivial polynomial eqs = 0 results in an error message. The empty list is returned for
constant polynomials eqs ≠ 0.

Multiple roots are listed according to their multiplicities, i.e., the length of the root list
coincides with the degree of eqs.

The root list is sorted by numeric::sort.

Up to roundoff effects, the numerical roots should be accurate to DIGITS significant
digits, unless the option FixedPrecision is used.

All floating-point entries in eqs are internally approximated by rational numbers:
numeric::polyroots(eqs) computes the roots of numeric::rationalize(eqs,
Minimize).

For polynomial expressions in factored form, the numerical search is applied to each
factor separately.

It is recommended to use numeric::realroots or polylib::realroots if eqs is a
real polynomial and only real roots are of interest.
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Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

Both polynomial expressions as well as DOM_POLY objects may be used to specify the
polynomial:

numeric::polyroots(x^3 - 3*x - sqrt(2))

numeric::polyroots(PI*z^4 + I*z + 0.1)

numeric::polyroots(poly(x^5 - x^2, [x]))

Example 2

The following polynomial has exact coefficients:

p := poly((x - 1)*(x - PI)^3, [x]): 

numeric::polyroots(p)

Note that roundoff errors in the coefficients of eqs have a dramatic effect on multiple
roots:
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p := poly((x - 1.0)*(x - float(PI))^3, [x]): 

numeric::polyroots(p)

These are the roots of the following rationalized polynomial:

numeric::rationalize(p, Minimize)

delete p:

Example 3

The multiple root  of the following polynomial can only be computed with restricted

precision by fixed precision arithmetic:

p := poly((x^2 - 6*x +8)*(x - I/3)^5, [x]):

numeric::polyroots(p, FixedPrecision)

Without the option FixedPrecision, the working precision is increased internally to
compute better approximations:

numeric::polyroots(p)

delete p:

Example 4

The following polynomial has badly separated roots. numeric::polyroots does not
manage to separate them properly:
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p := poly(_mult((x - 1 - i/10^9) $ i=0..5), [x]):

numeric::polyroots(p)

One can preprocess the polynomial by a symbolic factorization:

numeric::polyroots(p, Factor)

Alternatively, one can increase the working precision to separate the roots:

DIGITS := 20:

numeric::polyroots(p)

delete p, DIGITS:

Parameters

eqs

A univariate polynomial expression or a univariate polynomial of domain type
DOM_POLY. The function also accepts a list, set, array, or matrix (Cat::Matrix) of
polynomial expressions.

Options

FixedPrecision

This option provides the fastest way to obtain approximations of the roots by a numerical
search with a fixed internal precision of 2 DIGITS decimal places.

Note that badly isolated roots or multiple roots will usually not be approximated
to DIGITS decimals when using this option. The problem of finding such roots is

19-250



 numeric::polyroots

numerically ill-conditioned, i.e., such roots cannot be found to full precision with fixed
precision arithmetic. Typically, a q-fold root will be approximated only to about 

decimal places. Cf. “Example 3” on page 19-249.

Without this option, numeric::polyroots internally increases the working precision
until all roots are found to DIGITS decimal places.

SquareFree

With this option, a symbolic square free factorization is computed via
polylib::sqrfree(eqs). The numerical root finding algorithm is then applied to each
square free factor.

This option is recommended, when p is known to have multiple roots. Such roots force
numeric::polyroots to increase the working precision internally increasing the costs
of the numerical search. A square free factorization reduces the multiplicity of each root
to one, speeding up the final numerical search.

For polynomials with real rational coefficients, a square free factorization is always
used, i.e., this option does not have any effect for such polynomials. For all other types
of coefficients, a square free factorization may be costly and must be requested by this
option.

Multiple roots of eqs can be successfully dealt with by this option. However, for badly
separated distinct roots the square free factorization will not improve the performance of
the numerical search.

Factor

With this option, a symbolic factorizations of eqs via factor are computed. The
numerical root finding algorithm is then applied to each factor.

This option is useful, when eqs can be successfully factorized (e.g., when each expression
from eqs has multiple roots). The numerical search on the factors is much more efficient
than the search on the original polynomial. On the other hand, symbolic factorization of
eqs may be costly.

NoWarning

Suppresses warnings
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Return Values

List of numerical roots.

Algorithms

The numerical root finding algorithm implemented by numeric::polyroots is
Laguerre's method: W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling:
Numerical Recipes in C, Cambridge University Press, 1988.

See Also

MuPAD Functions
numeric::fsolve | numeric::polysysroots | numeric::realroot |
numeric::realroots | polylib::realroots | RootOf | solve
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numeric::polysysroots

Numerical roots of a system of polynomial equations

Syntax

numeric::polysysroots(eqs, <NoWarning>)

numeric::polysysroots(eqs, vars, <NoWarning>)

Description

numeric::polysysroots(eqs, ...) returns numerical approximations of all real
and complex roots of the polynomial system of equations eqs.

The coefficients of the polynomials may contain symbolic parameters.

If no unknowns are specified by vars, thennumeric::indets(eqs) is used in place of
vars.

In most cases, the solution is returned as a set of lists of solved equations of the form

,

where x1, x2, … are the unknowns. These simplified equations should be regarded as
constraints on the unknowns. E.g., if an unknown x1, say, does not turn up in the form
x1 = … in the solution, then there is no constraint on this unknown and it is an arbitrary
parameter. This holds true in general for all unknowns that do not turn up on the left
hand side of the solved equations. Cf. “Example 2” on page 19-255.

If no explicit solutions can be computed, expressions of the form x x S1 2, ,…( ) Œ  may be
returned, where S is the solution set.

The ordering of the unknowns in vars determines the ordering of the solved equations. If
a setvars is used, then an internal ordering is used.
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Note: If the solution set of eqs is not finite, then numeric::polysysroots may
return solutions with some of the unknowns remaining as free parameters. In this
case the representation of the solution depends on the ordering of the unknowns! Cf.
“Example 3” on page 19-255. Further, if higher degree polynomials are involved, then
numeric::polysysroots may fail to compute roots. Cf. “Example 5” on page 19-256.
The same may happen, when eqs contains symbolic parameters.

You may try numeric::fsolve to compute a single numerical root, if
numeric::polysysroots cannot compute all roots of the system. Note, however, that
numeric::fsolve does not accept symbolic parameters in the equations.

We recommend to use numeric::polyroots to compute all roots of a single univariate
polynomial with numerical coefficients.

numeric::polysysroots is a hybrid routine: it calls the symbolic solver solve(eqs,
vars, BackSubstitution = FALSE) and processes its symbolic result numerically.
Cf. “Example 4” on page 19-256.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

Equations, expressions as well as DOM_POLY objects may be used to specify the
polynomials:

numeric::polysysroots(x^2 = PI^2, x)

numeric::polysysroots({x^2 + y^2 - 1, x^2 - y^2 = 1/2}, [x, y])
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numeric::polysysroots({poly(x^2 + y + 1), y^2 + x = 1}, [x, y])

Symbolic parameters are accepted:

numeric::polysysroots(x^2 + y + exp(z), [x, y])

Example 2

The returned solutions may contain some of the unknowns remaining as free parameters:

numeric::polysysroots({x^2 + y^2 = z}, [x, y, z])

Example 3

The ordering of the unknowns determines the representation of the solution, if the
solution set is not finite. First, the following equation is solved for x leaving y as a free
parameter:

numeric::polysysroots({x^3 = y^2}, [x, y])
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Reordering the unknowns leads to a representation with x as a free parameter:

numeric::polysysroots({x^3 = y^2}, [y, x])

Example 4

The symbolic solver produces a RootOf solution of the following system:

eqs := {y^2 - y = x, x^3 = y^3 + x}:

solve(eqs, BackSubstitution = FALSE)

Internally, numeric::polysysroots calls solve and processes this result numerically:

numeric::polysysroots(eqs, [x, y])

delete eqs:

Example 5

The following equation is solved for the first of the specified unknowns:

eqs := y^5 - PI*y = x:

solve(eqs, [x, y])
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numeric::polysysroots processes this output numerically:

numeric::polysysroots(eqs, [x, y])

The equation is solved for y when the unknowns are reordered. However, no simple
representation of the solution exists, so a RootOf object is returned:

solve(eqs, [y, x])

The roots represented by the RootOf expression cannot be computed numerically,
because the symbolic parameter x is involved:

numeric::polysysroots(eqs, [y, x])

delete eqs:

Parameters

eqs

A polynomial equation or a list, set, array, or matrix (Cat::Matrix) of such equations.
Also expressions and polynomials of domain type DOM_POLY are accepted wherever an
equation is expected. They are interpreted as homogeneous equations.

vars

An unknown or a list or set of unknowns. Unknowns may be identifiers or indexed
identifiers.
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Options

NoWarning

By default, the roots are double-checked, automatically. Warnings are issued if a solution
seems to be marred by some numerical instability. With this option, this check is
suppressed and no warnings will be issued.

Return Values

A set of lists of equations or an expression of the form x x S1 2, ,…( ) Œ , where x1, x2, … are
the unknowns and S is the solution set.

The set {[]} containing an empty list is returned, if no solutions can be computed.

See Also

MuPAD Functions
linsolve | numeric::fsolve | numeric::linsolve | numeric::polyroots |
numeric::realroot | numeric::realroots | polylib::realroots | solve

19-258



 numeric::product

numeric::product
Numerical approximation of products

Syntax
numeric::product(f, i = a .. b)

numeric::product(f, i in RootOf(p, <x>))

numeric::product(f, i = RootOf(p, <x>))

numeric::product(f, i in {x1, x2, …})

numeric::product(f, i = {x1, x2, …})

Description

numeric::product(f, i = a..b) computes a numerical approximation of .

numeric::product (f, i = RootOf(p,x)) computes a numerical approximation of
the product of f over the roots of the polynomial p.

numeric::product(f, i in { x1, x2, …}) computes a numerical approximation of
.

The call numeric::product(...) is equivalent to calling the float attribute of
product via float ( hold( product )(...)), float ( freeze( product )
(...)) or product::float(...).

If there are other symbolic parameters in f, apart from the variable i, a symbolic call to
numeric::product is returned. Numerical expressions such as ,  etc. are accepted
and converted to floating-point numbers.

Note: For finite products, numeric::product just returns _mult ( float(f) $
i=a..b). Cf. “Example 3” on page 19-261.
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The call numeric::product(f, i = { x1, x2, …}) computes numerical
approximations of x[1], x[2] etc., substitutes these values into f(i) and multiplies the
results.

The calls numeric::product(f, i in { x1, x2, …}) and numeric::product(f,
i = { x1, x2, …}) are equivalent.

The call numeric::product (f, i in RootOf(p, x)) computes numerical
approximations of all roots of p, substitutes these values into f(i) and multiplies the
results. Cf. “Example 2” on page 19-261.

The calls numeric::product(f, i in RootOf(p, x)) and numeric::product(f,
i = RootOf(p, x)) are equivalent.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision and influences the maximum number of steps used in the
computation.

Examples

Example 1

We demonstrate some equivalent calls for numerical products:

numeric::product(1+1/k^2, k = 1..infinity),

float(hold(product)(1+1/k^2, k = 1..infinity)),

float(freeze(product)(1+1/k^2, k = 1..infinity)),

product::float(1+1/k^2, k = 1..infinity);

product fails to find a closed form for the following product:

product(1 - 1/4^k, k = 1..infinity);
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float implicitly uses numeric::product to compute a numerical approximation:

float(%);

The exact value of the following infinite product is :

numeric::product(exp((-1)^(k+1)*k^(-1/2)), k = 1..infinity)

 = float(exp((1-sqrt(2))*zeta(1/2)))

Example 2

We calculate an approximation of the product over the roots of a polynomial:

numeric::product(sin(r), r = RootOf(x^2 - PI^2/4, x))

If the polynomial expression contains additional indeterminates, a symbolic call to
numeric::product is returned:

numeric::product(r+PI, r = RootOf(x^8 + c*x - PI^2/4, x))

Example 3

numeric::product can also be used to compute finite products:
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numeric::product(1-1/k^2, k = 2..10^n) $ n in { 2, 3, 4 }

However, since numeric::product uses _mult internally anyway, it is more efficient to
call _mult directly:

_mult(float(1-1/k^2) $ k = 2..10^n) $ n in { 2, 3, 4 }

Example 4

The following product is returned symbolically because it contains the additional
indeterminate k:

numeric::product(1-1/n^k, n = 2..infinity)

Parameters

f

An arithmetical expression depending on i

i

The product index: an identifier or indexed indentifier

a, b

integers or  satisfying a ≤ b

p

A univariate polynomial expression in x
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x

Indeterminate

x1, x2, …

numerical expressions

Return Values

floating-point number or a symbolic expression of type numeric::product.

Algorithms

Infinite products are calculated by summing the series  via numeric::sum.

numeric::product uses numeric::polyroots to calculate numerical approximations
to the roots of a polynomials.

See Also

MuPAD Functions
_mult | numeric::polyroots | numeric::sum | product
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numeric::quadrature

Numerical integration ( Quadrature )

Syntax

numeric::quadrature(f(x), x = a .. b, <GaussLegendre = n | GaussTschebyscheff = n | NewtonCotes = n>, <Adaptive = v>, <MaxCalls = m>)

Description

numeric::quadrature(f(x), x = a..b) computes a numerical approximation of
.

numeric::quadrature returns itself symbolically if the integrand f(x) contains
symbolic objects apart from the integration variable x that cannot be converted to
numerical values via float. Symbolic objects such as π or  etc. are accepted.

The integrand f(x) should be integrable in the Riemann sense. In particular, f(x)
should be bounded on the integration interval x = a..b. Certain types of mild
singularities are handled, but numerical convergence is not guaranteed and will be slow
in most cases. Also discontinuities and singularities of (higher) derivatives of f(x) slow
down numerical convergence. For integrands with irregular points, it is recommended
to split the integration into several parts, using subintervals on which the integrand is
smooth. Cf. “Example 4” on page 19-268.

Integrands given by user-defined procedures can be handled. See “Example 4” on page
19-268 and “Example 5” on page 19-269.

numeric::quadrature returns itself symbolically if the boundaries a,b contain
symbolic objects that cannot be converted to numerical values via float. Symbolic
objects such as π or  etc. as well as infinity and -infinity are accepted.

Note: For infinite ranges, the user should make sure that the integral exists! If f(x)
does not decay as fast as  at infinity, then convergence may be slow.
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Boundaries a > b are accepted, using .

For complex values of a,b, the integration is to be understood as a contour integral along
a straight line from a to b. Complex boundaries must not involve infinity.

Multi-dimensional integration such as

numeric::quadrature ( numeric::quadrature(f(x,y), y = A(x)..B(x)), x

= a..b)

is possible. See “Example 3” on page 19-267 and “Example 5” on page 19-269.

Internally, an adaptive mechanism based on a fixed quadrature rule specified by method
= n is used. It tries to keep the relative quadrature error of the result below .

The last digit(s) of the result may be incorrect due to roundoff effects.

The routine numeric::quadrature is purely numerical: no symbolic check for
singularities etc. is carried out.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We demonstrate the standard calls for adaptive numerical integration:

numeric::quadrature(exp(x^2), x = -1..1)

numeric::quadrature(max(1/10, cos(PI*x)), x = -2..0.0123)
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numeric::quadrature(exp(-x^2), x = -2..infinity)

The precision goal is set by DIGITS:

DIGITS := 50:

numeric::quadrature(besselJ(0, x), x = 0..PI)

Note that due to the internal adaptive mechanism, the choice of different methods should
not have any significant effect on the quadrature result:

DIGITS := 10:

numeric::quadrature(sin(x)/x, x = -1..10, GaussLegendre = 5),

numeric::quadrature(sin(x)/x, x = -1..10, GaussLegendre = 160),

numeric::quadrature(sin(x)/x, x = -1..10, NewtonCotes = 8)

Example 2

The user should make sure that the integrand is well defined and sufficiently regular.
The following fails, because Newton-Cotes quadrature tries to evaluate the integrand at
the boundaries:

numeric::quadrature(sin(x)/x, x = 0..1, NewtonCotes = 8)

Error: Division by zero. [_power]

  Evaluating: Quadsum

One may cure this problem be assigning a value to f(0). The integrand is passed to
the integrator as hold(f) to prevent premature evaluation of f(x) to sin(x)/x.
Internally, numeric::quadrature replaces x by numerical values and then evaluates
the integrand. Note that one has to define f(0.0) := 1 rather than f(0) := 1:
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f := x -> sin(x)/x:

f(0.0) := 1:

numeric::quadrature(hold(f)(x), x = 0..1, NewtonCotes = 8)

The default method (Gauss-Legendre quadrature) does not evaluate the integrand at the
end points:

numeric::quadrature(sin(x)/x, x = 0..1)

Nevertheless, problems may still arise for improper integrals:

numeric::quadrature(ln((1 + x^4)^2 - 1), x = 0 .. 1)

Warning: Precision goal is not achieved after 10000 function calls. Increase 'MaxCalls' and try again for a more accurate result. [numeric::quadrature]

In this example, the integrand is evaluated close to 0. The expression (1 + x4)2 - 1 suffers
from severe numerical cancellation and is dominated by round-off. A numerically stable
representation is (1 + x4)2 - 1 = x4 (x4 + 2):

numeric::quadrature(ln(x^4*(x^4 + 2)), x = 0..1)

Note that convergence is rather slow, because the integrand is not bounded.

delete f:

Example 3

We demonstrate multi-dimensional quadrature:

Q := numeric::quadrature:

Q(Q(exp(x*y), x = 0..y), y = 0..1)
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Also more complex types of nested calls are possible. We use numerically defined
functions

b := y -> Q(exp(-t^2-t*y), t = y..infinity):

and

f := y -> cos(y^2) +  Q(exp(x*y), x = 0..b(y)):

for the following quadrature:

Q(f(y), y = 0..1)

Multi dimensional quadrature is computationally expensive. Note that a call to
numeric::quadrature evaluates the integrand at least 3 n times, where n is the
number of nodes of the internal quadrature rule (by default, n = 20 for DIGITS ≤ 10).
The following triple quadrature would call the exp function no less than (3 20)3 = 216000
times!

Q(Q(Q(exp(x*y*z), x = 0..y+z), y = 0..z), z = 0..1)

For low precision goals, low order quadrature rules suffice. In the following, we reduce
the computational costs by using Gauss-Legendre quadrature with 5 nodes. We use the
shorthand notation GL to specify the GaussLegendre method:

DIGITS := 4: 

Q(Q(Q(exp(x*y*z), x=0..y+z, GL=5), y=0..z, GL=5), z=0..1, GL=5)

delete Q, b, f, DIGITS:

Example 4

We demonstrate how integrands given by user-defined procedures should be handled.
The following integrand

19-268



 numeric::quadrature

f := proc(x) begin 

      if x<1 then sin(x^2) else cos(x^5) end_if

    end_proc:

cannot be called with a symbolic argument:

f(x)

Error: Cannot evaluate to Boolean. [_less]

  Evaluating: f

Consequently, one must use hold to prevent premature evaluation of f(x):

numeric::quadrature(hold(f)(x), x = -1..PI/2)

Note that the above integrand is discontinuous at x = 1, causing slow convergence
of the numerical quadrature. It is much more efficient to split the integral into two
subquadratures with smooth integrands:

numeric::quadrature(sin(x^2), x = -1..1) +

numeric::quadrature(cos(x^5), x = 1..PI/2)

See “Example 5” on page 19-269 for multi-dimensional quadrature of user-defined
procedures.

delete f:

Example 5

The following integrand

f := proc(x, y) begin 

       if x<y then x-y else (x-y) + (x-y)^5 end_if

     end_proc:

can only be called with numerical arguments and must be delayed twice for 2-
dimensional quadrature:
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Q := numeric::quadrature:

Q(Q(hold(hold(f))(x, y), x = 0..1), y = 0..1)

Note that delaying the integrand via hold will not work for triple or higher-dimensional
quadrature! The user can handle this by making sure that the integrand can also be
evaluated for symbolic arguments:

f := proc(x, y, z)

     begin

       if not testtype([args()], Type::ListOf(Type::Numeric))

          then return(procname(args()))

       end_if;

       if x^2 + y^2 + z^2 <= 1 

          then return(1) 

          else return(0) 

       end_if

     end_proc:

Note that this function is not continuous, implying slow convergence of the numerical
quadrature. For this reason, we use a low precision goal of only 2 digits and reduce the
costs by using a low order quadrature rule:

DIGITS := 2: 

Q(Q(Q(f(x, y, z), x=0..1, GL=5), y=0..1, GL=5), z=0..1, GL=5)

delete f, Q, DIGITS:

Example 6

The following example uses non-adaptive Gauss-Tschebyscheff quadrature with an
increasing number of nodes. The results converge quickly to the exact value:

a := exp(x)/sqrt(1 - x^2), x = -1..1:

numeric::quadrature(a, Adaptive = FALSE, GT = n) $ n = 3..7
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delete a:

Example 7

The improper integral  exists. Numerical convergence, however, is rather

slow because of the singularity at x = 0:

numeric::quadrature(x^(-9/10), x = 0..1)

Warning: Precision goal is not achieved after 10000 function calls. Increase 'MaxCalls' and try again for a more accurate result. [numeric::quadrature]

We remove the limit for the number of function calls and let numeric::quadrature
grind along until a result is found. The time for the computation grows accordingly, the
last digit is incorrect due to roundoff effects:

numeric::quadrature(x^(-9/10), x = 0..1, MaxCalls = infinity)

Example 8

The following integral does not exist in the Riemann sense, because the integrand is not
bounded:

numeric::quadrature(1/x, x = -1..2)

Warning: Precision goal is not achieved after 10000 function calls. Increase 'MaxCalls' and try again for a more accurate result. [numeric::quadrature]

We increase MaxCalls. There is no convergence of the numerical algorithm, because
the integral does not exist. Consequently, some internal problem must arise:
numeric::quadrature reaches its maximal recursive depth:

numeric::quadrature(1/x, x = -1..2, MaxCalls = infinity)
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Warning: Precision goal is not achieved after 'MAXDEPTH=500' recursive calls. There might be a singularity of '1/x' close to 'x=3.910318545e-148'. Increase 'MAXDEPTH' and try again for a more accurate result. [adaptiveQuad]

Parameters

f(x)

An arithmetical expression in x

x

An identifier or an indexed identifier

a, b

Real or complex numerical values or 

Options

GaussLegendre, GaussTschebyscheff, NewtonCotes

Options, specified as GaussLegendre = n, GaussTschebyscheff = n, NewtonCotes
= n

The name of the underlying quadrature scheme. Each quadrature rule can be used with
an arbitrary number of nodes specified by the positive integer n.

Usually there is no need to use this option to change the default method GaussLegendre
= n with n = 20,40,80 or 160, depending on the precision goal determined by the
environment variable DIGITS. Due to the corresponding high quadrature orders 40, 80,
160 or 320, respectively, the default settings are suitable for high precision computations.

With GaussLegendre = n, an adaptive version of Gauss-Legendre quadrature with n
nodes is used.

For DIGITS ≤ 200, the weights and abscissae of Gaussian quadrature with n = 20, 40, 80,
and 160 nodes are available and the integration starts immediately.
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For DIGITS > 200, the routine numeric::gldata is called to compute the Gaussian
data before the actual integration starts. This will be noted by some delay in the first call
of numeric::quadrature.

For DIGITS much larger than 200, it is recommended not to use the default setting but
to use GaussLegendre = n with sufficiently high n instead. A reasonable choice is n ≈
DIGITS.

With GaussTschebyscheff = n, non-adaptive Gauss-Tschebyscheff quadrature with n
nodes is used. This method may only be used in conjunction with Adaptive = FALSE.

Note: With NewtonCotes = n, an adaptive version of Newton-Cotes quadrature with n
nodes is used. Note that these quadrature rules become numerically unstable for large n
(n much larger than 10).

Following alternative names for the methods are accepted:

GaussLegendre, Gauss, GL,

GaussTschebyscheff, GT, GaussChebyshev, GC,

NewtonCotes, NC.

Adaptive

Option, specified as Adaptive = v

v may be TRUE or FALSE. With Adaptive = FALSE, the internal error control is
switched off.

The default setting is Adaptive = TRUE. An adaptive quadrature scheme with
automatic control of the quadrature error is used.

The call numeric::quadrature(f(x), x = a..b, method = n, Adaptive =
FALSE) returns the quadrature sum  approximating

 without any control of the quadrature error. The weights Bi and abscissae
Ci are determined by the quadrature rule given by method = n. For the methods
GaussLegendre, GaussTschebyscheff and NewtonCotes, these data are available
via numeric::gldata, numeric::gtdata and numeric::ncdata, respectively.
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Adaptive = FALSE may only be used in conjunction with method = n.

Usually there is no need to switch off the internal adaptive quadrature via Adaptive
= FALSE. This option is meant to give easy access to standard non-adaptive quadrature
rules of Gauss-Legendre, Gauss-Tschebyscheff and Newton-Cotes type, respectively. The
user may want to build his own adaptive quadrature based on these non-adaptive rules.
Cf. “Example 6” on page 19-270.

MaxCalls

Option, specified as MaxCalls = m

m must be a (large) positive integer or infinity. It is the maximal number of
evaluations of the integrand, before numeric::quadrature gives up.

When called interactively, numeric::quadrature returns the approximation it has
computed so far and issues a warning. See “Example 7” on page 19-271. When called
from inside a procedure, numeric::quadrature returns FAIL.

The default value is m = MAXDEPTH*n. The environment variable MAXDEPTH (default
value 500) represents the maximal recursive depth of a function. n is the number of
nodes of the basic quadrature rule specified by the optional argument method = n. If no
such method is specified by the user, then Gauss-Legendre quadrature is used with n =
20 for DIGITS ≤ 10, n = 40 for 10 < DIGITS ≤ 50, n = 80 for 50 < DIGITS ≤ 100, n = 160
for 100 < DIGITS. Thus, for DIGITS = 10, the default setting is MaxCalls = 10000.

The default value of m ensures that the MaxCalls limit is reached before
numeric::quadrature reaches its maximal internal recursive depth. Specifying
MaxCalls = infinity removes this restriction and numeric::quadrature computes
until it obtains an approximation with about DIGITS correct digits or until it runs into
an internal error. The typical error that may occur is the evaluation of the integrand at
a singularity. There also is the danger of numeric::quadrature reaching its maximal
internal recursive depth. When called interactively, numeric::quadrature returns the
approximation it has computed so far and issues a warning. See “Example 8” on page
19-271. When called from inside a procedure, numeric::quadrature returns FAIL.

Return Values

Floating point number is returned, unless non-numerical symbolic objects in the
integrand f(x) or in the boundaries a,b prevent numerical evaluation. In this case,
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numeric::quadrature returns itself symbolically. If numerical problems occur, then
FAIL is returned.

See Also

MuPAD Functions
int | numeric::gldata | numeric::gtdata | numeric::int | numeric::ncdata
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numeric::rank
Numerical estimate of the rank of a matrix

Syntax
numeric::rank(A, <eps>, options)

Description

numeric::rank(A) returns an integer indicating the rank of the matrix A.

All entries of the input matrix must be numerical, i.e., they must be floating-point
numbers or expressions that can be converted to floating-point numbers.

The rank of a matrix coincides with the number of non-zero singular values.

A numerical estimate of the rank is computed by counting all singular values that are
larger than eps smax, where smax is the largest singular value. (All smaller singular
values are regarded as round-off artifacts and treated as zero.)

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We consider a quadratic matrix of rank 2:

A := matrix([[1, 1, I], 

             [1, 2, 3],

             [2, 4, 6]]):
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numeric::rank(A)

Hilbert matrices have full rank. However, they are extremely ill-conditioned and it
is difficult to compute their rank numerically. The 10×10 Hilbert matrix has rank
10. Numerically, however, some of the singular values are so small that they may be
regarded as zero resulting in a smaller numerical rank. In particular, with the default
value eps = , two singular values are smaller than eps smax where smax =

 is the maximal singular value:

A := linalg::hilbert(10):

numeric::singularvalues(A)

numeric::rank(A)

We specify a second argument eps = 10- 14 to allow smaller singular values to be
regarded as non-zero. Now, the numerical rank is 10:

numeric::rank(A, 10^(-14))

delete A:

Example 2

We consider a non-square matrix of rank 1:
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A := matrix([[0, 0], 

             [I, 1], 

             [I, 1]]):

numeric::rank(A)

delete A:

Example 3

We demonstrate the difference between hardware floats and software floats:

A := linalg::hilbert(15):

numeric::rank(A, 10^(-20), SoftwareFloats),

numeric::rank(A, 10^(-20), HardwareFloats)

delete A:

Parameters

A

An m×n matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category Cat::Matrix

eps

Relative tolerance: regard all singular values s of A as zero if they satisfy s ≤ eps smax,
where smax is the largest singular value of A. The default value of eps is .

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
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With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.
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Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

Note: For ill-conditioned matrices, the results returned with HardwareFloats and
SoftwareFloats may differ significantly! See “Example 3” on page 19-278.

Return Values

Positive integer.

See Also

MuPAD Functions
linalg::rank
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numeric::rationalize
Approximate a floating-point number by a rational number

Syntax
numeric::rationalize(object, <Exact | Minimize | Restore>, <digits>)

Description

numeric::rationalize(object) replaces all floating-point numbers in object by
rational numbers.

An object of a library domain, characterized by
domtype(extop(object,0))=DOM_DOMAIN is returned unchanged. For all other
objects, numeric::rationalize is applied recursively to all operands. Objects of
library domains can be rationalized if the domain has an appropriate map method. See
“Example 5” on page 19-285.

A floating-point number f is approximated by a rational number r satisfying |f - r| <
ε |f|.

Note: With the options Exact and Minimize, the guaranteed precision is .

With Restore, the guaranteed precision is only .

The default precision is digits = DIGITS.

The user defined precision must not be larger than the internal floating-point precision
set by DIGITS: an error occurs for digits > DIGITS.

Environment Interactions

The function is sensitive to the environment variable DIGITS.
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Examples

Example 1

numeric::rationalize is applied to each operand of a composite object:

numeric::rationalize(0.2*a+b^(0.7*I))

numeric::rationalize([{poly(0.2*x, [x]), sin(7.2*PI) + 1.0*I},

                      exp(3 + ln(2.0*x))])

Example 2

We demonstrate the default strategy Exact:

numeric::rationalize(12.3 + 0.5*I),

numeric::rationalize(0.33333), 

numeric::rationalize(1/3.0)

numeric::rationalize(10^12/13.0),

numeric::rationalize(10^(-12)/13.0)

We reduce the precision of the approximation to 5 digits:

numeric::rationalize(10^12/13.0, 5),
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numeric::rationalize(10^(-12)/13.0, 5)

Example 3

We demonstrate the strategy Minimize for minimizing the complexity of the resulting
rational number:

numeric::rationalize(1/13.0, 5),

numeric::rationalize(1/13.0, Minimize, 5),

numeric::rationalize(0.333331, 5),

numeric::rationalize(0.333331, Minimize, 5),

numeric::rationalize(14.285, 5),

numeric::rationalize(14.2857, Minimize, 5),

numeric::rationalize(1234.1/56789.2),

numeric::rationalize(1234.1/56789.2, Minimize)

We compute rational approximations of π with various precisions:

numeric::rationalize(float(PI), Minimize, i) $ i = 1..10

Example 4

We demonstrate the strategy Restore for restoring rational numbers after elementary
float operations. In many cases, also the Minimize strategy restores:

numeric::rationalize(1/7.3, Exact),

numeric::rationalize(1/7.3, Minimize),

numeric::rationalize(1/7.3, Restore)
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However, using Restore improves the chances of recovering from roundoff effects:

numeric::rationalize(10^9/13.0, Minimize),

numeric::rationalize(10^9/13.0, Restore)

DIGITS:= 11:

numeric::rationalize(1234.56/12345.67, Minimize),

numeric::rationalize(1234.56/12345.67, Restore)

In some cases, Restore manages to recover from roundoff error propagation in
composite arithmetical operations:

DIGITS:= 10:

x:= float(122393/75025):

y:= float(121393/75025):

z := (x^2 - y^2)/(x + y)

numeric::rationalize(z, Restore)

The result with Restore corresponds to exact arithmetic:

rx := numeric::rationalize(x, Restore):

ry := numeric::rationalize(y, Restore):

rx, ry, (rx^2 - ry^2)/(rx + ry)
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Note that an approximation with Restore may have a reduced precision of only
digits/2:

x := 1.0 + 1/10^6:

numeric::rationalize(x, Exact),

numeric::rationalize(x, Restore)

delete x, y, z, rx, ry:

Example 5

The floats inside objects of library domains are not rationalized directly. However, for
most domains the corresponding map method can forward numeric::rationalize to
the operands:

Dom::Multiset(0.2, 0.2, 1/5, 0.3)

numeric::rationalize(%), map(%, numeric::rationalize, Restore)

Parameters

object

An arbitrary MuPAD object

digits

A positive integer (the number of decimal digits) not bigger than the environment
variable DIGITS. It determines the precision of the rational approximation.
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Options

Exact

Specifies the strategy for approximating floating-point numbers by rational numbers.
This is the default strategy, so there is no real need to pass Exact as a parameter to
numeric::rationalize.

Any real floating-point number f ≠ 0.0 has a unique representation

With integer exponent and 1.0 ≤ mantissa < 10.0. With the option Exact, the float
mantissa is replaced by the rational approximation

.

This guarantees a relative precision of digits significant decimals of the rational
approximation.

Minimize

Specifies the strategy for approximating floating-point numbers by rational numbers.
This strategy tries to minimize the complexity of the rational approximation, i.e.,
numerators and denominators are to be small.

The guaranteed precision of the rational approximation is digits.

See “Example 3” on page 19-283.

Restore

Specifies the strategy for approximating floating-point numbers by rational numbers.
This strategy tries to restore rational numbers obtained after elementary arithmetical
operations applied to floating-point numbers. E.g., for rational r, the float division f
= 1/float(r) introduces additional roundoff, which the Restore algorithm tries to
eliminate: numeric::rationalize(f, Restore) = 1/r. This strategy, however, is
purely heuristic and will not succeed when significant roundoff is caused by arithmetical
float operations!
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Note: The guaranteed precision of the rational approximation is only digits/2!

See “Example 4” on page 19-283.

Return Values

If the argument is an object of some kernel domain, then it is returned with all floating-
point operands replaced by rational numbers. An object of some library domain is
returned unchanged.

Overloaded By

object

Algorithms

Continued fraction (CF) expansion is used with the options Minimize and Restore.

With Minimize, the first CF approximation satisfying the precision criterion is returned.

The Restore algorithm stops, when large coefficients of the CF expansion are found.
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numeric::realroot
Numerical search for a real root of a real univariate function

Syntax
numeric::realroot(f(x), x = a .. b, <SearchLevel = s>)

Description

numeric::realroot(f(x), x = a..b) computes a numerical real root of f(x) in the
interval [a, b].

The expression f(x) must not contain symbolic objects other than the indeterminate x
that cannot be converted to numerical values via float. Symbolic objects such as π or

 etc. are accepted. The same holds true for the boundaries a, b of the search interval.

The function must produce real values. If float(f(x)) does not yield real floating-point
numbers for all real floating-point numbers x from the interval , internal problems
may occur. See “Example 5” on page 19-291.

numeric::realroot never tries to evaluate f(x) outside the search interval.
Consequently, singularities outside the interval do not cause any problems. In many
cases also singularities inside the interval do not affect the numerical search. However,
numeric::realroot is not guaranteed to work in such a case. An error may occur, if
the internal search accidentally hits a singularity. See “Example 5” on page 19-291.

Up to roundoff effects numerical roots r with  are computed to a relative

precision of DIGITS significant decimal places. Roots of smaller absolute size are
computed to an absolute precision of . These precision goals are not achieved, if

significant roundoff occurs in the numerical evaluation of f(x).

If f takes opposite signs at the endpoints a, b of the search interval and does not have
zero-crossing singularities, then numeric::realroot is bound to find a root in the
interval .
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User defined functions can be handled. See “Example 2” on page 19-289.

Note: numeric::realroot approximates a point where f(x) changes its sign. This is a
root only if the function f is continuous. See “Example 3” on page 19-290.

Note that numeric::realroots may be used to isolate all real roots. However, this
function is much slower than numeric::realroot, if f is not a polynomial.

For univariate polynomials we recommend to use numeric::realroots or
polylib::realroots rather than numeric::realroot.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

The following functions assume different signs at the boundaries, so the searches are
bound to succeed:

numeric::realroot(x^3 - exp(3), x = -PI..10)

numeric::realroot(exp(-x[1]) = x[1], x[1] = 0..1)

Example 2

The following function cannot be evaluated for non-numerical x. So one has to delay
evaluation via hold:
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f := proc(x) begin 

      if x<0 then 1 - x else exp(x) - 10*x end_if

     end_proc:

numeric::realroot(hold(f)(x), x = -10..10)

delete f:

Example 3

numeric::realroot approximates a point, where f(x) changes its sign. For the
following function this happens at the discontinuity x = 1:

f := proc(x) begin if x<1 then -1 else x end_if end_proc:

numeric::realroot(hold(f)(x), x = 0..3)

delete f:

Example 4

The following function does not have a real root. Consequently, numeric::realroot
fails:

numeric::realroot(x^2 + 1, x = -2..2)

The following function does not have a real root in the search interval:

numeric::realroot(x^2 - 1, x =  2..3)
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Example 5

The following function is complex valued for x2 < 3.5. An error occurs, when the internal
search hits such a point:

numeric::realroot(ln(x^2 - 3.5), x = -2..3)

Error: Cannot evaluate to Boolean. [_less]

  Evaluating: numeric::BrentFindRoot

The singularity at x = 1 does not cause any problem in the following call:

numeric::realroot((x-2)/(x-1), x = -10..10)

However, the singularity may be hit accidentally in the internal search:

numeric::realroot((x-2)/(x-1), x = 0..3)

Error: Division by zero. [_power]

  Evaluating: f

Example 6

The following function has a root close to 1.0, which is difficult to detect. With the default
search level s = 1, this root is not found:

f := 2 - exp(-100*(x - 2)^2) - 2*exp(-1000*(x - 1)^2):

numeric::realroot(f, x = 0..5)

The root is detected with an increased search level:

numeric::realroot(f, x = 0..5, SearchLevel = 3)

delete f:
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Parameters

f(x)

An arithmetical expression in one unknown x or a list, set, array, or matrix
(Cat::Matrix) of expressions. Alternatively, equations in the form f1(x) = f2(x)
equivalent to the expressions f1(x) - f2(x).

x

An identifier or an indexed identifier

a, b

Finite real numerical values

Options

SearchLevel

Option, specified as SearchLevel = s

The nonnegative integer s controls the internal refinement of the search. The default
value is s = 1. Increasing s increases the chance of finding roots that are difficult to detect
numerically. See “Example 6” on page 19-291.

Note that increasing s by 1 may quadruple the time before FAIL is returned, if no real
root is found. For this reason we recommend to restrict s to small values (s ≤ 5, say).

Return Values

Single numerical real root of domain type DOM_FLOAT. If no solution is found, then FAIL
is returned.

Algorithms

A mixture of bisectioning, secant steps and quadratic interpolation is used by
numeric::realroot.
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See Also

MuPAD Functions
numeric::fsolve | numeric::polyroots | numeric::realroots |
polylib::realroots | solve

More About
• “Solve Equations Numerically”
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numeric::realroots
Isolate intervals containing real roots of a univariate function

Syntax
numeric::realroots(f(x), <x = a .. b>, <eps>, <Merge = c>)

Description

numeric::realroots(f(x), x = a..b) searches for real roots of f(x) in the
interval . It returns a list of subintervals in which real roots of f(x) may exist. It is
guaranteed that there are no real roots in the interval  lying outside the union of
the returned subintervals.

With Merge = FALSE, all intervals returned by numeric::realroots have length bi -
ai < eps with a default value eps = 0.01. The absolute precision of the root isolation may
be redefined using the optional parameter eps.

Note: The intervals returned by numeric::realroots define a subset of  that
may contain real roots. For polynomial expressions f(x), each of the subintervals of 
returned by numeric::realroots is guaranteed to contain exactly one root. For non-
polynomial expressions f(x), however, some of the subintervals may contain no root! Cf.
“Example 6” on page 19-298.

In any case, the complement  of the subintervals 

returned by numeric::realroots is guaranteed to contain no real roots. In particular,
from the return value [], one may positively conclude that no root exists in the search
interval . Cf. “Example 2” on page 19-296.

Symbolic parameters in f(x) are not allowed: float(f(x)) must evaluate to a floating
point number for all x from the interval .

Infinite intervals of the form x = -infinity..b are not refined if b ≤ - 105.
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Infinite intervals of the form x = a..infinity are not refined if a ≥ 105.

Such intervals are returned directly if numeric::realroots thinks that they may
contain roots. Cf. “Example 5” on page 19-297.

f(x) may contain complex expressions. Only the search parameter x is assumed to be real.
For complex expressions f(x), the intervals are returned where both the real and the
imaginary part of the expression vanish simultaneously.

Note: The expression f(x) must be suitable for interval arithmetic. In particular,
MuPAD must be able to evaluate f(a...b). Note that not all MuPAD functions support
this kind of arithmetic.

Presently, the following special functions support interval arithmetic: abs, arccos,
arccosh, arccoth, arccot, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh,
arctan, arctanh, arg, beta, ceil, cos, cosh, cot, coth, csc, csch, dirac, exp,
floor, gamma, Im, ln, Re, round, sec, sech, sin, sinh, sqrt, tan, tanh, trunc. Real
roots can be searched for any expression that is built from these functions using the
standard arithmetical operations +, -, *, /, ^.

The default value is eps = 0.01. User defined precision goals must satisfy .

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

The following expression has integer zeros. The solutions in the specified interval are
approximated to the default precision 0.01:

numeric::realroots(sin(PI*x), x = -2..sqrt(2))
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The following equation is solved with an absolute precision of 7 digits:

numeric::realroots(x*sin(x) = exp(-x), x = -1..1, 10^(-7))

Example 2

The following expression does not have a real root:

numeric::realroots(exp(x) + x^2, x = -100..100)

Example 3

We demonstrate the option Merge. If interval arithmetic can not isolate roots to the
desired precision eps (default 0.01), then adjacent intervals are produced, each of length
smaller than eps. This happens in the following example:

numeric::realroots(ln(x^2 -2*x + 2) = 0, x = -10..10,

                   Merge = FALSE)

With Merge = TRUE, these intervals are combined to a single larger interval. Since
Merge = TRUE is the default setting for non-polynomial functions, it suffices to omit the
option Merge = FALSE:

numeric::realroots(ln(x^2 -2*x + 2) = 0, x = -10..10)
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Example 4

The following expression has infinitely many solutions  with n = 1, 2, … in the

search interval [0, 1]:

numeric::realroots(sin(PI/x), x = 0..1, 0.1, Merge = FALSE)

Omitting Merge = FALSE, adjacent intevals are merged to larger intervals. The first of
the following intervals contains infinitely many roots:

numeric::realroots(sin(PI/x), x = 0..1, 0.1)

Example 5

If no search interval is specified, the entire real line is considered:

numeric::realroots(x^3 = exp(x))

Apart from two finite intervals, numeric::realroots tells us that there may be a root
close to infinity (but that there is positively no root close to -infinity). Analytically, it is
clear that the subinterval  cannot contain a root, since  grows much faster
than x3 as x goes to infinity. If a finite upper limit for the search interval is specified, this
fact is detected:

numeric::realroots(x^3 = exp(x), x = -infinity .. 10^100)

We isolate the two finite roots more closely by specifying a precision goal of :
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numeric::realroots(x^3 = exp(x), x = -infinity .. 10^100,

                   10^(-DIGITS))

Example 6

The following equation has no root close to 0. However, interval arithmetic does not
produce realistic values of  for small intervals containing x = 0, so an isolating

interval around 0 is returned:

numeric::realroots(sin(PI*x)/x = 0, x = -1..1.2)

A similar phenomenon occurs with  in a neighbourhood of x = 0. An isolating
interval around 0 is returned, although no solution exists there:

numeric::realroots(x^x*cos(PI*x) = tan(x), x = 0..1)

This cannot be cured by increasing the precision goal:

numeric::realroots(x^x*cos(PI*x) = tan(x), x = 0..1,

                   10^(-DIGITS))

Parameters

f(x)

An expression in one indeterminate x or a list, set, array, or matrix (Cat::Matrix)
of expressions. Alternatively, equations in the form f1(x) = f2(x) equivalent to the
expressions f1(x) - f2(x).
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x

An identifier or an indexed identifier

a, b

Real numbers or numerical expressions satisfying a < b. Also - infinity and
infinity may be used.

eps

A (small) positive real numerical value defining the precision goal. The default value is
0.01.

Options

Merge

Option, specified as Merge = b

b can be TRUE or FALSE. With Merge = FALSE, numeric::realroots returns
subintervals of length not larger than eps. With Merge = TRUE, numeric::realroots
merges adjacent subintervals to larger intervals, i.e., subintervals of length larger than
eps may be returned.

The default setting is Merge = FALSE for polynomial functions f(x). Otherwise, it is
Merge = TRUE.

numeric::realroots isolates intervals  that may contain roots. Internally, all
these intervals satisfy bi - ai < eps where eps is the precision goal.

With Merge = FALSE, these intervals are returned.

With Merge = TRUE, adjacent intervals  with bi = ai + 1 are combined

to larger intervals . See “Example 3” on page 19-296 and “Example 4” on

page 19-297.

The default setting is Merge = FALSE for polynomial functions. Otherwise, it is Merge
= TRUE.
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Return Values

List [[a1, b1], [a2, b2], …] of disjoint floating-point intervals  which may
contain roots of f(x). The empty list is returned if no root exists in the search interval [a,
b].

Algorithms

Let X be a subset of the real numbers. Interval arithmetic produces a set F(X) such
that the set of image values  is contained in F(X). The MuPAD domain
DOM_INTERVAL facilitates this kind of arithmetic. The routine numeric::realroots
computes  for various subintervals  of . If F does not contain
zero, then this subinterval is eliminated from the search interval. Otherwise, the
subinterval is returned as a candidate for containing zeros of f(x). However, one cannot
conclude that F does indeed contain at least one zero, since F is usually larger than the
true image set  (‘overestimation’).

For polynomials f(x), the routine polylib::realroots is called. Its results
are intersected with the search interval . No interval arithmetic is used for
polynomial expressions. For polynomial equations, each isolating interval returned by
numeric::realroots is guaranteed to contain at least one root if Merge = TRUE is
specified. With the default setting of Merge = FALSE for polynomials, each isolating
interval is guaranteed to contain exactly one root.

See Also

MuPAD Domains
DOM_INTERVAL

MuPAD Functions
numeric::fsolve | numeric::polyroots | numeric::realroot |
polylib::realroots | solve

More About
• “Solve Equations Numerically”
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numeric::rotationMatrix

Orthogonal matrix of the rotation about an axis

Syntax

numeric::rotationMatrix(angle, axis, <Symbolic>, <ReturnType = t>)

Description

numeric::rotationMatrix(angle, axis) returns an orthogonal matrix
corresponding to the rotation about the given axis by the given angle.

The rotation by the angle alpha about the axis given by the vector [x, y, z] of Euclidean
length 1 is given by the rotation matrix

with c = cos(alpha), s = sin(alpha), and t = 1 - c = .

The rotation is implemented following the “right hand rule”: Stretch the thumb of your
right hand and bend the fingers. When the thumb points into the direction of the rotation
axis, your finger tips indicate the direction of the rotation.

Use negative angles to rotate in the opposite direction.

The axis parameter of the routine does not need to be normalized to the Euclidean length
1. However, it must not be of zero length.

If no return type is specified via the option ReturnType = t, the domain type of the
result depends on the type of the input matrix axis:
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• If the axis is of domain type array, then the rotation matrix is returned as an array.
• If the axis is of domain type hfarray, then the result is returned as an hfarray.
• If the axis is of domain type Dom::DenseMatrix(), then the rotation matrix

is returned as a matrix of type Dom::DenseMatrix() over the ring of MuPAD
expressions.

• If axis is of any different matrix type, the result is a matrix of type Dom::Matrix()
over the ring of MuPAD expressions. This includes input matrices axis of type
Dom::Matrix(...), Dom::SquareMatrix(...), Dom::MatrixGroup(...) etc.

• If axis is a list with 3 elements, the rotation matrix is also returned as an
Dom::Matrix() over the ring of MuPAD expressions.

Without the option Symbolic, all arguments are automatically converted to floating-
point arguments (if possible). Use the option Symbolic if no such conversion is desired.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

The rotation around the z axis by 45 degrees is given by the following matrix:

numeric::rotationMatrix(PI/4, [0, 0, 1])

Symbolic arguments are accepted:

numeric::rotationMatrix(a, [1, 2, 3])
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With the option Symbolic, no automatic conversion to floating-point numbers occurs:

numeric::rotationMatrix(a, [1, 2, 3], Symbolic)

Example 2

The return type coincides with the type of the input parameter representing the axis:

numeric::rotationMatrix(0.3, matrix([1,2,3]))
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domtype(%)

numeric::rotationMatrix(0.3, hfarray(1..3, [1,2,3]))

domtype(%)

The option ReturnType allows to specify the type of the result:

numeric::rotationMatrix(0.3, hfarray(1..3, [1,2,3]),

                                ReturnType = matrix)

domtype(%)
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Example 3

The direction of the rotation is given by the “right hand rule”: Stretch the thumb of your
right hand and bend the fingers. When the thumb points into the direction of the rotation
axis, your finger tips indicate the direction of the rotation:

axis := matrix([0, 0, 1]):

vector := matrix([1, 0, 0]):

Q := numeric::rotationMatrix(PI/4, axis):

plot(plot::Arrow3d(axis, Color = RGB::Blue),

     plot::Arrow3d(vector, Color = RGB::Red),

     plot::Arrow3d(Q*vector, Color = RGB::Red),

     plot::Text3d("axis", [0.01, 0.01, 0.5]),

     plot::Text3d("vector", [1.05, 0, 0]),

     plot::Text3d("rotated vector", [0.75, 0.75, 0]),

     CameraDirection = [1, -2, 4], 

     Scaling = Constrained, Axes = None):

Use negative angles to rotate in the opposite direction:

axis := matrix([0, 0, 1]):

vector := matrix([1, 0, 0]):
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Q := numeric::rotationMatrix(-PI/4, axis):

plot(plot::Arrow3d(axis, Color = RGB::Blue),

     plot::Arrow3d(vector, Color = RGB::Red),

     plot::Arrow3d(Q*vector, Color = RGB::Red),

     plot::Text3d("axis", [0.01, 0.01, 0.5]),

     plot::Text3d("vector", [1.05, 0, 0]),

     plot::Text3d("rotated vector", [0.75, -0.75, 0]),

     CameraDirection = [1, -2, 4], 

     Scaling = Constrained, Axes = None):

delete axis, vector, Q:

Parameters
angle

An arithmetical expression

axis

A vector represented by a list with 3 entries or by a 3 ×1 matrix of domain type
DOM_ARRAY, DOM_HFARRAY, or of category Cat::Matrix
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Options

Symbolic

Prevents the conversion of the input data to floating-point numbers. Exact arithmetic is
used.

ReturnType

Option, specified as ReturnType = t

Return the result as a matrix of domain type t. The following return types are available:
DOM_ARRAY, DOM_HFARRAY, matrix, or densematrix.

Return Values

Depending on the type of the input matrix axis, the 3×3 rotation matrix is returned
as a matrix of domain type DOM_ARRAY, DOM_HFARRAY, Dom::Matrix(), or
Dom::DenseMatrix().
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numeric::singularvalues
Numerical singular values of a matrix

Syntax
numeric::singularvalues(A, <Hard | HardwareFloats | Soft | SoftwareFloats>)

Description

numeric::singularvalues(A) returns numerical singular values of the matrix A.

The singular values of an m×n matrix A are the p = min(m, n) real nonnegative square
roots of the eigenvalues of AH A (for p = n) or of A AH (for p = m). The Hermitian transpose
AH is the complex conjugate of the transpose of A.

numeric::singularvalues returns a list of real singular values [d1, …, dp] sorted by
numeric::sort, i.e., d1 ≥ … ≥ dp ≥ 0.0.

All entries of A must be numerical. Numerical expressions such as  etc. are
accepted and converted to floats. Non-numerical symbolic entries lead to an error.

Cat::Matrix objects, i.e., matrices A of a matrix domain such as Dom::Matrix(…)
or Dom::SquareMatrix(…) are internally converted to arrays over expressions via
expr(A).

Note: Singular values are approximated with an absolute precision of  where

r is largest singular value of A. Consequently, large singular values should be computed
correctly to DIGITS decimal places. The numerical approximations of small singular
values are less accurate.

Singular values may also be computed via map ( numeric::eigenvalues( A   A
H
),

sqrt ) or map ( numeric::eigenvalues( AH  A ), sqrt ), respectively. The use
of numeric::singularvalues avoids the costs of the matrix multiplication. Further,

19-308



 numeric::singularvalues

the eigenvalue routine requires about twice as many DIGITS to compute small singular
values with the same precision as numeric::singularvalues. Cf. “Example 2” on page
19-309.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

The singular values of A and AH coincide:

A := array(1..3, 1..2, [[1, 2*I], [2, 3],[3, sqrt(2)]]):

numeric::singularvalues(A)

The Hermitian transpose B = AH:

B := array(1..2, 1..3, [[1, 2, 3], [-2*I, 3, sqrt(2)]]):

numeric::singularvalues(B)

delete A, B:

Example 2

We use numeric::eigenvalues to compute singular values:

A := matrix([[1/15, 2/15*I],
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            [PI, 314159265358980/50000000000000*I],

            [2, 4*I]]):

The Hermitian transpose B = AH can be computed by the methods conjugate and
transpose of the matrix domain:

B := A::dom::conjugate(A::dom::transpose(A)):

Note that AH A is positive semi-definite and cannot have negative eigenvalues. However,
computing small eigenvalues is numerically ill-conditioned, and a small negative value
occurs due to roundoff:

numeric::eigenvalues(B*A)

Consequently, an (incorrect) imaginary singular value is computed:

map(%, sqrt)

We have to increase DIGITS in order to compute this value more accurately:

DIGITS := 22: 

map(numeric::eigenvalues(B*A), sqrt)

With numeric::singularvalues, the standard precision suffices:

DIGITS := 10: 

numeric::singularvalues(A, SoftwareFloats)

numeric::singularvalues(A, HardwareFloats)
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delete A, B:

Example 3

We demonstrate the use of hardware floats. Hilbert matrices are notoriously ill-
conditioned: the computation of the small singular values is subject to severe
roundoff effects. In the following results, both with HardwareFloats as well as
with SoftwareFloats, the small singular values are dominated by numerical
roundoff. Consequently, the results with HardwareFloats differ from those with with
SoftwareFloats:

numeric::singularvalues(linalg::hilbert(13))

A := linalg::hilbert(15):

numeric::singularvalues(A, HardwareFloats);

numeric::singularvalues(A, SoftwareFloats)

delete A:

Parameters

A

A numerical matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category
Cat::Matrix
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Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.
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If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill-conditioned matrices, the result is subject to roundoff errors. The results
returned with HardwareFloats and SoftwareFloats may differ! See “Example 3” on
page 19-311.

Return Values

Ordered list of real floating-point values.

Algorithms

The code implements standard numerical algorithms from the Handbook of Automatic
Computation by Wilkinson and Reinsch.

See Also

MuPAD Functions
linalg::eigenvalues | linalg::eigenvectors | numeric::eigenvalues
| numeric::eigenvectors | numeric::singularvectors |
numeric::spectralradius
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numeric::singularvectors

Numerical singular value decomposition of a matrix

Syntax

numeric::singularvectors(A, options)

Description

numeric::singularvectors(A) and the equivalent call numeric::svd(A) return
numerical singular values and singular vectors of the matrix A.

All entries of A must be numerical. Numerical expressions such as  etc. are
accepted and converted to floats. Non-numerical symbolic entries lead to an error.

Cat::Matrix objects, i.e., matrices A of a matrix domain such as Dom::Matrix(…)
or Dom::SquareMatrix(…) are internally converted to arrays over expressions via
expr(A).

The list [U, d, V, resU, resV] returned by numeric::singularvectors
corresponds to the singular data of an m×n matrix A as described below.

Let VH denote the Hermitian transpose of the matrix V, i.e., the complex conjugate of the
transpose. The singular value decomposition of an m×n matrix A is a factorization A =
U D VH. D is an m×n “diagonal” matrix with real nonnegative entries Dii = di, i = 1, …, p
where p = min(m, n):

or
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,

respectively. The list d = [d1, …, dp] returned by numeric::singularvectors are the
“singular values” of A. They are sorted by numeric::sort, i.e., d1 ≥ … ≥ dp ≥ 0.0.

U is a unitary m×m matrix. Its i-th column is an eigenvector of A AH associated with
the eigenvalue di

2 (di = 0 for i > p). These are the “left singular vectors” of A. They are
returned by numeric::singularvectors as a matrix of floating-point numbers.

V is a unitary n×n matrix. Its i-th column is an eigenvector of AH A associated with the
eigenvalue di

2 (di = 0 for i > p). These are the “right singular vectors” of A. They are
returned by numeric::singularvectors as an array of floating-point numbers. The
matrix V is normalized such that, in each column, the first entry of absolute size larger
than  is real and positive.

If no return type is specified via the option ReturnType = t, the domain type of the
singular vectors U and V depends on the type of the input matrix A:

• The singular vectors of an array are returned as arrays.
• The singular vectors of an hfarray are returned as hfarrays.
• The singular vectors of a dense matrix of type Dom::DenseMatrix() are returned as

dense matrices of type Dom::DenseMatrix() over the ring of MuPAD expressions.
• For all other matrices of category Cat::Matrix, the singular vectors are returned

as matrices of type Dom::Matrix() over the ring of MuPAD expressions. This
includes input matrices A of type Dom::Matrix(…), Dom::SquareMatrix(…),
Dom::MatrixGroup(…) etc.

resU = [resU1, …, resUm] is a list of float residues associated with the left singular vectors:

.

Here, ui is the (normalized) i-th column of U,  is the usual complex Euclidean
scalar product and di = 0 for p < i ≤ m.
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resV = [resV1, …, resVn] is a list of float residues associated with the right singular
vectors:

.

Here, vi is the (normalized) i-th column of V, di = 0 for p < i ≤ n.

The residues resU, resV vanish for exact singular data U, d, V. Their sizes indicate the
quality of the numerical data U, d, V.

Note: Singular values are approximated with an absolute precision of , where

r is the largest singular value of A. Consequently, large singular values should be
computed correctly to DIGITS decimal places. The numerical approximations of small
singular values are less accurate.

Singular data may also be computed via [d2, U, resU] :=
numeric::eigenvectors(A*A^H) or [d2, V, resV] :=
numeric::eigenvectors(A^H*A), respectively. The list d2 is related to the singular
values by

.

The use of numeric::singularvectors avoids the costs of the matrix multiplication.
Further, the eigenvector routine requires about twice as many DIGITS to compute
the data associated with small singular values with the same precision as
numeric::singularvectors. Also note that the normalization of U and V may be
different.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.
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Examples

Example 1

Numerical expressions are converted to floats:

DIGITS := 5:

A := array(1..3, 1..2, [[1, PI], [2, 3], [3, exp(sqrt(2))]]):

[U, d, V, resU, resV] := numeric::singularvectors(A):

The singular data are:

U, d, V

The small residues indicate that these results are not severely affected by roundoff:

resU, resV

delete DIGITS, A, U, d, V, resU, resV:

Example 2

We demonstrate how to reconstruct a matrix from its singular data. With the specified
ReturnType, the singular vectors are returned as matrices of type Dom::Matrix() and
can be handled with the overloaded arithmetic:

DIGITS := 3:

A := array(1..2, 1..3, [[1.0, I, PI], [2, 3, I]]):

[U, d, V, resU, resV] := numeric::singularvectors(A, NoResidues, 

     ReturnType = Dom::Matrix())
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A “diagonal” matrix is built from the singular values:

d := matrix(2, 3, d, Diagonal)

We use the methods conjugate and transpose of the matrix domain to compute
the Hermitian transpose of V and reconstruct A. Numerical roundoff is eliminated via
numeric::complexRound:

VH := V::dom::conjugate(V::dom::transpose(V)):

map(U*d*VH, numeric::complexRound)

delete DIGITS, A, U, d, V, resU, resV, VH:

Example 3

We demonstrate the use of hardware floats. The following matrix A is degenerate: it
has rank 1. For the double eigenvalue 0 of the matrix AH A, different base vectors of the
corresponding eigenspace are returned with HardwareFloats and SoftwareFloats,
respectively:

A := array(1..2, 1..3, [[1, 2, 3], [30, 60, 90]]):

[U1, d1, V1, resU1, resV1] := 

      numeric::singularvectors(A, HardwareFloats):

[U2, d2, V2, resU2, resV2] := 
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      numeric::singularvectors(A, SoftwareFloats):

V1, V2

delete A, U1, d1, V1, resU1, resV1, U2, d2, V2, resU2, resV2:

Parameters

A

A numerical matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category
Cat::Matrix.

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
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hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

Note: For ill-conditioned matrices, the result is subject to roundoff errors. The results
returned with HardwareFloats and SoftwareFloats may differ! See “Example 3” on
page 19-318.
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NoLeftVectors

Suppresses the computation of left singular vectors

If only right singular vectors are required, this option may be used to suppress the
computation of U and the corresponding residues resU. The return values for these data
are NIL.

Depending on the size of U, this option may speed up the computation considerably.

NoRightVectors

Suppresses the computation of right singular vectors

If only left singular vectors are required, this option may be used to suppress the
computation of V and the corresponding residues resV. The return values for these data
are NIL.

Depending on the size of V, this option may speed up the computation considerably.

NoResidues

Suppresses the computation of error estimates

If no error estimates are required, this option may be used to suppress the computation
of the residues resU and resV. The return values for these data are NIL.

The alternative option name NoErrors used in previous MuPAD versions is still
available.

ReturnType

Option, specified as ReturnType = t

Return the left and right singular vectors as matrices of domain type t. The following
return types t are available: DOM_ARRAY, or DOM_HFARRAY, or Dom::Matrix(), or
Dom::DenseMatrix().

This option determines the domain type of the matrices containing the singular vectors.

NoWarning

Suppresses warnings
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Return Values

List [U, d, V, resU, resV]. U is a unitary square float matrix whose columns are
left singular vectors. The list d contains the singular values. V is a unitary square float
matrix whose columns are right singular vectors. The lists of float residues resU and
resV provide error estimates for the numerical data.

See Also

MuPAD Functions
linalg::eigenvalues | linalg::eigenvectors | numeric::eigenvalues
| numeric::eigenvectors | numeric::singularvalues |
numeric::spectralradius | numeric::svd
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numeric::svd
Numerical singular value decomposition of a matrix

Syntax
numeric::svd(A, options)

Description

numeric::svd is equivalent to numeric::singularvectors. For details and
examples, see numeric::singularvectors.

Parameters

A

A numerical matrix of domain type DOM_ARRAY, DOM_HFARRAY, or of category
Cat::Matrix.

Return Values

List [U, d, V, resU, resV]. U is a unitary square float matrix whose columns are
left singular vectors. The list d contains the singular values. V is a unitary square float
matrix whose columns are right singular vectors. The lists of float residues resU and
resV provide error estimates for the numerical data.

See Also

MuPAD Functions
linalg::eigenvalues | linalg::eigenvectors | numeric::eigenvalues
| numeric::eigenvectors | numeric::singularvalues |
numeric::singularvectors | numeric::spectralradius
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Related Examples
• “Compute Factorizations Numerically”
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numeric::solve
Numerical solution of equations (the float attribute of solve)

Syntax
numeric::solve(eqs, <vars>, options)

float(holdsolve(eqs, <vars>, options))

float(freezesolve(eqs, <vars>, options))

Description

numeric::solve computes numerical solutions of equations. For polynomial equations,
all solutions are returned. For non-polynomial equations, only one solution, if any, is
returned unless the option AllRealRoots is used.

Note: Note that only for polynomial/rational equations all solutions are searched for. For
non-polynomial/non-rational equations, only one solution, if any, is returned unless the
option AllRealRoots is used.

If the equations contain non-polynomial expressions, it is in general not possible to
isolate all roots numerically. Think of equations such as  that have infinitely

many real solutions around the origin! If a complete set of all real solutions of a single
non-polynomial/non-rational equation in one unknown is desired, you may try the opton
AllRealRoots. With this option, a heuristics tries to isolate all real solutions of the
equation. This, however, is purely heuristical: there is no rigor in the algorithm and it is
not guaranteed that all solutions are found. Alternatively, you may also use the routine
numeric::realroots to isolate the intervals in which solutions may exist.

numeric::solve is a simple interface function unifying the functionality of the
numerical solvers numeric::fsolve, numeric::linsolve, numeric::polyroots,
and numeric::polysysroots. The return format of these routines is changed to make
it consistent with the return values of the symbolic solver solve.
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You may call the specialized numerical solvers directly. However, note the return types
specific to each of these solvers.

numeric::solve classifies the equations as follows:

• If eqs is a single univariate polynomial equation, then it is directly passed to
numeric::polyroots. Cf. “Example 2” on page 19-328. The roots are returned as
a set or as a Dom::Multiset if Multiple is used.

• If eqs is a multivariate polynomial equation or a list or set of such equations,
then the equations and the appropriate optional arguments are passed to either
numeric::linsolve or numeric::polysysroots. Cf. “Example 3” on page
19-328. The roots are returned as a set or as a Dom::Multiset if Multiple is
used.

• A rational equation or a set or list of rational equations is replaced by its/their
numerator(s). Such equations are processed like polynomial equations.

• If eqs is a non-polynomial/non-rational equation or a set or list containing such an
equation, then the equations and the appropriate optional arguments are passed to
the numerical solver numeric::fsolve.

Note: For non-polynomial equations, only a single numerical root is returned, unless
AllRealRoots is specified! Cf. “Example 4” on page 19-329.

Note: For non-polynomial equations, there must not be more equations than
unknowns!

Using Multiple for non-polynomial equations leads to an error, unless the option
AllRealRoots is specified, too!

Note: For systems of multivariate non-polynomial equations, MuPAD uses a Newton
search. It must be able to evaluate the partial derivatives of the equations with
respect to the variables to be solved for.

For a single univariate equation, first a bisectioning scheme with quadratic
interpolation is used that does not require any differentiation of the equation. If
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this is not successful, a Newton search is started that requires the derivative of the
functions involved.

For convenience, also polynomials of domain type DOM_POLY are accepted, wherever an
equation is expected.

Note: In contrast to the symbolic solver solve, the numerical solver does not react to
properties of identifiers set via assume. The only exception where numeric::solve
reacts to properties of identifiers is for systems of polynomial equations (only where there
is more than one variable).

To react to properties of identifiers, instead call float ( hold( solve )
(arguments)).

If the user does not specify indeterminates to be solved for, then the indeterminates are
internally chosen by numeric::indets(eqs).

Starting points such as x = a or search ranges such as x = a..b specified in vars are
ignored if eqs is a polynomial equation or a system of polynomial equations.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

The following three solver calls are equivalent:

eqs := {x^2 = sin(y), y^2 = cos(x)}:

numeric::solve(eqs, {x, y}),

float(hold(solve)(eqs, {x, y})),

float(freeze(solve)(eqs, {x,y}))
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delete eqs:

Example 2

We demonstrate the root search for univariate polynomials:

numeric::solve(x^6 - PI*x^2 = sin(3), x)

Polynomials of type DOM_POLY can be used as input:

numeric::solve(poly((x - 1/3)^3, [x]), x)

With Multiple, a Dom::Multiset is returned, indicating the multiplicity of the root:

numeric::solve(x^3 - x^2 + x/3 -1/27, x, Multiple)

Example 3

We demonstrate the root search for polynomial systems. Note that the symbolic solver
solve is involved if the system is nonlinear. Symbolic parameters are accepted:

numeric::solve({x^2 + y^2 = 1, x^2 - y^2 = exp(z)}, {x, y})
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Example 4

We demonstrate the root search for non-polynomial equations. Without the option
AllRealRoots, only one solution is searched for:

eq := exp(-x) - 10*x^2:

numeric::solve(eq, x)

Since numeric::solve just calls the root finder numeric::fsolve, one may also use
this routine directly. Note the different output format:

numeric::fsolve(eq, x)

The input syntax of numeric::solve and numeric::fsolve are identical, i.e., starting
points, search ranges and options may be used. E.g., another solution of the previous
equation is found by a restricted search over the interval :

numeric::solve(eq, x = -1..0, RestrictedSearch)

We use the option AllRealRoots to isolate all real solutions of the equation:

numeric::solve(eq, x, AllRealRoots)
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With the following call we restrict the search to the negative semi-axis:

numeric::solve(eq, x = -infinity..0, AllRealRoots)

Example 5

For the following system, numeric::solve finds the solution with positive y:

eqs := [exp(x) = 2*y^2, sin(y) = y*x^3]:

numeric::solve(eqs, [x, y])

Another solution with negative y is found with an appropriate search range:

numeric::solve(eqs, [x = 1, y = -infinity..0])

delete eq, eqs:

Parameters

eqs

An equation, a list, set, array, or matrix (Cat::Matrix) of equations. Also arithmetical
expressions are accepted and interpreted as homogeneous equations.

vars

An unknown, a list of unknowns or a set of unknowns. Unknowns may be identifiers or
indexed identifiers. Also equations of the form x=a or x=a..b are accepted wherever an
unknown x is expected. This way, starting points and search ranges are specified for the
numerical search. They must be numerical; infinite search ranges are accepted.
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Options

AllRealRoots

Only to be used if eqs is a single equation in one unknown. With this option, a heuristics
is used to find all real solutions of the equation.

Note: Note that there is no guarantee that all real solutions will be found.

Note:  Interval arithmetic is used to isolate search intervals for the solutions. The
expressions in eqs must be suitable for such arithmetic. Internally, the procedure
numeric::realroots is called. See the help page of numeric::realroots for
restrictions on the expressions in eqs.

Note: The equation must be suitable for evaluation with interval arithmetic. See
numeric::realroots for restrictions on the expressions in the equation.

With AllRealRoots, only the additonal options Multiple and NoWarning have an
effect. All other options such as UnrestrictedSearch etc. are ignored.

It is highly recommend to specify a search interval by a call such as
numeric::solve(f(x), x = a..b, AllRealRoots). In this case, only the real
solutions between a and b are searched for.

The search for all real solutions may be very time consuming!

Multiple

Only to be used if eqs is a polynomial equation or a system of polynomial equations
or in conjunction with the option AllRealRoots. With this option, information on the
multiplicity of degenerate polynomial roots is returned.

It changes the return type from DOM_SET to Dom::Multiset.

FixedPrecision

Only to be used if eqs is a single univariate polynomial. It launches a quick numerical
search with fixed internal precision.
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It is passed to numeric::polyroots, which uses a numerical search with fixed internal
precision. This is fast, but degenerate roots may be returned with a restricted precision.
See the help page of numeric::polyroots for details.

SquareFree

Only to be used if eqs is a single univariate polynomial. Symbolic square free
factorization is applied, before the numerical search starts.

It is passed to numeric::polyroots, which preprocesses the polynomial by a symbolic
square free factorization. See the help page of numeric::polyroots for details.

Factor

Only to be used if eqs is a single univariate polynomial. Symbolic factorization is
applied, before the numerical search starts.

It is passed to numeric::polyroots, which preprocesses the polynomial by a symbolic
factorization. See the help page of numeric::polyroots for details.

RestrictedSearch

The numerical search is restricted to the search ranges specified in vars.

This option is passed to numeric::fsolve, which uses a corresponding search strategy
when looking for roots in the search range specified in vars. It must be used only in
conjunction with search range and only for non-polynomial equations.

See numeric::fsolve for details.

UnrestrictedSearch

The numerical search may return results outside the search ranges specified in vars.

This option is passed to numeric::fsolve, which uses a corresponding search strategy
when looking for roots in the search range specified in vars. It must be use only in
conjunction with search ranges and only for non-polynomial equations.

See numeric::fsolve for details.

MultiSolutions

Only to be used for non-polynomial equations in conjunction with RestrictedSearch.
Several roots may be returned.
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It is passed to numeric::fsolve, which returns a sequence of all roots found in the
internal search. See the help page of numeric::fsolve for details.

Random

Only to be used for non-polynomial equations. With this option, several calls to
numeric::solve may lead to different solutions of the equation(s).

It is passed to numeric::fsolve which switches to a random search strategy. See the
help page of numeric::fsolve for details.

NoWarning

This option only has an effect when it is used for polynomial equations in conjunction
with AllRealRoots. When you use AllRealRoots, warnings are issued if interval
arithmetic indicates technical difficulties such as serious overestimation (for example,
when encountering multiple roots). With this option, the warnings are suppressed.

Note: This option has an effect if eqs is a multivariate polynomial system or a univariate
polynomial with a symbolic parameter.

In such a case, this option is passed to numeric::polysysroots.

Return Values

Set of numerical solutions. With the option Multiple, a set of domain type
Dom::Multiset is returned.

See Also

MuPAD Functions
isolate | linsolve | numeric::fsolve | numeric::linsolve |
numeric::polyroots | numeric::polysysroots | numeric::realroot |
numeric::realroots | polylib::realroots | solve

More About
• “Solve Equations Numerically”
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numeric::sort
Sort a numerical list

Syntax
numeric::sort(list)

Description

numeric::sort(list) sorts the elements in list.

The elements of the list are sorted such that their real parts are descending. Elements
with the same real part are sorted from large absolute value to small absolute value. In
case of a tie (i.e., two elements form a complex conjugate pair), the element with positive
imaginary part comes first.

The elements of the list are converted to floating-point numbers via float. Elements
that cannot be converted lead to an error.

This function is used to sort the return values of numeric::eigenvalues,
numeric::eigenvectors, numeric::polyroots, numeric::singularvalues, and
numeric::singularvectors.

Environment Interactions

The function is sensitive to the environment variable DIGITS.

Examples

Example 1

The elements in the sorted list have descending real parts:

numeric::sort([1, 2.0, I, -3, -I, PI, sqrt(2)])
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In the following example, the sorting criterion does not seem to be satisfied. Elements
with the same real part are supposed to be ordered from large absolute values to small
absolute values:

x := sin(PI/3):

L := numeric::sort([x, sin(float(PI/3)) - I, x + I])

This is explained by the fact that the floating-point numbers internally have a more
accurate representation than shown on the screen. The real part of the last element is
indeed a little bit smaller than the other real parts:

DIGITS := 20:

L

delete x, L, DIGITS:

Parameters

list

A list of numbers or numerical expressions

Return Values

Sorted list.

See Also

MuPAD Functions
sort
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numeric::spectralradius
Spectral radius of a matrix

Syntax
numeric::spectralradius(A, <x0>, <n>, <mode>, <ReturnType = t>, <NoWarning>)

Description
numeric::spectralradius(A) returns data corresponding to the eigenvalue of the
matrix A that has the largest absolute value.

The spectral radius of a matrix with eigenvalues λi is max(|λi|).

The return value lambda is an approximation of the corresponding eigenvalue:
abs(lambda) is the spectral radius.

The return value x is the corresponding normalized eigenvector: .

The return value  provides an error estimate for the
eigenvalue. For Hermitian matrices this is a rigorous upper bound for the error |lambda
- λexact|, where λexact is the exact eigenvalue.

numeric::spectralradius implements the power method to compute the eigenvalue
and the associated eigenvector defining the spectral radius: the vector iteration

 “converges” towards the eigenspace associated with the spectral radius. The

starting vector x0 is provided by the second argument of numeric::spectralradius. If
no starting vector is provided by the user, a randomly chosen vector is used.

Note: The iteration does not converge (converges slowly), if the spectral radius is
generated by several distinct eigenvalues with the same (similar) absolute value.

Internally, the iteration stops, when the approximation of the eigenvalue becomes
stationary within the relative precision given by DIGITS. If this does not happen within
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n iterations, then a warning is issued and the present values are returned. Cf. “Example
4” on page 19-340.

numeric::spectralradius and numeric::spectralRadius are equivalent.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We let the routine choose a random starting vector:

A := matrix(2, 2, [[10, 1], [1, 20]]):

numeric::spectralradius(A)

We define a starting vector as a 1-dimensional array and allow a maximum of 1000
internal iterations:

A := array(1..2, 1..2, [[1, 2], [5, -10]]):

x0 := array(1..2, [1, 1]):

numeric::spectralradius(A, x0, 1000)

Next, we use a list to specify a starting vector:

A := array(1..2, 1..2, [[I, 3], [3, I]]):

numeric::spectralradius(A, [1, 1], 1000)
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delete A, x0:

Example 2

With the default setting of DIGITS = 10, the following result is computed using
HardwareFloats.

A := hfarray(1..2, 1..2, [[10^4, 10^4], [50,  60]]):

x0 := array(1..2, [1, 1]):

numeric::spectralradius(A, x0)

We request SoftwareFloats in the next call. Note the difference in the trailing digits:

numeric::spectralradius(A, x0, Soft)

delete DIGITS, A, x0:

Example 3

The eigenvector that is returned can have various types. If no starting vector is provided,
the type of the matrix determines the type of the eigenvector:

A:= array(1..2, 1..2, [[1, 2], [3, 4]]):

[l, x, residue]:= numeric::spectralradius(A);

domtype(x)

A:= hfarray(1..2, 1..2, [[1, 2], [3, 4]]):

[l, x, residue]:= numeric::spectralradius(A):

domtype(x)
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A:= matrix(2, 2, [[1, 2], [3, 4]]):

[l, x, residue]:= numeric::spectralradius(A):

domtype(x)

If a starting vector is provided, its type determines the type of the return vector:

A:= hfarray(1..2, 1..2, [[1, 2], [3, 4]]):

x0:= [1, 1]:

[l, x, residue]:= numeric::spectralradius(A, x0):

domtype(x)

x0:= array(1..2, [1, 1]):

[l, x, residue]:= numeric::spectralradius(A, x0):

domtype(x)

x0:= hfarray(1..2, [1, 1]):

[l, x, residue]:= numeric::spectralradius(A, x0):

domtype(x)

x0:= matrix([1, 1]):

[l, x, residue]:= numeric::spectralradius(A, x0):

domtype(x)

The return type can be requested explicitly:

[l, x, residue] :=

  numeric::spectralradius(A, x0, ReturnType = DOM_LIST):

domtype(x)
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[l, x, residue] :=

  numeric::spectralradius(A, x0, ReturnType = DOM_HFARRAY):

domtype(x)

delete A, x0, l, x, residue:

Example 4

The following matrix has two distinct eigenvalues 1 and -1 of the same absolute value.
The power method must fail.

A := array(1..2, 1..2, [[1, 0], [0, -1]]):

We allow a maximum of 1000 internal steps. The call results in a warning. The large
residue also indicates that the power method did not converge:

numeric::spectralradius(A, [1, 1], 1000)

Warning: There is no convergence of vector iteration. [numeric::spectralradius]

delete A:

Parameters

A

An m×m array of domain type DOM_ARRAY or DOM_HFARRAY or a matrix of category
Cat::Matrix

x0

A starting vector: a 1-dimensional array, or an hfarray, or a list of length m. Also 2-
dimensional arrays (array(1..m, 1..1, ...), hfarray(1..m, 1..1, ...)) and
matrices representing vectors are accepted.
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n

The maximal number of iterations: a positive integer. The default value is 1000.

mode

One of the flags Hard, HardwareFloats, Soft, or SoftwareFloats

Options

Hard, HardwareFloats, Soft, SoftwareFloats

With Hard (or HardwareFloats), computations are done using fast hardware float
arithmetic from within a MuPAD session. Hard and HardwareFloats are equivalent.
With this option, the input data are converted to hardware floats and processed by
compiled C code. The result is reconverted to MuPAD floats and returned to the MuPAD
session.

With Soft (or SoftwareFloats) computations are dome using software float
arithmetic provided by the MuPAD kernel. Soft and SoftwareFloats are equivalent.
SoftwareFloats is used by default if the current value of DIGITS is larger than 15 and
the input matrix A is not of domain type DOM_HFARRAY.

Compared to the SoftwareFloats used by the MuPAD kernel, the computation with
HardwareFloats may be many times faster. Note, however, that the precision of
hardware arithmetic is limited to about 15 digits. Further, the size of floating-point
numbers may not be larger than approximately 10308 and not smaller than approximately
10- 308.

If no HardwareFloats or SoftwareFloats are requested explicitly, the following
strategy is used: If the current value of DIGITS is smaller than 16 or if the matrix A is a
hardware float array of domain type DOM_HFARRAY, then hardware arithmetic is tried. If
this is successful, the result is returned.

If the result cannot be computed with hardware floats, software arithmetic by the
MuPAD kernel is tried.

If the current value of DIGITS is larger than 15 and the input matrix A is not of domain
type DOM_HFARRAY, or if one of the options Soft, SoftwareFloats or Symbolic is
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specified, MuPAD computes the result with its software arithmetic without trying to use
hardware floats first.

There may be several reasons for hardware arithmetic to fail:

• The current value of DIGITS is larger than 15.
• The data contains symbolic objects.
• The data contains numbers larger than 10308 or smaller than 10- 308 that cannot be

represented by hardware floats.

If neither HardwareFloats nor SoftwareFloats is specified, the user is not informed
whether hardware floats or software floats are used.

If HardwareFloats are specified but fail due to one of the reasons above, a warning is
issued that the (much slower) software floating-point arithmetic of the MuPAD kernel is
used.

Note that HardwareFloats can only be used if all input data can be converted to
floating-point numbers.

The trailing digits in floating-point results computed with HardwareFloats and
SoftwareFloats may differ.

ReturnType

Option, specified as ReturnType = t

Return the eigenvector associated with the spectral radius as a vector of domain type t.
The following return types are available: DOM_ARRAY, or DOM_HFARRAY, or DOM_LIST, or
Dom::Matrix(), or Dom::DenseMatrix().

NoWarning

Suppresses warnings

Return Values

A list [lambda, x, residue] is returned. The floating-point number lambda is an
approximation of the eigenvalue of largest absolute value. The vector x is a numerical
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eigenvector corresponding to lambda. residue is a floating-point number indicating the
numerical quality of lambda and x.

If no return type is requested via the ReturnType option, the type of the returned vector
x coincides with the type of the input vector x0 (i.e., it is a 1-dimensional array of type
DOM_ARRAY or DOM_HFARRAY, respectively, or a list, or a column vector of type matrix or
densematrix. If no starting vector is specified, the type of x is determined by the type of
A.

See Also

MuPAD Functions
linalg::eigenvalues | linalg::eigenvectors | numeric::eigenvalues
| numeric::eigenvectors | numeric::singularvalues |
numeric::singularvectors | numeric::spectralRadius | numeric::svd

19-343



19 numeric – Numerical Algorithms

numeric::spectralRadius
Spectral radius of a matrix

Syntax
numeric::spectralRadius(A, <x0>, <n>, <mode>, <ReturnType = t>, <NoWarning>)

Description

numeric::spectralRadius and numeric::spectralradius are equivalent. For
details and examples, see numeric::spectralradius.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Parameters

A

An m×m array of domain type DOM_ARRAY or DOM_HFARRAY or a matrix of category
Cat::Matrix

x0

A starting vector: a one-dimensional array, or an hfarray, or a list of length m. Also two-
dimensional arrays (array(1..m, 1..1, ...), hfarray(1..m, 1..1, ...)) and
matrices representing vectors are accepted.

n

The maximal number of iterations: a positive integer. The default value is 1000.
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mode

One of the flags Hard, HardwareFloats, Soft, or SoftwareFloats

Return Values

A list [lambda, x, residue] is returned. The floating-point number lambda is an
approximation of the eigenvalue of largest absolute value. The vector x is a numerical
eigenvector corresponding to lambda. residue is a floating-point number indicating the
numerical quality of lambda and x.

If no return type is requested via the ReturnType option, the type of the returned vector
x coincides with the type of the input vector x0 (i.e., it is a one-dimensional array of type
DOM_ARRAY or DOM_HFARRAY, respectively, or a list, or a column vector of type matrix or
densematrix. If no starting vector is specified, the type of x is determined by the type of
A.

See Also

MuPAD Functions
linalg::eigenvalues | linalg::eigenvectors | numeric::eigenvalues
| numeric::eigenvectors | numeric::singularvalues |
numeric::singularvectors | numeric::spectralradius | numeric::svd
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numeric::sum
Numerical approximation of sums (the Float attribute of Sum )

Syntax
numeric::sum(f(x), x = a .. b)

numeric::sum(f(x), x in {x1, x2, …})

numeric::sum(f(x), x = {x1, x2, …})

numeric::sum(f(x), x in RootOf(p(X), X))

numeric::sum(f(x), x = RootOf(p(X), X))

float(hold(sum)(f(x), x = a .. b))

float(hold(sum)(f(x), x in {x1, x2, …}))

float(hold(sum)(f(x), x = {x1, x2, …}))

float(hold(sum)(f(x), x in RootOf(p(X), X)))

float(hold(sum)(f(x), x = RootOf(p(X), X)))

float(freeze(sum)(f(x), x = a .. b))

float(freeze(sum)(f(x), x in {x1, x2, …}))

float(freeze(sum)(f(x), x = {x1, x2, …}))

float(freeze(sum)(f(x), x in RootOf(p(X), X)))

float(freeze(sum)(f(x), x = RootOf(p(X), X)))

Description

numeric::sum(f(i), i=a..b) computes a numerical approximation of .

numeric::sum(f(x), x ∈ {x1, x2, …}) computes a numerical approximation of
.
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numeric::sum(f(x), x in RootOf(p(X), X)) computes a numerical
approximation of .

The call numeric::sum(…) is equivalent to calling the float attribute of sum via float
( hold( sum )(…)) or float ( freeze( sum )(…)).

If there are other symbolic parameters in f(x), apart from the summation variable x, a
symbolic sum is returned. Numerical expressions such as ,  etc. are accepted and
converted to floating-point numbers.

Note: For infinite sums, the expression f(i) with integer i must have an extension
f(x) to all real x in the interval . Internally, the integral  is computed
numerically and used in the approximation process.

Note: For finite sums, numeric::sum just returns _plus ( float(f(i)$i=a..b)).
Note that numerical cancellation may occur! If f(i) does not contain floating-
point numbers, cancellation can be avoided summing the symbolic terms by
_plus(f(i)$i=a..b) instead. Cf. “Example 3” on page 19-349.

Convergence is fast, if f(x) decays rapidly for x -> infinity or  | x | -> infinity,
respectively

Note: Convergence may be slow for alternating sums containing expressions such as (-
1)i. Such sums are also often subject to cancellation problems!

The call numeric::sum(f(x), x = {x1, x2, …}) computes numerical
approximations of x1, x2 etc., substitutes these values into f(x) and adds up the results.
This process may be subject to cancellation problems!

The calls numeric::sum(f(x), x ∈ {x1, x2, …}) and numeric::sum(f(x), x =
{x1, x2, …}) are equivalent.

The call numeric::sum(f(x), x in RootOf(p(X), X)) computes numerical
approximations of all roots of p, substitutes these values into f(x) and adds up the results.
Cf. “Example 4” on page 19-349. This process may be subject to cancellation problems!
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The calls numeric::sum(f(x), x in RootOf(p(X), X)) and
numeric::sum(f(x), x = RootOf(p(X), X)) are equivalent.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We demonstrate some equivalent calls for numerical summation:

numeric::sum(1/i!, i = 0..infinity),

float(hold(sum)(1/i!, i = 0..infinity)),

float(freeze(sum)(1/i!, i = 0..infinity))

The MuPAD symbolic summation sum does not find a simple representation of the
following sum:

sum(1/i!/(i^2+1)!, i = 0..infinity)

The following float evaluation calls numeric::sum:

float(%)

The exact value of the following sum is π coth(π):

numeric::sum(1/(1+i^2), i = -infinity..infinity) =
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float(PI*coth(PI))

Example 2

The following sum cannot be evaluated numerically because of the symbolic parameter x:

numeric::sum(1/(x+i^2), i = -infinity..infinity)

Example 3

We demonstrate numerical cancellation when summing the Taylor series for :

exp(-20.0) <> numeric::sum((-20)^i/i!, i = 0..100)

Also the infinite sum suffers from cancellation:

exp(-20.0) <> numeric::sum((-20)^i/i!, i = 0..infinity)

Cancellation can be avoided using a finite sum with exact terms:

exp(-20.0) = float(_plus((-20)^i/i! $ i = 0..100))

Example 4

The following call computes the numerical roots of the polynomial in the RootOf
expression and sums over all the roots:
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numeric::sum(exp(x)/x, x in RootOf(X^10 - X - PI, X))

Parameters

f(x)

An arithmetical expression in x

i, x

Summation variables: identifiers or indexed identifiers

a, b

Integers or ±infinity satisfying a ≤ b

x1, x2, …

Numerical expressions

p(X)

A univariate polynomial expression in X

X

The indeterminate of p: an identifier or an indexed identifier

Return Values

Floating point number or a symbolic expression of type numeric::sum.

Algorithms

Depending on whether the series is alternating or monotone, numeric::sum tries
a number of strategies to calculate its limit: Levin's u transformation, the Euler-
MacLaurin formula or van Wijngaarden's trick.
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The Euler-MacLaurin formula is

involving the Bernoulli numbers B2 m
.

See Also

MuPAD Functions
_plus | int | numeric::product | numeric::quadrature | sum
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numlib::checkPrimalityCertificate
numlib::contfrac
numlib::contfracPeriodic
numlib::cornacchia
numlib::decimal
numlib::divisors
numlib::factorGaussInt
numlib::fibonacci
numlib::fromAscii
numlib::g_adic
numlib::ichrem
numlib::igcdmult
numlib::invphi
numlib::ispower
numlib::isquadres
numlib::issqr
numlib::jacobi
numlib::Lambda
numlib::lambda
numlib::legendre
numlib::lincongruence
numlib::mersenne
numlib::moebius
numlib::mroots
numlib::msqrts
numlib::numdivisors
numlib::numprimedivisors
numlib::omega
numlib::Omega
numlib::order
numlib::phi
numlib::pi
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numlib::proveprime
numlib::primedivisors
numlib::primroot
numlib::reconstructRational
numlib::sigma
numlib::sqrt2cfrac
numlib::sqrtmodp
numlib::sumdivisors
numlib::sumOfDigits
numlib::tau
numlib::toAscii
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numlib::checkPrimalityCertificate
Test the primality certificate

Syntax
numlib::checkPrimalityCertificate(certificate)

Description

numlib::checkPrimalityCertificate tests the certificate of primality returned by
numlib::proveprime. For large prime numbers, the numlib::proveprime function
generates certificates that provide all data you need for proving primality of a number by
the Atkin-Goldwasser-Kilian-Morain algorithm. See “Example 1” on page 20-3.

For small prime numbers, numlib::proveprime does not return a
certificate of primality. Instead, it returns TRUE. For nonprime numbers
numlib::proveprime returns FALSE. In both cases, you do not need to use
numlib::checkPrimalityCertificate.

Examples

Example 1

Use the numlib::proveprime function to check the primality of the number 1299709.
The function returns the following sequence of lists. This sequence is the certificate of
primality:

certificate := numlib::proveprime(1299709)

The certificate provides all data that you need for proving primality of 1299709 by the
Atkin-Goldwasser-Kilian-Morain algorithm. You can substitute the numbers into the
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algorithm and verify the primality of the number. Alternatively, you can verify the
certificate by using the numlib::checkPrimalityCertificate function:

numlib::checkPrimalityCertificate(certificate)

Parameters

certificate

A list or a sequence of lists returned by numlib::proveprime

Return Values

TRUE or FALSE

See Also

MuPAD Functions
ifactor | numlib::proveprime

More About
• “Primes and Factorizations”
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numlib::contfrac

Domain of continued fractions

Syntax

numlib::contfrac(x, <n>)

Description

numlib::contfrac(x) creates a continued fraction approximation for the real number
x.

If x is an integer or a rational number and n is not specified, a continued fraction is
returned that represents x exactly. Cf. “Example 1” on page 20-6.

Irrational numerical values x such as 1 + sqrt(2) or PI/3 are first converted to
floating-point numbers. The first n significant decimals of floating-point numbers are
taken into account. If n is not specified, n = DIGITS is used. The value of the continued
fraction (given by numlib::contfrac ::rational) satisfies

.

Integers or rational numbers are also converted to floating point numbers, if a precision n
is specified.

Objects of type numlib::contfrac can be handled by the usual arithmetical operations.
They are sensitive to the environment variable DIGITS if floating-point numbers or
irrational numerical values are involved.

Use contfrac to compute continued fraction approximations of expressions involving
symbolic parameters.
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Examples

Example 1

For rational numbers, exact representations are returned:

numlib::contfrac(123/1234)

The rational representation (the second operand of the continued fraction) coincides with
the original rational:

numlib::contfrac::rational(%), expr(%), op(%, 2)

Restricted continued fraction approximations can be computed by passing a precision as
second argument:

numlib::contfrac(123/1234, 2),

numlib::contfrac(123/1234, 3),

numlib::contfrac(123/1234, 5)

20-6



 numlib::contfrac

Example 2

The coefficients are extracted by the method nthcoeff:

cf := numlib::contfrac(12/123)

nthcoeff(cf, 1), nthcoeff(cf, 2), nthcoeff(cf, 3), nthcoeff(cf, 4)

The internal list of coefficients can also be queried via op:

op(cf, 1)

delete cf:

Example 3

numlib::contfrac can also compute continued fraction approximations of irrational
numbers:

numlib::contfrac(PI, 2),

numlib::contfrac(PI, 4),

numlib::contfrac(PI, 5)
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A finite continued fraction approximation may be regarded as an interval of numbers
(the symbol … represents a number between 0 and 1):

numlib::contfrac::rationalInterval(numlib::contfrac(PI, 2));

float(%)

Example 4

All basic arithmetical operations are available for continued fractions:

x := numlib::contfrac(PI, 3):

y := numlib::contfrac(1/12):

DIGITS:= 3: 3/x + sqrt(2)*y^(1/3)

delete x, y, DIGITS:

Example 5

We search for a simple continued fraction in an interval:
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numlib::contfrac::convert(1/2 - 1/10^8, 1/2 + 1/10^8)

numlib::contfrac::convert(PI, PI + 1/10^10)

Parameters

x

A real numerical expression

n

The number of significant digits: a positive integer greater one
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Methods

Mathematical Methods

_plus — Sum of two continued fractions

_plus(x, y)

_mult — Product of two continued fractions

_mult(x, y)

_invert — Reciprocal of a continued fraction

_invert(x)

Inverting a continued fraction means a shift of the coefficients by one to the left or to the
right.

If x is an exact representation of a rational number, the continued fraction expansion of
the reciprocal is also an exact representation.

_power — Power of a continued fraction

_power(x, m)

Access Methods

print — Print a continued fraction

print(cf)

See Also

MuPAD Functions
contfrac | numeric::rationalize
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numlib::contfracPeriodic
Periodic continued fraction expansions

Syntax
numlib::contfracPeriodic(p, q, n)

Description

numlib::contfracPeriodic(p, q, n) returns the continued fraction expansion of p
+ q*sqrt(n) as a sequence of two lists: the first one contains the non-periodic part, the
second one contains the periodic part of the expansion.

The non-periodic part may be an empty list. No periodic part is returned for rational
input, i.e., q = 0 or n square.

Examples

Example 1

The non-periodic part may start with zero. All other coefficients of a continued fraction
expansion are positive:

numlib::contfracPeriodic(2/7, 1/7, 2)

The result agrees with that one of contfrac:

op(contfrac(2/7 + 1/7 *sqrt(2)), 1)
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Example 2

The golden mean is famous for its simple continued fraction expansion:

numlib::contfracPeriodic(1/2, 1/2, 5)

Example 3

Since 81 is a perfect square, there is no periodic part in the continued fraction expansion
of its square root:

numlib::contfracPeriodic(0, 1, 81)

Parameters

p

A rational number

q

A rational number

n

A positive integer

Return Values

If  is a rational number, then numlib::contfracPeriodic returns one list,
otherwise two lists of integers.
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Algorithms

A real number has a periodic continued fraction expansion if and only if it is of the form
.

See Also

MuPAD Functions
numlib::contfrac | numlib::sqrt2cfrac
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numlib::cornacchia
Cornachia's algorithm

Syntax
numlib::cornacchia(a, b, m)

Description

numlib::cornacchia(a, b, m) returns all pairs of positive and relatively prime
integers x, y that solve the equation ax2 + by2 = m.

The arguments a, b, m must be pairwise relatively prime.

Examples

Example 1

We compute the solutions to 3 x2 + 5 y2 = 74533332452454382449233:

numlib::cornacchia(3, 5, 74533332452454382449233)

Example 2

For non-prime m, there may be many solutions:

numlib::cornacchia(1, 4, 5*13*17*29*73)
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Parameters

a

A positive integer

b

A positive integer

m

A positive integer

Return Values

numlib::cornacchia returns a set each element of which is a list of two positive
integers.

See Also

MuPAD Functions
numlib::msqrts
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numlib::decimal
Infinite representation of rational numbers

Syntax
numlib::decimal(q)

Description

numlib::decimal(q) computes the decimal expansion of a rational number q.

If q is a nonnegative rational number whose decimal expansion is finite, then
numlib::decimal(q) returns the expression sequence starting with the integral part of
q and followed by the digits after the decimal point.

If q is a nonnegative rational number whose decimal expansion is infinite, then
numlib::decimal(q) returns the expression sequence starting with the integral part of
q, followed by the digits of the pre-period and terminated with a list, containing the digits
of a minimal period.

Examples

Example 1

Computing the decimal expansion of 1999:

numlib::decimal(1999)

Example 2

Computing the (finite) decimal expansion of :
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numlib::decimal(52187/78125)

Example 3

Computing the (infinite) decimal expansion of :

numlib::decimal(111/7)

Example 4

Computing the (infinite) decimal expansion of :

numlib::decimal(37/28)

Parameters

q

Nonnegative rational number

Return Values

numlib::decimal(q) returns an expression sequence consisting of nonnegative
integers or an expression sequence consisting of nonnegative integers and terminated by
a list of nonnegative integers.
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numlib::divisors
Divisors of an integer

Syntax
numlib::divisors(n)

Description

numlib::divisors(n) returns the list of positive divisors of n.

If a is a non-zero integer then numlib::divisors(a) returns the sorted list of all
positive divisors of a.

numlib::divisors(0) returns [0].

numlib::divisors returns an error if the argument evaluates to a number of wrong
type.

Examples

Example 1

We compute the list of all positive divisors of 72:

numlib::divisors(72)

Example 2

numlib::divisors returns the positive divisors of negative numbers, too:

numlib::divisors(-63)
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Parameters

n

Integer

Return Values

numlib::divisors returns a list of nonnegative integers.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
ifactor | numlib::numdivisors | numlib::numprimedivisors |
numlib::primedivisors | numlib::tau | polylib::divisors
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numlib::factorGaussInt

Factorization of Gaussian integers

Syntax

numlib::factorGaussInt(n)

Description

numlib::factorGaussInt(n) returns the factorization of the Gaussian integer n into
Gaussian primes. Among associate primes, that one with smallest polar angle is chosen.

Examples

Example 1

In the Gaussian integers, 3 remains prime while 5 does not:

numlib::factorGaussInt(3), numlib::factorGaussInt(5)

Example 2

The argument to numlib::factorGaussInt may be any Gaussian integer, that is,
every complex number of the form a + b i where a and b are integers:

numlib::factorGaussInt(2+2*I)
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Parameters

n

An integer, or a complex number whose real and imaginary part are integers

Return Values

numlib::factorGaussInt returns a list [u, p1, a1, ..., pk, ak] where u is a
unit in the Gaussian integers, the pi are Gaussian primes and the ai are positive integers,
such that .

Algorithms

The function ifactor is used to factor the norm; this step takes most of the running
time. Hence, the running time of the algorithm mainly depends on the size of the prime
factors of the norm of n.

See Also

MuPAD Functions
factor
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numlib::fibonacci
Fibonacci numbers

Syntax
numlib::fibonacci(n)

Description

numlib::fibonacci(n) returns the n-th Fibonacci number.

If n is a nonnegative integer then numlib::fibonacci(n) returns the n-th Fibonacci
number.

numlib::fibonacci returns an error if the argument evaluates to a number of wrong
type. numlib::fibonacci returns the unevaluated function call if n does not evaluate
to a number.

Examples

Example 1

We compute the 201st Fibonnacci number:

numlib::fibonacci(201)

Parameters

n

A nonnegative integer
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Return Values

Nonnegative integer, or the function call with its arguments evaluated.

Algorithms

The n-th Fibonacci number Fn is defined by the recursion formula F0 = 0, F1 = 1, and Fn +

2 = Fn + Fn + 1.

numlib::fibonacci uses quadratic recursion formulas.
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numlib::fromAscii
Decoding of ASCII codes

Syntax
numlib::fromAscii(listOfCodes)

Description

If L is a list of ASCII codes then numlib::fromAscii(L) returns the string coded by L.

ASCII codes of non-printable characters, i. e., codes between 0 and 8 and between 11 and
31, are ignored.

numlib::fromAscii returns an error if its argument is not a list of integers between 0
and 127, i. e., not a list of legal ASCII codes.

Examples

Example 1

Non-printable characters are ignored, but tabulator and newline characters are decoded.

L := [0,1,2,3,9,10,31,10,9,32,45,32,101,105,110,32,

            84,101,115,116,32,61,32,97,32,116,101,115,116]:

numlib::fromAscii(L)

Parameters

listOfCodes

A list of ASCII codes
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Return Values

String

See Also

MuPAD Functions
numlib::toAscii

20-25



20 numlib – Number Theory

numlib::g_adic
G-adic representation of a nonnegative integer

Syntax
numlib::g_adic(number, base)

Description

numlib::g_adic(0, g) returns [0].

numlib::g_adic returns an error if the arguments evaluate to numbers which are not
both of the correct type.

If a is a natural number and g is an integer such that |g| > 1, numlib::g_adic(a, g)
returns the g-adic representation of a as a list [a0, …, ar] such that

and 0 ≤ ai < |g| für i = 0, …, r - 1 and 0 < ar < |g|.

Examples

Example 1

Computing the dyadic representation of 1994:

numlib::g_adic(1994, 2)

Example 2

Computing the hexadecimal representation of 2001:
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numlib::g_adic(2001, 16)

Parameters

number

An nonnegative integer

base

An integer with absolute value is greater than 1

Return Values

List of nonnegative integers, or the function call with evaluated arguments if one of the
arguments is not a number.

See Also

MuPAD Functions
genpoly | int2text | text2int
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numlib::ichrem
Chinese remainder theorem for integers

Syntax
numlib::ichrem(a, m)

Description

numlib::ichrem(a,m) returns the least nonnegative integer x such that
 for i = 1, …, nops(m) if such a number exists; otherwise

numlib::ichrem(a,m) returns FAIL.

The entries in m need not be pairwise coprime.

numlib::ichrem(a,m) returns an error if a is not a list of integers or m is not a list of
natural numbers or a and m are not lists of the same length.

Examples

Example 1

Here the moduli are pairwise coprime. In this case, a solution always exists:

numlib::ichrem([2,3,2],[3,5,7])

Example 2

Here the moduli are not pairwise coprime, and a solution does not exist:

numlib::ichrem([5,6,8],[20,21,22])
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Example 3

Also here the moduli are not pairwise coprime, but a solution nevertheless exists:

numlib::ichrem([5,6,7],[20,21,22])

Parameters

a

A list of integers

m

A list of natural numbers of the same length as a

Return Values

Either a nonnegative integer or FAIL.

See Also

MuPAD Functions
numlib::lincongruence
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numlib::igcdmult

Extended Euclidean algorithm for integers

Syntax

numlib::igcdmult(par1, par2, …)

Description

numlib::igcdmult is an extension of the kernel function igcdex.

numlib::igcdmult returns an error if the arguments evaluate to numbers which are
not all of the correct type.

For integers a_1,a_2,...,a_n, numlib::igcdmult(a_1,a_2,...,a_n) returns a
list [d, v1, …, vn] of integers such that d is the nonnegative greatest common divisor of
a_1,a_2,...,a_n and d = a_1*v_1 + a_2*v_2 + ...+ a_n*v_n.

For integers a_1,a_2,...,a_n, numlib::igcdmult(a_1,a_2,...,a_n) returns a
list [d, v1, …, vn] of integers such that d is the nonnegative greatest common divisor of
a_1,a_2,...,a_n and d = a_1*v_1 + a_2*v_2 + ...+ a_n*v_n.

Examples

Example 1

Computing the greatest non-negative common divisor d of 455, 385, 165, 273 and
integers v1, v2, v3, v4 such that d = 455 v1 + 385 v2 + 165 v3 + 273 v4:

numlib::igcdmult(455,385,165,273)

20-30



 numlib::igcdmult

Parameters

par1

Integer

par2, …

Integers

Return Values

List of integers, or the function call with evaluated arguments if some argument is not a
number.

See Also

MuPAD Functions
igcd | igcdex
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numlib::invphi
Inverse of the Euler phi function

Syntax
numlib::invphi(n)

Description

numlib::invphi(n) computes all positive integers i with φ(i) = n.

Examples

Example 1

We compute all numbers i with φ(i) = 500:

s := numlib::invphi(500)

Test for correctness:

map(s, numlib::phi)

Parameters

n

A positive integer
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Return Values

List of positive integer numbers.

See Also

MuPAD Functions
numlib::phi
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numlib::ispower

Test for perfect powers

Syntax

numlib::ispower(n)

Description

numlib::ispower(n) tests whether n is of the form ak for some integers a, k with a, k ≥
2.

numlib::ispower returns FALSE if n is not a perfect power.

Among several pairs (a, k) for which n = ak, that one with minimal a is returned.

Examples

Example 1

This number is a perfect power:

numlib::ispower(1977326743)

This number is not a perfect power:

numlib::ispower(1977326744)
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Parameters

n

An integer

Return Values

numlib::ispower returns a sequence of two positive integers greater than 1, or FALSE
if n is not a perfect power.

See Also

MuPAD Functions
_power | ifactor | isqrt
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numlib::isquadres
Test for quadratic residues

Syntax
numlib::isquadres(a, m)

Description

If the integer number a is a quadratic residue modulo the natural number
mnumlib::isquadres(a,m) returns TRUE, and if a is a quadratic non-residue modulo
mnumlib::isquadres(a,m) returns FALSE.

If a and m are not coprime numlib::isquadres(a,m) returns an error.

numlib::isquadres returns an error if the arguments evaluate to numbers which are
not both of the correct type.

numlib::isquadres returns the function call with its arguments evaluated if the
arguments do not evaluate to numbers.

Examples

Example 1

132132 is a quadratic residue modulo 3231227:

numlib::isquadres(132132, 3231227)

Example 2

222222 is a quadratic non-residue modulo 324899:
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numlib::isquadres(222222,324899)

Example 3

37 is a quadratic residue modulo 48884:

numlib::isquadres(37,48884)

Parameters

a

An integer

m

A natural number coprime to a

Return Values

numlib::isquadres returns TRUE, FALSE, or the function call with its arguments
evaluated.

See Also

MuPAD Functions
numlib::jacobi | numlib::legendre | numlib::msqrts
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numlib::issqr
Test for perfect squares

Syntax
numlib::issqr(a)

Description

numlib::issqr(a) returns TRUE if a is the square of an integer, and FALSE otherwise.

Examples

Example 1

361 is the square of 19:

numlib::issqr(361)

Example 2

362 is not a square:

numlib::issqr(362)

Example 3

Negative integers are not squares:
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numlib::issqr(-361)

Parameters

a

An integer

Return Values

numlib::issqr returns TRUE, FALSE, or the unevaluated call.

See Also

MuPAD Functions
isqrt | numlib::ispower | sqrt
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numlib::jacobi

Jacobi symbol

Syntax

numlib::jacobi(a, m)

Description

numlib::jacobi(a,m) returns the Jacobi symbol (a | m).

numlib::jacobi returns an error if one of its arguments evaluates to a number of
wrong type.

Examples

Example 1

Computing the Jacobi symbol (222222 | 304679):

numlib::jacobi(222222, 304679)

Example 2

Computing the Jacobi-Symbol (222222 | 324889):

numlib::jacobi(222222, 324899)
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Example 3

Computing the Jacobi symbol (222222 | 333333):

numlib::jacobi(222222, 333333)

Parameters

a

An integer

m

An odd positive integer

Return Values

numlib::jacobi(a,m) returns 0, 1, or -1, or the function call with evaluated
arguments if one of the arguments is not a number.

Algorithms

numlib::jacobi doesn't use ifactor.

If a is an integer and m is an odd integer not coprime to a then by definition the Jacobi
Symbol (a | m) is zero.

See Also

MuPAD Functions
numlib::isquadres | numlib::legendre
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numlib::Lambda
Von Mangoldt's function

Syntax
numlib::Lambda(m)

Description

numlib::Lambda(m) returns the value of von Mangoldt's function at m.

It is an error if m is a number but not a natural number.

If m is not a number, numlib::Lambda returns the unevaluated function call.

Examples

Example 1

numlib::Lambda takes on non-zero values only for prime powers:

numlib::Lambda(49)

numlib::Lambda(48)

Example 2

numlib::Lambda returns the function call if its argument is not a number:

numlib::Lambda(3+n^4)
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Parameters

m

Arithmetical expression

Return Values

numlib::Lambda returns an arithmetical expression

Algorithms

The function value of Lambda at m is defined to be log p if m = pn for some prime number
p and some positive integer n, and to be zero for positive integers that are not prime
powers.

See Also

MuPAD Functions
numlib::ispower
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numlib::lambda
Carmichael function

Syntax
numlib::lambda(n)

Description

numlib::lambda(n) returns the value of the Carmichael function at n.

If m is a natural number then numlib::lambda(m) returns the value of the Carmichael
function in m, i. e., the maximal order of an element in the group of units modulo m.

numlib::lambda returns an error if the argument evaluates to a number of wrong type.
numlib::lambda returns the function call with its argument evaluated if m is not a
number.

Examples

Example 1

We compute the value of the Carmichael function λ in 97:

numlib::lambda(97)

Example 2

We compute the value of the Carmichael function λ in 96:

numlib::lambda(96)
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Parameters

n

A natural number

Return Values

numlib::lambda(n) returns a natural number, or the function call with its argument
evaluated.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
numlib::order | numlib::phi
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numlib::legendre
Legendre symbol

Syntax
numlib::legendre(a, p)

Description

numlib::legendre(a, p) returns the Legendre symbol (a | p).

numlib::legendre returns an error if one of its arguments evaluates to a number of
wrong type.

numlib::legendre returns the function call with evaluated arguments if at least one of
its arguments does not evaluate to a number.

Examples

Example 1

Computing the Legendre symbol (132132 | 3231277):

numlib::legendre(132132,3231227)

Example 2

Computing the Legendre symbol (132131 | 3231277):

numlib::legendre(132131,3231227)
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Example 3

Computing the Legendre symbol (-303 | 101):

numlib::legendre(-303,101)

Parameters

a

An integer

p

An odd prime

Return Values

numlib::legendre(a,p) returns -1, 0, 1, or the function call with evaluated
arguments.

Algorithms

If p is an odd prime and if a is an integer divisible by p then by definition the Legendre
symbol (a | p) is zero.

See Also

MuPAD Functions
numlib::isquadres | numlib::jacobi
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numlib::lincongruence
Linear congruence

Syntax
numlib::lincongruence(a, b, m)

Description

numlib::lincongruence(a,b,m) returns an error if one of the arguments evaluates
to a number of wrong type.

For integers a and b and a non-zero integer m numlib::lincongruence(a,b,m)
returns the sorted list of all solutions x ∈ {0, 1, …, m - 1} of the linear congruence

 if this congruence is solvable. Otherwise FAIL is returned.

For integers a and b and a non-zero integer m numlib::lincongruence(a,b,m)
returns the sorted list of all solutions x ∈ {0, 1, …, m - 1} of the linear congruence

 if this congruence is solvable. Otherwise FAIL is returned.

Examples

Example 1

A linear congruence possessing one solution:

numlib::lincongruence(7,19,23)

Example 2

A linear congruence possessing several solutions:
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numlib::lincongruence(77,209,253)

Example 3

A linear congruence possessing no solutions:

numlib::lincongruence(77,208,253)

Parameters

a

An integer

b

An integer

m

A non-zero integer

Return Values

numlib::lincongruence(a,b,m) returns a list of nonnegative integers if the linear
congruence is solvable.

numlib::lincongruence(a,b,m) returns FAIL if the linear congruence is not
solvable.

numlib::lincongruence(a,b,m) returns the function call with its arguments
evaluated if one of the arguments is a symbolic expression.
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See Also

MuPAD Functions
numlib::ichrem | numlib::mroots | numlib::msqrts
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numlib::mersenne
Mersenne primes

Syntax
numlib::mersenne(n)

numlib::mersenne()

Description

numlib::mersenne() returns the list of known Mersenne primes p. For these numbers,
the Mersenne number 2p - 1 is prime.

numlib::mersenne(n) returns the nth currently known Mersenne prime. The numbers
of the Mersenne primes after the 40th prime can change in the future. More Mersenne
primes might be found.

Examples

Example 1

The following primes p are known to have the property that the Mersenne number 2p - 1
is prime:

numlib::mersenne()

Example 2

Display the 10th Mersenne prime:
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numlib::mersenne(10)

Return Values

Natural number or a list of natural numbers.

References

See http://www.mersenne.org/
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numlib::moebius
Möbius function

Syntax
numlib::moebius(n)

Description

numlib::moebius(n) returns the value of the Möbius function at n.

numlib::moebius returns an error if the argument evaluates to a number of wrong
type.

If n is a natural number numlib::moebius(n) returns the value of the Möbius function
in n.

If n is not a number, numlib::moebius(n) returns the function call with its argument
evaluated.

Examples

Example 1

Computing the value of the Möbius function μ at 99937:

numlib::moebius(99937)

Example 2

numlib::moebius works for arbitrarily large integers:
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numlib::moebius(453973694165307953197296969697410619233826)

Parameters

n

A natural number

Return Values

numlib::moebius(n) returns a nonnegative integer.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
numlib::lambda | numlib::phi

20-54



 numlib::mroots

numlib::mroots
Modular roots of polynomials

Syntax
numlib::mroots(P, m)

Description

numlib::mroots(P,m) returns an error if P is not a polynomial over the integers or m is
not a natural number.

For a univariate polynomial P over the integers and for a natural number m the function
call numlib::mroots(P,m) returns the sorted list of all integers x ∈ {0, 1, …, m - 1}
such that .

For a multivariate polynomial P, numlib::mroots(P, m) returns a lexicographically
sorted list of all lists [x1, …, xn] of integers between 0 and m - 1 such that

.

For a univariate polynomial P over the integers and for a natural number m the function
call numlib::mroots(P,m) returns the sorted list of all integers x ∈ {0, 1, …, m - 1}
such that .

For a multivariate polynomial P, numlib::mroots(P, m) returns a lexicographically
sorted list of all lists [x1, …, xn] of integers between 0 and m - 1 such that

.

Examples

Example 1

Defining a polynomial

P := poly(3*T^7 + 2*T^2 + T - 17, [T])
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and computing its roots modulo 1751:

numlib::mroots(P, 1751)

The polynomial P doesn't have roots modulo 1994:

numlib::mroots(P, 1994)

Example 2

We use numlib::mroots to find all points on a particular elliptic curve modulo 13:

numlib::mroots(poly(y^2 - x^3 - x - 2, [x, y]), 13)

Parameters

P

A polynomial over the integers

m

A natural number

Return Values

If P is univariate, numlib::mroots returns a list of nonnegative integers. If P has more
than one variable, numlib::mroots returns a list of lists of nonnegative integers.
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Algorithms

numlib::mroots uses factor.

See Also

MuPAD Functions
numlib::lincongruence | numlib::msqrts
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numlib::msqrts
Modular square roots

Syntax
numlib::msqrts(a, m)

Description

numlib::msqrts(a,m) returns the list of all integers x ∈ {0, 1, …, m - 1} such that
.

Examples

Example 1

Computing the square roots of 132132 modulo 3231227:

numlib::msqrts(132132,3231227)

Example 2

There are no square roots of 222222 modulo 324899:

numlib::msqrts(222222,324899)

Example 3

48884 is a composite number, so a number can have more than two square roots modulo
48884:
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numlib::msqrts(37,48884)

Parameters

a

An integer

m

A natural number relatively prime to a

Return Values

numlib::msqrts(a,m) returns a list of nonnegative integers

Algorithms

numlib::msqrts uses D. Shanks' algorithm RESSOL.

See Also

MuPAD Functions
numlib::lincongruence | numlib::mroots
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numlib::numdivisors

Number of divisors of an integer

Syntax

numlib::numdivisors(n)

Description

numlib::numdivisors(n) returns the number of positive divisors of n.

numlib::numdivisors(0) returns 0.

numlib::numdivisors returns the function call with evaluated argument if the
argument is not a number.

numlib::numdivisors returns an error if the argument evaluates to a number of
wrong type.

numlib::numdivisors is the same function as numlib::tau.

Examples

Example 1

We compute the number of positive divisors of the number 6746328388800 (one of the
highly composite numbers studied by S. Ramanujan in 1915):

numlib::numdivisors(6746328388800)
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Parameters

n

An integer

Return Values

numlib::numdivisors(n) returns a nonnegative integer.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
numlib::divisors | numlib::numprimedivisors | numlib::primedivisors
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numlib::numprimedivisors

Number of prime factors of an integer

Syntax

numlib::numprimedivisors(n)

Description

numlib::numprimedivisors(n) returns the number of prime factors of the integer n,
counted without multiplicity.

numlib::numprimedivisors(0) returns 0.

numlib::numprimedivisors returns the function call with evaluated argument if the
argument is not a number.

numlib::numprimedivisors returns an error if the argument evaluates to a number
of wrong type.

numlib::numprimedivisors and numlib::omega are equivalent.

Examples

Example 1

Compute the number of primes dividing 6746328388800:

numlib::numprimedivisors(6746328388800)
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Parameters

n

An integer

Return Values

numlib::numprimedivisors(n) returns a nonnegative integer.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
numlib::numdivisors | numlib::omega | numlib::primedivisors
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numlib::omega
Number of prime factors of an integer

Syntax
numlib::omega(n)

Description

numlib::omega and numlib::numprimedivisors are equivalent. For details and
examples, see numlib::numprimedivisors.

Parameters

n

An integer

Return Values

numlib::numprimedivisors(n) returns a nonnegative integer.

See Also

MuPAD Functions
numlib::numdivisors | numlib::numprimedivisors | numlib::primedivisors
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numlib::Omega
Number of prime divisors (with multiplicity)

Syntax
numlib::Omega(a)

Description

numlib::Omega(a) returns, for a given positive integer a, the finite sum ,

where p runs through all primes, and α(p, a) denotes the highest exponent for which pα

divides a.

Examples

Example 1

In contrast to numlib::numprimedivisors, the prime factor 2 of 120 is counted thrice:

numlib::Omega(120)

The same happens here:

numlib::Omega(8)

Parameters

a

Positive integer
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Return Values

numlib::Omega returns a positive integer.

See Also

MuPAD Functions
numlib::numprimedivisors
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numlib::order
Order of a residue class

Syntax
numlib::order(a, m)

Description

numlib::order(a,m) returns the order of the residue class modulo m of a in the group
of units modulo m if a and m are coprime.

numlib::order(a,m) returns the function call with its arguments evaluated if a or m is
not a number.

numlib::order returns an error if one of the arguments evaluates to a number of
wrong type.

Examples

Example 1

We compute the order of the residue class of 23 in the unit group modulo 2161:

numlib::order(23, 2161)

Example 2

We compute the order of all elements in the unit group modulo 13:

map([$ 1..12],numlib::order,13)
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Example 3

The residue class of 7 is not a unit in the ring ℤ modulo 21:

numlib::order(7,21)

Parameters

a

An integer

m

A natural number

Return Values

numlib::order(a,m) returns a natural number if a is coprime to m, and FAIL if a is
not coprime to m.

Algorithms

numlib::order uses ifactor and numlib::phi.

See Also

MuPAD Functions
numlib::lambda | numlib::phi
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numlib::phi
Euler phi function

Syntax
numlib::phi(n)

Description

numlib::phi(n) calculates the Euler φ function of the argument n, i.e. the number
of numbers smaller than |n| which are relatively prime to n. Cf. “Example 1” on page
20-69.

numlib::phi returns an error if the argument is a number but not an integer unequal
to zero.

numlib::phi returns the function call with evaluated arguments if the argument is not
a number. Cf. “Example 2” on page 20-69.

Examples

Example 1

numlib::phi works on integers unequal zero:

numlib::phi(-7), numlib::phi(10)

Example 2

numlib::phi is returned as a function call with evaluated argument:

x := a: numlib::phi(x)
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Parameters

n

Integer not equal to zero

Return Values

numlib::phi returns a positive integer, if the argument evaluates to an integer unequal
zero. If the argument cannot be evaluate to a number, the function call with evaluated
arguments is returned .

Overloaded By

n

See Also

MuPAD Functions
numlib::invphi
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numlib::pi
Number of primes up to a given bound

Syntax
numlib::pi(x)

Description
numlib::pi(x) returns the number of primes not exceeding x.

If the argument x is a real number (an integer, rational, or floating-point number), then
the number of primes below x is returned. If x is a complex number, numlib::pi stops
with an error. For every other kind of arithmetical expression x, an unevaluated call is
returned.

numlib::pi becomes slightly faster if the internal prime number table is large.
ifactor(PrimeLimit) displays the limit of the internal prime number table; it can be
set by the user via the command line flag -L.

Internally, a fast kernel function with constant memory consumption is used for the
computation.

Examples

Example 1

There are two primes less or equal 3:

numlib::pi(3)

Example 2

Also larger inputs can be handled fast:
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numlib::pi(150000000)

Example 3

Floating point arguments are allowed, too.

numlib::pi(28.72)

Parameters

x

An arithmetical expression

Return Values

Non-negative integer or an unevaluated call to numlib::pi

Algorithms

A Lehmer-type algorithm is used, with no precomputed sieve array and no remember
tables. In contrast to the algorithm in “Computing π: The Meissel-Lehmer method”, this
means constant memory consumption, at the price of slowness.

References

[1] Lagarias, J.C., V.S. Miller, and A.M. Odlyzko. “Computing π: The Meissel-Lehmer
method”, Math. Comp., Vol. 44, No. 170 (1985), pp. 537-560
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See Also

MuPAD Functions
isprime | ithprime | nextprime | prevprime
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numlib::proveprime

Primality proving using elliptic curves

Syntax

numlib::proveprime(n)

Description

numlib::proveprime(n) tests whether n is a prime. Unlike isprime,
numlib::proveprime always returns a correct answer.

numlib::proveprime returns the following values:

• TRUE when it can prove that the number is a prime.
• FALSE when it can prove that the number is not a prime.
• FAIL when it cannot prove that the number is a prime and cannot prove otherwise. In

such cases, the input most likely is a prime.
• A primality certificate, which is a list or a sequence of lists containing proof for

the primality of the number. Typically, numlib::proveprime returns primality
certificates for very large numbers.

A primality certificate is a sequence of lists of the form [N, D, lm, a, b, x, y, ls], where

• N is a pseudoprime
• D is an integer (fundamental discriminant)
• lm is a list of prime factors
• a, b, x, y are integers modulo N
• ls is another list of prime factors (subset of the factors in lm)

numlib::checkPrimalityCertificate checks primality certificates produced by
numlib::proveprime.
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Examples

Example 1

Proving that 1159523 is prime can be reduced to proving that 10343 is prime:

certificate := numlib::proveprime(1159523)

Example 2

Typically, the primality of the input is reduced to the primality of a smaller integer, the
primality of that integer is reduced to the primality of an even smaller integer, and so on.

numlib::proveprime(179424673)

Use numlib::checkPrimalityCertificate to check the result:

numlib::checkPrimalityCertificate(%)

Parameters

n

Positive integer.

Return Values

TRUE, FALSE, FAIL, or a list or sequence of lists.
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References

numlib::proveprime implements the Atkin-Goldwasser-Kilian-Morain algorithm
for proving primality. For information about primality proving and this particular
algorithm, see:

• Atkin, A. O., and F. Morain. “Elliptic curves and primality proving.” Mathematics of
Computation. Vol. 61, Number 203, 1993.

• Goldwasser, S., and J. Kilian. “Almost all primes can be quickly certified”. Proceedings
of the 18th annual ACM symposium on theory of computing. Berkeley, CA, US, 1986,
pp. 316–329.

See Also

MuPAD Functions
ifactor | isprime | ithprime | nextprime | prevprime
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numlib::primedivisors
Prime factors of an integer

Syntax
numlib::primedivisors(n)

Description

numlib::primedivisors(n) returns a list containing the different prime divisors of
the integer n.

If a is a non-zero integer then, numlib::primedivisors(a) returns the sorted list of
the different prime divisors of a.

numlib::primedivisors(0) returns [0].

numlib::primedivisors returns the function call with evaluated argument if the
argument is not a number.

numlib::primedivisors returns an error if the argument evaluates to a number of
wrong type.

Examples

Example 1

We compute the list of prime divisors of the number 6746328388800 (one of the highly
composite numbers studied by S. Ramanujan in 1915):

numlib::primedivisors(6746328388800)
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Parameters

n

An integer

Return Values

numlib::primedivisors(n) returns a list of nonnegative integers.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
ifactor | isprime | numlib::divisors | numlib::numdivisors |
numlib::numprimedivisors | numlib::proveprime
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numlib::primroot
Primitive roots

Syntax
numlib::primroot(m)

numlib::primroot(a, m)

Description

numlib::primroot(m) returns the least positive primitive root modulo m if there exist
primitive roots modulo m.

numlib::primroot(a, m) returns the least primitive root modulo m not smaller than a
if there exist primitive roots modulo m.

Examples

Example 1

We compute the least positive primitive root modulo the prime number 40487:

numlib::primroot(40487)

Example 2

We compute the least primitive root modulo 404872 = 1639197169:

numlib::primroot(1639197169)
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Example 3

Now we compute least primitive root modulo 40487 which is >=111111111:

numlib::primroot(111111111,40487)

Example 4

There are no primitive roots modulo 324013370:

numlib::primroot(324013370)

Parameters

a

An integer

m

A natural number

Return Values

numlib::primroot returns an integer or FAIL.

Algorithms

numlib::primroot uses ifactor.
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See Also

MuPAD Functions
numlib::order
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numlib::reconstructRational
Rational number reconstruction

Syntax
numlib::reconstructRational(a,n)

Description

numlib::reconstructRational(a,n) returns two integers p,q of absolute value
smaller than sqrt(n/2) with p congruent to a*q modulo n. It returns FAIL if such p,q
do not exist.

numlib::reconstructRational(a,n) returns p,q by solving .

The solution p,q satisfies the following conditions: p is strictly between -sqrt(n/2) and
sqrt(n/2), q is strictly between 0 and sqrt(n/2).

If several pairs p,q satisfy these conditions, then their ratios p/q are the same. In such
case, numlib::reconstructRational returns the smallest of these pairs.

Examples

Example 1

Solve this linear congruence: .

numlib::reconstructRational(7, 12)

Modulo 98, the same congruence has no small solution. The solution p=7, q=1 is not
small enough as 7 is not smaller than sqrt(98/2) but just equal.

numlib::reconstructRational(7, 98)
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Example 2

Rational number reconstruction is mostly used as the last step of a modular algorithm.
For example, find the greatest common divisors of the following polynomials.

f:=  poly(x^5 + 22/35*x^3 + 3/8*x^2 + 3/35*x + 9/56, [x]):

g:= poly(x^5 + 2/5*x^4 + 22/35*x^3 + 153/280*x^2 + 3/35*x + 9/56,

    [x]):

Typically, you can use gcd for this task. However, suppose you know that the greatest
common divisor has small coefficients with numerator and denominator both smaller
than 10. Then you can use a modular algorithm with a smaller modulus than gcd would
do: to be able to reconstruct these from their residue class modulo n, it is sufficient that

, e.g., n=211.

gcd(poly(f, IntMod(211)), poly(g, IntMod(211)))

Rational number reconstruction shows that the constant coefficient must be 3/7:

numlib::reconstructRational(-90, 211)

gcd(f,g)

Parameters

a

An integer
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n

A positive integer

Return Values

Sequence consisting of an integer and a positive integer, or FAIL

References

[1] Davenport, J. H. , Y.Siret, and E.Tournier “Computer Algebra: Systems and
Algorithms for Algebraic Computation”. Academic Press Inc, 1988, p.142

See Also

MuPAD Functions
numlib::lincongruence
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numlib::sigma
Sum of divisors of an integer

Syntax
numlib::sigma(n)

numlib::sigma(n, k)

Description

numlib::sigma(n) returns the sum of the positive divisors of n.

numlib::sigma(n, k) returns the sum of the k-th powers of the positive divisors of n.

numlib::sigma(0) returns 0.

numlib::sigma returns the function call with evaluated argument if at least one
argument is not a number.

numlib::sigma returns an error if one of its arguments evaluates to a number of wrong
type.

numlib::sigma(n,0) is the same as numlib::numdivisors(n) and
numlib::tau(n).

numlib::sigma(n,1) is the same function as numlib::sumdivisors(n) and
numlib::sigma(n).

Examples

Example 1

The sum of the positive divisors of 120 is 360:

numlib::sigma(120)
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Example 2

The sum of the fifth powers of the positive divisors of 120 is 25799815800:

numlib::sigma(120,5)

Parameters

n

An integer

k

A nonnegative integer

Return Values

numlib::sigma returns an integer.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
numlib::divisors | numlib::numdivisors
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numlib::sqrt2cfrac
Continued fraction expansion of square roots

Syntax
numlib::sqrt2cfrac(a)

Description

numlib::sqrt2cfrac(a) returns the continued fraction expansion of the square root
of a as a sequence of two lists: the first one contains the non-periodic (integer) part, the
second one contains the periodic part of the expansion.

Examples

Example 1

The square root of 87 can be written as 9 + q, where q is a number satisfying
:

numlib::sqrt2cfrac(87)

Example 2

Since 81 is a perfect square, there is no periodic part in the continued fraction expansion
of its square root:

numlib::sqrt2cfrac(81)
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Parameters

a

A positive integer

Return Values

If a is a perfect square, numlib::sqrt2cfrac returns a list with one entry; otherwise
numlib::sqrt2cfrac returns a sequence of two lists, the first consisting of one integer,
the second consisting of one or more integers.

See Also

MuPAD Functions
numlib::contfrac
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numlib::sqrtmodp
Square root of a quadratic residue modulo a prime

Syntax
numlib::sqrtmodp(a, p)

Description

numlib::sqrtmodp(a, p) computes a solution x to the congruence .

numlib::sqrtmodp(a, p) computes an integer x that satisfies .

a must be a quadratic residue modulo p, and p must be a prime. This is not checked!
Unless this is known to be the case, numlib::msqrts must be used. On the other hand,
numlib::sqrtmodp is faster than numlib::msqrts.

Examples

Example 1

One square root of 132132 modulo 3231227 is 3012020:

numlib::sqrtmodp(132132,3231227)

Parameters

a

An integer
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p

A prime unequal to 2

Return Values

numlib::sqrtmodp returns an integer.

Algorithms

numlib::sqrtmodp uses D. Shanks' algorithm RESSOL.

See Also

MuPAD Functions
numlib::msqrts
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numlib::sumdivisors
Sum of divisors of an integer

Syntax
numlib::sumdivisors(n)

Description

numlib::sumdivisors(n) returns the sum of the positive divisors of the integer n.

numlib::sumdivisors(0) returns 0.

numlib::sumdivisors returns the function call with evaluated argument if the
argument is not a number.

numlib::sumdivisors returns an error if the argument evaluates to a number of
wrong type.

numlib::sumdivisors(n) is the same as numlib::sigma(n, 1).

Examples

Example 1

The sum of the positive divisors of 120 is 360:

numlib::sumdivisors(120)

Example 2

The sum of the positive divisors of - 63 is 104:
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numlib::sumdivisors(-63)

Parameters

n

An integer

Return Values

numlib::sumdivisors(n) returns a nonnegative integer.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
numlib::divisors | numlib::numdivisors | numlib::sigma
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numlib::sumOfDigits
Sum of digits of an integer

Syntax
numlib::sumOfDigits(n, <base>)

Description

numlib::sumOfDigits(n, base) computes the sum of digits of n in the given base
base); if the base is not given, it defaults to 10.

The sum of digits may be larger than the base. For certain purposes (testing divisibility
by b - 1, where b is the base), it may be useful to apply numlib::sumOfDigits over and
over to the result. This is not done automatically. See “Example 2” on page 20-93.

Examples

Example 1

We compute the decimal and the binary sum of digits of 11:

numlib::sumOfDigits(11), numlib::sumOfDigits(11, 2)

Example 2

We want to test whether 9 divides a given number, using the school method:

n:= 24373463462374324: 

repeat n:= numlib::sumOfDigits(n); print(n) until n < 10 end: 

delete n:
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This only makes sense for demonstration purposes, as the following command achieves
the same but much faster:

24373463462374324 mod 9

Parameters

n

Non-negative integer

base

Integer greater than one

Return Values

Non-negative integer

See Also

MuPAD Functions
numlib::g_adic
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numlib::tau
Number of divisors of an integer

Syntax
numlib::tau(n)

Description
numlib::tau(n) returns the number of positive divisors of n.

numlib::tau(0) returns 0.

numlib::tau returns the function call with evaluated argument if the argument is not a
number.

numlib::tau returns an error if the argument evaluates to a number of wrong type.

numlib::tau is the same function as numlib::numdivisors.

Examples

Example 1

We compute the number of positive divisors of the number 6746328388800 (one of the
highly composite numbers studied by S. Ramanujan in 1915):

numlib::tau(6746328388800)

Parameters
n

An integer
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Return Values

numlib::tau returns a nonnegative integer.

Algorithms

Internally, ifactor is used for factoring n.

See Also

MuPAD Functions
numlib::divisors | numlib::numprimedivisors | numlib::primedivisors
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numlib::toAscii
ASCII encoding of a string

Syntax
numlib::toAscii(s)

Description
numlib::toAscii(s) returns the list of ASCII codes of the characters in the string s.

numlib::toAscii returns an error if its argument is not a string.

Examples

Example 1

The ASCII coding of a well-known name:

numlib::toAscii("MuPAD - Multi Processing Algebra Data Tool")

and the ASCII coding of an empty string:

numlib::toAscii("")

Parameters

s

A string
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Return Values

numlib::toAscii(s) returns a list of nonnegative integers.

See Also

MuPAD Functions
numlib::fromAscii
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ode::companionSystem

Companion matrix of a linear homogeneous ordinary differential equation

Syntax

ode::companionSystem(Ly, y(x), <R>)

Description

ode::companionSystem(Ly, y(x)) returns the companion matrix associated to Ly. If
the optional argument R is given, the elements of the matrix are in R.

Examples

Example 1

We compute the companion matrix of the following differential equation:

Ly := 4*x^2*diff(y(x),x$3)+diff(y(x),x$2)+4*x*diff(y(x),x)-y(x)

ode::companionSystem(Ly, y(x))
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Parameters

Ly

A linear homogeneous ordinary differential equation.

y(x)

The dependent function of Ly.

R

A field of functions or numbers of characteristic zero, default is
Dom::ExpressionField(normal).

Return Values

Object of type Dom::Matrix.
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ode::cyclicVector
Transforms a linear differential system to an equivalent linear differential system with a
companion matrix.

Syntax
ode::cyclicVector(A, x, <v>)

Description

ode::cyclicVector(A, x, v) converts a first order homogeneous differential system
 into a corresponding first order homogeneous differential system , where

B is a companion matrix, by substituting Z = PY using the potential cyclic vector v. If v is
not cyclic then an empty list is returned otherwise a list is returned whose first element
is a list corresponding to the last row of B and second element is the invertible matrix P.

When the optional argument v is not given then the vector [1,0,...,0] is tested. If it
is not cyclic then a suitable one is determined randomly by the procedure.

Examples

Example 1

We compute a differential system equivalent to the following differential system:

A := matrix( [ [x^2-1,1,0], [0,x^2+5*x+1/3,1], [0,0,2]])

ode::cyclicVector(A, x)
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So [1,0,0] is a cyclic vector; [x,0,0] is also a cyclic vector:

l := ode::cyclicVector(A, x, [x,0,0])

And we can build easily a linear homogeneous differential equation associated to it (c.f.
ode::mkODE):

-ode::mkODE(l[1].[-1], y, x)
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Parameters

A

A square matrix of type Dom::Matrix.

x

The independent variable.

v

A list of size the dimension of A, default is [1,0,...,0].

Return Values

List, possibly empty, of two lists.

See Also

MuPAD Functions
ode::scalarEquation
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ode::dAlembert
D'Alembert reduction of a linear homogeneous ordinary differential equation

Syntax
ode::dAlembert(Ly, y(x), v)

Description

ode::dAlembert(Ly, y(x), v) returns the reduced differential equation of Ly using
the method of reduction of d'Alembert and the function v. If v is a solution of Ly and u is
a solution of the reduced differential equation then v ∈ t u is another solution of Ly.

Examples

Example 1

Consider the following differential equation:

Ly := 2/x^3*y(x)-2/x^2*diff(y(x),x)+1/x*diff(y(x),x$2)+

      diff(y(x),x$3)

We easily check that x is a particular solution of Ly:

ode::evalOde(Ly, y(x)=x)

Then we reduce the equation Ly using this special solution:
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R := ode::dAlembert(Ly, y(x), x)

The solutions of the equation R are not too hard to find:

ode::evalOde(R, y(x)=1), ode::evalOde(R, y(x)=1/x^3)

So a basis of solutions of Ly is therefore  which can

be checked directly:

ode::solve(Ly, y(x))

Parameters

Ly

A homogeneous linear differential equation.

y(x)

The dependent function of Ly.

v

An expression.

Return Values

Expression.
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ode::evalOde

Applies an expression at a linear ordinary differential equation

Syntax

ode::evalOde(Ly, y(x))

Description

ode::evalOde(Ly, y(x) = v) evaluates Ly replacing y(x) by v and simplifying the
result. This can be useful to check a solution candidate, for example.

Examples

Example 1

We evaluate the following differential equation for various expressions:

Ly := (x^2+1)*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)

ode::evalOde(Ly, y(x) = 2*x^2+1),

ode::evalOde(Ly, y(x) = exp(x)),

ode::evalOde(Ly, y(x) = RootOf(Z^3+x*Z+1, Z))
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Parameters

Ly

A linear ordinary differential equation.

y(x)

The dependent function of Ly.

v

An expression.

Return Values

Expression.
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ode::exponentialSolutions
Exponential solutions of a homogeneous linear ordinary differential equation

Syntax
ode::exponentialSolutions(Ly, y(x), <Generic>)

Description

ode::exponentialSolutions(Ly, y(x)) returns a fundamental set of the
exponential solutions of Ly, i.e. solutions z such that  is a rational function of x. When

the option Generic is given, a generic form of them is returned.

Note: ode::exponentialSolutions does not return any eventual solution that is
exponential over the algebraic closure of ℚ(x) but not over ℚ(x).

Examples

Example 1

We compute the exponential solutions of the following differential equation :

Ly:=diff(y(x),x$4)-2*x*diff(y(x),x$3)+(-x+x^2-5)*diff(y(x),x$2)+

    (4*x+2*x^2)*diff(y(x),x)+(2+x-x^3)*y(x)

ode::exponentialSolutions(Ly, y(x)),

ode::exponentialSolutions(Ly, y(x), Generic)
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Example 2

No exponential solution over the algebraic closure of ℚ(x) is returned: 

ode::exponentialSolutions(diff(y(x),x$2)+y(x), y(x))

whereas  is a basis of solutions of the above differential equation.

Parameters

Ly

A homogeneous linear ordinary differential equation with coefficients in the field ℚ(x) of
rational functions over the rationals.

y(x)

The dependent function of Ly.

Return Values

set, possibly empty, of functions or an expression.
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ode::exponents
Exponents of a linear ordinary differential equation

Syntax
ode::exponents(Ly, y(x), p)

Description

ode::exponents returns the set of exponents of a homogeneous linear differential
equation at a given point.

ode::exponents(Ly, y(x), p) returns the set of (local) exponents of Ly at the
place p. If the place is infinity then one uses  instead. They are defined as roots (in an

algebraic closure of ℚ(x)) of the indicial equation (c.f. ode::indicialEquation) of Ly so
the set of exponents may be empty, see “Example 2” on page 21-14.

Examples

Example 1

We compute the exponents of the following differential equation at the regular point 0
and at the singular points -1 and infinity:

Ly := diff(y(x),x$2)+4/(x+1)*diff(y(x),x)+2/(x+1)^2*y(x)

ode::exponents(Ly, y(x), x)
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ode::exponents(Ly, y(x), x+1)

ode::exponents(Ly, y(x), 1/x)

Example 2

It may happen that at a place the set of exponents is empty; this corresponds to an
irregular singular point:

Ly := (2*x+4)*diff(y(x),x)/(2*x+x^2-2)-2*y(x)/(2*x+x^2-2)-

      (4*x+x^2)/(2*x+x^2-2)*diff(y(x),x$2)+diff(y(x),x$3)

ode::exponents(Ly, y(x), 1/x)

ode::exponents(Ly, y(x), x^2+2*x-2)

Parameters

Ly

A homogeneous linear differential equation over ℚ(x).

y(x)

The dependent function of Ly.
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p

An irreducible polynomial in x or 1/x.

Return Values

set, possibly empty.

See Also

MuPAD Functions
ode::indicialEquation | ode::isFuchsian
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ode::getOrder

Order of an ordinary differential equation

Syntax

ode::getOrder(Ly, y(x))

Description

ode::getOrder(Ly, y(x)) returns the order of Ly for the dependent function y(x),
i.e. the highest degree of derivative of Ly.

Examples

Example 1

We can compute orders for linear and nonlinear ordinary differential equations:

ode::getOrder(diff(y(x),x$2)-x*y(x)-airyAi(x), y(x))

ode::getOrder(y(x)*diff(y(x),x$3)^2-exp(y(x)), y(x))

ode::getOrder(y(x)*diff(y(x),x$3)^2-exp(y(x)), z(x))
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Parameters

Ly

An ordinary differential equation.

y(x)

The dependent function of Ly.

Return Values

Either -infinity or a positive integer.
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ode::indicialEquation

Indicial equation of a linear ordinary differential equation

Syntax

ode::indicialEquation(Ly, y(x), p, u)

Description

ode::indicialEquation(Ly, y(x), p, u) returns the indicial equation in the
variable u of Ly at the place p. If the place is infinity then one uses  instead. The result

if FAIL if the place corresponds to an irregular singular point of Ly.

Examples

Example 1

We compute the indicial equations of the following differential equation at the regular
point 1 and at the singular points 0 and infinity:

Ly := 1/x^3*y(x)*(4*x-10)-1/x^2*(4*x^3-10)*diff(y(x),x)-

      9/2/x*diff(y(x),x$2)+diff(y(x),x$3)

ode::indicialEquation(Ly, y(x), x-1, U)
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ode::indicialEquation(Ly, y(x), 1/x, U)

ode::indicialEquation(Ly, y(x), x, U)

The roots of the indicial equation correspond to the (local) exponents:

solve(%, U), ode::exponents(Ly, y(x), x)

Parameters

Ly

A homogeneous linear differential equation over ℚ (x).

y(x)

The dependent function of Ly.

p

An irreducible polynomial in x or 1/x.

u

An element of type DOM_IDENT.

Return Values

FAIL or a polynomial expression in u.
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See Also

MuPAD Functions
ode::indicialEquation | ode::isFuchsian
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ode::isFuchsian
Tests if a homogeneous linear ordinary differential equation is of Fuchsian type

Syntax
ode::isFuchsian(Ly, y(x), <AllExponents>)

Description

ode::isFuchsian returns TRUE if Ly is of Fuchsian type, i.e., all the singular points
(including the point at infinity) of Ly are regular. It returns FALSE if at least one
singular point is irregular. When the option AllExponents is given, either FALSE is
returned or a list where each element is a table containing, at each regular singular point
of Ly the place, the indicial equation and the exponents.

Examples

Example 1

We test if the following differential equation is Fuchsian:

Ly:=x*(1-x)*diff(y(x),x$2)+(1-x)*diff(y(x),x)+10*y(x)

ode::isFuchsian(Ly, y(x))

We can have a look of the indicial equations, exponents at each regular singular point of
Ly:

ode::isFuchsian(Ly, y(x), AllExponents)
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Example 2

In this example, the Airy equation, the only singular point is at infinity and is irregular:

ode::isFuchsian(diff(y(x),x$2)-x*y(x), y(x))

Parameters

Ly

A homogeneous linear ordinary differential equation with coefficients in the field ℚ(x) of
rational functions over the rationals.

y(x)

The dependent function of Ly.

Options

AllExponents

Return a list of tables of indical equations and exponents for regular singular points.

Return Values

TRUE, FALSE or a list.
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ode::isLODE
Test for a linear ordinary differential equation

Syntax
ode::isLODE(Ly, y(x), <Homogeneous | HlodeOverRF | Hlode | LodeOverRF | Lode>)

Description

ode::isLODE(Ly, y(x)) returns TRUE if Ly is a linear ordinary differential equation
in y(x), FALSE otherwise. If an optional argument is given then the result is discussed
as follows:

• Homogeneous: returns TRUE if Ly is homogeneous, FALSE otherwise.
• HlodeOverRF: returns the sequence Ly, y, x, n, where n is the order of Ly, if Ly

is homogeneous with rational functions coefficients, FALSE otherwise.
• Hlode: returns the sequence Ly, y, x, n, where n is the order of Ly, if Ly is

homogeneous, FALSE otherwise.
• LodeOverRF: returns the sequence Ly, y, x, n, where n is the order of Ly, if Ly

has rational functions coefficients, FALSE otherwise.
• Lode: returns the sequence Ly, y, x, n, where n is the order of Ly, if Ly is a linear

ordinary differential equation, FALSE otherwise.

Examples

Example 1

We test the following differential equations:

ode::isLODE(y(x)^2+x^2*diff(y(x),x)+x, y(x))
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ode::isLODE(y(x)+x^2*diff(y(x),x)+x, y(x))

ode::isLODE(y(x)+x^2*diff(y(x),x)+x, y(x), Hlode)

ode::isLODE( 

     y(x)+x^2*diff(y(x),x)+x*diff(y(x),x$2), y(x), HlodeOverRF)

ode::isLODE( 

     x+x^2*diff(y(x),x)+exp(x)*diff(y(x),x$2), y(x), LodeOverRF)

Parameters

Ly

An expression.

y(x)

The dependent function of Ly.

Return Values

Either TRUE, FALSE or a sequence of type _exprseq.
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ode::mkODE
Builds a linear homogeneous ordinary differential equation from a list of coefficient
functions

Syntax
ode::mkODE(l, y, x)

Description

ode::mkODE(l, y, x) returns a linear homogeneous ordinary differential equation Ly
in y(x) where the coefficients are the entries of the list l. The last element of the list l
corresponds to the leading coefficients of Ly.

Examples

Example 1

We generate the linear ODE for y(x) with the coefficients -1, 4*x and 4*x^2 of y(x),
y'(x) and y''(x), respectively:

ode::mkODE([-1, 4*x, 4*x^2], y, x)

Parameters

l

A list of coefficient functions.
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y

The dependent variable of the resulting differential equation.

x

The independent variable of the resulting differential equation.

Return Values

Expression.
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ode::normalize

Normalized form of a linear ordinary differential equation

Syntax

ode::normalize(Ly, y, x, n)

Description

ode::normalize(Ly, y, x, n) computes the normalized form of the n-th order
linear ordinary differential equation Ly, i.e. whose leading coefficient (the coefficient of
the highest derivative of y(x) in Ly) is 1.

Examples

Example 1

We normalize the following differential equation:

Ly:=-diff(y(x),x,x)/x+y(x)/4/x^3-diff(y(x),x)/x^2

ode::normalize(Ly, y, x, 2)
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Parameters

Ly

A homogeneous linear ordinary differential equation.

y

The dependent variable of Ly.

x

The independent variable of Ly.

n

The order of Ly.

Return Values

Expression representing a linear differential equation.
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ode::polynomialSolutions
Polynomial solutions of a homogeneous linear ordinary differential equation

Syntax
ode::polynomialSolutions(Ly, y(x), <Generic>)

Description

ode::polynomialSolutions computes a fundamental set of polynomial solutions of a
homogeneous linear ordinary differential equation.

ode::polynomialSolutions returns a fundamental set of the polynomial solutions of
Ly, i.e., solutions in the ring . When the option Generic is given, a generic form of
them is returned.

Examples

Example 1

We compute the polynomial solutions of the following differential equation:

Ly:=3*x*diff(y(x),x,x)-x*diff(y(x),x)+9*y(x)

ode::polynomialSolutions(Ly, y(x))
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ode::polynomialSolutions(Ly, y(x), Generic)

Parameters

Ly

A homogeneous linear ordinary differential equation with coefficients in the field ℚ(x) of
rational functions over the rationals.

y(x)

The dependent function of Ly.

Return Values

set, possibly empty, of functions or an expression

See Also

MuPAD Functions
ode::rationalSolutions
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ode::rationalSolutions
Rational solutions of a homogeneous linear ordinary differential equation

Syntax
ode::rationalSolutions(Ly, y(x), <Generic>)

Description

ode::rationalSolutions returns a fundamental set of the rational solutions of Ly,
i.e., solutions in the field ℚ(x). When the option Generic is given, a generic form of them
is returned.

Examples

Example 1

We compute the rational solutions of the following differential equation:

Ly:=(4*x^5+8*x^3+4*x)*diff(y(x),x,x)+

    (36*x^4+32*x^2-4)*diff(y(x),x)+48*x^3*y(x)

ode::rationalSolutions(Ly, y(x))

ode::rationalSolutions(Ly, y(x), Generic)

21-31



21 ode – Ordinary Differential Equations

Parameters

Ly

A homogeneous linear ordinary differential equation with coefficients in the field ℚ(x) of
rational functions over the rationals.

y(x)

The dependent function of Ly.

Return Values

set, possibly empty, of functions or an expression

See Also

MuPAD Functions
ode::polynomialSolutions
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ode::ratSys
Rational solutions of a first order homogeneous linear differential system

Syntax
ode::ratSys(M, x)

Description

ode::ratSys(M, x) computes a fundamental set of rational solutions of the first order
homogeneous linear differential system Y'=MY. This method uses a cyclic vector and
therefore is not optimal.

Examples

Example 1

We compute the rational solutions of the following differential system:

A := matrix([ [2*(x+x^2-9)/x/(x-2),2*(x^2-6)/x/(x-2)], 

     [-3*(2*x+x^2-12)/x/(x-2),-(2*x+3*x^2-24)/x/(x-2)] ])

v := ode::ratSys(A, x)
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And we can check the result:

diff(v[1], x) = normal(A*v[1])

Parameters

M

A square matrix of type Dom::Matrix with coefficients in the field ℚ(x) of rational
functions over the rationals.

x

The independent function.

Return Values

set, possibly empty, of objects of type Dom::Matrix.

See Also

MuPAD Functions
ode::cyclicVector | ode::rationalSolutions | ode::scalarEquation
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ode::scalarEquation
Transforms a linear differential system to an equivalent scalar linear differential
equation

Syntax
ode::scalarEquation(A, x, y, <Transform>)

Description
ode::scalarEquation converts a first order homogeneous linear differential system to
an equivalent homogeneous scalar linear differential equation using the method of cyclic
vector.

ode::scalarEquation(A, x, y) returns a scalar homogeneous linear differential
equation in y(x) equivalent to the first order homogeneous differential system 
using the method of the cyclic vector. If the option Transform is given then a list is
returned whose first element is the corresponding differential equation Ly and second
element is an invertible matrix P such that  is the companion
matrix associated to Ly; hence if Z is a solution of the differential system  then
PZ is a solution of the system .

Examples

Example 1

We compute a linear differential equation equivalent to the following differential system:

A := matrix( [ [x^2-1,1,0], [0,x^2+5*x+1/3,1], [0,0,2]])
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l := ode::scalarEquation(A, x, y, Transform)

And we can check that, for P=l[2],  is the companion matrix associated
to l[1]:

P := l[2]:

bool( diff(P,x)*P^(-1)+P*A*P^(-1) = 

      ode::companionSystem(l[1], y(x)) )

Parameters
A

A square matrix of type Dom::Matrix.

x

The independent variable of the resulting scalar differential equation.

y

The dependent variable of the resulting scalar differential equation.

Return Values
Expression or a list.
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See Also

MuPAD Functions
ode::cyclicVector
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ode::series
Series solutions of an ordinary differential equation

Syntax
ode::series(Ly, y(x), x | x = x0, <order>)

ode::series({Ly, <inits>}, y(x), x | x = x0, <order>)

Description

ode::series(Ly, y(x), x = x0) computes the first terms of the series expansions
of the solutions of Ly with respect to the variable x around the point x0.

ode::series tries to compute either the Taylor series, the Laurent series or the
Puiseux series of the solutions of the differential equation Ly around the point x=x0.

Suppose that Ly is a nonlinear differential equation. If x0 is an ordinary point of Ly then
a Taylor series is computed otherwise an expression of type "series" is returned. If
initial conditions are given at the point x0 then the answer is expressed in terms of the
function y(x) and its derivatives evaluated at the point x0. See “Example 1” on page
21-38.

Suppose that Ly is a linear differential equation. If x0 is an ordinary point of Ly then a
Taylor series is computed, if Ly is furthermore homogeneous and x0 is a regular point
then a Puiseux series is computed (containing possible logarithmic terms), otherwise an
expression of type "series" is returned. If initial conditions are given at the point x0
then the answer is either expressed in terms of the function y(x) and its derivatives
evaluated at the point x0 or it may be expressed in terms of arbitrary constants.

Examples

Example 1

Consider the following nonlinear differential equation:
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Ly := x^2*diff(y(x),x)+y(x)-x

We compute the series solutions at the point 0 which is a singular point:

ode::series(Ly, y(x), x=0)

Then we compute the series solutions at the regular point 1:

ode::series(Ly, y(x), x=1)

And we can also put some initial conditions at the point 1:

ode::series({y(1)=1, Ly}, y(x), x=1)

Example 2

Consider the following linear differential equation:

Ly := (2*x+x^3)*diff(y(x),x$2)-diff(y(x),x)-6*x*y(x)
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We compute the series solutions at the regular point 1:

ode::series(Ly, y(x), x=1)

The series solutions at the regular singular point 0:

ode::series(Ly, y(x), x=0)

An also the series solutions at the regular singular point infinity:

ode::series(Ly, y(x), x=infinity)

Example 3

Consider the following linear differential equation:

Ly := x^2*diff(y(x),x$2)-x*diff(y(x),x)+(1-x)*y(x)

We compute the series solutions at the regular singular point 0:

ode::series(Ly, y(x), x)
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And at the same point we look for solutions satisfying the initial condition y(0) = 1 and
y(0) = 0:

ode::series({y(0)=1, Ly}, y(x), x)

ode::series({y(0)=0, Ly}, y(x), x)

Parameters

Ly

An ordinary differential equation.

y(x)

The dependent function of Ly.

x

The independent variable of Ly.
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x0

The expansion point: an arithmetical expression. If not specified, the default expansion
point 0 is used .

inits

The initial or boundary conditions: a sequence of equations.

order

The number of terms to be computed: a nonnegative integer. The default order is given
by the environment variable ORDER (default value 6).

Return Values

Either a list, maybe empty, of objects of type Series::Puiseux or an expression of
type "series".
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ode::solve

Solving ordinary differential equations

Syntax

ode::solve(o, options)

solve(o, options)

Description

ode::solve computes solutions for ordinary differential equations.

ode::solve(o) returns the set of solutions of the ordinary differential equation o. You
can also call the generic function solve(o).

The solver detects the type of the differential equation and chooses an algorithm
according to the detected equation type. If you know the type of the equation, you can use
the option Type = OdeType to pass the equation type to the solver. Passing the equation
type to the solver increases performance.

The solver recognizes the following values of OdeType:

• Abel - Abel differential equation
• Bernoulli - Bernoulli differential equation
• Chini - Chini differential equation
• Clairaut - Clairaut differential equation
• ExactFirstOrder - exact first order ordinary differential equation
• ExactSecondOrder - exact second order ordinary differential equation
• Homogeneous - homogeneous first order ordinary differential equation
• Lagrange - Lagrange differential equation
• Riccati - Riccati differential equation
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See the Background section for more details on the classes of ordinary differential
equations.

If the solver cannot identify the equation with the type you indicated, it issues a warning
and returns the special value FAIL.

To solve an ordinary differential equation disregarding possible conditions on the
parameters of the equation, use IgnoreSpecialCases option. This option eliminates
receiving a set of special cases as an answer.

To solve an ordinary differential equation in a simplified manner, use the
IgnoreAnalyticConstraints option. This option can provide simple solutions for the
equations for which the direct use of the solver gives complicated results. If you use the
IgnoreAnalyticConstraints option, always check the answer. This option can lead to
wrong or incomplete results. See “Example 3” on page 21-46.

The solutions of ordinary differential equations can contain arbitrary constants of
integration. The solver generates the constants of integration using the format of an
uppercase letter C followed by an automatically generated number, for example C13.

The solver does not always verify the uniqueness and completeness of the returned
solution. For example:

• The solver does not validate the Lipschitz-conditions on the ordinary differential
equation for the Picard-Lindelöf Theorem.

• For some complex nonlinear systems of differential equations the solver returns
constant solutions and does not warn you that other solutions exist.

The solver might ignore assumptions that you set on symbolic parameters and variables
or use them only partially. More precisely, ode::solve passes assumptions to
the functions that it calls internally. While these functions can use the specified
assumptions, ode::solve itself does not use them in most of its internal algorithms.
The same happens if you define an ordinary differential equation using ode and solve it
using solve.

Examples

Example 1

To define an ordinary differential equation, use the ode command:
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o:= ode(y'(x) = y(x)^2, y(x))

To solve the equation, enter:

ode::solve(o)

or more efficiently:

solve(o)

Internally, the function ode::solve calls the function solve.

Example 2

You can solve an ordinary differential equation with a symbolic parameter and an initial
condition:

o:= ode({y'(x) = a*y(x)^2, y(a) = ln(a)}, y(x)):

solve(o)

To reduce the number of returned solutions, use the option IgnoreSpecialCases. For
example, you can drop the solution for the parameter a = 1:
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solve(o, IgnoreSpecialCases)

With the IgnoreSpecialCases option, a returned set of solutions can be incomplete.

Example 3

The solver can return piecewise solutions:

o:= ode(y'(x) = a/y(x)^2 + b*y(x), y(x)):

solve(o)
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This solution is complete and mathematically correct for all possible values of the
parameter a and variable x. Also you can try the option IgnoreAnalyticConstraints
to obtain a particular solution that is correct under a set of common assumptions:

solve(o, IgnoreAnalyticConstraints)
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The solver accepts several options:

solve(o, Type = Bernoulli, IgnoreAnalyticConstraints)

Example 4

Suppose, you want to solve an ordinary differential equation from the class of Bernoulli
equations:

o:= ode(y'(x) = (- 1/x + 2*I)*y(x) + 1/x*y(x)^2, y(x)):

solve(o)
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The solver recognizes the type of the equation and uses the algorithm for solving
Bernoulli equations. To improve performance, you can explicitly pass the type of the
equation to the solver:

solve(o, Type = Bernoulli)

To solve the Clairaut equation with the initial conditions, enter:

o:= ode({(x*y'(x)-y(x))^2 - y'(x)^2 - 1 = 0, y(1) = 1}, y(x)):

solve(o, Type = Clairaut)

If the solver cannot identify the equation with the type you indicated, it issues a warning
and returns the special value FAIL:

o:= ode({(x*y'(x)-y(x))^2 - y'(x)^2 - 1 = 0, y(1) = 1}, y(x)):

solve(o, Type = Lagrange)

Warning: Cannot detect the Lagrange ODE. [ode::lagrange]

Example 5

Some ordinary differential equations belong to several classes. For example, some
Chini equations are also homogeneous and some Lagrange equations are also Clairaut
equations. If an equation belongs to several classes simultaneously, the solver can
present its solution in different forms. The form of a solution depends on the class with
which an equation is identified. For example, suppose you want to solve the Chini
differential equation. You can explicitly pass the type of the equation to the solver:

o:= ode(y'(x) = 1/x*y(x)^2 + 1/x*y(x) + x, y(x)):

L:= solve(o, Type = Chini)
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You also can let the solver recognize the type of the equation:

solve(o)

The solver does not return the type with which an ordinary differential equation is
internally identified. If you want to verify that both solution sets are equivalent, use the
rewrite function with target exp on the first set of solutions:

rewrite(L, exp)

Example 6

MuPAD solves some classes of Riccati ordinary differential equations that involve
arbitrary functions. For example, the following equation contains the arbitrary function
f(x):

eq := diff(y(x), x) - f(x)*y(x)^2 + a^2*x^(2*n)*f(x) - a*n*x^(n - 1)

For this equation the solver returns:

solve(ode(eq,y(x)))

You also can solve an equation with more than one arbitrary function. For example, the
following equations contain f(x) and g(x):
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eq:= diff(y(x), x) - g(x)*f(x)*y(x) - g(x) - diff(f(x), x)*y(x)^2

The returned solution is:

solve(ode(eq,y(x)))

Example 7

Suppose, you want to solve the following second-order ordinary differential equation:

eq := x^2*(x^2 + 1)*diff(y(x),x,x) +

      x*(2*x^2 + 1)*diff(y(x),x) -

     (nu*(nu + 1)*x^2 + n^2)*y(x)

The solver returns the result in terms of the hypergeometric function 1F2 (see
hypergeom):

solve(ode(eq,y(x)))
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Example 8

The solver can handle some third- and higher-order ordinary differential equations. For
example, solve the following third-order linear differential equations:

eq := ode(sin(x)*y'''(x) + cos(x)*y(x), y(x)):

solve(eq)

eq := ode(6*y(x) + x^3*y'''(x), y(x)):

solve(eq)

Example 9

The solver also can handle some nonlinear first-order ordinary differential equations. For
example, solve the following first-order linear differential equations:

eq := ode(y(x)*diff(y(x), x) - y(x) - x^3 - 4*x^4 - 4*x^7, y(x)):

solve(eq)

eq := ode(exp(x/2)/4 - 2*exp(x) - y(x) + x*exp(x/2) + y(x)*y'(x), y(x)):
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solve(eq)

Parameters

o

An ordinary differential equation, an object of the type ode.

Options

Type

Option, specified as Type = OdeType

Indicates the type of the ordinary differential equation and accepts the following
arguments: Abel, Bernoulli, Chini, Clairaut, ExactFirstOrder,
ExactSecondOrder, Homogeneous, Lagrange, Riccati.

MaxDegree

Option, specified as MaxDegree = n

Pass the option to the generic solver, which is called internally for all intermediate
equations. See the list of options for the solve function for further information.

IgnoreSpecialCases

Pass the option to the generic solver, which is called internally for all intermediate
equations, and to the integrator int, which is called for computing all intermediate
integrals. See the list of options for the solve function for further information.

IgnoreAnalyticConstraints

Pass the option to the generic solver, which is called internally for all intermediate
equations, and to the integrator int, which is called for computing all intermediate
integrals. See the list of options for the solve function for further information.
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Return Values

Set of solutions of the ordinary differential equation or the special value FAIL. For
additional information on the return values, see the solve help page.

References

For more information on the particular classes of ordinary differential equations see:

• E. Kamke: Differentialgleichungen: Lösungmethoden und Lösungen. B.G. Teubner,
Stuttgart, 1997

• G.M. Murphy: Ordinary differential equations and their solutions. Van Nostrand,
Princeton, 1960

• Andrei D. Polyanin and Valentin F. Zaitsev: Handbook of exact solutions for ordinary
differential equations, second ed., Chapman & Hall/CRC, Boca Raton, FL, 2003

• D. Zwillinger: Handbook of differential equations. San Diego: Academic Press, 1992

More About
• “Solve Ordinary Differential Equations and Systems”
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ode::symmetricPower
Symmetric power of a homogeneous linear ordinary differential equation

Syntax
ode::symmetricPower(Ly, y(x), m)

Description

ode::symmetricPower(Ly, y(x), m) computes the m-th symmetric power of Ly.
This is the lowest order linear ordinary differential equation whose solution space
consists exactly of all possible m-th powerproducts of solutions of Ly.

Examples

Example 1

We compute the second symmetric power of the following differential equation:

Ly:=x^2*diff(y(x),x$2)-(36*x^6*exp(4*x^3)+9*x^6+2)*y(x)

ode::symmetricPower(Ly, y(x), 2)
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Parameters

Ly

A homogeneous linear ordinary differential equation.

y(x)

The dependent function of Ly.

m

A positive integer.

Return Values

Linear differential equation
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ode::unimodular

Unimodular transformation of a linear ordinary differential equation

Syntax

ode::unimodular(Ly, y(x), <Transform>)

Description

ode::unimodular(Ly, y(x)) tests if the linear homogeneous differential equation
Ly has a unimodular Galois group (i.e. the wronskian lies in the base field ℚ(x)), if not
transforms Ly into a unimodular one (by changing the second highest coefficient to zero)
and returns a table with index equation and factorOfTransformation containing
respectively the transformed differential equation and the factor of transformation Wn
such that a solution of the transformed equation multiplied by Wn is a solution of Ly.

If the option Transform is given then Ly is transformed unconditionally even if Ly has
yet a unimodular Galois group.

Examples

Example 1

We test if the following differential equation has a unimodular Galois group:

 Ly := y(x)*6+x*diff(y(x),x)*(-2)+diff(y(x),x$2)*(-x^2+1)

ode::unimodular(Ly, y(x))
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It is unimodular since the factor of transformation is 1. We can also check this by
computing the wronskian of Ly which is a rational function:

ode::wronskian(Ly,y(x))

Now we transform Ly into a differential equation whose wronskian is 1:

ode::unimodular(Ly, y(x), Transform)

ode::wronskian(%[equation], y(x))

Parameters

Ly

A homogeneous linear differential equation over ℚ(x).

y(x)

The dependent function of Ly.
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Return Values

table.

See Also

MuPAD Functions
ode::wronskian
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ode::vectorize
Coefficients of a homogeneous linear ODE

Syntax
ode::vectorize(Ly, y, x, n)

Description

ode::vectorize(Ly, y, x, n) returns the list of coefficients of the n-th order
homogeneous linear ordinary differential equation Ly.

Examples

Example 1

We compute the list of coefficients of the following differential equation:

Ly := 4*x^2*diff(y(x), x$3)+exp(x^2)*diff(y(x),x$2)+

      4*x*diff(y(x),x)-y(x)

ode::vectorize(Ly, y, x, 3)

Parameters

Ly

A homogeneous linear ordinary differential equation.
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y

The dependent variable of Ly.

x

The independent variable of Ly.

n

The order of Ly, a positive integer.

Return Values

list
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ode::wronskian

Wronskian of functions or of a linear homogeneous ordinary differential equation

Syntax

ode::wronskian(l, x, <R>)

ode::wronskian(Ly, y(x), <R>)

Description

ode::wronskian computes the wronskian (determinant) of functions or of a linear
homogeneous ordinary differential equation.

ode::wronskian(l, x) returns the wronskian, i.e. the determinant of the wronskian
matrix, of the elements of l with respect to x.

ode::wronskian(Ly, y(x)) returns the wronskian of Ly defined as the element w
such that , where an - 1 is the coefficient of Ly of degree n - 1 and n the order

of Ly.

If the optional argument R is given, then the specified differential ring will be chosen for
representing the entries of the wronskian matrix.

Examples

Example 1

We compute the wronskian of [2*x^2+1, x*sqrt(1+x^2), y(x)] which is a linear
differential equation in y(x):

Ly:=ode::wronskian([2*x^2+1, x*sqrt(1+x^2), y(x)], x)
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Ly := numer( normal(Ly) )

And we can check that a basis of solutions of Ly is as expected:

ode::solve(Ly, y(x))

We can also compute the wronskian of Ly, which is, up to a constant, the wronskian of
x^2+1 and x*sqrt(x^2+1):

ode::wronskian(Ly, y(x)), 

simplify(ode::wronskian([x^2+1/2,x*sqrt(1+x^2)], x))
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Parameters

l

A list of functions of the variable x.

Ly

A homogeneous linear ordinary differential equation.

y(x)

The dependent function of Ly.

R

A differential ring, default is Dom::ExpressionField(id, iszero@normal).

Return Values

Expression in x.
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orthpoly::chebyshev1
The Chebyshev polynomials of the first kind

Syntax
orthpoly::chebyshev1(n, x)

Description

orthpoly::chebyshev1(n,x) computes the value of the n-th degree Chebyshev
polynomial of the first kind at the point x.

These polynomials have integer coefficients.

Evaluation is fast and numerically stable for real floating point values x from the interval
[- 1.0, 1.0]. See “Example 2” on page 22-3.

orthpoly::chebyshev2 implements the Chebyshev polynomials of the second kind.

Examples

Example 1

Polynomial expressions are returned if identifiers or indexed identifiers are specified:

orthpoly::chebyshev1(2, x)

orthpoly::chebyshev1(3, x[1])

Using arithmetical expressions as input, the “values” of these polynomials are returned:
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orthpoly::chebyshev1(2, 3 + 2*I)

orthpoly::chebyshev1(3, exp(x[1]+2))

“Arithmetical expressions” include numbers:

orthpoly::chebyshev1(2, sqrt(2)), 

orthpoly::chebyshev1(3, 8 + I),

orthpoly::chebyshev1(1000, 0.3)

If the degree of the polynomial is a variable or expression, then
orthpoly::chebyshev1 returns itself symbolically:

orthpoly::chebyshev1(n, x)

Example 2

If a floating-point value is desired, then a direct call such as

orthpoly::chebyshev1(200, 0.3)

is appropriate and yields a correct result. One should not evaluate the symbolic
polynomial at a floating-point value, because this may be numerically unstable:

T200 := orthpoly::chebyshev1(200, x):

DIGITS := 10: evalp(T200, x = 0.3)
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This result is caused by numerical round-off. Also with increased DIGITS only a few
leading digits are correct:

DIGITS := 20: evalp(T200, x = 0.3)

delete DIGITS, T200:

Parameters

n

A nonnegative integer or an arithmetical expression representing a nonnegative integer:
the degree of the polynomial.

x

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").

Return Values

The value of the Chebyshev polynomial at point x is returned as an arithmetical
expression. If n is an arithmetical expression, then orthpoly::chebyshev1 returns
itself symbolically.

Algorithms

The Chebyshev polynomials are given by T(n, x) = cos(n acos(x)) for real x ∈ [- 1, 1]. This
representation is used by orthpoly::chebyshev1 for floating-point values in this
range.

These polynomials satisfy the recursion formula
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with T(0, x) = 1 and T(1, x) = x.

They are orthogonal on the interval [- 1, 1] with respect to the weight function
.

T(n, x) is a special Jacobi polynomial:

.

See Also

MuPAD Functions
orthpoly::chebyshev2 | orthpoly::jacobi
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orthpoly::chebyshev2
The Chebyshev polynomials of the second kind

Syntax
orthpoly::chebyshev2(n, x)

Description

orthpoly::chebyshev2(n,x) computes the value of the n-th degree Chebyshev
polynomial of the second kind at the point x.

These polynomials have integer coefficients.

Evaluation is fast and numerically stable for real floating point values x from the interval
[- 1.0, 1.0]. See “Example 2” on page 22-7.

orthpoly::chebyshev1 implements the Chebyshev polynomials of the first kind.

Examples

Example 1

Polynomial expressions are returned if identifiers or indexed identifiers are specified:

orthpoly::chebyshev2(2, x)

orthpoly::chebyshev2(3, x[1])

Using arithmetical expressions as input, the “values” of these polynomials are returned:
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orthpoly::chebyshev2(2, 3 + 2*I)

orthpoly::chebyshev2(3, exp(x[1] + 2))

“Arithmetical expressions” include numbers:

orthpoly::chebyshev2(2, sqrt(2)), 

orthpoly::chebyshev2(3, 8 + I),

orthpoly::chebyshev2(1000, 0.3)

If the degree of the polynomial is a variable or expression, then
orthpoly::chebyshev2 returns itself symbolically:

orthpoly::chebyshev2(n, x)

Example 2

If a floating-point value is desired, then a direct call such as

orthpoly::chebyshev2(200, 0.3)

is appropriate and yields a correct result. One should not evaluate the symbolic
polynomial at a floating-point value, because this may be numerically unstable:

U200 := orthpoly::chebyshev2(200, x):

DIGITS := 10: evalp(U200, x = 0.3)
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This result is caused by numerical round-off. Also with increased DIGITS only a few
leading digits are correct:

DIGITS := 20: evalp(U200, x = 0.3)

delete DIGITS, U200:

Parameters

n

A nonnegative integer or an arithmetical expression representing a nonnegative integer:
the degree of the polynomial.

x

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").

Return Values

The value of the Chebyshev polynomial at point x is returned as an arithmetical
expression. If n is an arithmetical expression, then orthpoly::chebyshev2 returns
itself symbolically.

Algorithms

The Chebyshev polynomials of the second kind are given by
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for real x ∈ [- 1, 1]. This representation is used by orthpoly::chebyshev2 for floating-
point values in this range.

These polynomials satisfy the recursion formula

with U(0, x) = 1 and U(1, x) = 2 x.

They are orthogonal on the interval [- 1, 1] with respect to the weight function
.

U(n, x) coincides with the Gegenbauer polynomialG(n, 1, x).

U(n, x) is a special Jacobi polynomial:

.

See Also

MuPAD Functions
orthpoly::chebyshev1 | orthpoly::gegenbauer | orthpoly::jacobi
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orthpoly::curtz
The Curtz polynomials

Syntax
orthpoly::curtz(n, x)

Description

orthpoly::curtz(n,x) computes the value of the n-th degree Curtz polynomial at the
point x.

These polynomials have rational coefficients.

Evaluation for real floating-point values x is numerically stable. See “Example 2” on page
22-11.

Examples

Example 1

Polynomial expressions are returned if identifiers or indexed identifiers are specified:

orthpoly::curtz(2, x)

orthpoly::curtz(3, x[1])

Using arithmetical expressions as input, the “values” of these polynomials are returned:
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orthpoly::curtz(2, 3+2*I)

orthpoly::curtz(3, exp(x[1] + 2))

“Arithmetical expressions” include numbers:

orthpoly::curtz(2, sqrt(2)), orthpoly::curtz(3, 8 + I),

orthpoly::curtz(100, 0.3)

If the degree of the polynomial is a variable or expression, then orthpoly::curtz
returns itself symbolically:

orthpoly::curtz(n, x)

Example 2

If a floating-point value is desired, then a direct call such as

orthpoly::curtz(50, 1.2)

is appropriate and yields a correct result. One should not evaluate the symbolic
polynomial at a floating-point value, because this may be numerically unstable:

orthpoly::curtz(50, x): evalp(%, x = 1.2)
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Note that only 3 digits are correct due to numerical round-off.

Parameters

n

A nonnegative integer or an arithmetical expression representing a nonnegative integer:
the degree of the polynomial.

x

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").

Return Values

The value of the Curtz polynomial at point x is returned as an arithmetical expression. If
n is an arithmetical expression, then orthpoly::curtz returns itself symbolically.

Algorithms

The Curtz polynomials are given by the recursion formula

with C(0, x) = 1.
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orthpoly::gegenbauer
The Gegenbauer (ultraspherical) polynomials

Syntax
orthpoly::gegenbauer(n, a, x)

Description

orthpoly::gegenbauer(n,a,x) computes the value of the n-th degree Gegenbauer
polynomial with parameter a at the point x.

Evaluation for real floating-point values x from the interval [- 1.0, 1.0] is numerically
stable. See “Example 2” on page 22-14.

Examples

Example 1

Polynomial expressions are returned, if identifiers or indexed identifiers are specified:

orthpoly::gegenbauer(2, a, x)

orthpoly::gegenbauer(3, 2, x[1])

Using arithmetical expressions as input, the “values” of these polynomials are returned:

orthpoly::gegenbauer(2, 1, 3+2*I)
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orthpoly::gegenbauer(3, 2, exp(x[1] + 2))

“Arithmetical expressions” include numbers:

orthpoly::gegenbauer(2, a, sqrt(2)), 

orthpoly::gegenbauer(3, 0.4, 8 + I),

orthpoly::gegenbauer(1000, -1/3, 0.3)

If the degree of the polynomial is a variable or expression, then
orthpoly::gegenbauer returns itself symbolically:

orthpoly::gegenbauer(n, a, x)

Example 2

If a floating-point value is desired, then a direct call such as

orthpoly::gegenbauer(200, 4, 0.3)

is appropriate and yields a correct result. One should not evaluate the symbolic
polynomial at a floating-point value, because this may be numerically unstable:

G200 := orthpoly::gegenbauer(200, 4, x):

DIGITS := 10: evalp(G200, x = 0.3)

This result is caused by numerical round-off. Also with increased DIGITS only a few
leading digits are correct:
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DIGITS := 20: evalp(G200, x = 0.3)

delete DIGITS, G200:

Parameters

n

A nonnegative integer or an arithmetical expression representing a nonnegative integer:
the degree of the polynomial.

a

An arithmetical expression.

x

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").

Return Values

The value of the Gegenbauer polynomial at point x is returned as an arithmetical
expression. If n is an arithmetical expression, then orthpoly::gegenbauer returns
itself symbolically.

Algorithms

The Gegenbauer polynomials are given by the recursion formula

with G(0, a, x) = 1, G(1, a, x) = 2 a x.
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For fixed real  these polynomials are orthogonal on the interval [- 1, 1] with

respect to the weight function .

 coincides with the Legendre polynomial P(n, x).

G(n, 1, x) coincides with the Chebyshev polynomial U(n, x) of the second kind.

The polynomials G(n, 0, x) are trivial.

See Also

MuPAD Functions
orthpoly::chebyshev2 | orthpoly::legendre
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orthpoly::hermite
The Hermite polynomials

Syntax
orthpoly::hermite(n, x)

Description

orthpoly::hermite(n,x) computes the value of the n-th degree Hermite polynomial
at the point x.

These polynomials have integer coefficients.

Examples

Example 1

Polynomial expressions are returned if identifiers or indexed identifiers are specified:

orthpoly::hermite(2, x)

orthpoly::hermite(3, x[1])

Using arithmetical expressions as input, the “values” of these polynomials are returned:

orthpoly::hermite(2, 3+2*I)

orthpoly::hermite(3, exp(x[1] + 2))
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“Arithmetical expressions” include numbers:

orthpoly::hermite(2, sqrt(2)), orthpoly::hermite(3, 8 + I),

orthpoly::hermite(1000, 0.3);

If the degree of the polynomial is a variable or expression, then orthpoly::hermite
returns itself symbolically:

orthpoly::hermite(n, x)

Parameters

n

A nonnegative integer or an arithmetical expression representing a nonnegative integer:
the degree of the polynomial.

x

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").

Return Values

The value of the Hermite polynomial at point x is returned as an arithmetical expression.
If n is an arithmetical expression, then orthpoly::hermite returns itself symbolically.

Algorithms

The Hermite polynomials are given by the recursion formula
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with H(0, x) = 1 and H(1, x) = 2 x.

These polynomials are orthogonal on the real line with respect to the weight function

.

22-19



22 orthpoly – Orthogonal Polynomials

orthpoly::jacobi
The Jacobi polynomials

Syntax
orthpoly::jacobi(n, a, b, x)

Description

orthpoly::jacobi(n,a,b,x) computes the value of the n-th degree Jacobi polynomial
with parameters a and b at the point x.

Evaluation for real floating-point values x from the interval [- 1.0, 1.0] is numerically
stable. See “Example 2” on page 22-21.

Examples

Example 1

Polynomial expressions are returned if identifiers or indexed identifiers are specified:

orthpoly::jacobi(2, a, b, x)

orthpoly::jacobi(3, 4, 5, x[1])

Using arithmetical expressions as input, the “values” of these polynomials are returned:
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orthpoly::jacobi(2, 4, 1, 3+2*I)

orthpoly::jacobi(2, 0, I, exp(x[1] + 2))

“Arithmetical expressions” include numbers:

orthpoly::jacobi(2, 1/2, -1/2, sqrt(2)),

orthpoly::jacobi(3, 2, 5, 8 + I),

orthpoly::jacobi(1000, 1, 2, 0.3);

If the degree of the polynomial is a variable or expression, then orthpoly::jacobi
returns itself symbolically:

orthpoly::jacobi(n, a, b, x)

Example 2

If a floating-point value is desired, then a direct call such as

orthpoly::jacobi(100, 1/2, 3/2, 0.9)

is appropriate and yields a correct result. One should not evaluate the symbolic
polynomial at a floating-point value, because this may be numerically unstable:

P100 := orthpoly::jacobi(100, 1/2, 3/2, x):

evalp(P100, x = 0.9)
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This result is caused by numerical round-off. Also with increased DIGITS only a few
leading digits are correct:

DIGITS := 30: evalp(P100, x = 0.9)

delete P100, DIGITS:

Parameters

n

A nonnegative integer or an arithmetical expression representing a nonnegative integer:
the degree of the polynomial.

a, b

Arithmetical expressions.

x

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").

Return Values

The value of the Jacobi polynomial at point x is returned as an arithmetical expression.
If n is an arithmetical expression, then orthpoly::jacobi returns itself symbolically.

Algorithms

The Jacobi polynomials are given by the recursion formula
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with ci = i + a + b and

.

For fixed real a > - 1, b > - 1 the Jacobi polynomials are orthogonal on the interval [- 1, 1]
with respect to the weight function w(x) = (1 - x)a (1 + x)b.

For special values of the parameters a, b the Jacobi polynomials are related to the
Legendre polynomials

,

to the Chebyshev polynomials of the first kind

,

to the Chebyshev polynomials of the second kind

,

and to the Gegenbauer polynomials, respectively:

.

See Also

MuPAD Functions
orthpoly::chebyshev1 | orthpoly::chebyshev2 | orthpoly::gegenbauer |
orthpoly::legendre
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orthpoly::laguerre
The (generalized) Laguerre polynomials

Syntax
orthpoly::laguerre(n, a, x)

Description

orthpoly::laguerre(n,a,x) computes the value of the generalized n-th degree
Laguerre polynomial with parameter a at the point x.

The standard Laguerre polynomials correspond to a = 0. They have rational coefficients.

Examples

Example 1

Polynomial expressions are returned if identifiers or indexed identifiers are specified:

orthpoly::laguerre(2, a, x)

orthpoly::laguerre(3, a, x[1])

Using arithmetical expressions as input, the “values” of these polynomials are returned:

orthpoly::laguerre(2, 4, 3+2*I)
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orthpoly::laguerre(2, 2/3*I, exp(x[1] + 2))

“Arithmetical expressions” include numbers:

orthpoly::laguerre(2, a, sqrt(2)),

orthpoly::laguerre(3, 0.4, 8 + I),

orthpoly::laguerre(1000, 3, 0.3);

If the degree of the polynomial is a variable or expression, then orthpoly::laguerre
returns itself symbolically:

orthpoly::laguerre(n, a, x)

Parameters

n

A nonnegative integer or an arithmetical expression representing a nonnegative integer:
the degree of the polynomial.

a

An arithmetical expression.

x

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").
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Return Values

The value of the Laguerre polynomial at point x is returned as an arithmetical
expression. If n is an arithmetical expression, then orthpoly::laguerre returns itself
symbolically.

Algorithms

The Laguerre polynomials are given by the recursion formula

with L(0, a, x) = 1 and L(1, a, x) = 1 + a - x.

For fixed real a > - 1 these polynomials are orthogonal on the interval  with respect
to the weight function .
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orthpoly::legendre
The Legendre polynomials

Syntax
orthpoly::legendre(n, x)

Description

orthpoly::legendre(n,x) computes the value of the n-th degree Legendre
polynomial at the point x.

These polynomials have rational coefficients.

Evaluation for real floating-point values x from the interval [- 1.0, 1.0] is numerically
stable. See “Example 2” on page 22-28.

Use numeric::gldata to compute the roots of the Legendre polynomials. Cf. “Example
3” on page 22-29.

Examples

Example 1

Polynomial expressions are returned if identifiers or indexed identifiers are specified:

orthpoly::legendre(2, x)

orthpoly::legendre(3, x[1])
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Using arithmetical expressions as input, the “values” of these polynomials are returned:

orthpoly::legendre(2, 3+2*I)

orthpoly::legendre(3, exp(x[1] + 2))

“Arithmetical expressions” include numbers:

orthpoly::legendre(2, sqrt(2)), orthpoly::legendre(3, 8 + I),

orthpoly::legendre(1000, 0.3)

If the degree of the polynomial is a variable or expression, then orthpoly::legendre
returns itself symbolically:

orthpoly::legendre(n, x)

Example 2

If a floating-point value is desired, then a direct call such as

orthpoly::legendre(100, 0.9)

is appropriate and yields a correct result. One should not evaluate the symbolic
polynomial at a floating-point value, because this may be numerically unstable:

P100 := orthpoly::legendre(100, x):

evalp(P100, x = 0.9)

22-28



 orthpoly::legendre

This result is caused by numerical round-off. Also with increased DIGITS only a few
leading digits are correct:

DIGITS := 30: evalp(P100, x = 0.9)

delete P100, DIGITS:

Example 3

We recommend to use numeric::gldata for computing roots of the Legendre
polynomial P(n, x). This routine provides all roots of the function Q(n, y) = P(n, 2 y - 1):

QRoots := numeric::gldata(5, DIGITS)[2]

These values are easily transformed to roots of P(n, x):

PRoots := map(QRoots, y -> 2*y - 1)

orthpoly::legendre(5, r) $ r in PRoots

delete QRoots, PRoots:

Parameters

n

A nonnegative integer or an arithmetical expression representing a nonnegative integer:
the degree of the polynomial.
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x

An indeterminate or an arithmetical expression. An indeterminate is either an identifier
(of domain type DOM_IDENT) or an indexed identifier (of type "_index").

Return Values

The value of the Legendre polynomial at point x is returned as an arithmetical
expression. If n is an arithmetical expression, then orthpoly::legendre returns itself
symbolically.

Algorithms

The Legendre polynomials are given by .

They satisfy the recursion formula

with P(0, x) = 1 and P(1, x) = x.

They are orthogonal on the interval [- 1, 1] with respect to the weight function w(x) = 1.

P(n, x) coincides with the Gegenbauer polynomial .

P(n, x) coincides with the Jacobi polynomial P(n, 0, 0, x).

See Also

MuPAD Functions
numeric::gldata | orthpoly::gegenbauer | orthpoly::jacobi
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output::asciiAbbreviate
Generates a procedure for creating an ASCII formatted output

Syntax
output::asciiAbbreviate(<varname>)

Description

output::asciiAbbreviate generates a procedure for creating ASCII formatted
outputs of expressions

By default, MuPAD generates ASCII abbreviations using the ⨉ symbol followed by
numbers. Using the argument varname you can customize the names of abbreviated
subexpressions. See “Example 2” on page 23-3.

If you want to use abbreviations in all ASCII PrettyPrint output expressions, pass the
procedure generated by output::asciiAbbreviate to Pref::output. See “Example
3” on page 23-3.

Examples

Example 1

The generated procedure ascii produces ASCII code for MuPAD expressions:

ascii:=output::asciiAbbreviate():

y := solve(x^3 + x + 1 = 0, x, MaxDegree = 3):

ascii(y)

{                                /   1       \

{                        sqrt(3) | ---- + #1 | I

{        1     1    #1           \ 3 #1      /

{ #1 - ----, ---- - -- - -----------------------,

{      3 #1  6 #1    2              2
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                      /   1       \   }

              sqrt(3) | ---- + #1 | I }

    1    #1           \ 3 #1      /   }

  ---- - -- + ----------------------- }

  6 #1    2              2            }

where

        / sqrt(31) sqrt(108)   1 \1/3

   #1 = | ------------------ - - |

        \         108          2 /

Example 2

You can customize the names of abbreviated subexpressions:

ascii:=output::asciiAbbreviate(t):

y := solve(x^3 + x + 1 = 0, x, MaxDegree = 3):

ascii(y)

{                                /   1       \

{                        sqrt(3) | ---- + t1 | I

{        1     1    t1           \ 3 t1      /

{ t1 - ----, ---- - -- - -----------------------,

{      3 t1  6 t1    2              2

                      /   1       \   }

              sqrt(3) | ---- + t1 | I }

    1    t1           \ 3 t1      /   }

  ---- - -- + ----------------------- }

  6 t1    2              2            }

where

        / sqrt(31) sqrt(108)   1 \1/3

   t1 = | ------------------ - - |

        \         108          2 /

Example 3

The generated procedure can serve as an input for Pref::output:
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Pref::output(output::asciiAbbreviate(u)):

y := solve(x^3 + x + 1 = 0, x, MaxDegree = 3)

{                                /   1       \

{                        sqrt(3) | ---- + u1 | I

{        1     1    u1           \ 3 u1      /

{ u1 - ----, ---- - -- + -----------------------,

{      3 u1  6 u1    2              2

                      /   1       \   }

              sqrt(3) | ---- + u1 | I }

    1    u1           \ 3 u1      /   }

  ---- - -- - ----------------------- }

  6 u1    2              2            }

where

        / sqrt(31) sqrt(108)   1 \1/3

   u1 = | ------------------ - - |

        \         108          2 /

Parameters

varname

A base name for the abbreviation variables

Return Values

Procedure for creating an ASCII formatted output

See Also

MuPAD Functions
output::subexpr | Pref::abbreviateOutput | Pref::output
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output::fence
Put delimiters around multiline strings

Syntax
output::fence(left, right, string, <width, <base>>)

Description

output::fence(left, right, string) encloses the multiline string in the
delimiters indicated by left and right

You can use output::fence in combination with strprint to overload print (and
thereby, standard screen output) for pretty-printing. Note that it does not affect typeset
output.

Examples

Example 1

Set TEXTWIDTH to 75:

TEXTWIDTH := 75:

First, define a domain that uses output::fence for output:

domain Fence

  print := x -> output::fence("(", ")", extop(x, 1));

  new   := x -> new(dom, x);

end_domain:

Fence expects a string in its constructor. The output uses output::fence to put
parentheses around the input:

print(Plain, Fence("abc"))
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(abc)

Strings of height two are only partly placed inside parentheses, for consistency with the
pretty-printer:

print(Plain, Fence("abc\ndef"), sin(x^2))

 abc        2

(def), sin(x )

Strings of height more than two are fully bracketed:

print(Plain, Fence("abc\ndef\nghi"))

/ abc \

| def |

\ ghi /

Example 2

Set TEXTWIDTH to 75:

TEXTWIDTH := 75:

The next step in using output::fence is to enclose expressions in parentheses. For
this, the information from strprint is useful:

domain FenceExpr

  print := proc(x)

             local str, h1, w1, h, w, b;

           begin

             [str, h1, w1, h, w, b] := strprint(All, extop(x));

             output::fence("{", "]", str, w, b);

           end_proc;

  new   := x -> new(dom, x);

end_domain:

The sixth operand of the return value of strprint(All, …) must be given to
output::fence to align baselines properly:

print(Plain, FenceExpr(x), FenceExpr(x^2), FenceExpr(x^2/2*y))
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           {  2   --

       2   { x  y  |

{x], {x ], { ----  |

           {   2  --

strprint reacts to TEXTWIDTH and can return a string consisting or more than one
logical line. In this case, fencing the returned string leads to strange results:

print(Plain, FenceExpr(_plus(x.i $ i = 0..30)))

{ x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 \

   --

{                                                                         \

    |

{    + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24 + x\

25  |

{                                                                         \

    |

{    + x26 + x27 + x28 + x29 + x30                                        \

   --

Here, the string with added delimiter symbols is too wide for TEXTWIDTH. Also,
output::fence does not let you control line breaks. Therefore, it is a good practice
to avoid putting large delimiters to the left and right of long strings. For example, abs
prints in functional notation for long arguments:

print(Plain, abs(_plus(x.i $ i = 0..30)))

abs(x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12

   + x13 + x14 + x15 + x16 + x17 + x18 + x19 + x20 + x21 + x22 + x23 + x24

   + x25 + x26 + x27 + x28 + x29 + x30)

Parameters

left, right

Strings indicating the type of delimiter: "(", ")", "[", "]", "[+", "+]", "{", "}", "|", "| ", or " |".
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string

The string to enclose

width

The width of the string to enclose. Defaults to the width of the widest line in string.

base

The baseline of the string, counted from the first line. Defaults to the bottom line of the
string. If set to -1, the baseline is vertically centered.

Return Values

String

See Also

MuPAD Functions
strprint
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output::mathText
Pretty output of text combined with formulas

Syntax
output::mathText(str1, expr1, <str2, <expr2>, …>)

Description

output::mathText( str1, expr1, str2, … ) creates an object of combined strings
and expressions. This object prints itself nicely in various output formats.

Examples

Example 1

output::mathText creates an object representing combined text and formulas:

messageWithMath := output::mathText("The integral ", 

                            hold(int(sin(x)*cos(x), x)),

                            " is equal to ", int(sin(x)*cos(x), x))

They can be printed with the ASCII pretty-printer as well:

print(Plain, messageWithMath)

               /                                    2

              |                               sin(x)

The integral  |  sin(x) cos(x) dx is equal to -------

             /                                   2

Same for the ASCII lineprint output:
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PRETTYPRINT := FALSE:

print(Plain, messageWithMath):

delete PRETTYPRINT:

The integral int(sin(x)*cos(x), x) is equal to (1/2)*sin(x)^2

Parameters

str1, str2

Strings

expr1, expr2

Expressions

Return Values

Object of type output::mathText

See Also

MuPAD Functions
strprint
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output::ordinal
Ordinal numbers

Syntax
output::ordinal(i)

Description

output::ordinal converts an integer to the corresponding english ordinal number. The
return value is a string and can be used in messages.

Examples

Example 1

Convert some numbers to the corresponding english ordinal string:

map([0, 1, 2, 3, 4, 22, 134, 2001], output::ordinal)

Parameters

i

An integer number

Return Values

String with the English ordinal number
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See Also

MuPAD Functions
info | print
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output::roman
Roman numerals

Syntax
output::roman(n)

Description

output::roman converts an integer to the corresponding roman numeral. The return
value is a string and can be used in messages.

Examples

Example 1

Convert some numbers to the corresponding roman numerals:

map([1, 2, 3, 4, 22, 134, 2001], output::roman)

Now, thanks to alias backsubstitution, we can trick MuPAD into computing with roman
numerals:

alias(`I`=1): // I is a reserved word in MuPAD, so we use `I` instead

for i from 2 to 1000 do

    eval(text2expr("alias(".output::roman(i)."=".expr2text(i).");"));

end_for:

II+II;

XIII*XXIV
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unalias(`I`):

for i from 2 to 1000 do

    eval(text2expr("unalias(".output::roman(i).");"));

end_for:

Parameters

n

Positive integer

Return Values

String containing the roman numeral

See Also

MuPAD Functions
info | print
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output::subexpr

Abbreviates a expression

Syntax

output::subexpr(e, <varname>)

Description

output::subexpr rewrites symbolic expression in terms of common subexpressions.

If an expression e contains common subexpressions, output::subexpr(e) returns
a list that contains the abbreviated expression and the abbreviations in a form of
equations. With output::subexpr you get the same abbreviations as you see in the
outputs. See “Example 1” on page 23-15.

An output of this command does not depend on the current setting of
Pref::abbreviateOutput.

By default, MuPAD generates abbreviations using the ⨉ symbol followed by
numbers. Using the argument varname, you can customize the names of abbreviated
subexpressions. See “Example 2” on page 23-16.

Examples

Example 1

You can abbreviate an expression:

y := solve(x^3 + x + 1 = 0, x, MaxDegree = 3):

output::subexpr(y)
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Example 2

You can customize the names of abbreviated subexpressions:

y := solve(x^3 + x + 1 = 0, x, MaxDegree = 3):

output::subexpr(y, t)

Parameters

e

A MuPAD expression

varname

A base name for the abbreviation variables
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Return Values

List that contains the abbreviated expression and the abbreviations as equations

See Also

MuPAD Functions
output::asciiAbbreviate | Pref::abbreviateOutput
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output::tableForm
Printing objects in table form

Syntax
output::tableForm(obj, <separator>, options)

Description

output::tableForm(obj) prints the elements of the given object obj in table form.

The width of the table and the number of columns depends on the size of TEXTWIDTH (see
options Width and Columns). The width of a column depends on the widest entry in this
column.

output::tableForm determines the number of columns, that the total width of the
table fits into TEXTWIDTH.

The columns are separated by one space by default.

If separator is given, then it is printed between each column (instead of one space).
Appending spaces to the separator results additionally space between columns. By
default the separator is one space.

If the first argument obj is a table or a domain, output::tableForm uses the option
Columns = 2 (two columns) and the separator "= " as default.

Without the option Sort the objects are converted to strings and then sorted
alphabetically. To avoid any sorting the option Sort = FALSE must be given.

Examples

Example 1

For all examples on this page we assume the TEXTWIDTH 75:
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TEXTWIDTH := 75:

Print some random numbers in table form:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30])

11647 12826 26280 26292 28315 30908 36523 42073 4682  47334 52640 56426

5829 615   62580 65904 66223 6719  69451 69903 77904 78221 80528 81013

86068 89016 90516 91008 92791 9532                                     

Some random strings are created. The columns should have all the same width (Unique)
and be printed centered. The strings should not be sorted:

output::tableForm([_concat("*" $ random(10)()) $ k = 1..20],

                  Unique, Center, Sort = FALSE)

 "********"  "******"   "*********" "********"      "*"     "******"

"*********"   "*****"     "****"    "********"    "****"    "*****"

"*********"  "*******"   "*******"   "******"      "**"     "****"

The option Unquoted prevents printing of quotes (see fprint):

output::tableForm([_concat("*" $ random(10)()) $ k = 1..20],

                  Unique, Center, Sort = FALSE, Unquoted)

********    *      ******   ******    ****    ******     **    **

  *****     *       ****     ****      **    ******** *******  **

    *    *******                                                       

Example 2

The next object is a MuPAD table and should be printed as a table with two columns. The
table contains some random numbers and their sum of the digits:

SEED := -1:

T :=  table(op(map([random(100000000)() $ k = 1..10],

                   proc(X)

                     local Xs, k;
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                   begin

                     Xs := expr2text(X);

                     X = _plus(text2expr(substring(Xs, k))

                               $ k = 1..length(Xs))

                   end_proc))):

output::tableForm(T)

19962580 = 40

25878221 = 35

37777904 = 44

41281013 = 20

43856426 = 38

46169451 = 36

66926292 = 42

80330908 = 31

89306719 = 43

94386068 = 44

Domains are also printed in this form by default:

output::tableForm(newDomain("Test",

                            table("type" = "Test",

                                  "info" = "only a testdomain")))

"info" = "only a testdomain"

"key" = "Test"

"type" = "Test"

Example 3

The next table should consist of four columns:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30], Columns = 4)
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11647 12826 26280 26292

28315 30908 36523 42073

4682 47334 52640 56426

5829 615   62580 65904

66223 6719  69451 69903

77904 78221 80528 81013

86068 89016 90516 91008

92791 9532             

The next table should have a maximal width of 50 characters:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30], Width = 50)

11647 12826 26280 26292 28315 30908 36523 42073

4682 47334 52640 56426 5829  615   62580 65904

66223 6719  69451 69903 77904 78221 80528 81013

86068 89016 90516 91008 92791 9532             

delete T:

Example 4

The next examples show different usage of separators. First one single separator:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30], "|")

11647|12826|26280|26292|28315|30908|36523|42073|4682 |47334|52640|56426

5829|615  |62580|65904|66223|6719 |69451|69903|77904|78221|80528|81013

86068|89016|90516|91008|92791|9532                                     

Now a list with a separator character between each column. If the list is too short, the
characters are used from beginning of the list again etc.:
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SEED := -1:

output::tableForm([random(100000)() $ k = 1..30], ["|", " ", " "])

11647|12826 26280 26292|28315 30908 36523|42073 4682  47334|52640 56426

5829|615   62580 65904|66223 6719  69451|69903 77904 78221|80528 81013

86068|89016 90516 91008|92791 9532                                     

Only the first both colunms should be separated by a vertical line:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30], ["|", " " $ 10])

11647|12826 26280 26292 28315 30908 36523 42073 4682  47334 52640 56426

5829|615   62580 65904 66223 6719  69451 69903 77904 78221 80528 81013

86068|89016 90516 91008 92791 9532                                     

Additionally a character can be appended to each entry:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30],

                  ["|", " " $ 10], Append = ",")

11647,|12826, 26280, 26292, 28315, 30908, 36523, 42073, 4682,  47334, 52640,

56426,|5829,  615,   62580, 65904, 66223, 6719,  69451, 69903, 77904, 78221,

80528,|81013, 86068, 89016, 90516, 91008, 92791, 9532,                      

Example 5

The next examples show different usage of sorting. Without the option Sort the numbers
are sorted as strings in lexicographical order:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30])

11647 12826 26280 26292 28315 30908 36523 42073 4682  47334 52640 56426

5829 615   62580 65904 66223 6719  69451 69903 77904 78221 80528 81013

86068 89016 90516 91008 92791 9532                                     
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Sort = FALSE avoids any sorting:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30], Sort = FALSE)

30908 6719  26292 56426 81013 69451 77904 78221 86068 62580 47334 12826

9532 5829  28315 65904 42073 80528 4682  52640 69903 92791 36523 26280

89016 91008 615   66223 90516 11647                                    

Any sorting can be done with a special defined procedure, e.g., sort the numbers in
reverse order:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30],

                  Sort = ((X,Y) -> Y < X))

92791 91008 90516 89016 86068 81013 80528 78221 77904 69903 69451 66223

65904 62580 56426 52640 47334 42073 36523 30908 28315 26292 26280 12826

11647 9532  6719  5829  4682  615                                      

At last a user defined procedure is given that sorts the numbers by the sum of their digits
ascending:

SEED := -1:

output::tableForm([random(100000)() $ k = 1..30],

                  Sort = proc(X,Y)

                           local crossfoot;

                         begin

                           crossfoot :=

                             proc(X)

                               local Xs, k;

                             begin

                               Xs := expr2text(X);

                               _plus(text2expr(substring(Xs, k))

                                     $ k = 1..length(Xs))

                             end_proc;

                           crossfoot(X) < crossfoot(Y)

                         end_proc)

615  81013 42073 52640 91008 26280 36523 11647 12826 66223 9532 28315

30908 4682  78221 26292 90516 47334 62580 56426 80528 6719  5829 65904
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89016 69451 77904 69903 92791 86068                                   

Parameters

obj

A list, set or table of any MuPAD objects or a domain

separator

A string between columns

Options

Unquoted

Strings are printed without quotes

The output function fprint is called with the option Unquoted.

Unique

All columns are of the same width

All columns are printed with the same width, the widest column determines the width of
each column.

Width

Option, specified as Width = w

The maximal width of the table is set to w (instead of TEXTWIDTH). w must be a positive
integer.

Columns

Option, specified as Columns = c

The number of columns is set to c. The width of the table depends on the width of any
column.
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Note: output::tableForm called with this option takes not care about the value of
TEXTWIDTH.

c must be a positive integer.

Center, Left, Right

The entries of each column are aligned left-justified, centered or justified.

Sort

Option, specified as Sort = procedure

The entries are sorted with the given procedure. Entries can be printed unsorted, when
procedure is the object FALSE.

Output

Option, specified as Output = file

Output into a file. If file is a string, a file named file is opened and overwritten and
closed after writing. If file is a file descriptor (the return value of fopen), the table is
appended to file without closing file.

String

Return as a string that can be printed

The string contains line breaks, and can be printed with print or fprint and option
Unquoted.

Append

Option, specified as Append = string

Character string is appended to each entry of the list

Return Values

Void object null()
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See Also

MuPAD Functions
fclose | fopen | fprint | output::tree | print | sort
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output::tree
Display of trees

Syntax
output::tree(Tree, <indentdepth, <charlist>, <Small>>)

Description

output::tree displays trees given as specially MuPAD lists.

The first object of the list is the root of the tree. All further objects are nodes or subtrees
of the tree. A subtree is again a special list (as described), and any other MuPAD object
will be interpreted as node of the tree.

The elements of the tree will be printed by MuPAD, when the tree will be displayed, so
it's recommended to use strings as objects or objects with a well defined display.

The return value is a string that contains all chars to display the tree. With functions
print and fprintand the option Unquoted the tree can be displayed.

The parameter charlist is a list with five characters. The default value is ["|", "+",
"-", „", " "]. The characters have the following meaning (described in the order of
the list).

The vertical lines of the tree, the connection between vertical and horizontal line (i.e.,
an arm, but not the last arm), an arm (vertical line), the last connection to an arm in a
subtree, a char between an arm and the description of the arm.

Examples

Example 1

output::tree displayes special nested lists as trees:

TREE := ["a1", "a2", ["b1", "b2", ["c1", "c2"], "b3"],

               ["d1", "d2", "d3"]]:
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print(Unquoted, output::tree(TREE))

a1

|

+-- a2

|

+-- b1

|   |

|   +-- b2

|   |

|   +-- c1

|   |   |

|   |   `-- c2

|   |

|   `-- b3

|

`-- d1

    |

    +-- d2

    |

    `-- d3

print(Unquoted, output::tree(TREE, 3, Small)):

a1

+- a2

+- b1

|  +- b2

|  +- c1

|  |  `- c2

|  `- b3

`- d1

   +- d2

   `- d3

The chars can be defined by the user:

print(Unquoted, output::tree(TREE, 6, ["|", "|", ".", "\\", " "])):

a1

|

|.... a2

|
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|.... b1

|     |

|     |.... b2

|     |

|     |.... c1

|     |     |

|     |     \.... c2

|     |

|     \.... b3

|

\.... d1

      |

      |.... d2

      |

      \.... d3

Parameters

Tree

The tree, given as a special list

indentdepth

Indent depth for each subtree

charlist

The chars that illustrate the tree structure

Options

Small

Suppresses the display of a space line between every tree entry to reduce the height of
the tree

Return Values

String object to display
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See Also

MuPAD Functions
adt::Tree | prog::exprlist | prog::exprtree
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Graphics and Animations

RGB::ColorNames
RGB::plotColorPalette
RGB::colorName
RGB::fromWaveLength
RGB::random
RGB::toHSV
RGB::fromHSV
plot::easy
plot::getDefault
plot::setDefault
plot::copy
plot::modify
plot::delaunay
plot::hull
plot::Arc2d
plot::Arc3d
plot::Arrow2d
plot::Arrow3d
plot::Bars2d
plot::Bars3d
plot::Box
plot::Boxplot
plot::Circle2d
plot::Circle3d
plot::Cone
plot::Conformal
plot::Curve2d
plot::Curve3d
plot::Cylinder
plot::Cylindrical
plot::Density
plot::Ellipse2d
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plot::Ellipse3d
plot::Function2d
plot::Function3d
plot::Hatch
plot::Histogram2d
plot::Implicit2d
plot::Implicit3d
plot::Inequality
plot::Integral
plot::Iteration
plot::Line2d
plot::Line3d
plot::Listplot
plot::Lsys
plot::Matrixplot
plot::MuPADCube
plot::Ode2d
plot::Ode3d
plot::Parallelogram2d
plot::Parallelogram3d
plot::Piechart2d
plot::Piechart3d
plot::Plane
plot::Point2d
plot::Point3d
plot::PointList2d
plot::PointList3d
plot::Polar
plot::Polygon2d
plot::Polygon3d
plot::Prism
plot::Pyramid
plot::QQplot
plot::Raster
plot::Rectangle
plot::Rootlocus
plot::Scatterplot
plot::Sequence
plot::SparseMatrixplot
plot::Sphere
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plot::Ellipsoid
plot::Spherical
plot::Streamlines2d
plot::Sum
plot::Surface
plot::SurfaceSet
plot::SurfaceSTL
plot::Sweep
plot::Tetrahedron
plot::Hexahedron
plot::Octahedron
plot::Dodecahedron
plot::Icosahedron
plot::Text2d
plot::Text3d
plot::Tube
plot::Turtle
plot::VectorField2d
plot::VectorField3d
plot::Waterman
plot::XRotate
plot::ZRotate
plot::Canvas
plot::CoordinateSystem2d
plot::CoordinateSystem3d
plot::Group2d
plot::Group3d
plot::Scene2d
plot::Scene3d
plot::ClippingBox
plot::Reflect2d
plot::Reflect3d
plot::Rotate2d
plot::Rotate3d
plot::Scale2d
plot::Scale3d
plot::Transform2d
plot::Transform3d
plot::Translate2d
plot::Translate3d
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plot::AmbientLight
plot::Camera
plot::DistantLight
plot::PointLight
plot::SpotLight
OutputFile, OutputOptions
AffectViewingBox
Angle
AngleRange, AngleBegin, AngleEnd
Area
Averaged
Axis, AxisX, AxisY, AxisZ
Base, Top, BaseX, TopX, BaseY, TopY, BaseZ, TopZ
BaseRadius, TopRadius
Cells
CellsClosed, ClassesClosed
Center, CenterX, CenterY, CenterZ
Closed
ColorData
CommandList
Contours
CoordinateType
Data
DensityData, DensityFunction
Edges
Extension
From, To, FromX, FromY, FromZ, ToX, ToY, ToZ
Function, XFunction, YFunction, ZFunction
Function1, Function2, Baseline
InitialConditions, TimeMesh
IntMethod
Generations, RotationAngle, IterationRules, StartRule, StepLength, TurtleRules
Ground
Heights, Moves
Inequalities
InputFile
Iterations, StartingPoint
LineColorFunction, FillColorFunction
Matrix2d, Matrix3d
MeshList, MeshListType, MeshListNormals
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Name
Nodes
Normal, NormalX, NormalY, NormalZ
ParameterName, ParameterBegin, ParameterEnd, ParameterRange
Points2d, Points3d
Position, PositionX, PositionY, PositionZ
Radius
RadiusFunction
RationalExpression
Scale, ScaleX, ScaleY, ScaleZ
SemiAxes, SemiAxisX, SemiAxisY, SemiAxisZ
Shift, ShiftX, ShiftY, ShiftZ
Size
Tangent1, Tangent1X, Tangent1Y, Tangent1Z, Tangent2, Tangent2X, Tangent2Y,
Tangent2Z
Text
TextOrientation
TextRotation
UName, URange, UMin, UMax, VName, VRange, VMin, VMax, XName, XRange, XMin,
XMax, YName, YRange, YMin, YMax, ZName, ZRange, ZMin, ZMax
ViewingBox, ViewingBoxXMin, ViewingBoxXMax, ViewingBoxXRange,
ViewingBoxYMin, ViewingBoxYMax, ViewingBoxYRange, ViewingBoxZMin,
ViewingBoxZMax, ViewingBoxZRange
Visible
XFunction1, YFunction1, ZFunction1, XFunction2, YFunction2, ZFunction2
Axes
AxesInFront
AxesLineColor
AxesLineWidth
AxesOrigin, AxesOriginX, AxesOriginY, AxesOriginZ
AxesTips
AxesTitleAlignment, XAxisTitleAlignment, YAxisTitleAlignment, ZAxisTitleAlignment
AxesTitles, XAxisTitle, YAxisTitle, ZAxisTitle
AxesVisible, XAxisVisible, YAxisVisible, ZAxisVisible
YAxisTitleOrientation
TicksAnchor, XTicksAnchor, YTicksAnchor, ZTicksAnchor
TicksAt, XTicksAt, YTicksAt, ZTicksAt
TicksBetween, XTicksBetween, YTicksBetween, ZTicksBetween
TicksDistance, XTicksDistance, YTicksDistance, ZTicksDistance
TicksLabelStyle, XTicksLabelStyle, YTicksLabelStyle, ZTicksLabelStyle
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TicksLength
TicksNumber, XTicksNumber, YTicksNumber, ZTicksNumber
TicksVisible, XTicksVisible, YTicksVisible, ZTicksVisible
TicksLabelsVisible, XTicksLabelsVisible, YTicksLabelsVisible, ZTicksLabelsVisible
GridInFront
GridLineColor, SubgridLineColor
GridLineStyle, SubgridLineStyle
GridLineWidth, SubgridLineWidth
GridVisible, SubgridVisible, XGridVisible, XSubgridVisible, YGridVisible,
YSubgridVisible, ZGridVisible, ZSubgridVisible
AnimationStyle
AutoPlay
Frames
TimeBegin, TimeEnd, TimeRange, InitialTime
VisibleAfter, VisibleBefore, VisibleFromTo
VisibleBeforeBegin, VisibleAfterEnd
Footer, Header
FooterAlignment, HeaderAlignment
HorizontalAlignment, TitleAlignment, VerticalAlignment
Legend
LegendEntry
LegendAlignment, LegendPlacement, LegendVisible
LegendText
ShowInfo
Title, Titles
TitlePosition, TitlePositionX, TitlePositionY, TitlePositionZ
Bottom, Left
Height, Width
Layout, Rows, Columns
Margin, BottomMargin, TopMargin, LeftMargin, RightMargin
OutputUnits
Spacing
AbsoluteError, RelativeError
AdaptiveMesh
DiscontinuitySearch
Mesh, Submesh
MinimumDistance
ODEMethod, Stepsize
UMesh, VMesh, USubmesh, VSubmesh
XMesh, XSubmesh, YMesh, YSubmesh, ZMesh
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CameraCoordinates
CameraDirection, CameraDirectionX, CameraDirectionY, CameraDirectionZ
FocalPoint, FocalPointX, FocalPointY, FocalPointZ
LightColor
Lighting
LightIntensity
OrthogonalProjection
SpotAngle
Target, TargetX, TargetY, TargetZ
UpVector, UpVectorX, UpVectorY, UpVectorZ, KeepUpVector
ViewingAngle
AntiAliased
ArrowLength
AxesTitleFont, FooterFont, HeaderFont, LegendFont, TextFont, TicksLabelFont,
TitleFont
BackgroundColor, BackgroundColor2
BackgroundStyle
BackgroundTransparent
Billboarding
BorderColor, BorderWidth
BoxCenters, BoxWidths
DrawMode
Gap, XGap, YGap
Notched, NotchWidth
Projectors
Scaling, YXRatio, ZXRatio
VerticalAsymptotesVisible, VerticalAsymptotesStyle, VerticalAsymptotesColor,
VerticalAsymptotesWidth
LineColor, LineColor2
LineColorDirection, LineColorDirectionX, LineColorDirectionY, LineColorDirectionZ
LineColorType
LineStyle
LinesVisible, ULinesVisible, VLinesVisible, XLinesVisible, YLinesVisible
LineWidth
MeshVisible
XContours, YContours, ZContours
PointColor
PointColor2
PointColorType
PointSize
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PointStyle
PointsVisible
BarCenters, BarWidths
BarStyle, Shadows
Color
Colors
FillColor, FillColor2
FillColorDirection, FillColorDirectionX, FillColorDirectionY, FillColorDirectionZ
FillColorTrue, FillColorFalse, FillColorUnknown
FillColorType
Filled
FillPattern, FillPatterns
FillStyle
GroupStyle
InterpolationStyle
Shading
UseNormals
TipAngle
TipLength
TipStyle
TubeDiameter
Tubular
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RGB::ColorNames
Find predefined colors by name

Syntax
RGB::ColorNames()

RGB::ColorNames(str)

Description

RGB::ColorNames(str) goes through the list of predefined color names in the RGB
name space and returns those whose names contain the string or identifier str given as
input.

RGB::ColorNames() returns all color names available in the RGB name space.

Examples

Example 1

The following call returns all predefined color names containing “Olive”:

RGB::ColorNames("Olive")

The RGB values of these colors are:

RGB::Olive, RGB::OliveDrab, RGB::OliveGreen, 

RGB::OliveGreenDark
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Parameters

str

A part of a color name: a string or an identifier

Return Values

RGB::ColorNames returns a list of predefined color names.

See Also

MuPAD Functions
RGB::plotColorPalette
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RGB::plotColorPalette
Display predefined colors

Syntax
RGB::plotColorPalette(str)

Description

RGB::plotColorPalette(str) displays the colors in the RGB name space whose
names contain str.

RGB::plotColorPalette uses RGB::ColorNames and plots samples of the colors
found by this routine, in tabular fashion.

Environment Interactions

RGB::plotColorPalette plots a list of color samples with names.

Examples

Example 1

The following call plots all predefined colors containing “Olive”:

RGB::plotColorPalette("Olive")
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When the list of colors found gets larger, they are distributed over more lines:

RGB::plotColorPalette("Blue")
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Parameters

subname

A part of a color name: a string or an identifier

Return Values

RGB::plotColorPalette returns the empty object, null().

See Also

MuPAD Functions
RGB::ColorNames
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RGB::colorName
Find names of predefined colors

Syntax
RGB::colorName(rgb, <Exact>)

Description

RGB::colorName([r, g, b]) looks for the predefined color with values closest to [r,
g, b] and returns its name.

RGB::colorName([r, g, b], Exact) looks for a predefined color with values exactly
[r, g, b] and returns its name.

The RGB namespace contains predefined color names, accessible as RGB::Blue etc.
RGB::colorName performs a reverse lookup, finding the name of a color given as RGB
values.

Since rather often, colors will stem from calculations with floating-point numbers,
no exact matches can be expected in this reverse lookup. Therefore, by default,
RGB::colorName will perform a “fuzzy” search, returning the predefined color which
is closest (in Euclidean distance in RGB space) to the input. Cf. “Example 2” on page
24-16.

Examples

Example 1

RGB::colorName returns the symbolic name of predefined colors:

RGB::colorName([0, 1, 0])

24-15



24 Graphics and Animations

RGB::colorName([0, 1, 0, 0.5])

Example 2

When performing calculations on color values, the results will rarely be exact, even if the
unavoidable round-off errors are too small to be displayed on the screen:

a := RGB::Olive;

b := RGB::fromHSV(RGB::toHSV(RGB::Olive))

bool(a = b)

Therefore, RGB::colorName by default searches in a “fuzzy” fashion:

RGB::colorName(a);

RGB::colorName(b)

In cases where this is undesirable, the option Exact can be used to switch to exact
searching:

RGB::colorName(a, Exact);

RGB::colorName(b, Exact)
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The predefined color names do not fill RGB space uniformly, therefore, the color found by
RGB::colorName may be quite different from the one entered. The following plot shows
the predefined colors in RGB space:

plot(plot::Scene3d(

  plot::PointList3d([c.[c] $ c in RGB::ColorList]),

  ZXRatio = 1, BackgroundStyle = TopBottom,

  BackgroundColor = RGB::Grey,

  BackgroundColor2 = RGB::White,

  Margin=0))

Parameters

rgb

An RGB or RGBa color specification: A list of three or four real numbers in the interval
.
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Options

Exact

Only return an exact match, FAIL if none exists.

Return Values

If a color was found, RGB::colorName returns an expression of the form RGB::Name
or RGB::Name.[a]. If given Exact and no match was found, FAIL is returned. If given
symbolic input parameters, an unevaluated call is returned.

See Also

MuPAD Functions
RGB
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RGB::fromWaveLength
Get the RGB color of monochromatic light

Syntax
RGB::fromWaveLength(λ, <γ>)

Description
RGB::fromWaveLength( λ ) returns an approximative RGB specification for light of
wavelength λ nm.

Light consists of photons, each of which has a distinct wavelength. These different
wavelengths cause color perception. RGB::fromWaveLength calculates an RGB triple
corresponding to a given wave length.

Different displays show the same RGB color in slightly different ways. For this reason,
the so-called “gamma correction” has been invented. RGB::fromWaveLength accepts
a second argument, for fine-tuning the assumed gamma correction that enters the
calculation.

Color perception depends on a number of factors, including individual differences.
Therefore, such a calculation can only return an approximation. RGB::fromWaveLength
uses the model published by Dan Bruton for the conversion.

For wavelengths outside the visible spectrum (which ranges from 380 nm to 780 nm),
RGB::fromWaveLength returns black.

Examples

Example 1

White light, when sent through a prism, is split into the commonly known spectrum,
because the prism refracts different wavelengths differently. This spectrum can easily be
reproduced by RGB::fromWaveLength:

plot(plot::Raster([[RGB::fromWaveLength(i) $ i=380..780]]),
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  Scaling = Unconstrained, Height = 20)

Example 2

Bruton's conversion model looks like this:

plotfunc2d(

  plot::Raster([[RGB::fromWaveLength(i) $ i = 380..780]],

    x = 380..780, y = -0.2..0),

  (x -> RGB::fromWaveLength(x)[i]) $ i = 1..3,

  x = 380..780,

  Colors = [RGB::Red, RGB::Green, RGB::Blue],

  LegendVisible = FALSE,

  XTicksNumber = Low,

  Scaling = Unconstrained,

  Axes = Automatic)
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Parameters

λ

The wavelength: a real-valued constant (interpreted as nanometers) or a length unit

γ

The “gamma correcture” for the display, defaults to 0.8

Return Values

RGB color: a list of three floating-point values

See Also

MuPAD Functions
RGB | RGB::fromHSV
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RGB::random

Pick a color uniformly at random in RGB color space

Syntax

RGB::random()

Description

RGB::random() returns a random color. The colors returned are distributed
independently and uniformly in the RGB color space.

Examples

Example 1

RGB::random can be used to produce high-frequency noise:

plot(plot::Raster([[RGB::random() $ x = 0..42] $ y = 0..42]))

24-22



 RGB::random

Example 2

It is possible to use RGB::random directly as a color function, but the result may be
unexpected:

plot(plot::Waterman(5, FillColorFunction = RGB::random))
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The reason is that the color function will be called repeatedly if the same point is met
again. It is a better idea to create a bunch of random colors and then use the parameters
passed into the color functions to get some consistency into the choice of colors:

colors := [RGB::random() $ i = 1..42]:

plot(plot::Waterman(5, FillColorFunction=((x,y,z,i) -> colors[i])))
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Return Values

RGB color: A list of three floating-point values.

See Also

MuPAD Functions
frandom | RGB
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RGB::toHSV
Convert RGB colors to HSV

Syntax
RGB::toHSV([r, g, b, <a>])

Description
RGB::toHSV(RGBcolor) returns RGBcolor expressed in HSV values, with hue in the
range  (in degrees) and saturation and value in the range .

Examples

Example 1

Apart from the RGB model, there are various other popular color formats used in
computer graphics. One is the HSV model (Hue, Saturation, Value). The RGB library
provides the routines RGB::fromHSV and and RGB::toHSV to convert HSV colors to
RGB colors and vice versa:

hsv := RGB::toHSV(RGB::Orange)

RGB::fromHSV(hsv) = RGB::Orange

Parameters
r, g, b

The red, green, and blue contributions of an RGB color: numerical values between 0 and
1.
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a

The translucency (alpha) value: a numerical value between 0 and 1.

Return Values

A list with three or four floating-point values, depending on whether a is given in the
input.

See Also

MuPAD Functions
RGB::fromHSV
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RGB::fromHSV

Convert HSV colors to RGB

Syntax

RGB::fromHSV([h, s, v, <a>])

Description

RGB::fromHSV(HSVcolor) converts color coordinates in HSV to the corresponding RGB
color.

RGB::fromHSV(HSVcolor) is the inverse of RGB::toHSV.

Examples

Example 1

With the RGB::fromHSV utility, all colors in a MuPAD graphics can be specified easily
as HSV colors. For example, the color “violet” is given by the HSV values [290, 0.4,
0.6], whereas “dark green” is given by the HSV specification [120, 1, 0.4]. Hence,
a semi-transparent violet sphere intersected by an opaque dark green plain may be
specified as follows:

plot(plot::Sphere(1, [0, 0, 0], 

                  Color = RGB::fromHSV([290, 0.4, 0.6]).[0.5]),

     plot::Surface([x, y, 0.5], x = -1 .. 1, y = -1 .. 1, 

                   Mesh = [2, 2],

                   Color = RGB::fromHSV([120, 1, 0.4]))

):
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Example 2

There are numerous ways of displaying complex-valued functions of a complex argument.
For example, see plot::Conformal. One of these is to use a color scheme that
interprets the complex plane as a section through HSV color space at a fixed value, for
example, 1. To plot this scheme in MuPAD, use plot::Density providing the following
color function:

f_color := (x, y, fz, a) ->

           RGB::fromHSV([180/float(PI)*arg(fz), abs(fz), 1]):

The identity function is thus shown as follows:

plot(plot::Density((x, y) -> x + I*y, x = -1..1, y = -1..1,

                   XMesh = 50, YMesh = 50,

                   FillColorFunction = f_color))
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 doubles the argument of a complex function, resulting in the following picture:

plot(plot::Density((x, y) -> (x + I*y)^2, x = -1..1, y = -1..1,

                   XMesh = 50, YMesh = 50,

                   FillColorFunction = f_color))
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To plot the complex sine function, choose a larger rectangle because the sine is too
similar to the identity in small neighborhoods of the origin to be of interest:

plot(plot::Density((x, y) -> sin(x + I*y), x = -2..2, y = -2..2,

                   XMesh = 50, YMesh = 50,

                   FillColorFunction = f_color))
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 is clearly discontinuous along the negative real axis:

plot(plot::Density((x, y) -> (x + I*y)^(4/3), 

                   x = -1..1, y = -1..1,

                   XMesh = 50, YMesh = 50,

                   FillColorFunction = f_color))
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Parameters

a

The translucency (alpha) value: a numerical value between 0 and 1.

h

The “hue” in an HSV specification: a numerical value between 0 and 360

s

The “saturation” in an HSV specification: a numerical value between 0 and 1

v

The “value” in an HSV specification: a numerical value between 0 and 1
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Return Values

A list with three or four floating-point values, depending on whether a is given in the
input.

See Also

MuPAD Functions
RGB::toHSV
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plot::easy
Easy plotting

Syntax
plot::easy(<arg, …>, options)

Description

plot::easy( arg , <options>, …) transforms data and expressions into graphical
objects.

plot::easy accepts graphical objects and graphical attributes as input and returns
them unchanged.

plot::easy supports the options listed above. Additionally, it accepts arbitrary data
and expressions and tries to transform them into valid graphical objects.

plot::easy supports the option Colors=[c1,...c2] for automatically coloring newly
generated graphical objects. The given list is used instead of the internally defined
default color list.

plot::easy accepts the options Mesh and Submesh and uses them for each newly
generated graphical object.

The function plot calls plot::easy for preprocessing its input before plotting.

plot::easy tries to handle standard situations intuitively in order to make plotting
as easy as possible. However, it supports only a small subset of the graphical objects,
attributes and expressions available in MuPAD and thus does not claim to be complete.

Users that want to plot other objects or control specific details of their graphics explicitly,
still have to create their graphical objects manually, e.g. using plot::Function2d and
plot::Point2d, and to use graphical attributes like LineStyle =Dashed directly.

plot::easy sets a new color for each object that it creates, if no color is predefined in
the given context.
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plot::easy accepts sets {...} as group definition and transforms them into graphical
objects of type plot::Group2d(...) or plot::Group3d(...), respectively. All
elements of a group share the same color, if colors were not specified explicitly for single
objects.Note that, regular graphical objects usually have a predefined color.

plot::easy accepts a nested set {{...}} as scene definition and transforms it into the
graphical object plot::Scene2d(...) or plot::Scene3d(...), respectively.

Creating a graphical object may require the specification of value ranges for variables.
If they are not specified explicitly then plot::easy tries use ranges specified for other
variables and/or uses the default value range -5..5.

Examples

Example 1

plot::easy tries to transform all given data and expressions into valid graphical
objects and attributes:

plot::easy(sin(x), [PI/2,1])

Since the function plot calls the function plot::easy for preprocessing its input data,
scenes like above can directly be plotted using plot:

plot(sin(x), [PI/2,1], #x = PI/2, #y = 1)
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Now, it is only a small step to animate this scene:

plot(sin(x), {[x,sin(x)], #Points}, #x = x, #y = sin(x))
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Note: Graphical objects and attributes, as well as data that plot::easy cannot
transform, are returned unchanged:

plot::easy(x, plot::Point2d(1,1), LineStyle=Dashed, "UnknownObject")

This is why plot returns the following error message when it is executed with the above
arguments:

plot(x, plot::Point2d(1,1), LineStyle=Dashed, "UnknownObject");

Error: The arguments '"UnknownObject"' are unexpected. [plot::Canvas::new]

Example 2

Points can be entered as lists with two or three values. Alternatively, a corresponding
column vector in combination with the option #Points (alias #P, see “Example 18” on
page 24-68) can be used.
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Note that for plotting animated points the option #Points is required. Otherwise a curve
(when entered a list) or an arrow (when entered a vector) is plotted:

plot([0,1], [s,s^2], {[s,s^2], #Points}, s = -2.. 2,

     matrix([t,t^2]), {matrix([t,t^2]), #Points}, t = 2..-2

)

See also: plot::Point2d, plot::Point3d.

Example 3

Arrows can be specified as column vectors with two or three elements. Alternatively,
a list in combination with the option #Arrows (alias #A, see “Example 13” on page
24-63) can be used:

plot(matrix([0,1]), matrix([s,s^2]), s = 2..-2,

     [t,t^2], {[t,t^2], #Arrows}, t = -2..2

)
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If an arrow should start at coordinates other than (0,0) or (0,0,0), respectively, then a
list of two column vectors or a corresponding list of lists in combination with the option
#Arrows (alias #A, see “Example 13” on page 24-63) can be used:

u := matrix([3,2]):

v := matrix([1,4]):

w := (1-a)*u + a*v:

u, v, w;

plot(u, v, [u,w], a = 0.1..1, #Arrows)
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delete u, v, w:

See also: plot::Arrow2d, plot::Arrow3d.

Example 4

Polygons can be specified as lists, tables or matrices. In the following example, polygons
are plotted using different input styles. The option #Origin (alias #O, see “Example 17”
on page 24-67) ensures that the origin of the coordinate system is visible in the scene
as well:

plot([[1,3],[2,5],[3,3],[4,8]],

     table(1=4,2=6,3=4,4=9),

     [matrix([1,5]),matrix([2,7]),matrix([3,5]),matrix([4,10])],

     matrix([[1,6],[2,8],[3,6],[4,11]]),

     #Origin)
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Note that polygons are displayed as points when option #Points (alias #P, see “Example
18” on page 24-68) is used:

plot([[1,3],[2,5],[3,3],[4,8]],

     table(1 = 4,2 = 6,3 = 4,4 = 9),

     [matrix([1,5]),matrix([2,7]),matrix([3,5]),matrix([4,10])],

     matrix([[1,6],[2,8],[3,6],[4,11]]),

     #Points, #Origin)
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Note that the following polygons with two elements are displayed as arrows when option
#Arrows (alias #A, see “Example 13” on page 24-63) is used:

plot([[1,4],[2,6]],

     [matrix([1,5]),matrix([2,7])],

     matrix([[1,6],[2,8]]),

     #Arrows, #Origin)
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See also: plot::Polygon2d, plot::Polygon3d.

Example 5

Point lists can be specified as lists, tables or matrices. For each point an RGBa color has
to be specified. In the following example, point lists are plotted using different input
styles. The option #Origin (alias #O, see “Example 17” on page 24-67) ensures that
the origin of the coordinate system is visible in the scene as well:

plot([[1,2,RGB::Red], [2,4,[0,1,0]], [3,3,[0,0,1,0.5]]],

     [matrix([1,3,RGB::Red]), matrix([2,5,[0,1,0]]), 

                              matrix([3,4,[0,0,1,0.5]])],

     matrix([[1,4,RGB::Red], [2,6,[0,1,0]],[3,5,[0,0,1,0.5]]]),

     table(1=[5,RGB::Red], 2=[7,[0,1,0]], 3=[6,[0,0,1,0.5]]),

     #Origin)
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Note that the following point lists are displayed as arrows when option #Arrows (alias
#A, see “Example 13” on page 24-63) is used:

plot([[1,2,RGB::Red], [2,4,[0,1,0]] ,[3,3,[0,0,1,0.5]]],

     [matrix([1,3,RGB::Red]), matrix([2,5,[0,1,0]]), 

                             matrix([3,4,[0,0,1,0.5]])],

     matrix([[1,4,RGB::Red], [2,6,[0,1,0]], [3,5,[0,0,1,0.5]]]),

     table(1=[5,RGB::Red], 2=[7,[0,1,0]] ,3=[6,[0,0,1,0.5]]),

     #Arrows, #Origin)
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See also: plot::PointList2d, plot::PointList2d.

Example 6

For drawing horizontal and vertical infinite lines, the short syntax #x = e and #y = e
with e is a real expression,can be used:

plot(sin(x), [PI/2,1], #x=PI/2, #y=1, #Legend)
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For drawing horizontal and vertical infinite planes, the short syntax#x = e, #y = e and
#z = e, with e is a real expression, can be used.

Both, lines and planes can also be animated:

plot([t,0,t^2], {[t,0,t^2], #Points}, #x=t, #z=t^2, #Legend)
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See also: plot::Line2d, plot::Plane.

Example 7

A curve can be specified as list with two or three elements, where at least one element
depends on a free variable. If option #Points (alias #P, see “Example 18” on page
24-68) is set, then instead of a curve, an animated point is plotted that moves along
the curve.

plot([t,sin(t)], {[t,sin(t)], #Points},  t=0..2*PI)
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See also: plot::Curve2d, plot::Curve3d.

Example 8

plot::easy tries to transform expressions that are no lists, sets, matrices, equations or
inequalities into graphs of 2D or 3D functions. We plot some graphs of 2D functions:

plot(sin(x), tan(x), x)
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We plot a simple 3D function. Note that the option #3D (alias #3, see “Example 12”
on page 24-60) is required in the following example for plotting a 3D function.
Otherwise, an animated 2D function is created.

plot(m*x, #3D)
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We plot a simple 2D animation: a point and the corresponding tangent of the sine
function move along the sine function graph:

f:= x -> sin(x):

plot(f(x), x = -PI..PI,

     {[a, f(a)], #Points}, f'(a)*(x-a) + f(a), a = -PI/2..PI/2)

24-51



24 Graphics and Animations

We plot a piecewise defined function:

plot(piecewise([x < 1, -x^2 + 1], [x >= 1, x + 5]), #x=1, #Legend)
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The same piecewise defined function is now written in a shorter syntax. Note the
difference between defining one function with two branches (left) and defining two
functions (right):

plot({{[[x < 1, -x^2 + 1], [x >= 1, x + 5]], #x=1}},

     {{ [x < 1, -x^2 + 1], [x >= 1, x + 5] , #x=1}},

     #Legend)
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See also: plot::Function2d, plot::Function3d.

Example 9

An implicit function can be specified as an equation:

plot(u^5 + x^2 = 1 - u^3)
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Note that the option #3D (alias #3, see “Example 12” on page 24-60) may be required
to plot planes given as cartesian equations. Otherwise, an animated 2D graph might be
created. This depends on the number of variable of the equation.

E1:= 2*x + 30*y - 2*z = 5:

E2:= -x + 7*y - z = 12:

E3:= -4*x + 2*y + z = 0:

plot(E1, E2, E3, #3D, #Legend)
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delete E1, E2, E3:

See also: plot::Implicit2d, plot::Implicit3d.

Example 10

An inequality can be displayed directly:

plot(u^5+x^2 < 1-u^3)
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The same is true for a list of inequalities and equations:

plot([x < 3, x > 1, y <  4, y > -4])
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See also: plot::Inequality.

Example 11

To display a 2D text at a certain position, an equation of a coordinate tuple and a
character string or a procedure can be entered:

plot([t, t^2],

    {[t, t^2], #Points},

     [t, t^2] = "moving text")
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We display a 3D text. As in any other context of plot::easy, we can use regular
graphical attributes like TextFont =Center as well:

DIGITS := 2:

plot([t, t^2, 1],

    {[t, t^2, 1], #Points},

     [t, t^2, 1] = (t->" x = ".[t, t^2, 1.0]),

     TextFont=[Bold]):

delete DIGITS:
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See also: plot::Text2d, plot::Text3d.

Example 12

Usually plot::easy creates a 2D scene, unless one of the arguments is a 3D object or
can only be transformed to a 3D object or the option #3D is used.

plot(sin(x), #3)
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However, the option #3D is only a hint. It is ignored if the current scene can only be a 2D
scene. In the following example, the 2D point determines the dimension of the scene:

plot([PI/2,1], sin(x), #3)
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In the following example, the 3D point determines the dimension of the scene. There is
no need to use option #3D in order to create a 3d scene:

plot([PI/2,1,0], sin(x))
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Example 13

With option #Arrows, arrows instead of points or curves are created. When used within a
{...}-group, it affects the elements of this group or scene only.

plot({{ [-5,25], [5,25], [x,x^2]     }},

     {{ [-5,25], [5,25], [x,x^2], #A }})
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Example 14

Option #Constrained creates a coordinate system with constrained scaled axes. This is
a shortcut for Scaling = Constrained.

plot({{ x^2 }}, {{ x^2, #C }})
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Example 15

Option #Grid creates a coordinate system with grid lines. This is a shortcut for
GridVisible = TRUE.

plot({{ x^2 }}, {{ x^2, #G }})
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Example 16

Option #Legend creates a legend. This is a shortcut for LegendVisible = TRUE in
combination with LegendEntry = TRUE. Note that plot::easy explicitly sets a legend
text for each graphical object it creates.

plot([0,-6], x^2-5, [t,t^2], #L)

24-66



 plot::easy

Example 17

Option #Origin includes the coordinates (0,0) or (0,0,0), respectively, into the viewing
box of the current scene.

plot({{[2,2], [3,3]}}, {{[2,2], [3,3], #O}})
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Example 18

Using option #Points, points instead of arrows or curves are created. Furthermore, this
option sets the attributes PointsVisible =TRUE and LinesVisible =FALSE. When
used within a {...}-group, it affects the elements of this group or scene only.

plot({[-5,25], [x,x^2], #Gray}, {matrix([5,25]), [x,x^2], #P})
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Example 19

#X / #Y / #Z = a..b sets the x- / y- / z-range of the viewing box of the scene to a..b. This
is a shortcut for ViewingBoxXRange / ViewingBoxYRange / ViewingBoxZRange =
a..b.

plot({{x^2, sin(x)}}, {{x^2, sin(x), #Y=0..4}})
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We draw a 3D scene with a restricted viewing box. Therefore, only a quater of the shere
is visible:

plot({{plot::Sphere(1)}},

     {{plot::Sphere(1), #X=0..1, #Y=0..1, #Z=0..1}})
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Parameters

arg

Any object

Options

#3D

Alias #3. Creates a 3D instead of a 2D scene, if possible. Usually, a 2D scene is created
unless one of the arguments is a 3D object or can only be transformed into one.

#Arrows

Alias #A. Creates arrows instead of points. When used within a {...}-group, it affects the
elements of this group or scene only.
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#Constrained

Alias #C. Creates a coordinate system with axes having the same scaling. This is a
shortcut for Scaling =Constrained.

#Grid

Alias #G. Creates a coordinate system with grid lines. This is a shortcut for
GridVisible =TRUE.

#Legend

Alias #L. Creates a legend. This is a shortcut for LegendEntry =TRUE and
LegendVisible =TRUE. When used within a {...}-group, it affects the elements of
this group or scene only. Note that plot::easy explicitly sets a legend text for each
graphical object it creates.

#Origin

Alias #O. Includes the coordinates (0,0) or (0,0,0), respectively, into the viewing box of the
current scene.

#Points

Alias #P. Creates points instead arrows or curves. Furthermore, it sets the attributes
PointsVisible =TRUE and LinesVisible =FALSE. When used within a {...}-group, it
affects the elements of this group or scene only.

#XRange

Option, specified as #XRange = a .. b

Alias #X = a .. b. Sets the x-range of the viewing box of the scene to a..b. This is a
shortcut for ViewingBoxXRange =a..b.

#YRange

Option, specified as #YRange = a .. b

Alias #Y = a .. b. Sets the y-range of the viewing box of the scene to a..b. This is a
shortcut for ViewingBoxYRange =a..b.

#ZRange

Option, specified as #ZRange = a .. b
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Alias #Z = a .. b. Sets the z-range of the viewing box of the scene to a..b. This is a
shortcut for ViewingBoxZRange =a..b.

#<Colorname>

If RGB ::<Colorname> is a valid color name in MuPAD, #<Colorname> is transformed
to: Color = RGB ::<Colorname>, LineColorType =Flat and for 3D objects
additionally FillColorType =Flat. Transparent RGB colors can be specified as
#<Colorname>.[t], with t is in 0..1. If #<Colorname> is a valid color following the
html conventions then instead of RGB ::<Colorname>, the corresponding RGB or RGBa
color value is inserted. When used within a {...}-group, it affects the elements of this
group or scene only.

#<Colorname1> .. #<Colorname2>

If RGB ::<Colorname1> and RGB ::<Colorname2> are valid color names in MuPAD,
this option is transformed to:

Color = RGB ::<Colorname1>, LineColorType =Dichromatic, LineColor2 =
RGB ::<Colorname2> in 2D scenes and to:

Color = RGB ::<Colorname1>, FillColorType =Dichromatic, FillColor2 =
RGB ::<Colorname2> in 3D scenes.

Transparent RGB colors can be specified as #<Colorname>.[t], with t is in 0..1. If
#<Colorname1> and/or #<Colorname2> are valid colors following the html conventions
then instead of RGB ::<Colorname1> and/or, RGB ::<Colorname2> the corresponding
RGB or RGBa color values are inserted. When used within a {...}-group, it affects the
elements of this group or scene only.

Return Values

A sequence of graphical objects and graphical attributes as well as objects that could not
be transformed by plot::easy.

Overloaded By

arg

24-73



24 Graphics and Animations

Algorithms

Let ci be real constants and f and fi be real functions. plot::easy automatically
carries out the following transformations:

Graphical object Data or mathematical expression

plot::Point2d: [c1, c2], {[f1(x), f2(x)], #Points},
{matrix([f1(x), f2(x)]), #Points}.

plot::Point3d: [c1, c2, c3], {[f1(x), f2(x), f3(x)],
#Points}, {matrix([f1(x), f2(x), f3(x)]),
#Points}.

plot::Arrow2d: matrix([c1, c2]), {[c1, c2], #Arrows},
{[matrix([f1(x), f2(x)]), matrix([f3(x),
f4(x)])], #Arrows}, {matrix([[f1(x),
f2(x)], [f3(x), f4(x)]]), #Arrows},
{[[f1(x), f2(x)], [f3(x), f4(x)]],
#Arrows}.

plot::Arrow3d: matrix([c1, c2, c3]), {[c1, c2, c3], #Arrows},
{[matrix([f1(x), f2(x), f3(x)]),
matrix([f4(x), f5(x), f6(x)])], #Arrows},
{matrix([[f1(x), f2(x), f3(x)], [f4(x),
f5(x), f6(x)]]), #Arrows}, {[[f1(x),
f2(x), f3(x)], [f4(x), f5(x), f6(x)]],
#Arrows}.

plot::Polygon2d: [[f1(x), f2(x)],...], [matrix([f1(x),
f2(x)]),...], matrix([[f1(x), f2(x)],...]),
table(f1(x)=f2(x),...).

plot::Polygon3d: [[f1(x), f2(x), f3(x)],...], [matrix([f1(x),
f2(x), f3(x)]),...], matrix([[f1(x),
f2(x), f3(x)],...]). table(f1(x)=[f2(x),
f3(x)],...).

plot::PointList2d: [[f1(x), f2(x), RGBa],...], [matrix([f1(x),
f2(x), RGBa]),...], matrix([[f1(x), f2(x),
RGBa],...]), table(f1(x)=[f2(x), RGBa],...).
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Graphical object Data or mathematical expression

plot::PointList3d: [[f1(x), f2(x), f3(x), RGBa],...],
[matrix([f1(x), f2(x), f3(x), RGBa]),...],
matrix([[f1(x), f2(x), f3(x), RGBa],...]).
table(f1(x)=[f2(x), f3(x), RGBa],...).

plot::Line2d: #x= f(x), #y= f(x).
plot::Plane: #z= f(x), {#x= f(x) , #3D}, {#y=

f(x) , #3D}, {#z= f(x) , #3D}.
plot::Curve2d: [f1(x), f2(x)].
plot::Curve3d: [f1(x), f2(x), f3(x)].
plot::Function2d: f(x), f(x, a), [cond1, f(x)], [[cond1,

f(x)],...].
plot::Function3d: f(x, y, a), [cond1, f(x, y, a)],

[[cond1, f(x, y, a)],...], {f(x), #3D},
{f(x, a), #3D}.

plot::Implicit2d: f1(x, y, a)=f2(x, y, a).
plot::Implicit3d: f1(x, y, z, a)=f2(x, y, z, a),

{f1(x, y, a)=f2(x, y, a), #3D}.
plot::Inequality: f1(x, a) < f2(x, a), f1(x, a) ≤

f2(x, a), f1(x, a) > f2(x, a), f1(x,
a) ≥ f2(x, a), [f1(x, a)<f2(x, a),
f3(x, a)>f4(x, a), f5(x, a)=f6(x,
a),...].

plot::Text2d: [f1(x), f2(x)]=text, matrix([f1(x),
f2(x)])=text, [f1(x), f2(x)]=procedure,
matrix([f1(x), f2(x)])=procedure.

plot::Text3d: [f1(x), f2(x), f3(x)]=text,
matrix([f1(x), f2(x), f3(x)])=text,
[f1(x), f2(x), f3(x)]=procedure,
matrix([f1(x), f2(x),
f3(x)])=procedure.
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See Also

MuPAD Functions
plot
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plot::getDefault

Get current default setting of attributes

Syntax

plot::getDefault(type::attr)

Description

plot::getDefault(plot::Object::Attribute) enquires the current default.

Defaults are set and retrieved per object; with the exception of OutputFile and
OutputOptions, the attribute must be prefixed with the name of the object type the
setting will be valid for. There is, for example, no function to turn of all lines on all 3D
objects. OutputFile and OutputOptions are not associated with an object and must be
set directly.

Examples

Example 1

By default, function plots use relatively thin lines:

plotfunc2d(sin(x))
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To get the current line width setting, use the following command:

plot::getDefault(plot::Function2d::LineWidth)

Using plot::setDefault, you can change the default setting once and for the whole
session:

plot::setDefault(plot::Function2d::LineWidth = 1*unit::mm):

plotfunc2d(sin(x))
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Again, check the current line width setting using the following command:

plot::getDefault(plot::Function2d::LineWidth)

Note that plotfunc2d and plotfunc3d use plot::Function2d and
plot::Function3d for the actual plotting. Changing color and legend settings of the
latter two does not influence the former because plotfunc2d and plotfunc3d set color
and legend settings explicitly.

Parameters

type

A domain of the plot library, i.e., an object type such as plot::Function2d

attr

Attributes admissible for the object type type
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Return Values

plot::getDefault returns the current default value.

Algorithms

“Admissible attributes” includes all the attributes the object itself reacts to. Hints cannot
be set or changed with plot::setDefault.

For attributes marked as “mandatory,” default values are read and used the moment an
object is created. Default values of attributes marked as “optional” or “inherited” are read
when the object is plotted and can therefore be changed after creating an object.

See Also

MuPAD Functions
plot::setDefault
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plot::setDefault

Set default setting of attributes

Syntax

plot::setDefault(type::attr = value, …)

Description

plot::setDefault(plot::Object::Attribute = Value) sets the default of the
attribute Attribute for objects of type plot::Object to Value.

While not all attributes have defaults, it is in general possible to set defaults for them,
although some examples like setting a default function to plot for plot::Function2d
are probably more exotic than others, to say the least.

Defaults are set and retrieved per object; with the exception of OutputFile and
OutputOptions, the attribute must be prefixed with the name of the object type the
setting will be valid for. There is, for example, no function to turn of all lines on all 3D
objects. OutputFile and OutputOptions are not associated with an object and must be
set directly.

To delete a default (which is not recommended for attributes having a default in the
standard installation), set value to FAIL.

Examples

Example 1

By default, function plots use relatively thin lines:

plotfunc2d(sin(x))
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You can use thicker lines as follows:

plotfunc2d(sin(x), LineWidth = 1*unit::mm)
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However, this is distracting and cumbersome. Using plot::setDefault lets you
change the default setting once and for the whole session:

plot::setDefault(plot::Function2d::LineWidth = 1*unit::mm):

plotfunc2d(sin(x))
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Note that plotfunc2d and plotfunc3d use plot::Function2d and
plot::Function3d for the actual plotting. Changing color and legend settings of the
latter two does not influence the former because plotfunc2d and plotfunc3d set color
and legend settings explicitly.

Parameters

type

A domain of the plot library, that is, an object type such as plot::Function2d

attr

Attributes admissible for the object type type

value

The new default value: a value admissible for attr in objects of type type
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Return Values

plot::setDefault returns the previous default value(s).

Algorithms

“Admissible attributes” include all the attributes the object itself reacts to. Hints cannot
be set or changed with plot::setDefault.

For attributes marked as “mandatory,” default values are read and used the moment an
object is created. Default values of attributes marked as “optional” or “inherited” are read
when the object is plotted and can therefore be changed after creating an object.

See Also

MuPAD Functions
plot::getDefault
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plot::copy
Make a physical copy of a plot object

Syntax
plot::copy(obj)

Description

Objects created from inside the plot library have a reference effect: If you make another
reference to some object, say by calling o2 := o1; and then change an attribute of o2,
for example, setting o2::Visible := FALSE, this change will also effect the object
referred to by o1, because they actually refer to the same object. To create an actual copy
of an object instead, use o2 := plot::copy(o1);.

Examples

Example 1

The following call does not create two points, but rather one which we can access by two
names:

A := plot::Point2d(0, 0):

B := A:

This becomes obvious when you try to modify one of the points:

B::Position := [1, 1]:

A

To copy a point, use plot::copy :

B := plot::copy(A):

24-86



 plot::copy

B::Position := [2, 2]:

A, B

Parameters

obj

Plot objects

Return Values

Object of the same type as obj

See Also

MuPAD Functions
plot::modify
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plot::modify
Make a physical copy of a plot object setting new values of attributes in the same call

Syntax
plot::modify(obj, <attr, …>)

Description

Objects created from inside the plot library have a reference effect: If you make another
reference to some object, say by calling o2 := o1; and then change an attribute of o2,
e.g., setting o2::Visible := FALSE, this change will also effect the object referred to
by o1, since they actually refer to the same object. To create an actual copy of an object
instead, use o2 := plot::copy(o1);.

plot::modify copies a plot object the same way as plot::copy does, but it also
lets you set new values of attributes in the same call. For example, you can use o2 :=
plot::modify(o1, Visible = FALSE).

Note that plot::modify does not modify its argument, but returns a modified copy
instead.

Examples

Example 1

The following call does not create two points, but rather one which we can access by two
names:

A := plot::Point2d(0, 0):

B := A:

This becomes obvious when you try to modify one of the points:

B::Position := [1, 1]:
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A

To copy and modify a point in one call, use plot::modify :

B := plot::modify(A, Position = [2, 2]):

A, B

Parameters

obj

Plot objects

attr

Attributes acceptable by the object obj, in the form Attribute = Value

Return Values

Object of the same type as obj

See Also

MuPAD Functions
plot::copy
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plot::delaunay
Compute the Delaunay triangulation of a set of points

Syntax
plot::delaunay(L)

Description

plot::delaunay computes the Delaunay triangulation of a list of points in arbitrary
dimension.

The Delaunay triangulation of a list of points is a triangulation of their convex hull such
that for each edge of the triangulation, there is a circle containing the two endpoints of
this edge but no other point of the list.

Environment Interactions

Although plot::delaunay accepts and returns floating-point values, the actual
computations take place in hardware floating-points and are therefore not affected by the
value of DIGITS.

Examples

Example 1

Delaunay triangulation does not introduce new points:

n0 := 10:

l := [[Re, Im](exp(float(2*I*PI*n)/n0)) $ n = 1.. n0]:

d := plot::delaunay(l):

plot(plot::PointList2d(l, PointSize=3),

     plot::Polygon2d(t, Closed) $ t in d)
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Parameters

L

A list of points, which are given as lists of real values

Return Values

List of simplices in the dimension of the points in L, given as lists of lists of floating-point
values.

Algorithms

plot::delaunay uses qhull from the Geometry Center of the University of Minnesota,
see www.qhull.org.
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plot::hull
Compute the convex hull of a set of points

Syntax
plot::hull(L)

Description

plot::hull computes the convex hull of a list of points in any dimension, i.e., the
smallest convex region containing all the points. Such a region is bounded by simplices
(straight lines in the plane, triangles in 3D) and it is these simplices which plot::hull
returns.

Environment Interactions

Although plot::hull accepts and returns floating point values, the actual
computations take place in hardware floating points and are therefore not affected by the
value of DIGITS.

Examples

Example 1

We generate a list of random points and compute their convex hull:

X := stats::uniformRandom(0, 20):

l := [[X(), X()] $ i = 1..10]:

h := plot::hull(l):

The convex hull is returned as lists of lists, as accepted by plot::Polygon2d:

h[1]
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plot(plot::PointList2d(l),

     plot::Polygon2d(t) $ t in h,

     Closed, PointSize=2)

Example 2

The convex hull of a list of points in 3D is also easy to visualize:

l := [[x, y, z] $ y = z..x $ z = -x..x $ x = 0..10]:

h := plot::hull(l):

plot(plot::PointList3d(l, PointSize=1),

     plot::Polygon3d(t) $ t in h,

     Closed, Filled, FillColor=RGB::LightOrange.[0.6])
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Parameters

L

A list of points, which are given as lists of real values

Return Values

List of simplices of dimension one less than that of the points in L, given as lists of lists of
floating-point values.

Algorithms

plot::hull uses qhull from the Geometry Center of the University of Minnesota, see
www.qhull.org.
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plot::Arc2d
Circular and elliptical arcs in 2D

Syntax
plot::Arc2d(r, <[cx, cy]>, <α .. β>, <a = amin .. amax>, options)

plot::Arc2d([r1, r2], <[cx, cy]>, <α .. β>, <a = amin .. amax>, options)

Description
plot::Arc2d(r, [x, y], α .. β ) creates a circular arc with radius r and center
(x, y) with a polar angle between α and β.

plot::Arc2d([r1, r2], [x, y], α .. β ) creates a corresponding elliptical arc
with semi-axes r1, r2.

The angle of a point on the arc is the usual polar angle to the positive x-axis known from
polar coordinates. It is measured in radians.

If you do not specify the range for the polar angle, plot::Arc3d creates a full circle/
ellipse.

If you do not specify the center point, plot::Arc3d creates an arc with center [0,0].

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Angle rotation angle 0

AngleEnd end of angle range PI/2

AngleBegin begin of angle range 0

AngleRange angle range 0 .. PI/2
AntiAliased antialiased lines and points? TRUE
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Attribute Purpose Default Value

Center center of objects, rotation
center

[0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

Closed open or closed polygons FALSE

Filled filled or transparent areas
and surfaces

FALSE

FillColor color of areas and surfaces RGB::Red

FillPattern type of area filling DiagonalLines

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter
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Attribute Purpose Default Value

ParameterRange range of the animation
parameter

 

SemiAxes semi axes of ellipses and
ellipsods

[1, 1]

SemiAxisX first semi axis of ellipses
and ellipsods

1

SemiAxisY second semi axis of ellipses
and ellipsods

1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

An arc is a segment of a circle:

circle := plot::Circle2d(3, [0, 0]):

arc := plot::Arc2d(3, [0, 0], 0 .. PI/4, LineColor = RGB::Red,

                   LineWidth = 1.5*unit::mm):

plot(circle, arc)

delete circle, arc:
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Example 2

The center of an arc can be given as the second argument to plot::Arc2d:

arc1 := plot::Arc2d(3, [1, 3], 0..PI/2, Closed = TRUE):

arc2 := plot::Arc2d(3, [3, 1], -PI ..0, Closed = TRUE):

plot(arc1, arc2)

The center is accessible as the attribute Center of the arc object. Change the center of
the second arc:

arc2::Center := [1, 3]:

plot(arc1, arc2)
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delete arc1, arc2:

Example 3

A filled arc is a segment of a circle, like a piece of pie:

plot(plot::Arc2d(1, -PI/4..PI/4, Filled = TRUE))
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plot(plot::Arc2d(1, -PI/4..PI/4, Filled = TRUE, Closed = TRUE))
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plot(plot::Arc2d(1, -PI/4..PI/4, Filled = TRUE,

                 FillPattern = Solid, LinesVisible = FALSE),

                 AxesInFront = TRUE)
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Example 4

When given a list of two radii, plot::Arc2d draws a segment of an ellipse with the
corresponding semi-axes:

arc1 := plot::Arc2d([2, 1], 0 .. PI, Color = RGB::Blue):

arc2 := plot::Arc2d([2, 1], -PI .. 0, Color = RGB::Red):

plot(arc1, arc2)
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delete arc1, arc2:

Example 5

To plot or animate segments of a tilted ellipse, use the attribute Angle:

arc:= [1, 1], [0, 0], PI/4..PI/2, Filled, Closed, FillPattern=Solid:

plot(plot::Arc2d(arc, Angle=a+0,      a=0..2*PI, FillColor=RGB::Red),

     plot::Arc2d(arc, Angle=a+1/2*PI, a=0..2*PI, FillColor=RGB::Green),

     plot::Arc2d(arc, Angle=a+PI,     a=0..2*PI, FillColor=RGB::Yellow),

     plot::Arc2d(arc, Angle=a+3/2*PI, a=0..2*PI, FillColor=RGB::Blue))
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delete arc:

Example 6

Create the following animated 2D arcs:

plot(plot::Arc2d(1, a .. PI, a = 0..PI))
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plot(plot::Arc2d([1 + a^2/2, 1 + a], -PI/2 .. PI/2, a = 0..4))
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Parameters
r

The radius of the circle. This must be a real numerical value or an arithmetical
expression of the animation parameter a.

r is equivalent to the attributes SemiAxisX, SemiAxisY.

r1, r2

The semi-axes of an elliptical arc. They must be real numerical values or arithmetical
expressions of the animation parameter a.

r1, r2 are equivalent to the attributes SemiAxisX, SemiAxisY.

cx, cy

The center point. The coordinates cx, cy must be real numerical values or arithmetical
expressions of the animation parameter a. If no center is specified, an arc centered at the
origin is created.
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cx, cy are equivalent to the attribute Center.

α .. β

The angle range in radians: α and β must be real numerical values or arithmetical
expressions of the animation parameter a. The default range is 0 .. 2*PI.

α .. β is equivalent to the attribute AngleRange.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Arc3d | plot::Circle2d | plot::Ellipse2d | plot::Ellipse3d
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plot::Arc3d
Circular and elliptical arcs in 3D

Syntax
plot::Arc3d(r, <[cx, cy, cz], <[nx, ny, nz]>>, <α .. β>, <a = amin .. amax>, options)

plot::Arc3d([r1, r2], <[cx, cy, cz], <[nx, ny, nz]>>, <α .. β>, <a = amin .. amax>, options)

Description
plot::Arc3d(r, [x, y, z], [nx, ny, nz], α .. β ) creates a circular arc
with radius r and center (x, y, z) with a polar angle between α and β in the plane with the
normal vector (nx, ny, nz).

plot::Arc3d([r1, r2], [x, y, z], [nx, ny, nz], α .. β ) creates a
corresponding elliptical arc with semi-axes r1, r2.

The angle of a point on the arc is the usual polar angle to the positive x-axis known from
polar coordinates. It is measured in radians.

If you do not specify the range for the polar angle, plot::Arc3d creates a full circle/
ellipse.

If you do not specify the center point, plot::Arc3d creates an arc with center [0,0,0].

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Angle rotation angle 0

AngleEnd end of angle range PI/2

AngleBegin begin of angle range 0

AngleRange angle range 0 .. PI/2
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Attribute Purpose Default Value

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Closed open or closed polygons FALSE

Filled filled or transparent areas
and surfaces

FALSE

FillColor color of areas and surfaces RGB::LightBlue

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Flat

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
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Attribute Purpose Default Value

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorDirection the direction of color
transitions on lines

[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

Normal normal vector of circles and
discs, etc. in 3D

[0, 0, 1]

NormalX normal vector of circles
and discs, etc. in 3D, x-
component

0

NormalY normal vector of circles
and discs, etc. in 3D, y-
component

0

NormalZ normal vector of circles
and discs, etc. in 3D, z-
component

1

ParameterEnd end value of the animation
parameter
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Attribute Purpose Default Value

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

SemiAxes semi axes of ellipses and
ellipsods

 

SemiAxisX first semi axis of ellipses
and ellipsods

1

SemiAxisY second semi axis of ellipses
and ellipsods

1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value
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Attribute Purpose Default Value

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Plot an animated 3D arc:

plot(plot::Arc3d(1, [0,0,0], [0,a,1-a], 0..3/2*PI, a = 0..1))
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Example 2

Plot a colored 3D arcs:

plot(plot::Arc3d(1, [0,0,0], 0.1..2*PI-0.1, Filled,

                 LineColor=RGB::Yellow, LineColor2=RGB::Red,

                 LineColorType = Dichromatic, LineColorDirection=[+1,0,0],

                 FillColor=RGB::Yellow, FillColor2=RGB::Red,

                 FillColorType = Dichromatic, FillColorDirection=[-1,0,0]

))

Parameters

r

The radius of the circle. This must be a real numerical value or an arithmetical
expression of the animation parameter a.

r is equivalent to the attributes SemiAxisX, SemiAxisY.
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r1, r2

The semi-axes of an elliptical arc. They must be real numerical values or arithmetical
expressions of the animation parameter a.

r1, r2 are equivalent to the attributes SemiAxisX, SemiAxisY.

cx, cy, cz

The center point. The coordinates cx, cy, cz must be real numerical values or arithmetical
expressions of the animation parameter a. If no center is specified, an arc centered at the
origin is created.

cx, cy, cz are equivalent to the attribute Center.

nx, ny, nz

The normal vector. The coordinates nx, ny, nz must be real numerical values or
arithmetical expressions of the animation parameter a. If no normal vector is specified,
the arc is created in the xy-plane.

nx, ny, nz are equivalent to the attribute Normal.

α .. β

The angle range in radians: α and β must be real numerical values or arithmetical
expressions of the animation parameter a. The default range is 0 .. 2*PI.

α .. β is equivalent to the attribute AngleRange.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Arc2d | plot::Circle2d | plot::Ellipse2d | plot::Ellipse3d
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plot::Arrow2d
2D arrows

Syntax
plot::Arrow2d(<[x1, y1]>, [x2, y2], <a = amin .. amax>, options)

Description

plot::Arrow2d([x1, y1], [x2, y2]) creates a 2D arrow from the point (x1, y1) to the
point (x2, y2).

plot::Arrow2d([x2, y2]) creates a 2D arrow from the point (0, 0) to the point (x2, y2).

The points defining an arrow can also be passed as vectors.

The appearance of arrows can be controlled by various attributes:

• Color sets the color.
• LineWidth and LineStyle set the width and the style (solid, dashed, dotted).
• TipLength, TipAngle, and TipStyle control the arrow tip.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::Blue

Frames the number of frames in an
animation

50

From starting point of arrows and
lines

[0, 0]
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Attribute Purpose Default Value

FromX starting point of arrows and
lines, x-coordinate

0

FromY starting point of arrows and
lines, y-coordinate

0

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LineColorDirection the direction of color
transitions on lines

[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0
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Attribute Purpose Default Value

TimeRange the real time span of an
animation

0.0 .. 10.0

TipAngle opening angle of arrow
heads

(2*PI)/15

TipStyle presentation style of arrow
heads

Filled

TipLength length of arrow heads 4

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

To end point of arrows and
lines

[1, 0]

ToX end point of arrows and
lines, x-coordinate

1

ToY end point of arrows and
lines, y-coordinate

0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create and plot the following arrows:

plot(plot::Arrow2d([1, 1]), plot::Arrow2d([1, 3]),

     plot::Arrow2d([1, 1], [1, 3]))

Various attributes are available to control the presentation style of an arrow:

plot(plot::Arrow2d([1, 1], Color = RGB::Red, 

                   TipStyle = Open, TipLength = 10*unit::mm), 
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     plot::Arrow2d([-1, 1], Color = RGB::Green, 

                   LineWidth = 0.8*unit::mm,

                   TipStyle = Closed, TipAngle = PI/2), 

     plot::Arrow2d([0, -sqrt(2)], Color = RGB::Blue, 

                   LineStyle = Dashed), 

     Axes = None)

Example 2

Plot an arrow with fixed starting point and animated end point:

plot(plot::Circle2d(2, [1, 2]),

     plot::Arrow2d([1, 2], [1 + 2*cos(a), 2 + 2*sin(a)], 

                   a = 0..2*PI))
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Parameters

x1, y1

The coordinates of the starting point: real numerical values or arithmetical expressions
of the animation parameter a. If no starting point is specified, an arrow starting at the
origin is created.

x1, y1 are equivalent to the attributes FromX, FromY.

x2, y2

The coordinates of the end point: real numerical values or arithmetical expressions of the
animation parameter a.

x2, y2 are equivalent to the attributes ToX, ToY.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Arrow3d | plot::Line2d | plot::Line3d | plot::VectorField2d
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plot::Arrow3d
3D arrows

Syntax
plot::Arrow3d(<[x1, y1, z1]>, [x2, y2, z2], <a = amin .. amax>, options)

Description

plot::Arrow3d([x1, y1, z1], [x2, y2, z2]) creates a 3D arrow from the point (x1,
y1, z1) to the point (x2, y2, z2).

plot::Arrow3d([x2, y2, z2]) creates a 3D arrow from the point (0, 0, 0) to the point
(x2, y2, z2).

The points defining an arrow can also be passed as vectors.

The appearance of arrows can be controlled by various attributes:

• Color sets the color.
• LineWidth and LineStyle set the width and the style (solid, dashed, dotted).
• TipLength, TipAngle, and TipStyle control the arrow tip.
• With Tubular = TRUE, 3D arrows are rendered as 3D tubes with a diameter set by

TubeDiameter. The arrow head is rendered as a cone.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Blue

Frames the number of frames in an
animation

50
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Attribute Purpose Default Value

From starting point of arrows and
lines

[0, 0, 0]

FromX starting point of arrows and
lines, x-coordinate

0

FromY starting point of arrows and
lines, y-coordinate

0

FromZ starting point of arrows and
lines, z-coordinate

0

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LineColorDirection the direction of color
transitions on lines

[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter
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Attribute Purpose Default Value

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

TipAngle opening angle of arrow
heads

(2*PI)/15

TipStyle presentation style of arrow
heads

Filled

TipLength length of arrow heads 4

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

To end point of arrows and
lines

[1, 0, 0]

ToX end point of arrows and
lines, x-coordinate

1

ToY end point of arrows and
lines, y-coordinate

0

ToZ end point of arrows and
lines, z-coordinate

0
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Attribute Purpose Default Value

Tubular display 3D arrows and lines
as tubes?

FALSE

TubeDiameter diameter of tubular arrows
and lines.

1.0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

We create and plot some arrows:

plot(plot::Arrow3d([1, 1, 1]), plot::Arrow3d([1, 3, 2]),

     plot::Arrow3d([1, 1, 1], [1, 3, 2]))
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Various attributes are available to control the presentation style of an arrow:

plot(plot::Arrow3d([1, 1, 0], Color = RGB::Red, 

                   TipStyle = Open, TipLength = 10*unit::mm), 

     plot::Arrow3d([-1, 1, 0], Color = RGB::Green, 

                   LineWidth = 0.8*unit::mm,

                   TipStyle = Closed, TipAngle = PI/2), 

     plot::Arrow3d([0, -sqrt(2), 0], Color = RGB::Blue, 

                   LineStyle = Dashed), 

     CameraDirection = [0, -1, 1000])
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Use Tubular = TRUE:

plot(plot::Arrow3d([1, 1, 0], Color = RGB::Red, 

                   TipLength = 10*unit::mm), 

     plot::Arrow3d([-1, 1, 0], Color = RGB::Green, 

                   TubeDiameter = 1.5*unit::mm,

                   TipAngle = PI/2), 

     plot::Arrow3d([0, -sqrt(2), 0], Color = RGB::Blue), 

     Tubular = TRUE, CameraDirection = [0, -1, 1000])
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Parameters

x1, y1, z1

The coordinates of the starting point: real numerical values or arithmetical expressions
of the animation parameter a. If no starting point is specified, an arrow starting at the
origin is created.

x1, y1, z1 are equivalent to the attributes FromX, FromY, FromZ.

x2, y2, z2

The coordinates of the end point: real numerical values or arithmetical expressions of the
animation parameter a.

x2, y2, z2 are equivalent to the attributes ToX, ToY, ToZ.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Arrow2d | plot::Line2d | plot::Line3d | plot::VectorField2d
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plot::Bars2d
2D bar chart

Syntax
plot::Bars2d([[a1, a2, …], [b1, b2, …], …], <a = amin .. amax>, options)

plot::Bars2d([a1, a2, …], <a = amin .. amax>, options)

Description

plot::Bars2d([[ a1, a2, ...], [ b1, b2, ...], ...]) generates a bar chart
with bar heights a1, b1, ..., a2, b2, ....

plot::Bars2d([ a1, a2, ...]) creates a bar chart with bars of height a1, a2, …

With plot::Bars2d([[ a1, a2,...], [ b1, b2,...], ...]), bars are plotted in
the order a1, b1, …, a gap, a2, b2, … Cf. “Example 2” on page 24-135.

The horizontal positions and the widths of the bars may be controlled by the attributes
BarCenters and BarWidths, respectively.

The attribute GroupStyle provides grouping options.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? FALSE

BarStyle display style of bar plots Boxes

BarWidths widths of bars [[1.0]]
BarCenters position of bars  
Color the main color  
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Attribute Purpose Default Value

Colors list of colors to use [RGB::Blue, RGB::Red,
RGB::Green,
RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
RGB::Magenta,
RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson,
RGB::Aqua,
RGB::Lavender,
RGB::SeaGreen,
RGB::AureolineYellow,
RGB::Banana, RGB::Beige,
RGB::YellowGreen,
RGB::Wheat,
RGB::IndianRed,
RGB::Black]

Data the (statistical) data to plot  
DrawMode orientation of boxes and

bars
Vertical

Filled filled or transparent areas
and surfaces

TRUE

FillPatterns list of area fill types [Solid]
Frames the number of frames in an

animation
50

GroupStyle grouping options in 2D bar
plots

MultipleBars

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black

LineWidth width of lines 0.35
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Attribute Purpose Default Value

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

Shadows display “shadows” for bar
plots?

FALSE

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component
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Attribute Purpose Default Value

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Given a single list of values, plot::Bars2d plots bars of the corresponding height, filled
solidly in one color:

plot(plot::Bars2d([1, 2, 3, 4, 5]))
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Example 2

When asked to plot a list of lists of values, plot::Bars2d will group the first entries of
all lists, the second entries and so on, with a small gap between the groups:

plot(plot::Bars2d([[ 5, 10, 24, -3],

                   [ 6,  5,  2, 18],

                   [19, 45, 12,-10]]))
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Example 3

The appearance of the plots can be controlled with a number of attributes. For example,
Colors accepts a list of colors for the bars and Shadows switches on “shadows,” giving a
slight impression of depth:

plot(plot::Bars2d([[ 5, 10, 24,  -3],

                   [ 6,  5,  2,  18],

                   [19, 45, 12, -10]], 

                  Colors = [RGB::Red, RGB::Green, RGB::Blue],

                  Shadows = TRUE))
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Using DrawMode, plot::Bars2d can be made to draw horizontal bars instead of vertical
ones:

plot(plot::Bars2d([[ .5, 1.0, 2.4,  -.3], 

                   [ .6,  .5,  .2,  1.8], 

                   [1.9, 4.5, 1.2, -1.0]], 

                  Colors = [RGB::Red,RGB::Green,RGB::Blue],

                  Shadows = TRUE, DrawMode = Horizontal))
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BarStyle is used to plot points or lines instead of rectangles:

plot(plot::Bars2d([[ 5, 10, 24,  -3],

                   [ 6,  5,  2,  18],

                   [19, 45, 12, -10]], BarStyle = Lines))
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Example 4

We demonstrate alternative grouping styles:

plot(plot::Bars2d([[ 5, 10, 15, 20],

                   [ 6,  5,  4,  3],

                   [10,  5,  3,  1]], GroupStyle = MultipleBars))
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plot(plot::Bars2d([[ 5, 10, 15, 20],

                   [ 6,  5,  4,  3],

                   [10,  5,  3,  1]], GroupStyle = SingleBars))
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Example 5

To plot a single group of data with different colors, they must be placed in individual
lists:

plot(plot::Bars2d([[binomial(15,i)] $ i = 0..15],

                  Colors = [[1-j/15, j/15, 0.9] $ j = 0..15]),

            XAxisVisible)
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Example 6

plot::Bars2d accepts input in form of lists (as above), as a matrix, or as a one- or two-
dimensional array:

L := [ [2,  1,  2, 4, 5],

       [1,  2,  3, 2, 1],

       [2, -1, -3, 1, 2],

       [5,  4,  3, 2, 1],

       [2,  1,  2, 1, 2]]:

M := matrix(L):

A :=array(1..5, 1..5, 

          (1,1) = 2, (1,2) = 1, (1,3) =  2, (1,4) = 4, (1,5) = 5,

          (2,1) = 1, (2,2) = 2, (2,3) =  3, (2,4) = 2, (2,5) = 1,

          (3,1) = 2, (3,2) = 1, (3,3) = -3, (3,4) = 1, (3,5) = 2, 

          (4,1) = 5, (4,2) = 4, (4,3) =  3, (4,4) = 2, (4,5) = 1, 

          (5,1) = 2, (5,2) = 1, (5,3) =  2, (5,4) = 1, (5,5) = 2):

plot(plot::Bars2d(L))
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plot(plot::Bars2d(M))
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plot(plot::Bars2d(A))
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Example 7

Here is a real life example of a bar plot taken from a German magazine. It visualizes
data related to waste management. We reproduce the plot via MuPAD. The main
ingredient is a bar plot generated via plot::Bars2d with the option GroupStyle =
SingleBars. Generating the annotations is somewhat tricky:

data := [[25  , 24.6, 30.8 ],

         [ 2  ,  2.8, 11   ],

         [ 7.1,  3.3,  4.05]]:

sw := 1.5: 

bw := 2.0: 

n := nops(data): 

w := sw + bw: 

myticks := [(i-1)* w + sw + bw/2 $ i = 1..n]:

m := nops(data[1]):

datalabels := ["Prognos", "LAGA", "BDE"]:
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// cumulative data for the groups

datasums := _concat(datalabels[i].": ".

                    expr2text(_plus(data[j][i]$j=1..m)).

                    " megatons   " $i=1..n):

// generate a list of text objects containing the data values

// and place them in the centers of the bars:

datatext := []:

for i from 1 to n do

  h := 0;

  for j from 1 to m do

    d := data[j][i];

    datatext := datatext, plot::Text2d(expr2text(d), 

                                       [myticks[i], h + d/2], 

                                       TextFont = [8, RGB::White],

                                       VerticalAlignment = Center,

                                       HorizontalAlignment = Center);

    h := h + d

  end

end:

Here is the bar plot with the annotations. Many scene options are used to fine tune the
graphics:

S1:=plot::Scene2d(

    plot::Bars2d(data, 

                 Colors=[RGB::LimeGreen, RGB::Blue, RGB::Red],

                 GroupStyle = SingleBars, 

                 BarCenters = [myticks[i] $ i=1..n],

                 BarWidths = [[bw]],       

                 DrawMode = Vertical),

  

     // scene options:

     ViewingBox = [0 .. w*n + sw, 0 .. 50],

     // options for the grid

     XGridVisible = FALSE,    

     YGridVisible = TRUE,

     XSubgridVisible = FALSE, 

     YSubgridVisible = TRUE,

     GridLineColor = RGB::DarkGrey,

     SubgridLineColor = RGB::DarkGrey,

     // options for the axes
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     Axes = Boxed, 

     AxesTips = FALSE,

     AxesInFront = TRUE,

     AxesTitleFont = ["Arial", 12, Bold],

     XAxisVisible = TRUE,

     YAxisTitleOrientation = Vertical,

     YAxisTitleAlignment = Center,

     YAxisTitle = "megatons", 

     XAxisTitle = "",

     // options for the ticks along the axes

     TicksLabelFont = ["Arial", 10],

     XTicksVisible = FALSE,

     XTicksNumber = None,

     XTicksAt = [myticks[i] = datalabels[i] $ i=1..n],

     // layout 

     RightMargin = 50,

     // annotation

     datatext,

     // header and footer

     Header = "Capacities in megatons",

     HeaderFont = ["Arial", 12, Bold],

     Footer = "\n\nAmount of waste taken into account:\n".datasums,

     FooterFont = ["Arial", 8],

     FooterAlignment = Left,

     // use a yellowish background

     BackgroundColor = [0.886275, 0.870588, 0.294118]

):

plot(S1)
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Next, we build a legend made of colored rectangles and text objects:

S2 := plot::Scene2d(

  ViewingBox = [0..20, 0..50],

  Axes = None,

  plot::Rectangle(13..13.5, 35..36, 

                  Filled = TRUE, 

                  FillPattern = Solid, 

                  FillColor = RGB::Red,

                  LineColor = RGB::Black),

  plot::Text2d("missing capacities", [14, 35],

               HorizontalAlignment = Left, 

               TextFont = ["Arial", 8]),

  plot::Rectangle(13..13.5, 29..30, 

                  Filled = TRUE, 

                  FillPattern = Solid, 

                  FillColor = RGB::Blue,

                  LineColor = RGB::Black),

  plot::Text2d("planned and potential capacities", [14, 29],

               HorizontalAlignment = Left, TextFont = ["Arial", 8]),

  plot::Rectangle(13..13.5, 23..24, 

                  Filled = TRUE,
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                  FillPattern = Solid, 

                  FillColor = RGB::Green,

                  LineColor = RGB::Black),

  plot::Text2d("known capacities", [14, 23],

               HorizontalAlignment = Left, 

               TextFont = ["Arial", 8])

):

plot(S2, BorderWidth = 0.2)

The final picture consists of the bar plot S1 and the legend S2. We just put S2 on top of
S1, making the background of S2 transparent:

S1::Width := 1: S1::Height := 1:

S2::Width := 1: S2::Height := 1:

S1::Bottom := 0: S1::Left := 0:

S2::Bottom := 0: S2::Left := 0:

S1::BackgroundTransparent := FALSE:

S2::BackgroundTransparent := TRUE:

plot(S1, S2, Layout = Relative)
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delete data, datalabels, datasums, datatext, myticks, 

       sw, bw, n, m, w, i, h, j, d, S1, S2:

Parameters

a1, a2, …, b1, b2, …, …

Real-valued expressions, possibly in the animation parameter.

a1, a2, …, b1, b2, …, … is equivalent to the attribute Data.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy
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MuPAD Graphical Primitives
plot::Bars3d | plot::Histogram2d | plot::Scatterplot
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plot::Bars3d
3D bar chart of matrix data

Syntax
plot::Bars3d(A, <x = xmin .. xmax, y = ymin .. ymax>, <a = amin .. amax>, options)

plot::Bars3d(L, <x = xmin .. xmax, y = ymin .. ymax>, <a = amin .. amax>, options)

Description
plot::Bars3d(A) generates a 3D bar chart with bar heights given by the entries of the
matrix A.

The rows of the matrix are plotted along the x coordinate, the columns along the y
coordinate.

Different rows may be regarded as different classes of data. Each row has a different
color determined by the the attribute Colors = [ c1, c2, ...] with RGB or RGBa
colors c1, c2 etc.

The simplest way to obtain a uniform coloring of all rows with the color c is to specify the
attribute Color = c.

Arrays/matrices do not need to be indexed from 1. E.g.,

A = array( `i_{min}` .. `i_{max}` , `j_{min}` .. `j_{max}` ,

[..data..])

yields a bar chart with imax - imin + 1 rows and jmax - jmin + 1 columns, stretching
from xmin to xmax in x direction and from ymin to ymax in y direction.

If no plot range `x_{min}` .. `x_{max}`, `y_{min}` .. `y_{max}` is specified,
xmin = jmin - 1, xmax = jmax, ymin = imin - 1, ymax = imax is used.

When the values are specified by a list of lists L and no plot range `x_{min}` ..
`x_{max}`, `y_{min}` .. `y_{max}` is specified, xmin = 0, xmax = m, ymin = 0, ymax
= n is used, where n is the length of L and m is the (common) length of the sublists in L.
All sublists (“rows”) must have the same length.
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The attribute BarStyle allows to switch the style of the bars between Boxes (bars),
Lines (vertical lines), LinesPoints (vertical lines and points), and Points(points only).
See “Example 1” on page 24-156.

The attribute Gap = [gx, gy] or, equivalently, XGap = gx, YGap = gy allows to introduce
gaps between adjacent bars. The values gx, gy may be real numerical values between 0
and 1 or expressions of the animation parameter a. These values set the fraction of the
space reserved for a bar that is not filled by the bar.

With gx = 0, gy = 0, there are no gaps. With gx = 0.5, gy = 0.5, the gaps between
adjacent bars are of the same size as the bars. With gx = 1, gy = 1, there bars become
lines.

Values of gx, gy larger than 1 are treated like 1, negative values like 0.

The Gap attribute has an effect only for BarStyle = Boxes.

The attribute Ground = z0 determines the z value of the lower or upper face of the bars.
Matrix values m > z0 are displayed as bars stretching in z direction from the lower
face z0 to the upper face m. Matrix values m < z0 are displayed as bars stretching in z
direction from the upper face z0 down to the lower face m.

The parameter z0 has to be a numerical real value or an expression of the animation
parameter a.

If the attribute Ground = z0 is not specified, the default value z0 = 0 is used.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

BarStyle display style of bar plots Boxes

Color the main color  
Colors list of colors to use [RGB::Blue, RGB::Red,

RGB::Green,
RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
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Attribute Purpose Default Value

RGB::Magenta,
RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson,
RGB::Aqua,
RGB::Lavender,
RGB::SeaGreen,
RGB::AureolineYellow,
RGB::Banana, RGB::Beige,
RGB::YellowGreen,
RGB::Wheat,
RGB::IndianRed,
RGB::Black]

Data the (statistical) data to plot  
Filled filled or transparent areas

and surfaces
TRUE

Frames the number of frames in an
animation

50

Gap gaps between the bars of a
bar chart

[0, 0]

Ground base value 0

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value
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Attribute Purpose Default Value

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XGap gaps in x direction between
the bars of a bar chart

0

XMax final value of parameter “x”  
XMin initial value of parameter

“x”
 

XName name of parameter “x”  
XRange range of parameter “x”  
YGap gaps in y direction between

the bars of a bar chart
0

YMax final value of parameter “y”  
YMin initial value of parameter

“y”
 

YName name of parameter “y”  
YRange range of parameter “y”  

Examples

Example 1

We create some random matrix data and plot them as a bar chart:

A := matrix::random(5, 10, frandom) :

plot(plot::Bars3d(A, Gap = [0.4, 0.7]))
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We create bar charts of the data with different BarStyle options:

plot(plot::Scene3d(plot::Bars3d(A, BarStyle = Boxes)),

     plot::Scene3d(plot::Bars3d(A, BarStyle = Lines)),

     plot::Scene3d(plot::Bars3d(A, BarStyle = Points)),

     plot::Scene3d(plot::Bars3d(A, BarStyle = LinesPoints)),

     PointSize = 2.0*unit::mm, LineWidth = 0.5*unit::mm

):
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delete A:

Example 2

We demonstrate the positioning of bar charts by specifying ranges for the x and the y
coordinate. The following two bar charts are plotted in one scene. They are placed side by
side via suitable x ranges:

A := matrix::random(5, 5, frandom):

plot(plot::Bars3d(A, x = 0 .. 0.9, y = 0 .. 1, 

                  BarStyle = LinesPoints),

     plot::Bars3d(A, x = 1.1 .. 2, y = 0 .. 1,

                  Gap = [0.3, 0.7])):

24-158



 plot::Bars3d

delete A:

Example 3

We demonstrate the attributes Ground and Color:

A := matrix::random(5, 10, frandom):

plot(plot::Scene3d(plot::Bars3d(A, Ground = 0,

                                Color = RGB::Grey)),

     plot::Scene3d(plot::Bars3d(A, Ground = 0.5,

                                Color = RGB::Grey)),

     Layout = Horizontal):
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In the next call, the ground level is animated. Note that in animations one must specify
ranges for the x and y coordinates.We include a transparent plane visualizing the ground
level:

plot(plot::Bars3d(A, x = 0 .. 1, y = 0 .. 1, a = 0 .. PI,

                  Color = RGB::Grey, Gap = [0.5, 0.5], 

                  Ground = sin(a)),

     plot::Surface([x, y, sin(a) + 0.001],

                   x = 0 .. 1, y = 0 .. 1, a = 0 .. PI,

                   Mesh = [2, 2], Color = RGB::Blue.[0.5])):
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delete A:

Parameters

A

An array of domain type DOM_ARRAY or a matrix of category Cat::Matrix (e.g., of
type matrix or densematrix) containing real numerical values or expressions of the
animation parameter a. Rows/columns of the array, respectively matrix, correspond to
rows/columns of the bar chart.

A is equivalent to the attribute Data.

L

A list of lists of real numerical values or expressions of the animation parameter a. Each
sublist of L represents a row of the bar chart.

L is equivalent to the attribute Data.
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x

Name of the horizontal variable: an identifier or an indexed identifier. It is used as the
title of the coordinate axis in x direction.

x is equivalent to the attribute XName.

xmin .. xmax

The range of the horizontal variable: xmin, xmax must be numerical real value or
expressions of the animation parameter a.

xmin .. xmax is equivalent to the attribute XRange.

y

Name of the vertical variable: an identifier or an indexed identifier. It is used as the title
of the coordinate axis in y direction.

y is equivalent to the attribute YName.

ymin .. ymax

The range of the vertical variable: ymin, ymax must be numerical real value or expressions
of the animation parameter a.

ymin .. ymax is equivalent to the attribute YRange.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Bars2d | plot::Histogram2d | plot::Matrixplot
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plot::Box
Boxes in 3D

Syntax
plot::Box(xmin .. xmax, ymin .. ymax, zmin .. zmax, <a = amin .. amax>, options)

plot::Box([xmin, ymin, zmin], [xmax, ymax, zmax], <a = amin .. amax>, options)

Description
plot::Box(`x_{min}`..`x_{max}`, `y_{min}`..`y_{max}`,

`z_{min}`..`z_{max}`) creates the 3D box

.

plot::Box([xmin, ymin, zmin], [xmax, ymax, zmax]) produces the same box.

plot::Box creates 3D boxes with edges parallel to the coordinate axes. Using
plot::Rotate3d or plot::Transform3d one can create boxes and parallelepipeds
with arbitrary orientation. Cf. examples “Example 3” on page 24-167 and “Example 4”
on page 24-170.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::LightBlue

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::LightBlue

Frames the number of frames in an
animation

50
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Attribute Purpose Default Value

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorDirection the direction of color
transitions on lines

[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
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Attribute Purpose Default Value

TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x” 1

XMin initial value of parameter
“x”

-1

XRange range of parameter “x” -1 .. 1
YMax final value of parameter “y” 1

YMin initial value of parameter
“y”

-1

YRange range of parameter “y” -1 .. 1
ZMax final value of parameter “z” 1
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Attribute Purpose Default Value

ZMin initial value of parameter
“z”

-1

ZRange range of parameter “z” -1 .. 1

Examples

Example 1

We draw a box consisting of its edges and a filled box:

plot(plot::Box(-3..-1, 0..2, 0..1, Filled = FALSE,

               LineColor = RGB::Black),

     plot::Box(1..3, 0..2, 0..1, Filled = TRUE,

               FillColor = RGB::Red),

     Axes = None, Scaling = Constrained)
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Example 2

The borders of a box can be animated:

plot(plot::Box([1, 1, 1], [2, 2, 2 + sin(r)], r = 0..2*PI)):

Example 3

We want to display a cube “standing” on one of its corners. First, we define the cube:

b0 := plot::Box(0..1, 0..1, 0..1)

Now, rotating the cube to stand on a corner is equivalent to first rotating around the x-
axis by 45 degrees, then rotating around the y-axis:

b1 := plot::Rotate3d(b0, Axis = [1, 0, 0], Angle = -PI/4):

plot(b1, Scaling = Constrained)
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b2 := plot::Rotate3d(b1, Axis = [0, 1, 0], Angle = 7*PI/36):

plot(b2, Scaling = Constrained)
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Finally, we let it rotate around the z-axis:

plot(plot::Rotate3d(b2, Axis = [0, 0, 1], Angle = a, 

                    a = 0..2*PI/3),

     Scaling = Constrained)
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delete b0, b1, b2:

Example 4

A parallelepiped can be obtained from a plot::Box by a linear transformation:

plot(plot::Transform3d([0, 0, 0], [1, 1, 0,

                                   1, 1, 3,

                                   0, 3, 1],

                       plot::Box(0..1, 0..1, 0..1)), 

     Scaling = Constrained, 

     CameraDirection = [-27, -12, 22])
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Parameters

xmin, ymin, zmin

The lower borders: numerical real values or arithmetical expressions of the animation
parameter a.

xmin, ymin, zmin are equivalent to the attributes XMin, YMin, ZMin.

xmax, ymax, zmax

The upper borders: numerical real values or arithmetical expressions of the animation
parameter a.

xmax, ymax, zmax are equivalent to the attributes XMax, YMax, ZMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Polygon3d | plot::Rotate3d | plot::Scale3d | plot::Surface |
plot::Transform3d
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plot::Boxplot

Statistical box plots

Syntax

plot::Boxplot(L1, …, <a = amin .. amax>, options)

plot::Boxplot([L1, …], <a = amin .. amax>, options)

plot::Boxplot(A, <a = amin .. amax>, options)

plot::Boxplot(s, <c1, …>, <a = amin .. amax>, options)

plot::Boxplot(s, <[c1, …]>, <a = amin .. amax>, options)

Description

plot::Boxplot(data) creates a box plot of the given data.

plot::Boxplot creates a box plot of discrete data samples. Box plots reduce data
samples to a number of descriptive parameters and are a useful means of comparing
statistical data.

In particular, each data sample is represented as one box. A typical box consists of the
following subparts:
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• A “central box” representing the central 50% of the data. Its lower and upper
boundary lines are at the 25%/75% quantile of the data. A central line indicates the
median of the data.

• Two vertical lines extending from the central box indicating the remaining data
outside the central box that are not regarded as outliers. These lines extend
maximally to  times the height of the central box but not past the range of the data.

• Outliers: these are points indicating the remaining data.

With the special attribute Notched = TRUE, the sides of the boxes can be notched, thus
providing additional information on the data sample. The horizontal width of the notches
may be set by the attribute NotchWidth.

The special attributes BoxCenters and BoxWidths allow to center the boxes at
arbitrary positions along the horizontal axis and to set the horizontal width of the boxes,
respectively.
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The special attribute Averaged determines whether the quantile values are computed
with or without the option Averaged (cf. stats::empiricalQuantile).

Specifying DrawMode = Horizontal, the boxes are rotated by 90 degrees.

The attribute Colors allows to specify the color of each box in a box plot. A common color
for all boxes may be specified via Color.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? FALSE

Averaged mode for computing
quantile lines in box plots

TRUE

BoxWidths widths of boxes in a box plot [0.8]
BoxCenters position of boxes in a box

plot
[1]

Color the main color  
Colors list of colors to use [RGB::Blue, RGB::Red,

RGB::Green,
RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
RGB::Magenta,
RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson]

Data the (statistical) data to plot  
DrawMode orientation of boxes and

bars
Vertical

Filled filled or transparent areas
and surfaces

TRUE

FillPattern type of area filling DiagonalLines
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

Notched notched boxes in box plots FALSE

NotchWidth width of notches in box plots 0.2

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
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Attribute Purpose Default Value

TitleAlignment horizontal alignment of
titles w.r.t. their coordinates

Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Just to show basic usage of plot::Boxplot, we plot some data samples chosen
arbitrarily:

data1 := [5, 10, 24, -4, 13]:

data2 := [7, 9, -1, 4, 10, 8, 12, 10, 15]:

b := plot::Boxplot(data1, data2):

plot(b)
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We can modify the appearance of the box plot in various ways:

b::Notched := TRUE:

b::Colors  := [RGB::Green, RGB::Black]:

b::BoxCenters := [2, 3]:

b::FillPattern := XCrossedLines:

plot(b)
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delete b:

Example 2

It is possible to shift the whole plot in x-direction by providing a center for the first box
via BoxCenters:

A := matrix([[ 5,  6,  19], 

             [10,  5,  45], 

             [24,  2,  12],

             [-3, 18, -10],

             [-4,  0, - 4]]):

plot(plot::Boxplot(A, BoxCenters = [2], Notched = TRUE, 

                   FillPattern = Solid))
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delete A:

Example 3

The primary use of plot::Boxplot is comparing data sets. We shall do this for data
produced by the following random number generators:

f := stats::normalRandom(1, 0.2):

g := stats::uniformRandom(0, 2):

Now, we create small samples and compare their boxes:

data1 := [f() $ k = 1..100]: // Red

data2 := [f() $ k = 1..100]: // Green

data3 := [g() $ k = 1..100]: // Blue

plot(plot::Boxplot(data1, data2, data1, data3, data2, data3,

     Colors = [RGB::Red, RGB::Green, RGB::Red, RGB::Blue,

               RGB::Green, RGB::Blue], 

     BoxCenters = [1, 2, 4, 5, 7, 8], Notched = TRUE))
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Comparing the central boxes, the blue data differ significantly from the red and the
green data. The red and green boxes, however, are quite similar – as they should, given
that the red and green data were produced by the same random generator f.

delete f, g, data1, data2, data3:

Example 4

For symmetric input data, the images generated by plot::Boxplot are symmetric, too:

plot(plot::Boxplot([$0..10], [5+5*sin(PI*n/20) $ n=-10..10], Notched))
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Example 5

By default, the quantile lines of the boxes are computed with the option Averaged
(see stats::empiricalQuantile for details). When using Averaged = FALSE, the
quantiles are computed without this option:

r := random(0..10):

SEED := 123:

data := [r() $ k = 1..250]:

plot(plot::Boxplot(data, Averaged = TRUE, BoxCenters = 0.5,

                         Color = RGB::Blue, Notched),

     plot::Boxplot(data, Averaged = FALSE, BoxCenters = 1.5,

                         Color = RGB::Red, Notched)

    ):
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delete r, SEED, data:

Example 6

Box plots can be animated. We create two data samples and fuse them to a symbolic
superposition:

f1 := stats::normalRandom(0, 1):

f2 := stats::normalRandom(4, 8):

data0 := sort([f1() $ k = 1..100]):

data1 := sort([f2() $ k = 1..100]):

data01 := [(1 - a)*data0[i] + a*data1[i] $ i = 1..100]:

The box associated with the data sample data01 changes from the box associated with
data0 to the box associated with data1 as the animation parameter increases from a = 0
to a = 1:

plot(plot::Boxplot(data0, data01, data1, a = 0..1))
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delete f1, f2, data0, data1, data01:

Parameters

L1, …

Data samples: lists of numerical real values or arithmetical expressions of the animation
parameter a.

L1, … is equivalent to the attribute Data.

A

An array of domain type DOM_ARRAY or a matrix of category Cat::Matrix (e.g., of type
matrix or densematrix) providing numerical real values or arithmetical expressions of
the animation parameter a. The columns are regarded as separate data samples. Also a
1-dimensional array, regarded as a single data sample, is accepted.

A is equivalent to the attribute Data.
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s

A data collection of domain type stats::sample. The columns in s are regarded as
separate data samples.

s is equivalent to the attribute Data.

c1, …

Column indices into s: positive integers. These indices, if given, indicate that only the
specified columns in s should be used as data samples. If no column indices are specified,
all columns in s are used as data samples.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Bars2d | plot::Bars3d | plot::Histogram2d | plot::Scatterplot
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plot::Circle2d
2D circles

Syntax
plot::Circle2d(r, <[x, y]>, <a = amin .. amax>, options)

Description
plot::Circle2d(r, [x, y]) creates a 2D circle with radius r and center (x, y).

The attribute LineColor or, equivalently, Color serves for setting the line color.

Use the attribute Filled = TRUE to create filled circles. You can choose between hatched
and solidly filled circles via the attribute FillPattern. The fill color is determined by
FillColor.

The circumferential line can be “switched off” via LinesVisible = FALSE.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Center center of objects, rotation
center

[0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

Color the main color RGB::Blue

Filled filled or transparent areas
and surfaces

FALSE
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Attribute Purpose Default Value

FillColor color of areas and surfaces RGB::Red

FillPattern type of area filling DiagonalLines

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorDirection the direction of color
transitions on lines

[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter
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Attribute Purpose Default Value

Radius radius of circles, spheres
etc.

1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE
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Examples

Example 1

Create a circle by specifying only its radius. In this case, the circle is centered at the
origin

plot(plot::Circle2d(3)):

You can specify the center of a circle by a list of its coordinates:

plot(plot::Circle2d(1, [1, 1]),

     plot::Circle2d(2, [1, 2]),

     plot::Circle2d(3, [1, 3])):
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Example 2

You can animate the radius and center of a circle. Plot an animated circle with a
changing radius and a center moving on a spiral:

plot(plot::Curve2d([a*cos(2*a), a*sin(2*a)], a = 0..PI),

     plot::Point2d([a*cos(2*a), a*sin(2*a)], a = 0..PI,

                   PointSize = 2*unit::mm),

     plot::Circle2d(0.2 + sin(a), [a*cos(2*a), a*sin(2*a)], 

                    a = 0..PI))
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Parameters
r

The radius: a real numerical value or an arithmetical expression in the animation
parameter a.

r is equivalent to the attribute Radius.

x, y

The center of a circle. The coordinates x, y must be real numerical values or arithmetical
expressions in the animation parameter a. If no center is specified, a circle centered at
the origin is created.

x, y are equivalent to the attributes CenterX, CenterY.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Circle3d | plot::Cone | plot::Sphere
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plot::Circle3d
3D circles

Syntax
plot::Circle3d(r, [x, y, z], <[nx, ny, nz]>, <a = amin .. amax>, options)

Description
plot::Circle3d(r, [x, y, z], [nx, ny, nz]) creates a circle in 3D with the
radius r, center (x, y, z), and normal vector (nx, ny, nz).

The attribute LineColor or, equivalently, Color serves for setting the line color.

Use the attribute Filled = TRUE to create circular discs.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::Blue

Filled filled or transparent areas
and surfaces

FALSE

FillColor color of areas and surfaces RGB::LightBlue
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorDirection the direction of color
transitions on lines

[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

Normal normal vector of circles and
discs, etc. in 3D

[0, 0, 1]

NormalX normal vector of circles
and discs, etc. in 3D, x-
component

0

NormalY normal vector of circles
and discs, etc. in 3D, y-
component

0
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Attribute Purpose Default Value

NormalZ normal vector of circles
and discs, etc. in 3D, z-
component

1

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Radius radius of circles, spheres
etc.

1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value
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Attribute Purpose Default Value

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create the following circle in 3D and animate its normal vector:

normal_ := plot::Arrow3d(

      [0, 0, 0], 

      [sin(2*a), sin(a)*cos(2*a), cos(a)*cos(2*a)],

      a = 0..2*PI):

circle := plot::Circle3d(1, [0, 0, 0], normal_::To,

                         a = 0..2*PI, Filled):

plot(normal_, circle)
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Parameters

r

The radius: a real numerical value or an arithmetical expression in the animation
parameter a.

r is equivalent to the attribute Radius.

x, y, z

The center. The coordinates x, y, z must be real numerical values or arithmetical
expressions in the animation parameter a. If no center is specified, a circle centered at
the origin is created.

x, y, z are equivalent to the attributes CenterX, CenterY, CenterZ.
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nx, ny, nz

The normal vector. The components nx, ny, nz must be real numerical values or
arithmetical expressions in the animation parameter a. If no normal is specified, the
normal (0, 0, 1) is used.

nx, ny, nz are equivalent to the attributes NormalX, NormalY, NormalZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Circle2d | plot::Cone | plot::Sphere
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plot::Cone
Cones and frustums

Syntax
plot::Cone(br, [bx, by, bz], <tr>, [tx, ty, tz], <a = amin .. amax>, options)

Description

plot::Cone(br, [ bx, by, bz], [ tx, ty, tz]) creates a cone stretching from the
base with radius br and center [bx, by, bz] to the top [tx, ty, tz].

plot::Cone(br, [ bx, by, bz], tr, [ tx, ty, tz]) creates a conical frustum
from the base center [bx, by, bz] to the top center [tx, ty, tz]. The base radius is
br, the top radius is tr.

The lower center and upper center of the cone can also be passed as vectors.

The optional “top radius” tr for creating a frustum may also be specified as the attribute
TopRadius = tr.

The upper and lower faces of a cone/frustum are not filled. They can be added as filled
plot::Circle3ds.

Note that only circular cones can be created with plot::Cone. For elliptical bases, use a
plot::Surface primitive or apply a plot::Scale3d transformation.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Base base center of cones,
cylinders, pyramids and
prisms

[0, 0, 0]
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Attribute Purpose Default Value

BaseX x-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseY y-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseZ z-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseRadius base radius of cones/conical
frustums and pyramids/
frustums of pyramids

1

Color the main color RGB::LightBlue

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::LightBlue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorDirection the direction of color
transitions on lines

[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0
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Attribute Purpose Default Value

LineColorDirectionY y-component of the direction
of color transitions on lines

0

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Top top center of cones,
cylinders, pyramids and
prisms

[0, 0, 1]

24-201



24 Graphics and Animations

Attribute Purpose Default Value

TopX base and top center of cones,
cylinders, pyramids and
prisms

0

TopY base and top center of cones,
cylinders, pyramids and
prisms

0

TopZ base and top center of cones,
cylinders, pyramids and
prisms

1

TopRadius top radius of cones/conical
frustums and pyramids/
frustums of pyramids

0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

We draw a cone with base radius 6:

plot(plot::Cone(6, [0, 0, 0], [0, 0, 10])):
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Example 2

We create a conical frustum by specifying a non-zero top radius. Note that no discs are
attached to the base and the top. You can look through the frustum:

br := 16: base := [3, 4, 5]:

tr:= 7: top := [11, 12, 13]:

plot(plot::Cone(br, base, tr, top, FillColor = RGB::Red)):
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We add the discs at the base and the top. Their normals n are given as the vector from
the base to the top:

n := zip(top, base, _subtract):

plot(plot::Circle3d(br, base, n, Filled = TRUE),

     plot::Circle3d(tr, top, n, Filled = TRUE),

     plot::Cone(br, base, tr, top),

     LinesVisible = FALSE, FillColor = RGB::Red):
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delete br, base, tr, top, n:

Example 3

A tube or cylinder (in the mathematical sense, i.e., the lateral sides of a physical cylinder)
is a special case of a conical frustum with the same top and bottom radius:

plot(plot::Cone(6, [0, 0, 0], 6, [11, 12, 13],

                FillColor = RGB::Yellow,

                LinesVisible = TRUE)):
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Example 4

Bottom and top radii and centers can be animated:

plot(plot::Cone(sin(a)^2, [sin(2*a), cos(2*a), 0],

                cos(a)^2, [cos(2*a), sin(2*a), 1],

                a = 0..PI, FillColor = RGB::Green)):
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Parameters
br

The base radius of the cone. This must be a real numerical value or an arithmetical
expression of the animation parameter a.

br is equivalent to the attribute BaseRadius.

bx, by, bz

The lower center point. The coordinates bx, by, bz must be real numerical values or
arithmetical expressions of the animation parameter a.

bx, by, bz are equivalent to the attributes BaseX, BaseY, BaseZ.

tr

The top radius of the cone/conical frustum. This must be a real numerical value or an
arithmetical expression of the animation parameter a. If no top radius is specified, a cone
with top radius tr = 0 is created.
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tr is equivalent to the attribute TopRadius.

tx, ty, tz

The upper center point. The coordinates tx, ty, tz must be real numerical values
orarithmetical expressions of the animation parameter a.

tx, ty, tz are equivalent to the attributes TopX, TopY, TopZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Cylinder | plot::Prism | plot::Pyramid
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plot::Conformal
(complex-valued) conformal function plot

Syntax
plot::Conformal(f, z = z1 .. z2, <a = amin .. amax>, options)

Description
plot::Conformal(f(z), z = z_1..z_2 ) is a plot of the conformal function f over
the complex interval z_1..z_2.

plot::Conformal creates plots of (conformal) complex-valued functions of one complex
variable. They are displayed by showing the image of a rectangular grid over an interval.

By default, the attribute  LineColorType = Flat is set. All curves are displayed with
the color given by the attribute LineColor (or Color for short).

When specifying the attribute  LineColorType = Dichromatic, a color blend from
LineColor to LineColor2 is used (“height coloring”).

When specifying the attribute  LineColorType = Functional without specifying a
LineColorFunction, all curves parametrized by the real part of the pre-image points
are displayed with the flat color LineColor, whereas all curves parametrized by the
imaginary part of the pre-image points are displayed with the flat color LineColor2.

A user defined LineColorFunction is a procedure (z, x, y, flag) -> RGB-
color that will be called with complex floating-point arguments z from the range of
pre-images of the conformal function f, the real floating point values x = Re(f(z)),
y = Im(f(z)), and the integer value flag which has the values 1 or 2. The flag value
1 determines the color of the curves parametrized by the real part of z, the flag value 2
determines the color of the curves parametrized by the imaginary part of z. The color
function must return an RGB color, i.e., a list of 3 real floating point values between 0.0
and 1.0. For example,

LineColorFunction = proc(z, x, y, flag)

  begin

    if flag = 1 then

      return(RGB::Blue)
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    else

      return(RGB::Red)

    end_if;

  end_proc    

displays all curves parametrized by Re(z) in blue, while the orthogonal curves,
parametrized by Im(z), are displayed in red.

See the examples in the documentation of RGB for another way of displaying complex
functions.

Attributes
Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::Blue

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat
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Attribute Purpose Default Value

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Mesh number of sample points [11, 11]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointsVisible visibility of mesh points FALSE

Submesh density of submesh
(additional sample points)

[0, 0]

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center
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Attribute Purpose Default Value

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMesh number of sample points for
parameter “x”

11

XSubmesh density of additional sample
points for parameter “x”

0

YMesh number of sample points for
parameter “y”

11

YSubmesh density of additional sample
points for parameter “y”

0

ZMax final value of parameter “z”  
ZMin initial value of parameter

“z”
 

ZName name of parameter “z”  
ZRange range of parameter “z”  
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Examples

Example 1

By plotting the identity function, we are presented the pre-image used by
plot::Conformal:

plot(plot::Conformal(z, z = 0..1+I))

The important property of conformal functions, as far as plots are concerned, is that
orthogonal lines are mapped onto curves meeting orthogonally:

plot(plot::Conformal(z^2, z = 0..1+I))
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This property allows to visually detect overlapping regions (in some cases); in the
following example this is the case in the left semi-plane:

plot(plot::Conformal(z^(3/2), z = -1-I..1+I))
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Example 2

The default mesh may in some cases be too coarse:

plot(plot::Conformal(sin(z^2), z = 0..1+I))
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There are at least three ways of improving this plot. Firstly, we can set Mesh to a higher
value:

plot(plot::Conformal(sin(z^2), z = 0..1+I, Mesh = [50, 50]))
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Another option would be to increase Submesh to get smoother, not more, lines:

plot(plot::Conformal(sin(z^2), z = 0..1+I, Submesh = [2, 2]))
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Finally, we can also ask for an adaptive refinement of the submesh by setting
AdaptiveMesh to some positive value:

plot(plot::Conformal(sin(z^2), z = 0..1+I, AdaptiveMesh = 2))
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Example 3

Here is the image of the complex rectangle 0 ≤ Re(z) ≤ x, 0 ≤ ℑ(z) ≤ 1 under the map
z→besselJ(0, z). We choose x as the second positive root of Im(besselJ(0, x +
I)):

numeric::solve(Im(besselJ(0, x + I)), x = i .. i+1) $ i = 0..7

plot(plot::Conformal(besselJ(0, z), z = 0 .. 6.9934 + I, 

                     Mesh = [31, 10]))
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Parameters

f

An expression in z and the animation parameter, if present. Expected to be conformal in
z.

f is equivalent to the attribute Function.

z

The independent variable: An identifier or indexed identifier.

z is equivalent to the attribute ZName.

z1 .. z2

The (complex) range over which f should be plotted: z1 and z2 should be complex-valued
expressions, possibly in the animation parameter.
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z1 .. z2 is equivalent to the attribute ZRange.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve2d | plot::Function2d
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plot::Curve2d
Parameterized 2D curves

Syntax
plot::Curve2d([x, y], t = tmin .. tmax, <a = amin .. amax>, options)

plot::Curve2d(A2d, t = tmin .. tmax, <a = amin .. amax>, options)

plot::Curve2d(piecewiseF(t), t = tmin .. tmax, <a = amin .. amax>, options)

Description

plot::Curve2d([x(t), y(t)], t = tmin.. tmax) creates the planar curve

.

plot::Curve2d plots curves in one parameter. See “Example 1” on page 24-225,

You can use it to plot animated curves. See “Example 2” on page 24-226.

The curves can contain poles, in which case automatic clipping is used by default. See
“Example 4” on page 24-229.

By default, curves are sampled at equidistant values of the parameter t. To change this
behavior so that a denser sampling rate is used in areas of higher curvature, use the
attribute AdaptiveMesh. See “Example 5” on page 24-231.

Curves are graphical objects that can be manipulated. See the examples and the
documentation for the attributes for details.

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0
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Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::Blue

DiscontinuitySearch semi-symbolic search for
discontinuities

TRUE

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Mesh number of sample points 121

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Submesh density of submesh
(additional sample points)

0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

UMax final value of parameter “u” 5

UMesh number of sample points for
parameter “u”

121
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Attribute Purpose Default Value

UMin initial value of parameter
“u”

-5

UName name of parameter “u”  
URange range of parameter “u” -5 .. 5
USubmesh density of additional sample

points for parameter “u”
0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XFunction function for x values  
YFunction function for y values  

Examples

Example 1

Archimedes' Spiral is defined by f(r) = (r sin(r), r cos(r)). The corresponding call to
plot::Curve2d reads:

curve := plot::Curve2d([r*sin(r), r*cos(r)], r = 0..35)

plot(curve)
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Note that this particular example is even more straightforward to plot using
plot::Polar.

Example 2

Continuing the example from above, define an easy animation by making the angular
part time-dependent:

curve := plot::Curve2d([r*sin(r-t), r*cos(r-t)],

                       r = 0..35, t = 0..2*PI,

                       TimeEnd = 5,

                       ViewingBox = [-25..25, -25..25]):

plot(curve)
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Note that to start the animation, you have to double-click the image in the notebook and
choose “Start” from the “Animation” menu.

Example 3

Another useful and easy type of animation is achieved by animating the parameter
range. This creates the illusion of the curve being drawn in real time:

curve := plot::Curve2d([sin(thet), cos(thet)],

                       thet = 0..a,

                       a = 0..2*PI):

plot(curve)

24-227



24 Graphics and Animations

Combining this with an animated LineColorFunction, you can even simulate motion:

colorfunc := (thet, x, y, a) -> [a-thet, a-thet, 1.0]:

curve := plot::Curve2d([sin(3*thet), sin(4*thet)],

                       thet = a-1..a,

                       LineColorFunction = colorfunc,

                       LineWidth = 1,

                       a = 0..2*PI):

plot(curve)
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Example 4

Curves with poles are automatically clipped:

curve := plot::Curve2d([(1+tan(3*t)^2)*sin(t),

                        (1+tan(3*t)^2)*cos(t)],

                       t = 0..2*PI):

plot(curve);
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You can explicitly set other values for viewing box:

curve::ViewingBox := [-2..2, -2..2]:

plot(curve)
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Example 5

By default, curves are drawn by evaluating at equidistant values of the curve parameter.
For curves that have few regions of high curvature, this may be inappropriate:

plot(plot::Curve2d([arctan(t), t^2-10*exp(-50*t^2)],

                   t = -PI..PI))
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Note the hard “kink” at the bottom of the picture. On the other hand, the remainder
of the curve is sufficiently smooth, so globally increasing the number of evaluation
points is not desirable. AdaptiveMesh makes plot::Curve2d look for these kinks and
adaptively increase the mesh density in problematic areas:

plot(plot::Curve2d([arctan(t), t^2-10*exp(-50*t^2)],

                   t = -PI..PI, AdaptiveMesh = 2))
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Example 6

To display a curve in the complex plane, map the list-valued function [Re, Im] to the
curve:

plot(plot::Curve2d([Re, Im](zeta(I*y+1/2)), y=0..42,

                   AdaptiveMesh=3),

     XAxisTitle = "Re(z)", YAxisTitle = "Im(z)")
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Parameters

x, y

Real-valued expressions in t (and possibly the animation parameter)

A2d

A matrix of category Cat::Matrix with two entries that provide the parametrization x,
y of a 2D curve

piecewiseF(t)

A piecewise object

t

An identifier or an indexed identifier
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tmin, tmax

Real-valued expressions (possibly in the animation parameter)

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve3d | plot::Function2d | plot::Function3d | plot::Polygon2d |
plot::Polygon3d | plot::Surface
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plot::Curve3d
Parameterized 3D curves

Syntax
plot::Curve3d([x, y, z], t = tmin .. tmax, <a = amin .. amax>, options)

plot::Curve3d(A3d, t = tmin .. tmax, <a = amin .. amax>, options)

plot::Curve3d(piecewiseF(t), t = tmin .. tmax, <a = amin .. amax>, options)

Description

plot::Curve3d([x(t), y(t), z(t)], t = tmin.. tmax) creates the space curve

.

plot::Curve3d constructs curves in one parameter

You can use it to plot animated curves. See “Example 1” on page 24-239.

The curves can contain poles, in which case automatic clipping is used by default. See
“Example 2” on page 24-240.

By default, curves are sampled at equidistant values of the parameter t. To change this
behavior so that a denser sampling rate is used in areas of higher curvature, use the
attribute AdaptiveMesh.

Curves are graphical objects that can be manipulated. See the examples and the
documentation for the attributes for details.

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0
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Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Blue

DiscontinuitySearch semi-symbolic search for
discontinuities

TRUE

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points 121

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Submesh density of submesh
(additional sample points)

0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

UMax final value of parameter “u” 5
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Attribute Purpose Default Value

UMesh number of sample points for
parameter “u”

121

UMin initial value of parameter
“u”

-5

UName name of parameter “u”  
URange range of parameter “u” -5 .. 5
USubmesh density of additional sample

points for parameter “u”
0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XFunction function for x values  
YFunction function for y values  
ZFunction function for z values  

Examples

Example 1

A useful and easy type of animation is achieved by animating the parameter range. This
creates the illusion of the curve being drawn in real time:

curve := plot::Curve3d([sin(thet)*cos(20*thet),

                        sin(thet)*sin(20*thet),
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                        cos(thet)],

                       thet = 0..a,

                       a = 0..PI):

plot(curve)

Example 2

Curves with poles are automatically clipped:

curve := plot::Curve3d([(1 + tan(3*t)^2)*sin(t),

                        (1 + tan(3*t)^2)*cos(t),

                                         cos(t)],

                                    t = 0..2*PI):

plot(curve);
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If the automatically chosen viewing box is not to your liking, you can explicitly set other
values:

curve::ViewingBox := [-3..3, -3..3, -3..3]:

plot(curve)
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Example 3

Create the following piecewise function:

f := piecewise([t < 0, [t, sin(10*t)^2, t^3]],

               [t >= 0, [t, 5*t/exp(t), -t^2]])

Now, plot this function:

plot(plot::Curve3d(f, t = -10..10))
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Parameters

x, y, z

Real-valued expressions in t (and possibly the animation parameter)

A3d

A matrix of category Cat::Matrix with three entries that provide the parametrization
x, y, z of a 3D curve

piecewiseF(t)

A piecewise object

t

An identifier or an indexed identifier
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tmin, tmax

Real-valued expressions (possibly in the animation parameter)

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve2d | plot::Function2d | plot::Function3d | plot::Polygon2d |
plot::Polygon3d | plot::Surface
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plot::Cylinder
Cylinders

Syntax
plot::Cylinder(r, [x1, y1, z1], [x2, y2, z2], <a = amin .. amax>, options)

Description
plot::Cylinder(r, [x1, y1, z1] , [x2, y2, z2] ) creates a cylinder of radius r
with an axis from the point [x1, y1, z1] to the point [x2, y2, z2].

The base center and top center of the cylinder can also be passed as vectors.

A cylinder created by plot::Cylinder consists of the lateral surface and the
“lids” (discs with centers [x1, y1, z1] and [x2, y2, z2], respectively.)

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Base base center of cones,
cylinders, pyramids and
prisms

[0, 0, 0]

BaseX x-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseY y-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseZ z-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

24-245



24 Graphics and Animations

Attribute Purpose Default Value

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::LightBlue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Radius radius of circles, spheres
etc.

1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0
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Attribute Purpose Default Value

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Top top center of cones,
cylinders, pyramids and
prisms

[0, 0, 1]

TopX base and top center of cones,
cylinders, pyramids and
prisms

0

TopY base and top center of cones,
cylinders, pyramids and
prisms

0

TopZ base and top center of cones,
cylinders, pyramids and
prisms

1

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

We plot three cylinders with symmetry axes given by the coordinate axes:

plot(plot::Cylinder(1, [-3, 0, 0], [3, 0, 0],

                    Color = RGB::Red),

     plot::Cylinder(1, [0, -4, 0], [0, 4, 0],

                    Color = RGB::Green),

     plot::Cylinder(1, [0, 0, -5], [0, 0, 5],

                    Color = RGB::Blue)):
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Example 2

All parameters of a cylinder can be animated:

plot(plot::Cylinder(a, [0, 0, a], [0, 0, 3 - a],

                    a = 1 .. 2))

Parameters

r

The radius of the cylinder: a real numerical value or an arithmetical expression of the
animation parameter a.

r is equivalent to the attribute Radius.

x1, y1, z1

Components of the base center: real numerical values or expressions of the animation
parameter a.
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x1, y1, z1 are equivalent to the attributes BaseX, BaseY, BaseZ.

x2, y2, z2

Components of the top center: real numerical values or expressions of the animation
parameter a.

x2, y2, z2 are equivalent to the attributes TopX, TopY, TopZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Cone | plot::Prism | plot::Pyramid
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plot::Cylindrical
Surfaces in 3D parameterized in cylindrical coordinates

Syntax
plot::Cylindrical([r, ϕ, z], u = umin .. umax, v = vmin .. vmax, <a = amin .. amax>, options)

Description

plot::Cylindrical creates surfaces parametrized in cylindrical coordinates.

The surface given by a mapping (“parametrization”)  is
the set of all image points

in cylindrical coordinates, which translate to the usual “Cartesian” coordinates as

.

r is referred to as “radius,” ϕ as “polar angle,” and z as the “height” of a point.

The functions r, ϕ, z are evaluated on a regular equidistant mesh of sample points in
the u-v plane. This mesh is determined by the attributes UMesh, VMesh. By default, the
attribute AdaptiveMesh = 0 is set, i.e., no adaptive refinement of the equidistant mesh
is used.

If the standard mesh does not suffice to produce a sufficiently detailed plot, one
may either increase the value of UMesh, VMesh or USubmesh, VSubmesh,or set
AdaptiveMesh = n with some (small) positive integer n. If necessary, up to 2n - 1
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additional points are placed in each direction of the u-v plane between adjacent points of
the initial equidistant mesh. Cf.  “Example 2” on page 24-259.

“Coordinate lines” (“parameter lines”) are curves on the surface.

The phrase “ULines” refers to the curves (r(u, v0), ϕ(u, v0), z(u, v0)) with the parameter u
running from umin to umax, while v0 is some fixed value from the interval [vmin, vmax].

The phrase “VLines” refers to the curves (r(u0, v), ϕ(u0, v), z(u0, v)) with the parameter v
running from vmin to vmax, while u0 is some fixed value from the interval [umin, umax].

By default, the parameter curves are visible. They may be switched off by specifying
ULinesVisible = FALSE and VLinesVisible = FALSE, respectively.

The coordinate lines controlled by ULinesVisible = TRUE/FALSE and
VLinesVisible = TRUE/FALSE indicate the equidistant mesh in the u-v plane set
via the UMesh, VMesh attributes. If the mesh is refined by the USubmesh, VSubmesh
attributes, or by the adaptive mechanism controlled by AdaptiveMesh = n, no
additional parameter lines are drawn.

As far as the numerical approximation of the surface is concerned, the settings

UMesh = nu, VMesh = nv, USubmesh = mu, VSubmesh = mv

and

UMesh = (nu - 1) (mu + 1) + 1, VMesh = (nv - 1) (mv + 1) + 1,

USubmesh = 0, VSubmesh = 0

are equivalent. However, in the first setting, nu parameter lines are visible in the u
direction, while in the latter setting (nu - 1) (mu + 1) + 1 parameter lines are
visible. Cf. “Example 2” on page 24-259.

Use Filled = FALSE to obtain a wireframe representation of the surface.

If the expressions/functions r and/or z contain singularities, it is recommended (but
not strictly necessary) to use the attribute ViewingBox to set a suitable viewing box.
No such precautions are necessary for ϕ, although singularities in this function may
result in poorly rendered surfaces – in many cases setting the attributes Mesh and/or
AdaptiveMesh to higher values will help. Cf. “Example 3” on page 24-263.
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Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE
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Attribute Purpose Default Value

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [25, 25]
MeshVisible visibility of irregular mesh

lines in 3D
FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles
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Attribute Purpose Default Value

PointsVisible visibility of mesh points FALSE

Submesh density of submesh
(additional sample points)

[0, 0]

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

ULinesVisible visibility of parameter lines
(u lines)

TRUE

UMax final value of parameter “u”  
UMesh number of sample points for

parameter “u”
25

UMin initial value of parameter
“u”

 

UName name of parameter “u”  
URange range of parameter “u”  
USubmesh density of additional sample

points for parameter “u”
0

VLinesVisible visibility of parameter lines
(v lines)

TRUE
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Attribute Purpose Default Value

VMax final value of parameter “v”  
VMesh number of sample points for

parameter “v”
25

VMin initial value of parameter
“v”

 

VName name of parameter “v”  
VRange range of parameter “v”  
VSubmesh density of additional sample

points for parameter “v”
0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XContours contour lines at constant x
values

[]

XFunction function for x values  
YContours contour lines at constant y

values
[]

YFunction function for y values  
ZContours contour lines at constant z

values
[]

ZFunction function for z values  
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Examples

Example 1

Using a constant radius for plot::Cylindrical, with the other two functions straight
from the surface parameters, results in a right cylinder. This explains the name
“cylindrical coordinates”:

plot(plot::Cylindrical([1, phi, z], phi = 0..2*PI, z = -1..1))

Other straightforward examples include cones and paraboloids of revolution:

plot(plot::Cylindrical([r, phi, 2*r], r = 0..1, phi = 0..2*PI))
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plot(plot::Cylindrical([r, phi, r^2], r = 0..1, phi = 0..2*PI))
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Example 2

Cylindrical surfaces are drawn from evaluations on an equidistant mesh of points. In
some cases, the default mesh density is insufficient or otherwise inappropriate:

plot(plot::Cylindrical([cos(phi^2), phi, z],

                       phi=-2.8..2.8, z=0..1/2))
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One possible change to this plot command is to explicitly set the mesh with the attribute
Mesh. Note that this setting influences the density of parameter lines:

plot(plot::Cylindrical([cos(phi^2), phi, z],

                       phi=-2.8..2.8, z=0..1/2,

                       Mesh = [100, 5]))
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To increase the mesh density without introducing additional parameter lines, you can
use submesh settings:

plot(plot::Cylindrical([cos(phi^2), phi, z],

                       phi=-2.8..2.8, z=0..1/2,

                       VMesh = 5, USubmesh = 3))
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Finally, we can also ask plot::Cylindrical to refine the mesh only in areas of higher
curvature. In the following example, we allow for 23 = 8 additional points between each
two neighboring points of the initial mesh:

plot(plot::Cylindrical([cos(phi^2), phi, z],

                       phi=-2.8..2.8, z=0..1/2,

                       VMesh = 5, AdaptiveMesh = 3))
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Example 3

If the radius- or the z-function/expression contains singularities, plot::Cylindrical
employs heuristic clipping to select a range to display:

plot(plot::Cylindrical([1/sqrt((phi - PI)^2 + z^2), phi, z],

                       phi = 0..2*PI, z = -1..1))
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While these heuristics work well in many cases, there are also examples where they do
not select a useful box:

plot(plot::Cylindrical([1/((phi - PI)^2 + z^2), phi, z],

                       phi = 0.. 2*PI, z = -1..1))
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In these cases, the user should set the range to display explicitly:

plot(plot::Cylindrical([1/((phi - PI)^2+z^2), phi, z],

                       phi = 0..2*PI, z = -1..1),

     ViewingBox = [-2..0.3, -1.5..1.5, -1..1])
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Example 4

Since the transformation from cylindrical to orthogonal coordinates is reversible
(up to reducing the angle to the range [0, 2 π], it is possible to plot any surface with
plot::Cylindrical (although this is probably more a curiosity than really useful):

trans := linalg::ogCoordTab[Cylindrical, InverseTransformation]:

cyl   := trans(x, y, sin(x^2+y^2))

plot(plot::Cylindrical(cyl, x = -2..2, y = -2..2))
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Parameters
r, ϕ, z

The coordinate functions: arithmetical expressions or piecewise objects depending on
the surface parameters u, v and the animation parameter a. Alternatively,  procedures
that accept 2 input parameters u, v or 3 input parameters u, v, a and return a real
numerical value when the input parameters are numerical.

r, ϕ, z are equivalent to the attributes XFunction, YFunction, ZFunction.

u

The first surface parameter: an identifier or an indexed identifier.

u is equivalent to the attributes UName, UMin, UMax.

umin .. umax

The plot range for the parameter u: umin, umax must be numerical real values or
expressions of the animation parameter a.
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umin .. umax is equivalent to the attributes URange, UMin, UMax.

v

The second surface parameter: an identifier or an indexed identifier.

v is equivalent to the attribute VName.

vmin .. vmax

The plot range for the parameter v: vmin, vmax must be numerical real values or
expressions of the animation parameter a.

vmin .. vmax is equivalent to the attributes VRange, VMin, VMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
linalg::ogCoordTab | plot | plot::copy

MuPAD Graphical Primitives
plot::Polar | plot::Spherical | plot::Tube
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plot::Density
Density plot

Syntax
plot::Density(f, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Density(A, <x = xmin .. xmax, y = ymin .. ymax>, <a = amin .. amax>, options)

plot::Density(L, <x = xmin .. xmax, y = ymin .. ymax>, <a = amin .. amax>, options)

Description

plot::Density(f(x, y), x = `x_{min}`..`x_{max}` , y =

`y_{min}`..`y_{max}` ) generates a regular 2D mesh of rectangles extending from
the lower left corner (xmin, ymin) to the upper right corner (xmax, ymax). The rectangle with
midpoint (x, y) is colored according to a color scheme based on the “density” value f(x, y).

plot::Density serves for the visualization of 3D data (x, y, f(x, y)) by a 2D plot.
Roughly speaking, it corresponds to a colored 3D function graph of the density
function f(x, y) viewed from above. However, in contrast to the 3D function graph,
plot::Density does not use smooth interpolation (“shading”) of the color between
adjacent rectangles.

If the density data are provided by an array or matrix A or by a list L, the number of
rectangles in the density plot is given automatically by the format of A or L, respectively.

If the density data are given by an expression or function f, the attribute Mesh = [m, n]
serves for advising plot::Density to create a grid of m×n rectangles. Alternatively, one
may set XMesh = m, YMesh = n.

With the default FillColorType = Dichromatic, the rectangle with density value f(x,
y) at the midpoint (x, y) is colored with the color

,
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where  are the minimal/maximal density values in the graphics and fillcolor,

fillcolor2 are the RGB values of the attributes FillColor and FillColor2,
respectively. Thus, fillcolor indicates high density values whereas fillcolor2
indicates low density values.

If fmin = fmax, a flat coloring with fillcolor is used.

With FillColorType = Monochrome, the rectangle with density value f(x, y) at the
midpoint (x, y) is colored with the color

.

The user may specify a fill color function via FillColorFunction =
mycolorfunction to override the density coloring described above. The procedure
mycolorfunction will be called with the arguments

mycolorfunction(x, y, f(x, y, a ) a ),

where (x, y) are the midpoints of the rectangles and a is the animation parameter. The
color function must return an RGB or RGBa color value.

When density values are specified by an array or a matrix A, the low indices correspond
to the lower left corner of the graphics. The high indices correspond to the upper right
corner.

Arrays/matrices do not need to be indexed from 1. E.g.,

A = array( `i_{min}` .. `i_{max}` , `j_{min}` .. `j_{max}` ,

[..density values..])

yields a graphical array with

XMesh = jmax - jmin + 1, YMesh = imax - imin + 1.

If no plot range `x_{min}` .. `x_{max}`, `y_{min}` .. `y_{max}` is specified,

xmin = jmin - 1, xmax = jmax, ymin = imin - 1, ymax = imax

is used.
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When density values are specified by a list of lists L, the first entries in the list
correspond to the lower left corner of the graphics. The last entries correspond to the
upper right corner.

If no plot range `x_{min}` .. `x_{max}`, `y_{min}` .. `y_{max}` is specified,

xmin = 0, xmax = m, ymin = 0, ymax = n

is used, where n is the length of L and m is the (common) length of the sublists in L. All
sublists (“rows”) must have the same length.

Animations are triggered by specifying a range a = `a_{min}` .. `a_{max}` for
a parameter a that is different from the variables x, y. Thus, in animations, both the
ranges x = `x_{min}` .. `x_{max}`, y = `y_{min}` .. `y_{max}` as well as
the animation range a = `a_{min}` .. `a_{max}` must be specified.

The related plot routine plot::Raster provides a similar functionality. However,
plot::Raster does not use an automatic color scheme based on density values. The
user must provide RGB or RGBa values instead.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? FALSE

Color the main color RGB::Red

DensityData density values for a density
plot

 

DensityFunction density function for a
density plot

 

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines FALSE

Mesh number of sample points [25, 25]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
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Attribute Purpose Default Value

TitleAlignment horizontal alignment of
titles w.r.t. their coordinates

Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x”  
XMesh number of sample points for

parameter “x”
25

XMin initial value of parameter
“x”

 

XName name of parameter “x”  
XRange range of parameter “x”  
YMax final value of parameter “y”  
YMesh number of sample points for

parameter “y”
25

YMin initial value of parameter
“y”

 

YName name of parameter “y”  
YRange range of parameter “y”  
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Examples

Example 1

We generate a density plot:

p := plot::Density(cos(x^2 + y^2), x = -3..3, y = -2..2, 

                   Mesh = [60, 40]):

The plot object is rendered:

plot(p, Axes = Frame):

This turns into a black and white graphics when suitable colors are specified:

plot(plot::Scene2d(p, FillColor = RGB::White, 

                      FillColor2 = RGB::Black),

     plot::Scene2d(p, FillColor = RGB::Black, 

                      FillColor2 = RGB::White),

     Width = 120*unit::mm, Height = 45*unit::mm,

     Layout = Horizontal, Axes = Frame):
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delete p:

Example 2

We demonstrate the use of a user-defined color function:

mycolor := proc(x, y, f)

begin

   if   f >=  2/3 then RGB::Red

   elif f >=  1/3 then RGB::Orange;

   elif f >=   0  then RGB::Yellow;

   elif f >= -1/3 then RGB::BlueLight;

   elif f >= -2/3 then RGB::Blue;

   else RGB::SlateBlueDark;

   end_if;

end_proc:

plot(plot::Density(cos(x^2 + y^2), x = -3..3, y = -2..2, 

                   Mesh = [60, 40], 

                   FillColorFunction = mycolor),

     Axes = Frame):
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delete mycolor:

Example 3

In this example, we demonstrate how plot::Density can be used to plot gray data
from an external source. Assume, there is an external PortableGrayMap text file
Norton.pgm containing data such as

P2

240 180

255

249 237 228 231 245 218 229 195 ...

      

The first line contains the “magic value” P2 indicating that this is a PGM text file. The
second line contains the pixel width and pixel height of the picture. The number 255 in
the third line is the scale of the following gray values.

The remaining data consist of integers between 0 (black) and 255 (white), each
representing the gray value of a pixel (row by row).

We import the text data via import::readdata:

24-276



 plot::Density

graydata := import::readdata("Norton.pgm", NonNested):

This is a long list of all data items in the file. We extract the 4 items in the first three
lines:

[magicvalue, xmesh, ymesh, maxgray] := graydata[1..4]

We delete the header from the pixel data. (If there are comments in the PGM file, they
must be deleted, too).

for i from 1 to 4 do

  delete graydata[1];

end_for:

We transform the plain data list to a nested list containing the gray data of the rows
as sublists. (The call to level is not really necessary, but it speeds up the conversion
considerably on the interactive level.)

L := level([graydata[(i - 1)*xmesh + 1 .. i*xmesh] $ i=1..ymesh], 1):

This list can be passed to plot::Density:

plot(plot::Density(L, FillColor = RGB::White,

                   FillColor2 = RGB::Black),

     Width = 80*unit::mm, Height = 60*unit::mm):
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The image is upside down, because the PGM files stores the pixel data row by row in the
usual reading order starting with the upper left corner of the image. The MuPAD routine
plot::Density, however, follows the mathematical orientation of the coordinate axes,
i.e., the first pixel value is interpreted as the lower left corner of the image. We have to
re-order the rows in the graydata list via revert:

plot(plot::Density(revert(L), FillColor = RGB::White,

                   FillColor2= RGB::Black),

     Width = 80*unit::mm, Height = 60*unit::mm):

The routines import::readbitmap and plot::Raster provide an alternative way
to import and display the bitmap image. See the help page of plot::Raster for examples.
This, however, takes more memory, because the bitmap data are imported as RGB color
values, whereas only density values (gray data) are needed for plot::Density.

delete graydata, magicvalue, xmesh, ymesh, maxgray, i, L:

Example 4

The Mandelbrot set is one of the best-known fractals. It arises when considering the
iteration zn + 1 = zn

2 + c, z0 = 0 in the complex plane. For sufficiently large values |c| of
the complex parameter c, the sequence zn diverges to infinity; it converges for sufficiently
small values of |c|. The boundary of the region of those c values that lead to divergence
of zn is of particular interest: this border is highly complicated and of a fractal nature.
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In particular, it is known that the series zn diverges to infinity, whenever one of the
iterates satisfies |zn| > 2. This fact is used by the following procedure f as stopping
criterion. The return value provides information, how many iterates z0, …, zn it takes to
escape from the region |z| ≤ 2 of (potential) convergence. These data are to be used to
color the complex c plane (i.e., the (x,y) plane) by a density plot:

f := proc(x, y)

local c, z, n;

begin

   c := x + I*y:

   z := 0.0:

   for n from 0 to 100 do

       z := z^2 + c:

       if abs(z) > 2 then 

          break;

       end_if;

   end_for:

   if n < 70 then

        n mod 5;

   else n - 70;

   end_if;

end_proc:

Depending on your computer, the following computations may take some time. On a very
fast machine, you can increase the following values of xmesh, ymesh. This will use up
more computing time but will lead to better graphical results:

xmesh :=  100: ymesh :=  100:

The following region in the x-y plane is to be considered:

xmin[1] := -2.0: xmax[1] := 0.5:

ymin[1] := -1.2: ymax[1] := 1.2:

The region xmin1 ≤ x ≤ xmax1, ymin1 ≤ y ≤ ymax1 is divided into xmesh×ymesh rectangles.
Each rectangle is colored by a density plot according to the “escape times” computed by
the procedure f. This procedure can be passed directly to plot::Density:

p1 := plot::Density(f, x = xmin[1].. xmax[1],

                    y = ymin[1] .. ymax[1],

                    Mesh = [xmesh, ymesh],

                    FillColor = RGB::Black, 

                    FillColor2 = RGB::Red):
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In addition, a rectangle is produced that indicates a region that is to be magnified in the
following:

xmin[2] := -0.24: xmax[2] := -0.01:

ymin[2] :=  0.63: ymax[2] :=  0.92:

r1 := plot::Rectangle(xmin[2] .. xmax[2], ymin[2] .. ymax[2],

                      LineColor = RGB::White):

plot(p1, r1):

The density values of the blow-up are not computed directly by plot::Density. They
are computed separately and stored in an array A:

dx := (xmax[2] - xmin[2])/xmesh:

dy := (ymax[2] - ymin[2])/ymesh:

A := array(1..ymesh, 1..xmesh, 

           [[f(xmin[2]+ (j - 1/2)*dx, ymin[2] + (i - 1/2)*dy) 

             $ j = 1..xmesh] $ i = 1..ymesh]):

p2 := plot::Density(A, x = xmin[2] .. xmax[2], y = ymin[2] .. ymax[2],

                    FillColor = RGB::Black, FillColor2 = RGB::Red):

In addition, a further rectangle is produced to indicate a region of interest to be blown up
lateron:
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xmin[3] := -0.045: xmax[3] := -0.015:

ymin[3] :=  0.773: ymax[3] :=  0.815:

r2 := plot::Rectangle(xmin[3] .. xmax[3], ymin[3] .. ymax[3],

                      LineColor = RGB::White):

plot(p2, r2):

The density values of the next blow-up are again computed separately and stored in a
nested list L:

dx := (xmax[3] - xmin[3])/xmesh:

dy := (ymax[3] - ymin[3])/ymesh:

L := [[f(xmin[3] + (j - 1/2)*dx, ymin[3] + (i - 1/2)*dy) 

      $ j= 1..xmesh] $ i = 1..ymesh]:

p3 := plot::Density(L, x = xmin[3] .. xmax[3], y = ymin[3] .. ymax[3],

                    FillColor = RGB::Black, FillColor2 = RGB::Red):

plot(p3):
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The density objects are to be placed in a single graphics. It consists of the Mandelbrot
set p1 as computed above and of modifications of the density plots p2 and p3. Redefining
the attributes XRange, YRange, we move p2, p3 to places in the x-y plane where they
are not overlapped by p1. Note that this does not change the graphical content of p2,
p3, because it is given by the data A and L, respectively, which remain unchanged. (If
the ranges were changed in p1, another plot call of p1 would call the procedure f at
different points of the plane resulting in a different graphics.)

p2::XRange :=  0.60 .. 1.60: p2::YRange :=  0.05 ..  1.15:

p3::XRange :=  0.60 .. 1.60: p3::YRange := -1.15 .. -0.05:

The Mandelbrot set and the two blow-ups are placed in one scene. In addition, some
arrows are added to indicate the origin of the blow-ups. Note that it is quite important
here that the arrows are passed to the plot command after the density plots. Otherwise,
they would be hidden by the density plots: graphical objects are painted in the ordering
in which they are passed to plot:

plot(p1, p2, p3,

     plot::Arrow2d([(xmin[2] + xmax[2])/2, 

                    (ymin[2] + ymax[2])/2],

                   [(p2::XMin + p2::XMax)/2, 
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                    (p2::YMin + p2::YMax)/2],

                   LineColor = RGB::Blue),

     plot::Arrow2d([1.50, 0.65],

                   [(p3::XMin + p3::XMax)/2, 

                    (p3::YMin + p3::YMax)/2],

                   LineColor = RGB::Blue)

    ):

delete f, xmesh, ymesh, xmin, xmax, ymin, ymax, 

       dx, dy, p1, p2, p3, r1, r2, A, L:

Parameters

f

The density values: an arithmetical expression in 2 variables x, y and the animation
parameter a. Alternatively, a procedure that accepts 2 input parameters x, y or 3 input
parameters x, y, a and returns a real density value.

f is equivalent to the attribute DensityFunction.
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x

Name of the horizontal variable: an identifier or an indexed identifier.

x is equivalent to the attribute XName.

xmin .. xmax

The range of the horizontal variable: xmin, xmax must be numerical real value or
expressions of the animation parameter a.

xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

y

Name of the vertical variable: an identifier or an indexed identifier.

y is equivalent to the attribute YName.

ymin .. ymax

The range of the vertical variable: ymin, ymax must be numerical real value or expressions
of the animation parameter a.

ymin .. ymax is equivalent to the attributes YRange, YMin, YMax.

A

An array of domain type DOM_ARRAY or a matrix of category Cat::Matrix (e.g., of type
matrix or densematrix) providing numerical density values or expressions of the
animation parameter a. Rows/columns of the array, respectively matrix, correspond to
rows/columns of the graphical array.

A is equivalent to the attribute DensityData.

L

A list of lists of numerical density values or expressions of the animation parameter a.
Each sublist of L represents a row of the graphical array. The number of sublists in L
yields the value of the attribute XMesh. The (common) length of the sublists yields the
value of the attribute YMesh.

L is equivalent to the attribute DensityData.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
import::readbitmap | plot | plot::copy

MuPAD Graphical Primitives
plot::Inequality | plot::Raster
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plot::Ellipse2d
Ellipses in 2D

Syntax
plot::Ellipse2d(r1, r2, <[cx, cy]>, <a = amin .. amax>, options)

Description

plot::Ellipse2d( r1, r2, [cx, cy] ) creates a 2D ellipse with center point
[cx, cy] and semi-axes of lengths r1 and r2 for the horizontal and the vertical axis,
respectively.

The symmetry axes of the ellipse are parallel to the coordinate axes. Use
plot::Rotate2d to create ellipses of different orientation.

If the center point is not specified, an ellipse with center (0,0) is created.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Center center of objects, rotation
center

[0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

Color the main color RGB::Blue

Filled filled or transparent areas
and surfaces

FALSE
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Attribute Purpose Default Value

FillColor color of areas and surfaces RGB::Red

FillPattern type of area filling DiagonalLines

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorDirection the direction of color
transitions on lines

[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

24-287



24 Graphics and Animations

Attribute Purpose Default Value

SemiAxes semi axes of ellipses and
ellipsods

[2, 1]

SemiAxisX first semi axis of ellipses
and ellipsods

2

SemiAxisY second semi axis of ellipses
and ellipsods

1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE
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Examples

Example 1

Create a plot of an ellipse with center point (1,1) and semi-axes of lengths 3 and 1:

ellipse := plot::Ellipse2d(3, 1, [1, 1]):

plot(ellipse)

Apply a rotation:

plot(ellipse, plot::Rotate2d(PI/4, [1, 1], ellipse))
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delete ellipse:

Parameters

r1, r2

The semi-axes of an ellipse. They must be real numerical values or arithmetical
expressions of the animation parameter a.

r1, r2 are equivalent to the attributes SemiAxisX, SemiAxisY.

cx, cy

The center. The coordinates cx, cy must be real numerical values or arithmetical
expressions of the animation parameter a. If no center is specified, the ellipse is centered
at the origin.

cx, cy are equivalent to the attribute Center.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Arc2d | plot::Arc3d | plot::Circle2d | plot::Ellipse3d
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plot::Ellipse3d
Ellipses in 3D

Syntax
plot::Ellipse3d(r1, r2, <[cx, cy, cz], <[cx, cy, nz]>>, <a = amin .. amax>, options)

Description

plot::Ellipse3d( r1, r2, [cx, cy, cz] , [nx, ny, nz] ) creates a 3D ellipse
with center point [cx, cy, cz] and semi-axes of lengths r1 and r2 in the plane with the
normal vector [nx, ny, nz].

The symmetry axes of the ellipse are parallel to the coordinate axes. Use
plot::Rotate3d to create ellipses of different orientation.

If the center point is not specified, an ellipse with center [0, 0, 0] is created.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Filled filled or transparent areas
and surfaces

FALSE
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Attribute Purpose Default Value

FillColor color of areas and surfaces RGB::LightBlue

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Flat

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorDirection the direction of color
transitions on lines

[0, 0, 1]
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Attribute Purpose Default Value

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

Normal normal vector of circles and
discs, etc. in 3D

[0, 0, 1]

NormalX normal vector of circles
and discs, etc. in 3D, x-
component

0

NormalY normal vector of circles
and discs, etc. in 3D, y-
component

0

NormalZ normal vector of circles
and discs, etc. in 3D, z-
component

1

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

SemiAxes semi axes of ellipses and
ellipsods

 

SemiAxisX first semi axis of ellipses
and ellipsods

2

SemiAxisY second semi axis of ellipses
and ellipsods

1
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Attribute Purpose Default Value

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE
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Examples

Example 1

Plot an animated 3D ellipse:

plot(plot::Ellipse3d(1, 1, [0,0,0], [0,a,1-a], a = 0..1))

Example 2

Plot a colored 3D ellipse:

plot(plot::Ellipse3d(2, 1, [0,0,0], Filled,

                     LineColor=RGB::Yellow, LineColor2=RGB::Red,

                     LineColorType = Dichromatic, FillColorDirection=[+1,0,0],

                     FillColor=RGB::Yellow, FillColor2=RGB::Red,

                     FillColorType = Dichromatic, FillColorDirection=[-1,0,0]

))
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Parameters

r1, r2

The semi-axes of an ellipse. They must be real numerical values or arithmetical
expressions of the animation parameter a.

r1, r2 are equivalent to the attributes SemiAxisX, SemiAxisY.

cx, cy, cz

The center. The coordinates cx, cy, cz must be real numerical values or arithmetical
expressions of the animation parameter a. If no center is specified, the ellipse is centered
at the origin.

cx, cy, cz are equivalent to the attribute Center.
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nx, ny, nz

The normal vector. The coordinates nx, ny, nz must be real numerical values or
arithmetical expressions of the animation parameter a. If no normal vector is specified,
the ellipse is created in the xy-plane.

nx, ny, nz are equivalent to the attribute Normal.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Arc2d | plot::Arc3d | plot::Circle2d | plot::Ellipse2d
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plot::Function2d
2D function graphs

Syntax
plot::Function2d(f, options)

plot::Function2d(f, x = xmin .. xmax, <a = amin .. amax>, options)

Description

plot::Function2d creates the 2D graph of a univariate function.

The graphics ignores all points, where the expression/function f does not produce a
numerical real value. See “Example 2” on page 24-306.

The expression/function f may have singularities in the plot range. Although a
heuristics is used to find a reasonable y range when singularities are present, it is
highly recommended to specify a y range via ViewingBoxYRange = `y_{min}` ..
`y_{max}` with suitable numerical real values ymin, ymax. See “Example 3” on page
24-307.

Animations are triggered by specifying a range a = `a_{min}` .. `a_{max}` for
a parameter a that is different from the independent variable x. Thus, in animations,
both the x-range x = `x_{min}` .. `x_{max}` as well as the animation range a =
`a_{min}` .. `a_{max}` must be specified. See “Example 4” on page 24-309.

The function f is evaluated on an equidistant mesh of sample points determined
by the attribute XMesh (or the shorthand notation Mesh). By default, the attribute
AdaptiveMesh = 0 is set, i.e., no adaptive refinement of the equidistant mesh is used.

If the standard mesh does not suffice to produce a sufficiently detailed plot, one may
either increase the value of XMesh or set AdaptiveMesh = n with some (small) positive
integer n. If necessary, up to 2n additional points are placed between adjacent points of
the initial equidistant mesh. See “Example 5” on page 24-310.

By default, the attribute DiscontinuitySearch = TRUE is set. This triggers a semi-
symbolic preprocessing of the expression f to search for discontinuities and singularities.
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At each singular point, the function graph is split into disjoint branches to the left and
to the right of the singularity. This avoids graphical artifacts such as lines connecting
points to the left and to the right of a singularity.

If the function is known to be regular in the plot range, the semi-symbolic search may
be disabled by specifying DiscontinuitySearch = FALSE. This will improve the
efficiency of the plot commands.

Singular points are highlighted by a vertical line unless VerticalAsymptotesVisible
= FALSE is specified. Its style may be set by the attributes
VerticalAsymptotesStyle, VerticalAsymptotesWidth, and
VerticalAsymptotesColor.

Note: This functionality is only available if the function is specified by a an arithmetical
expression or a procedure that accepts symbolic arguments. It is not available if the
function is specified by a piecewise object or by a procedure that accepts only numerical
arguments.

See “Example 6” on page 24-314.

plot::Hatch allows to hatch areas between function graphs. See “Example 7” on page
24-316.

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 2

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::Blue

DiscontinuitySearch semi-symbolic search for
discontinuities

TRUE

Frames the number of frames in an
animation

50
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Attribute Purpose Default Value

Function function expression or
procedure

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Mesh number of sample points 121

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter
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Attribute Purpose Default Value

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Submesh density of submesh
(additional sample points)

0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

VerticalAsymptotesColorcolor of vertical asymptotes
indicating poles

RGB::Grey50

VerticalAsymptotesWidthline width of vertical
asymptotes indicating poles

0.2

VerticalAsymptotesStyleline style of vertical
asymptotes indicating poles

Dashed

VerticalAsymptotesVisiblevertical asymptotes
indicating poles

TRUE

Visible visibility TRUE

24-302



 plot::Function2d

Attribute Purpose Default Value

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x” 5

XMesh number of sample points for
parameter “x”

121

XMin initial value of parameter
“x”

-5

XName name of parameter “x”  
XRange range of parameter “x” -5 .. 5
XSubmesh density of additional sample

points for parameter “x”
0

Examples

Example 1

The following call returns an object representing the graph of the sine function over the
interval [0, 2 π]:

f := plot::Function2d(sin(x), x = 0 .. 2*PI)

Call plot to plot the graph:
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plot(f):

Functions can also be specified by piecewise objects or procedures:

f := piecewise([x < 1, 1 - x], [x >= 1, x^2]):

plot(plot::Function2d(f, x = -2 .. 4)):
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f := proc(x)

begin

  if x^2 - 2*x < 0 then

     0

  else

     x^2 - 2*x

  end_if:

end_proc:

plot(plot::Function2d(f, x = -2 .. 4)):
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delete f:

Example 2

Non-real values are ignored in a plot:

plot(plot::Function2d(sqrt(1 - x^2), x = -2 .. 2),

     Scaling = Constrained):
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Example 3

We plot a function with singularities:

f := plot::Function2d(sin(x)/(1 - x) - 1/cos(x), x = 0 .. PI):

plot(f):
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We specify an explicit viewing range for the y direction:

plot(f, ViewingBoxYRange = -20 .. 10):
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delete f:

Example 4

We generate an animation of a parametrized function:

plot(plot::Function2d(a*sin(x) + (1 - a)*cos(x), 

                      x = -PI .. PI, a = 0 .. 1)):
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Example 5

The standard mesh for the numerical evaluation of a function graph does not suffice to
generate a satisfying graphics in the following case:

plot(plot::Function2d(sin(PI/x), x = -1 .. 1)):
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We increase the number of mesh points:

plot(plot::Function2d(sin(PI/x), x = -1 .. 1, XMesh = 1000)):
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Alternatively, we enable adaptive sampling by setting AdaptiveMesh to some positive
value:

plot(plot::Function2d(sin(PI/x), x = -1 .. 1, AdaptiveMesh = 3)):
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Finally, we increase the XMesh value and use adaptive sampling:

plot(plot::Function2d(sin(PI/x), x = -1 .. 1, XMesh = 1000,

                      AdaptiveMesh = 3)):
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Example 6

With VerticalAsymptotesVisible = TRUE/FALSE, singular points are highlighted
by a vertical asymptote, or this highlighting is switched off, respectively:

plot(plot::Function2d(ln(x + PI) + 1/(x - 1) - 1/(x + 1)^2,

                      x = -4 .. 4, 

                      VerticalAsymptotesVisible = TRUE,

                      ViewingBoxYRange = -10 .. 10)):
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plot(plot::Function2d(ln(x + PI) + 1/(x - 1) - 1/(x + 1)^2,

                      x = -4 .. 4, 

                      VerticalAsymptotesVisible = FALSE,

                      ViewingBoxYRange = -10 .. 10)):
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Example 7

The plot::Hatch object allows to hatch regions between functions. It expects graphical
objects of type plot::Function2d or plot::Curve2d as boundaries:

f1:= plot::Function2d(sin(x), x = -PI .. 2*PI):

f2:= plot::Function2d(cos(x), x = -PI .. 2*PI):

plot(f1, f2, plot::Hatch(f1, f2, -1 .. 5)):
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delete f1, f2:

Parameters

f

The function: an arithmetical expression or a piecewise object in the independent
variable x and the animation parameter a. Alternatively, a procedure that accepts 1
input parameter x or 2 input parameters x, a and returns a real numerical value when
the input parameters are numerical.

f is equivalent to the attribute Function.

x

The independent variable: an identifier or an indexed identifier.

x is equivalent to the attribute XName.
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xmin .. xmax

The plot range: xmin, xmax must be numerical real values or expressions of the animation
parameter a. If not specified, the default range x = -5 .. 5 is used.

xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy | plotfunc2d | plotfunc3d

MuPAD Graphical Primitives
plot::Function3d
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plot::Function3d
3D function graphs

Syntax
plot::Function3d(f, options)

plot::Function3d(f, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

Description

plot::Function3d creates the 3D graph of a function in 2 variables.

The expression f(x, y) is evaluated at finitely many points x, y in the plot range.
There may be singularities. Although a heuristics is used to find a reasonable z range
when singularities are present, it is highly recommended to specify a z range via
ViewingBoxZRange = `z_{min}` .. `z_{max}` with suitable numerical real values
zmin, zmax. See “Example 2” on page 24-327.

Animations are triggered by specifying a range a = `a_{min}` .. `a_{max}` for a
parameter a that is different from the indedependent variables x, y. Thus, in animations,
the x-range x = `x_{min}` .. `x_{max}`, the y-range y = `y_{min}` ..
`y_{max}` as well as the animation range a = `a_{min}` .. `a_{max}` must be
specified. See “Example 3” on page 24-329.

The function f is evaluated on a regular equidistant mesh of sample points determined
by the attributes XMesh and YMesh (or the shorthand-notation for both, Mesh). By
default, the attribute AdaptiveMesh = 0 is set, i.e., no adaptive refinement of the
equidistant mesh is used.

If the standard mesh does not suffice to produce a sufficiently detailed plot, one may
either increase the value of XMesh and YMesh or set AdaptiveMesh = n with some
(small) positive integer n. This may result in up to 4n times as many triangles as used
with AdaptiveMesh = 0, potentially more when f has non-isolated singularities. See
“Example 4” on page 24-330.

The “coordinate lines” (“parameter lines”) are curves on the function graph.
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The phrase “XLines” refers to the curves (x, y0, f(x, y0)) with the parameter x running
from xmin to xmax, while y0 is some fixed value from the interval [ymin, ymax].

The phrase “YLines” refers to the curves (x0, y, f(x0, y)) with the parameter y running
from ymin to ymax, while x0 is some fixed value from the interval [xmin, xmax].

By default, the parameter lines are visible. They may be “switched off” by specifying
XLinesVisible = FALSE and YLinesVisible = FALSE, respectively.

The coordinate lines controlled by XLinesVisible = TRUE/FALSE and
YLinesVisible = TRUE/FALSE indicate the equidistant regular mesh set via the
Mesh attributes. If the mesh is refined by the Submesh attributes or by the adaptive
mechanism controlled by AdaptiveMesh = n, no additional parameter lines are drawn.

As far as the numerical approximation of the function graph is concerned, the settings

Mesh = [nx, ny], Submesh = [mx, my]

and

Mesh = [(nx - 1) (mx + 1) + 1, (ny - 1) (my + 1) + 1], Submesh = [0, 0]

are equivalent. However, in the first setting, nx parameter lines are visible in the x
direction, while in the latter setting (nx - 1) (mx + 1) + 1 parameter lines are
visible. See “Example 5” on page 24-333.

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue
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Attribute Purpose Default Value

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
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Attribute Purpose Default Value

LineColorDirection the direction of color
transitions on lines

[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [25, 25]
MeshVisible visibility of irregular mesh

lines in 3D
FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Shading smooth color blend of
surfaces

Smooth

Submesh density of submesh
(additional sample points)

[0, 0]

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0
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Attribute Purpose Default Value

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XLinesVisible visibility of parameter lines
(x lines)

TRUE

XMax final value of parameter “x” 5

XMesh number of sample points for
parameter “x”

25

XMin initial value of parameter
“x”

-5
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Attribute Purpose Default Value

XName name of parameter “x”  
XRange range of parameter “x” -5 .. 5
XSubmesh density of additional sample

points for parameter “x”
0

YLinesVisible visibility of parameter lines
(y lines)

TRUE

YMax final value of parameter “y” 5

YMesh number of sample points for
parameter “y”

25

YMin initial value of parameter
“y”

-5

YName name of parameter “y”  
YRange range of parameter “y” -5 .. 5
YSubmesh density of additional sample

points for parameter “y”
0

ZContours contour lines at constant z
values

[]

Examples

Example 1

The following call returns an object representing the graph of the function sin(x2 + y2)
over the region - 2 ≤ x ≤ 2, - 2 ≤ y ≤ 2:

g := plot::Function3d(sin(x^2 + y^2), x = -2..2, y = -2..2)

Call plot to plot the graph:

plot(g)
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Functions can also be specified by piecewise objects or procedures:

f := piecewise([x < y, 0], [x >= y, (x - y)^2]):

plot(plot::Function3d(f, x = -2 .. 4, y = -1 .. 3))
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f := proc(x, y)

begin

  if x + y^2 + 2*y < 0 then

     0

  else

     x + y^2 + 2*y 

  end_if:

end_proc:

plot(plot::Function3d(f, x = -3 .. 2, y = -2 .. 2))
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delete g, f

Example 2

We plot a function with singularities:

f := plot::Function3d(x/y + y/x, x = -1 .. 1, y = - 1 .. 1):

plot(f)
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We specify an explicit viewing range for the z direction:

plot(f, ViewingBoxZRange = -20 .. 20)
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delete f

Example 3

We generate an animation of a parametrized function:

plot(plot::Function3d(sin((x - a)^2 + y^2), 

                      x = -2 .. 2, y = -2 .. 2, a = 0 .. 5))
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Example 4

The standard mesh for the numerical evaluation of a function graph does not suffice to
generate a satisfying graphics in the following case:

plot(plot::Function3d(besselJ(0, sqrt(x^2 + y^2)), 

                      x = -20 .. 20, y = -20 .. 20))
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We increase the number of mesh points. Here, we use XSubmesh and YSubmesh to place
2 additional points in each direction between each pair of neighboring points of the
default mesh. This increases the runtime by a factor of 9:

plot(plot::Function3d(besselJ(0, sqrt(x^2 + y^2)), 

                      x = -20 .. 20, y = -20 .. 20,

                      Submesh = [2, 2]))
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Alternatively, we enable adaptive sampling by setting the value of AdaptiveMesh to
some positive value:

plot(plot::Function3d(besselJ(0, sqrt(x^2 + y^2)), 

                      x = -20 .. 20, y = -20 .. 20,

                      AdaptiveMesh = 2))
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Example 5

By default, the parameter lines of a function graph are “switched on”:

plot(plot::Function3d(x^2 + y^2, x = 0 .. 1, y = 0 .. 1))
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The parameter lines are “switched off” by setting XLinesVisible, YLinesVisible:

plot(plot::Function3d(x^2 + y^2, x = 0 .. 1, y = 0 .. 1,

                      XLinesVisible = FALSE,

                      YLinesVisible = FALSE))
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The number of parameter lines are determined by the Mesh attributes:

plot(plot::Function3d(x^2 + y^2, x = 0 .. 1, y = 0 .. 1,

                      Mesh = [5, 12]))
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When the mesh is refined via the Submesh attributes, the numerical approximation of
the surface becomes smoother. However, the number of parameter lines is not increased:

plot(plot::Function3d(x^2 + y^2, x = 0 .. 1, y = 0 .. 1,

                      Mesh = [5, 12],

                      XSubmesh = 1, YSubmesh = 2))
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Example 6

Functions need not be defined over the whole parameter range:

plot(plot::Function3d(sqrt(1-x^2-y^2), x=-1..1, y=-1..1))
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plot(plot::Function3d(sqrt(sin(x)+cos(y))))
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This makes for an easy way of plotting a function over a non-rectangular area:

chi := piecewise([x^2 < abs(y), 1])

plot(plot::Function3d(chi*sin(x+cos(y))),

     CameraDirection=[-1,0,0.5])
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Parameters
f

The function: an arithmetical expression or a piecewise object in the independent
variables x, y and the animation parameter a. Alternatively, a  procedure that accepts 2
input parameter x, y or 3 input parameters x, y, a and returns a numerical value when
the input parameters are numerical.

f is equivalent to the attribute Function.

x

The first independent variable: an identifier or an indexed identifier.

x is equivalent to the attribute XName.

xmin .. xmax

The plot range in x direction: xmin, xmax must be numerical real values or expressions of
the animation parameter a. If not specified, the default range x = -5 .. 5 is used.
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xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

y

The second independent variable: an identifier or an indexed identifier.

y is equivalent to the attribute YName.

ymin .. ymax

The plot range in y direction: ymin, ymax must be numerical real values or expressions of
the animation parameter a. If not specified, the default range y = -5 .. 5 is used.

ymin .. ymax is equivalent to the attributes YRange, YMin, YMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy | plotfunc2d | plotfunc3d

MuPAD Graphical Primitives
plot::Function2d | plot::Surface
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plot::Hatch

Hatched area

Syntax

plot::Hatch(f1, f2, <x1 .. x2>, <a = amin .. amax>, options)

plot::Hatch(f1, <base>, <x1 .. x2>, <a = amin .. amax>, options)

plot::Hatch(c, <a = amin .. amax>, options)

Description

plot::Hatch(f) hatches the area between the function f and the x-axis.

plot::Hatch(f, base) hatches the area between the function f and the horizontal
line y = base.

plot::Hatch(f, g) hatches the area between the two functions f and g.

plot::Hatch(c) hatches the area enclosed by the curve c.

plot::Hatch(f, base) is the hatched area between a function f of type
plot::Function2d and a line parallel to the x-axis with y = base. If base is omitted,
the area between the function and the x-axis will be hatched (the baseline is assumed to
be the x-axis). See “Example 1” on page 24-345.

plot::Hatch( f1, f2) is the hatched area between two functions f1 and f2. See
“Example 2” on page 24-347.

plot::Hatch(c) is the hatched area enclosed by a plot::Curve2d. A curve is closed
automatically by connecting the starting point and the end point. See “Example 3” on
page 24-348.

The hatch may be restricted to the left and to the right by a range x_..x_. See “Example
4” on page 24-350.
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The attributes FillColor and FillPattern can be used to change the color and pattern of
the hatched area. See “Example 5” on page 24-355.

Note: A plot::Hatch is only the hatched area without outlining functions or curves! To
see the border lines, you need to plot them separately as demonstrated in the examples.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Baseline constant second function
delimiting hatch

 

Color the main color RGB::Red

FillColor color of areas and surfaces RGB::Red

FillPattern type of area filling DiagonalLines

Frames the number of frames in an
animation

50

Function1 first function/curve
delimiting hatch

 

Function2 second function delimiting
hatch

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter
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Attribute Purpose Default Value

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x” infinity
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Attribute Purpose Default Value

XMin initial value of parameter
“x”

-infinity

XRange range of parameter “x” -infinity .. infinity

Examples

Example 1

If given a single plot::Function2d object, plot::Hatch hatches the area between the
curve and the x-axis:

f := plot::Function2d(sin(x), x = -PI..PI):

plot(plot::Hatch(f), f)

Note that plot::Hatch requires an object of type plot::Function2d, not just a
function expression:
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plot::Hatch(sin(x))

Error: No 'plot::Function2d' or 'plot::Curve2d' is given. [plot::Hatch::new]

plot::Hatch can be asked to hatch the area between a function graph and some
constant value (i.e., some line parallel to the x-axis):

plot(plot::Hatch(f, 1), f)

For functions with poles, keeping VerticalAsymptotesVisible set to TRUE is highly
recommended:

f := plot::Function2d(1/(x - 1)):

h := plot::Hatch(f):

plot(f, h)
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delete f, h:

Example 2

By passing two functions to plot::Hatch, we ask for a hatch of the area between the
two:

f := plot::Function2d(sin(x), x = -4 .. 4,  Color = RGB::Blue):

g := plot::Function2d(cos(2*x), x = -4 .. 4, Color=RGB::Black):

h := plot::Hatch(f, g):

plot(f, g, h)
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delete f, g, h:

Example 3

plot::Hatch can also hatch the inner part of a plot::Curve2d object:

circle := plot::Curve2d([sin(t), cos(t)], t=0..2*PI):

plot(circle, plot::Hatch(circle))
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If the curve is not closed, plot::Hatch regards the first and last point to be connected:

circle::UMax := 3*PI/2:

plot(circle, plot::Hatch(circle))
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delete circle:

Example 4

By default, plot::Hatch extends as far to the left and right as possible without leaving
the common definition area of all given functions:

f := plot::Function2d(sin(x), x = 0 .. 5):

g := plot::Function2d(-cos(x), x = -1 .. 4):

h := plot::Hatch(f, g):

plot(f, g, h)
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You can restrict this range by giving an explicit range of x values:

h := plot::Hatch(f, g, 1 .. 3):

plot(f, g, h)
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However, it is not possible to extend the range beyond the common definition range of
both functions:

h := plot::Hatch(f, g, -1 .. 3):

plot(f, g, h)
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The restriction of the x range also works for hatching curve objects:

c := plot::Curve2d([sin(5*x), cos(7*x)], x = 0 .. 2*PI):

h := plot::Hatch(c, 0 .. 1):

plot(c, h)
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Note that plot::Hatch reacts to the smoothness of the curve. This is one of the reasons
why you have to provide a objects instead of expressions for the functions or curves:

c::AdaptiveMesh := 2:

plot(c, h)

24-354



 plot::Hatch

delete f, g, h, c:

Example 5

One of the most useful attributes of plot::Hatch is FillPattern, which can take one
of the values DiagonalLines (the default), FDiagonalLines, HorizontalLines,
VerticalLines, CrossedLines, XCrossedLines, or Solid:

f := plot::Function2d(sin(x)):

h := plot::Hatch(f, FillPattern = VerticalLines):

plot(f, h)
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Another attribute that will often be useful is FillColor, to change the color of the
hatch. We set the value right in our existing hatch object:

h::FillPattern := CrossedLines:

h::FillColor := RGB::Blue:

plot(f, h)
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delete f, h:

Example 6

The function(s) or curve, the baseline, and the restriction of the x range can be animated:

f := plot::Function2d(sin(x + a), x = -PI..PI, a = 0..2*PI):

g := plot::Function2d(cos(x - a), x = -PI..PI, a = 0..4*PI):

plot(f, g, plot::Hatch(f, g, x0 .. x0+1, x0 = -PI..3))
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f := plot::Function2d(sin(a*x), x=-PI..PI, a=0.2..3):

plot(f, plot::Hatch(f))
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delete f, g:

Example 7

A “hatch” may also be a solid area fill:

plot(plot::Hatch(

  plot::Curve2d([abs(r)*sin(r), abs(r)*cos(r)], r = -PI..PI),

  FillPattern = Solid, FillColor = RGB::Red, Axes = None))
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Parameters

f1, f2

The outlining function(s) of the hatch: objects of type plot::Function2d.

f1, f2 are equivalent to the attributes Function1, Function2.

c

The outlining curve of the hatch: a parametrized curve of type plot::Curve2d.

c is equivalent to the attribute Function1.

base

The base line of the hatch: a numerical real value or an arithmetical expression of the
animation parameter a.

base is equivalent to the attribute Baseline.
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x1 .. x2

A range on the x-axis limiting the hatch to the left and the right hand side:numerical real
values or arithmetical expressions of the animation paramater a.

x1 .. x2 is equivalent to the attributes XMin, XMax, XRange.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve2d | plot::Function2d | plot::Sweep
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plot::Histogram2d
Histogram plots of data

Syntax
plot::Histogram2d(data, <a = amin .. amax>, options)

Description
plot::Histogram2d creates a histogram plot of the given data, showing the frequency
distribution in a user-definable cell array.

By default, data is grouped into 7 classes of equal width. To increase the number of
cells, but still have them be of equal width, set Cells = [n], as in “Example 1” on page
24-365. For full control over the classes, set Cells to a list specifying the cells, as in
“Example 2” on page 24-368.

As long as the attribute Area is not changed from its default value of 0,
plot::Histogram2d displays the absolute number of data in a class as the height of
the corresponding bar. With Area = a, a > 0, the whole plot will take area a, with each
rectangle area proportional to the number of data points in its cell. “Example 3” on page
24-370 shows the difference in detail.

By default, cells (“classes”) given by the attribute Cells = [a_1 .. b_1, a_2 ..
b_2, dots] are interpreted as a collection of semi-open intervals  that are closed
at the right boundary. A data item x is tallied into the i-th cell if it satisfies ai < x ≤
bi. Use the option CellsClosed = Left or the equivalent ClassesClosed = Left
to interpret the classes as the semi-open intervals  that are closed at the left
boundary.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

AntiAliased antialiased lines and points? TRUE

Area the area of a histogram plot 0

Cells classes of histogram plots [7]
CellsClosed interpretation of the classes

in histogram plots
Right

ClassesClosed interpretation of the classes
in histogram plots

[Right]

Color the main color RGB::GeraniumLake

Data the (statistical) data to plot  
DrawMode orientation of boxes and

bars
Vertical

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::GeraniumLake

FillPattern type of area filling Solid

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range
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Attribute Purpose Default Value

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

To plot a histogram of a normally distributed process, we first create a generator of
random numbers with this distribution:

X := stats::normalRandom(0, 1)

Next, we create a small number of “measurements”:

data := [X() $ i = 1..20]

This data is ready to be put into plot::Histogram2d:

plot(plot::Histogram2d(data))
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This plot, if nothing else, shows that 20 samples are very few. Let us repeat the process
with more data:

data := [X() $ i = 1..300]:

plot(plot::Histogram2d(data))
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On the other hand, this amount of data certainly justifies a finer classification:

plot(plot::Histogram2d(data, Cells = [15]))
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Example 2

It is also possible to give the cells (classes) directly. To do so, you should give them as
ranges or lists with two elements, as in the following example:

X := stats::normalRandom(0, 1):

data := [X() $ i = 1 .. 100]:

min(data), max(data)

h := plot::Histogram2d(data,

            Cells = [-2.5..-1.5, -1.5..-1, -1..0,

                     0..1, 1..1.5, 1.5..2.5])

plot(h)
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It is even possible to use - infinity and infinity as border values in the cells:

h::Cells := [-infinity..-2, -2..-1, -1..0,

             0..1, 1..2, 2..infinity]:

plot(h)
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Example 3

One potential problem with classes of non-equal width is that still the height of the bars
corresponds to the number of data points in a class. To see why this may be a problem,
consider data perfectly uniformly distributed:

data := [i/1000 $ i = 1..1000]:

Plotting a histogram of this data, we see only very small deviations from a rectangle,
caused by the fact that 1000 and 7 are coprime:

plot(plot::Histogram2d(data))
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However, plotting a histogram with uneven classes, the image looks very much different:

plot(plot::Histogram2d(data,

       Cells = [0..1/2, 1/2..2/3, 2/3..3/4, 3/4..4/5, 4/5..1]))
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To make not the height, but rather the area of a bar depend on the number of samples in
a class, set Area to a positive value:

plot(plot::Histogram2d(data,

       Cells = [0..1/2, 1/2..2/3, 2/3..3/4, 3/4..4/5, 4/5..1],

       Area = 1))
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Note that with Area = 1, a histogram plot is scaled accordingly to the probability
density function of the variable displayed:

X := stats::normalRandom(0, 1):

data := [X() $ i = 1..1000]:

h := plot::Histogram2d(data, Cells = [15],

                       Area = 1, Color = RGB::Blue):

f := plot::Function2d(stats::normalPDF(0, 1),

                      x = -3..3, LineWidth = 1*unit::mm,

                      Color = RGB::Black):

plot(h, f)
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delete X, data, h, f:

Parameters

data

The data to plot: A list of real values or expressions in the animation parameter a.

data is equivalent to the attribute Data.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy | stats::frequency
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MuPAD Graphical Primitives
plot::Bars2d | plot::Boxplot | plot::Scatterplot
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plot::Implicit2d
Contour lines of a function from R^2 to R

Syntax
plot::Implicit2d(f, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

Description
plot::Implicit2d(f(x, y), x = xmin..xmax , y = ymin..ymax ) plots the curves
where the smooth function f is zero.

plot::Implicit2d(f, x = xmin..xmax , y = ymin..ymax ) plots the zeroes of f in
the given range, i.e., the set .

plot::Implicit2d assumes that f is regular almost everywhere on this curve, which
means that f must be differentiable and at least one of its partial derivatives must be
nonzero.

To plot other contours than zeroes, use the option Contours.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::Blue

Contours the contours of an implicit
function

[0]

Frames the number of frames in an
animation

50

Function function expression or
procedure
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Attribute Purpose Default Value

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Mesh number of sample points [11, 11]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0
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Attribute Purpose Default Value

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x”  
XMesh number of sample points for

parameter “x”
11

XMin initial value of parameter
“x”

 

XName name of parameter “x”  
XRange range of parameter “x”  
YMax final value of parameter “y”  
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Attribute Purpose Default Value

YMesh number of sample points for
parameter “y”

11

YMin initial value of parameter
“y”

 

YName name of parameter “y”  
YRange range of parameter “y”  

Examples

Example 1

It is well-known that a circle can be described as :

plot(plot::Implicit2d(x^2+y^2-1, x = -1..1, y = -1..1))
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Note that plot::Implicit2d uses the given range completely, even if there is nothing
to plot at a border:

plot(plot::Implicit2d(x^2+y^2-1, x = -2..2, y = -2..2))

Example 2

plot::Implicit2d handles functions which are not regular at isolated points on the
contours:

plot(plot::Implicit2d((x-y)*(x+y), x = -1..1, y = -1..1))
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However, it fails if the function is singular on more than isolated points:

plot(plot::Implicit2d(0, x = -1..1, y = -1..1))
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Example 3

We plot some of the elliptic curves y2 = x3 + 4 x + c:

plot(plot::Implicit2d(y^2 - x^3 + 4*x, x = -3..3, y = -4..4, 

                      Contours = [c $ c = -3..6]))
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Example 4

Like most graphical objects, plot::Implicit2d can be animated easily:

plot(plot::Implicit2d(x^2 - y^2 = (x - a*y)*(x^2 + y^2),

                      x = -2..2, y = -2..2, a = -2..2))
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Parameters
f

A real-valued expression or an equation in x, y, and possibly the animation parameter.

f is equivalent to the attribute Function.

x, y

identifiers.

x, y are equivalent to the attributes XName, YName.

xmin .. xmax, ymin .. ymax

Real-valued expressions, possibly in the animation parameter. The image is plotted with
x in the range xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax.

xmin .. xmax, ymin .. ymax are equivalent to the attributes XRange, XMin, XMax, YRange,
YMin, YMax.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Algorithms

plot::Implicit2d uses a curve tracking method: It first generates starting points on
the curve and then uses a predictor-corrector method to follow the curve thus found in
both directions, using the implicit function theorem.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve2d | plot::Implicit3d
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plot::Implicit3d
Contour surfaces of a function from R^3 to R

Syntax
plot::Implicit3d(f, x = xmin .. xmax, y = ymin .. ymax, z = zmin .. zmax, <a = amin .. amax>, options)

Description

plot::Implicit3d(f(x, y, z), x = xmin..xmax , y = ymin..ymax , z =

zmin..zmax ) plots the surfaces where the smooth function f is zero.

plot::Implicit3d(f, x = xmin..xmax , y = ymin..ymax , z = zmin..zmax
) plots the (two-dimensional part of the) zeroes of f in the given range, i.e., the set

.

plot::Implicit3d assumes that f is regular almost everywhere on this surface, which
means that f must be differentiable and at least two of its partial derivatives must be
nonzero.

plot::Implicit3d evaluates the given function on an equidistant, three-dimensional
mesh, the coarsity of which can be set with the attributes XMesh, YMesh, and ZMesh for
each of the three directions, or with the combining attribute Mesh that sets all three of
these simultaneously.

After finding an initial triangulation of the surface from the numerical data on the initial
grid, plot::Implicit3d optionally performs adaptive subdivision of the triangles.
To make a long story short: If the initial calculation misses details altogether, adaptive
refinement will not find them either. On the other hand, if the initial calculation shows
spurious spikes, adaptive refinement will result in a much more realistic image, at
the expense of time; the higher the value of AdaptiveMesh, the more. Increasing
AdaptiveMesh by one may in extreme cases increase calculation time by a factor of eight
or more!

The details of the algorithm are as follows: On top level, the “effective adaptive level”
is set to the value of the attribute AdaptiveMesh. If, for a given edge, the effective
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adaptive level is positive and the edge is not very short already, compared with the size
of the complete image, and inserting a new point on the implicit surface near the middle
of this edge would cause the two new edges to have an angle of less than 170 degrees,
then the edge is split, the adjoining triangles are split accordingly (taking into account
all their edges) and all the new edges caused by this operation are examined with an
effective adaptive level reduced by one.

To plot other contours than zeroes, use the option Contours.

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Red

Contours the contours of an implicit
function

[0]

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0
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Attribute Purpose Default Value

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Black.[0.15]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [11, 11, 11]
MeshVisible visibility of irregular mesh

lines in 3D
FALSE
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Attribute Purpose Default Value

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE
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Attribute Purpose Default Value

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XContours contour lines at constant x
values

[Automatic, 15]

XMax final value of parameter “x”  
XMesh number of sample points for

parameter “x”
11

XMin initial value of parameter
“x”

 

XName name of parameter “x”  
XRange range of parameter “x”  
YContours contour lines at constant y

values
[Automatic, 15]

YMax final value of parameter “y”  
YMesh number of sample points for

parameter “y”
11

YMin initial value of parameter
“y”

 

YName name of parameter “y”  
YRange range of parameter “y”  
ZContours contour lines at constant z

values
[Automatic, 15]

ZMax final value of parameter “z”  
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Attribute Purpose Default Value

ZMesh number of sample points for
parameter “z”

11

ZMin initial value of parameter
“z”

 

ZName name of parameter “z”  
ZRange range of parameter “z”  

Examples

Example 1

The set of x, y, z where x2 + y2 + z2 = 1 form a sphere:

plot(plot::Implicit3d(x^2 + y^2 + z^2 - 1,

                      x = -1.5..1.5,

                      y = -1.5..1.5, 

                      z = -1.5..1.5),

     Scaling = Constrained)
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Example 2

The set of zeroes of a product is the union of the zeroes of the individual functions:

plot(plot::Implicit3d((x^2 + y^2 + z^2 - 1) * x,

                      x = -1.5..1.5,

                      y = -1.5..1.5, 

                      z = -1.5..1.5),

     Scaling = Constrained)
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Note that this image is largely dominated by artifacts caused by the coarse evaluation
mesh. Increasing this mesh improves the graphics, but increases computation time:

plot(plot::Implicit3d((x^2 + y^2 + z^2 - 1) * x,

                      x = -1.5..1.5,

                      y = -1.5..1.5, 

                      z = -1.5..1.5,

                      Mesh = [21, 9, 9], AdaptiveMesh = 2),

     Scaling = Constrained)
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Example 3

With MeshVisible = TRUE, the internal triangulation becomes visible:

plot(plot::Implicit3d(z^2 - sin(z - x^2*y^2) = 0,

                      x = -1 .. 1, y = -1 .. 1, z = 0 .. 1,

                      AdaptiveMesh = 2, MeshVisible = TRUE,

                      LineColor = RGB::Black.[0.25])):
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Example 4

Using functions that are not continuously differentiable, it is possible to generate sharp
edges in the images:

plot(plot::Implicit3d(min(x^2 + y^2 + z^2 - 2, -z),

                      x = -2..2, y = -2..2, z = -1.5..0.5),

     Axes = None, Scaling = Constrained)
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Just like in the preceding example, these sharp corners are prime sources of artifacts,
which may require a finer initial mesh and/or adaptive mesh refinement:

im := plot::Implicit3d(min(x^2 + y, y^2 - z),

                       x = -2..2, y = -2..2, z = 0..1):

plot(im)
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plot(im, AdaptiveMesh = 3)
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Example 5

Animating plot::Implicit3d objects takes a lot of time. It is easy and fast, though, to
add an animated camera object:

plot(plot::Implicit3d(sin(x)+sin(y)+sin(z), x=-5..5, y=-5..5, z=-5..5),

     plot::Camera([42*sin(t),42*cos(t),42*cos(t-sin(t))], [0,0,0],

                  PI/12, t=0..2*PI),

     AnimationStyle=Loop)
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Parameters
f

A real-valued expression or an equation in x, y, z, and possibly the animation parameter.

f is equivalent to the attribute Function.

x, y, z

identifiers.

x, y, z are equivalent to the attributes XName, YName, ZName.

xmin .. xmax, ymin .. ymax, zmin .. zmax

Real-valued expressions, possibly in the animation parameter. The image is plotted with
x in the range xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax and zmin ≤ z ≤ zmax.

xmin .. xmax, ymin .. ymax, zmin .. zmax are equivalent to the attributes XRange, XMin, XMax,
YRange, YMin, YMax, ZRange, ZMin, ZMax.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Implicit2d | plot::Surface
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plot::Inequality
Display areas where inequalities are fulfilled

Syntax
plot::Inequality(ineq, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Inequality([ineq1, …], x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

Description
plot::Inequality(f(x, y) < g(x, y), x = `x_{min}`..`x_{max}` , y =

`y_{min}`..`y_{max}` ) fills the rectangle xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax with
several colors, indicating which points satisfy the inequality.

plot::Inequality computes a (more or less coarse) rasterization of the area
specified by `x_{min}`..`x_{max}` and `y_{min}`..`y_{max}` and colors
subareas according to whether all of the given inequalities are fulfilled (these are
colored in FillColorTrue), at least one inequality is nowhere fulfilled in the subarea
(FillColorFalse) or the granularity is insufficient to decide for either of these cases
(FillColorUnknown).

You can control the density of the rasterization with the attribute Mesh. Cf. “Example 2”
on page 24-406.

plot::Inequality uses interval numerics for evaluation, so the results are reliable,
but certain special functions (such as hypergeom) cannot be used because they are not
supported for intervals.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? FALSE

FillPattern type of area filling Solid
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Attribute Purpose Default Value

FillColorTrue the color for “true” areas
(inequality plot)

RGB::Green

FillColorFalse the color for “false” areas
(inequality plot)

RGB::Red

FillColorUnknown the color for “unknown”
areas (inequality plot)

RGB::Black

Frames the number of frames in an
animation

50

Inequalities inequalities displayed in
inequality plots

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines FALSE

Mesh number of sample points [256, 256]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter
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Attribute Purpose Default Value

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x”  
XMesh number of sample points for

parameter “x”
256

XMin initial value of parameter
“x”

 

XName name of parameter “x”  
XRange range of parameter “x”  
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Attribute Purpose Default Value

YMax final value of parameter “y”  
YMesh number of sample points for

parameter “y”
256

YMin initial value of parameter
“y”

 

YName name of parameter “y”  
YRange range of parameter “y”  

Examples

Example 1

With a single inequality, plot::Inequality colors the area where it is fulfilled or
violated, with areas at the border line, where the inequality is fulfilled in some parts of
the rectangle and violated in other parts:

plot(plot::Inequality(x^2 + y^2 < 1,

                      x = -1.5..1.5, y = -1.5..1.5))
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When giving more than one inequality, only those areas where all inequalities are
fulfilled are painted in blue (or whatever you set FillColorTrue to), while all
rectangles where any inequality is violated (over the whole rectangle) are colored red:

plot(plot::Inequality([x^2 + y^2 < 1, abs(x) > 1/3],

                      x = -1.5..1.5, y = -1.5..1.5))
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Example 2

To get a more detailed image from plot::Inequality, increase the mesh density:

plot(plot::Inequality([x^2 + y^2 < 1, abs(x) > 1/3],

                      x = -1.5..1.5, y = -1.5..1.5,

                      Mesh = [120, 80]))
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Example 3

Almost all parameters of plot::Inequality can be animated (the mesh is one
exception though):

plot(plot::Inequality([abs(x)^a + abs(y)^a < 1],

                      x = -1.5+sin(a)..1.5+sin(a),

                      y = -1.5+cos(a)..1.5+cos(a),

                      Mesh = [64, 64],

                      a = 1..2*PI+1))
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Parameters

ineq, ineq1, …

Inequalities to plot: Expressions of the form f(x, y) < g(x, y), f(x, y) <= g(x,
y), f(x, y) = g(x, y), f(x, y) >= g(x, y), or f(x, y) > g(x, y).

ineq, ineq1, … is equivalent to the attribute Inequalities.

x, y

Identifiers or indexed identifiers. These denote the free variables spanning the plane.

x, y are equivalent to the attributes XName, YName.

xmin .. xmax, ymin .. ymax

The ranges for x and y. xmin, xmax, ymin, and ymax must be real numerical values, or
expressions of the animation parameter a.
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xmin .. xmax, ymin .. ymax are equivalent to the attributes XRange, YRange.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Density | plot::Implicit2d | plot::Raster
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plot::Integral

Numerical approximation of an integral

Syntax

plot::Integral(f, <n>, <IntMethod = m>, <a = amin .. amax>, options)

Description

plot::Integral(f, IntMethod = m) visualizes the approximation of the integral of
the function f using the numerical quadrature method m. Riemann sums, the trapezoidal
rule, and the Simpson rule are available.

plot::Integral(f, n, IntMethod = m) uses n subintervals to approximate the
integral.

The attribute IntMethod determines the numerical method. Riemann sums, the
trapezoidal rule, or the Simpson rule are available. See the help page of IntMethod for
further details. Cf. “Example 1” on page 24-413.

plot::Integral does not plot the function graph of the integrand. If the integrand is to
be plotted, too, f has to be passed to the plot command together with the approximation
object of type plot::Integral.

If no quadrature method is specified by IntMethod = m, plot::Integral just hatches
the area between the function f and the x-axis.

Several plot::Integral objects can be plotted together to illustrate the difference
between various quadrature methods. The order of the objects in the plot command
determines the object in front.

The plot contains a text object providing information about the quadrature method, the
value of the approximation, the exact value of the integral, the quadrature error, and the
number of nodes. See the help page of the attribute ShowInfo for further details.
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::PaleBlue

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::PaleBlue

FillPattern type of area filling Solid

Frames the number of frames in an
animation

50

Function1 first function/curve
delimiting hatch

 

HorizontalAlignment horizontal alignment of
text objects w.r.t. their
coordinates

Left

IntMethod method for integral
approximation

Exact

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black

LineWidth width of lines 0.35

LineColor2 color of lines RGB::Grey

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat
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Attribute Purpose Default Value

LineColorFunction functional line coloring  
Name the name of a plot object (for

browser and legend)
 

Nodes number of subintervals
or list of x-values for
subintervals

[10]

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

ShowInfo Information about integral
approximation

[2, IntMethod, Integral]

TextFont font of text objects [" sans-serif ", 11]
TextRotation rotation of a 2D text 0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center
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Attribute Purpose Default Value

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

VerticalAlignment vertical alignment of
text objects w.r.t. their
coordinates

Bottom

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

If a single plot::Function2d object is given without specifying an approximation
method, plot::Integral just hatches the area between the function graph and the x-
axis:

f := plot::Function2d(cos(x), x = -PI..PI):

plot(plot::Integral(f), f)
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Note that plot::Integral requires an object of type plot::Function2d, not just a
function expression:

plot::Integral(sin(x))

Error: The first argument must be a 'plot::Function2d' object. [plot::Integral::new]

If an approximation method is specified, the numerical quadrature value computed by
this method is displayed:

plot(plot::Integral(f, IntMethod = RiemannLower))
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The number of quadrature intervals can be set by passing a second argument n or by
specifying Nodes = n:

plot(plot::Integral(f, 20, IntMethod = RiemannLower))
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To see the integrand in the plot, the function object must be passed together with the
approximation object. The order determines which object is in front:

plot(plot::Integral(f, IntMethod = RiemannLower), f)
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delete f:

Example 2

The displayed information can be configured by the user:

f := plot::Function2d(x^2, x = -5..5, Color = RGB::DarkGrey):

plot(plot::Integral(f, IntMethod = RiemannLower,

       ShowInfo = [1, IntMethod = "Riemann lower sum",

                   Integral = "Exact value",

                   2, Error = "Difference"]), f)
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delete f:

Example 3

One may combine several approximation objects, e.g., lower and upper sum:

f := plot::Function2d(x^2, x = -5..5):

plot(plot::Integral(f, IntMethod = RiemannUpper,

                       Color = RGB::Blue),

     plot::Integral(f, IntMethod = RiemannLower,

                       Color = RGB::LightYellow),

     f)
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The automatically placed information texts overlap. To correct this, the option ShowInfo
must be used. In the text of the upper sum, one additional empty line is inserted. Apart
from this, both objects use the default value, therefore there is not need to specify
ShowInfo in the second object:

plot(plot::Integral(f, IntMethod = RiemannUpper,

                       ShowInfo = [IntMethod, "", Integral]),

     plot::Integral(f, IntMethod = RiemannLower,

                       Color = RGB::LightYellow),

     f)
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The info text can be positioned explicitly:

plot(plot::Integral(f, IntMethod = RiemannUpper,

                       ShowInfo = [IntMethod, Integral,

                                   Position = [-5, -1]],

                       VerticalAlignment = Top),

     plot::Integral(f, IntMethod = RiemannLower, Color = RGB::Yellow,

                       ShowInfo = [IntMethod,

                                   Position = [0, -1]],

                       VerticalAlignment = Top),

     f)
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delete f:

Example 4

plot::Integral can be animated:

f := plot::Function2d(sin(a*x), x = 0..PI, a = 1..5):

plot(plot::Integral(f, 50, IntMethod = RiemannMiddle), f)
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Increasing the number of nodes decreases the quadrature error:

f := plot::Function2d(sin(x), x = 0..PI):

plot(plot::Integral(f, N, N = 10..50, IntMethod = RiemannLower), f)
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The function and the number of nodes can be animated simultaneously:

f := plot::Function2d(sin(a*x), x = 0..PI, a = 1..5):

plot(plot::Integral(f, N, N = 10..50, IntMethod = RiemannLower), f)
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delete f:

Parameters

f

The integrand: an object of type plot::Function2d.

f is equivalent to the attribute Function1.

n

The number of subintervals (a positive integer) or a list of real numbers representing
nodes of the integration variable.

n is equivalent to the attribute Nodes.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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Options

IntMethod

Option, specified as IntMethod = m

The quadrature method; see IntMethod

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Function2d | plot::Hatch | plot::Text2d
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plot::Iteration
Plotting iterated functions

Syntax
plot::Iteration(f, x0, <n>, x = xmin .. xmax, <a = amin .. amax>, options)

Description
plot::Iteration(f, x0, n, x = `x_{min}` .. `x_{max}`) is a graphical object
visualizing the iteration xi = f(xi - 1) (i = 1, …, n) of the given starting point x0.

The iteration is visualized by connecting the points (x0, 0) and (x0, x1) by a vertical line.
For any step of the iteration, a horizontal line is drawn from the point (xi - 1, xi) (on the
graph of f) to the point (xi, xi) on the main diagonal. From there, a vertical line is drawn
to the next pair (xi, xi + 1) of the iteration.

The iteration object neither includes the graph of the function y = f(x) nor the main
diagonal y = x. You need to plot them separately if you wish the function and/or the
diagonal to be in your picture! See the examples.

The iteration is stopped prematurely when the iterated point leaves the plot range
`x_{min}`..`x_{max}`. Cf. “Example 3” on page 24-433.

Despite the fact that the number of iterations n represents an integer, it can be
animated! Cf. “Example 4” on page 24-435

The default color used for the iteration plot is RGB::Grey50. It can be modified by
setting the attribute Color or LineColor. Cf. “Example 1” on page 24-429.

The default line style is solid. It can be modified by setting the attribute LineStyle.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

AntiAliased antialiased lines and points? FALSE

Color the main color RGB::Grey50

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

Iterations number of iterations in
plot::Iteration

10

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Grey50

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

StartingPoint starting point of the
iteration

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0
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Attribute Purpose Default Value

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x”  
XMin initial value of parameter

“x”
 

XName name of parameter “x”  
XRange range of parameter “x”  
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Examples

Example 1

We consider the logistic map for the parameter value 3, i.e., the parabola f(x) = 3 x (1 - x)
for x ∈ [0, 1]. We iterate the starting point x0 = 0.5:

f :=  plot::Function2d(3*x*(1 - x), x = 0..1, 

                       Color = RGB::Blue):

x0 := 0.5:

We plot the iteration (without specifying the number of iterations), the parabola f and the
diagonal line g(x) = x:

g := plot::Function2d(x, x = 0..1, Color = RGB::Red):  

it := plot::Iteration(3*x*(1 - x), x0, x = 0..1):   

plot(f, g, it)

We increase the number of iterations to 50 and change the color of the lines to
RGB::Black:
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it::Iterations := 50:

it::Color := RGB::Black:

plot(f, g, it)

Finally, we animate the number of steps, allowing to follow the course of the iteration:

it := plot::Iteration(3*x*(1 - x), x0, n, x = 0..1,

                      n = 1..50, Color = RGB::Black):

plot(f, g, it)
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delete f, g, it:

Example 2

We consider the logistic map f(x) = a x (1 - x) for x ∈ [0, 1] and the animation parameter a
running from a = 2 to a = 4:

f := plot::Function2d(a*x*(1 - x), x = 0..1, a = 2..4,

                      Color = RGB::Black):

We define the iteration of the starting point x0 = 0.2 by f and plot it together with the
function graph of f(x) and the diagonal line g(x) = x:

g := plot::Function2d(x, x = 0..1, Color = RGB::Black):

it1 := plot::Iteration(a*x*(1 - x), 0.2, 30, x = 0..1, 

                       a = 2..4, Color = RGB::Red):

plot(f, g, it1)
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We define an additional iteration starting at x0 = 0.21 and add it to the plot:

it2 := plot::Iteration(a*x*(1 - x), 0.21, 30, x = 0..1, 

                       a = 2..4, Color = RGB::Blue):

plot(f, g, it1, it2)
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For small values of a, the two iterations converge to the same fixed point. When a
approaches the value 4, the iterations drift into chaos.

delete f, g, it1, it2:

Example 3

Consider the iteration of the starting point x0 = 0.2 by the logistic map f(x) = x (x - 1) with
the plot range x ∈ [0, 1]:

f := plot::Function2d(x*(x - 1), x = 0..1):

it := plot::Iteration(x*(x - 1), 0.2, x = 0..1):

plot(f, it)
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We see that only one step of the iteration is plotted. The reason is that the point x1 = f(x0)
is negative and, hence, not contained in the requested plot range x = 0..1. We modifiy
the plot range:

f::XRange:= -0.5..1:

it::XRange:= -0.5..1:

plot(f, it)
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delete f, it:

Example 4

We animate the parameter n that sets the number of iterations. We set the time range
for the animation to 40 (seconds). Using Frames, the total number of frames is chosen
such that approximately 10 frames are used to visualize the step from n to n + 1:

f := plot::Function2d(4*x*(1 - x), x = 0..1):

g := plot::Function2d(x, x = 0..1):

it := plot::Iteration(4*x*(1 - x), 0.4, n, x = 0..1, 

                      LineStyle = Dashed,

                      n = 0..40, Frames = 411,

                      TimeRange = 0..40):

plot(f, g, it)
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delete f, g, it:

Parameters

f

The iteration function: an arithmetical expression in the independent variable x and the
animation parameter a. Alternatively, a  procedure that accepts 1 input parameter x or 2
input parameters x, a and returns a real numerical value when the input parameters are
numerical.

f is equivalent to the attribute Function.

x0

The starting point for the iteration: x0 must be a numerical real value or an expression in
the animation parameter a.

x0 is equivalent to the attribute StartingPoint.

24-436



 plot::Iteration

n

The number of iterations: n must be a positive integer or an expression in the animation
parameter a.

n is equivalent to the attribute Iterations.

x

The independent variable: an identifier or an indexed identifier.

x is equivalent to the attribute XName.

xmin .. xmax

The plot range: xmin, xmax must be numerical real values or expressions in the animation
parameter a.

xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Lsys
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plot::Line2d
2D line segments

Syntax
plot::Line2d([x1, y1], [x2, y2], <a = amin .. amax>, options)

Description

plot::Line2d([x1, y1], [x2, y2]) creates a 2D line segment between the points
(x1, y1) and (x2, y2).

The end points can be passed as lists or vectors.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::Blue

Extension line extensions Finite

Frames the number of frames in an
animation

50

From starting point of arrows and
lines

[0, 0]

FromX starting point of arrows and
lines, x-coordinate

0

FromY starting point of arrows and
lines, y-coordinate

0

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component
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Attribute Purpose Default Value

To end point of arrows and
lines

[1, 0]

ToX end point of arrows and
lines, x-coordinate

1

ToY end point of arrows and
lines, y-coordinate

0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create a 2D line segement:

plot(plot::Line2d([1, 2], [3,-1]))
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Change the LineStyle from the default Solid value to Dashed or Dotted. Also, set
LineColor and LineWidth explicitly:

plot(plot::Line2d([1, 2], [3, -1], 

                  LineStyle = Dashed, 

                  LineWidth = 2.5*unit::mm, 

                  LineColor = RGB::Green))
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Parameters

x1, y1

Coordinates of one end point: real numerical values or arithmetical expressions of the
animation parameter a.

x1, y1 are equivalent to the attributes FromX, FromY.

x2, y2

Coordinates of the other end point: real numerical values or arithmetical expressions of
the animation parameter a.

x2, y2, z2 are equivalent to the attributes ToX, ToY, ToZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Line3d | plot::Polygon2d | plot::Polygon3d | plot::Rectangle
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plot::Line3d
3D line segments

Syntax
plot::Line3d([x1, y1, z1], [x2, y2, z2], <a = amin .. amax>, options)

Description

plot::Line3d([x1, y1, z1], [x2, y2, z2]) creates a 3D line segment from (x1, y1,
z1) to (x2, y2, z2).

The end points can be passed as lists or vectors.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Blue

Extension line extensions Finite

Frames the number of frames in an
animation

50

From starting point of arrows and
lines

[0, 0, 0]

FromX starting point of arrows and
lines, x-coordinate

0

FromY starting point of arrows and
lines, y-coordinate

0

FromZ starting point of arrows and
lines, z-coordinate

0

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component
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Attribute Purpose Default Value

TitlePositionZ position of object titles, z
component

 

To end point of arrows and
lines

[1, 0, 0]

ToX end point of arrows and
lines, x-coordinate

1

ToY end point of arrows and
lines, y-coordinate

0

ToZ end point of arrows and
lines, z-coordinate

0

Tubular display 3D arrows and lines
as tubes?

FALSE

TubeDiameter diameter of tubular arrows
and lines.

1.0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Plot two animated 3D line segments starting off parallel and ending up skew:

plot(plot::Line3d([0, 0, 0], [a, a, 1], a = 0..1),
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     plot::Line3d([1, 0, 0], [a, 0, 1], a = 1..0))

In addition to LineStyle, LineColor and LineWidth, 3D line segments support the
style option Tubular. If this is set to TRUE, the TubeDiameter can be set explicitly:

plot(plot::Line3d([0.1, 0, 0], [1, 0, 0]),

     plot::Line3d([0, 0.1, 0], [0, 1, 0]), 

     plot::Line3d([0, 0, -0.1], [0, 0,-1]), 

     ViewingBox = [-0.2..1.2,  -0.2..1.2, -1..0.2],

     Tubular = TRUE, TubeDiameter = 5.0*unit::mm)
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Parameters

x1, y1, z1

Coordinates of one end point: real numerical values or arithmetical expressions of the
animation parameter a.

x1, y1, z1 are equivalent to the attributes FromX, FromY, FromZ.

x2, y2, z2

Coordinates of the other end point: real numerical values or arithmetical expressions of
the animation parameter a.

x2, y2, z2 are equivalent to the attributes ToX, ToY, ToZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Line2d | plot::Polygon2d | plot::Polygon3d | plot::Rectangle
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plot::Listplot

Finite lists of 2D points

Syntax

plot::Listplot([y1, y2, …], <x = xmin .. xmax>, <a = amin .. amax>, options)

plot::Listplot(A1, <x = xmin .. xmax>, <a = amin .. amax>, options)

plot::Listplot([[x1, y1], [x2, y2], …], <a = amin .. amax>, options)

plot::Listplot(A2, <a = amin .. amax>, options)

Description

plot::Listplot serves for visualizing discrete data values [y1, y2, …]. If no range
x = `x_{min}` .. `x_{max}` is specified, the data are plotted as the points [x1,
y1], [x2, y2] etc. with equidistant x-values x1 = 1, x2 = 2 etc. If a range x =
`x_{min}` .. `x_{max}` is specified, equidistant x-values between xmin and xmax are
used.

If the data are specified as a list of coordinate pairs [[x1, y1], [x2, y2], …],
plot::Listplot generates plot points with these coordinates.

With the attribute LinesVisible = TRUE, each pair of consecutive data points is
connected by a curve.

With InterpolationStyle = Linear (default), the points are connected by straight
line segments.

With InterpolationStyle = Cubic, a cubic spline curve is used to connect the points.
The spline curve between two data points is rendered as a collection of m + 1 straight line
segments, where m is specified by the attribute Submesh = m.

Use LinesVisible = FALSE, if only the data points without connecting lines are to be
rendered.
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Data the (statistical) data to plot  
FillColorDirection the direction of color

transitions on surfaces
[0, 0]

Frames the number of frames in an
animation

50

InterpolationStyle interpolation via linear or
cubic splines

Linear

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1
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Attribute Purpose Default Value

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointColor the color of points RGB::Black

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points TRUE

Submesh density of submesh
(additional sample points)

6

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component
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Attribute Purpose Default Value

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x”  
XMin initial value of parameter

“x”
 

XName name of parameter “x”  
XRange range of parameter “x”  
XSubmesh density of additional sample

points for parameter “x”
6

Examples

Example 1

We plot 5 discrete data values as points with equidistant x-values 1, 2, 3, 4, 5:

plot(plot::Listplot([1, 0, 1, 0, 1]))
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We plot two data samples and place them side by side by specifying suitable ranges for
the horizontal variable:

plot(plot::Listplot([1, 0, 2, 1], x = 0..1, Color = RGB::Red),

     plot::Listplot([0, 1, 0, 2], x = 1..2, Color = RGB::Blue))
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We specify x-coordinates for the data points:

plot(plot::Listplot([[0.1, 1], [0.15, 0], [0.2, 1], 

                     [0.3, 0], [0.5, 1]]))
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Example 2

We demonstrate the difference between linear and cubic spline interpolation:

plot(plot::Listplot([10, 0, 20, 0, 30], Color = RGB::Red,

                     InterpolationStyle = Linear),

     plot::Listplot([10, 0, 20, 0, 30], Color = RGB::Blue,

                    InterpolationStyle = Cubic))
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We smoothen the cubic spline curve by increasing the Submesh value:

plot(plot::Listplot([10, 0, 20, 0, 30], Color = RGB::Red,

                     InterpolationStyle = Linear),

     plot::Listplot([10, 0, 20, 0, 30], Color = RGB::Blue,

                    InterpolationStyle = Cubic, Submesh = 12))
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Example 3

A random variable describing the number of successes in n Bernoulli trials with success
probability p is binomially distributed with expectation value n p and variance n p (1 -
p). For large values of n, the binomial distribution is approximated by a corresponding
normal distribution.

We use plot::Listplot to visualize the discrete probability values of the binomial
distribution. The normal distribution is visualized via plot::Function2d:

n := 10: p:= 0.4:

plot(plot::Listplot([stats::binomialPF(n, p)(i) $ i = 0..n], 

                     x = 0..n, Color = RGB::Red),

     plot::Function2d(stats::normalPDF(n*p, n*p*(1 - p))(x), 

                      x = 0..n, Color = RGB::Blue)):
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delete n, p:

Parameters

y1, y2, …

Vertical coordinates: numerical values or expressions of the animation parameter a.

y1, y2, … is equivalent to the attribute Data.

x

Name of the horizontal coordinate: an identifier or an indexed identifier. It is used as the
title of the coordinate axis in x direction.

x is equivalent to the attribute XName.

xmin .. xmax

The range of the horizontal coordinate: xmin, xmax must be numerical real value or
expressions of the animation parameter a.

24-459



24 Graphics and Animations

xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

A1

A 1-dimensional array of domain type DOM_ARRAY or a matrix of category Cat::Matrix
(e.g., of type matrix or densematrix) with 1 row or 1 column. The entries must be
numerical real values or arithmetical expressions of the animation parameter a. The
entries in A1 are regarded as data values [y1, y2] etc..

A1 is equivalent to the attribute Data.

x1, x2, …

Horizontal coordinates: numerical values or expressions of the animation parameter a.

A2

A 2-dimensional array of domain type DOM_ARRAY or a matrix of category Cat::Matrix
(e.g., of type matrix or densematrix) with at least two rows and two columns. The
entries must be numerical real values or arithmetical expressions of the animation
parameter a. The i-th row is regarded as the data point (xi, yi). If more than 2 columns
are provided, only the data in the first two columns are considered; all additional
columns are ignored.

A2 is equivalent to the attribute Data.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::PointList2d | plot::Polygon2d | plot::Scatterplot
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plot::Lsys

Lindenmayer systems

Syntax

plot::Lsys(alpha, start, trans, …, <a = amin .. amax>, options)

Description

plot::Lsys creates Lindenmayer systems, i.e., string rewriting systems controlling
turtle graphics.

Lindenmayer systems, or L-systems for short, are based on the concept of iteratively
transforming a string of symbols into another string. After a finite number of iterations,
the resulting string is translated into a sequence of movement commands to a
“turtle” (see plot::Turtle), which can be drawn on the screen.

In plot::Lsys, the string of symbols is represented by a string of characters, i.e., a
DOM_STRING. Transformation rules are given as equations mapping strings of length 1 to
strings of arbitrary length. Turtle rules are given as equations mapping strings of length
1 to simple movement commands: Line, Move, Left, Right, Push, Pop, Noop, or a color
specification.

The commands are mostly self-explanatory. Left and Right turn by the amount set in
the slot "RotationAngle"; the initial direction is “up”. Line and Move move by the
amount set in "StepLength", where Move does not draw a line. Push stores the current
state (position, direction, color) on a stack from where it can later be reactivated using
Pop. Noop means “ignore this, no operation”. A color specification changes the line color.

The following turtle rules are used by default (but can be disabled by giving other rules
for the left-hand sides):

"F" = Line, "f" = Move, "[" = Push, "]" = Pop, "+" = Left, "-" = Right.
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? FALSE

Color the main color RGB::Blue

Frames the number of frames in an
animation

50

Generations number of iterations of L-
system rules

5

IterationRules iteration rules of an L-
system

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter
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Attribute Purpose Default Value

ParameterRange range of the animation
parameter

 

RotationAngle angle of rotation commands
in L-systems

 

StartRule start rule of an L-system  
StepLength length of movement

commands in L-systems
1.0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TurtleRules rules translating L-
system symbols to turtle
movements

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range
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Attribute Purpose Default Value

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

As a very simple system, we consider the following iteration rule: “replace each line
forward by the sequence “line forward, move forward without painting, line forward.””:

l := plot::Lsys(0, "F", "F" = "FfF"):

Note that we do not provide an iteration rule for "f". This means “leave f alone, do not
change it.”

The start state is displayed by plotting the system after zero generations:

l::Generations := 0:

plot(l)
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Increasing the number of generations, we see the effect of our transformation rule:

l::Generations := 1:

plot(l)
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l::Generations := 2:

plot(l)
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l::Generations := 3:

plot(l)
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The following variant of this simple example produces approximations to the Cantor set:

l := plot::Lsys(0, "F", "F" = "FfF", "f" = "fff"):

plot(l)
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Example 2

To get more interesting examples, we include rotations into our rules:

l := plot::Lsys(PI/2, "F-F-F-F", "F" = "F-F+F+FF-F-F+F",

                Generations = 3)

As you can see, plot::Lsys has detected that our rule is an iteration rule. We could
have used this syntax directly when creating the object. We have not given turtle rules,
so the defaults are used:

plot(l)

24-469



24 Graphics and Animations

Example 3

The Peano curve is a famous example of a space filling curve. In the limit process,
increasing the number of iterations while decreasing the length of the forward steps, it
actually fills the plane. There are different constructions known, the one shown here fills
a square tilted by :

peano := plot::Lsys(PI/2, "F", "F" = "F+F-F-F-F+F+F+F-F"):

The transformation rule says to replace each straight line with the following
construction:

peano::Generations := 1:

plot(peano)
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After a few iterations, the lines already get very close to one another:

peano::Generations := 5:

plot(peano)
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Example 4

Many L-systems contain different types of lines: While they are drawn exactly the same,
their transformation rules are different from one another. The following example shows
an image similar to the Sierpinski triangle:

l := plot::Lsys(PI/3, "R", "L" = "R+L+R", "R" = "L-R-L",

                         "L" = Line, "R" = Line,

                Generations = 7):

plot(l)
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Example 5

The Push and Pop operations can be used to draw “arms” in an L-system:

plot(plot::Lsys(23*PI/180, "F", "F" = "FF-[-F+F+F]+[+F-F-F]",

                Generations = 4))
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Example 6

L-systems have been used to simulate plant growth. We show an example here that uses
the symbols B, H, and G to change the color of lines:

l := plot::Lsys(PI/9, "BL", "L" = "BR[+HL]BR[-GL]+HL", 

                "R" = "RR", "L" = Line, "R" = Line, 

                "B" = RGB::Brown, "H" = RGB::ForestGreen, 

                "G" = RGB::SpringGreen, Generations = 6):

plot(l)
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The attribute Generations can be animated. This way, we can actually make the
“plant” “grow:”

plot(plot::Lsys(a*PI/45, "BL", "L" = "BR[+HL]BR[-GL]+HL", "R" = "RR",

                "L" = Line, "R" = Line, "B" = RGB::Brown, 

                "H" = RGB::ForestGreen, "G" = RGB::SpringGreen,

                 Generations = a, a = 1 .. 6)):
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Example 7

L-systems can display a couple of popular fractals. One example is the Koch snowflake,
generated by replacing each straight line with a straight line, followed by a left turn of

, another straight line, a right turn of , another straight line, another left turn of
 and a final straight line:

koch := plot::Lsys(PI/3, "F--F--F", "F" = "F+F--F+F"):

The starting rule has been chosen to be an equilateral triangle:

koch::Generations := 0:

plot(koch)
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The first generation looks like this:

koch::Generations := 1:

plot(koch)
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The limit is pretty well approximated after five generations:

koch::Generations := 5:

plot(koch)
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Finally, we use plot::modify and the "StepLength" slot to show the first couple of
iterations superimposed on one another:

colors := [RGB::Red, RGB::Green, RGB::Blue, RGB::Yellow, RGB::DimGrey]:

plot(plot::modify(koch, Generations = i, 

                  StepLength = 3^(-i), 

                  LineColor = colors[i+1]) $ i = 0..4)
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Example 8

Another well-known example of a fractal generated by an L-system is Heighway's Dragon
curve. Informally, it is generated by “drawing a right angle and then replacing each right
angle by a smaller right angle” (Gardner). It has been used in the book “Jurassic Park”
by Michael Crichton and thereby got another nickname, the “Jurassic Park fractal:”

plot(plot::Lsys(PI/2, "L", "L" = "L+R+", "R" = "-L-R", 

                "L" = Line, "R" = Line, Generations = 9))
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It is interesting to note that the iteration rules of this curve are equivalent to appending
a mirrored copy of the curve to its end:

plot(plot::Lsys(PI/2, "L", "L" = "L+R+", "R" = "-L-R",

                "L" = Line, "R" = Line, Generations = a, 

                a = 1..9))
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Example 9

While the L-system of the previous example corresponds to the definition found in the
literature, the images in at least one popular source show another system (while the
definition given is the one from above), namely:

plot(plot::Lsys(PI/4, "X-F-Y", "X" = "X+F+Y", "Y" = "X-F-Y",

                "X" = Line, "Y" = Line, Generations = 9)):
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Example 10

An L-system may contain letters that are not meant to show in the final graphic, so they
form some sort of “markers” for subsequent iteations. For this purpose, you may use the
turtle rule Noop:

plot(plot::Lsys(PI/12,

                "X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X+X",

                "X" = "[F+F+F+F[---X-Y]+++++F++++++++F-F-F-F]",

                "Y" = "[F+F+F+F[---Y]+++++F++++++++F-F-F-F]",

                "X" = Noop, "Y" = Noop,

                Generations = 3))
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plot(plot::Lsys(PI/2, "FB", 

                "A" = "FBFA+HFA+FB-FA", "B" = "FB+FA-FB-JFBFA",

                "F" = "", "H" = "-", "J" = "+",

                "A" = Noop, "B" = Noop, "H" = Noop, "J" = Noop))
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Example 11

Using this rule, we can use the following formulation of the popular Hilbert curve due to
Ken Philip:

plot(plot::Lsys(PI/2, "x", "x" = "-yF+xFx+Fy-", "y" = "+xF-yFy-Fx+",

                "x" = Noop, "y" = Noop))
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To animate the creation process of the Hilbert curve, we adjust the length of the lines to
the current number of iteration steps:

plot(plot::Lsys(PI/2, "x", "x" = "-yF+xFx+Fy-", "y" = "+xF-yFy-Fx+",

                "x" = Noop, "y" = Noop,

                Generations = i, StepLength = 1/(2^i-1),

                i = 1..6, Frames = 6))
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Example 12

In some cases, systems will need small angles and long strings in order to specify the
desired directions. Take for example the following system:

plot(plot::Lsys(7*PI/15, "F", "F"="F+F--F+F",

                Generations=4))
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The rotations to the right use an angle of , while that to the left (the sharp spike) is

a turn of . It would look more natural, however, to have the turtle start to the right,

i.e., at an angle of . Since no multiple of  is equal to  modulo 2 π, this requires

that we use a smaller angle, adjusting our iteration rule:

plot(plot::Lsys(7*PI/30,"+++++++++++++++F",

                "F"="F++F----F++F", Generations=4))

24-488



 plot::Lsys

Parameters

alpha

Angle (in radians) for turning commands. Animatable.

alpha is equivalent to the attribute RotationAngle.

start

String used as the starting rule.

start is equivalent to the attribute StartRule.

trans, …

Iteration and Turtle command rules (see below).

trans, … is equivalent to the attributes IterationRules, TurtleRules.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Algorithms

Lindenmayer systems are “string rewriting systems.” MuPAD implements only context-
free L-systems, which are analyzed in a similar context as context-free grammars.

Many examples of L-systems can be found, among other places, in “The Fractal Geometry
of Nature” by Benoît Mandelbrot.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Turtle
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plot::Matrixplot
Surface plot of matrix data

Syntax
plot::Matrixplot(A, options)

plot::Matrixplot(A, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Matrixplot(row1, row2, …, options)

plot::Matrixplot(row1, row2, …, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Matrixplot([row1, row2, …], options)

plot::Matrixplot([row1, row2, …], x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Matrixplot(s, <c1, c2, …>, options)

plot::Matrixplot(s, <c1, c2, …>, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Matrixplot(s, <[c1, c2, …]>, options)

plot::Matrixplot(s, <[c1, c2, …]>, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

Description

plot::Matrixplot(A) visualizes the matrix A as a 3D function graph by interpolating
the matrix values as a function of the matrix indices.

Matrixplot interprets the indices of a matrix as x and y coordinates and the
corresponding matrix entry as the corresponding z coordinate. Thus, the matrix is
regarded as a discretized function in 2 variables. The function graph is displayed as a 3D
surface using interpolation between the data points.

If no ranges x = `x_{min}` .. `x_{max}`, y = `y_{min}` .. `y_{max}` are
specified, the matrix entry A[i, j] is diplayed as the 3D point x = j, y = i, z = A[i, j]
with integer positions i, j. If plot ranges are specified, the matrix indices i, j are used to
define an equidistant mesh in the plot range.
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The attribute InterpolationStyle allows to define the surface via linear or cubic
spline interpolation of the data points: Choose between InterpolationStyle = Linear
or InterpolationStyle = Cubic. The default is linear interpolation. With cubic
interpolation, the data surface may be smoothened by setting the numbers mx, my of plot
points between the data points via the attribute Submesh = [mx, my]. The numbers mx,
my must be (small) non-negative integers.

With InterpolationStyle = Linear, symbolic values and complex numbers are
accepted and ignored, leading to gaps in the surface. With InterpolationStyle =
Cubic, symbolic values or complex numbers lead to an error. Cf. “Example 4” on page
24-501.

Per default, the data points are rendered on the surface. Use PointsVisible = FALSE
to make them disappear.

Animations are triggered by specifying a range a = `a_{min}` .. `a_{max}` for
a parameter a that is different from the variables x, y. Thus, in animations, both the
ranges x = `x_{min}` .. `x_{max}`, y = `y_{min}` .. `y_{max}` as well as
the animation range a = `a_{min}` .. `a_{max}` must be specified.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Red

Data the (statistical) data to plot  
Filled filled or transparent areas

and surfaces
TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring
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Attribute Purpose Default Value

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

InterpolationStyle interpolation via linear or
cubic splines

Linear

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0
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Attribute Purpose Default Value

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointColor the color of points RGB::MidnightBlue

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points TRUE

Shading smooth color blend of
surfaces

Smooth

Submesh density of submesh
(additional sample points)

[2, 2]

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  

24-494



 plot::Matrixplot

Attribute Purpose Default Value

TitleAlignment horizontal alignment of
titles w.r.t. their coordinates

Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XLinesVisible visibility of parameter lines
(x lines)

TRUE

XMax final value of parameter “x”  
XMin initial value of parameter

“x”
 

XName name of parameter “x”  
XRange range of parameter “x”  
XSubmesh density of additional sample

points for parameter “x”
2

YLinesVisible visibility of parameter lines
(y lines)

TRUE

YMax final value of parameter “y”  
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Attribute Purpose Default Value

YMin initial value of parameter
“y”

 

YName name of parameter “y”  
YRange range of parameter “y”  
YSubmesh density of additional sample

points for parameter “y”
2

Examples

Example 1

This example demonstrates the general calling syntax. The data are passed in different
ways using a list of rows, an array, and a matrix, respectively:

A := [[2, 1, 1],

      [3, 4, 3],

      [3, 5, 4],

      [2, 6, 5]]:

plot(plot::Matrixplot(A))
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With InterpolationStyle = Cubic, the matrix data are plotted as a cubic spline
surface:

A := array(1..4, 1..3, A):

plot(plot::Matrixplot(A, InterpolationStyle = Cubic)):
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The spline surface can be smoothened by using the Submesh attribute to add further
evaluation points:

A := matrix(A):

plot(plot::Matrixplot(A, Submesh = [6, 6],

                      InterpolationStyle = Cubic)):
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delete A:

Example 2

Various plot attributes can be specified:

plot(plot::Matrixplot(

   [[-0.5,   0.5, 0.7, 0.5, -1  ], 

    [ 1.2, 1.3, 1.4, 1.4,  1  ],

    [ 1.4, 1.5, 1.6, 1.5,  1.2], 

    [ 0.6, 0.8, 1,   1,    1  ],

    [-0.7, 0.5, 0.5, 0,   -1  ]],

    PointsVisible = FALSE, 

    FillColor = RGB::Green,

    LineColor = RGB::Red))
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Example 3

Choosing appropriate coordinate ranges, we place two matrix plots side by side:

plot(plot::Matrixplot(matrix::random(5, 5, frandom),

                      x = 0..1, y = 0..1, 

                      Color = RGB::Red),

     plot::Matrixplot(matrix::random(6, 6, frandom),

                      x = 2..3, y = 0..1,

                      Color = RGB::Green),

     Scaling = Constrained)
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Example 4

We plot a Hilbert matrix:

A := linalg::hilbert(10):

plot(plot::Matrixplot(A), CameraDirection = [3, 2, 1])
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Some of the entries are replaced by values that cannot be plotted. Consequently, the plot
contains holes:

A[2, 2] := NIL:

A[4, 5] := infinity:

A[5, 5] := x:

plot(plot::Matrixplot(A), CameraDirection = [3, 2, 1])
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With InterpolationStyle = Cubic, an error is raised:

plot(plot::Matrixplot(A, InterpolationStyle = Cubic))

Error: Data contains nonreal numeric values. Use 'Style = Linear' to plot matrices containing such data. [plot::Matrixplot::doPlotStatic]

  Evaluating: plot

delete A:

Parameters

A

A matrix of category Cat::Matrix or an array containing real numerical values or
expressions of the animation parameter a.

A is equivalent to the attribute Data.
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row1, row2, …

The matrix rows: each row must be a list of real numerical values or expressions of the
animation parameter a. All rows must have the same length.

row1, row2, … is equivalent to the attribute Data.

s

A data sample of domain type stats::sample.

s is equivalent to the attribute Data.

c1, c2, …

Column indices of s: positive integers. These indices, if given, indicate that only the
specified columns should be used. The indexed columns must contain real numerical
values or expressions of the animation parameter a, If no columns are specified, all
columns of s are used.

x

Name of the first coordinate: an identifier or an indexed identifier. It is used as the title
of the coordinate axis in x direction.

x is equivalent to the attribute XName.

xmin .. xmax

The range of the first coordinate: xmin, xmax must be numerical real value or expressions of
the animation parameter a.

xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

y

Name of the second coordinate: an identifier or an indexed identifier. It is used as the
title of the coordinate axis in y direction.

y is equivalent to the attribute YName.

ymin .. ymax

The range of the second coordinate: ymin, ymax must be numerical real value or
expressions of the animation parameter a.
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ymin .. ymax is equivalent to the attributes YRange, YMin, YMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Function3d | plot::Surface

24-505



24 Graphics and Animations

plot::MuPADCube
“the cube” (the logo)

Syntax
plot::MuPADCube(<r>, <[cx, cy, cz]>, <a = amin .. amax>, options)

Description
plot::MuPADCube() creates the “MuPAD cube” as a graphical 3D primitive.

This object only exists for demonstration purposes.

plot::MuPADCube accepts the attribute Colors which defines the colors of the spheres
and the cylinders between the spheres. Its value is a list of RGB or RGBa colors:

• The color list may contain one to four values determining the colors of the spheres.
• If a 5th color is given, it determines the color of the cylinders.
• If the list contains nine colors (not less), the first and last four determine the colors of

the 8 spheres. The fifth color determines the color of the cylinders.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0
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Attribute Purpose Default Value

Colors list of colors to use [RGB::Green, RGB::Blue,
RGB::Red, RGB::Yellow,
RGB::Antique]

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Radius radius of circles, spheres
etc.

1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center
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Attribute Purpose Default Value

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

The MuPAD logo:

plot(plot::MuPADCube())
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The MuPAD logo with strange colors:

plot(plot::MuPADCube(Colors = [RGB::Titanium $ 4, RGB::Gold],

                     BackgroundColor = RGB::Cobalt))
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A collection of “MuPAD cubes”:

plot(plot::MuPADCube(Center = [2*k, 2*l, 2*m])

                     $ k = 0..1 $ l = 0..1 $ m = 0..1)
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The MuPAD logo with animated size:

plot(plot::MuPADCube(1 - abs(a), [0, 0, 0], a = -1..1))
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Parameters
r

The size of the object (the radius of the surrounding sphere): a real numerical value or an
arithmetical expression of the animation parameter a. The default value of the radius is
1.

r is equivalent to the attribute Radius.

cx, cy, cz

The coordinates of the center: real numerical values or arithmetical expressions of the
animation parameter a. By default, a cube centered at the origin is created.

cx, cy, cz are equivalent to the attributes CenterX, CenterY, CenterZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Cone | plot::Cylinder | plot::Sphere
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plot::Ode2d
2D plots of ODE solutions

Syntax
plot::Ode2d(f, [t0, t1,...], Y0, <[G1, <Style = style1>, <Color = c1>], [G2, <Style = style2>, <Color = c2>], …>, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <a = amin .. amax>, options)

plot::Ode2d(f, [Automatic, tstart, tend, tstep], Y0, <[G1, <Style = style1>, <Color = c1>], [G2, <Style = style2>, <Color = c2>],...>, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <a = amin .. amax>, options)

plot::Ode2d([t0, t1, …], f, Y0, <[G1, <Style = style1>, <Color = c1>], [G2, <Style = style2>, <Color = c2>],...>, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <a = amin .. amax>, options)

plot::Ode2d([Automatic, tstart, tend, tstep], f, Y0, <[G1, <Style = style1>, <Color = c1>], [G2, <Style = style2>, <Color = c2>],...>, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <a = amin .. amax>, options)

Description

plot::Ode2d(f, [t0, t1,...], Y0) renders two-dimensional projections of the
solutions of the initial value problem given by f, t0 and Y0.

plot::Ode2d(f, [t0, t1,...], Y0, [G]) computes a mesh of numerical sample
points Y(t0), Y(t1), … representing the solution Y(t) of the first order differential equation
(dynamical system)

.

The procedure

maps these solution points (ti, Y(ti)) in ℝ×ℂn to a mesh of 2D plot points [xi, yi]. These
points can be connected by straight lines or interpolating splines.

Internally, a sequence of numerical sample points

Y_1 := numeric::odesolve(f, t_0..t_1, Y_0, Options),

Y_2 := numeric::odesolve(f, t_1..t_2, Y_1, Options), and so on
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is computed, where Options is some combination of method, RelativeError = rtol,
AbsoluteError = atol, and Stepsize = h. See numeric::odesolve for details on
the vector field procedure f, the initial condition Y0, and the options.

The utility function numeric::ode2vectorfield can be used to produce the input
parameters f, t0, Y0 from a set of differential expressions representing the ODE. See
“Example 1” on page 24-519.

Each of the “generators of plot data” G1, G2 etc. creates a graphical solution curve from
the numerical sample points Y0, Y1, and so on. Each generator G is internally called in the
form G(t0, Y0), G(t1, Y1),... to produce a sequence of plot points in 2D.

The solver numeric::odesolve returns the solution points Y0, Y1, and so on, as
lists or one-dimensional arrays (the actual type is determined by the initial value
Y0). Consequently, each generator G must accept two arguments (t, Y): t is a real
parameter, Y is a “vector” (either a list or a 1-dimensional array).

Each generator must return a list with 2 elements representing the (x, y) coordinates of
the graphical point associated with a solution point (t, Y) of the ODE. All generators
must produce graphical data of the same dimension, that is, 2D data as lists with 2
elements for plot::Ode2d. Here are some examples:

• G := (t, Y) -> [t, Y_1] creates a 2D plot of the first component of the solution
vector along the y-axis, plotted against the time variable t along the x-axis

• G := (t, Y) -> [Y_1, Y_2] creates a 2D phase plot, plotting the first component
of the solution along the x-axis and the second component along the y-axis. The result
is a solution curve in phase space (parametrized by the time t).

If no generators are given, plot::Ode2d by default plots all components of the solution
as functions of time, using [Splines, Points] as the style.

Note that arbitrary values associated with the solution curve may be displayed
graphically by an appropriate generator G. See “Example 2” on page 24-520.

Several generators G1, G2, and so on can be specified to generate several curves
associated with the same numerical mesh Y0, Y1, …. See “Example 1” on page 24-519,
“Example 2” on page 24-520, and “Example 3” on page 24-523.

The graphical data produced by each of the generators G1, G2,... consists of a sequence
of mesh points in 2D.

• With Style = Points, the graphical data are displayed as a discrete set of points.
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• With Style = Lines, the graphical data points are displayed as a curve consisting
of straight line segments between the sample points. The points themselves are not
displayed.

• With Style = Splines, the graphical data points are displayed as a smooth spline
curve connecting the sample points. The points themselves are not displayed.

• With Style = [Splines, Points] and Style = [Lines, Points], the effects
of the styles used are combined, that is, both the evaluation points and the straight
lines or splines, respectively, are displayed.

The plot attributes accepted by plot::Ode2d include Submesh = n, where n is some
positive integer. This attribute only has an effect on the curves which are returned for
the graphical generators with Style = Splines and Style = [Splines, Points],
respectively. It serves for smoothening the graphical spline curve using a sufficiently
high number of plot points.

n is the number of plot points between two consecutive numerical points corresponding to
the time mesh. The default value is n = 4, that is, the splines are plotted as five straight
line segments connecting the numerical sample points.

Attributes

Attribute Purpose Default Value

AbsoluteError maximal absolute
discretization error

 

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Colors list of colors to use [RGB::Blue, RGB::Red,
RGB::Green,
RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
RGB::Magenta,
RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson,
RGB::Aqua,
RGB::Lavender,
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Attribute Purpose Default Value

RGB::SeaGreen,
RGB::AureolineYellow,
RGB::Banana, RGB::Beige,
RGB::YellowGreen,
RGB::Wheat,
RGB::IndianRed,
RGB::Black]

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

InitialConditions initial conditions of the
ODE

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ODEMethod the numerical scheme used
for solving the ODE

DOPRI78

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter
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Attribute Purpose Default Value

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points TRUE

Projectors project an ODE solution to
graphical points

 

RelativeError maximal relative
discretization error

 

Stepsize set a constant step size  
Submesh density of submesh

(additional sample points)
4

TimeEnd end time of the animation 10.0

TimeMesh the numerical time mesh  
TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

USubmesh density of additional sample
points for parameter “u”

4

Visible visibility TRUE
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Attribute Purpose Default Value

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

The following procedure f together with the initial value Y0 represent the initial value
problem , Y(0) = 2. In MuPAD, the one-dimensional vector Y

is represented by a list with one element. The body of the function f below addresses
the first (and only) entry of this list as Y1 and returns the one-dimensional vector t Y -
Y2 as a list with one element. Also the initial condition Y0 is a one-dimensional vector
represented by a list. For details on the format of f, please see numeric::odesolve:

f := (t, Y) -> [t*Y[1] - Y[1]^2]: 

Y0 := [2]:

Alternatively, the utility function numeric::ode2vectorfield can be used to generate
the input parameters in a more intuitive way:

[f, t0, Y0] := [numeric::ode2vectorfield(

      {y'(t) = t*y(t) - y(t)^2, y(0) = 2}, [y(t)])]
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The numerical solution is to consist of sample points over the time mesh ti = i, i = 0, 1,
…, 10. We use the default generator of plot::Ode2d. This generates the sample points
together with a smooth spline curve connecting these points:

p := plot::Ode2d(f, [$ 0..10], Y0,

                 PointSize = 2*unit::mm,

                 PointStyle = Stars):

Finally, the ode solution is rendered by a call to plot:

plot(p, TicksDistance = 2.0, GridVisible = TRUE, 

     SubgridVisible = TRUE):

Example 2

Consider the nonlinear oscillator , . As a dynamical system
for , solve the following initial value problem , Y(0) = Y0. For

details on the format of f, see numeric::odesolve:
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f := (t, Y) -> [Y[2], - Y[1]^7]: 

Y0 := [1, 0]:

The following generator produces a plot of the solution Y(t) against the time parameter t:

G1 := (t, Y) -> [t, Y[1]]:

For demonstration purposes, plot the function . The generator G2 produces the

values  along the solution and plots these values against t:

G2 := (t, Y) -> [t, Y[1]^2/2 + Y[2]^2/2]:

The energy function, or “Hamiltonian”,  must be conserved along the solution

curve because the total energy of the system is constant. Define a corresponding
generator G3 to plot  as a function of t:

G3 := (t, Y) -> [t, Y[1]^8/8 + Y[2]^2/2]:

The solution curve is combined with the graph of the function and the Hamiltonian:

p := plot::Ode2d(f, [i/2 $ i = 0..40], Y0,

                 [G1, Style = Lines, Color = RGB::Red],

                 [G1, Style = Points, Color = RGB::Black],

                 [G2, Style = Lines, Color = RGB::Blue],

                 [G2, Style = Points, Color = RGB::Black],

                 [G3, Style = Lines, Color = RGB::Green],

                 [G3, Style = Points, Color = RGB::Black],

                 PointSize = 1.5*unit::mm,

                 LineWidth = 0.2*unit::mm

                ):

Note that by using each generator twice, you can set different colors for the lines and
points. The renderer is called:

plot(p):
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The Hamiltonian G3 is constant which verifies the accuracy of the integrator.

To visualize the dependency of the trajectory on the initial conditions, animate
plot::Ode2d over different values of :

plot(plot::Ode2d(f, [i/6 $ i = 0..120], [1, a], a = -1/2..1/2,

                 [G1, Style = Lines, Color = RGB::Red],

                 [G2, Style = Lines, Color = RGB::Blue],

                 [G3, Style = Lines, Color = RGB::Green],

                 LineWidth = 0.2*unit::mm, Frames=25))
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Example 3

Consider the initial value problem , y(0) = 0:

f := (t, y) -> t*sin(t + y^2): Y0:= [0]:

Use numeric::ode2vectorfield to generate the following vector field which is
tangent to the solution curves:

p1 := plot::VectorField2d([1, f(t, y)], t = 0..4, y = -1.2..1.2,

                          Mesh = [21, 25], Color = RGB::Black):

The following object represents the plot of the solution as a function of t:

p2 := plot::Ode2d(

   (t,Y) -> [f(t, Y[1])], [i/3 $ i=0..12], Y0,

   [(t, Y) -> [t, Y[1]], Style = Points, Color = RGB::Red],

   [(t, Y) -> [t, Y[1]], Style = Splines, Color = RGB::Blue]):

Define the point size explicitly:

p2::PointSize := 2*unit::mm:
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Finally, combine the vector field and the ODE plot to a scene and call the renderer:

plot(p1, p2, XTicksDistance = 0.5, YTicksDistance = 0.2,

     Axes = Frame, AxesTitles = ["t", "y"], 

     GridVisible = TRUE):

Example 4

By default, numeric::odesolve (which is used by plot::Ode2d internally) uses
adaptive step sizes and a method of order 8. Usually, there is no reason to change
these settings, except for demonstrative purposes. In the following animation, use a
straightforward explicit Euler method (of first order) and show how decreasing the step
size improves the quality of the calculated solution.

The differential equation is , obviously fulfilled by the exponential function:

[f, t0, Y0] := [numeric::ode2vectorfield(

                   {y'(t)=y(t), y(0)=1}, [y(t)])]:

To judge the quality of the numerical solution, plot the symbolic solution alongside the
approximation:
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plot(plot::Function2d(exp(x), x=0..3,

                      Color = RGB::Black, LineStyle = Dashed),

     plot::Ode2d(f, [Automatic, 0, 3, 1/n], Y0, n = 1..50,

                 EULER1, Stepsize = 1/n,

                 [(t, Y) -> [t, Y[1]], Style=[Lines, Points]]))

Parameters

f

The vector field of the ODE: a procedure. See numeric::odesolve for details.

f is equivalent to the attribute Function.

t0, t1, …

The time mesh: real numerical values. If data are displayed with Style = Splines,
these values must be in ascending order.

t0, t1, … is equivalent to the attribute TimeMesh.
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tstart, tend, tstep

The time mesh: real numerical values. tend must be larger than tstart and tstep must be
positive and should be smaller than tend - tstart.

tstart, tend, tstep are equivalent to the attribute TimeMesh.

Y0

The initial condition of the ODE: a list or a 1-dimensional array. See
numeric::odesolve.

Y0 is equivalent to the attribute InitialConditions.

G1, G2, …

“generators of plot data”: procedures mapping a solution point (t, Y(t)) to a list [x,
y] or [x, y, z] representing a plot point in 2D or 3D, respectively.

G1, G2, … is equivalent to the attribute Projectors.

method

Use a specific numerical scheme (see numeric::odesolve)

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Options

Style

Option, specified as Style = style

Sets the style in which the plot data are displayed. The following styles are available:
Points, Lines, Splines, [Lines, Points], and [Splines, Points]. The default
style is [Splines, Points].
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Color

Option, specified as Color = c

Sets the RGB color c in which the plot data are displayed. The default color of the ith
generator is the ith entry of the attribute Colors.

RelErr

Option, specified as RelErr = rtol

Sets a numerical discretization tolerance (see numeric::odesolve)

AbsErr

Option, specified as AbsErr = atol

Sets a numerical discretization tolerance (see numeric::odesolve)

Stepsize

Option, specified as Stepsize = h

Sets a constant stepsize (see numeric::odesolve)

See Also

MuPAD Functions
numeric::ode2vectorfield | numeric::odesolve | numeric::odesolve2

MuPAD Graphical Primitives
plot::Curve2d | plot::Curve3d | plot::Ode3d | plot::PointList2d
| plot::PointList3d | plot::Polygon2d | plot::Polygon3d |
plot::Streamlines2d
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plot::Ode3d
3D plots of ODE solutions

Syntax
plot::Ode3d(f, [t0, t1, …], Y0, <[G1, <Style = style1>, <Color = c1>], [G2, <Style = style2>, <Color = c2>], …>, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <a = amin .. amax>, options)

plot::Ode3d(f, [Automatic, tstart, tend, tstep], Y0, <[G1, <Style = style1>, <Color = c1>], [G2, <Style = style2>, <Color = c2>], …>, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <a = amin .. amax>, options)

plot::Ode3d([t0, t1, …], f, Y0, <[G1, <Style = style1>, <Color = c1>], [G2, <Style = style2>, <Color = c2>], …>, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <a = amin .. amax>, options)

plot::Ode3d([Automatic, tstart, tend, tstep], f, Y0, <[G1, <Style = style1>, <Color = c1>], [G2, <Style = style2>, <Color = c2>], …>, <method>, <RelativeError = rtol>, <AbsoluteError = atol>, <Stepsize = h>, <a = amin .. amax>, options)

Description

plot::Ode3d(f, [t0, t1,...], Y0) renders three-dimensional projections of the
solutions of the initial value problem given by f, t0 and Y0.

plot::Ode3d(f, [t0, t1,...], Y0, [G]) computes a mesh of numerical sample
points Y(t0), Y(t1), … representing the solution Y(t) of the first order differential equation
(dynamical system)

.

The procedure

maps these solution points (ti, Y(ti)) in ℝ×ℂn to a mesh of 3D plot points [xi, yi, zi]. These
points can be connected by straight lines or interpolating splines.

Internally, a sequence of numerical sample points

Y_1 := numeric::odesolve(f, t_0..t_1, Y_0, Options),

Y_2 := numeric::odesolve(f, t_1..t_2, Y_1, Options), and so on
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is computed, where Options is some combination of method, RelativeError = rtol,
AbsoluteError = atol, and Stepsize = h. See numeric::odesolve for details on
the vector field procedure f, the initial condition Y0, and the options.

The utility function numeric::ode2vectorfield may be used to produce the input
parameters f, t0, Y0 from a set of differential expressions representing the ODE.

Each of the “generators of plot data” G1, G2 etc. creates a graphical solution curve from
the numerical sample points Y0, Y1 etc. Each generator G, say, is internally called in the
form G(t0, Y0), G(t1, Y1), … to produce a sequence of plot points in 3D.

The solver numeric::odesolve returns the solution points Y0, Y1, and so on, as
lists or one-dimensional arrays (the actual type is determined by the initial value
Y0). Consequently, each generator G must accept two arguments (t, Y): t is a real
parameter, Y is a “vector” (either a list or a 1-dimensional array).

Each generator must return a list with 3 elements representing the (x, y, z) coordinates
of the graphical point associated with a solution point (t, Y) of the ODE. All generators
must produce graphical data of the same dimension, that is, for plot::Ode3d, 3D data
as lists with 3 elements. For example, G := (t, Y) -> [Y_1, Y_2, Y_3] creates a
3D phase plot of the first three components of the solution curve.

If no generators are given, plot::Ode3d by default plots each group of two components
as functions of time with the same style.

Note that arbitrary values associated with the solution curve may be displayed
graphically by an appropriate generator G.

Several generators G1, G2, and so on, can be specified to generate several curves
associated with the same numerical mesh Y0, Y1, ….

The graphical data produced by each of the generators G1, G2,... consists of a sequence
of mesh points in 3D.

• With Style = Points, the graphical data are displayed as a discrete set of points.
• With Style = Lines, the graphical data points are displayed as a curve consisting

of straight line segments between the sample points. The points themselves are not
displayed.

• With Style = Splines, the graphical data points are displayed as a smooth spline
curve connecting the sample points. The points themselves are not displayed.
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• With Style = [Splines, Points] and Style = [Lines, Points], the effects
of the styles used are combined, that is, both the evaluation points and the straight
lines or splines, respectively, are displayed.

The plot attributes accepted by plot::Ode3d include Submesh = n, where n is some
positive integer. This attribute only has an effect on the curves which are returned for
the graphical generators with Style = Splines and Style = [Splines, Points],
respectively. It serves for smoothening the graphical spline curve using a sufficiently
high number of plot points.

n is the number of plot points between two consecutive numerical points corresponding to
the time mesh. The default value is n = 4, that is, the splines are plotted as five straight
line segments connecting the numerical sample points.

Attributes

Attribute Purpose Default Value

AbsoluteError maximal absolute
discretization error

 

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Colors list of colors to use [RGB::Blue, RGB::Red,
RGB::Green,
RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
RGB::Magenta,
RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson,
RGB::Aqua,
RGB::Lavender,
RGB::SeaGreen,
RGB::AureolineYellow,
RGB::Banana, RGB::Beige,
RGB::YellowGreen,
RGB::Wheat,
RGB::IndianRed,
RGB::Black]
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

InitialConditions initial conditions of the
ODE

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ODEMethod the numerical scheme used
for solving the ODE

DOPRI78

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points TRUE
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Attribute Purpose Default Value

Projectors project an ODE solution to
graphical points

 

RelativeError maximal relative
discretization error

 

Stepsize set a constant step size  
Submesh density of submesh

(additional sample points)
4

TimeEnd end time of the animation 10.0

TimeMesh the numerical time mesh  
TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

USubmesh density of additional sample
points for parameter “u”

4

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value
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Attribute Purpose Default Value

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Consider the nonlinear oscillator , . As a dynamical
system for , solve the following initial value problem , Y(0) = Y0:

f := (t, Y) -> [Y[2], sin(t) - Y[1]^3]: 

Y0 := [0, 0.5]:

The following generator produces a phase plot in the (x, y) plane, embedded in a 3D plot:

G1 := (t, Y) -> [Y[1], Y[2], 0]:

Further, use the z coordinate of the 3D plot to display the value of the “energy” function
 over the phase curve:

G2 := (t, Y) -> [Y[1], Y[2], (Y[1]^2 + Y[2]^2)/2]:

The phase curve in the (x, y) plane is combined with the graph of the energy function:

p := plot::Ode3d(f, [i/5 $ i = 0..100], Y0,

                 [G1, Style = Splines, Color = RGB::Red],

                 [G2, Style = Points, Color = RGB::Black],

                 [G2, Style = Lines, Color = RGB::Blue]):

Set an explicit size of the points used in the representation of the energy:

p::PointSize := 2*unit::mm:
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The renderer is called:

plot(p, AxesTitles = ["y", "y'", "E"],

     CameraDirection = [10, -15, 5]):

Example 2

The Lorenz ODE is the system

with fixed parameters p, r, b. As a dynamical system for Y = [x, y, z], solve the ODE
 with the following vector field:

f := proc(t, Y)
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     local x, y, z;

     begin

        [x, y, z] := Y:

        [p*(y - x), -x*z + r*x - y, x*y - b*z]

     end_proc:

Consider the following parameters and the following initial condition Y0:

p := 10: r := 28: b := 1: 

Y0 := [1, 1, 1]:

The following generator Gxyz produces a 3D phase plot of the solution. The generator
Gyz projects the solution curve to the (y, z) plane with x = 20; the generator Gxz projects
the solution curve to the (x, z) plane with y = - 15; the generator Gxy projects the solution
curve to the (x, y) plane with z = 0:

Gxyz := (t, Y) -> Y:

Gyz := (t, Y) -> [ 20,  Y[2], Y[3]]:

Gxz := (t, Y) -> [Y[1], -15,  Y[3]]:

Gxy := (t, Y) -> [Y[1], Y[2],   0 ]:

With these generators, create a 3D plot object consisting of the phase curve and its
projections.

object := plot::Ode3d(f, [i/10 $ i=1..100], Y0,

           [Gxyz, Style = Splines, Color = RGB::Red],

           [Gyz, Style = Splines, Color = RGB::Grey50],

           [Gxz, Style = Splines, Color = RGB::Grey50],

           [Gxy, Style = Splines, Color = RGB::Grey50],

           Submesh = 7):

Finally, the plot is rendered. This call is somewhat time consuming because it calls the
numerical solver numeric::odesolve to produce the graphical data:

plot(object, CameraDirection = [-220, 110, 150])
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Parameters

f

The vector field of the ODE: a procedure. See numeric::odesolve for details.

f is equivalent to the attribute Function.

t0, t1, …

The time mesh: real numerical values. If data are displayed with Style = Splines,
these values must be in ascending order.

t0, t1, … is equivalent to the attribute TimeMesh.

tstart, tend, tstep

The time mesh: real numerical values. tend must be larger than tstart and tstep must be
positive and should be smaller than tend - tstart.
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tstart, tend, tstep are equivalent to the attribute TimeMesh.

Y0

The initial condition of the ODE: a list or a 1-dimensional array. See
numeric::odesolve.

Y0 is equivalent to the attribute InitialConditions.

G1, G2, …

“generators of plot data”: procedures mapping a solution point (t, Y(t)) to a list [x,
y] or [x, y, z] representing a plot point in 2D or 3D, respectively.

G1, G2, … is equivalent to the attribute Projectors.

method

Use a specific numerical scheme (see numeric::odesolve)

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Options

Style

Option, specified as Style = style

Sets the style in which the plot data are displayed. The following styles are available:
Points, Lines, Splines, [Lines, Points], and [Splines, Points]. The default
style is [Splines, Points].

Color

Option, specified as Color = c

Sets the RGB color c in which the plot data are displayed. The default color of the ith
generator is the ith entry of the attribute Colors.
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RelErr

Option, specified as RelErr = rtol

Sets a numerical discretization tolerance (see numeric::odesolve)

AbsErr

Option, specified as AbsErr = atol

Sets a numerical discretization tolerance (see numeric::odesolve)

Stepsize

Option, specified as Stepsize = h

Sets a constant stepsize (see numeric::odesolve)

See Also

MuPAD Functions
numeric::ode2vectorfield | numeric::odesolve | numeric::odesolve2

MuPAD Graphical Primitives
plot::Curve2d | plot::Curve3d | plot::Ode2d | plot::PointList2d
| plot::PointList3d | plot::Polygon2d | plot::Polygon3d |
plot::Streamlines2d
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plot::Parallelogram2d

2D parallelograms

Syntax

plot::Parallelogram2d([cx, cy], [ux, uy], [vx, vy], <a = amin .. amax>, options)

Description

plot::Parallelogram2d(c, u, v) defines a 2D parallelogram
 with center  and vectors ,  spanning

the plane of the parallelogram. This is a rectangle with sides of length ,  if the
vectors  and  are orthogonal.

plot::Parallelogram2d creates a 2D parallelogram with center  = [cx, cy] and
sides given by the vectors  = [2 ux, 2 uy] and  = [2 vx, 2 vy]. The corners of
the parallelogram are given by , , , and :
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By default, only the border lines of the parallelogram are visible. Their color is set by the
attribute LineColor. With Filled = TRUE, the area of the parallelogram is filled with
the color specified by the attribute Color or, equivalently, FillColor.

Alternatively, the center and the spanning vectors can be given as vectors.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Center center of objects, rotation
center

[0, 0]

CenterX center of objects, rotation
center, x-component

0
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Attribute Purpose Default Value

CenterY center of objects, rotation
center, y-component

0

Color the main color RGB::Blue

Filled filled or transparent areas
and surfaces

FALSE

FillColor color of areas and surfaces RGB::Red

FillPattern type of area filling DiagonalLines

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Tangent1 first vector spanning
parallelograms

[0, 1]
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Attribute Purpose Default Value

Tangent2 second vector spanning
parallelograms

[1, 0]

Tangent1X first vector spanning
parallelograms, x
component

0

Tangent1Y first vector spanning
parallelograms, y
component

1

Tangent2X second vector spanning
parallelograms, x
component

1

Tangent2Y second vector spanning
parallelograms, y
component

0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value
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Attribute Purpose Default Value

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Plot several rectangles and parallelograms using different presentation styles:

plot(plot::Parallelogram2d([2, 2], [0.5, 1]),

     plot::Parallelogram2d([3, 3], [-1, 1],

                           Filled = TRUE,

                           Color = RGB::Red), 

     plot::Parallelogram2d([4, 4], [0, 1],

                           LineStyle = Dashed,

                           LineColor = RGB::Black), 

     plot::Parallelogram2d([5, 5], [0, 2], 

                           Filled = TRUE,

                           FillColor = RGB::Red,

                           LineColor = RGB::Green)

)
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Parameters

cx, cy

Coordinates of the center: real numerical values or expressions of the animation
parameter a.

cx, cy are equivalent to the attributes CenterX, CenterY.

ux, uy

Components of the first vector spanning the parallelogram: real numerical values or
expressions of the animation parameter a.

ux, uy are equivalent to the attributes Tangent1X, Tangent1Y.

vx, vy

Components of the second vector spanning the parallelogram: real numerical values or
expressions of the animation parameter a.
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vx, vy are equivalent to the attributes Tangent2X, Tangent2Y.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Box | plot::Line3d | plot::Parallelogram3d | plot::Polygon3d |
plot::Rectangle
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plot::Parallelogram3d

3D parallelograms

Syntax

plot::Parallelogram3d([cx, cy, cz], [ux, uy, uz], [vx, vy, vz], <a = amin .. amax>, options)

Description

plot::Parallelogram3d(c, u, v) defines a 3D parallelogram
 with center  and vectors ,  spanning

the plane of the parallelogram. This is a rectangle with sides of length ,  if the
vectors  and  are orthogonal.

plot::Parallelogram3d creates a 3D parallelogram with center  = [cx, cy, cz]
and sides given by the vectors  = [2 ux, 2 uy, 2 uz] and  = [2 vx, 2 vy, 2

 vz]. The corners of the parallelogram are given by , , ,
and :
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By default, the area of the parallelogram is filled with the color specified by the attribute
Color or, equivalently, FillColor. With Filled = FALSE, only the border lines of the
parallelogram are visible. Their color is set by the attribute LineColor.

Alternatively, the center and the spanning vectors can be given as vectors.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0
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Attribute Purpose Default Value

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::LightBlue

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::LightBlue

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Flat

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid
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Attribute Purpose Default Value

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Tangent1 first vector spanning
parallelograms

[0, 1, 0]

Tangent2 second vector spanning
parallelograms

[1, 0, 0]

Tangent1X first vector spanning
parallelograms, x
component

0

Tangent1Y first vector spanning
parallelograms, y
component

1

Tangent2X second vector spanning
parallelograms, x
component

1

Tangent1Z first vector spanning
parallelograms, z
component

0

Tangent2Y second vector spanning
parallelograms, y
component

0

Tangent2Z second vector spanning
parallelograms, z
component

0
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Attribute Purpose Default Value

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE
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Examples

Example 1

Plot several rectangles and parallelograms using different presentation styles:

plot(plot::Parallelogram3d([1, 1, 1], [0, 0, 2], [0, 3, 0]),

     plot::Parallelogram3d([2, 2, 2], [0, 1, 4], [0, 2, 0],

                           FillColor = RGB::Red.[0.5]), 

     plot::Parallelogram3d([3, 3, 3], [0, 1, 1], [0, 1, -1],

                           Filled = FALSE, LineStyle = Dashed,

                           LineColor = RGB::Black), 

     plot::Parallelogram3d([4, 4, 4], [0, 1, 2], [0, 2, -2], 

                           Filled = FALSE, LineColor = RGB::Green)

):

Example 2

Use plot::Parallelogram3d to visualize tangent planes of a surface. The first surface
is the graph of the function f(x, y) = x2 + y2. At a point (x, y, f(x, y)) on the graph, the

24-551



24 Graphics and Animations

tangent vectors in the x and y direction are given by (1, 0, 2 x) and (0, 1, 2 y), respectively.
After normalization to the length 0.4, they yield the tangent vectors u, v used in the
construction of the tangent planes:

f := (x, y) -> x^2 + y^2:

c:= (x, y) -> [x, y, f(x, y)]:

u := (x, y) -> [0.4/sqrt(1+4*x^2), 0, 0.8*x/sqrt(1+4*x^2)]:

v := (x, y) -> [0, 0.4/sqrt(1+4*y^2), 0.8*y/sqrt(1+4*y^2)]:

plot(plot::Function3d(f(x, y), x = -1..1, y = -1..1),

     plot::Parallelogram3d(c(0, 0), u(0, 0), v(0, 0),

                           Color = RGB::Grey.[0.5]),

     plot::Parallelogram3d(c(0, -1), u(0, -1), v(0, -1),

                           Color = RGB::Grey.[0.5]),

     plot::Parallelogram3d(c(-1, 0), u(-1, 0), v(-1, 0),

                           Color = RGB::Grey.[0.5]),

     plot::Parallelogram3d(c(-1/2, -1/2), u(-1/2, -1/2), 

                           v(-1/2, -1/2), 

                           Color = RGB::Grey.[0.5])):

The second surface is a sphere, parametrized by spherical coordinates p and t (polar and
azimuth angle). At a point (x(p, t), y(p, t), z(p, t)) on the sphere, the tangent vectors in the
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p and t direction are given by differentiation of x, y, z with respect to p and t, respectively.
After normalization to the length 0.5, they yield the tangent vectors u, v used in the
construction of the tangent planes:

x := (p, t) -> cos(p)*sin(t):

y := (p, t) -> sin(p)*sin(t):

z := (p, t) -> cos(t):

c := (p, t) -> [x(p, t), y(p, t), z(p, t)]:

u := (p, t) -> [-0.5*sin(p), 0.5*cos(p), 0]:

v := (p, t) -> [0.5*cos(p)*cos(t), 0.5*sin(p)*cos(t), 

                -0.5*sin(t)]:

plot(plot::Surface(c(p, t), p = 0..2*PI, t = 0..PI),

     plot::Point3d(c(0, 0), Color = RGB::Black), 

     plot::Parallelogram3d(c(0, 0), u(0, 0), v(0, 0),

                           Color = RGB::Grey.[0.5]),

     plot::Point3d(c(-3*PI/4, PI/4), Color = RGB::Black), 

     plot::Parallelogram3d(c(-3*PI/4, PI/4), 

                           u(-3*PI/4, PI/4), 

                           v(-3*PI/4, PI/4), 

                           Color = RGB::Grey.[0.5]),

     plot::Point3d(c(-PI/2, PI/3), Color = RGB::Black), 

     plot::Parallelogram3d(c(-PI/2, PI/3),

                           u(-PI/2, PI/3), 

                           v(-PI/2, PI/3), 

                           Color = RGB::Grey.[0.5]),

     plot::Point3d(c(PI, PI/2), Color = RGB::Black), 

     plot::Parallelogram3d(c(PI, PI/2), 

                           u(PI, PI/2), 

                           v(PI, PI/2),

                           Color = RGB::Grey.[0.5]),

     Scaling = Constrained):
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delete f, c, u, v, x, y, z:

Parameters

cx, cy, cz

Coordinates of the center: real numerical values or expressions of the animation
parameter a.

cx, cy, cz are equivalent to the attributes CenterX, CenterY, CenterZ.

ux, uy, uz

Components of the first vector spanning the parallelogram: real numerical values or
expressions of the animation parameter a.

ux, uy, uz are equivalent to the attributes Tangent1X, Tangent1Y, Tangent1Z.
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vx, vy, vz

Components of the second vector spanning the parallelogram: real numerical values or
expressions of the animation parameter a.

vx, vy, vz are equivalent to the attributes Tangent2X, Tangent2Y, Tangent2Z.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Box | plot::Line3d | plot::Parallelogram2d | plot::Polygon3d |
plot::Rectangle
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plot::Piechart2d
2D pie charts

Syntax
plot::Piechart2d([d1, d2,...], <a = amin .. amax>, options)

plot::Piechart2d(A, <a = amin .. amax>, options)

Description

plot::Piechart2d([d1, d2, d3,...]) creates a 2D pie chart with pieces of size
ratios .

With the input data d1, d2 etc., the i-th piece of the pie has the opening angle 2

1 2

p d

d d

i

…

.

The attribute Titles lets you attach titles to the pieces of the pie chart. In contrast to
the overall title of the pie chart (Title, TitleFont), the titles of the pieces react to
TextFont.

The attribute Moves lets you move the pieces away from the pie center for highlighting.

The attributes Center and Radius let you position and scale a pie chart relative to other
graphical objects in the same scene.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Center center of objects, rotation
center

[0, 0]
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Attribute Purpose Default Value

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

Color the main color  
Colors list of colors to use [RGB::Blue, RGB::Red,

RGB::Green,
RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
RGB::Magenta,
RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson]

Data the (statistical) data to plot [1]
Filled filled or transparent areas

and surfaces
TRUE

FillPattern type of area filling Solid

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Moves displacements of pieces in
pie charts

[0]
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Attribute Purpose Default Value

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Radius radius of circles, spheres
etc.

1

TextFont font of text objects [" sans-serif ", 11]
TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
Titles list of titles for object parts [" "]
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value
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Attribute Purpose Default Value

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create a 2D pie chart with pieces of the size ratios 1:2:1:3:2.5.

p := plot::Piechart2d([1, 2, 1, 3, 2.5]):

plot(p)
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Set titles for the pieces:

p::Titles := ["10.5%", "21.1%", "10.5%", "31.6%", "26.3%"]:

plot(p)
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Pieces can be moved away from the pie center with the attribute Moves. One or more
moves can be given as a list of values [f1, f2,...]. The “move factors” f1, f2, and
so on, are positive real values that represent fractions of the pie radius. The i-th piece
is moved away from the center by fi. To move only some pieces, you can specify Moves
= [n1 = f1, n2 = f2, …], such that only the pieces with indices n1, n2, and so on, are
moved:

p::Moves := [1 = 0.3, 3 = 0.5]:

plot(p)
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delete p:

Parameters

d1, d2, …

The sizes of the pieces: nonnegative real values or arithmetical expressions of the
animation parameter a.

d1, d2,... is equivalent to the attribute Data.

A

A matrix or array containing the data d1, d2, and so on.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Bars2d | plot::Bars3d | plot::Boxplot | plot::Histogram2d |
plot::Matrixplot | plot::Piechart3d

More About
• “Create Bar Charts, Histograms, and Pie Charts”
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plot::Piechart3d
3D pie charts

Syntax
plot::Piechart3d([d1, d2,...], <a = amin .. amax>, options)

plot::Piechart3d(A, <a = amin .. amax>, options)

Description
plot::Piechart3d([d1, d2, d3, …]) creates a corresponding 3D pie chart.

With the input data d1, d2 etc., the i-th piece of the pie has the opening angle 2

1 2

p d

d d

i

…

.

The attribute Titles lets you attach titles to the pieces of the pie. In contrast to
the overall title of the pie chart (Title, TitleFont), the titles of the pieces react to
TextFont.

The attribute Moves lets you move the pieces away from the pie center for highlighting.

The attribute Heights lets you vary heights of the pieces.

The attributes Center and Radius let you position and scale a pie chart relative to other
graphical objects in the same scene.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Billboarding text orientation in space or
towards observer

TRUE

Center center of objects, rotation
center

[0, 0, 0]
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Attribute Purpose Default Value

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color  
Colors list of colors to use [RGB::Blue, RGB::Red,

RGB::Green,
RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
RGB::Magenta,
RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson]

Data the (statistical) data to plot [1]
Filled filled or transparent areas

and surfaces
TRUE

Frames the number of frames in an
animation

50

Heights heights of pieces in pie
charts

[0.3]

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE
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Attribute Purpose Default Value

Moves displacements of pieces in
pie charts

[0]

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Radius radius of circles, spheres
etc.

1

TextFont font of text objects [" sans-serif ", 11]
TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
Titles list of titles for object parts [" "]
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component
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Attribute Purpose Default Value

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create a 3D pie chart with pieces of the size ratios 1:2:1:3:2.5.

p := plot::Piechart3d([1, 2, 1, 3, 2.5]):

plot(p)
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Set titles for the pieces:

p::Titles := ["10.5%", "21.1%", "10.5%", "31.6%", "26.3%"]:

plot(p)
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Pieces can be moved away from the pie center with the attribute Moves. One or more
moves can be given as a list of values [f1, f2,...]. The “move factors” f1, f2, and
so on, are positive real values that represent fractions of the pie radius. The i-th piece
is moved away from the center by fi. To move only some pieces, you can specify Moves
= [n1 = f1, n2 = f2, …], such that only the pieces with indices n1, n2, and so on, are
moved:

p::Moves := [1 = 0.3, 3 = 0.5]:

plot(p)
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The heights of the pieces in a 3D pie chart can vary:

p::Heights := [0.1, 0.2, 0.1, 0.3, 0.25]:

plot(p)
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delete p:

Example 2

A pie chart can be animated. Plot a pie chart with an animated radius. The pieces move
in and out, changing their size:

m1 := piecewise([abs(a - PI/4) <= PI/4, sin(2*a)^2/3],

                [abs(a - PI/4) > PI/4, 0]):

m2 := piecewise([abs(a - 3*PI/4) <= PI/4, sin(2*a)^2/3],

                [abs(a - 3*PI/4) > PI/4, 0]):

m3 := piecewise([abs(a - 5*PI/4) <= PI/4, sin(2*a)^2/3],

                [abs(a - 5*PI/4) > PI/4, 0]):

m4 := piecewise([abs(a - 7*PI/4) <= PI/4, sin(2*a)^2/3],

                [abs(a - 7*PI/4) > PI/4, 0]):

p := plot::Piechart3d([5 + sin(a)/4, 2, 1 + sin(a)/2, 4], 

                      Title = "crazy pie chart",

                      TitlePosition = [0, 15, 5],

                      TitleFont = [Italic, 18],

                      Center = [0, 0, 0],

                      Radius = 10 + sin(2*a),

                      Heights = [1.5 + sin(a), 1.5 + cos(2*a), 
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                                 1.5 + sin(a), 1.5 + cos(4*a)],

                      Titles = [1 = "piece 1", 2 = "piece 2",

                                3 = "piece 3", 4 = "piece 4"], 

                      Moves = [m1, m2, m3, m4], 

                      a = 0..2*PI):

plot(p):

delete m1, m2, m3, m4, p:

Parameters

d1, d2, …

The sizes of the pieces: non-negative real values or arithmetical expressions of the
animation parameter a.

d1, d2,... is equivalent to the attribute Data.

A

A matrix or array containing the data d1, d2, and so on.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Bars2d | plot::Bars3d | plot::Boxplot | plot::Histogram2d |
plot::Matrixplot | plot::Piechart2d

More About
• “Create Bar Charts, Histograms, and Pie Charts”
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plot::Plane

Infinite plane in 3D

Syntax

plot::Plane([x, y, z], <[nx, ny, nz]>, <a = amin .. amax>, options)

plot::Plane(X, <N>, <a = amin .. amax>, options)

plot::Plane(XN, <a = amin .. amax>, options)

plot::Plane(p1, p2, p3, <a = amin .. amax>, options)

plot::Plane(p123, <a = amin .. amax>, options)

Description

plot::Plane(x, n) creates the (infinite) plane with normal vector n passing through
the point x.

plot::Plane provides a graphical plane in 3D that does not require a specification,
which part of the plane is to be seen in the picture. The visible part of the plane is
determined automatically by the ViewingBox of the entire 3D scene.

The contribution of a plane of type plot::Plane to the ViewingBox of a 3D scene
consists only of the single point [x, y, z] (this is p1, if the plane is specified by three
points p1, p2, p3 on the plane).

Thus, two planes with the same normal but different points may be mathematically
equivalent, but may produce different pictures due to different viewing boxes. Cf.
“Example 3” on page 24-581.

By default, a mesh of lines is displayed on the plane. Use the attribute Mesh = [n1, n2]
with positive integer values n1, n2 to control the number of mesh lines.

24-574



 plot::Plane

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::LightBlue

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::LightBlue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LinesVisible visibility of lines TRUE

Mesh number of sample points [15, 15]
Name the name of a plot object (for

browser and legend)
 

Normal normal vector of circles and
discs, etc. in 3D

[0, 0, 1]

NormalX normal vector of circles
and discs, etc. in 3D, x-
component

0

NormalY normal vector of circles
and discs, etc. in 3D, y-
component

0

NormalZ normal vector of circles
and discs, etc. in 3D, z-
component

1
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Position positions of cameras, lights,
and text objects

[0, 0, 0]

PositionX x-positions of cameras,
lights, and text objects

0

PositionY y-positions of cameras,
lights, and text objects

0

PositionZ z-positions of cameras,
lights, and text objects

0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component
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Attribute Purpose Default Value

UMesh number of sample points for
parameter “u”

15

VMesh number of sample points for
parameter “v”

15

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

We generate two spheres and a plane:

plot(plot::Sphere(1, [-1, -1, -1], Color = RGB::Red),

     plot::Sphere(1, [ 1,  1,  1], Color = RGB::Green),

     plot::Plane([0, 0, 0], [0, 0, 1], Color = RGB::Blue)):
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We specify an explicit ViewingBox for the scene:

plot(plot::Sphere(1, [-1, -1, -1], Color = RGB::Red),

     plot::Sphere(1, [ 1,  1,  1], Color = RGB::Green),

     plot::Plane([0, 0, 0], [0, 0, 1], Color = RGB::Blue),

     ViewingBox = [-3..8, -3..8, -3..3]):
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Example 2

We demonstrate the effect of the attribute Mesh that controls the number of mesh lines
displayed on planes:

plot(plot::Plane([0, 0, 0], [1, -1, 1], Color = RGB::Red,

                 Mesh = [5, 5]),

     plot::Plane([0, 1, 0], [2, 1, -1], Color = RGB::Green,

                 Mesh = [10, 10]),

     plot::Plane([1, -1, 0], [1, 1, 1], Color = RGB::Blue,

                 Mesh = [20, 20]),

     ViewingBox = [-1..3, -2..2, -2..2])
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We change the number of mesh lines:

plot(plot::Plane([0, 0, 0], [1, -1, 1], Color = RGB::Red,

                 Mesh = [10, 10]),

     plot::Plane([0, 1, 0], [2, 1, -1], Color = RGB::Green,

                 Mesh = [20, 10]),

     plot::Plane([1, -1, 0], [1, 1, 1], Color = RGB::Blue,

                 Mesh = [15, 5]),

     ViewingBox = [-1..3, -2..2, -2..2])

24-580



 plot::Plane

Example 3

The contribution of a plane to the automatic ViewingBox of the whole scene consists
only of the point used to specify the plane. In the following scene, this point is the origin.
It lies inside the ViewingBox generated by the two spheres. Thus, the ViewingBox of
the scene is determined by the two spheres only:

plot(plot::Sphere(1, [1, 1, 1], Color = RGB::Red),

     plot::Sphere(1, [-1, -1, -1], Color = RGB::Green),

     plot::Plane([0, 0, 0], [0, 0, 1], Color = RGB::Blue)):
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Now, a different point [5, 0, 0] is used to specify the same plane. It does not lie inside
the ViewingBox generated by the two spheres and thus enlarges the ViewingBox of the
scene:

plot(plot::Sphere(1, [1, 1, 1], Color = RGB::Red),

     plot::Sphere(1, [-1, -1, -1], Color = RGB::Green),

     plot::Plane([5, 0, 0], [0, 0, 1], Color = RGB::Blue)):
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Example 4

We create animated planes:

plot(plot::Plane([0, 0, 0], [cos(a), sin(a), 0], a = 0..PI,

                 Color = RGB::Red),

     plot::Plane([0, 0, 0], [0, cos(a), sin(a)], a = 0..PI,

                 Color = RGB::Green),

     plot::Plane([0, 0, a], [0, 0, 1], a = 0..1,

                 Color = RGB::Blue),

     ViewingBox = [-1..1, -1..1, -1..1])
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Parameters
x, y, z

The coordinates of a point on the plane: numerical real values or arithmetical expressions
in the animation parameter a.

x, y, z are equivalent to the attributes PositionX, PositionY, PositionZ.

nx, ny, nz

The components of the normal vector; nx, ny, nz must be numerical real values or
arithmetical expressions in the animation parameter a. If no normal is specified, the
normal (0, 0, 1) is used.

nx, ny, nz are equivalent to the attributes NormalX, NormalY, NormalZ.

X

A matrix of category Cat::Matrix with three entries that provide the coordinates x, y, z
of a point on the plane.
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X is equivalent to the attribute Position.

N

A matrix of category Cat::Matrix with three entries that provide the components nx,
ny, nz of the normal.

N is equivalent to the attribute Normal.

XN

A matrix of category Cat::Matrix with 3 rows and 2 columns. The first column
provides the coordinates x, y, z of a point on the plane, the second column provides the
components nx, ny, nz of the normal.

XN is equivalent to the attributes Position, Normal.

p1, p2, p3

Three points on the plane: either lists with 3 entries each or matrices of category
Cat::Matrix with 3 entries each. The point p1 correponds to the attribute Position,
the normal of the plane (the attribute Normal) is computed as the cross product (p2 - p1)
×(p3 - p1).

p123

A matrix of category Cat::Matrix with 3 rows and 3 columns. Each column corresponds
to a point on the plane.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Parallelogram3d | plot::Surface
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plot::Point2d
2D points

Syntax
plot::Point2d(x, y, <a = amin .. amax>, options)

plot::Point2d([x, y], <a = amin .. amax>, options)

plot::Point2d(matrix([x, y]), <a = amin .. amax>, options)

Description

plot::Point2d(x, y) creates a two-dimensional point with the coordinates (x, y). You
also can specify the point by a list [x,y] or a vector matrix([x,y]) of its coordinates.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::MidnightBlue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointColor the color of points RGB::MidnightBlue

PointStyle the presentation style of
points

FilledCircles

Position positions of cameras, lights,
and text objects

[0, 0]

PositionX x-positions of cameras,
lights, and text objects

0

PositionY y-positions of cameras,
lights, and text objects

0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component
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Attribute Purpose Default Value

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create three points:

p1 := plot::Point2d(1, 3, PointSize = 4*unit::mm);

p2 := plot::Point2d(2, 2, PointSize = 5*unit::mm);

p3 := plot::Point2d(3, 1, Color = RGB::Green, 

                    PointSize = 6*unit::mm);

To have these points displayed, use plot:

plot(p1, p2, p3)
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You can set global options directly in the call to plot:

plot(p1, p2, p3, PointStyle = FilledDiamonds)
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These options are regarded as the new defaults. This implies that objects having an
option set explicitly will silently ignore these options. The green point stays green:

plot(p1, p2, p3, PointStyle = FilledDiamonds, 

     PointColor = RGB::Red)
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Example 2

The point position can be animated. As an example, combine a point with a curve that
traces the path of the point:

x := t -> sin(3*t);

y := t -> cos(5*t);

p := plot::Point2d([x(t), y(t)], t = 0..2*PI);

c := plot::Curve2d([x(t), y(t)], t = 0..tmax, tmax = 0..2*PI)
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plot(c, p, PointSize = 3*unit::mm, LineWidth = 0.5*unit::mm)

Parameters

x, y

Arithmetical expressions

x, y are equivalent to the attributes Position, PositionX, PositionY.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Algorithms

For reasons of efficiency and clarity in the object browser, avoid generating large
numbers of plot::Point2d objects. Useplot::PointList2d instead.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Point3d | plot::Polygon2d | plot::Polygon3d
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plot::Point3d
3D points

Syntax
plot::Point3d(x, y, z, <a = amin .. amax>, options)

plot::Point3d([x, y, z], <a = amin .. amax>, options)

plot::Point3d(matrix([x, y, z]), <a = amin .. amax>, options)

Description

plot::Point3d(x, y, z) creates a three-dimensional point with the coordinates (x, y,
z). You also can specify the point by a list [x,y,z] or a vector matrix([x,y,z]) of its
coordinates.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::MidnightBlue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointColor the color of points RGB::MidnightBlue

PointStyle the presentation style of
points

FilledCircles

Position positions of cameras, lights,
and text objects

[0, 0, 0]

PositionX x-positions of cameras,
lights, and text objects

0

PositionY y-positions of cameras,
lights, and text objects

0

PositionZ z-positions of cameras,
lights, and text objects

0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component
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Attribute Purpose Default Value

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create three points:

p1 := plot::Point3d(1,3,1, PointSize = 4*unit::mm);

p2 := plot::Point3d(2,2,2, PointSize = 5*unit::mm);

p3 := plot::Point3d(3,1,3, Color = RGB::Green, 

                           PointSize = 6*unit::mm);
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To have these points displayed, use plot:

plot(p1, p2, p3)

You can set global options directly in the call to plot:

plot(p1, p2, p3, PointStyle = FilledSquares)
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These options are regarded as the new defaults. This implies that objects having an
option set explicitly will silently ignore these options. The green point stays green:

plot(p1, p2, p3, PointStyle = FilledSquares, 

                 PointColor = RGB::Red)
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Parameters

x, y, z

Arithmetical expressions

x, y, z are equivalent to the attributes Position, PositionX, PositionY, PositionZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Algorithms

For reasons of efficiency and clarity in the object browser, avoid generating large
numbers of plot::Point3d objects. Use plot::PointList3d instead.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Point2d | plot::Polygon2d | plot::Polygon3d
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plot::PointList2d
Finite lists of 2D points

Syntax
plot::PointList2d(pts, <a = amin .. amax>, options)

plot::PointList2d(M2d, <a = amin .. amax>, options)

Description

plot::PointList2d holds lists of points in 2D.

This is a container for a large finite number of points. It lets you avoid constructing large
numbers of objects of type plot::Point2d for two reasons. First, the point types have
non-negligible overhead and constructing and plotting a large number of them (say, five
thousand) takes more time than plotting the same number of points in a single container
object. Second, having five thousand points in the object browser takes a significant
amount of memory and is not as lucid as having a single point list.

The attribute Points2d is displayed in the inspector in the user interface only for short
lists.

plot::PointList2d internally uses lists for storing the points. It is therefore not
recommended to add a large number of points one-by-one. See “Example 1” on page
24-603 for a better method of collecting data.

If you specify the color of one point, you must specify the colors of all other points in the
list. See “Example 2” on page 24-604.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE
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Attribute Purpose Default Value

Color the main color RGB::MidnightBlue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Points2d list of 2D points  
PointSize the size of points 1.5

PointColor the color of points RGB::MidnightBlue

PointStyle the presentation style of
points

FilledCircles

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
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Attribute Purpose Default Value

TitleAlignment horizontal alignment of
titles w.r.t. their coordinates

Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

The following iteration leads to the so-called Hénon attractor (from chaos theory):

c1 := 1.4:

c2 := 0.3:

henon_iter := (x, y) -> [c1*x^2+y-1, c2*x]:

Start at (0, 0), let hundred iteration cycles pass by (to only plot the attractor), and
then collect the next three thousand points:

[x, y] := [0, 0]:

for i from 1 to 100 do

  [x, y] := henon_iter(x, y);

end_for:
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data := {}:

for i from 1 to 3000 do

  [x, y] := henon_iter(x, y);

  data := data union {[x, y]};

end_for:

In this example, you collect the data in a set, because adding elements to a set is a fast
operation, unlike changing the length of a list, and you don't have to care for the order in
which points were reached. To plot the data, convert it to a list first:

data := coerce(data, DOM_LIST):

plot(plot::PointList2d(data))

Example 2

plot::PointList2d lets you specify the colors of the points. For example, the following
list contains two points. When you plot this list, the first point appears in red, and the
second point appears in green:

Coords := [[3, 4, RGB::Red], [5, 5, RGB::Green]];

plotCoords := plot::PointList2d(Coords):
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plot(plotCoords,  PointSize=5)

If you specify the color of one point, you must also specify the colors of all other points in
the list:

Coords := [[3, 4, RGB::Red], [5, 5]];

plotCoords := plot::PointList2d(Coords)

Error: The attribute 'Points2d' in the 'PointList2d' object must be a list of lists of two expressions and an optional color value. [plot]

Example 3

(Feigenbaum's period doubling route to chaos)
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Consider the iteration xn + 1 = fp(xn) where  is the “logistic map” with a

parameter p. The iteration map fp maps the interval [0, 1] to itself for 0 ≤ p ≤ 4. For small
values of p, the sequence (xn) has a finite number of accumulation points that are visited
cyclically. Increasing p, the accumulation points split into 2 separate accumulation
points for certain critical values of p (“period doubling”). For , there are
infinitely many accumulation points and the sequence (xn) behaves chaotically.

Visualize the accumulation points as functions of p (“Feigenbaum diagram”).

For P closely spaced values of p, construct the sequence (xn) starting with x0 = 0.5. Ignore
the first N values, expecting that the next M values cycle over the accumulation points.
These points are added to a list plotdata that is finally fed into a PointList2d for
plotting:

f:= (p, x) -> p*x*(1-x):

 P:= 500: // number of steps in p direction

N:= 200: // transitional steps before we are close to the cycle

M:= 300: // maximal number of points on the cycle

 pmin:= 2.8: // Consider p between

pmax:= 4.0: // pmin and pmax

plotdata:= [ ]:

for p in [pmin + i*(pmax - pmin)/P $ i = 0..P] do

    // First, do N iterations to drive the 

    // point x towards the limit cycle 

    x:= 0.5:

    for i from 1 to N do

      x:= f(p, x):

    end_for:

     // consider the next M iterates and use them as plot data:

    xSequence:= table():

    xSequence[1]:= x;

    for i from 2 to M do

        x:= f(p, x):

        if abs(x - xSequence[1]) < 10^(-5) then

           // We are back at the beginning of the cycle;

           // the points will repeat. Go to the next p.

           break;

        else

           xSequence[i]:= x;

        end_if;
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    end_for:

    plotdata:= plotdata . [[p, rhs(x)] $ x in xSequence];

end_for:

 plot(plot::PointList2d(plotdata, 

                       PointColor = RGB::Black,

                       PointSize = 0.5*unit::mm)):

delete f, P, N, M, pmin, pmax, plotdata, x, xSequence, i;

Example 4

Create the following number spiral by plotting only prime numbers. This plot shows that
primes cluster along particular curves called prime-generating curves.

plot(

     plot::PointList2d([[sqrt(n)*cos(2*PI*sqrt(n)),

                         sqrt(n)*sin(2*PI*sqrt(n))]

                $ n in [ithprime(j) $ j = 1..2345]],

                                      PointSize = 1

     ),

      Axes = None, Scaling = Constrained,
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      Height = 100, Width = 100)

Parameters

pts

A list of points. A point must not be of type plot::Point2d. Each point must be a list
of two real-valued expressions (the coordinates) and an optional RGB color. The lists
specifying the points and the colors must all have the same length.

pts is equivalent to the attributes Points2d.

M2d

An array or a matrix with two columns. Each row provides the coordinates of one point.
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M2d is equivalent to the attribute Points2d.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Listplot | plot::Point2d | plot::Point3d | plot::PointList3d |
plot::Polygon2d | plot::Polygon3d | plot::Scatterplot
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plot::PointList3d
Finite lists of 3D points

Syntax
plot::PointList3d(pts, <a = amin .. amax>, options)

plot::PointList3d(M3d, <a = amin .. amax>, options)

Description

plot::PointList3d holds lists of points in 3D.

This is a container for a large finite number of points. It lets you avoid constructing large
numbers of objects of type plot::Point3d, for two reasons. First, the point types have
non-negligible overhead and constructing and plotting a large number of them (say, five
thousand) takes more time than plotting the same number of points in a single container
object. Second, having five thousand points in the object browser takes a significant
amount of memory and is not as lucid as having a single point list.

The attribute Points3d is displayed in the inspector in the user interface only for short
lists.

plot::PointList3d internally uses lists for storing the points. It is therefore not
recommended to add a large number of points one-by-one.

If you specify the color of one point, you must specify the colors of all other points in the
list. See “Example 2” on page 24-616.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::MidnightBlue
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Points3d list of 3D points  
PointSize the size of points 1.5

PointColor the color of points RGB::MidnightBlue

PointStyle the presentation style of
points

FilledCircles

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center
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Attribute Purpose Default Value

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

plot::PointList3d provides a basic form of scatter plot:

plot(plot::PointList3d([[1,1,1], [1,2,2], [1,3,2], [1,3,4],

                        [2,1,1], [2,2,3], [2,3.5, 4]],

                       PointSize=5))
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We can use this, for example, to get a visual test of random number generators:

r := frandom(0):

plot(plot::PointList3d([[r(), r(), r()] $ i=1..10000])):
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r := random(10^10)*1e-10:

plot(plot::PointList3d([[r(), r(), r()] $ i=1..10000])):

24-614



 plot::PointList3d

frandom and random fill the cube nicely, without noticeable patterns. The following
generator, however, should probably not be used:

randseed := 12345:

r := proc()

     begin

       randseed := (randseed * 17 + 8) mod 10^10:

       1e-10 * randseed;

     end:

plot(plot::PointList3d([[r(), r(), r()] $ i=1..10000])):
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Example 2

plot::PointList3d lets you specify the colors of the points. For example, the following
list contains three points. When you plot this list, the first point appears in red, and the
second point appears in green, and the third point appears in blue:

plot(plot::PointList3d([[1,1,1,RGB::Red],

                        [2,2,2,RGB::Green],

                        [1,3,3,RGB::Blue]],

                        PointSize=5))
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If you specify the color of one point, you must also specify the colors of all other points in
the list:

plot(plot::PointList3d([[1,1,1,RGB::Red],

                        [2,2,2],

                        [1,3,3]],

                        PointSize=5))

Error: The attribute 'Points3d' in the 'PointList3d' object must be a list of lists of three expressions and an optional color value. [plot]

Parameters

pts

A list of points. A point must not be of type plot::Point3d. Each point must be a list
of three expressions (the coordinates) and an optional RGB or RGBa color. The lists
specifying the points and the colors must all have the same length.

pts is equivalent to the attributes Points3d.
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M3d

An array or a matrix with three columns. Each row provides the coordinates of one point.

M3d is equivalent to the attribute Points3d.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Listplot | plot::Point2d | plot::Point3d | plot::PointList2d |
plot::Polygon2d | plot::Polygon3d | plot::Scatterplot
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plot::Polar
Curves in 2D parameterized in polar coordinates

Syntax
plot::Polar([r, ϕ], u = umin .. umax, <a = amin .. amax>, options)

Description
plot::Polar creates parameterized curves in 2D, with parametrization in polar
coordinates.

plot::Polar creates curves in one parameter, with parametrization in polar
coordinates and possibly animated (see “Example 1” on page 24-622 and “Example 2”
on page 24-626). The curves may contain poles, in which case automatic clipping is
used by default, see “Example 4” on page 24-630.

Polar coordinates consist of a radius and an angle. The radius of a point is its distance
from the origin (0, 0), while the angle is the angle between the positive “x”-axis (the
ordinate) and the connection between the point and the origin, measured in radians and
counter-clockwise.

By default, curves are sampled at equidistant values of the parameter t. The attribute
AdaptiveMesh can be used to change this behavior, such that a denser sampling rate is
used in areas of higher curvature. Cf. “Example 3” on page 24-627.

Curves are graphical objects that can be manipulated, see the examples and the
documentation of the parameters listed below for details.

Attributes
Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE
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Attribute Purpose Default Value

Color the main color RGB::Blue

DiscontinuitySearch semi-symbolic search for
discontinuities

TRUE

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Mesh number of sample points 121

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter
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Attribute Purpose Default Value

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Submesh density of submesh
(additional sample points)

0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

UMax final value of parameter “u”  
UMesh number of sample points for

parameter “u”
121

UMin initial value of parameter
“u”

 

UName name of parameter “u”  
URange range of parameter “u”  
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Attribute Purpose Default Value

USubmesh density of additional sample
points for parameter “u”

0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XFunction function for x values  
YFunction function for y values  

Examples

Example 1

The most basic example of a curve in polar coordinates is a circle: Using a constant
radius, the angle goes from 0 to 2 π:

plot(plot::Polar([1, u], u = 0..2*PI))
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A constant angle, on the other hand, means a straight line through the origin:

plot(plot::Polar([r, 1], r = 0..1))
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plot::Polar accepts negative radii:

plot(plot::Polar([r, 1], r = -1..1))
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The most simple “interesting” example is probably Archimedes' spiral:

plot(plot::Polar([r, r], r = 0..5*PI))

24-625



24 Graphics and Animations

Example 2

Polar curves can be animated just like almost anything else:

plot(plot::Polar([r, a*r], r = 0..5*PI, a = -1..1))
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Example 3

In some cases, the default of 121 evaluations on the curve is not sufficient and causes
visible artifacts:

plot(plot::Polar([r, 4*r^2], r = 0..PI))
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One remedy for this problem is to increase the number of evaluation points:

plot(plot::Polar([r, 4*r^2], r = 0..PI, Mesh = 400))
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This method is, however, wasteful: Near the center, the initial density was perfectly
sufficient, while on the outer edge still more points would be desirable. plot::Polar
offers adaptive mesh refinement for exactly these situations. In the following example,
we switch on adaptive mesh refinement with up to 24 = 16 points introduced between
each two consecutive points of the initial mesh:

plot(plot::Polar([r, 4*r^2], r = 0..PI, AdaptiveMesh=4))
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Example 4

If the curve (i.e., the radius expression/function) contains poles, plot::Polar will use
heuristics to clip the viewing box:

plot(plot::Polar([tan(t)+1, t], t = 0..2*PI))
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To select a different area, use the attribute ViewingBox:

plot(plot::Polar([tan(t)+1, t], t = 0..2*PI,

                 ViewingBox = [-2..2, -2..2]))
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Example 5

plot::Polar creates objects that can be manipulated interactively and/or
programmatically:

p := plot::Polar([tan(t)+1, t], t = 0..PI)

p::UMax := 2*PI:

p

p::ViewingBox := [-2..2, -2..2]:

p::LineColor  := RGB::Blue:
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p::LineWidth  := 1*unit::mm:

plot(p)

Parameters

r, ϕ

The coordinate functions: arithmetical expressions or piecewise objects depending on
the curve parameter u and the animation parameter a. Alternatively,  procedures that
accept 1 input parameter u or 2 input parameters u, a and return a real numerical value
when the input parameters are numerical.

r, ϕ are equivalent to the attributes XFunction, YFunction.

u

The curve parameter: an identifier or an indexed identifier.

u is equivalent to the attribute UName.
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umin .. umax

The plot range for the parameter u: umin, umax must be numerical real values or
expressions of the animation parameter a.

umin .. umax is equivalent to the attributes URange, UMin, UMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve2d | plot::Cylindrical | plot::Spherical
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plot::Polygon2d

2D polygons

Syntax

plot::Polygon2d([pt2d1, pt2d2, …], <a = amin .. amax>, options)

plot::Polygon2d(M2d, <a = amin .. amax>, options)

Description

plot::Polygon2d defines polygons in 2D by a given list of vertex points. A polygon
consists of points and edges. The edges are made up of the lines traversing from the
first to the second point, the second to the third point, and so on. The last point is
automatically connected with the first point if the attribute Closed = TRUE is specified.

Points and lines can be hidden via PointsVisible = FALSE and LinesVisible =
FALSE. By default, the vertex points are hidden, and the edges are visible.

All points as a whole can be manipulated via PointStyle and PointSize. The
attribute LineColor sets the color for all points and all lines. Likewise all lines can be
manipulated via LineStyle and LineWidth.

You can vary the color of all lines and points via LineColorType. The default
value is Flat. Specifying the values Dichromatic or Rainbow lets you set the
second color LineColor2. With Functional, the colors are taken from a custom
LineColorFunction.

The area of any closed 2D polygon can be filled by specifying Filled = TRUE. The filled
area is defined by connecting the last and the first vertex. This additional edge itself,
however, is only displayed if Closed = TRUE is set. A fill color and a fill pattern can be
chosen by FillColor and FillPattern.

In case of a self-intersecting polygon, a FillStyle can be selected. See “Example 2” on
page 24-640.
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Closed open or closed polygons FALSE

Color the main color RGB::Blue

Filled filled or transparent areas
and surfaces

FALSE

FillColor color of areas and surfaces RGB::Red

FillStyle definition of inside/outside EvenOdd

FillPattern type of area filling DiagonalLines

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

24-636



 plot::Polygon2d

Attribute Purpose Default Value

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Points2d list of 2D points  
PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component
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Attribute Purpose Default Value

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create a polygon with vertices located at the 5 complex 5th roots of 1. The polygon
consists of the 4 lines joining the 5 points in the order given:

p := plot::Polygon2d(

       [[cos(2*PI*k/5), sin(2*PI*k/5)] $ k = 0..4]):

plot(p, plot::Circle2d(1, [0, 0])):
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In order to include the line connecting the last with the first point, pass the attribute
Closed to the polygon:

p::Closed := TRUE:

plot(p, plot::Circle2d(1, [0, 0])):
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delete p

Example 2

Plot a closed 2D polygon and fill the area inside. In fact, there are two possible
interpretations of what “inside” really means. In the first plot, the complement of the
unbound component of the complement of the polygon is filled. In the second plot only
that area is filled that contains points with nonzero winding number with respect to the
polygon. See FillStyle for a detailed discussion.

p := plot::Polygon2d(

      [[cos(PI*k/3), sin(PI*k/3)] $k = 1..6,

       [cos(PI*k/3 + PI/6)/2, sin(PI*k/3 + PI/6)/2] $k = 1..6

      ], Closed = TRUE):

S1 := plot::Scene2d(p, Filled = TRUE):

S2 := plot::Scene2d(p, Filled = TRUE, FillStyle = Winding):

plot(S1, S2, Layout = Horizontal, Axes = Frame,

     Scaling = Constrained)
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delete p, S1, S2:

Parameters

pt2d1, pt2d2, …

The 2D vertices. These must not be of type plot::Point2d, but lists of two numerical
real values or arithmetical expressions of the animation parameter a (the coordinates).

pt2d1, pt2d2, … is equivalent to the attribute Points2d.

M2d

An array or a matrix with 2 columns. Each row provides the coordinates of one point.

M2d is equivalent to the attribute Points2d.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Line2d | plot::Line3d | plot::Listplot | plot::Polygon3d
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plot::Polygon3d
3D polygons

Syntax
plot::Polygon3d([pt3d1, pt3d2, …], <a = amin .. amax>, options)

plot::Polygon3d(M3d, <a = amin .. amax>, options)

Description

plot::Polygon3d defines polygons in 3D by a given list of vertex points. A polygon
consists of points and edges. The edges are made up of the lines traversing from the
first to the second point, the second to the third point, and so on. The last point is
automatically connected with the first point if the attribute Closed = TRUE is specified.

Points and lines can be hidden via PointsVisible = FALSE and LinesVisible =
FALSE. By default, the vertex points are hidden, and the edges are visible.

All points as a whole can be manipulated via PointStyle and PointSize. The
attribute LineColor sets the color for all points and all lines. Likewise all lines can be
manipulated via LineStyle and LineWidth.

You can vary the color of all lines and points via LineColorType. The default
value is Flat. Specifying the values Dichromatic or Rainbow lets you set the
second color LineColor2. With Functional, the colors are taken from a custom
LineColorFunction. See “Example 2” on page 24-646.

A 3D polygon can only be filled if it is defined by three vertices (a triangle). The attribute
Filled = TRUE is ignored for other 3D polygons.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

Closed open or closed polygons FALSE

Color the main color RGB::Blue

Filled filled or transparent areas
and surfaces

FALSE

FillColor color of areas and surfaces RGB::LightBlue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Points3d list of 3D points  
PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value
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Attribute Purpose Default Value

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 2

Plot a closed star-shaped 3D polygon with various color attributes:

p := plot::Polygon3d(

       [([cos(PI*k/3), sin(PI*k/3), sin(PI*k/3)],

         [cos(PI*k/3 + PI/6)/2, 

          sin(PI*k/3 + PI/6)/2,

          sin(PI*k/3 + PI/6)/2]) $k = 1..6

       ], Closed = TRUE):

S1 := plot::Scene3d(p, LineColorType = Flat):

S2 := plot::Scene3d(p, LineColorType = Dichromatic):

S3 := plot::Scene3d(p, LineColorType = Dichromatic,

                    LineColor = RGB::Blue,

                    LineColor2 = RGB::Green):

S4 := plot::Scene3d(p, LineColorType = Rainbow,

                    LineColor = RGB::Blue,

                    LineColor2 = RGB::Green):

plot(S1, S2, S3, S4)
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Plot the same polygon while animating its line color using a color function. The result is a
dazzling star:

p := plot::Polygon3d(

       [([cos(PI*k/3), sin(PI*k/3), sin(PI*k/3)],

         [cos(PI*k/3 + PI/6)/2, 

          sin(PI*k/3 + PI/6)/2,

          sin(PI*k/3 + PI/6)/2]) $k = 1..6

       ], Closed = TRUE, 

       LineColorFunction = 

           proc(x, y, z, i, a) begin

             [sin(x + a*i)^2, sin(y + a*i)^2, sin(z + a*i)^2]:

           end_proc,

       a = 0..10):

plot(p)
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delete p, S1, S2, S3, S4

Parameters

pt3d1, pt3d2, …

The 3D vertices. These must not be of type plot::Point3d, but lists of three numerical
real values or arithmetical expressions of the animation parameter a (the coordinates).

pt3d1, pt3d2, … is equivalent to the attribute Points3d.

M3d

An array or a matrix with 3 columns. Each row provides the coordinates of one point.

M3d is equivalent to the attribute Points3d.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Line2d | plot::Line3d | plot::Listplot | plot::Polygon2d
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plot::Prism
Prisms

Syntax
plot::Prism(r, [x1, y1, z1], [x2, y2, z2], <a = amin .. amax>, options)

Description

plot::Prism(r, [x1, y1, z1] , [x2, y2, z2] ) creates a prism with a regular
base plane with a circumcircle of radius r and an axis from the point [x1, y1, z1] to the
point [x2, y2, z2].

The base center and top center of the prism can also be passed as vectors.

Note that only prisms with a regular base can be created with plot::Prism. For other
bases, use a plot::SurfaceSet primitive.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Angle rotation angle 0

Base base center of cones,
cylinders, pyramids and
prisms

[0, 0, 0]

BaseX x-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseY y-coordinate of top center of
cones, cylinders, pyramids
and prisms

0
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Attribute Purpose Default Value

BaseZ z-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

Color the main color RGB::Red

Edges Number of Edges 3

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]
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Attribute Purpose Default Value

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

Normal normal vector of circles and
discs, etc. in 3D

[0, 0, 0]

NormalX normal vector of circles
and discs, etc. in 3D, x-
component

0

NormalY normal vector of circles
and discs, etc. in 3D, y-
component

0

NormalZ normal vector of circles
and discs, etc. in 3D, z-
component

0

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter
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Attribute Purpose Default Value

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Radius radius of circles, spheres
etc.

1

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Top top center of cones,
cylinders, pyramids and
prisms

[0, 0, 1]
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Attribute Purpose Default Value

TopX base and top center of cones,
cylinders, pyramids and
prisms

0

TopY base and top center of cones,
cylinders, pyramids and
prisms

0

TopZ base and top center of cones,
cylinders, pyramids and
prisms

1

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

We plot three regular prisms with axes given by the coordinate axes:

plot(plot::Prism(1, [-3, 0, 0], [3, 0, 0], Color = RGB::Red),

     plot::Prism(1, [0, -4, 0], [0, 4, 0], Color = RGB::Green),

     plot::Prism(1, [0, 0, -5], [0, 0, 5], Color = RGB::Blue)):
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Example 2

All parameters of a prism can be animated:

plot(plot::Prism(a, [0, 0, a], [0, 0, 3-a], a = 1..2)):
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Example 3

The number of edges of the regular base plane of the prism are determined with the
attribute Edges:

plot(plot::Prism(1, [0, 0, 0], [0, 0, 1], Edges = 7)):
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Example 4

To create a crooked regular prism, the normal vector of its base plane is specified with
the attribute Normal. If this attribute is set to [0, 0, 0], the axis between Base and Top
ist used as normal vector:

plot(plot::Scene3d(plot::Pyramid(2,[0,0,0],1,[0,4,4], Normal=[0,0,0])),

     plot::Scene3d(plot::Pyramid(2,[0,0,0],1,[0,4,4], Normal=[0,0,1]))):
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Example 5

Additionally, the orientation of the edges of the base can be changed with the rotation
angle Angle:

plot(plot::Prism(1/2, Angle=0),

     plot::Prism(1/2, Angle=PI/4, FillColor2=RGB::Yellow))
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Parameters

r

The radius of the circumcircle of the regular base plane: a real numerical value or an
arithmetical expression of the animation parameter a.

r is equivalent to the attribute Radius.

x1, y1, z1

Components of the base center: real numerical values or expressions of the animation
parameter a.

x1, y1, z1 are equivalent to the attributes BaseX, BaseY, BaseZ.

x2, y2, z2

Components of the top center: real numerical values or expressions of the animation
parameter a.
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x2, y2, z2 are equivalent to the attributes TopX, TopY, TopZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Cone | plot::Cylinder | plot::Pyramid
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plot::Pyramid
Pyramids and frustums of pyramids

Syntax
plot::Pyramid(br, [bx, by, bz], <tr>, [tx, ty, tz], <a = amin .. amax>, options)

Description

plot::Pyramid(br, [ bx, by, bz], [ tx, ty, tz]) creates a pyramid stretching
from the regular base plane with a circumcircle of radius br and center [bx, by, bz] to
the top [tx, ty, tz].

plot::Pyramid(br, [ bx, by, bz], tr, [ tx, ty, tz]) creates a frustum of
pyramid from the base with center [bx, by, bz] to the top with center [tx, ty, tz].
The radius of the circumcircle of the regular base is br. The radius of the circumcircle of
the regular top is tr.

The optional “top radius” tr for creating a frustum may also be specified as the attribute
TopRadius = tr.

Note that only pyramids with a regular base can be created with plot::Pyramid. For
other bases, use a plot::SurfaceSet primitive.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Angle rotation angle 0

Base base center of cones,
cylinders, pyramids and
prisms

[0, 0, 0]
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Attribute Purpose Default Value

BaseX x-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseY y-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseZ z-coordinate of top center of
cones, cylinders, pyramids
and prisms

0

BaseRadius base radius of cones/conical
frustums and pyramids/
frustums of pyramids

1

Color the main color RGB::Red

Edges Number of Edges 4

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

Normal normal vector of circles and
discs, etc. in 3D

[0, 0, 0]

NormalX normal vector of circles
and discs, etc. in 3D, x-
component

0
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Attribute Purpose Default Value

NormalY normal vector of circles
and discs, etc. in 3D, y-
component

0

NormalZ normal vector of circles
and discs, etc. in 3D, z-
component

0

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component
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Attribute Purpose Default Value

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Top top center of cones,
cylinders, pyramids and
prisms

[0, 0, 1]

TopX base and top center of cones,
cylinders, pyramids and
prisms

0

TopY base and top center of cones,
cylinders, pyramids and
prisms

0

TopZ base and top center of cones,
cylinders, pyramids and
prisms

1

TopRadius top radius of cones/conical
frustums and pyramids/
frustums of pyramids

0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE
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Examples

Example 1

We draw a pyramid with base radius 6:

plot(plot::Pyramid(6, [0, 0, 0], [0, 0, 10])):

Example 2

We create a frustum of pyramid by specifying a non-zero top radius:

br := 16: base := [3, 4, 5]:

tr:= 7: top := [11, 12, 13]:

plot(plot::Pyramid(br, base, tr, top)):
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delete br, base, tr, top, n:

Example 3

Bottom and top radii and centers can be animated:

plot(plot::Pyramid(sin(a)^2, [sin(2*a), cos(2*a), 0],

                cos(a)^2, [cos(2*a), sin(2*a), 1],

                a = 0..PI)):
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Example 4

Additionally, the orientation of the edges of the base can be changed with the rotation
angle Angle:

plot(plot::Pyramid(1/2, Angle=0),

     plot::Pyramid(1/2, Angle=PI/4, FillColor2=RGB::Yellow))
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Parameters
br

The radius of the circumcircle of the regular base. This must be a real numerical value or
an arithmetical expression of the animation parameter a.

br is equivalent to the attribute BaseRadius.

bx, by, bz

The lower center point. The coordinates bx, by, bz must be real numerical values or
arithmetical expressions of the animation parameter a.

bx, by, bz are equivalent to the attributes BaseX, BaseY, BaseZ.

tr

The radius of the circumcircle of the regular top of the frustum of pyramid. This must be
a real numerical value or an arithmetical expression of the animation parameter a. If no
top radius is specified, a pyramid with top radius tr = 0 is created.
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tr is equivalent to the attribute TopRadius.

tx, ty, tz

The upper center point. The coordinates tx, ty, tz must be real numerical values or
arithmetical expressions of the animation parameter a.

tx, ty, tz are equivalent to the attributes TopX, TopY, TopZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Cone | plot::Cylinder | plot::Prism
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plot::QQplot
Statistical quantile-quantile plots

Syntax
plot::QQplot([a1, a2, …], [b1, b2, …], <a = amin .. amax>, options)

plot::QQplot([[a1, a2, …], [b1, b2, …]], <a = amin .. amax>, options)

plot::QQplot(A, <a = amin .. amax>, options)

plot::QQplot(s, <c1, c2>, <a = amin .. amax>, options)

plot::QQplot(s, <[c1, c2]>, <a = amin .. amax>, options)

Description

plot::QQplot(data1, data2) plots the quantiles of the first data set against the
quantiles of the second data set.

plot::QQplot creates a quantile-quantile plot of two discrete data samples [a1,
a2, …] and [b1, b2, …]. A QQ plot displays the collection of points with coordinates
[x1, y1], [x2, y2] etc., where x_i = stats::empiricialQuantile([a_1, a_2,
Symbol::dots])(i/(n - 1)) and y_i = stats::empiricialQuantile([b_1,
b_2, Symbol::dots])(i/(n - 1)) with i running from 0 through n - 1. The number
of plot points n is set by the attribute Size = n. If no value is specified by the user, n is
chosen as the minimum of the lengths of the data lists [a1, a2, …] and [b1, b2, …].

In addition, the diagonal reference line y = x is displayed in the plot. This line can be
suppressed by the attribute LinesVisible = FALSE.

The samples [a1, a2, …] and [b1, b2, …] do not need to have the same length.

A QQ plot is a graphical technique for determining if two data sets come from
populations with a common distribution.

If the two sets come from a population with the same distribution, the points of the QQ
plot should fall approximately along the reference line y = x. The greater the departure
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from this reference line, the greater the evidence for the conclusion that the two data sets
have come from populations with different distributions.

A specialized version of the QQ plot is the “probability plot”, where the quantiles of one
of the data samples are replaced with the quantiles of a theoretical distribution. You can
use plot::QQplot for this type of plot, too, by using a reference list such as

[stats::normalQuantile(0, 1)(i/n) $ i = 1 .. n-1]

as one of the data lists. In this particular case, data obeying a  standard normal
distribution  should produce plot points close to the diagonal reference line y = x.

Cf. “Example 3” on page 24-677.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Data the (statistical) data to plot  
Frames the number of frames in an

animation
50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Red

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointColor the color of points RGB::Black

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points TRUE

Size size of a point list  
TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value
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Attribute Purpose Default Value

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

We create a QQ plot of some data samples:

a := [6, 9, 17,  0, 13, 9, 9, 12, 12, 12]:

b := [7, 8, 20,  2, 11, 8, 9, 12, 13, 15, 2, 14]:

q := plot::QQplot(a, b):

plot(q)
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We can modify the appearance of the QQ plot in various ways:

q::PointColor := RGB::Red:

q::PointSize := 3*unit::mm:

q::LineColor := RGB::Black:

q::LineWidth := 1*unit::mm:

plot(q)

24-675



24 Graphics and Animations

delete a, b, q:

Example 2

We create some samples:

a := [stats::uniformRandom(-1, 1)() $ k = 1..100]:

b := [stats::normalRandom(0, 1)() $ k = 1..300]:

c := [stats::normalRandom(0, 1)() $ k = 1..500]:

The left QQ-plot shows a clear deviation from the reference line y = x. The samples a and
b do not seem to be chosen from the same population. The QQ plot of the samples b and
c (both normally distributed with mean 0 and variance 1), however, shows data points
close to the reference line:

plot(plot::Scene2d(plot::QQplot(a, b)),

     plot::Scene2d(plot::QQplot(b, c)),

     Width = 20*unit::cm, Rows = 1)
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delete a, b, c:

Example 3

We create a normally distributed sample:

data1 := [stats::normalRandom(0, 1)() $ k = 1..100]:

We wish to investigate whether these data can indeed be regarded as normally
distributed. We create a reference sample of data that are definitely normally
distributed:

n:= nops(data1):

data2 := [stats::normalQuantile(0, 1)(i/n) $ i = 1 .. n-1]:

The QQ plot of the data shows plot points close to the reference line y = x:

plot(plot::QQplot(data1, data2))
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delete data1, n, data2:

Parameters

a1, a2, …, b1, b2, …

The statistical data: numerical real values or arithmetical expressions of the animation
parameter a.

a1, a2, …, b1, b2, … are equivalent to the attribute Data.

A

An array of domain type DOM_ARRAY or a matrix of category Cat::Matrix (e.g., of type
matrix or densematrix) providing numerical real values or arithmetical expressions of
the animation parameter a. The array/matrix must have 2 columns. The first column is
regarded as the data set [a1, a2, …] the second column is regarded as the data set [b1, b2,
…]. If more columns are provided, the superfluous columns are ignored.

A is equivalent to the attribute Data.
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s

A data collection of domain type stats::sample. Two columns in s are regarded as the
data lists [a1, a2, …] and [b1, b2, …] respectively.

s is equivalent to the attribute Data.

c1, c2

Column indices into s: positive integers. These indices, if given, indicate that only the
specified columns in s should be used. If no column indices are specified, the first two
columns in s are used as the data sets [a1, a2, …] and [b1, b2, …], respectively.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Bars2d | plot::Bars3d | plot::Boxplot | plot::Histogram2d |
plot::Listplot | plot::Scatterplot
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plot::Raster
Raster plot

Syntax
plot::Raster(A, options)

plot::Raster(A, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Raster(L, options)

plot::Raster(L, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

Description

plot::Raster(A, x = xmin..xmax, y = ymin..ymax) translates a matrix A of RGB
values into a regular 2D mesh of rectangles extending from the lower left corner (xmin,
ymin) to the upper right corner (xmax, ymax). The rectangles are colored according to the
color entries in A.

plot::Raster serves for generating 2D raster objects such as bitmaps. External bitmap
data can be imported to a MuPAD session via import::readbitmap. The resulting
array of color values can be passed directly to plot::Raster to embed the imported
bitmap in a 2D MuPAD scene.

When color values are specified by an array or a matrix A, the low indices correspond
to the lower left corner of the graphics. The high indices correspond to the upper right
corner.

Note: Note that the bitmap data of most standard graphical formats are stored in the
usual Western reading order: the first pixels correspond to the upper left corner, the last
pixels correspond to the lower right corner. The utility import::readbitmap produces
an array in which the first element corresponds to the lower left corner. Bitmap data
imported this way can be passed directly to plot::Raster.

Arrays/matrices do not need to be indexed from 1. E.g.,
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A = array( imin..imax, jmin..jmax, [..RGB values..])

yields a graphical array with

XMesh = jmax - jmin + 1, YMesh = imax - imin + 1.

If no plot range xmin..xmax, ymin..ymax is specified,

xmin = jmin - 1, xmax = jmax, ymin = imin - 1, ymax = imax

is used.

When color values are specified by a list of lists L, the first entries in the list correspond
to the lower left corner of the graphics. The last entries correspond to the upper right
corner.

If no plot range xmin..xmax, ymin..ymax is specified,

xmin = 0, xmax = m, ymin = 0, ymax = n

is used, where n is the length of L and m is the (common) length of the sublists in L. All
sublists (“rows”) must have the same length.

Animations are triggered by specifying a range a = amin .. amax for a parameter
a that is different from the variables x, y. Thus, in animations, both the ranges x =
xmin..xmax, y = ymin..ymax as well as the animation range a = amin..amax must be
specified.

The related plot routine plot::Density provides a similar functionality offering an
automatic color scheme based on scalar density values.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? FALSE

Color the main color RGB::Blue

ColorData color values of a raster plot  
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines FALSE

Mesh number of sample points [11, 11]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
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Attribute Purpose Default Value

TitleAlignment horizontal alignment of
titles w.r.t. their coordinates

Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x”  
XMesh number of sample points for

parameter “x”
11

XMin initial value of parameter
“x”

 

XName name of parameter “x”  
XRange range of parameter “x”  
YMax final value of parameter “y”  
YMesh number of sample points for

parameter “y”
11

YMin initial value of parameter
“y”

 

YName name of parameter “y”  
YRange range of parameter “y”  

24-683



24 Graphics and Animations

Examples

Example 1

We generate a raster plot:

checkerboard:= array(1..8, 1..8):

for i from 1 to 8 do

 for j from 1 to 8 do

    if i + j mod 2 = 0 then

      checkerboard[i,j] := RGB::Black;

    else

      checkerboard[i,j] := RGB::White;

    end_if;

 end_for:

end_for:

p := plot::Raster(checkerboard):

The plot object is rendered:

plot(p):
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delete checkerboard, p:

Example 2

We import an external bitmap file:

[width, height, colordata] := import::readbitmap("Eva.jpeg"):

The array colordata can be passed directly to plot::Raster:

scenewidth:= 80*unit::mm:

sceneheight:= height/width*scenewidth:

plot(plot::Raster(colordata), 

     Width  = scenewidth,

     Height = sceneheight,

     Footer = "This is Eva"):

delete width, height, colordata, scenewidth, sceneheight:

Example 3

This is Tom:

[widthT, heightT, Tom] :=

       import::readbitmap("Tom.jpeg", ReturnType = DOM_ARRAY):

plot(plot::Raster(Tom), Width = widthT/3, Height = heightT/3):
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This is Jerry:

[widthJ, heightJ, Jerry] :=

       import::readbitmap("Jerry.jpeg", ReturnType = DOM_ARRAY):

plot(plot::Raster(Jerry), Width = widthT/3, Height = heightT/3):
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Although they look different, they are topologically equivalent. We demonstrate this by
deforming Tom to Jerry via a smooth map (1 - a) T + a J, a ∈ [0, 1]:

blend := (T, J, a) -> zip(T, J, (t,j) -> (1-a)*t + a*j):

Tom2Jerry:= array(1..heightT, 1..widthT):

for i from 1 to heightT do

  for j from 1 to widthT do

    Tom2Jerry[i, j]:= blend(Tom[i, j], Jerry[i, j], a):

  end_for:

end_for:

The following call produces an animated plot of the deformation. Note that x and y
ranges must be specified for an animation:

plot(plot::Raster(Tom2Jerry, 

                  x = 1..widthT,

                  y = 1..heightT,

                  a = 0..1, Frames = 10,

                  Footer = "Tom & Jerry"),

     Width = widthT/3, Height = heightT/3):

24-687



24 Graphics and Animations

This is the arithmetical mean of Tom and Jerry:

plot(plot::Raster(map(subs(Tom2Jerry, a = 0.5), eval)), 

     Footer = "(Tom + Jerry)/2", FooterFont = [12],

     Width = widthT/3, Height = heightT/3):
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Parameters

A

An array of domain type DOM_ARRAY or a matrix of category Cat::Matrix (e.g., of type
matrix or densematrix) providing RGB values or color expressions of the animation
parameter a. Rows/columns of the array, respectively matrix, correspond to rows/columns
of the graphical array.

A is equivalent to the attribute ColorData.

L

A list of lists RGB values or color expressions of the animation parameter a. Each sublist
of L represents a row of the graphical array.

L is equivalent to the attribute ColorData.
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x

Name of the horizontal variable: an identifier or an indexed identifier. It is used as the
title of the coordinate axis in x direction.

x is equivalent to the attribute XName.

xmin .. xmax

The range of the horizontal variable: xmin, xmax must be numerical real value or
expressions of the animation parameter a.

xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

y

Name of the vertical variable: an identifier or an indexed identifier. It is used as the title
of the coordinate axis in y direction.

y is equivalent to the attribute YName.

ymin .. ymax

The range of the vertical variable: ymin, ymax must be numerical real value or expressions
of the animation parameter a.

ymin .. ymax is equivalent to the attributes YRange, YMin, YMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
import::readbitmap | plot | plot::copy

MuPAD Graphical Primitives
plot::Density | plot::Inequality
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plot::Rectangle
Rectangles in 2D

Syntax
plot::Rectangle(xmin .. xmax, ymin .. ymax, <a = amin .. amax>, options)

Description
plot::Rectangle( `x_{min}`..`x_{max}` , `y_{min}`..`y_{max}` )

generates the 2D rectangle with the corners (xmin, ymin), (xmin, ymax), (xmax, ymin),
(xmax, ymax).

plot::Rectangle creates a 2D rectangle with edges parallel to the coordinate axes.

With Filled = FALSE, the rectangle consists only of its edges. With Filled = TRUE, it is
a filled area.

The lines can be set as desired with LineStyle, LineWidth, and LineColor. Cf.
“Example 1” on page 24-694.

With LinesVisible = FALSE, the edges are rendered invisible.

For filled rectangles, a FillColor and a FillPattern can be selected. Cf. “Example 2”
on page 24-694.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? FALSE

Color the main color RGB::Blue

Filled filled or transparent areas
and surfaces

FALSE
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Attribute Purpose Default Value

FillColor color of areas and surfaces RGB::Red

FillPattern type of area filling DiagonalLines

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorDirection the direction of color
transitions on lines

[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0
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Attribute Purpose Default Value

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x” 1

XMin initial value of parameter
“x”

-1

XRange range of parameter “x” -1 .. 1
YMax final value of parameter “y” 1

YMin initial value of parameter
“y”

-1

YRange range of parameter “y” -1 .. 1
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Examples

Example 1

We plot two rectangles:

plot(plot::Rectangle(-2..2, -2..2, Filled = TRUE,

                     FillColor = RGB::Red),

     plot::Rectangle(1..5, 1..5, Filled = FALSE,

                     LineColor = RGB::Black,

                     LineStyle = Dashed))

Example 2

We plot rectangles with different fill patterns (FillPattern):

plot(plot::Rectangle(0..1, 2..3, Filled = TRUE,

                     FillPattern = Solid,
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                     FillColor = RGB::Red),

     plot::Rectangle(1..2, 2..3, Filled = TRUE,

                     FillPattern = CrossedLines,

                     FillColor = RGB::Green),

     plot::Rectangle(2..3, 2..3, Filled = TRUE,

                     FillPattern = XCrossedLines,

                     FillColor = RGB::Blue),

     plot::Rectangle(0..1, 1..2, Filled = TRUE,

                     FillPattern = HorizontalLines,

                     FillColor = RGB::Orange),

     plot::Rectangle(1..2, 1..2, Filled = TRUE,

                     FillPattern = VerticalLines,

                     FillColor = RGB::Violet),

     plot::Rectangle(0..1, 0..1, Filled = TRUE,

                     FillPattern = DiagonalLines,

                     FillColor = RGB::Brown),

     plot::Rectangle(1..2, 0..1, Filled = TRUE,

                     FillPattern = FDiagonalLines,

                     FillColor = RGB::Cyan))
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Parameters

xmin .. xmax

The left and right border of the rectangle: real numerical values or arithmetical
expressions of the animation parameter a.

xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

ymin .. ymax

The lower and upper border of the rectangle: real numerical values or arithmetical
expressions of the animation parameter a.

ymin .. ymax is equivalent to the attributes YRange, YMin, YMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Box | plot::Line2d | plot::Line3d | plot::Polygon2d |
plot::Polygon3d
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plot::Rootlocus

Curves of roots of rational expressions

Syntax

plot::Rootlocus(p(z, u), u = umin .. umax, <a = amin .. amax>, options)

Description

plot::Rootlocus(p(z, u), u = umin.. umax) creates a 2D plot of the curves in the
complex plane given by the roots of p(z, u) = 0 (solved for z) as the parameter u varies
between umin and umax.

For any given value of u, plot::Rootlocus solves the equation p(z, u) = 0 for z.
The solutions define points with coordinates x = ℜ(z), y = ℑ(z) in the complex plane.
As the parameter u varies, the solutions form continuous curves that a depicted by
plot::Rootlocus.

The roots of the numerator of p(z, u) are considered. All complex solutions of this
polynomial in z are computed numerically via numeric::polyroots.

The polynomial is initially solved for some values u from the range u = `u_{min}` ..
`u_{max}`. The optional argument Mesh = n can be used to specify the number n of
these initial points (the default value is 51). These points are not equally spaced, but
accumulate close to the end of the range.

The routine then tries to pair up the roots for adjacent values of u by choosing those
closest to each other.

Finally, the routine tries to trace out the different curves by joining up adjacent points
with line segments. If adjacent line segments exhibit angles that are not close to 180
degrees, additional roots are computed for parameter values u between the values of the
initial mesh. Up to m such bisectioning steps are possible, where m is specified by the
optional argument AdaptiveMesh = m (the default value is 4). With AdaptiveMesh = 0,
this adaptive mechanism may be switched off.
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Sometimes, the matching up of the roots to continuous curves can be fooled and the
result is a messy plot. In such a case, the user can take the following measures to
improve the plot:

• The parameter range u = `u_{min}` .. `u_{max}` may be unreasonably large.
Reduce this range to a reasonable size!

• Increase the size n of the initial mesh using the option Mesh = n. Note that increasing
n by some factor may increase the runtime of the plot by the same factor!

• Increase the number m of possible adaptive bisectioning steps using the option
AdaptiveMesh = m. Note that increasing m by 1 may increase the runtime of the plot
by a factor of 2!

• Using the options LinesVisible = FALSE in conjunction with PointsVisible =
TRUE, the roots are displayed as separate points without joining line segments.

Cf. “Example 2” on page 24-705.

Animations are triggered by specifying a range a = `a_{min}` .. `a_{max}` for
a parameter a that is different from the variables z and u. Cf. “Example 3” on page
24-709.

The curves can be colored by a user defined color scheme. Just pass the option
LineColorFunction = mycolor, where mycolor is a user definied procedure that
returns an RGB color value. The routine plot::Rootlocus calls mycolor(u, x, y),
where u is the parameter value and x, y are the real and imaginary parts of the root of
p(x + i y, u) = 0. Cf. “Example 4” on page 24-711.

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 4

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Frames the number of frames in an
animation

50

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
Mesh number of sample points 51

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.0

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

RationalExpression rational expression in a
rootlocus plot

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0
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Attribute Purpose Default Value

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

UMax final value of parameter “u”  
UMesh number of sample points for

parameter “u”
51

UMin initial value of parameter
“u”

 

UName name of parameter “u”  
URange range of parameter “u”  
Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE
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Examples

Example 1

The roots of the polynomial z2 - 2 u z + 1 are given by  and

. We visualise these two curves via a rootlocus plot:

plot(plot::Rootlocus(z^2 - 2*u*z + 1, u = -1.5..1.5))

For rational expressions, the roots of the numerator are considered. The following plot
displays the roots of the numerator polynomial (z2 - u)2 + u (z - u)3:

plot(plot::Rootlocus(1 + u * (z - u)^3/(z^2 - u)^2, u = -1..1)):
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Here are various other examples:

plot(plot::Rootlocus((z^2 - 2*u*z + 1)^2 + u, u = -1..1))
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plot(plot::Rootlocus((z^2 - u)^6 + u^2, u = -2..2,

                                 Color = RGB::Red))
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plot(plot::Rootlocus((z^5  - 1)^3 + u, u = -1..1, PointsVisible,

                                                  PointSize = 1.5))
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Example 2

The following plot is rather messy, since the default mesh size of 51 initial points on each
curve is not sufficient to obtain a good resolution:

plot(plot::Rootlocus((z-u)^3 - u/z^3, u = -10^3 .. 10^3)):
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We obtain a better resolution by decreasing the range of the parameter u to a reasonable
size. There are still a few points that are not properly matched up with the curves:

plot(plot::Rootlocus((z-u)^3 - u/z^3, u = -10 .. 10)):
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We increase the mesh size to cure this problem:

plot(plot::Rootlocus((z-u)^3 - u/z^3, u = -10 .. 10, Mesh = 251)):
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We plot the roots as separate points without displaying connecting line segments:

plot(plot::Rootlocus((z-u)^3 - u/z^3, u = -10 .. 10, Mesh = 501,

                     LinesVisible = FALSE, PointsVisible)):
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Example 3

We animate the expression whose roots are to plotted:

plot(plot::Rootlocus(z^2 - 2*u*z + a, u = -1..1, a = -0.2 .. 2, Mesh = 10),

     plot::Text2d(a -> "a = ".stringlib::formatf(a, 2, 5), [1.2, 1.0], a = -0.2 .. 1));
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We animate the parameter range:

plot(plot::Rootlocus(z^2 - 2*u*z + 0.81, u = -1 .. a, a = -1 .. 1, Mesh = 10))
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Example 4

We provide a color function: roots for small values of the parameter u are displayed in
red, whereas roots for large parameter values are displayed in blue:

plot(plot::Rootlocus(z^2 - 2*u*z + 0.81, u = -1..1,

                     LineColorFunction = ((u, x, y) -> [(1 - u)/2, 0, (1 + u)/2])))
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Parameters

p(z, u)

An arithmetical expression in two unknowns z and u and, possibly, the animation
parameter a. It must be a rational expression in z.

p(z, u) is equivalent to the attribute RationalExpression.

z

Name of the unknown: an identifier or an indexed identifier.

u

Name of the curve parameter: an identifier or an indexed identifier.

u is equivalent to the attribute UName.
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umin .. umax

The range of the curve parameter: umin, umax must be numerical real values or expressions
of the animation parameter a.

umin .. umax is equivalent to the attributes URange, UMin, UMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
numeric::polyroots | plot | plot::copy

MuPAD Graphical Primitives
plot::Curve2d
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plot::Scatterplot
Statistical scatter plots

Syntax
plot::Scatterplot([x1, x2, …], [y1, y2, …], <a = amin .. amax>, options)

plot::Scatterplot([[x1, x2, …], [y1, y2, …]], <a = amin .. amax>, options)

plot::Scatterplot([x1, y1], [x2, y2], …, <a = amin .. amax>, options)

plot::Scatterplot([[x1, y1], [x2, y2], …], <a = amin .. amax>, options)

plot::Scatterplot(A, <a = amin .. amax>, options)

plot::Scatterplot(s, <c1, c2>, <a = amin .. amax>, options)

Description

plot::Scatterplot creates a scatter plot of two discrete data samples [x1, x2, …]
and [y1, y2, …]. A scatter plot displays the collection of points with coordinates [x1,
y1], [x2, y2] etc.

In addition, a regression line y = a + b x through the given data pairs [x1, y1] etc. is
computed and added to the plot. The estimators a, b of the regression are computed by
stats::linReg.

The regression line can be suppressed by specifying the attribute LinesVisible =
FALSE.

The samples [x1, x2, …] and [y1, y2, …] should have the same number of elements.
Otherwise, superflous elements in the longer list are ignored.

There is an ambiguity between the various input formats if only 2 data points are
provided:

Note: For two data points the calls plot::Scatterplot([a, b], [c, d]) and
plot::Scatterplot([[a, b], [c, d]]) both yield plots of the two points (x1, y1)
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= (a, b) and (x2, y2) = (c, d), not of the points (x1, y1) = (a, c) and (x2,
y2) = (b, d)!

The routines plot::Listplot and plot::PointList2d have a similar functionality.
The main additional feature of plot::Scatterplot is the regression line.

Scatter plots are useful to visualize the relationship between two variables x (the
“predictor”) and y (the “criterion”).

The variable regarded as a predictor corresponds to the horizontal axis while the
variable regarded as the criterion corresponds to the vertical axis. The criterion variable
represents the behavior to be predicted. The predictor variable represents the activity
which is believed to be associated with the criterion.

The scatter plot consists of points (x, y) where x is a predictor value and y is the
corresponding value of the criterion.

If there is a linear relation y = a + b x between x and y, the data points should form a line,
potentially marred by statistical deviations. The regression line provided by the scatter
plot allows a visual test of such a relation between x and y.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Data the (statistical) data to plot  
Frames the number of frames in an

animation
50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Red
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Attribute Purpose Default Value

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointColor the color of points RGB::Black

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points TRUE

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component
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Attribute Purpose Default Value

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

We plot some data samples:

xdata := [6, 9, 17,  0, 13, 9, 9, 12, 12, 12]:

ydata := [7, 8, 20,  2, 11, 8, 9, 12, 13, 15]:

b := plot::Scatterplot(xdata, ydata):

plot(b)
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We can modify the appearance of the scatter plot in various ways:

b::PointColor := RGB::Red:

b::PointSize := 3*unit::mm:

b::LineColor := RGB::Black:

b::LineWidth := 1*unit::mm:

plot(b)
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delete xdata, ydata, b:

Example 2

We analyze the relationship between the time students spent on preparing for a test and
the result of the test. We collect the data in a matrix. Each row corresponds to a student.
The first column describes the numbers of hours spent for the preparation, the second
column contains the corresponding test score (points out of 100):

TimesAndScores := matrix([[ 1,  61], 

                          [10,  75], 

                          [4,   55],

                          [3,   18],

                          [4,   77], 

                          [6,   72],

                          [3,   18],

                          [1,   25], 

                          [0,   50],

                          [4,   68],

                          [4,   68], 
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                          [8,   87],

                          [9,   74],

                          [11,  79],

                          [6,   28],

                          [4,   65], 

                          [7,   52],

                          [8,   78],

                          [2,   36], 

                          [3,   48],

                          [4,   39]

                         ]):

We draw a scatter plot to identify a possible relationship between the two variables:

plot(plot::Scatterplot(TimesAndScores))

There seems to be a relationship, indeed.

delete TimesAndScores:
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Parameters

x1, y1, x2, y2, …

The statistical data: numerical real values or arithmetical expressions of the animation
parameter a.

x1, y1, x2, y2, … is equivalent to the attribute Data.

A

An array of domain type DOM_ARRAY or a matrix of category Cat::Matrix (e.g., of type
matrix or densematrix) providing numerical real values or arithmetical expressions of
the animation parameter a. The i-th row is regarded as the data point (xi, yi). The array/
matrix must have 2 columns. If more columns are provided, the superfluous columns are
ignored.

A is equivalent to the attribute Data.

s

A data collection of domain type stats::sample. The columns in s are regarded as x-
and y-values, respectively.

s is equivalent to the attribute Data.

c1, c2

Column indices into s: positive integers. These indices, if given, indicate that only the
specified columns in s should be used. If no column indices are specified, the first two
columns in s are used as x and y-values, respectively.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy | stats::correlation | stats::linReg
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MuPAD Graphical Primitives
plot::Bars2d | plot::Bars3d | plot::Boxplot | plot::Histogram2d |
plot::Listplot
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plot::Sequence
Sequences

Syntax
plot::Sequence(y, n = n1 .. n2, <a = amin .. amax>, options)

plot::Sequence(x, y, n = n1 .. n2, <a = amin .. amax>, options)

Description

plot::Sequence(y(n), n = n_1 .. n_2 ) creates the points

.

plot::Sequence(x(n), y(n), n = n_1 .. n_2 ) creates the sequence of points

.

plot::Sequence creates graphs of sequences, i.e., functions and curves defined over
(some subset of) the integers.

plot::Sequence(y(n), n = n_1..n_2 ) is functionally equivalent
to the call plot::PointList2d([[n, y(n)] $ n = n_1..n_2 ), and
plot::Sequence(x(n), y(n), n = n_1..n_2 ) creates the same image as
plot::PointList2d([[x(n), y(n)] $ n = n_1..n_2 ). See “Example 2” on page
24-727 for some extra functionality.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE
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Attribute Purpose Default Value

Color the main color RGB::Blue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines FALSE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 2

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points TRUE
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Attribute Purpose Default Value

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

UMax final value of parameter “u”  
UMin initial value of parameter

“u”
 

UName name of parameter “u”  
URange range of parameter “u”  
Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XFunction function for x values  
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Attribute Purpose Default Value

YFunction function for y values  

Examples

Example 1

When given one expression and a range, plot::Sequence plots the sequence in function
style:

plot(plot::Sequence((-1)^n/n, n=1..10))

plot::Sequence accepts a variety of attributes to influence the appearance of the plot:

plot(plot::Sequence((-1)^n/n, n=1..10, 

                    PointStyle = FilledDiamonds,

                    PointSize = 4*unit::mm,

24-726



 plot::Sequence

                    Color = RGB::Red),

     plot::Sequence(1/n, n=1..10,

                    PointsVisible = FALSE,

                    LinesVisible = TRUE),

     plot::Sequence(-1/n, n=1..10,

                    PointsVisible = FALSE,

                    LinesVisible = TRUE))

Example 2

By giving two expressions, we can make plot::Sequence plot a sequence of points
given by two expressions, for the x- and y-coordinate:

plot(plot::Sequence(sin(2*PI*n/60), cos(2*PI*n/60),

                    n = 1..60), Scaling=Constrained)
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In contrast to the plot::PointList2d call listed above as equivalent,
plot::Sequence allows to easily animate the number of points:

plot(plot::Sequence(sin(2*PI*n/60), cos(2*PI*n/60),

                    n = 1..nmax, nmax = 1..60),

     Scaling=Constrained, Frames = 60, TimeRange = 1..60)
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Example 3

By including the animation parameter in the expressions x and y, more complex
animations are possible. As an example, we animate Newton iteration for different
starting values. First of all, we define the iteration step which maps an approximation to
its refinement:

newton := x -> x - f(x)/f'(x):

For concrete calculations, we will need to use a specific function f:

f := x -> sin(2*x) + x^2:

To get successive iteration steps, we will employ the function iteration operator @@. For
example, the third improvement of the starting value 1.0 is calculated as follows:

(newton@@3)(1.0)
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For our animation, we want to show the approximations, the corresponding function
values, and the order in which the approximations are found. Additionally, we display
the function itself:

function := plot::Function2d(f, x = -2..2):

steps := plot::Sequence((newton@@n)(x0), f((newton@@n)(x0)),

                        n = 0..5, x0 = -1.25..1.5,

                        Color = RGB::Green,

                        LinesVisible = TRUE):

plot(function, steps,

     ViewingBox = [-2..2, -1..5], PointSize = 2.5)

To further increase the number of iteration steps, we should reuse previously computed
approximations. To this end, we use a function with option remember:

newtonIter := proc(x0, n)

                option remember;

              begin

                if domtype(n) <> DOM_INT then

                  return(procname(args()));

                end_if;

                if iszero(n) then x0

                else newton(newtonIter(x0, n-1));
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                end_if;

              end_proc:

Additionally, we use plot::Point2d to display the initial point in a different color.

steps := plot::Sequence(newtonIter(x0, n), f(newtonIter(x0, n)),

                        n = 0..10, x0 = -1.25..1.5,

                        Color = RGB::Green,

                        LinesVisible = TRUE):

start := plot::Point2d(x0, f(x0), x0 = -1.25..1.5):

plot(function, steps, start,

     ViewingBox = [-2..2, -1..5], PointSize = 2.5)

Since f was evaluated in our object definitions, we will need to reissue the corresponding
commands when changing f.

Parameters

x, y

Real-valued arithmetical expressions in n and possibly the animation parameter a.

24-731



24 Graphics and Animations

x, y are equivalent to the attributes XFunction, YFunction.

n

The index of the sequence: an identifier or an indexed identifier.

n is equivalent to the attribute UName.

n1 .. n2

The range of the index n: real-valued expressions, possibly of the animation parameter a.

n1 .. n2 is equivalent to the attributes URange, UMin, UMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve2d | plot::Function2d | plot::PointList2d
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plot::SparseMatrixplot
Sparsity pattern of a matrix

Syntax
plot::SparseMatrixplot(A, options)

plot::SparseMatrixplot(A, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::SparseMatrixplot([row1, row2, …], options)

plot::SparseMatrixplot([row1, row2, …], x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

Description
plot::SparseMatrixplot(A) creates a 2D plot with the axes representing the
rows and columns of the matrix A. For each nonzero entry of A a point is plotted, thus
displaying sparsity patterns in the matrix.

plot::SparseMatrixplot interprets the indices of a matrix as x and y coordinates,
respectively. The indices are ordered according to the standard orientation of the axes,
i.e., low matrix indices are found in the lower left corner of the plot.

If x = xmin .. xmax is specified, the j-th column of an m×n matrix A corresponds to the
coordinate .

If y = ymin .. ymax is specified, the i-th row corresponds to the coordinate
.

If no coordinate range is specified, xmin = 1, xmax = n, and ymin = 1, ymax = m is used,
i.e., the coordinate x = j corresponds to the j-th column, the coordinate y = i corresponds
to the i-th row.

A point is plotted for each non-zero matrix entry Aij.

By default, the attribute PointColorType = Flat is used. The color of all points is given
by PointColor.
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With PointColorType = Dichromatic, a color blend from PointColor to
PointColor2 is used to indicate the size of the non-zero matrix entries. The color of
points corresponding to small entries Aij is PointColor. Large entries are colored with
PointColor2.

Animations are triggered by specifying a range a = amin .. amax for a parameter a
that is different from the variables x, y. Thus, in animations, both the ranges x = xmin
.. xmax, y = ymin .. ymax as well as the animation range a = amin .. amax must be
specified.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::MidnightBlue

Data the (statistical) data to plot  
Frames the number of frames in an

animation
50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter
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Attribute Purpose Default Value

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.0

PointColor the color of points RGB::MidnightBlue

PointColor2 secondary point color for
color blends

RGB::Red

PointStyle the presentation style of
points

Diamonds

PointsVisible visibility of mesh points TRUE

PointColorType point coloring types Flat

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range
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Attribute Purpose Default Value

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x”  
XMin initial value of parameter

“x”
 

XName name of parameter “x”  
XRange range of parameter “x”  
YMax final value of parameter “y”  
YMin initial value of parameter

“y”
 

YName name of parameter “y”  
YRange range of parameter “y”  

Examples

Example 1

We create a random matrix of dimension 100 ×200 with 1000 nonzero entries:

A := matrix::random(100, 200, 1000, frandom):

plot(plot::SparseMatrixplot(A))
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With PointColorType = Dichromatic, the color of the points indicates the size of the
matrix entries:

plot(plot::SparseMatrixplot(A, PointColorType = Dichromatic)):
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delete A:

Example 2

Choosing appropriate coordinate ranges, we let two sparse matrix plots overlap each
other. The red points correspond to a sparse 10 ×10 matrix with 50 random entries.
The blue points indicate the corresponding upper triangular form obtained by Gaussian
elimination:

A := matrix::random(10, 10, 50, random(1..5)):

B := A::dom::gaussElim(A)[1]:

plot(plot::SparseMatrixplot(A, x = 1..10, y = 1..10, 

                            Color = RGB::Red),

     plot::SparseMatrixplot(B, x = 1.3..10.3, y = 1..10,

                            Color = RGB::Blue,

                            PointStyle = FilledCircles),

     PointSize = 2*unit::mm, Scaling = Constrained, 

     Axes = Frame)
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delete A, B:

Parameters

A

A matrix of category Cat::Matrix or an array containing real numerical values or
expressions of the animation parameter a.

A is equivalent to the attribute Data.

row1, row2, …

The matrix rows: each row must be a list of real numerical values or expressions of the
animation parameter a. All rows must have the same length.

row1, row2, … is equivalent to the attribute Data.
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x

Name of the horizontal coordinate: an identifier or an indexed identifier. It is used as the
title of the coordinate axis in x direction.

x is equivalent to the attribute XName.

xmin .. xmax

The range of the horizontal coordinate: xmin, xmax must be numerical real value or
expressions of the animation parameter a.

xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

y

Name of the vertical coordinate: an identifier or an indexed identifier. It is used as the
title of the coordinate axis in y direction.

y is equivalent to the attribute YName.

ymin .. ymax

The range of the vertical coordinate: ymin, ymax must be numerical real value or
expressions of the animation parameter a.

ymin .. ymax is equivalent to the attributes YRange, YMin, YMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Density | plot::Matrixplot | plot::Raster
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plot::Sphere
Graphical primitive for spheres

Syntax
plot::Sphere(r, <[cx, cy, cz]>, <a = amin .. amax>, options)

Description

plot::Sphere(r, c) creates a sphere of radius r and center c.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::LightBlue

FillColor color of areas and surfaces RGB::LightBlue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
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Attribute Purpose Default Value

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Radius radius of circles, spheres
etc.

1

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component
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Attribute Purpose Default Value

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create a blue sphere with center (9, 9, 9) and radius 3:

s := plot::Sphere(3, [9, 9, 9], Color = RGB::Blue)

Call plot to plot the sphere:

plot(s)
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delete s:

Example 2

Create a sphere with center (- 1, - 1, 5) and radius 3. At two points on the sphere, add 3D
discs indicating the tangent planes.

c := [-1, -1, 3]:

s := plot::Sphere(3, c):

p1 := [ 1, -3, 4]:

p2 := [-3, -2, 1]:

The discs are created via plot::Circle3d as filled 3D circles of radius 2.5, centered at
the points p1 and p2, respectively. The normals ni are given by pi - c. Compute them by
subracting the center c from the points pi via zip:

n1 := zip(p1, c, _subtract):

n2 := zip(p2, c, _subtract):

t1 := plot::Circle3d(2.5, p1, n1, Filled = TRUE, 

                     LineColor = RGB::Black,

                     FillColor = RGB::Red.[0.5]):

t2 := plot::Circle3d(2.5, p2, n2, Filled = TRUE, 
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                     LineColor = RGB::Black,

                     FillColor = RGB::Red.[0.5]):

Finally, convert the points pi to graphical points and add them to the plot:

p1 := plot::Point3d(p1, PointColor = RGB::Red, 

                    PointSize = 2*unit::mm):

p2 := plot::Point3d(p2, PointColor = RGB::Red, 

                    PointSize = 2*unit::mm):

plot(s, p1, p2, t1, t2)

delete c, s, p1, p2, n1, n2, t1, t2:

Example 3

Consider the same sphere as in the previous example:

radius := 3: center := [-1, -1, 5]: 

s := plot::Sphere(radius, center):

Using spherical coordinates, define a curve on the sphere:

phi := a -> PI*sin(7*a):
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thet := a -> PI/2 + 1.3*sin(5*a):

x := a -> center[1] + radius*cos(phi(a))*sin(thet(a)):

y := a -> center[2] + radius*sin(phi(a))*sin(thet(a)):

z := a -> center[3] + radius*cos(thet(a)):

The curve c is defined as an object of type plot::Curve3d. Further, define an animated
point p that runs along the curve. An animated filled disc of type plot::Circle3d
indicating the tangent plane at the point p as well as the corresponding normal are
added to the plot:

c := plot::Curve3d([x(t), y(t), z(t)], t = 0..2*PI, 

                   Mesh = 1000, Color = RGB::Black):

p :=  a -> [x(a), y(a), z(a)]:

n :=  a -> zip([x(a), y(a), z(a)], center, _subtract):

d := plot::Circle3d(2.5, p(a), n(a), a = 0..2*PI, Filled = TRUE,

                    FillColor = RGB::BlueLight.[0.5],

                    LinesVisible = FALSE): 

n := plot::Arrow3d(p(a), [p(a)[i] + n(a)[i]/2 $ i=1..3], 

                   a = 0..2*PI, TipLength = 0.8*unit::mm):

p := plot::Point3d(p(a), a = 0..2*PI, PointColor = RGB::Black, 

                   PointSize = 2*unit::mm):

plot(s, c, p, n, d, Frames = 200, TimeEnd = 50):
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delete radius, center, s, phi, thet,

       x, y, z, c, p, n, d:

Parameters

r

The radius of the sphere: a real numerical value or an arithmetical expression of the
animation parameter a.

r is equivalent to the attribute Radius.

cx, cy, cz

The coordinates of the center: real numerical values or arithmetical expressions of the
animation parameter a. If no center is specified, a sphere/ellipsoid centered at the orign
is created.

cx, cy, cz are equivalent to the attributes Center, CenterX, CenterY, CenterZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Circle3d | plot::Ellipsoid | plot::Surface
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plot::Ellipsoid
Graphical primitive for ellipsoids

Syntax
plot::Ellipsoid(rx, ry, rz, <[cx, cy, cz]>, <a = amin .. amax>, options)

Description

plot::Ellipsoid(rx, ry, rz, c) creates an ellipsoid with the center c and
symmetry axes parallel to the coordinate axes. The semi axes have the lengths rx, ry, rz.

Ellipsoids with arbitrary orientations of the symmetry axes can be generated via
plot::Rotate3d.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::LightBlue

FillColor color of areas and surfaces RGB::LightBlue

Frames the number of frames in an
animation

50
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Attribute Purpose Default Value

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

SemiAxes semi axes of ellipses and
ellipsods

[1, 2, 3]

SemiAxisX first semi axis of ellipses
and ellipsods

1

SemiAxisY second semi axis of ellipses
and ellipsods

2

SemiAxisZ third semi axis of ellipsods 3

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
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Attribute Purpose Default Value

TitleAlignment horizontal alignment of
titles w.r.t. their coordinates

Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Create a blue ellipsoid around the origin with semi axes of lengths 1, 2, 3:

plot(plot::Ellipsoid(1, 2, 3, [0, 0, 0]))
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delete s:

Parameters

rx, ry, rz

The length of the semi axes of the ellipsoid: real numerical values or arithmetical
expressions of the animation parameter a.

rx, ry, rz are equivalent to the attributes SemiAxes, SemiAxisX, SemiAxisY,
SemiAxisZ.

cx, cy, cz

The coordinates of the center: real numerical values or arithmetical expressions of the
animation parameter a. If no center is specified, a sphere/ellipsoid centered at the orign
is created.

cx, cy, cz are equivalent to the attributes Center, CenterX, CenterY, CenterZ.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Circle3d | plot::Sphere | plot::Surface
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plot::Spherical
Surfaces in 3D parameterized in spherical coordinates

Syntax
plot::Spherical([r, ϕ, θ], u = umin .. umax, v = vmin .. vmax, <a = amin .. amax>, options)

Description

plot::Spherical creates surfaces parametrized in spherical coordinates.

The surface given by a mapping (“parametrization”)  is
the set of all image points
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in spherical coordinates, which translate to the usual “Cartesian” coordinates as
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r is referred to as “radius”, ϕ as “azimuthal angle”, and θ is known as “polar angle.”

The functions r, ϕ, θ are evaluated on a regular equidistant mesh of sample points in
the u-v plane. This mesh is determined by the attributes UMesh, VMesh. By default, the
attribute AdaptiveMesh = 0 is set, i.e., no adaptive refinement of the equidistant mesh
is used.

If the standard mesh does not suffice to produce a sufficiently detailed plot, one
may either increase the value of UMesh, VMesh or USubmesh, VSubmesh, or set
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AdaptiveMesh = n with some (small) positive integer n. If necessary, up to 2n - 1
additional points are placed in each direction of the u-v plane between adjacent points of
the initial equidistant mesh. Cf.  “Example 3” on page 24-761.

“Coordinate lines” (“parameter lines”) are curves on the surface.

The phrase “ULines” refers to the curves (r(u, v0), ϕ(u, v0), θ(u, v0)) with the parameter u
running from umin to umax, while v0 is some fixed value from the interval [vmin, vmax].

The phrase “VLines” refers to the curves (r(u0, v), ϕ(u0, v), θ(u0, v)) with the parameter v
running from vmin to vmax, while u0 is some fixed value from the interval [umin, umax].

By default, the parameter curves are visible. They may be switched off by specifying
ULinesVisible = FALSE and VLinesVisible = FALSE, respectively.

The coordinate lines controlled by ULinesVisible = TRUE/FALSE and
VLinesVisible = TRUE/FALSE indicate the equidistant mesh in the u-v plane set
via the UMesh, VMesh attributes. If the mesh is refined by the USubmesh, VSubmesh
attributes, or by the adaptive mechanism controlled by AdaptiveMesh = n, no
additional parameter lines are drawn.

As far as the numerical approximation of the surface is concerned, the settings

UMesh = nu, VMesh = nv, USubmesh = mu, VSubmesh = mv

and

UMesh = (nu - 1) (mu + 1) + 1, VMesh = (nv - 1) (mv + 1) + 1,

USubmesh = 0, VSubmesh = 0

are equivalent. However, in the first setting, nu parameter lines are visible in the u
direction, while in the latter setting (nu - 1)*(mu + 1) + 1 parameter lines are
visible. Cf. “Example 3” on page 24-761.

Use Filled = FALSE to obtain a wireframe representation of the surface.

If the expression/function r contains singularities, it is recommended (but not strictly
necessary) to use the attribute ViewingBox to set a suitable viewing box. No such
precautions are necessary for ϕ and θ, although singularities in these functions may
result in poorly rendered surfaces – in many cases setting the attributes Mesh and/or
AdaptiveMesh to higher values will help. Cf. “Example 6” on page 24-767.
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Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE
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Attribute Purpose Default Value

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [25, 25]
MeshVisible visibility of irregular mesh

lines in 3D
FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles
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Attribute Purpose Default Value

PointsVisible visibility of mesh points FALSE

Submesh density of submesh
(additional sample points)

[0, 0]

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

ULinesVisible visibility of parameter lines
(u lines)

TRUE

UMax final value of parameter “u”  
UMesh number of sample points for

parameter “u”
25

UMin initial value of parameter
“u”

 

UName name of parameter “u”  
URange range of parameter “u”  
USubmesh density of additional sample

points for parameter “u”
0

VLinesVisible visibility of parameter lines
(v lines)

TRUE
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Attribute Purpose Default Value

VMax final value of parameter “v”  
VMesh number of sample points for

parameter “v”
25

VMin initial value of parameter
“v”

 

VName name of parameter “v”  
VRange range of parameter “v”  
VSubmesh density of additional sample

points for parameter “v”
0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XContours contour lines at constant x
values

[]

XFunction function for x values  
YContours contour lines at constant y

values
[]

YFunction function for y values  
ZContours contour lines at constant z

values
[]

ZFunction function for z values  
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Examples

Example 1

Spherical coordinates get their name from the fact that, with a constant radius, the
parameterize a sphere:

plot(plot::Spherical([1, u, v], u = 0..2*PI, v = 0..PI))

plot(plot::Spherical([1, u, v], u = 0..PI, v = 0..2*PI))
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Example 2

The following plot demonstrates that spherical plots can exhibit singular surface features
even with differentiable parameterizations; in this case, the rim in the middle is actually
a border of both the left- and the right-hand part:

plot(plot::Spherical(

       [(phi^2*thet), phi, thet^2],

       phi = -PI..PI, thet=0..0.25*PI,

       Mesh = [40,40], Submesh=[3,0],

       Color = [0.9$3], FillColorType=Flat, LineColor=[0.8$3]),

     Axes = None, CameraDirection = [1, 0, 0])
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Example 3

For oscillating parameterizations or other surfaces with fine details, the default
mesh may be too coarse. As stated above, the three attributes Mesh, Submesh, and
AdaptiveMesh can be used for improving plots of these objects.

First, note that the following plot is not rendered with a sufficient resolution:

surf := plot::Spherical([4+sin(5*(u+v)), u, v], u = 0..PI, v = 0..2*PI):

plot(surf, Axes = None)
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Setting Mesh to twice its default, we get a smoother surface with additional parameter
lines:

surf::Mesh := [50, 50]:

plot(surf, Axes = None)
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Almost the same effect, but without the additional parameter lines, can be achieved by
setting Submesh = [1, 1]:

delete surf::Mesh:

surf::Submesh := [1, 1]:

plot(surf, Axes = None)
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It is also possible to use adaptive mesh refinement in areas where neighboring patches
have an angle of more than 10 degrees. While this option is mostly useful for surfaces
which require refinement only in some parts, it is certainly feasible with a plot like this,
too (but increasing Submesh is faster):

delete surf::Submesh:

surf::AdaptiveMesh := 2:

plot(surf, Axes = None)
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Example 4

The radius function r may also take on negative values. With radius functions of
changing sign, spherical surfaces often do self-intersect:

plot(plot::Spherical(

       [sin(phi^2*thet), phi, thet],

         phi = -PI..PI, thet = 0..0.5*PI,

       Mesh = [40, 20], Submesh=[0, 3]))
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Example 5

The angular functions (ϕ and θ) are not limited in value:

plot(plot::Spherical([r, r, thet], r = 0..9, thet = -PI..PI,

                     Mesh = [60, 60], Filled = FALSE),

     Axes = None, 

     plot::Camera([100, 100, 50], [0,0,0], 0.1))
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Note that we used an explicit plot::Camera object here because the automatic camera
is always placed such that all of an object is visible, even when using CameraDirection.
To get a “closer” look, use the interactive manipulation possibilities or an explicit camera.

Example 6

Singularities in the radius function are heuristically handled:

plot(plot::Spherical([1/(u + v), u, v], u = 0..PI, v = 0..PI))
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However, the heuristics fails for some examples:

plot(plot::Spherical([1/(u + v)^2, u, v], u = 0..PI, v = 0..PI))
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In cases like this, we recommend setting a viewing box explicitly with the attribute
ViewingBox:

plot(plot::Spherical([1/(u + v)^2, u, v], u = 0..PI, v = 0..PI),

     ViewingBox = [-1/10..0.7, 0..1/4, -0.2..0.3])
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Example 7

By setting one of the parameter ranges to a degenerate interval, it is possible to draw
curves on a spherical surface:

f := (u, v) -> [1 + u/10, u, v]:

surface := plot::Spherical(f(u,v), u = 0..2, v = 0..2,

                           FillColor = RGB::Grey, FillColorType = Flat):

curve := plot::Spherical(f((1 + sin(u)), (1 + sin(2*u))),

                         u = 0..2*PI, v = 0..0, Mesh = [200, 1],

                         LineColor = RGB::Red, LineWidth = 1):

plot(surface, curve)
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Example 8

While the transformation from spherical to Cartesian coordinates is not invertible,
there are at least two ways of expressing each Cartesian point in spherical coordinates
and any surface parameterizable in Cartesian coordinates can also be plotted using
plot::Spherical:

trans := linalg::ogCoordTab[Spherical, InverseTransformation]:

spher := trans(x, y, sin(x^2+y^2))
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plot(plot::Spherical(spher, x = -2..2, y = -2..2))

Example 9

Last but not least we can also produce animations with the help of plot::Spherical.
The following shows a deformation from a general spherical object to a sphere. We have
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used the animation parameter a inside of the argument for the sine function to obtain a
slight rotation during the deformation process:

plot(

  plot::Spherical(

   [1+a*sin(3*Phi+a)*sin(2*Theta),Phi,Theta],

   Theta=0..PI, Phi=0..2*PI, a=5..0

  )

)

Parameters

r, ϕ, θ

The coordinate functions: arithmetical expressions or piecewise objects depending on
the surface parameters u, v and the animation parameter a. Alternatively,  procedures
that accept 2 input parameters u, v or 3 input parameters u, v, a and return a real
numerical value when the input parameters are numerical.

r, ϕ, θ are equivalent to the attributes XFunction, YFunction, ZFunction.
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u

The first surface parameter: an identifier or an indexed identifier.

u is equivalent to the attribute UName.

umin .. umax

The plot range for the parameter u: umin, umax must be numerical real values or
expressions of the animation parameter a.

umin .. umax is equivalent to the attributes URange, UMin, UMax.

v

The second surface parameter: an identifier or an indexed identifier.

v is equivalent to the attribute VName.

vmin .. vmax

The plot range for the parameter v: vmin, vmax must be numerical real values or
expressions of the animation parameter a.

vmin .. vmax is equivalent to the attributes VRange, VMin, VMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
linalg::ogCoordTab | plot | plot::copy

MuPAD Graphical Primitives
plot::Cylindrical | plot::Polar | plot::Surface
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plot::Streamlines2d
Streamlines of vector fields

Syntax
plot::Streamlines2d([v1, v2], x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Streamlines2d(v1, v2, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::Streamlines2d(V, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

Description

plot::Streamlines2d( [v1, v2] , x = `x_{min}`..`x_{max}` , y =

`y_{min}`..`y_{max}` ) creates streamlines of the vector field defined by
 with (x, y) ∈ [xmin, xmax] ×[ymin, ymax].

A vector field is defined by a function . plot::Streamlines2d displays a
vector field by drawing almost evenly spaced streamlines of the vector field, i.e., curves
to which the vector field is tangential at every point. The density of stream lines (and the
time needed for calculation) is controlled with the attribute MinimumDistance.

As a rule of thumb: decreasing the value of MinimumDistance by a factor of 2 leads to
an increase of the runtime by a factor of 4.

A user defined color scheme may be specified by LineColorFunction = color, where
color is a MuPAD procedure accepting 6 input parameters and returning a list of RGB
values. During plotting, this function is called in the form color(x, y, v1, v2, t,
l, n):

The values x, y are the coordinates of the current point.

The values v1, v2 are the components of the vector field at the current point.

The value t is the “time” of the current point (x, y) on the current streamline. The
scaling of this parameter depends on the vector field.
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The value l is the curve length of the current streamline from its starting point the
current point (x, y), as a Euclidean distance. This parameter is invariant with respect
to scalar changes of the vector field (up to changing the direction of the streamline).

The integer value n is a count of the current streamline. Each separate streamline has a
different value.

Cf. “Example 3” on page 24-783.

Attributes
Attribute Purpose Default Value

AbsoluteError maximal absolute
discretization error

 

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black

LineWidth width of lines 0.35*unit::mm

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
MinimumDistance space between stream lines  
Name the name of a plot object (for

browser and legend)
 

24-776



 plot::Streamlines2d

Attribute Purpose Default Value

ODEMethod the numerical scheme used
for solving the ODE

ABM4

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

RelativeError maximal relative
discretization error

1/100000

Stepsize set a constant step size  
TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

TipAngle opening angle of arrow
heads

(2*PI)/15

TipStyle presentation style of arrow
heads

Filled

TipLength length of arrow heads 0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component
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Attribute Purpose Default Value

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XFunction function for x values  
XMax final value of parameter “x”  
XMin initial value of parameter

“x”
 

XName name of parameter “x”  
XRange range of parameter “x”  
YFunction function for y values  
YMax final value of parameter “y”  
YMin initial value of parameter

“y”
 

YName name of parameter “y”  
YRange range of parameter “y”  

Examples

Example 1

plot::Streamlines2d depicts vector fields by (more or less) equidistant stream lines:

plot(plot::Streamlines2d(-x, -y, x=-2..2, y=-2..2))
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Note that this style of display necessarily breaks symmetries, in this case the perfect
rotational symmetry of the vector field.

Additionally, cycles will not be closed, but leave a gap:

plot(plot::Streamlines2d(-y, x, x=-2..2, y=-2..2))
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Example 2

Apart from the “usual” parameters such as parameter ranges, line color, or line width,
plot::Streamlines2d can be controlled with the attribute MinimumDistance, which
sets the minimum distance between stream lines:

plot(plot::Streamlines2d(sin(x^2+y^2), cos(x^2+y^2),

                         x = -3..3, y = -2..2))
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plot(plot::Streamlines2d(sin(x^2+y^2), cos(x^2+y^2),

                         x = -3..3, y = -2..2,

                         MinimumDistance = 0.2))
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plot(plot::Streamlines2d(sin(x^2+y^2), cos(x^2+y^2),

                         x = -3..3, y = -2..2,

                         MinimumDistance = 0.05))
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Example 3

A line color function for plot::Streamlines2d has access to the current coordinates, to
the components of the vector field at the current point, to the current length on the curve
(both in terms of the “time” parameter and Euclidean distance) and an integer count
of the current curve (which are not found in some predefined order). We use the curve
number to generate a colorful display:

num2col := (x, y, vx, vy, t, l, n) -> RGB::fromHSV([111*n, 1, 1]):

plot(plot::Streamlines2d(sin(x^2+y^2), cos(x^2+y^2),

                         x = -3..3, y = -2..2,

                         LineColorFunction = num2col))
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Using the curve length information allows us to include directional information in the
visual display:

l2col := (x, y, vx, vy, t, l) -> [frac(5*l) $ 3]:

plot(plot::Streamlines2d(sin(x^2+y^2), cos(x^2+y^2),

                         x = -3..3, y = -2..2,

                         LineWidth = 0.75,

                         LineColorFunction = l2col))
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Often, an easier way of plotting the orientation of the stream lines is to activate the
arrow heads plot::Streamlines2d plots at the middle of each sufficiently long) stream
line. These are made invisible by the default tip length of 0:

plot(plot::Streamlines2d(0.3*x-y, 0.3*y+x,

                         x = -3..3, y = -2..2,

                         TipLength = 3*unit::mm))
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Example 4

Since the placement of stream lines is hard to predict, plot::Streamlines2d is not
really suitable for animations. It is possible to animate plot::Streamlines2d, but
coherence between the animation frames is less than usual:

plot(plot::Streamlines2d(sin(x^2+y^2), cos(x^2-y^2+a),

                         x = -2..2, y = -2..2, a = -PI..PI,

                         MinimumDistance = 0.1,

                         Frames=10))
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Example 5

With the default settings, plot::Streamlines2d is not able to plot the vector field

 (which is not Lipschitz continous) in a satisfying way:

plot(plot::Streamlines2d([1, surd(3,y)^2], 

                         x=-3..3, y=-2..2))
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By using a different numerical integrator, the problems can be overcome (at the cost of
longer computation):

plot(plot::Streamlines2d([1, surd(3,y)^2], 

                         x=-3..3, y=-2..2,

                         ODEMethod=RKF43,

                         RelativeError=1e-3))
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Parameters

v1, v2

The x- and y-component of the vector field: arithmetical expressions in x, y, and, possibly,
the animation parameter a.

v1, v2 are equivalent to the attributes XFunction, YFunction.

V

A matrix of category Cat::Matrix with two entries that provide the components v1, v2
of the vector field.

x, y

Identifiers.

x, y are equivalent to the attributes XName, YName.
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xmin .. xmax, ymin .. ymax

Real numerical values.

xmin .. xmax, ymin .. ymax are equivalent to the attributes XRange, YRange, XMin, XMax,
YMin, YMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Algorithms

The algorithm used in plot::Streamlines2d has been published in “Creating Evenly-
Spaced Streamlines of Arbitrary Density” by Bruno Jobard and Wilfrid Lefer at the
Eurographics Workshop in Boulogne-sur-Mer, France.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d | plot::VectorField2d | plot::VectorField3d
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plot::Sum
Graphical primitive for symbolic sums

Syntax
plot::Sum(ex, i = m .. n, <a = amin .. amax>, options)

plot::Sum(sum(ex, i = m .. n), <a = amin .. amax>, options)

Description

plot::Sum(ex, i = m..n) creates a plot of summing ex over the range m..n.

plot::Sum creates a visual display of partial sums over a finite interval.
Mathematically, plot::Sum(ex, i = m..n) plots the function

.

To ease the use of plot::Sum in programs, symbolic sums are accepted in the input and
plot::Sum takes care not to evaluate these. It is highly recommended, though, not to
use this syntax in interactive applications, to avoid premature evaluation.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? FALSE

Color the main color RGB::Blue

Filled filled or transparent areas
and surfaces

FALSE

FillColor color of areas and surfaces RGB::Red

FillPattern type of area filling Solid
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter
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Attribute Purpose Default Value

ParameterRange range of the animation
parameter

 

PointColor the color of points RGB::MidnightBlue

PointsVisible visibility of mesh points FALSE

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XMax final value of parameter “x”  
XMin initial value of parameter

“x”
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Attribute Purpose Default Value

XName name of parameter “x”  
XRange range of parameter “x”  

Examples

Example 1

It is well known that . We use plot::Sum to display the first 100 partial

sums:

plot(plot::Sum(1/j^2, j = 1..100),

     plot::Function2d(PI^2/6, x=1..101, LineStyle = Dashed))

With more partial sums, the steps approximate points:
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plot(plot::Sum(sin(j^2)/j, j=1..500))

Example 2

To show some of the formatting options of plot::Sum, we use the following sum:

s := plot::Sum(1/j, j = 1..20)

By default, this object is displayed as follows:

plot(s)
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To change parameters, we can select them in the inspector and change the values, we
can give other values directly in the plot command or we can set the new values in our
object s:

s::PointsVisible := TRUE:

s::LinesVisible := FALSE:

s::PointColor := RGB::Green:

plot(s)
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Example 3

plot::Sum allows animation in the usual way, for example, in the term to sum:

plot(plot::Sum(sin(a*i^2)/i, i = 1..50, a = 0..PI))
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Another interesting parameter to animate is the summation range:

plot(plot::Sum((-1)^j/j, j = 1..jmax, jmax = 1..50))
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Parameters

ex

Arithmetical expression in i and the animation parameter a, if that is used.

ex is equivalent to the attribute Function.

i

An identifier or indexed identifier.

i is equivalent to the attribute XName.

m .. n

The range of i. m and n may be expressions in the animation parameter a. Summation
goes over m + integer. If n - m is not an integer, n will not be reached.

m .. n is equivalent to the attributes XRange, XMin, XMax.

24-799



24 Graphics and Animations

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Function2d | plot::PointList2d

24-800



 plot::Surface

plot::Surface
Parametrized surfaces in 3D

Syntax
plot::Surface([x, y, z], u = umin .. umax, v = vmin .. vmax, <a = amin .. amax>, options)

plot::Surface(xyz, u = umin .. umax, v = vmin .. vmax, <a = amin .. amax>, options)

plot::Surface(A, u = umin .. umax, v = vmin .. vmax, <a = amin .. amax>, options)

Description

plot::Surface creates a parametrized surface in 3D.

The surface given by a mapping (“parametrization”)  is
the set of all image points
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The expressions/functions x, y, z may have singularities in the plot range. Although a
heuristics is used to find a reasonable viewing range when singularities are present,
it is highly recommended to specify a viewing box via the attribute ViewingBox =
[xmin..xmax, ymin..ymax, zmin..zmax] with suitable numerical real values xmin,…,zmax.
See “Example 3” on page 24-809.

Animations are triggered by specifying a range a = amin..amax for a parameter a that is
different from the surface parameters u, v. See “Example 5” on page 24-812.

The functions x, y, z are evaluated on a regular equidistant mesh of sample points in
the u-v plane. This mesh is determined by the attributes UMesh, VMesh. By default, the
attribute AdaptiveMesh = 0 is set, i.e., no adaptive refinement of the equidistant mesh
is used.
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If the standard mesh does not suffice to produce a sufficiently detailed plot, one
may either increase the value of UMesh, VMesh or USubmesh, VSubmesh, or set
AdaptiveMesh = n with some (small) positive integer n. If necessary, up to 2n - 1
additional points are placed in each direction of the u-v plane between adjacent points of
the initial equidistant mesh. See “Example 6” on page 24-813.

The “coordinate lines” (“parameter lines”) are curves on the surface.

The phrase “ULines” refers to the curves (x(u, v0), y(u, v0), z(u, v0)) with the parameter u
running from umin to umax, while v0 is some fixed value from the interval [vmin, vmax].

The phrase “VLines” refers to the curves (x(u0, v), y(u0, v), z(u0, v)) with the parameter v
running from vmin to vmax, while u0 is some fixed value from the interval [umin, umax].

By default, the parameter curves are visible. They may be “switched off” by specifying
ULinesVisible = FALSE and VLinesVisible = FALSE, respectively.

The coordinate lines controlled by ULinesVisible = TRUE/FALSE and
VLinesVisible = TRUE/FALSE indicate the equidistant mesh in the u-v plane set
via the UMesh, VMesh attributes. If the mesh is refined by the USubmesh, VSubmesh
attributes, or by the adaptive mechanism controlled by AdaptiveMesh = n, no
additional parameter lines are drawn.

As far as the numerical approximation of the surface is concerned, the settings UMesh
= nu, VMesh = nv, USubmesh = mu, VSubmesh = mv and UMesh = (nu - 1) (mu
+ 1) + 1, VMesh = (nv - 1) (mv + 1) + 1, USubmesh = 0, VSubmesh = 0 are
equivalent. However, in the first setting, nu parameter lines are visible in the u direction,
while in the latter setting (nu - 1) (mu + 1) + 1 parameter lines are visible. See
“Example 7” on page 24-816.

Use Filled = FALSE to render the surface as a wireframe.

Attributes
Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Red
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Attribute Purpose Default Value

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid
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Attribute Purpose Default Value

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [25, 25]
MeshVisible visibility of irregular mesh

lines in 3D
FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Shading smooth color blend of
surfaces

Smooth

Submesh density of submesh
(additional sample points)

[0, 0]
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Attribute Purpose Default Value

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

ULinesVisible visibility of parameter lines
(u lines)

TRUE

UMax final value of parameter “u”  
UMesh number of sample points for

parameter “u”
25

UMin initial value of parameter
“u”

 

UName name of parameter “u”  
URange range of parameter “u”  
USubmesh density of additional sample

points for parameter “u”
0

VLinesVisible visibility of parameter lines
(v lines)

TRUE

VMax final value of parameter “v”  
VMesh number of sample points for

parameter “v”
25
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Attribute Purpose Default Value

VMin initial value of parameter
“v”

 

VName name of parameter “v”  
VRange range of parameter “v”  
VSubmesh density of additional sample

points for parameter “v”
0

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XContours contour lines at constant x
values

[]

XFunction function for x values  
YContours contour lines at constant y

values
[]

YFunction function for y values  
ZContours contour lines at constant z

values
[]

ZFunction function for z values  
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Examples

Example 1

Using standard spherical coordinates, a parametrization of a sphere of radius r by the
azimuth angle u ∈ [0, 2 π] and the polar angle v ∈ [0, π] is given by:

x := r*cos(u)*sin(v):

y := r*sin(u)*sin(v):

z := r*cos(v):

We fix r = 1 and create the surface object:

r := 1:

s := plot::Surface([x, y, z], u = 0 .. 2*PI, v = 0 .. PI)

We call plot to plot the surface:

plot(s, Scaling = Constrained):
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delete x, y, z, r, s:

Example 2

The parametrization can also be specified by piecewise objects or procedures:

x := u*cos(v):

y := piecewise([u <= 1, u*sin(v)], [u >= 1, u^2*sin(v)]):

z := proc(u, v)

begin

  if u <= 1 then

     0

  else

     cos(4*v)

  end_if:

end_proc:

plot(plot::Surface([x, y, z], u = 0 .. sqrt(2), v = 0 .. 2*PI)):

We enable adaptive sampling to get a smoother graphical result:

plot(plot::Surface([x, y, z], u = 0 .. sqrt(2), v = 0 .. 2*PI),
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                   AdaptiveMesh = 3):

delete x, y, z, s, r:

Example 3

We plot a surface with singularities:

s := plot::Surface([u*cos(v), u*sin(v), 1/u^2], 

                   u = 0 .. 1, v = 0 .. 2*PI):

plot(s):
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We specify an explicit viewing range for the z coordinate:

plot(s, ViewingBox = [Automatic, Automatic, 0 .. 10]):
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delete s:

Example 4

By introducing non-real function evaluations, we can plot surfaces with holes:

chi := piecewise([sin(4*u) < cos(3*v)+0.5, 1]):

plot(plot::Surface([cos(u)*sin(v),

                    sin(u)*sin(v),

                    chi*cos(v)],

                   u = 0 .. 2*PI, v = 0 .. PI,

                   AdaptiveMesh=2), Scaling = Constrained)
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Example 5

We generate an animation of a surface of revolution. The graph of the function
 is rotated around the x-axis:

f :=  u -> 1/(1 + u^2):

plot(plot::Surface([u, f(u)*sin(v), f(u)*cos(v)], u = -2 .. 2, 

                    v = 0 .. a*2*PI, a = 0 .. 1)):
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See plot::XRotate, plot::ZRotate for an alternative way to create surfaces of
revolution.

delete f:

Example 6

The standard mesh for the numerical evaluation of a surface does not suffice to generate
a satisfying plot in the following case:

r := 2 + sin(7*u + 5*v):

x := r*cos(u)*sin(v):

y := r*sin(u)*sin(v):

z:=  r*cos(v):

plot(plot::Surface([x, y, z], u = 0 .. 2*PI, v = 0 .. PI)):
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We increase the number of mesh points. Here, we use USubmesh, VSubmesh to place 2
additional points in each direction between each pair of neighboring points of the default
mesh. This increases the runtime for computing the plot by a factor of 9:

plot(plot::Surface([x, y, z], u = 0 .. 2*PI, v = 0 .. PI,

                   USubmesh = 2, VSubmesh = 2)):
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Alternatively, we enable adaptive sampling by setting the value of AdaptiveMesh to
some positive value:

plot(plot::Surface([x, y, z], u = 0 .. 2*PI, v = 0 .. PI,

                   AdaptiveMesh = 2)):
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delete r, x, y, z:

Example 7

By default, the parameter lines of a parametrized surface are “switched on”:

x := r*cos(phi):

y := r*sin(phi):

z := r^2:

plot(plot::Surface([x, y, z], r = 1/3 .. 1, phi = 0 .. 2*PI)):
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The parameter lines are “switched off”:

plot(plot::Surface([x, y, z], r = 1/3 .. 1, phi = 0 .. 2*PI,

                   ULinesVisible = FALSE,

                   VLinesVisible = FALSE)):
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The number of parameter lines are determined by the attributes UMesh and VMesh:

plot(plot::Surface([x, y, z], r = 1/3 .. 1, phi = 0 .. 2*PI,

                   UMesh = 5, VMesh = 12)):
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When the mesh is refined via the attributes USubmesh, VSubmesh, the numerical
approximation of the surface becomes smoother. However, the number of parameter lines
is determined by the values of UMesh, VMesh and is not increased:

plot(plot::Surface([x, y, z], r = 1/3 .. 1, phi = 0 .. 2*PI,

                   UMesh = 5, VMesh = 12,

                   USubmesh = 1, VSubmesh = 2)):
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Example 8

Klein's bottle is a surface without orientation. There is no “inside” and no “outside” of the
following object:

bx := u -> -6*cos(u)*(1 + sin(u)):

by := u -> -14*sin(u):

r :=  u -> 4 - 2*cos(u):

x := (u, v) -> piecewise([u <= PI, bx(u) - r(u)*cos(u)*cos(v)],

                         [PI < u,  bx(u) + r(u)*cos(v)]):

y := (u, v) -> r(u)*sin(v):

z := (u, v) -> piecewise([u <= PI, by(u) - r(u)*sin(u)*cos(v)],

                         [PI < u,  by(u)]):

KleinBottle:= plot::Surface(

      [x, y, z], u = 0 .. 2*PI, v = 0 .. 2*PI, 

      Mesh = [35, 31], LineColor = RGB::Black.[0.2],

      FillColorFunction = RGB::MuPADGold):

plot(KleinBottle, Axes = None, Scaling = Constrained,

     Width = 60*unit::mm, Height = 72*unit::mm,

     BackgroundStyle = Pyramid):
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delete bx, by, r, x, y, z, KleinBottle:

Example 9

Finally we create an animated surface plot of  where
a is the animation parameter:

plot(

  plot::Surface(

   [sin(u),sin(v),a*sin(u+v)], 

   u=0..2*PI, v=0..2*PI, a=1..0,

   AnimationStyle = BackAndForth

  )

)
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Parameters

x, y, z

The coordinate functions: arithmetical expressions or piecewise objects depending on
the surface parameters u, v and the animation parameter a. Alternatively,  procedures
that accept 2 input parameters u, v or 3 input parameters u, v, a and return a numerical
value when the input parameters are numerical.

x, y, z are equivalent to the attributes XFunction, YFunction, ZFunction.

xyz

The parametrization: a  procedure that accepts 2 input parameters u, v or 3 input
parameters u, v, a and returns a list of 3 numerical values [x, y, z].

A

A matrix of category Cat::Matrix with three entries that provide the parametrization
x, y, z
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u

The first surface parameter: an identifier or an indexed identifier.

u is equivalent to the attribute UName.

umin .. umax

The plot range for the parameter u: umin, umax must be numerical real values or
expressions of the animation parameter a.

umin .. umax is equivalent to the attributes URange, UMin, UMax.

v

The second surface parameter: an identifier or an indexed identifier.

v is equivalent to the attribute VName.

vmin .. vmax

The plot range for the parameter v: vmin, vmax must be numerical real values or
expressions of the animation parameter a.

vmin .. vmax is equivalent to the attributes VRange, VMin, VMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy | plotfunc3d

MuPAD Graphical Primitives
plot::Function3d | plot::Matrixplot
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plot::SurfaceSet
Triangle and quad surface meshes

Syntax
plot::SurfaceSet(meshlist, <MeshListType = t>, <MeshListNormals = n>, <UseNormals = b>, <a = amin .. amax>, options)

Description

plot::SurfaceSet(MeshList) creates a 3D graphical object from a given list of
triangle or quad coordinates.

MeshList contains coordinates of points (and optional normals) of either triangles or
quads which define a mesh of a 3D surface. The points must be given homogenous: If
a normal is given, it must be given for all points or facets, respectively. The attribute
MeshListType specifies how these points are to be interpreted for plotting the surface.
The attribute MeshListNormals specifies whether the list contains normal vectors and
at which positions they located.

MeshListType specifies how the points in MeshList are to be interpreted for plotting
the surface. See MeshList for more information about mesh list types. Cf. “Example 4”
on page 24-832.

MeshListNormals specifies whether MeshList contains normals and at which
positions they are located. See MeshList for more information about normals and facet
orientation.

When setting the attribute UseNormals to FALSE the normals defined in MeshList are
ignored when plotting the object in MuPAD. This reduces the data volume of the graphics
object and the computing time as well. However, it leads to a less brilliant image.

User-defined color functions LineColorFunction and FillColorFunction will be
called with the index of the current point as its first parameter, followed by the x, y, and z
coordinate of the current point.

The transformation objects plot::Rotate3d, plot::Scale3d, plot::Translate3d
and plot::Transform3d can be applied to the imported STL object. Cf. “Example 8” on
page 24-844.
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]
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Attribute Purpose Default Value

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

MeshList triangulation data  
MeshVisible visibility of irregular mesh

lines in 3D
FALSE

MeshListType triangulation data Triangles

MeshListNormals triangulation data None

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5
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Attribute Purpose Default Value

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

UseNormals use pre-defined normals? TRUE

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

When given a list of real numbers, plot::SurfaceSet by default considers
them as the coordinates of points in 3D forming triangles. Note that we are using
FillColorFunction here to make the triangles easier to see and that the number of
values must be divisible by 9, since each triangle needs 9 numbers to be specified:

plot(plot::SurfaceSet([frandom() $ i = 1..9*5],

  FillColorFunction = (i -> RGB::ColorList[floor((i+2)/3)]))):
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Example 2

This example demonstrates how surface sets can be created and animated in MuPAD.
First we create a mesh of points:

delete cx, cy, cz, r:

F:= [[[cx-r  ,cy-r+a,cz+r], [cx-r+a,cy-r  ,cz+r], 

      [cx+r-a,cy-r  ,cz+r], [cx+r  ,cy-r+a,cz+r],

      [cx+r  ,cy+r-a,cz+r], [cx+r-a,cy+r  ,cz+r],

      [cx-r+a,cy+r  ,cz+r], [cx-r  ,cy+r-a,cz+r]],

     [[cx+r,cy-r  ,cz-r+a], [cx+r,cy-r+a,cz-r  ],  

      [cx+r,cy+r-a,cz-r  ], [cx+r,cy+r  ,cz-r+a],

      [cx+r,cy+r  ,cz+r-a], [cx+r,cy+r-a,cz+r  ],

      [cx+r,cy-r+a,cz+r  ], [cx+r,cy-r  ,cz+r-a]],

     [[cx-r  ,cy+r,cz-r+a], [cx-r+a,cy+r,cz-r  ],

      [cx+r-a,cy+r,cz-r  ], [cx+r  ,cy+r,cz-r+a],

      [cx+r  ,cy+r,cz+r-a], [cx+r-a,cy+r,cz+r  ],

      [cx-r+a,cy+r,cz+r  ], [cx-r  ,cy+r,cz+r-a]]]:

F:= F.[subs(F[1], cz+r=cz-r), 

       subs(F[2], cx+r=cx-r), 

       subs(F[3], cy+r=cy-r)]:

T:= [[cx+r,cy-r+a,cz+r], [cx+r-a,cy-r,cz+r], [cx+r,cy-r,cz+r-a]]:

T:= T.subs(T, cx+r-a=cx-r+a, cx+r=cx-r):

T:= T.subs(T, cy-r+a=cy+r-a, cy-r=cy+r):

T:= T.subs(T, cz+r-a=cz-r+a, cz+r=cz-r):

Then we create plot objects using the mesh above:

cx := 0: cy := 0: cz := 0:

r := 1: 

P := range -> 

  plot::Group3d(

    plot::Group3d(

        plot::SurfaceSet(map(F[i], op), a = range,

                         MeshListType = TriangleFan) 

        $ i=1..6),

    plot::Group3d(

        plot::Polygon3d(F[i], a = range, Closed) $ i=1..6,

        LineWidth = 1.5,

        LineColor = RGB::Grey,

        PointsVisible,

        PointSize = 3),
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      plot::Group3d(

        plot::SurfaceSet(map(T, op), a = range), 

        FillColorType = Flat,

        FillColor=RGB::Yellow,

        Filled)

  ):

plot(P(0..r),

     Scaling = Constrained,

     Width = 120, Height = 120,

     Axes = None):
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The first half of this animation is plotted again. In the left image we can see how parts of
the surface set are constructed as triangle fan. In the right image parts of the surface are
displayed as wireframe:

plot(

  plot::Scene3d(P(0..r/2), MeshVisible = TRUE),

  plot::Scene3d(P(0..r/2), Filled = FALSE),

  Scaling = Constrained, Width = 150, Height = 75, 

  Axes = None, Layout = Horizontal

):

Example 3

A second animation demonstrates the fold back of a cube:

r := 1:

bottom := [[0, 0, 0], [r, 0, 0],

           [r, r, 0], [0, r, 0]]:

left   := [[0, 0, 0], [0, -r*sin(a), r*cos(a)],

           [r, -r*sin(a), r*cos(a)], [r, 0, 0]]:

right  := map(left, l -> [l[1], r-l[2], l[3]]):

front  := map(left, l -> [l[2], l[1], l[3]]):

back   := map(right, l -> [l[2], l[1], l[3]]):
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top    := [left[3], left[2],

           zip(left[2], [0, -r*sin(2*a-PI/2), r*cos(2*a-PI/2)], `+`),

           zip(left[3], [0, -r*sin(2*a-PI/2), r*cos(2*a-PI/2)], `+`)]:

plot(plot::SurfaceSet(map(bottom.left.top.right.front.back, op),

                      MeshListType = Quads,

                      PointsVisible = TRUE,

                      PointSize = 3,

                      MeshVisible = TRUE,

                      LineWidth = 1.5,

                      LineColor = RGB::Grey,

                      a=0..PI/2),

     plot::MuPADCube(Radius = r/3, Center = [r/2 $ 3]),

     Scaling = Constrained)

delete r, bottom, left, right, front, back, top:

Example 4

Let's have a deeper look on the different kind of mesh types. We create a mesh of points
first and then plot it using the different mesh types available. The first point will always
be plotted in red color:
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PL:= [((0,i,0.5-0.1*i), (1,i,0.5-0.1*i)) $ i = 0..5]:

SO:= FillColorFunction = 

     ((n,x,y,z)->[RGB::Blue,RGB::Red,RGB::Green][(n mod 3)+1]), 

     LineColorFunction = 

     ((n,x,y,z)-> if n=1 then RGB::Red else RGB::Black end_if), 

     PointsVisible:

VO:= plot::Camera([0.5,2.5,4.5], [0.5,2.51,0], 0.2),

     ViewingBox = [0..1,0..5,0..0.5], 

     Axes = None:

We tell MuPAD to interpret the given mesh list as a set of separate triangles. The
corresponding plot looks like this:

plot(plot::SurfaceSet(PL, SO, MeshListType = Triangles), VO):

We tell MuPAD to interpret the given mesh list as a triangle fan. The corresponding plot
looks like this:

plot(plot::SurfaceSet(PL, SO, MeshListType = TriangleFan), VO):
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The plot above looks a little bit confusing, thus we let MuPAD plot the first four triangles
step by step in order to learn how the whole fan will be created:

plot( 

  plot::Scene3d(

    plot::SurfaceSet(PL[1..3*n], SO, MeshListType = TriangleFan), 

    VO

  ) $ n=3..6

):
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We tell MuPAD to interpret the given mesh list as a triangle strip. The corresponding
plot looks like this:

plot(plot::SurfaceSet(PL, SO, MeshListType = TriangleStrip), VO):
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We tell MuPAD to interpret the given mesh list as a set of separate quads. The
corresponding plot looks like this:

plot(plot::SurfaceSet(PL, SO, MeshListType = Quads), VO):
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The reason for plotting triangles instead of (the expected) rectangles is the order of the
points in the point list. Changing the order of the second and third point, we get the
expected result:

PK:= PL: tmp:= PK[7]: PK[7]:= PK[10]: PK[10]:=tmp:

plot(plot::SurfaceSet(PK, SO, MeshListType = Quads), VO):

delete PK, tmp:
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We tell MuPAD to interpret the given mesh list as a quad strip. The corresponding plot
looks like this:

plot(plot::SurfaceSet(PL, SO, MeshListType = QuadStrip), VO):

delete PL, SO, VO:

24-838



 plot::SurfaceSet

Example 5

It is possible to include normals to give smooth shading for surfaces that are not
supposed to look like flat triangles. In the following example, we use a triangulation of a
rectangle:

trias := [([x,  y   ], [(x+1), y], [ x   ,(y+1)],

           [x, (y+1)], [(x+1), y], [(x+1),(y+1)])

         $ x = 1..4 $ y = 1..4]:

Mapping the function  to these points, we get the following surface
plot:

f := (x,y) -> sin(x)*cos(y):

meshList := map(trias, l -> [l[1], l[2], f(l[1], l[2])]):

plot(plot::SurfaceSet(meshList, MeshListType = Triangles))
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The triangulation is clearly visible. One way to reduce this would be to refine the
mesh, but this may take a lot of time with more complicated functions or be completely
impossible for measurement data. It is much faster to give MuPAD more information on
the surface, namely, the direction of the tangent planes at the points we evaluated:

normals  := map(trias, l -> [D([1], f)(l[1], l[2]),

                             D([2], f)(l[1], l[2]), 1]):

plot(plot::SurfaceSet(zip(meshList, normals, _exprseq),

                      MeshListType = Triangles,

                      MeshListNormals = BehindPoints))
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As you can see (especially at the border; otherwise, switch on LinesVisible), MuPAD
still draws the triangles at exactly the same places, but uses a color shading to create the
illusion of a smooth surface.

Example 6

We create a triangle mesh with normals in front of each triangle and plot this object, a
tetrahedron, afterwards:

meshList:= [

   0.0 ,  0.0 , -1.0 ,

  -1.5 , -1.5 ,  1.4 ,  0.0,  1.7, 1.4, 1.5, -1.5,  1.4,

   0.0 ,  0.88,  0.47,

  -1.5 , -1.5 ,  1.4 ,  1.5, -1.5, 1.4, 0.0,  0.0, -1.4,

  -0.88, -0.41,  0.25,

   1.5 , -1.5 ,  1.4 ,  0.0,  1.7, 1.4, 0.0,  0.0, -1.4,

   0.88, -0.41,  0.25,

   0.0 ,  1.7 ,  1.4 , -1.5, -1.5, 1.4, 0.0,  0.0, -1.4

]:

plot(

  plot::SurfaceSet(meshList,
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        MeshListType    = Triangles,

        MeshListNormals = BeforeFacets

  )

):

Example 7

A color function FillColorFunction can be specified. The procedure is called for each
vertex: the parameters are the index of the current triangle followed by the x-, y- and z-
coordinate of the current vertex:

plot(

  plot::Scene3d(

    plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets,

      MeshVisible = TRUE,

      LineColor    = RGB::Black,

      FillColorFunction =

      (n ->[RGB::Red,RGB::Blue,RGB::Green,RGB::Yellow]

             [n+2 div 3])

    )

  ),

  plot::Scene3d(
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    plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets,

      MeshVisible = TRUE,

      LineColor    = RGB::Black,

      FillColorFunction = ((n,x,y,z) -> [x/2,y/2,z/2])

    )

  ),

  Axes = None, Layout = Horizontal

):

The same is true for a LineColorFunction:

plot(

  plot::Scene3d(

    plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets,

      MeshVisible  = TRUE,

      PointsVisible = TRUE,

      Filled        = FALSE,

      LineWidth     = 2,

      LineColorFunction =

      (n -> [RGB::Red,RGB::Blue,RGB::Green,RGB::Yellow][n+2 div 3])

    )

  ),

  plot::Scene3d(
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    plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets,

      MeshVisible  = TRUE,

      PointsVisible = TRUE,

      Filled        = FALSE,

      LineWidth     = 2,

      LineColorFunction = ((n,x,y,z) -> [x/4,y/4,z/4])

    )

  ),

  Axes = None, Layout = Horizontal

):

Example 8

Again we plot the object defined in “Example 6” on page 24-841, but now we add a
rotated, scaled and translated copy of it:

plot(

  plot::Scene3d(

    plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets),

    plot::Scale3d([2,2,2],

      plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets,

                       Color = RGB::Blue.[0.1])
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    )

  ),

  plot::Scene3d(

    plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets),

    plot::Rotate3d(PI, Axis=[1,0,0],

      plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets,

                        Color = RGB::Blue.[0.1])

    )

  ),

  plot::Scene3d(

    plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets),

    plot::Translate3d([1,1,1],

      plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets,

                        Color = RGB::Blue.[0.1])

    )

  ),

  plot::Scene3d(

    plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets),

    plot::Transform3d([0,0,0], [1,0,0, 0,1,0, 0,0,-1],

      plot::SurfaceSet(meshList, MeshListNormals = BeforeFacets,

                        Color = RGB::Blue.[0.1])

    )

  ),

  Width = 120, Height = 120

):
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Parameters

meshlist

The point list: a list of coordinates of type DOM_FLOAT.

meshlist is equivalent to the attribute MeshList.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Options

MeshListType

Option, specified as MeshListType = t

t may be Triangles, TriangleFan, TriangleStrip, Quads or QuadStrip. This
attribute specifies the kind of surface mesh given in MeshList. This means it specifies
how the point coordinates in MeshList are to be interpreted.

MeshListNormals

Option, specified as MeshListNormals = n

n may be None, BeforePoints, BehindPoints, BeforeFacets or BehindFacets.
This attribute specifies whether MeshList contains normal vectors and at which
positions they are located.

UseNormals

Option, specified as UseNormals = b

b may be TRUE or FALSE. This attribute specifies whether the normals defined in the
STL file are used for the MuPAD plot.

Algorithms

The normal of a facet (a triangle or quad) given in MeshList is used for all its vertices
when plotting this object. Due to the fact that some facets may share points with other
facets, these points may be specified with different normals.

See Also

MuPAD Functions
plot | readbytes
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MuPAD Graphical Primitives
plot::Rotate3d | plot::Scale3d | plot::Surface | plot::SurfaceSTL |
plot::Transform3d | plot::Translate3d
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plot::SurfaceSTL

Import of STL graphics files

Syntax

plot::SurfaceSTL(filename, <UseNormals = b>, <a = amin .. amax>, options)

Description

plot::SurfaceSTL(filename) creates a 3D surface object from the data of a given
STL graphics file named “filename”.

Stereolithography (STL) files were introduced in software by 3D Systems of Valencia,
CA, as a simple method of storing information about 3D objects.

STL files contain triangulation data of 3D surfaces. Each triangle is stored as a unit
normal and three vertices. The normal and the vertices are specified by three coordinates
each, so there is a total of 12 numbers stored for each triangle. Read the ‘Background’
section of this help page for further details.

Depending on your hardware we recommend to plot STL objects with no more than
50.000 to 150.000 facets (triangles). You should activate the option ‘Accelerate OpenGL®’
in the VCam options menu.

plot::SurfaceSTL reacts to the MuPAD environment variable READPATH. For
example, after

>> READPATH := READPATH, "C:\\STLFILES":

the file ‘C:\STLFILES\xyz.stl’ is found by the command

>> S := plot::SurfaceSTL("xyz.stl"):

Alternatively, the file name can be specified as an absolute pathname:

>> S := plot::SurfaceSTL("C:\\STLFILES\\xyz.stl"):
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If a MuPAD notebook was saved to a file, its location is available inside the notebook as
the environment variable NOTEBOOKPATH. If your STL file is in the same folder as the
notebook, you may call

>> S := plot::SurfaceSTL(NOTEBOOKPATH."xyz.stl"):

When setting the attribute UseNormals to FALSE, the normals defined in the STL
graphics file are ignored when plotting the object in MuPAD. This reduces the data
volume of the graphics object in the MuPAD session and improves the computing time
as well. However, it leads to a slightly less brilliant image. Cf. “Example 2” on page
24-854.

The STL data do not include any color information. Hence, the imported graphics reacts
to the usual settings of FillColor, FillColorType etc. for MuPAD surfaces.

Also user-defined color functions LineColorFunction and FillColorFunction
can be used to color the imported surface. These functions are called with the index of
the current triangle as its first parameter, followed by the x, y, and z coordinate of the
current point.

The transformation objects plot::Rotate3d, plot::Scale3d, plot::Translate3d
and plot::Transform3d can be applied to the imported STL object. Cf. “Example 7” on
page 24-863.

If an object of type plot::SurfaceSTL is to be plotted together with other objects,
one needs to know the coordinates of the surface objects. To this end, an object S :=
plot::SurfaceSTL(...) provides the methods S::center and S::boundingBox.

The call S::center() returns a list of 3 floating-point values representing the 3D center
of the STL object.

The call S::boundingBox() returns a list of 3 ranges of floating-point values
representing the ranges for the x, y, and z coordinates of the STL surface.

See “Example 2” on page 24-854 and “Example 5” on page 24-860.

plot::SurfaceSTL::center(S) and plot::SurfaceSTL::boundingBox(S),
respectively, are alternative calls.

Note that the STL graphics file must be read completely for computing these data.
Also note that after a first call to S::center() or S::boundingBox(), the data
are not recomputed by these functions even if the STL object S has changed. Use
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plot::SurfaceSTL::center(S), plot::SurfaceSTL::boundingBox(S) in such a
case.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

InputFile input file for import
functions

 

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

MeshVisible visibility of irregular mesh
lines in 3D

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter
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Attribute Purpose Default Value

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

UseNormals use pre-defined normals? TRUE

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

The following imported STL graphics consists of about 110.000 triangles:

plot(plot::SurfaceSTL("hand.stl"),

     CameraDirection = [15, 13, 22])

Example 2

By default, the normals defined in an STL graphics file are used when plotting the object
in MuPAD. Suppressing the use of these normals may reduce the data volume of the
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graphical object and speed up plotting. However, in general, this leads to slightly less
brilliant images. For comparison, the following STL graphics is plotted with and without
using its normals:

S1 := plot::SurfaceSTL("skin.stl"):

S2 := plot::SurfaceSTL("skin.stl", UseNormals = FALSE):

plot(plot::Scene3d(S1), plot::Scene3d(S2), Layout = Vertical,

     Width = 120*unit::mm, Height = 140*unit::mm,

     Axes = None, BackgroundStyle = Pyramid):
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We compute the center and the bounding box of the surface:

S1::center()
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S1::boundingBox()

We rotate the object around its center:

plot(plot::Rotate3d(a, S1::center(), [0, 0, 1], S1,

                    a = 0..2*PI), Axes = None)

delete S1, S2:

Example 3

The following STL graphics is displayed as a surface model and as a wireframe model:

nut := plot::SurfaceSTL("nut.stl"):

plot(plot::Scene3d(nut, CameraDirection = [10, 15, 30]),

     plot::Scene3d(nut, CameraDirection = [10, 15, 30],

                   MeshVisible = TRUE, Filled = FALSE, 

                   LineColor = RGB::Black), 

     Axes = None, Layout = Horizontal,

     BackgroundStyle = Pyramid):
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delete nut:

Example 4

For demonstrating further features of STL file import, we first create our own STL
graphics file which defines a tetrahedron:

stlFile := "demo.stl":

fprint(Unquoted, Text, stlFile,

        "SOLID TRI

         FACET NORMAL 0.0 0.0 -1.0

           OUTER LOOP

             VERTEX -1.5 -1.5 1.4

             VERTEX 0.0 1.7 1.4

             VERTEX 1.5 -1.5 1.4

           ENDLOOP

         ENDFACET

         FACET NORMAL 0.0 0.88148 0.472221

           OUTER LOOP

             VERTEX -1.5 -1.5 1.4

             VERTEX 1.5 -1.5 1.4

24-858



 plot::SurfaceSTL

             VERTEX 0.0 0.0 -1.4

           ENDLOOP

         ENDFACET

         FACET NORMAL -0.876814 -0.411007 0.24954

           OUTER LOOP

             VERTEX 1.5 -1.5 1.4

             VERTEX 0.0 1.7 1.4

             VERTEX 0.0 0.0 -1.4

           ENDLOOP

         ENDFACET

         FACET NORMAL 0.876814 -0.411007 0.24954

           OUTER LOOP

             VERTEX 0.0 1.7 1.4

             VERTEX -1.5 -1.5 1.4

             VERTEX 0.0 0.0 -1.4

           ENDLOOP

         ENDFACET

         ENDSOLID TRI"

)

This STL graphics file is imported as a MuPAD plot object and rendered:

plot(plot::SurfaceSTL(stlFile, MeshVisible = TRUE)):
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We create another STL file using export::stl. It contains a sphere of radius 1
parametrized by spherical coordinates:

export::stl("sphere.stl", [cos(u)*sin(v), sin(u)*sin(v), cos(v)],

                                   u = 0 .. 2*PI, v = 0 .. 2*PI,

                         Mesh = [50, 50], Scaling = Constrained,

                         OutputBox = [-1 .. 1, -1 .. 1, -1 .. 1]):

plot(plot::SurfaceSTL("sphere.stl", Scaling = Constrained)):

Example 5

We plot the object defined in the STL graphics file of “Example 4” on page 24-858 with
its bounding box:

S := plot::SurfaceSTL(stlFile):

plot(S, plot::Box(op(S::boundingBox()), 

                  Color = RGB::Blue.[0.1])):
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delete S:

Example 6

A color function FillColorFunction can be specified. This will be called with the index
of the current facet as its first parameter followed by the x-, y- and z-coordinate of the
current point.

We use the object defined in the STL graphics file of “Example 4” on page 24-858:

mycolorlist:= [RGB::Red, RGB::Blue, RGB::Green, RGB::Yellow]:

plot(plot::Scene3d(plot::SurfaceSTL(stlFile,

                      FillColorFunction = 

                         proc(n, x, y, z) begin

                            mycolorlist[n]

                      end_proc)),

     plot::Scene3d(plot::SurfaceSTL(stlFile, 

                      FillColorFunction =

                         proc(n, x, y, z) begin

                            [abs(x)/2, abs(y)/2, abs(z)/2]
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                         end_proc)),

  Axes = None, Layout = Horizontal):

We define a LineColorFunction:

plot(plot::Scene3d(plot::SurfaceSTL(stlFile,

                      LineColorFunction = 

                         proc(n, x, y, z) begin

                            mycolorlist[n]

                      end_proc)),

     plot::Scene3d(plot::SurfaceSTL(stlFile,

                      LineColorFunction = 

                         proc(n, x, y, z) begin

                            [abs(x)/2, abs(y)/2, abs(z)/2]

                         end_proc)),

  Axes = None, Filled = FALSE, MeshVisible = TRUE,

  LineWidth = 2*unit::mm, Layout = Horizontal):
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delete mycolorlist:

Example 7

Again, we plot the object of the STL graphics file defined in “Example 4” on page
24-858. Here, we add rotated, scaled and translated copies:

plot( 

  plot::Scene3d( 

    plot::SurfaceSTL(stlFile),

    plot::Scale3d([2, 2, 2],

      plot::SurfaceSTL(stlFile, Color = RGB::Blue.[0.1])

    )

  ),

  plot::Scene3d( 

    plot::SurfaceSTL(stlFile),

    plot::Rotate3d(PI, Axis = [1, 0, 0],

      plot::SurfaceSTL(stlFile, Color = RGB::Blue.[0.1])

    )

  ),

  plot::Scene3d( 
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    plot::SurfaceSTL(stlFile),

    plot::Translate3d([1, 1, 1],

      plot::SurfaceSTL(stlFile, Color = RGB::Blue.[0.1])

    )

  ),

  plot::Scene3d( 

    plot::SurfaceSTL(stlFile),

    plot::Transform3d([0, 0, 0], [1, 0, 0, 0, 1, 0, 0, 0, -1],

      plot::SurfaceSTL(stlFile, Color = RGB::Blue.[0.1])

    )

  ),

  Width = 120*unit::mm, Height = 120*unit::mm):
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Example 8

STL objects can be animated. The tetrahedron defined in “Example 4” on page 24-858
moves around a box:

SO := plot::SurfaceSTL(stlFile):

BO := plot::Box(op(SO::boundingBox(SO)), Color = RGB::Blue.[0.1]):

GO := [6*sin(a), -6*cos(a), 4*cos(2*a)], a = 0..2*PI:

CU := plot::Curve3d(GO):

plot(BO, CU, plot::Translate3d(GO, SO), 

     ViewingBox = [-8..8, -8..8, -6..6]):

Below, the color function FillColorFunction of an STL object is animated:

plot(plot::SurfaceSTL(stlFile,

        MeshVisible = TRUE,

        LineColor = RGB::Black,

        FillColorFunction = 

            proc(n, x, y, z) begin

              [sin(x + a)^2 ,sin(y + a)^2, sin(z + a)^2]

            end_proc,

        a = 0..2*PI, TimeRange = 1..4),

  Axes = None, Layout = Horizontal)
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delete SO, BO, GO, CU, stlFile:

Parameters
filename

The file name: a character string of type DOM_STRING.

filename is equivalent to the attribute InputFile.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Options
UseNormals

Option, specified as UseNormals = b
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b may be TRUE or FALSE. This attribute specifies whether the normals defined in the
STL file are used for the MuPAD plot.

Algorithms

The STL sample files presented on this help page were taken from the ftp site of the
Clemson University, South Carolina, USA:

ftp.vr.clemson.edu/pub/rp/STL_objects.

There are two storage formats available for STL files, which are ASCII and BINARY.
ASCII files are human-readable while BINARY files are smaller and faster to process.
Both formats can be read by plot::SurfaceSTL. A typical ASCII STL file looks like
this:

    solid sample

     facet normal -4.470293E-02 7.003503E-01 -7.123981E-01

      outer loop

       vertex -2.812284E+00 2.298693E+01 0.000000E+00

       vertex -2.812284E+00 2.296699E+01 -1.960784E-02

       vertex -3.124760E+00 2.296699E+01 0.000000E+00

      endloop

     endfacet

     ...

    endsolid sample

STL BINARY files have the following format:

    Bytes  Type   Description

    80     ASCII  header, no data significance

    4      uint   number of facets in file

    4      float  normal  x - start of facet

    4      float  normal  y

    4      float  normal  z

    4      float  vertex1 x

    4      float  vertex1 y

    4      float  vertex1 z

    4      float  vertex2 x

    4      float  vertex2 y

    4      float  vertex2 z
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    4      float  vertex3 x

    4      float  vertex3 y

    4      float  vertex3 z

    2      byte   not used  - end of facet

           ...

      

Facet orientation: The facets define the surface of a 3D object. As such, each facet is part
of the boundary between the interior and the exterior of the object. The orientation of the
facets (which way is "out" and which way is "in") is specified redundantly in two ways
which should be consistent. First, the direction of the normal is outward. Second, which
is most commonly used nowadays, the facet vertices are listed in counterclockwise order
when looking at the object from the outside (right-hand rule).

Vertex-to-vertex rule: Each triangle must share two vertices with each of its adjacent
triangles. In other words, a vertex of one triangle cannot lie on the side of another.

Axes: The format specifies that all vertex coordinates must be strictly positive numbers.
However, it seems that — with a few exceptions — most software used today (MuPAD
included) allow negative coordinates as well.

Units: The STL file does not contain any scale information; the coordinates may be
interpreted in arbitrary units.

Further details about the STL file format are available in the web, e.g., at:

• www.ennex.com/fabbers/StL.asp,
• www.math.iastate.edu/burkardt/data/stl/stl.html and
• rpdrc.ic.polyu.edu.hk/content/stl/stl_introduction.htm.

Collections of STL sample files can be found in the web, e.g., at:

• www.wohlersassociates.com/Software-for-Rapid-Prototyping.html and
• www.cs.duke.edu/~edels/Tubes.

Information about rapid prototyping technologies is available in the web, e.g., at:

www.cs.hut.fi/~ado/rp/rp.html.

Note that MuPAD only accepts the following notations for the keywords “facet” and
“vertex” in STL ASCII files: facet, FACET, Facet and vertex, VERTEX, Vertex,
respectively.
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The normal of a facet defined in an STL file is used for all its vertices when plotting this
object. Due to the fact that some facets (triangles) share points with other ones, these
points are plotted with different normals.

See Also

MuPAD Functions
export::stl | import::readbitmap | plot

MuPAD Graphical Primitives
plot::Rotate3d | plot::Scale3d | plot::Surface | plot::SurfaceSet |
plot::Transform3d | plot::Translate3d
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plot::Sweep
Sweep surface from the deformation of a 3D curve

Syntax
plot::Sweep([x1, y1, z1], <Ground = g>, u = umin .. umax, <a = amin .. amax>, options)

plot::Sweep(A1, <Ground = g>, u = umin .. umax, <a = amin .. amax>, options)

plot::Sweep(C1, <Ground = g>, options)

plot::Sweep([x1, y1, z1], [x2, y2, z2], u = umin .. umax, <a = amin .. amax>, options)

plot::Sweep(A1, A2, u = umin .. umax, <a = amin .. amax>, options)

plot::Sweep(C1, C2, options)

Description

plot::Sweep([x_1(u), y_1(u), z_1(u)], u = `u_{min}`..`u_{max}`)

creates the surface swept out by the (linear) deformation of the parameterized curve
(x1(u), y1(u), z1(u)) to its projection (x1(u), y1(u), 0) to the x-y-plane.

plot::Sweep([x_1(u), y_1(u), z_1(u)], [x_2(u), y_2(u), z_2(u)], u =

`u_{min}`..`u_{max}`) creates the surface swept out by the (linear) deformation of
the parameterized curve (x1(u), y1(u), z1(u)) to the parameterized curve (x2(u), y2(u), z2(u)).

plot::Sweep creates the parametrized surface

with the two surface parameters u (ranging from umin to umax) and v (ranging from 0 to 1).
This is the linear deformation of the curve (x1(u), y1(u), z1(u)) defining one border of the
surface to the curve (x2(u), y2(u), z2(u)) defining the other border of the surface.
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If no “target curve” (x2(u), y2(u), z2(u)) is specified, the projection x2(u) = x1(u), y2(u) =
y1(u), z2(u) = g of the “source curve” (x1(u), y1(u), z1(u)) to the x-y-plane with constant
value z = g is used. The value g is set by the attribute Ground = g. The default value is g
= 0.

When a target curve [x2(u), y2(u), z2(u)] is specified, the Ground attribute does not have
any effect.

If the curves are specified by objects C1, C2 of type plot::Curve3d, the graphical
attributes of the object created by plot::Sweep are copied from C1. The parametrization
of C2 is automatically rewritten in terms of the curve parameter used in the definition
of C1. This, however, will only work if the parametrization of C2 is defined by symbolic
expressions.

Note: If the parametrization of C2 is defined by procedures, make sure that the
parameter ranges of C1 and C2 coincide!

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Color the main color RGB::Black.[0.25]

DiscontinuitySearch semi-symbolic search for
discontinuities

TRUE

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring
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Attribute Purpose Default Value

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Ground base value 0

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

24-872



 plot::Sweep

Attribute Purpose Default Value

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points 25

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Submesh density of submesh
(additional sample points)

4

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center
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Attribute Purpose Default Value

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

ULinesVisible visibility of parameter lines
(u lines)

TRUE

UMax final value of parameter “u”  
UMesh number of sample points for

parameter “u”
25

UMin initial value of parameter
“u”

 

UName name of parameter “u”  
URange range of parameter “u”  
USubmesh density of additional sample

points for parameter “u”
4

VLinesVisible visibility of parameter lines
(v lines)

TRUE

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XFunction1 parametrization of the
curves in sweep surfaces
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Attribute Purpose Default Value

XFunction2 parametrization of the
curves in sweep surfaces

 

YFunction1 parametrization of the
curves in sweep surfaces

 

YFunction2 parametrization of the
curves in sweep surfaces

 

ZFunction1 parametrization of the
curves in sweep surfaces

 

ZFunction2 parametrization of the
curves in sweep surfaces

 

Examples

Example 1

We deform a 3D spiral to its projection to the x-y-plane:

plot(plot::Sweep([u*cos(u), u*sin(u), u], u = 0..4*PI),

     CameraDirection = [90, 50, 120])
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We use the Ground attribute to project the spiral to the x-y-plane with z = 9:

plot(plot::Sweep([u*cos(u), u*sin(u), u], u = 0..4*PI, Ground = 9),

     CameraDirection = [130, 60, 45])
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Example 2

We deform a circle in the x-y-plane to a planar spiral:

plot(plot::Sweep([cos(u), sin(u), 0], [u*cos(u), u*sin(u), 0],

                 u = PI/3..7/3*PI), Scaling = Constrained)
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With Filled = FALSE, only the lines are visible along which the mesh points of the
curves are moved:

plot(plot::Sweep([cos(u), sin(u), 0], [u*cos(u), u*sin(u), 0],

                 u = PI/3..7/3*PI), Scaling = Constrained,

                 Filled = FALSE)
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We increase the number of mesh points:

plot(plot::Sweep([cos(u), sin(u), 0], [u*cos(u), u*sin(u), 0],

                 u = PI/3..7/3*PI, Mesh = 50),

                 Scaling = Constrained, Filled = FALSE)
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Example 3

We deform a circle to an animated point. The resulting sweep surface is an animated
cone:

plot(plot::Sweep([cos(u), sin(u), 0], [a, 0, a],

                 u = 0..2*PI, a = 0..2))
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Parameters

x1, y1, z1

The parametrization of the initial 3D curve: real-valued expressions in u (and possibly
the animation parameter).

x1, y1, z1 are equivalent to the attributes XFunction1, YFunction1, ZFunction1.

x2, y2, z2

The parametrization of the “target curve”: real-valued expressions in u (and possibly the
animation parameter).

x2, y2, z2 are equivalent to the attributes XFunction2, YFunction2, ZFunction2.

u

The curve parameter: an identifier or an indexed identifier.
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u is equivalent to the attribute UName.

umin, umax

Real-valued expressions (possibly in the animation parameter).

umin, umax are equivalent to the attributes UMin, UMax.

g

Real-valued expression (possibly in the animation parameter).

g is equivalent to the attribute Ground.

A1, A2

matrices of category Cat::Matrix with three entries that provide the parametrizations
x1, y1, z1 and x2, y2, z2, respectively.

C1, C2

Curves of type plot::Curve3d. C1 provides the “initial curve” [x1, y1, z1], C2
provides the “target curve” [x2, y2, z2].

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve3d | plot::Hatch | plot::Polygon3d | plot::Surface
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plot::Tetrahedron
Regular Tetrahedra

Syntax
plot::Tetrahedron(<a = amin .. amax>, options)

Description

plot::Tetrahedron() creates regular polyhedra.

Per default, all polyhedra are centered at the origin. The attribute Center allows to
choose a different center. This is helpful to align the polyhedra relative to other objects in
the graphical scene. Cf. “Example 1” on page 24-887.

All polyhedra fit into a box extending from -1 to 1 in all coordinate directions. Their size
can be changed by the attribute Radius. In case of a hexahedron (a box), this attribute
represents the radius of the inscribed sphere. For the other polyhedra, it is the radius of
the circumscribed sphere.

The default value of Radius is 1 for all polyhedra.

Further to the attributes Center and Radius, you can modify the polyhedra by
applying transformation objects of type plot::Rotate3d, plot::Scale3d,
plot::Translate3d , and plot::Transform3d. Cf. “Example 3” on page 24-889.

User-defined color functions (LineColorFunction, FillColorFunction) are called
with the index of the current facet as its first parameter, followed by the x, y, and z
coordinate of the current point, followed by the current value of the animation parameter
(if animated). Cf. “Example 4” on page 24-890.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5
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Attribute Purpose Default Value

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Radius radius of circles, spheres
etc.

1

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Using different Centers, the five regular polyhedra are placed side by side:

plot(plot::Hexahedron  (Center = [0, 0, 0]),

     plot::Tetrahedron (Center = [3, 0, 0]),

     plot::Octahedron  (Center = [6, 0, 0]),

     plot::Icosahedron (Center = [9, 0, 0]),

     plot::Dodecahedron(Center = [12, 0, 0]),

     Axes = Frame);

With the attribut Radius, the size of the polyhydra can be changed:
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plot(plot::Hexahedron  (Radius = 1.0, Center = [0, 0, 0]),

     plot::Tetrahedron (Radius = 1.5, Center = [4, 0, 0]),

     plot::Octahedron  (Radius = 2.0, Center = [8, 0, 0]),

     plot::Icosahedron (Radius = 2.5, Center = [13, 0, 0]),

     plot::Dodecahedron(Radius = 3.0, Center = [19, 0, 0]),

     Axes = Frame);

Example 2

A tetrahedron and an octahedron are embedded in a hexahedron:

plot(plot::Hexahedron (FillColorFunction = RGB::Red.[0.2],

                       VisibleFromTo = 0..8),

     plot::Tetrahedron(FillColorFunction = RGB::Green.[0.2],

                       VisibleFromTo = 1..5),

     plot::Octahedron (FillColorFunction = RGB::Blue.[0.2],

                       VisibleFromTo = 3..7),

     Axes = None)
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Example 3

Transformation objects can be applied to polyhedra as demonstrated below:

H := plot::Hexahedron(Color = RGB::Blue.[0.2],

                      FillColorType = Flat): 

T := plot::Tetrahedron(Color = RGB::Red):

plot(plot::Rotate3d(a, [0, 0, 0], [0, 0, 1], a = 0..2*PI,

                    H, 

                    plot::Translate3d([0, 0, a], T, a = 0..2)

                   ), Axes = None)
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delete T, H:

Example 4

A FillColorFunction can be specified. This will be called with the index of the current
facet as its first parameter, followed by the x-, y- and z-coordinate of the current point:

mycolorlist := [RGB::Red, RGB::Blue, RGB::Green, RGB::Yellow]:

plot(plot::Dodecahedron(Center = [0, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Dodecahedron(Center = [3, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                             mycolorlist[(n mod 4)+1]

                          end_proc),

     Axes = None):
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The same holds true for a LineColorFunction:

plot(plot::Icosahedron(Center = [0, 0, 0],

                       LineColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Icosahedron(Center = [3, 0, 0],

                       LineColorFunction =

                           proc(n, x, y, z) begin

                              mycolorlist[(n mod 4)+1]

                           end_proc),

     Axes = None, LineWidth = 1.0*unit::mm,

     FillColor = RGB::Grey80, FillColorType = Flat):
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If the polyhedron is animated, the color functions are called with an additional argument:
the current value of the animation parameter:

plot(plot::Octahedron(FillColorFunction = 

                        proc(n, x, y, z, a)

                        begin

                          [sin(n*a)^2, cos(n*a)^2, 1]:

                        end_proc,

                      a = 0..2*PI))
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delete mycolorlist:

Algorithms

A polyhedron is called regular if all its facets consist of the same regular polygon and
each vertex has the same number of coincidence polygons.

Since Plato we know that only five regular polyhedrons exist:

• the tetrahedron with 4 (greek tetra) triangles,
• the hexahedron with 6 (greek hexa) squares,
• the octahedron with 8 (greek okta) triangles,
• the dodecahedron with 12 (greek dodeka) pentagons and
• the icosahedron with 20 (greek eikosi) triangles.

The following table lists some important geometrical data of the polyhedra with the edge
length a. Where R is the radius of the outer spherem r the radius of the inner sphere, A
the surface area and V the volume:
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Ratio Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron

6

1

See Also

MuPAD Functions
plot

MuPAD Graphical Primitives
plot::Box | plot::Cone | plot::Cylinder | plot::Dodecahedron
| plot::Hexahedron | plot::Icosahedron | plot::Octahedron |
plot::Parallelogram3d | plot::Sphere | plot::Transform3d
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plot::Hexahedron
Regular Hexahedra

Syntax
plot::Hexahedron(<a = amin .. amax>, options)

Description

plot::Hexahedron() creates regular polyhedra.

Per default, all polyhedra are centered at the origin. The attribute Center allows to
choose a different center. This is helpful to align the polyhedra relative to other objects in
the graphical scene. Cf. “Example 1” on page 24-899.

All polyhedra fit into a box extending from -1 to 1 in all coordinate directions. Their size
can be changed by the attribute Radius. In case of a hexahedron (a box), this attribute
represents the radius of the inscribed sphere. For the other polyhedra, it is the radius of
the circumscribed sphere.

The default value of Radius is 1 for all polyhedra.

Further to the attributes Center and Radius, you can modify the polyhedra by
applying transformation objects of type plot::Rotate3d, plot::Scale3d,
plot::Translate3d , and plot::Transform3d. Cf. “Example 3” on page 24-901.

User-defined color functions (LineColorFunction, FillColorFunction) are called
with the index of the current facet as its first parameter, followed by the x, y, and z
coordinate of the current point, followed by the current value of the animation parameter
(if animated). Cf. “Example 4” on page 24-902.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5
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Attribute Purpose Default Value

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Radius radius of circles, spheres
etc.

1

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Using different Centers, the five regular polyhedra are placed side by side:

plot(plot::Hexahedron  (Center = [0, 0, 0]),

     plot::Tetrahedron (Center = [3, 0, 0]),

     plot::Octahedron  (Center = [6, 0, 0]),

     plot::Icosahedron (Center = [9, 0, 0]),

     plot::Dodecahedron(Center = [12, 0, 0]),

     Axes = Frame);

With the attribut Radius, the size of the polyhydra can be changed:
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plot(plot::Hexahedron  (Radius = 1.0, Center = [0, 0, 0]),

     plot::Tetrahedron (Radius = 1.5, Center = [4, 0, 0]),

     plot::Octahedron  (Radius = 2.0, Center = [8, 0, 0]),

     plot::Icosahedron (Radius = 2.5, Center = [13, 0, 0]),

     plot::Dodecahedron(Radius = 3.0, Center = [19, 0, 0]),

     Axes = Frame);

Example 2

A tetrahedron and an octahedron are embedded in a hexahedron:

plot(plot::Hexahedron (FillColorFunction = RGB::Red.[0.2],

                       VisibleFromTo = 0..8),

     plot::Tetrahedron(FillColorFunction = RGB::Green.[0.2],

                       VisibleFromTo = 1..5),

     plot::Octahedron (FillColorFunction = RGB::Blue.[0.2],

                       VisibleFromTo = 3..7),

     Axes = None)
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Example 3

Transformation objects can be applied to polyhedra as demonstrated below:

H := plot::Hexahedron(Color = RGB::Blue.[0.2],

                      FillColorType = Flat): 

T := plot::Tetrahedron(Color = RGB::Red):

plot(plot::Rotate3d(a, [0, 0, 0], [0, 0, 1], a = 0..2*PI,

                    H, 

                    plot::Translate3d([0, 0, a], T, a = 0..2)

                   ), Axes = None)
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delete T, H:

Example 4

A FillColorFunction can be specified. This will be called with the index of the current
facet as its first parameter, followed by the x-, y- and z-coordinate of the current point:

mycolorlist := [RGB::Red, RGB::Blue, RGB::Green, RGB::Yellow]:

plot(plot::Dodecahedron(Center = [0, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Dodecahedron(Center = [3, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                             mycolorlist[(n mod 4)+1]

                          end_proc),

     Axes = None):
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The same holds true for a LineColorFunction:

plot(plot::Icosahedron(Center = [0, 0, 0],

                       LineColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Icosahedron(Center = [3, 0, 0],

                       LineColorFunction =

                           proc(n, x, y, z) begin

                              mycolorlist[(n mod 4)+1]

                           end_proc),

     Axes = None, LineWidth = 1.0*unit::mm,

     FillColor = RGB::Grey80, FillColorType = Flat):
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If the polyhedron is animated, the color functions are called with an additional argument:
the current value of the animation parameter:

plot(plot::Octahedron(FillColorFunction = 

                        proc(n, x, y, z, a)

                        begin

                          [sin(n*a)^2, cos(n*a)^2, 1]:

                        end_proc,

                      a = 0..2*PI))
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delete mycolorlist:

Algorithms

A polyhedron is called regular if all its facets consist of the same regular polygon and
each vertex has the same number of coincidence polygons.

Since Plato we know that only five regular polyhedrons exist:

• the tetrahedron with 4 (greek tetra) triangles,
• the hexahedron with 6 (greek hexa) squares,
• the octahedron with 8 (greek okta) triangles,
• the dodecahedron with 12 (greek dodeka) pentagons and
• the icosahedron with 20 (greek eikosi) triangles.

The following table lists some important geometrical data of the polyhedra with the edge
length a. Where R is the radius of the outer spherem r the radius of the inner sphere, A
the surface area and V the volume:
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Ratio Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron

6

1

See Also

MuPAD Functions
plot

MuPAD Graphical Primitives
plot::Box | plot::Cone | plot::Cylinder | plot::Dodecahedron |
plot::Icosahedron | plot::Octahedron | plot::Parallelogram3d |
plot::Sphere | plot::Tetrahedron | plot::Transform3d
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plot::Octahedron
Regular Octahedra

Syntax
plot::Octahedron(<a = amin .. amax>, options)

Description

plot::Octahedron() creates regular polyhedra.

Per default, all polyhedra are centered at the origin. The attribute Center allows to
choose a different center. This is helpful to align the polyhedra relative to other objects in
the graphical scene. Cf. “Example 1” on page 24-911.

All polyhedra fit into a box extending from -1 to 1 in all coordinate directions. Their size
can be changed by the attribute Radius. In case of a hexahedron (a box), this attribute
represents the radius of the inscribed sphere. For the other polyhedra, it is the radius of
the circumscribed sphere.

The default value of Radius is 1 for all polyhedra.

Further to the attributes Center and Radius, you can modify the polyhedra by
applying transformation objects of type plot::Rotate3d, plot::Scale3d,
plot::Translate3d , and plot::Transform3d. Cf. “Example 3” on page 24-913.

User-defined color functions (LineColorFunction, FillColorFunction) are called
with the index of the current facet as its first parameter, followed by the x, y, and z
coordinate of the current point, followed by the current value of the animation parameter
(if animated). Cf. “Example 4” on page 24-914.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5
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Attribute Purpose Default Value

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Radius radius of circles, spheres
etc.

1

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Using different Centers, the five regular polyhedra are placed side by side:

plot(plot::Hexahedron  (Center = [0, 0, 0]),

     plot::Tetrahedron (Center = [3, 0, 0]),

     plot::Octahedron  (Center = [6, 0, 0]),

     plot::Icosahedron (Center = [9, 0, 0]),

     plot::Dodecahedron(Center = [12, 0, 0]),

     Axes = Frame);

With the attribut Radius, the size of the polyhydra can be changed:
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plot(plot::Hexahedron  (Radius = 1.0, Center = [0, 0, 0]),

     plot::Tetrahedron (Radius = 1.5, Center = [4, 0, 0]),

     plot::Octahedron  (Radius = 2.0, Center = [8, 0, 0]),

     plot::Icosahedron (Radius = 2.5, Center = [13, 0, 0]),

     plot::Dodecahedron(Radius = 3.0, Center = [19, 0, 0]),

     Axes = Frame);

Example 2

A tetrahedron and an octahedron are embedded in a hexahedron:

plot(plot::Hexahedron (FillColorFunction = RGB::Red.[0.2],

                       VisibleFromTo = 0..8),

     plot::Tetrahedron(FillColorFunction = RGB::Green.[0.2],

                       VisibleFromTo = 1..5),

     plot::Octahedron (FillColorFunction = RGB::Blue.[0.2],

                       VisibleFromTo = 3..7),

     Axes = None)
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Example 3

Transformation objects can be applied to polyhedra as demonstrated below:

H := plot::Hexahedron(Color = RGB::Blue.[0.2],

                      FillColorType = Flat): 

T := plot::Tetrahedron(Color = RGB::Red):

plot(plot::Rotate3d(a, [0, 0, 0], [0, 0, 1], a = 0..2*PI,

                    H, 

                    plot::Translate3d([0, 0, a], T, a = 0..2)

                   ), Axes = None)
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delete T, H:

Example 4

A FillColorFunction can be specified. This will be called with the index of the current
facet as its first parameter, followed by the x-, y- and z-coordinate of the current point:

mycolorlist := [RGB::Red, RGB::Blue, RGB::Green, RGB::Yellow]:

plot(plot::Dodecahedron(Center = [0, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Dodecahedron(Center = [3, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                             mycolorlist[(n mod 4)+1]

                          end_proc),

     Axes = None):
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The same holds true for a LineColorFunction:

plot(plot::Icosahedron(Center = [0, 0, 0],

                       LineColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Icosahedron(Center = [3, 0, 0],

                       LineColorFunction =

                           proc(n, x, y, z) begin

                              mycolorlist[(n mod 4)+1]

                           end_proc),

     Axes = None, LineWidth = 1.0*unit::mm,

     FillColor = RGB::Grey80, FillColorType = Flat):
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If the polyhedron is animated, the color functions are called with an additional argument:
the current value of the animation parameter:

plot(plot::Octahedron(FillColorFunction = 

                        proc(n, x, y, z, a)

                        begin

                          [sin(n*a)^2, cos(n*a)^2, 1]:

                        end_proc,

                      a = 0..2*PI))
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delete mycolorlist:

Algorithms

A polyhedron is called regular if all its facets consist of the same regular polygon and
each vertex has the same number of coincidence polygons.

Since Plato we know that only five regular polyhedrons exist:

• the tetrahedron with 4 (greek tetra) triangles,
• the hexahedron with 6 (greek hexa) squares,
• the octahedron with 8 (greek okta) triangles,
• the dodecahedron with 12 (greek dodeka) pentagons and
• the icosahedron with 20 (greek eikosi) triangles.

The following table lists some important geometrical data of the polyhedra with the edge
length a. Where R is the radius of the outer spherem r the radius of the inner sphere, A
the surface area and V the volume:
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Ratio Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron

6

1

See Also

MuPAD Functions
plot

MuPAD Graphical Primitives
plot::Box | plot::Cone | plot::Cylinder | plot::Dodecahedron |
plot::Hexahedron | plot::Icosahedron | plot::Parallelogram3d |
plot::Sphere | plot::Tetrahedron | plot::Transform3d
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plot::Dodecahedron
Regular Dodecahedra

Syntax
plot::Dodecahedron(<a = amin .. amax>, options)

Description

plot::Dodecahedron() creates regular polyhedra.

Per default, all polyhedra are centered at the origin. The attribute Center allows to
choose a different center. This is helpful to align the polyhedra relative to other objects in
the graphical scene. Cf. “Example 1” on page 24-923.

All polyhedra fit into a box extending from -1 to 1 in all coordinate directions. Their size
can be changed by the attribute Radius. In case of a hexahedron (a box), this attribute
represents the radius of the inscribed sphere. For the other polyhedra, it is the radius of
the circumscribed sphere.

The default value of Radius is 1 for all polyhedra.

Further to the attributes Center and Radius, you can modify the polyhedra by
applying transformation objects of type plot::Rotate3d, plot::Scale3d,
plot::Translate3d , and plot::Transform3d. Cf. “Example 3” on page 24-925.

User-defined color functions (LineColorFunction, FillColorFunction) are called
with the index of the current facet as its first parameter, followed by the x, y, and z
coordinate of the current point, followed by the current value of the animation parameter
(if animated). Cf. “Example 4” on page 24-926.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

24-921



24 Graphics and Animations

Attribute Purpose Default Value

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Radius radius of circles, spheres
etc.

1

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Using different Centers, the five regular polyhedra are placed side by side:

plot(plot::Hexahedron  (Center = [0, 0, 0]),

     plot::Tetrahedron (Center = [3, 0, 0]),

     plot::Octahedron  (Center = [6, 0, 0]),

     plot::Icosahedron (Center = [9, 0, 0]),

     plot::Dodecahedron(Center = [12, 0, 0]),

     Axes = Frame);

With the attribut Radius, the size of the polyhydra can be changed:
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plot(plot::Hexahedron  (Radius = 1.0, Center = [0, 0, 0]),

     plot::Tetrahedron (Radius = 1.5, Center = [4, 0, 0]),

     plot::Octahedron  (Radius = 2.0, Center = [8, 0, 0]),

     plot::Icosahedron (Radius = 2.5, Center = [13, 0, 0]),

     plot::Dodecahedron(Radius = 3.0, Center = [19, 0, 0]),

     Axes = Frame);

Example 2

A tetrahedron and an octahedron are embedded in a hexahedron:

plot(plot::Hexahedron (FillColorFunction = RGB::Red.[0.2],

                       VisibleFromTo = 0..8),

     plot::Tetrahedron(FillColorFunction = RGB::Green.[0.2],

                       VisibleFromTo = 1..5),

     plot::Octahedron (FillColorFunction = RGB::Blue.[0.2],

                       VisibleFromTo = 3..7),

     Axes = None)
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Example 3

Transformation objects can be applied to polyhedra as demonstrated below:

H := plot::Hexahedron(Color = RGB::Blue.[0.2],

                      FillColorType = Flat): 

T := plot::Tetrahedron(Color = RGB::Red):

plot(plot::Rotate3d(a, [0, 0, 0], [0, 0, 1], a = 0..2*PI,

                    H, 

                    plot::Translate3d([0, 0, a], T, a = 0..2)

                   ), Axes = None)
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delete T, H:

Example 4

A FillColorFunction can be specified. This will be called with the index of the current
facet as its first parameter, followed by the x-, y- and z-coordinate of the current point:

mycolorlist := [RGB::Red, RGB::Blue, RGB::Green, RGB::Yellow]:

plot(plot::Dodecahedron(Center = [0, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Dodecahedron(Center = [3, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                             mycolorlist[(n mod 4)+1]

                          end_proc),

     Axes = None):
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The same holds true for a LineColorFunction:

plot(plot::Icosahedron(Center = [0, 0, 0],

                       LineColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Icosahedron(Center = [3, 0, 0],

                       LineColorFunction =

                           proc(n, x, y, z) begin

                              mycolorlist[(n mod 4)+1]

                           end_proc),

     Axes = None, LineWidth = 1.0*unit::mm,

     FillColor = RGB::Grey80, FillColorType = Flat):
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If the polyhedron is animated, the color functions are called with an additional argument:
the current value of the animation parameter:

plot(plot::Octahedron(FillColorFunction = 

                        proc(n, x, y, z, a)

                        begin

                          [sin(n*a)^2, cos(n*a)^2, 1]:

                        end_proc,

                      a = 0..2*PI))
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delete mycolorlist:

Algorithms

A polyhedron is called regular if all its facets consist of the same regular polygon and
each vertex has the same number of coincidence polygons.

Since Plato we know that only five regular polyhedrons exist:

• the tetrahedron with 4 (greek tetra) triangles,
• the hexahedron with 6 (greek hexa) squares,
• the octahedron with 8 (greek okta) triangles,
• the dodecahedron with 12 (greek dodeka) pentagons and
• the icosahedron with 20 (greek eikosi) triangles.

The following table lists some important geometrical data of the polyhedra with the edge
length a. Where R is the radius of the outer sphere, r the radius of the inner sphere, A
the surface area, and V the volume:
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Ratio Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron

6

1

See Also

MuPAD Functions
plot

MuPAD Graphical Primitives
plot::Box | plot::Cone | plot::Cylinder | plot::Hexahedron |
plot::Icosahedron | plot::Octahedron | plot::Parallelogram3d |
plot::Sphere | plot::Tetrahedron | plot::Transform3d
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plot::Icosahedron
Regular Icosahedra

Syntax
plot::Icosahedron(<a = amin .. amax>, options)

Description

plot::Icosahedron() creates regular polyhedra.

Per default, all polyhedra are centered at the origin. The attribute Center allows to
choose a different center. This is helpful to align the polyhedra relative to other objects in
the graphical scene. Cf. “Example 1” on page 24-935.

All polyhedra fit into a box extending from -1 to 1 in all coordinate directions. Their size
can be changed by the attribute Radius. In case of a hexahedron (a box), this attribute
represents the radius of the inscribed sphere. For the other polyhedra, it is the radius of
the circumscribed sphere.

The default value of Radius is 1 for all polyhedra.

Further to the attributes Center and Radius, you can modify the polyhedra by
applying transformation objects of type plot::Rotate3d, plot::Scale3d,
plot::Translate3d , and plot::Transform3d. Cf. “Example 3” on page 24-937.

User-defined color functions (LineColorFunction, FillColorFunction) are called
with the index of the current facet as its first parameter, followed by the x, y, and z
coordinate of the current point, followed by the current value of the animation parameter
(if animated). Cf. “Example 4” on page 24-938.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::Red

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5
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Attribute Purpose Default Value

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Radius radius of circles, spheres
etc.

1

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE
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Attribute Purpose Default Value

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

Using different Centers, the five regular polyhedra are placed side by side:

plot(plot::Hexahedron  (Center = [0, 0, 0]),

     plot::Tetrahedron (Center = [3, 0, 0]),

     plot::Octahedron  (Center = [6, 0, 0]),

     plot::Icosahedron (Center = [9, 0, 0]),

     plot::Dodecahedron(Center = [12, 0, 0]),

     Axes = Frame);

With the attribut Radius, the size of the polyhydra can be changed:
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plot(plot::Hexahedron  (Radius = 1.0, Center = [0, 0, 0]),

     plot::Tetrahedron (Radius = 1.5, Center = [4, 0, 0]),

     plot::Octahedron  (Radius = 2.0, Center = [8, 0, 0]),

     plot::Icosahedron (Radius = 2.5, Center = [13, 0, 0]),

     plot::Dodecahedron(Radius = 3.0, Center = [19, 0, 0]),

     Axes = Frame);

Example 2

A tetrahedron and an octahedron are embedded in a hexahedron:

plot(plot::Hexahedron (FillColorFunction = RGB::Red.[0.2],

                       VisibleFromTo = 0..8),

     plot::Tetrahedron(FillColorFunction = RGB::Green.[0.2],

                       VisibleFromTo = 1..5),

     plot::Octahedron (FillColorFunction = RGB::Blue.[0.2],

                       VisibleFromTo = 3..7),

     Axes = None)
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Example 3

Transformation objects can be applied to polyhedra as demonstrated below:

H := plot::Hexahedron(Color = RGB::Blue.[0.2],

                      FillColorType = Flat): 

T := plot::Tetrahedron(Color = RGB::Red):

plot(plot::Rotate3d(a, [0, 0, 0], [0, 0, 1], a = 0..2*PI,

                    H, 

                    plot::Translate3d([0, 0, a], T, a = 0..2)

                   ), Axes = None)
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delete T, H:

Example 4

A FillColorFunction can be specified. This will be called with the index of the current
facet as its first parameter, followed by the x-, y- and z-coordinate of the current point:

mycolorlist := [RGB::Red, RGB::Blue, RGB::Green, RGB::Yellow]:

plot(plot::Dodecahedron(Center = [0, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Dodecahedron(Center = [3, 0, 0],

                        FillColorFunction = 

                          proc(n, x, y, z) begin

                             mycolorlist[(n mod 4)+1]

                          end_proc),

     Axes = None):
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The same holds true for a LineColorFunction:

plot(plot::Icosahedron(Center = [0, 0, 0],

                       LineColorFunction = 

                          proc(n, x, y, z) begin

                            [(1 + x)/2, (1 + y)/2, (1 + z)/2]

                          end_proc),

     plot::Icosahedron(Center = [3, 0, 0],

                       LineColorFunction =

                           proc(n, x, y, z) begin

                              mycolorlist[(n mod 4)+1]

                           end_proc),

     Axes = None, LineWidth = 1.0*unit::mm,

     FillColor = RGB::Grey80, FillColorType = Flat):
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If the polyhedron is animated, the color functions are called with an additional argument:
the current value of the animation parameter:

plot(plot::Octahedron(FillColorFunction = 

                        proc(n, x, y, z, a)

                        begin

                          [sin(n*a)^2, cos(n*a)^2, 1]:

                        end_proc,

                      a = 0..2*PI))
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delete mycolorlist:

Algorithms

A polyhedron is called regular if all its facets consist of the same regular polygon and
each vertex has the same number of coincidence polygons.

Since Plato we know that only five regular polyhedrons exist:

• the tetrahedron with 4 (greek tetra) triangles,
• the hexahedron with 6 (greek hexa) squares,
• the octahedron with 8 (greek okta) triangles,
• the dodecahedron with 12 (greek dodeka) pentagons and
• the icosahedron with 20 (greek eikosi) triangles.

The following table lists some important geometrical data of the polyhedra with the edge
length a. Where R is the radius of the outer sphere, r the radius of the inner sphere, A
the surface area and V the volume:
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Ratio Tetrahedron Hexahedron Octahedron Dodecahedron Icosahedron

6

1

See Also

MuPAD Functions
plot

MuPAD Graphical Primitives
plot::Box | plot::Cone | plot::Cylinder | plot::Dodecahedron |
plot::Hexahedron | plot::Octahedron | plot::Parallelogram3d |
plot::Sphere | plot::Tetrahedron | plot::Transform3d
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plot::Text2d
2D text

Syntax
plot::Text2d(text, [x, y], <a = amin .. amax>, options)

Description

plot::Text2d draws a text at a given position (x, y) (the “anchor point”). The attributes
VerticalAlignment and HorizontalAlignment determine the alignment of the text
w.r.t. its anchor.

Size, text color, font type etc. are controlled by the attribute TextFont.

A text may consist of several lines. The newline character in MuPAD strings ist \n. For
example: "first line\nsecond line".

The attribute TextRotation allows to rotate the text on the screen.

The text of a text object can be animated if it is passed as a procedure that returns the
text string during runtime. Cf. “Example 5” on page 24-949.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Frames the number of frames in an
animation

50

HorizontalAlignment horizontal alignment of
text objects w.r.t. their
coordinates

Left

Legend makes a legend entry  
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Attribute Purpose Default Value

LegendText short explanatory text for
legend

 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Position positions of cameras, lights,
and text objects

 

PositionX x-positions of cameras,
lights, and text objects

 

PositionY y-positions of cameras,
lights, and text objects

 

Text the text of a text object  
TextFont font of text objects [" sans-serif ", 11]
TextRotation rotation of a 2D text 0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
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Attribute Purpose Default Value

TitleAlignment horizontal alignment of
titles w.r.t. their coordinates

Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

VerticalAlignment vertical alignment of
text objects w.r.t. their
coordinates

BaseLine

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

We draw the text string `Hello world!' at the anchor point (1, 2) which is indicated by a
red dot:

plot(plot::Rectangle(0..2, 0..4),

     plot::Point2d([1, 2]),

     plot::Text2d("Hello world!", [1, 2],

                  HorizontalAlignment = Center), 

     Axes = Frame, TextFont = [24],

     PointColor = RGB::Red, PointSize = 3*unit::mm)
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Example 2

We animate the anchor points of the following texts and demonstrate various alignment
possibilities:

plot(plot::Circle2d(1),

     plot::Point2d([sin(a), cos(a)], a = 0..2*PI), 

     plot::Point2d([cos(a), -sin(a)], a = 0..2*PI),

     plot::Point2d([-sin(a), -cos(a)], a = 0..2*PI),

     plot::Point2d([-cos(a), sin(a)], a = 0..2*PI),

     PointColor = RGB::Red, PointSize = 3*unit::mm,

     plot::Text2d("Hello (1)", [sin(a), cos(a)], a = 0..2*PI),

     plot::Text2d("Hello (2)", [cos(a), -sin(a)], a = 0..2*PI,

                  HorizontalAlignment = Left,

                  VerticalAlignment = BaseLine),

     plot::Text2d("Hello (3)", [-sin(a), -cos(a)], a = 0..2*PI,

                  HorizontalAlignment = Center,

                  VerticalAlignment = Top),

     plot::Text2d("Hello (4)", [-cos(a), sin(a)], a = 0..2*PI,

                  HorizontalAlignment = Right,

                  VerticalAlignment = Bottom),
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     TextFont = [Italic, 24], Axes = Frame)

Example 3

A text may consist of several lines. The newline character in MuPAD strings is \n:

plot(plot::Text2d("A text can\nhave several\nlines", 

                  [sin(a), cos(a)], a = 0..2*PI),

     Axes = Frame, TextFont = [20])
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Example 4

The attribute TextRotation allows to rotate a 2D text on the screen:

plot(plot::Circle2d(sqrt(2)),

     plot::Text2d("Hello (1)", [ 1, 1], 

                  HorizontalAlignment = Left,

                  TextRotation = PI/4),

     plot::Text2d("Hello (2)", [ 1,-1], 

                  HorizontalAlignment = Left,

                  TextRotation = -PI/4),

     plot::Text2d("Hello (3)", [-1,-1], 

                  HorizontalAlignment = Right,

                  TextRotation = PI/4),

     plot::Text2d("Hello (4)", [-1, 1], 

                  HorizontalAlignment = Right,

                  TextRotation = -PI/4),

     HorizontalAlignment = Left, TextFont = [20])
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Example 5

The text of a text object can be animated if the text string is provided by a procedure.
We use stringlib::formatf to format the animation parameter that is passed to the
procedure as a floating-point number for each frame of the animation:

plot(plot::Rectangle(-1..1, -1..1),

     plot::Text2d(a -> stringlib::formatf(a, 2, 5)." sec",

                  [0, 0], a = 0..20),

     TextFont = [60], 

     HorizontalAlignment = Center, VerticalAlignment = Center,

     Axes = Frame, Frames = 201, TimeRange = 0..20)
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Parameters

text

The text: a string. Alternatively, a procedure that accepts one input parameter a (the
animation parameter) and returns a string.

text is equivalent to the attribute Text.

x, y

The position of the text. The coordinates x and y must be real numerical values or
arithmetical expressions of the animation parameter a.

x, y are equivalent to the attributes Position, PositionX, PositionY.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy | stringlib::formatf

MuPAD Graphical Primitives
plot::Text3d
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plot::Text3d
3D text

Syntax
plot::Text3d(text, [x, y, z], <a = amin .. amax>, options)

Description

plot::Text3d draws a text at a given position (x, y, z) (the “anchor point”). The
attributes VerticalAlignment and HorizontalAlignment determine the alignment
of the text w.r.t. its anchor.

Size, text color, font type etc. are controlled by the attribute TextFont.

In contrast to plot::Text2d, a 3D text cannot consist of several lines. The newline
character \n in MuPAD strings does not have an effect.

By default, a 3D text uses Billboarding = TRUE, i.e., the text is automatically oriented
such that it is readable by the observer. When setting Billboarding = FALSE, the
attribute TextOrientation allows to fix the orientation of the text arbitrarily in space.
See the help page of TextOrientation for details.

The text of a text object can be animated if it is passed as a procedure that returns the
text string during runtime. Cf. “Example 5” on page 24-959.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Billboarding text orientation in space or
towards observer

TRUE

Frames the number of frames in an
animation

50
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Attribute Purpose Default Value

HorizontalAlignment horizontal alignment of
text objects w.r.t. their
coordinates

Left

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Position positions of cameras, lights,
and text objects

 

PositionX x-positions of cameras,
lights, and text objects

 

PositionY y-positions of cameras,
lights, and text objects

 

PositionZ z-positions of cameras,
lights, and text objects

 

Text the text of a text object  
TextFont font of text objects [" sans-serif ", 11]
TextOrientation orientation of a 3D text [1, 0, 0, 0, 0, 1]
TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0
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Attribute Purpose Default Value

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

VerticalAlignment vertical alignment of
text objects w.r.t. their
coordinates

BaseLine

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE
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Examples

Example 1

We draw the text string `Hello world' at the anchor point (1, 2, 3) which is indicated by a
red dot:

plot(plot::Circle3d(3, [1, 2, 3], [0, 0, 1]),

     plot::Point3d([1, 2, 3]),

     plot::Text3d("Hello world!", [1, 2, 3],

                  HorizontalAlignment = Center),

     Axes = Frame, TextFont = [24],

     PointColor = RGB::Red, PointSize = 3*unit::mm)

Example 2

We animate the anchor points of the following texts and demonstrate various alignment
possibilities:

plot(plot::Circle3d(1, [0, 0, 0], [0, 0, 1]),

     plot::Point3d([sin(a), cos(a), 0], a = 0..2*PI),
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     plot::Point3d([cos(a), -sin(a), 0], a = 0..2*PI),

     plot::Point3d([-sin(a), -cos(a), 0], a = 0..2*PI),

     plot::Point3d([-cos(a), sin(a), 0], a = 0..2*PI),

     PointColor = RGB::Red, PointSize = 3*unit::mm,

     plot::Text3d("Hello (1)", [sin(a), cos(a), 0], a = 0..2*PI),

     plot::Text3d("Hello (2)", [cos(a), -sin(a), 0], a = 0..2*PI,

                  HorizontalAlignment = Left,

                  VerticalAlignment = BaseLine),

     plot::Text3d("Hello (3)", [-sin(a), -cos(a), 0], a = 0..2*PI,

                  HorizontalAlignment = Center,

                  VerticalAlignment = Top),

     plot::Text3d("Hello (4)", [-cos(a), sin(a), 0], a = 0..2*PI,

                  HorizontalAlignment = Right,

                  VerticalAlignment = Bottom),

     TextFont = [Italic, 24], Axes = Frame,

     CameraDirection = [0, -1, 10])

Example 3

In contrast to plot::Text2d, a 3D text may not consist of several lines. The newline
character \n in MuPAD strings does not have any effect:
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plot(plot::Text3d("A 3D text cannot \nhave several\nlines", 

                  HorizontalAlignment = Center,

                  [0, 0, 0]),

     Axes = Frame, TextFont = [20])

Example 4

Per default, the attribute Billboarding = TRUE is set. The text always faces the
observer:

plot(plot::Circle3d(1, [0, 0, 0], [0, 0, 1]),

     plot::Point3d([-cos(a), -sin(a), 0], a = 0 .. 2*PI),

     plot::Point3d([cos(a), sin(a), 0], a = 0 .. 2*PI),

     plot::Text3d("Hello (1)", [-cos(a), -sin(a), 0],

                  a = 0 .. 2*PI),

     plot::Text3d("Hello (2)", [cos(a), sin(a), 0],

                  a = 0 .. 2*PI),

     Axes = Frame, TextFont = [20],

     PointColor = RGB::Red, PointSize = 2*unit::mm)
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We use TextOrientation to fix the orientation of the texts in space. The first text lies
in a plane parallel to the x-y plane, the second text is parallel to the x-z plane. Note that
we have to specify Billboarding = FALSE for TextOrientation to have an effect:

plot(plot::Circle3d(1, [0, 0, 0], [0, 0, 1]),

     plot::Point3d([-cos(a), -sin(a), 0], a = 0 .. 2*PI),

     plot::Point3d([cos(a), sin(a), 0], a = 0 .. 2*PI),

     PointColor = RGB::Red, PointSize = 2*unit::mm,

     plot::Text3d("Hello (1)", [-cos(a), -sin(a), 0],

                  a = 0 .. 2*PI,

                  TextOrientation = [1, 0, 0, 0, 1, 0]),

     plot::Text3d("Hello (2)", [cos(a), sin(a), 0],

                  a = 0 .. 2*PI,

                  TextOrientation = [1, 0, 0, 0, 0, 1]),

     Billboarding = FALSE, TextFont = [20], Axes = Frame)
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Example 5

The text of a text object can be animated if the text string is provided by a procedure.
We use stringlib::formatf to format the animation parameter that is passed to the
procedure as a floating-point number for each frame of the animation:

plot(plot::Text3d(a -> stringlib::formatf(a, 2, 5)." sec",

                  [0, 0, 0], a = 0..20),

     TextFont = [60], 

     HorizontalAlignment = Center, VerticalAlignment = Center,

     Axes = Frame, Frames = 201, TimeRange = 0..20)

24-959



24 Graphics and Animations

Parameters

text

The text: a string. Alternatively, a procedure that accepts one input parameter a (the
animation parameter) and returns a string.

text is equivalent to the attribute Text.

x, y, z

The position of the text. The coordinates x, y, z must be real numerical values or
arithmetical expressions of the animation parameter a.

x, y, z are equivalent to the attributes Position, PositionX, PositionY, PositionZ.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

24-960



 plot::Text3d

See Also

MuPAD Functions
plot | plot::copy | stringlib::formatf

MuPAD Graphical Primitives
plot::Text2d
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plot::Tube
Generalized tubular plots (canal surfaces)

Syntax
plot::Tube([x, y, z], <r>, t = tmin .. tmax, <a = amin .. amax>, options)

Description

plot::Tube creates generalized tubular plots, known as “canal surfaces”, with special
cases known as “tube surface”, “pipe surface” or “tubular surfaces.”

Intuitively, canal surfaces are space curves with thickness. More formally, a canal
surface plot::Tube([x(t), y(t), z(t)], r(t), t = t_min..t_max) is the
envelope of spheres with center [x(t), y(t), z(t)] and radius r(t), i.e., the thickness of the
curve can vary with the curve parameter t.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AngleEnd end of angle range 2*PI

AngleBegin begin of angle range 0

AngleRange angle range 0 .. 2*PI
Filled filled or transparent areas

and surfaces
TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic
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Attribute Purpose Default Value

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0
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Attribute Purpose Default Value

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [60, 11]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointsVisible visibility of mesh points FALSE

RadiusFunction radius of a tube plot 1/10

Shading smooth color blend of
surfaces

Smooth

Submesh density of submesh
(additional sample points)

[0, 1]

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component
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Attribute Purpose Default Value

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

ULinesVisible visibility of parameter lines
(u lines)

TRUE

UMax final value of parameter “u”  
UMesh number of sample points for

parameter “u”
60

UMin initial value of parameter
“u”

 

UName name of parameter “u”  
URange range of parameter “u”  
USubmesh density of additional sample

points for parameter “u”
0

VLinesVisible visibility of parameter lines
(v lines)

TRUE

VMesh number of sample points for
parameter “v”

11

VSubmesh density of additional sample
points for parameter “v”

1

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE
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Attribute Purpose Default Value

XFunction function for x values  
YFunction function for y values  
ZFunction function for z values  

Examples

Example 1

A torus can be drawn as a tube around a circle:

plot(plot::Tube([cos(t), sin(t), 0], 0.4,

     t = 0..2*PI))

Varying the diameter of the tube, we deform the torus into a cyclide:

plot(plot::Tube([cos(t), sin(t), 0], 0.4 + 0.3*cos(t),
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     t = 0..2*PI))

Example 2

All surfaces of revolution are special cases of canal surfaces:

plot(plot::Scene3d(plot::XRotate(sin(u), u = 0..10)),

     plot::Scene3d(plot::ZRotate(sin(u), u = 0..10)),

     plot::Scene3d(plot::Tube([u, 0, 0], sin(u), u = 0..10)),

     plot::Scene3d(plot::Tube([0, 0, sin(u)], u, u = 0..10)),

     Width = 180 * unit::mm)
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The last image shows that the defaults for the mesh are not always adequate and should
be changed:

plot(plot::Tube([0, 0, sin(u)], u, u = 0..10,

                Mesh = [20, 20]))
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Example 3

The famous Klein bottle can be obtained from a “drop silhouette” by using an appropriate
radius parametrization:

plot(plot::Tube([6*cos(u)*(sin(u) - 1), 0, 14*sin(u)],

                4 - 2*cos(u), u = -PI..PI))
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Example 4

Re-using the cyclide from above, we demonstrate coloring a canal surface:

color := (t, phi) -> RGB::fromHSV([(t+sin(4*phi))*180/PI, 1, 1]):

plot(plot::Tube([sin(t), cos(t), 0], 0.4 + 0.3*cos(t), t=0..2*PI,

                FillColorFunction = color))
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Example 5

Yet another variation of the cyclide, we use a non-constant AngleRange to “slice” it:

plot(plot::Tube([sin(t), cos(t), 0], 0.4 - 0.3*sin(t), t=0..2*PI,

                AngleRange = 0 .. 2*PI*sin(abs(t-PI/2)/2)),

     Axes = None, CameraDirection = [14, 1, 5])
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Combining more than one tubular plot with identical spine curves but different angle
ranges, we can achieve a braid-like effect:

braid := i ->

   plot::Tube([sin(u), cos(u), 0], 0.2, u=0..2*PI,

              AngleRange = i*PI/3 + 3*u .. i*PI/3 + 3*u + 1/2,

              Color = RGB::EmeraldGreen, Mesh = [60, 2]):

torus := plot::Tube([sin(u), cos(u), 0], 0.18, u=0..2*PI,

                    Color = RGB::BlueLight,

                    Name = "Torus"):

plot(braid(i) $ i = 0..5,

     torus,

     ULinesVisible = FALSE, VLinesVisible = FALSE,

     FillColorType = Flat,

     Axes = None, CameraDirection = [0, 7, 10])
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Example 6

The spine curve, the radius function, color functions etc. can be animated as usual:

plot(plot::Tube([sin(t)*sin(a), cos(t)*cos(a), sin(a)],

                0.4 - 0.3*sin(t-a),

                t = 0..2*PI, a = 0..2*PI,

                Frames = 20, TimeRange = 0..5))
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Example 7

Note that in the presence of a sharp bend (in relation to the tube diameter), the surface
plotted my plot::Tube may self-intersect:

plot(plot::Tube([x, 0, x^2], 1.2, x = -1.4..1.4,

                Mesh = [20, 10]),

     Axes = None, CameraDirection = [-3, 1, 2])
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This effect is unavoidable. Sharp bends also cause another effect which can be avoided by
increasing the mesh density: The tube might not follow the curve quickly enough:

plot(plot::Tube([sin(x^2), x, 0], x = -5..0))
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In this situation, you can set USubmesh to a positive value to request additional function
evaluations:

plot(plot::Tube([sin(x^2), x, 0], x = -5..0, USubmesh = 5))
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Parameters

x, y, z

The spine curve coordinates: real-valued expressions in t and the animation parameter.

x, y, z are equivalent to the attributes XFunction, YFunction, ZFunction.

r

The tube radius: a real-valued expression in t and the animation parameter. Default is
the constant .

r is equivalent to the attribute RadiusFunction.

t

The curve parameter: an (indexed) identifier.

t is equivalent to the attribute UName.
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tmin .. tmax

The range of the curve parameter: real-valued expressions in the animation parameter.

tmin .. tmax is equivalent to the attributes URange, UMin, UMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Curve3d | plot::Surface
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plot::Turtle
“turtle graphics” (imperative drawings)

Syntax
plot::Turtle(commands, <a = amin .. amax>, options)

Description

Turtle graphics define a line drawing by a sequence of commands to an abstract robot.

plot::Turtle defines a graphic by sending movement commands to an abstract robot.
This robot starts heading up and standing at the origin, with its pen ready for drawing
(“down”) and the line color taken from the attribute LineColor.

The following commands are known to the robot:

• Left(α)

Turn left by the angle α (in radians).
• Right(α)

Turn right by the angle α (in radians).
• Forward(d)

Move forward distance d.
• Up

Lift the “pen”, i.e., subsequent movement commands do not draw lines.
• Down

Lower the “pen”, i.e., subsequent movement commands do draw lines.
• Push

Remember the current state (position, angle, line color).
• Pop
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Restore the last remembered state and remove it from the list of remembered states.
• Noop

This command is ignored.
• LineColor(c)

Set the line color to the colorc.

The commands not taking an argument may also be entered with empty parentheses ()
after, e.g., Push().

A plot::Turtle-object can be manipulated dynamically by calling its methods left,
right, forward, penUp, penDown, push, pop, and setLineColor, with the obvious
connections to the commands above. These methods append a new command to the end of
the list. Cf. “Example 3” on page 24-987.

Note: For long command sequences, it is highly recommended to give the commands
directly using the syntax above or by setting the CommandList attribute directly.

Both angles and distances can be animated. Colors can not.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

Color the main color RGB::Blue

CommandList turtle movement commands []
Frames the number of frames in an

animation
50

Legend makes a legend entry  
LegendText short explanatory text for

legend
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Attribute Purpose Default Value

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center
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Attribute Purpose Default Value

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

A square can be drawn by four times moving forward, each time turning right 90°:

plot(plot::Turtle([Forward(1), Right(PI/2),

                   Forward(1), Right(PI/2),

                   Forward(1), Right(PI/2),

                   Forward(1), Right(PI/2)]))
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Using the $ operator, this command list can be written much shorter:

plot(plot::Turtle([(Forward(1), Right(PI/2))$4]))
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In the same fashion, we can draw any regular n-sided polygon:

n := 7:

plot(plot::Turtle([(Forward(1), Right(2*PI/n)) $ n]))
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Example 2

The distance to move may contain an animation parameter:

plot(plot::Turtle([Forward(1+a), Right(PI/2),

                   Forward(1-2*a), Right(PI/2),

                   Forward(1+3*a), Right(PI/2),

                   Forward(1-4*a), Right(PI/2),

                   Forward(1+5*a)], a=0..2))
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Likewise, the angle can be animated:

plot(plot::Turtle([(Forward(1), Right(a))$10],

                  a = 0.25..2.5))

24-986



 plot::Turtle

Example 3

It is also possible to successively append commands to the list:

t := plot::Turtle()

t::forward(1)

for i from 1 to 9 do

  t::left(3*PI/5);

  t::forward(1);

end_for
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plot(t)

Example 4

As an extension to the original turtle model, the line color may be changed while plotting:

t := plot::Turtle():

t::setLineColor(RGB::Red):

t::forward(1):

p := float(PI/5):

for i from 1 to 9 do

  t::left(108*PI/180);

  t::setLineColor([cos(i*p), sin(i*p), 0.0]);

  t::forward(1);

end_for;

plot(t)
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Note that the color within one line segment is constant.

Example 5

Another extension to the turtle model is that plot::Turtle supports a stack of saved
states, enabling the robot to return to previous positions:

t := plot::Turtle():

t::forward(5):

for i from -3 to 4 do

  t::push();

    t::left(PI/18*i);

    t::forward(3);

  t::pop();

end_for:

plot(t)
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Example 6

Using small steps, it is possible to create appealing curves with plot::Turtle:

t := plot::Turtle(LineColor = RGB::Green):

t::forward(2):

for dir in [-1, 1] do

  t::push();

    t::left(dir*PI/30);

    for i from 1 to 10 do

      t::forward(0.2);

      t::left(dir*PI/30);

    end_for;

    t::left(dir*2/3*PI);

    for i from 1 to 10 do

      t::forward(0.2);

      t::left(dir*PI/30);

    end_for;

  t::pop()

end_for:

t::forward(3):

t::setLineColor(RGB::Red):
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for dir from -5 to 5 do

  t::push();

    t::left(dir*2*PI/11);

    for i from 1 to 10 do

      t::forward(0.1);

      t::left(PI/30);

    end_for;

    t::left(2*PI/3);

    for i from 1 to 10 do

      t::forward(0.1);

      t::left(PI/30);

    end_for;

  t::pop()

end_for:

plot(t)

Parameters

commands

A list of commands. See below for command definitions.
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commands is equivalent to the attribute CommandList.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Lsys
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plot::VectorField2d
2D vector field

Syntax
plot::VectorField2d([v1, v2], x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

plot::VectorField2d(v1, v2, x = xmin .. xmax, y = ymin .. ymax, <a = amin .. amax>, options)

Description
plot::VectorField2d([v_1, v_2], x = `x_{min}`..`x_{max}`, y

= `y_{min}`..`y_{max}`) represents a plot of the vector field defined by
 with (x, y) ∈ [xmin, xmax] ×[ymin, ymax].

A vector field is defined by a function . plot::VectorField2d displays
a vector field by placing arrows at regular intervals with the arrow at (x, y) pointing in
direction f(x, y).

The length of the arrows depend on |f(x, y)| and the setting of the attribute
ArrowLength: By default, arrow lengths are proportional to the magnitude of f, but can
be set to be of fixed length or to scale logarithmically.

The density of arrows placed can be controlled with the attributes XMesh, YMesh, and
Mesh. See the examples below.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AntiAliased antialiased lines and points? TRUE

ArrowLength scaling of arrows in a vector
field

Proportional

Color the main color RGB::Blue
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

Mesh number of sample points [11, 11]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0
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Attribute Purpose Default Value

TimeRange the real time span of an
animation

0.0 .. 10.0

TipAngle opening angle of arrow
heads

0.6283185307

TipStyle presentation style of arrow
heads

Open

TipLength length of arrow heads 1.5

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XFunction function for x values  
XMax final value of parameter “x”  
XMesh number of sample points for

parameter “x”
11
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Attribute Purpose Default Value

XMin initial value of parameter
“x”

 

XName name of parameter “x”  
XRange range of parameter “x”  
YFunction function for y values  
YMax final value of parameter “y”  
YMesh number of sample points for

parameter “y”
11

YMin initial value of parameter
“y”

 

YName name of parameter “y”  
YRange range of parameter “y”  

Examples

Example 1

We demonstrate a plot of the vector field v(x, y) = (1, sin(x) + cos(y)):

field := plot::VectorField2d([1, sin(x) + cos(y)], 

                             x = 0..6, y = 0..2.5,

                             Mesh = [31, 26]):

It is the directional field associated with the ode . We
insert curves representing numerical solutions of this ode into this plot. We use
numeric::odesolve2 to compute the numerical solutions for the initial values y(0) =
0.4, y(0.5) = 1.5, and y(1) = 1.2:

f := (x, y) -> [sin(x) + cos(y[1])]:

solution1 := numeric::odesolve2(f, 0, [0.4]):

curve1 := plot::Function2d(solution1(x)[1], x = 0 .. 6, 

                           LineColor = RGB::Blue):

solution2 := numeric::odesolve2(f, 0.5, [1.5]):

curve2 := plot::Function2d(solution2(x)[1], x = 0.5 .. 6, 

                           LineColor = RGB::Black):
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solution3 := numeric::odesolve2(f, 1, [1.2]):

curve3 := plot::Function2d(solution3(x)[1], x = 1 .. 6, 

                           LineColor = RGB::GreenDark):

We plot the three objects in a single graphical scene:

plot(field, curve1, curve2, curve3, GridVisible = TRUE):

delete field, curve1, curve2, curve3:

Example 2

Assume you want to plot an electrostatic potential field. The following routine generates
the necessary formula in a format accepted by plot::VectorField2d:

potentialE := 

  proc(l)

    local p, x0, y0, f0, fx, fy, dist;

  begin

    fx := 0; fy := 0;

    for p in [args()] do
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      [x0, y0, f0] := p;

      dist := sqrt((x-x0)^2 + (y-y0)^2);

      fx := fx + f0*(x-x0)/dist;

      fy := fy + f0*(y-y0)/dist;

    end_for;

    [fx, fy];

  end_proc:

plot(plot::VectorField2d(potentialE([-1, -2, -1 ], 

                                   [ 1,  3, 0.5], 

                                   [ 2, -1, 0.5]),

                         x = -3..3, y = -3..3, 

                         XMesh = 30, YMesh = 30)):

Example 3

Like most other objects, plot::VectorField2d can be animated by supplying an extra
parameter:

field := plot::VectorField2d([1, a*sin(x) + (a-1)*cos(y)],

                             x = 0..6, y = 0..2.5, a=-1..1):

text := plot::Text2d(a -> "a = ".stringlib::formatf(a, 2, 5), [2, -0.5], 
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                     a = -1..1, HorizontalAlignment = Left):

plot(field, text)

delete field, text:

Parameters

v1, v2

The x- and y-component of the vector field: arithmetical expressions in x, y, and, possibly,
the animation parameter a.

v1, v2 are equivalent to the attributes XFunction, YFunction.

x, y

Identifiers.

x, y are equivalent to the attributes XName, YName.
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xmin .. xmax, ymin .. ymax

Real numerical values.

xmin .. xmax, ymin .. ymax are equivalent to the attributes XRange, YRange, XMin, XMax,
YMin, YMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d | plot::Streamlines2d | plot::VectorField3d
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plot::VectorField3d
3D vector field

Syntax
plot::VectorField3d([v1, v2, v3], x = xmin .. xmax, y = ymin .. ymax, z = zmin .. zmax, <a = amin .. amax>, options)

plot::VectorField3d(v1, v2, v3, x = xmin .. xmax, y = ymin .. ymax, z = zmin .. zmax, <a = amin .. amax>, options)

Description

plot::VectorField3d([v_1, v_2, v_3], x = `x_{min}`..`x_{max}`, y =

`y_{min}`..`y_{max}`, z = `z_{min}`..`z_{max}`) represents a plot of the
vector field defined by

with (x, y, z) ∈ [xmin, xmax] ×[ymin, ymax] ×[zmin, zmax].

A vector field is defined by a function . plot::VectorField3d displays a
vector field by placing arrows at regular intervals with the arrow at (x, y, z) pointing in
the direction f(x, y, z).

The length of the arrows depend on |f(x, y, z)| and the setting of the attribute
ArrowLength: By default, arrow lengths are proportional to the magnitude of f, but can
be set to be of fixed length or to scale logarithmically.

The density of arrows placed can be controlled with the attributes XMesh, YMesh, ZMesh,
and Mesh. See the examples below.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

ArrowLength scaling of arrows in a vector
field

Proportional

Color the main color RGB::Blue

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Blue

LineWidth width of lines 0.1

LineColor2 color of lines RGB::DeepPink

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [7, 7, 7]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter
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Attribute Purpose Default Value

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points TRUE

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range
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Attribute Purpose Default Value

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XFunction function for x values  
XMax final value of parameter “x”  
XMesh number of sample points for

parameter “x”
7

XMin initial value of parameter
“x”

 

XName name of parameter “x”  
XRange range of parameter “x”  
YFunction function for y values  
YMax final value of parameter “y”  
YMesh number of sample points for

parameter “y”
7

YMin initial value of parameter
“y”

 

YName name of parameter “y”  
YRange range of parameter “y”  
ZFunction function for z values  
ZMax final value of parameter “z”  
ZMesh number of sample points for

parameter “z”
7

ZMin initial value of parameter
“z”

 

ZName name of parameter “z”  
ZRange range of parameter “z”  
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Examples

Example 1

We demonstrate a plot of the vector field v(x, y, z) = (1, sin(x) + cos(y), sin(z)):

field := plot::VectorField3d([1, sin(x) + cos(y), sin(z)], 

                             x = 0..6, y = 0..2.5, z = 0..5,

                             Mesh = [7, 7, 7]):

plot(field):

delete field:

Example 2

Like most other objects, plot::VectorField3d can be animated by supplying an extra
parameter:

mycolor := (x, y, z, vx, vy, vz, a) -> [a, a*z, 1 - a]:

24-1005



24 Graphics and Animations

field := plot::VectorField3d([ a*y + (1-a)*x , 

                              -a*x + (1-a)*y, 

                               a*sin(PI*z)],

                             x = -1..1, y = -1..1, z = 0..1, 

                             LineColorFunction = mycolor,

                             Mesh = [7, 7, 7], a = 0..1):

text := plot::Text3d(a -> "a = ".stringlib::formatf(a, 2, 5), 

                     [1, 0.7, 1.2], a = 0..1):

plot(field, text, Axes = Frame)

delete field, text:

Parameters

v1, v2, v3

The x-, y-, and z-component of the vector field: arithmetical expressions in x, y, z and,
possibly, the animation parameter a.

v1, v2, v3 are equivalent to the attributes XFunction, YFunction, ZFunction.
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x, y, z

Identifiers.

x, y, z are equivalent to the attributes XName, YName, ZName.

xmin .. xmax, ymin .. ymax, zmin .. zmax

Real numerical values.

xmin .. xmax, ymin .. ymax, zmin .. zmax are equivalent to the attributes XRange, YRange,
ZRange, XMin, XMax, YMin, YMax, ZMin, ZMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Ode2d | plot::Ode3d | plot::VectorField2d
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plot::Waterman

Waterman polyhedra

Syntax

plot::Waterman(r, <a = amin .. amax>, options)

Description

plot::Waterman(r) creates the Waterman polyhedron of radius r.

Waterman polyhedra, invented around 1990 by Steve Waterman, form a vast family of
polyhedra. Some of them have a number of nice properties like multiple symmetries, or
very interesting and regular shapes. Some other are just a bunch of faces formed out of
irregular convex polygons.

Waterman polyhedra result from the examination of balls in face-centered cubic close
packing (which is one of the two densest packings of equally sized balls in 3D space,
according to the Kepler Conjecture, proofed by Hales and Ferguson, 1997-2005). A single
layer of spheres (of radius ) in this packing looks like this:
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The close packing results from placing several of these layers over one another, shifted
to optimally fill the gaps (in very much the same way your grocery store puts apples and
oranges on display):
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Given a radius r and a center c (which we let default to [0, 0, 0]), now consider all those
centers of spheres in this packing which fall into the sphere of radius r around c:
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The convex hull of these points is the Waterman polyhedron of the given radius and
center:
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Color the main color RGB::SafetyOrange

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::SafetyOrange

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Flat

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

FALSE

LineColor color of lines RGB::Grey40.[0.4]

LineWidth width of lines 0.25

LineColor2 color of lines RGB::DeepPink

LineStyle solid, dashed or dotted
lines?

Solid

LinesVisible visibility of lines TRUE

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 1, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

1

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter
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Attribute Purpose Default Value

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Radius radius of circles, spheres
etc.

 

Shading smooth color blend of
surfaces

Smooth

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

Visible visibility TRUE

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value
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Attribute Purpose Default Value

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

Examples

Example 1

With increasing radius, Waterman polyhedra get ever closer to spheres:

plot(plot::Waterman(r, r=0..10,

                    PointsVisible, PointSize=1,

                    LineColor=RGB::Black,

                    Color=RGB::Red.[0.75]),

     plot::Sphere(r, [0,0,0], r=0..10,

                  Color=RGB::Yellow.[0.3]),

     CameraDirection=[2,10,1])
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Example 2

Waterman polyhedra have a rather general definition and can be made from spheres
centered anywhere:

plot(plot::Waterman(5, Center=[0,0,0]))
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plot(plot::Waterman(5, Center=[0,0,1]))
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To translate or scale a Waterman polyhedron, use plot::Translate3d and
plot::Scale3d:

n := 3:

r := i -> 3/2+sqrt(i+1):

plot(plot::Translate3d([i mod n, i div n, 0],

               plot::Scale3d([1/(3*r(i)) $ 3],

                  plot::Waterman(r(i), Color=RGB::random())))

     $ i = 0..n^2-1, Axes=None)
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Example 3

As usual, many attributes can be animated, although by the nature of Waterman
polyhedra, the resulting animation will not be smooth:

plot(plot::Waterman(5, Center=[a/PI, cos(a), 0],

                    a=0..2*PI),

     AnimationStyle=BackAndForth, CameraDirection=[0,0.1,1])
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Example 4

The LineColorFunction and FillColorFunction attributes can be set to functions
which get indices of the currently painted surfacepolygon and its current vertex as fourth
and fifth argument, repectively. This allows to color the polygons individually:

colors := [RGB::random() $ i = 1..42]:

plot(plot::Waterman(5, FillColorFunction=((x,y,z,i) -> colors[i])))
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Another way of getting random colors which remain constant for each polygon is to use a
procedure with option remember:

col := 

proc(n)

  option remember;

begin

  RGB::fromHSV([360*frandom(), 1, 1]);

end:

plot(plot::Waterman(7, FillColorFunction=((x,y,z,i) -> col(i))))
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Parameters

r

An arithmetical expression: the radius of the polyhedron (see below for details).

r is equivalent to the attribute Radius.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

Algorithms

plot::Waterman uses plot::hull (and therefore, the Geometry Centre's qhull code)
to compute the convex hull of the coordinates. Most of the remaining code has been
contributed by Mirek Majewski.
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See Also

MuPAD Functions
plot

MuPAD Graphical Primitives
plot::Dodecahedron | plot::Hexahedron | plot::Icosahedron |
plot::Octahedron | plot::Sphere | plot::Tetrahedron
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plot::XRotate
Surfaces of revolution around x-axis

Syntax
plot::XRotate(f, x = xmin .. xmax, <a = amin .. amax>, options)

Description

plot::XRotate(f, x = xmin..xmax) creates a surface of revolution by rotating the
function graph y = f(x) with x ∈ [xmin, xmax] around the x-axis. The slice of the surface
parallel to the y-z plane at a point x is a circle of radius f(x).

The range of the rotation can be restricted with the attributes AngleBegin, AngleEnd,
AngleRange. The surface of revolution spans over the given range of the rotation angle.

Surfaces of revolution are parametrized surfaces. The first surface parameter is x,
the second is the rotation angle. Surfaces of revolution react to most of the graphical
attributes that surfaces of type plot::Surface react to. For example, use Mesh and
Submesh to control the numerical mesh or use ULinesVisible and VLinesVisible to
enable or disable the parameter lines.

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AngleEnd end of angle range 2*PI

AngleBegin begin of angle range 0

AngleRange angle range 0 .. 2*PI
Color the main color RGB::Red
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Attribute Purpose Default Value

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink
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Attribute Purpose Default Value

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [25, 25]
MeshVisible visibility of irregular mesh

lines in 3D
FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Shading smooth color blend of
surfaces

Smooth
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Attribute Purpose Default Value

Submesh density of submesh
(additional sample points)

[0, 0]

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

ULinesVisible visibility of parameter lines
(u lines)

TRUE

UMesh number of sample points for
parameter “u”

25

USubmesh density of additional sample
points for parameter “u”

0

VLinesVisible visibility of parameter lines
(v lines)

TRUE

VMesh number of sample points for
parameter “v”

25

VSubmesh density of additional sample
points for parameter “v”

0

Visible visibility TRUE
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Attribute Purpose Default Value

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XContours contour lines at constant x
values

[]

XMax final value of parameter “x” 5

XMin initial value of parameter
“x”

-5

XName name of parameter “x”  
XRange range of parameter “x” -5 .. 5
YContours contour lines at constant y

values
[]

ZContours contour lines at constant z
values

[]

Examples

Example 1

By default, plot::XRotate displays a complete revolution, just as if an object was
created on a lathe:

plot(plot::XRotate(2 - sin(x), x = 0..2*PI))
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This rotation is insensitive to negative values. The surfaces of revolution of f(x) and
|f(x)| are identical:

plot(plot::Scene3d(plot::XRotate(sin(x), x = 0..2*PI)),

     plot::Scene3d(plot::XRotate(abs(sin(x)), x = 0..2*PI)),

     Layout = Horizontal)
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This symmetry is broken when not performing a whole revolution:

plot(plot::Scene3d(plot::XRotate(sin(x), x = 0..2*PI,

                                 AngleRange = -PI/2..PI/2)),

     plot::Scene3d(plot::XRotate(abs(sin(x)), x = 0..2*PI,

                                 AngleRange = -PI/2..PI/2)),

     Layout = Horizontal)
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plot::XRotate can be animated, like almost every plot object:

plot(plot::XRotate(sin(x + a), x = 0 .. 2*a + PI,

                   AngleRange = 0 .. PI + a/2, 

                   a = 0..2*PI))

24-1032



 plot::XRotate

Parameters
f

The function: an arithmetical expression or a piecewise object in the independent
variable x and the animation parameter a. Alternatively, a  procedure that accepts 1
input parameter x or 2 input parameters x, a and returns a real numerical value when
the input parameters are numerical.

f is equivalent to the attribute Function.

x

The independent variable: an identifier or an indexed identifier.

x is equivalent to the attribute XName.

xmin .. xmax

The plot range: xmin, xmax must be numerical real values or expressions of the animation
parameter a.
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xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Function2d | plot::Function3d | plot::Surface | plot::ZRotate

24-1034



 plot::ZRotate

plot::ZRotate
Surfaces of revolution around z-axis

Syntax
plot::ZRotate(f, x = xmin .. xmax, <a = amin .. amax>, options)

Description

plot::ZRotate(f, x = xmin..xmax) creates a surface of revolution by rotating the
function graph z = f(x) with x ∈ [xmin, xmax] around the z-axis. The slice of the surface
parallel to the x-y plane at a point z consists of circles with radii |xi| given by the
solutions of f(x) = z.

The range of the rotation can be restricted with the attributes AngleBegin, AngleEnd,
AngleRange. The surface of revolution spans over the given range of the rotation angle.

Surfaces of revolution are parametrized surfaces. The first surface parameter is x,
the second is the rotation angle. Surfaces of revolution react to most of the graphical
attributes that surfaces of type plot::Surface react to. For example, use Mesh and
Submesh to control the numerical mesh or use ULinesVisible and VLinesVisible to
enable or disable the parameter lines.

Attributes

Attribute Purpose Default Value

AdaptiveMesh adaptive sampling 0

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

AngleEnd end of angle range 2*PI

AngleBegin begin of angle range 0

AngleRange angle range 0 .. 2*PI
Color the main color RGB::Red
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Attribute Purpose Default Value

Filled filled or transparent areas
and surfaces

TRUE

FillColor color of areas and surfaces RGB::Red

FillColor2 second color of areas and
surfaces for color blends

RGB::CornflowerBlue

FillColorType surface filling types Dichromatic

FillColorFunction functional area/surface
coloring

 

FillColorDirection the direction of color
transitions on surfaces

[0, 0, 1]

FillColorDirectionX x-component of the direction
of color transitions on
surfaces

0

FillColorDirectionY y-component of the direction
of color transitions on
surfaces

0

FillColorDirectionZ z-component of the direction
of color transitions on
surfaces

1

Frames the number of frames in an
animation

50

Function function expression or
procedure

 

Legend makes a legend entry  
LegendText short explanatory text for

legend
 

LegendEntry add this object to the
legend?

TRUE

LineColor color of lines RGB::Black.[0.25]

LineWidth width of lines 0.35

LineColor2 color of lines RGB::DeepPink
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Attribute Purpose Default Value

LineStyle solid, dashed or dotted
lines?

Solid

LineColorType line coloring types Flat

LineColorFunction functional line coloring  
LineColorDirection the direction of color

transitions on lines
[0, 0, 1]

LineColorDirectionX x-component of the direction
of color transitions on lines

0

LineColorDirectionY y-component of the direction
of color transitions on lines

0

LineColorDirectionZ z-component of the direction
of color transitions on lines

1

Mesh number of sample points [25, 25]
MeshVisible visibility of irregular mesh

lines in 3D
FALSE

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

PointSize the size of points 1.5

PointStyle the presentation style of
points

FilledCircles

PointsVisible visibility of mesh points FALSE

Shading smooth color blend of
surfaces

Smooth

24-1037



24 Graphics and Animations

Attribute Purpose Default Value

Submesh density of submesh
(additional sample points)

[0, 0]

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Title object title  
TitleFont font of object titles [" sans-serif ", 11]
TitlePosition position of object titles  
TitleAlignment horizontal alignment of

titles w.r.t. their coordinates
Center

TitlePositionX position of object titles, x
component

 

TitlePositionY position of object titles, y
component

 

TitlePositionZ position of object titles, z
component

 

ULinesVisible visibility of parameter lines
(u lines)

TRUE

UMesh number of sample points for
parameter “u”

25

USubmesh density of additional sample
points for parameter “u”

0

VLinesVisible visibility of parameter lines
(v lines)

TRUE

VMesh number of sample points for
parameter “v”

25

VSubmesh density of additional sample
points for parameter “v”

0

Visible visibility TRUE
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Attribute Purpose Default Value

VisibleAfter object visible after this time
value

 

VisibleBefore object visible until this time
value

 

VisibleFromTo object visible during this
time range

 

VisibleAfterEnd object visible after its
animation time ended?

TRUE

VisibleBeforeBegin object visible before its
animation time starts?

TRUE

XContours contour lines at constant x
values

[]

XMax final value of parameter “x” 5

XMin initial value of parameter
“x”

0

XName name of parameter “x”  
XRange range of parameter “x” 0 .. 5
YContours contour lines at constant y

values
[]

ZContours contour lines at constant z
values

[]

Examples

Example 1

For plot::ZRotate, the symmetry for a whole revolution is with respect to the x values:

plot(plot::Scene3d(plot::ZRotate(exp(x), x = -1..1)),

     plot::Scene3d(plot::ZRotate(exp(-x), x = -1..1)),

     Layout = Horizontal)
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plot(plot::Scene3d(plot::ZRotate(exp(x), x = -1..1,

                                 AngleRange = -a..a, 

                                 a = 0..PI)),

     plot::Scene3d(plot::ZRotate(exp(-x), x = -1..1,

                                 AngleRange = -a..a, 

                                 a = 0..PI)),

     Layout = Horizontal)
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Parameters
f

The function: an arithmetical expression or a piecewise object in the independent
variable x and the animation parameter a. Alternatively, a  procedure that accepts 1
input parameter x or 2 input parameters x, a and returns a real numerical value when
the input parameters are numerical.

f is equivalent to the attribute Function.

x

The independent variable: an identifier or an indexed identifier.

x is equivalent to the attribute XName.

xmin .. xmax

The plot range: xmin, xmax must be numerical real values or expressions of the animation
parameter a.
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xmin .. xmax is equivalent to the attributes XRange, XMin, XMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Function2d | plot::Function3d | plot::Surface | plot::XRotate
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plot::Canvas

Drawing area

Syntax

plot::Canvas(object1, object2, …, <a = amin .. amax>, options)

Description

plot::Canvas is the top level element of the hierachy of graphical objects. It represents
the 2 dimensional drawing area into which 2D and 3D plots are painted.

The user does not need to create a canvas object explicitly, because a plot command
such as plot(object1, object2, …) implicitly creates a default canvas object to
display the graphical objects in.

Strictly speaking, a canvas object is a container for scenes of type plot::Scene2d or
plot::Scene3d, respectively. The user, however, does not have to bother about this
technicality, because a suitable default scene is created internally, when graphical
primitives are passed to plot::Canvas.

A canvas can display several scenes simultaneously. However, all scenes must be of the
same dimension. A mixture of 2D and 3D is not supported!

See the help page of the canvas attribute Layout for details on the layout of a canvas
containing several scenes.

The canvas object is always visible in the interactive object browser of the MuPAD
graphics tool (see section Viewer, Browser, and Inspector: Interactive Manipulation
of this document). It can contain one or more scenes as its children. When the canvas
object is selected, it provides access to a variety of attributes that are associated with the
canves. The canvas attributes allow to

• set Height and Width of the plot,
• set a Header and/or a Footer,

24-1043



24 Graphics and Animations

• control the layout (Layout, Rows, Columns),
• set various style parameters such as BorderWidth, BorderColor,

BackgroundColor etc.

A complete listing of the attributes associated with a canvas is given below. Follow the
links to the help pages of the attributes to find more detailed information.

Apart from these attributes of the canvas object, also attributes for scenes, coordinate
systems and graphical objects inside the canvas can be specified when generating a
canvas object. These attribute values are inherited to the objects inside the canvas as
new default values.

Attributes

Attribute Purpose Default Value

AnimationStyle behaviour of the animation
toolbar

RunOnce

AutoPlay start animations
automatically

TRUE

BackgroundColor background color RGB::White

BorderColor color of frame/border around
canvas and scenes

RGB::Grey50

BorderWidth width of frame/border
around canvas and scenes

0

BottomMargin bottom margin width 1

Columns number of columns of scenes 0

Footer footer text  
FooterFont font of footers (scene and

canvas)
[" sans-serif ", 12]

FooterAlignment alignment of footer of
canvas and scenes

Center

Header header text  
HeaderFont font of headers (scene and

canvas)
[" sans-serif ", 12]
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Attribute Purpose Default Value

HeaderAlignment alignment of header of
canvas and scenes

Center

Height heights of canvas/scenes 80

InitialTime initial time of the animation
slider

 

Layout arrangement/layout of
several scenes in a canvas

Tabular

LeftMargin left margin width 1

Margin margins around canvas and
scenes

1

Name the name of a plot object (for
browser and legend)

 

OutputUnits the physical length unit
used by the inspector

unit::mm

RightMargin right margin width 1

Rows number of rows of scenes 0

Spacing space between scenes 1.0

TopMargin top margin width 1

Width widths of canvas/scenes 120

Examples

Example 1

We diplay several scenes in a canvas. Various canvas attributes are passed when
creating the canvas object:

S1 := plot::Scene2d(plot::Function2d(sin(x), x = 0..2*PI),

                    Header = "the sine function"):

S2 := plot::Scene2d(plot::Function2d(cos(x), x = 0..2*PI),

                    Header = "the cosine function"):

S3 := plot::Scene2d(plot::Function2d(tan(x), x = 0..PI),

                    Header = "the tan function"):
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S4 := plot::Scene2d(plot::Function2d(cot(x), x = 0..PI),

                    Header = "the cot function"):

C := plot::Canvas(S1, S2, S3, S4, 

                  Width = 80*unit::mm, Height = 80*unit::mm,

                  BorderWidth = 0.5*unit::mm,

                  Header = "trigonometric functions",

                  HeaderFont = ["Times New Roman", Bold, 18]):

plot(C)

delete S1, S2, S3, S4, C:

Parameters
object1, object2, …

Graphical objects

See Also

MuPAD Functions
plot | plot::copy
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MuPAD Graphical Primitives
plot::CoordinateSystem2d | plot::CoordinateSystem3d | plot::Scene2d |
plot::Scene3d
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plot::CoordinateSystem2d

Coordinate system to display 2D objects in

Syntax

plot::CoordinateSystem2d(object1, object2, …, <a = amin .. amax>, options)

Description

plot::CoordinateSystem2d is a container to display graphical 2D objects within.
Usually, the user does not need to create such an object explicitly, because a plot
command such as plot(object1, object2, …) creates a default object of type
plot::CoordinateSystem2d implicitly to display the graphical objects in.

The plot::CoordinateSystem2d object is always visible in the interactive object
browser of the MuPAD graphics tool (see Viewer, Browser, and Inspector: Interactive
Manipulation of this document). It contains the graphical objects as its children. When
the coordinate system object is selected, it provides access to a variety of attributes that
are associated with the coordinate system. These attributes allow to manipulate:

• the CoordinateType (linear vs. logarithmic coordinates),
• the ViewingBox (visibility range),
• the coordinate axes (axes titles, visibility, alignment, type, tips etc.),
• the ticks along the coodinate axes (number of tick marks, visibility, tick labels etc.),
• the coordinate grid (visibility, color, line width etc.),
• the scaling ratios of the coordinate directions (Constrained vs. UnConstrained).

A complete listing of the attributes associated with the coordinate system is given below.
Follow the links to the help pages of the attributes to find more detailed information.

Apart from these attributes of the coordinate system, also attributes for the graphical
objects inside the coordinate system can be specified when generating an object of type
plot::CoordinateSystem2d. These attribute values are inherited to the graphical
objects as new default values.
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A graphical scene may contain more than one coordinate system. Each coordinate system
provides separate coordinate axes, ticks, grid lines etc.

In such a case, separate plot::CoordinateSystem2d containers must be created
explicitly by the user and passed to a plot command (or inserted into a scene of type
plot::Scene2d). Cf. “Example 2” on page 24-1054.

Attributes

Attribute Purpose Default Value

Axes type of the coordinate axes Automatic

AxesTips arrow tips at the coordinate
axes?

TRUE

AxesOrigin crosspoint of the coordinate
axes

[0, 0]

AxesTitles titles for the coordinate axes [" x ", " y "]
AxesInFront coordinate axes in front of

or behind graphical objects?
FALSE

AxesOriginX crosspoint of the coordinate
axes, x-coordinate

0

AxesOriginY crosspoint of the coordinate
axes, y-coordinate

0

AxesVisible display coordinate axes? TRUE

AxesLineColor color of the coordinate axes RGB::Black

AxesLineWidth width of the coordinate axes 0.18

AxesTitleFont font of axes titles [" sans-serif ", 10]
AxesTitleAlignment alignment of axes titles End

CoordinateType linear versus logarithmic
plots in 2D

LinLin

GridInFront coordinate grid in front of or
behind graphical objects?

FALSE

GridVisible display a coordinate grid? FALSE
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Attribute Purpose Default Value

GridLineColor line color of the coordinate
grid

RGB::Grey60

GridLineWidth width of coordinate grid
lines

0.1

GridLineStyle line style of the coordinate
grid

Solid

Name the name of a plot object (for
browser and legend)

 

Scaling scaling ratios Unconstrained

SubgridVisible display a coordinate
subgrid?

FALSE

SubgridLineColor line color of the coordinate
subgrid

RGB::Grey80

SubgridLineWidth width of coordinate subgrid
lines

0.1

SubgridLineStyle line style of the coordinate
subgrid

Solid

TicksAt special axes tick marks  
TicksAnchor user defined start of axes

tick marks
0

TicksLength length of axes tick marks 2

TicksNumber number of axes tick marks Normal

TicksBetween number of minor
(unlabeled) axes tick marks
between major (labeled)
axes tick marks

1

TicksVisible display axes tick marks? TRUE

TicksDistance user defined axes tick mark
distance

0

TicksLabelFont font of tick labels [" sans-serif ", 8]
TicksLabelStyle display style of axes tick

labels
Horizontal
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Attribute Purpose Default Value

TicksLabelsVisible display axes tick labels? TRUE

ViewingBox the visible coordinate range [Automatic .. Automatic,
Automatic .. Automatic]

ViewingBoxXMin the smallest visible x-values Automatic

ViewingBoxYMin the smallest visible y-values Automatic

ViewingBoxXMax the largest visible x-values Automatic

ViewingBoxYMax the largest visible y-values Automatic

ViewingBoxXRange the range of x-values visible Automatic .. Automatic
ViewingBoxYRange the range of y-values visible Automatic .. Automatic
XAxisTitle title for the x axis " x "

XAxisVisible display x axis? TRUE

XAxisTitleAlignment alignment of x axis title End

XGridVisible display a coordinate grid in
x-direction?

FALSE

XSubgridVisible display a coordinate subgrid
in x-direction?

FALSE

XTicksAt special x axis tick marks  
XTicksAnchor user defined start of x axis

tick marks
0

XTicksNumber number of x axis tick marks Normal

XTicksBetween number of minor
(unlabeled) x axis tick
marks between major
(labeled) x axis tick marks

1

XTicksVisible display x axis tick marks? TRUE

XTicksDistance distance of tick marks on x
axis

0

XTicksLabelStyle display style of x axis tick
labels

Horizontal

XTicksLabelsVisible display x axis tick labels? TRUE
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Attribute Purpose Default Value

YAxisTitle title for the y axis " y "

YAxisVisible display y axis? TRUE

YAxisTitleAlignment alignment of y axis title End

YAxisTitleOrientation orientation of the vertical
axis title in 2D

Horizontal

YGridVisible display a coordinate grid in
y-direction?

FALSE

YSubgridVisible display a coordinate subgrid
in y-direction?

FALSE

YTicksAt special y axis tick marks  
YTicksAnchor user defined start of y axis

tick marks
0

YTicksNumber number of y axis tick marks Normal

YTicksBetween number of minor
(unlabeled) y axis tick
marks between major
(labeled) y axis tick marks

1

YTicksVisible display y axis tick marks? TRUE

YTicksDistance distance of tick marks on y
axis

0

YTicksLabelStyle display style of y axis tick
labels

Horizontal

YTicksLabelsVisible display y axis tick labels? TRUE

Examples

Example 1

When executing a plot command, a default plot::CoordinateSystem2d is created
implicitly which contains the specified graphical objects:

f := plot::Function2d(sin(x)^2, x = -PI..PI):
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g := plot::Function2d(cos(x)^2, x = -PI..PI):

plot(f, g)

We can also create the coordinate system explicitly. The result is the same:

plot(plot::CoordinateSystem2d(f, g))
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delete f, g:

Example 2

We present the yearly sales of pears and apples in one scene. Different coordinate
systems are used to obtain separate axes. We set various attributes to determine the
positioning of the axes and their titles:

pears := plot::Polygon2d(

           [[1998, 1.2], [1999, 1.4], [2000, 1.5], 

            [2001, 1.7], [2002, 2.1], [2003, 1.98]],

           Color = RGB::Red, Title = "pears",

           TitlePosition = [2000, 1.6],

           TitleFont = [RGB::Red]):

apples := plot::Polygon2d(

            [[1998, 10.2], [1999, 14.4], [2000, 17.5], 

             [2001, 16.8], [2002, 18.0], [2003, 18.5]],

            Color = RGB::Blue, Title = "apples",

            TitlePosition = [2000, 18.0],

            TitleFont = [RGB::Blue]):

CS1 := plot::CoordinateSystem2d(pears):
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CS1::AxesOriginX := 1998:

CS1::ViewingBox := [1998..2003, 0..2.5]:

CS1::AxesTitleFont := [RGB::Red]:

CS1::XAxisTitle := "year":

CS1::YAxisTitle := "pears":

CS2 := plot::CoordinateSystem2d(apples):

CS2::AxesOriginX := 2003:

CS2::ViewingBox := [1998..2003, 0..20]:

CS2::AxesTitleFont := [RGB::Blue]:

CS2::XAxisTitle := "year":

CS2::YAxisTitle := "apples":

plot(CS1, CS2, Axes = Origin, YAxisTitleAlignment = Center,

     YAxisTitleOrientation = Vertical)

delete pears, apples, CS1, CS2:

Parameters
object1, object2, …

Graphical 2D objects
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Canvas | plot::CoordinateSystem2d | plot::Scene2d
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plot::CoordinateSystem3d

Coordinate system to display 3D objects in

Syntax

plot::CoordinateSystem3d(object1, object2, …, <a = amin .. amax>, options)

Description

plot::CoordinateSystem3d is a container to display graphical 3D objects within.
Usually, the user does not need to create such an object explicitly, because a plot
command such as plot(object1, object2, …) creates a default object of type
plot::CoordinateSystem3d implicitly to display the graphical objects in.

The plot::CoordinateSystem3d object is always visible in the interactive object
browser of the MuPAD graphics tool (see section Viewer, Browser, and Inspector:
Interactive Manipulation of this document). It contains the graphical objects as its
children. When the coordinate system object is selected, it provides access to a variety
of attributes that are associated with the coordinate system. These attributes allow to
manipulate:

• the ViewingBox (visibility range),
• the coordinate axes (axes titles, visibility, alignment, type, tips etc.),
• the ticks along the coodinate axes (number of tick marks, visibility, tick labels etc.),
• the coordinate grid (visibility, color, line width etc.),
• the scaling ratios of the coordinate directions (Constrained vs. UnConstrained).

A complete listing of the attributes associated with the coordinate system is given below.
Follow the links to the help pages of the attributes to find more detailed information.

Apart from these attributes of the coordinate system, also attributes for the graphical
objects inside the coordinate system can be specified when generating an object of type
plot::CoordinateSystem3d. These attribute values are inherited to the graphical
objects as new default values.
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A graphical scene may contain more than one coordinate system. Each coordinate system
provides separate coordinate axes, ticks, grid lines etc.

In such a case, separate plot::CoordinateSystem3d containers must be created
explicitly by the user and passed to a plot command (or inserted into a scene of type
plot::Scene3d). Cf. “Example 2” on page 24-1064.

Attributes

Attribute Purpose Default Value

Axes type of the coordinate axes Boxed

AxesTips arrow tips at the coordinate
axes?

FALSE

AxesOrigin crosspoint of the coordinate
axes

[0, 0, 0]

AxesTitles titles for the coordinate axes [" x ", " y ", " z "]
AxesOriginX crosspoint of the coordinate

axes, x-coordinate
0

AxesOriginY crosspoint of the coordinate
axes, y-coordinate

0

AxesOriginZ crosspoint of the coordinate
axes, z-coordinate

0

AxesVisible display coordinate axes? TRUE

AxesLineColor color of the coordinate axes RGB::Black

AxesLineWidth width of the coordinate axes 0.18

AxesTitleFont font of axes titles [" sans-serif ", 10]
AxesTitleAlignment alignment of axes titles Center

GridVisible display a coordinate grid? FALSE

GridLineColor line color of the coordinate
grid

RGB::Grey60

GridLineWidth width of coordinate grid
lines

0.1
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Attribute Purpose Default Value

GridLineStyle line style of the coordinate
grid

Solid

Name the name of a plot object (for
browser and legend)

 

Scaling scaling ratios Unconstrained

SubgridVisible display a coordinate
subgrid?

FALSE

SubgridLineColor line color of the coordinate
subgrid

RGB::Grey80

SubgridLineWidth width of coordinate subgrid
lines

0.1

SubgridLineStyle line style of the coordinate
subgrid

Solid

TicksAt special axes tick marks  
TicksAnchor user defined start of axes

tick marks
0

TicksLength length of axes tick marks 2

TicksNumber number of axes tick marks Normal

TicksBetween number of minor
(unlabeled) axes tick marks
between major (labeled)
axes tick marks

1

TicksVisible display axes tick marks? TRUE

TicksDistance user defined axes tick mark
distance

0

TicksLabelFont font of tick labels [" sans-serif ", 8]
TicksLabelStyle display style of axes tick

labels
Horizontal

TicksLabelsVisible display axes tick labels? TRUE
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Attribute Purpose Default Value

ViewingBox the visible coordinate range [Automatic .. Automatic,
Automatic .. Automatic,
Automatic .. Automatic]

ViewingBoxXMin the smallest visible x-values Automatic

ViewingBoxYMin the smallest visible y-values Automatic

ViewingBoxXMax the largest visible x-values Automatic

ViewingBoxZMin the smallest visible z-values Automatic

ViewingBoxYMax the largest visible y-values Automatic

ViewingBoxZMax the largest visible z-values Automatic

ViewingBoxXRange the range of x-values visible Automatic .. Automatic
ViewingBoxYRange the range of y-values visible Automatic .. Automatic
ViewingBoxZRange the range of z-values visible Automatic .. Automatic
XAxisTitle title for the x axis " x "

XAxisVisible display x axis? TRUE

XAxisTitleAlignment alignment of x axis title Center

XGridVisible display a coordinate grid in
x-direction?

FALSE

XSubgridVisible display a coordinate subgrid
in x-direction?

FALSE

XTicksAt special x axis tick marks  
XTicksAnchor user defined start of x axis

tick marks
0

XTicksNumber number of x axis tick marks Normal

XTicksBetween number of minor
(unlabeled) x axis tick
marks between major
(labeled) x axis tick marks

1

XTicksVisible display x axis tick marks? TRUE

XTicksDistance distance of tick marks on x
axis

0
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Attribute Purpose Default Value

XTicksLabelStyle display style of x axis tick
labels

Horizontal

XTicksLabelsVisible display x axis tick labels? TRUE

YAxisTitle title for the y axis " y "

YAxisVisible display y axis? TRUE

YAxisTitleAlignment alignment of y axis title Center

YGridVisible display a coordinate grid in
y-direction?

FALSE

YSubgridVisible display a coordinate subgrid
in y-direction?

FALSE

YTicksAt special y axis tick marks  
YTicksAnchor user defined start of y axis

tick marks
0

YTicksNumber number of y axis tick marks Normal

YTicksBetween number of minor
(unlabeled) y axis tick
marks between major
(labeled) y axis tick marks

1

YTicksVisible display y axis tick marks? TRUE

YTicksDistance distance of tick marks on y
axis

0

YTicksLabelStyle display style of y axis tick
labels

Horizontal

YTicksLabelsVisible display y axis tick labels? TRUE

ZAxisTitle title for the z axis " z "

ZAxisVisible display z axis? TRUE

ZAxisTitleAlignment alignment of z axis title Center

ZGridVisible display a coordinate grid in
z-direction?

FALSE

ZSubgridVisible display a coordinate subgrid
in z-direction?

FALSE
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Attribute Purpose Default Value

ZTicksAt special z axis tick marks  
ZTicksAnchor user defined start of z axis

tick marks
0

ZTicksNumber number of z axis tick marks Normal

ZTicksBetween number of minor
(unlabeled) z axis tick
marks between major
(labeled) z axis tick marks

1

ZTicksVisible display z axis tick marks? TRUE

ZTicksDistance distance of tick marks on z
axis

0

ZTicksLabelStyle display style of z axis tick
labels

Horizontal

ZTicksLabelsVisible display z axis tick labels? TRUE

Examples

Example 1

When executing a plot command, a default plot::CoordinateSystem3d is created
implicitly which contains the specified graphical objects:

f := plot::Function3d(sin(x - y)^2, x = -PI..PI, y = -PI..PI):

g := plot::Function3d(cos(x - y)^2, x = -PI..PI, y = -PI..PI):

plot(f, g)
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We can also create the coordinate system explicitly. The result is the same:

plot(plot::CoordinateSystem3d(f, g))

24-1063



24 Graphics and Animations

delete f, g:

Example 2

The functions f1 = sin(x - y) and f2 = sin(h)(x + y) cannot be plotted simultaneously in
one coordinate system over the range x ∈ [- 10, 10], y ∈ [- 10, 10], because they produce
function values of different orders of magnitude. To plot them together, we use two
different coordinate systems. We request explicit vertical ranges for the (rather different)
viewing boxes by the attribute ViewingBoxZRange.

We set various attributes of the coordinate systems to determine the positioning of the
axes and their titles:

f1 := plot::Function3d(sin(x - y), x = -10..10, y = -10..10,

                       Submesh = [2, 2],

                       Color = RGB::Red, FillColorType = Flat,

                       Legend = "sin(x - y)"):

CS1 := plot::CoordinateSystem3d(f1):

CS1::Axes := Origin:

CS1::AxesOrigin := [-10, 10, -3]:

CS1::ViewingBoxZRange := -3..3:
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CS1::ZAxisTitle := "sin":

f2 := plot::Function3d(sinh(x + y), x = -10..10, y = -10..10,

                       Color = RGB::Blue, FillColorType = Flat,

                       Legend = "sinh(x + y)"):

CS2 := plot::CoordinateSystem3d(f2):

CS2::Axes := Origin:

CS2::AxesOrigin := [10, -10, -3*10^8]:

CS2::ViewingBoxZRange := -3*10^8..3*10^8:

CS2::ZAxisTitle := "sinh":

plot(CS1, CS2):

delete f1, CS1, f2, CS2:

Parameters

object1, object2, …

Graphical 3D objects
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Canvas | plot::CoordinateSystem3d | plot::Scene3d
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plot::Group2d
Groups of 2D objects

Syntax

plot::Group2d(object2d1, object2d2, …, <a = amin .. amax>, options)

Description

plot::Group2d forms a group of any number of graphical 2D objects.

Grouping together a larger number of graphical objects and accessing the group as a
whole simplifies their handling. In particular, the main purpose of a group is to inherit
graphical attributes that are shared by all members of the group.

To change the inherited attributes interactively, do not select the group itself in the
interactive object browser of the MuPAD graphics tool (see Viewer, Browser, and
Inspector: Interactive Manipulation). Underneath the group object, find 'defaults'
branches for the objects in the group. Select the 'defaults' branch for the object type that
you want to set attributes for.

A group can contain groups.

Note: When working with groups of points, the more efficient approach is to use the
specialized grouping construct plot::PointList2d instead of generic groups of points.

Attributes

Attribute Purpose Default Value

Name the name of a plot object (for
browser and legend)

 

Visible visibility TRUE
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Examples

Example 1

Consider a group G1 consisting of two triangles inscribed in an ellipse. Form a new group
G2 consisting of the group G1, the ellipse and its focal points. The entire figure given by
the group G2 is rotated by an animated plot::Rotate2d:

G1 := plot::Group2d(

  plot::Polygon2d([[0, -1], [0, 1], [-2, 0]]),

  plot::Polygon2d([[0, -1], [0, 1], [ 2, 0]]),

  Closed = TRUE, Filled = TRUE, Color = RGB::Blue):

G2 := plot::Group2d(

  G1, 

  plot::Ellipse2d(2, 1,[0, 0]),

  plot::PointList2d([[-sqrt(3), 0], [sqrt(3), 0]]),

  PointSize = 2*unit::mm,

  PointColor = RGB::Red,

  LineColor = RGB::Black):

plot(plot::Rotate2d(a, [0, 0], a = 0..2*PI, G2))
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delete G1, G2:

Parameters

object2d1, object2d2, …

Graphical 2D objects

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Group3d | plot::PointList2d | plot::PointList3d

More About
• “Groups of Primitives”
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plot::Group3d
Groups of 3D objects

Syntax

plot::Group3d(object3d1, object3d2, …, <a = amin .. amax>, options)

Description

plot::Group3d forms a group of any number of graphical 3D objects.

Grouping together a larger number of graphical objects and accessing the group as a
whole simplifies their handling. In particular, the main purpose of a group is to inherit
graphical attributes that are shared by all members of the group.

To change the inherited attributes interactively, do not select the group itself in the
interactive object browser of the MuPAD graphics tool (see Viewer, Browser, and
Inspector: Interactive Manipulation). Underneath the group object, find 'defaults'
branches for the objects in the group. Select the 'defaults' branch for the object type that
you want to set attributes for.

A group can contain groups.

Note: When working with groups of points, the more efficient approach is to use the
specialized grouping construct plot::PointList3d instead of generic groups of points.

Attributes

Attribute Purpose Default Value

Name the name of a plot object (for
browser and legend)

 

Visible visibility TRUE
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Examples

Example 1

Plot two groups of bubbles. Some bubbles are not visible as they are inside larger
bubbles:

G1 := plot::Group3d(plot::Sphere(1/n, [0, 0, n/2 + 1/n]

                                ) $ n = 1..10):

G2 := plot::Group3d(plot::Sphere(1/(3*n), [0, 0, n/2 + 1/n]

                                ) $ n = 2..10):

plot(G1, G2)

Increase transparency of all bubbles in the first group, but keep the bubbles in the second
group opaque. Because the bubbles are grouped, it is easy to set different attribute values
for the two groups:

G1::Color := RGB::SkyBlue.[0.25]:

G2::Color := RGB::Red:

plot(G1, G2)
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delete G1, G2:

Parameters

object3d1, object3d2, …

Graphical 3D objects

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Group2d | plot::PointList2d | plot::PointList3d

More About
• “Groups of Primitives”
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plot::Scene2d
2D scenes

Syntax
plot::Scene2d(object2d1, object2d2, …, <a = amin .. amax>, options)

Description

plot::Scene2d is a container to display one or more coordinate systems containing
graphical objects. Scene objects must be created when several graphical scenes are to be
displayed simultaneously in a plot.

Usually, you do not need to create a scene object explicitly, because plot(object1,
object2,...) creates a default scene object implicitly to display the graphical objects
in. You must create scene objects explicitly only when several scenes are to be displayed
simultaneously in one plot.

The MuPAD graphics makes a clear division between 2D and 3D. Scene objects of type
plot::Scene2d do not accept 3D objects and plot::Scene3d objects do not accept 2D
objects. When several scenes are displayed simultaneously in a single plot, all scenes
must be of the same dimension.

Strictly speaking, a 2D scene object is a container for coordinate systems of type
plot::CoordinateSystem2d. However, you can ignore this technicality because a
suitable default coordinate system is created internally, when graphical primitives are
passed to plot::Scene2d.

Scene objects are always visible in the interactive object browser of the MuPAD graphics
tool (see section Viewer, Browser, and Inspector: Interactive Manipulation of this
document). Each scene contains one or more coordinate systems as its children. When the
scene object is selected, it provides access to a variety of attributes that are associated
with scenes. The scene attributes let you:

• Set annotations (Header, Footer) and control the Legend.
• Set layout parameters such as height and width if the canvas attribute Layout is set

to Absolute or Relative.
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• Set various style parameters, such as BackgroundColor.

A complete listing of the attributes associated with a 2D scene is given below. Follow the
links to the help pages of the attributes to find more detailed information.

Apart from these attributes of the scene object, also attributes for the coordinate system
and the graphical objects inside the scene can be specified when generating a scene
object. These attribute values are inherited to the coordinate system and the graphical
objects as new default values.

A plot can contain more than one graphical scene. In this case, create separate scene
objects and pass them to a plot command or insert them into an object of type
plot::Canvas. For details on the layout of scenes inside the drawing area (“canvas”),
see the help page of the canvas attribute Layout. See “Example 1” on page 24-1075.

Attributes

Attribute Purpose Default Value

BackgroundColor background color RGB::White

BackgroundTransparent plot a scene on a
transparent background

FALSE

BorderColor color of frame/border around
canvas and scenes

RGB::Grey50

BorderWidth width of frame/border
around canvas and scenes

0

Bottom distance of bottom of scene
to bottom of canvas

0

BottomMargin bottom margin width 1

Footer footer text  
FooterFont font of footers (scene and

canvas)
[" sans-serif ", 12]

FooterAlignment alignment of footer of
canvas and scenes

Center

Header header text  

24-1074



 plot::Scene2d

Attribute Purpose Default Value

HeaderFont font of headers (scene and
canvas)

[" sans-serif ", 12]

HeaderAlignment alignment of header of
canvas and scenes

Center

Height heights of canvas/scenes 80

Left distance of left of scene to
left of canvas

0

LeftMargin left margin width 1

LegendFont font of legend entries [" sans-serif ", 8]
LegendVisible switch legend on/off FALSE

LegendPlacement legend above or below Bottom

LegendAlignment legend at left, center, or
right

Center

Margin margins around canvas and
scenes

1

Name the name of a plot object (for
browser and legend)

 

RightMargin right margin width 1

TopMargin top margin width 1

Width widths of canvas/scenes 120

Examples

Example 1

Scene objects must be created explicitly only when you want to display several scenes
simultaneously in one plot. The following call uses the automatic layout of several scenes
in a canvas:

S1 := plot::Scene2d(plot::Function2d(sin(x), x = 0..2*PI),

                    Header = "the sine function"):

S2 := plot::Scene2d(plot::Function2d(cos(x), x = 0..2*PI),
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                    Header = "the cosine function"):

S3 := plot::Scene2d(plot::Function2d(tan(x), x = 0..PI),

                    Header = "the tan function"):

S4 := plot::Scene2d(plot::Function2d(cot(x), x = 0..PI),

                    Header = "the cot function"):

plot(S1, S2, S3, S4, BorderWidth = 0.5*unit::mm)

Use the canvas attribute Layout = Relative to position 3 of these scenes in the canvas.
The size of the scenes is set with the attributes Width and Height, specifying multiples
of the canvas' width and height. The bottom left corner of each scene is positioned with
the scene attributes Bottom and Left:

S1::Width := 0.475: S1::Height := 0.42:

S2::Width := 0.475: S2::Height := 0.42:

S3::Width := 0.475: S3::Height := 0.42:

S1::Bottom := 0.46: S1::Left := 0.02: 

S2::Bottom := 0.02: S2::Left := 0.02:

S3::Bottom := 0.26: S3::Left := 0.51: 

S3::HeaderFont := ["Times New Roman", Italic, 12]:

plot(S1, S2, S3, Layout = Relative,

     BorderWidth = 0.5*unit::mm,

     plot::Scene2d::BorderWidth = 0.2*unit::mm,
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     Header = "trigonometric functions",

     HeaderFont = ["Times New Roman", Bold, 18]):

delete S1, S2, S3, S4:

Parameters

object2d1, object2d2, …

2D coordinate systems or graphical 2D objects

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Canvas | plot::CoordinateSystem2d | plot::CoordinateSystem3d |
plot::Scene3d
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plot::Scene3d
3D scenes

Syntax
plot::Scene3d(object3d1, object3d2, …, <a = amin .. amax>, options)

Description

plot::Scene3d is a container to display one or more coordinate systems containing
graphical objects. Scene objects must be created when several graphical scenes are to be
displayed simultaneously in a plot.

Usually, you do not need to create a scene object explicitly, because plot(object1,
object2,...) creates a default scene object implicitly to display the graphical objects
in. You must create scene objects explicitly only when several scenes are to be displayed
simultaneously in one plot.

The MuPAD graphics makes a clear division between 2D and 3D. Scene objects of type
plot::Scene2d do not accept 3D objects and plot::Scene3d objects do not accept 2D
objects. When several scenes are displayed simultaneously in a single plot, all scenes
must be of the same dimension.

Strictly speaking, a 3D scene object is a container for coordinate systems of type
plot::CoordinateSystem3d. However, you can ignore this technicality because a
suitable default coordinate system is created internally, when graphical primitives are
passed to plot::Scene3d.

Scene objects are always visible in the interactive object browser of the MuPAD graphics
tool (see section Viewer, Browser, and Inspector: Interactive Manipulation of this
document). Each scene contains one or more coordinate systems as its children. When the
scene object is selected, it provides access to a variety of attributes that are associated
with scenes. The scene attributes let you:

• Set annotations (Header, Footer) and control the Legend.
• Set layout parameters such as height and width if the canvas attribute Layout is set

to Absolute or Relative.
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• Set a direction for the automatic camera in 3D by using CameraDirection.
• Set various style parameters, such as BackgroundColor.

A complete listing of the attributes associated with a 3D scene is given below. Follow the
links to the help pages of the attributes to find more detailed information.

Apart from these attributes of the scene object, also attributes for the coordinate system
and the graphical objects inside the scene can be specified when generating a scene
object. These attribute values are inherited to the coordinate system and the graphical
objects as new default values.

A plot can contain more than one graphical scene. In this case, create separate scene
objects explicitly and pass them to a plot command or insert them into an object of type
plot::Canvas. For details on the layout of scenes inside the drawing area (“canvas”),
see the help page of the canvas attribute Layout.

Attributes

Attribute Purpose Default Value

BackgroundColor background color RGB::White

BackgroundColor2 second background color for
color blends

RGB::Grey75

BackgroundStyle color blends in the
background

Flat

BackgroundTransparent plot a scene on a
transparent background

FALSE

BorderColor color of frame/border around
canvas and scenes

RGB::Grey50

BorderWidth width of frame/border
around canvas and scenes

0

Bottom distance of bottom of scene
to bottom of canvas

0

BottomMargin bottom margin width 1

CameraDirection the direction of the
automatic camera
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Attribute Purpose Default Value

CameraDirectionX the direction of the
automatic camera, x-
component

 

CameraDirectionY the direction of the
automatic camera, y-
component

 

CameraDirectionZ the direction of the
automatic camera, z-
component

 

Footer footer text  
FooterFont font of footers (scene and

canvas)
[" sans-serif ", 12]

FooterAlignment alignment of footer of
canvas and scenes

Center

Header header text  
HeaderFont font of headers (scene and

canvas)
[" sans-serif ", 12]

HeaderAlignment alignment of header of
canvas and scenes

Center

Height heights of canvas/scenes 80

Left distance of left of scene to
left of canvas

0

LeftMargin left margin width 1

LegendFont font of legend entries [" sans-serif ", 8]
LegendVisible switch legend on/off FALSE

LegendPlacement legend above or below Bottom

LegendAlignment legend at left, center, or
right

Center

Lighting light schemes for 3D
graphics

Automatic
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Attribute Purpose Default Value

Margin margins around canvas and
scenes

1

Name the name of a plot object (for
browser and legend)

 

RightMargin right margin width 1

TopMargin top margin width 1

Width widths of canvas/scenes 120

YXRatio scaling ratio between y and
x axes

1

ZXRatio scaling ratio between z and
x axes

2/3

Examples

Example 1

Conic sections are the curves that you get when intersecting a cone and a plane. The first
scene displays a plane and a rotating cone. The second scene displays the corresponding
conic section:

c := plot::Cone(1, [-sin(a), 0, -cos(a)], [sin(a), 0, cos(a)], 

                a = 0..2*PI):

s := plot::Surface([x, y, 0], x = -1..1, y = -1..1):

S1 := plot::Scene3d(c, s):

S2 := plot::Scene3d(c, ViewingBoxZRange = -0.01 .. 0.01):

plot(S1, S2, Layout = Horizontal)
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delete c, s, S1, S2:

Parameters

object3d1, object3d2, …

3D coordinate systems or graphical 3D objects

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Canvas | plot::CoordinateSystem2d | plot::CoordinateSystem3d |
plot::Scene2d
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plot::ClippingBox
Clipping of 3D objects

Syntax
plot::ClippingBox(xmin .. xmax, ymin .. ymax, zmin .. zmax, <a = amin .. amax>, options)

Description

A plot::ClippingBox defines a cubic box with edges parallel to the coordinate axes.
When a clipping box is inserted in a 3D scene, only the parts of the graphical objects in
the scene are visible that lie inside the coordinate range defined by the clipping box.

Inserting a plot::ClippingBox into a 3D scene has a similar effect as specifying a
viewing box for the scene by the attribute ViewingBox.

However, the specified viewing box fills the entire drawing region of the plot, whereas a
plot::ClippingBox preserves the space in the drawing region that the invisible parts
would fill if no clipping box was used.

Moreover, in contrast to plot::ClippingBox, the visibility range defined by the
ViewingBox cannot be animated.

In fact, the main purpose of plot::ClippingBox is to provide an animated version of
the ViewingBox.

Size and location of the ViewingBox remain unaffected by the presence of a clipping box.
Also coordinate axes are not clipped.

Only one single plot::ClippingBox should be used inside a 3D scene.

Attributes

Attribute Purpose Default Value

Frames the number of frames in an
animation

50
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Attribute Purpose Default Value

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Visible visibility TRUE

XMax final value of parameter “x”  
XMin initial value of parameter

“x”
 

XRange range of parameter “x”  
YMax final value of parameter “y”  
YMin initial value of parameter

“y”
 

YRange range of parameter “y”  
ZMax final value of parameter “z”  
ZMin initial value of parameter

“z”
 

ZRange range of parameter “z”  
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Examples

Example 1

We plot a full sphere yet rendering only a part of it visible. This is done by passing a
suitable animated plot::ClippingBox to the plot command. Note that the viewing
box remains unaffected:

plot(plot::Sphere(1, [0, 0, 0]), 

     plot::ClippingBox(-1 + a .. 1 - a, 

                       -1 + a .. 1 - a,

                       -1 .. 1, a = 0..1))

Example 2

We plot a Klein bottle. By chopping off the upper parts, one can have a look inside:

KleinBottle := plot::Tube([6*cos(u)*(sin(u)-1), 0, 14*sin(u)],

                           4 - 2*cos(u), u = -PI..PI):

C := plot::ClippingBox(-15..15, -10..10, -20.. a, 
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                       a = 15 .. -20):

plot(KleinBottle, C, Axes = None)

delete KleinBottle, C:

Parameters

xmin, xmax

The borders of the visible range of the x coordinate: numerical real values or arithmetical
expressions of the animation parameter a.

xmin, xmax are equivalent to the attributes XMin, XMax.

ymin, ymax

The borders of the visible range of the y coordinate: numerical real values or arithmetical
expressions of the animation parameter a.

ymin, ymax are equivalent to the attributes YMin, YMax.
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zmin, zmax

The borders of the visible range of the z coordinate: numerical real values or arithmetical
expressions of the animation parameter a.

zmin, zmax are equivalent to the attributes ZMin, ZMax.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::CoordinateSystem3d
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plot::Reflect2d
Reflection about a 2D point or a line

Syntax
plot::Reflect2d([x1, y1], <[x2, y2]>, obj1, obj2, …, <a = amin .. amax>, options)

Description
plot::Reflect2d([x1, y1], object) reflects a 2D object about the point (x1, y1).

plot::Reflect2d([x1, y1], [x2, y2], object) reflects a 2D object about the line
through the points (x1, y1) and (x2, y2).

Reflections in 2D are transformation objects that mirror their contents about a straight
line. In the degenerate case where both points on the line coincide or if only one point is
specified, they reflect about a point.

Like all transformation objects, reflections can contain any number of objects of the
appropriate dimension. Plotting the reflection object renders the reflections of all
graphical objects inside.

Reflections can be animated. If the contained objects are animated, too, the animations
will run simultaneously.

Animated reflection objects are rather “cheap” concerning computing and storing costs.
For more complex graphical objects, it is more efficient to use an animated reflection
object than to redefine the object for each frame.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Frames the number of frames in an
animation

50
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Attribute Purpose Default Value

From starting point of arrows and
lines

 

FromX starting point of arrows and
lines, x-coordinate

 

FromY starting point of arrows and
lines, y-coordinate

 

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

To end point of arrows and
lines

 

ToX end point of arrows and
lines, x-coordinate

 

ToY end point of arrows and
lines, y-coordinate

 

Examples

Example 1

Plot the reflection of a function graph about the origin:
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plot(plot::Reflect2d([0, 0],

                     plot::Function2d(x^2, x=-2..2)))

Reflecting a function about the main diagonal (the line through the origin and the point
(1, 1) shows the (multivalued) inverse function:

plot(plot::Reflect2d([0, 0], [1, 1],

                     plot::Function2d(x^2, x=-2..2)))
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To display both an object and its mirror image, assign the object to some variable and
plot both:

f := plot::Function2d(x^2, x=-2..2, LineWidth = 0.5):

plot(f, plot::Reflect2d([0, 0], [1, 1], f))
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The following command shows two more useful variations. First, use plot::Line2d to
display the line of reflection. Then, use plot::modify to change the line color of the
mirrored function graph:

g := plot::Line2d([0, 0], [1, 1],

                  Color = RGB::Red,

                  LineStyle = Dashed,

                  Extension = Infinite):

f1 := plot::Reflect2d([0, 0], [1, 1], 

                plot::modify(f, LineColor = RGB::Green)):

plot(f, g, f1)
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Parameters

x1, y1, x2, y2

The coordinates of two points on a line: real numerical values or arithmetical expressions
of the animation parameter a.

x1, y1, x2, y2 are equivalent to the attributes From, To, FromX, FromY, ToX, ToY.

obj1, obj2, …

Plot objects

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Line2d | plot::Plane | plot::Reflect3d | plot::Transform2d |
plot::Transform3d
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plot::Reflect3d
Reflection about a 3D point or a plane

Syntax
plot::Reflect3d([x, y, z], <[nx, ny, nz]>, obj1, obj2, …, <a = amin .. amax>, options)

Description

plot::Reflect3d([x, y, z], object) reflects a 3D object about the point (x, y,
z).

plot::Reflect3d([x, y, z], [nx, ny, nz], object) reflects a 3D object about
the plane through the point (x, y, z) with normal (nx, ny, nz).

Reflections in 3D are transformation objects that mirror their contents about a plane. In
the degenerate case where the normal vector is given as [0, 0, 0] or if only one point
is specified, they reflect about a point.

Like all transformation objects, reflections can contain any number of objects of the
appropriate dimension. Plotting the reflection object renders the reflections of all
graphical objects inside.

Reflections can be animated. If the contained objects are animated, too, the animations
will run simultaneously.

Animated reflection objects are rather “cheap” concerning computing and storing costs.
For more complex graphical objects, it is more efficient to use an animated reflection
object than to redefine the object for each frame.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE
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Attribute Purpose Default Value

Frames the number of frames in an
animation

50

Name the name of a plot object (for
browser and legend)

 

Normal normal vector of circles and
discs, etc. in 3D

[0, 0, 1]

NormalX normal vector of circles
and discs, etc. in 3D, x-
component

0

NormalY normal vector of circles
and discs, etc. in 3D, y-
component

0

NormalZ normal vector of circles
and discs, etc. in 3D, z-
component

1

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Position positions of cameras, lights,
and text objects

[0, 0, 0]

PositionX x-positions of cameras,
lights, and text objects

0

PositionY y-positions of cameras,
lights, and text objects

0

PositionZ z-positions of cameras,
lights, and text objects

0

TimeEnd end time of the animation 10.0
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Attribute Purpose Default Value

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Examples

Example 1

Plot a 3D function graph and its reflection about the point (0, 0, 2):

f := plot::Function3d(sin(cos(x) - cos(y)), x = 0..PI, y = -2..5):

p := plot::Point3d([0 , 0, 2], PointSize=2):

plot(f, plot::Reflect3d([0, 0, 2], f), p,

     CameraDirection=[30, -50, 20])

Plot the same function graph and its reflection at a plane through the point (0, 0, 2) with
an animated normal vector:
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pl := plot::Plane([0, 0, 2], [a, 0, 1-a], a=0..1, Color=RGB::Green.[0.5]):

plot(f, plot::Reflect3d([0, 0, 2], [a, 0, 1-a], a=0..1, f), p, pl,

     CameraDirection=[30, -50, 20])

Parameters

x, y, z

The coordinates of the mirror point or a point on the mirror plane, respectively: real
numerical values or arithmetical expressions of the animation parameter a.

x, y, z are equivalent to the attributes Position, PositionX, PositionY, PositionZ.

nx, ny, nz

The coordinates of the normal of the mirror plane: real numerical values or arithmetical
expressions of the animation parameter a.

nx, ny, nz are equivalent to the attributes Normal, NormalX, NormalY, NormalZ.
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obj1, obj2, …

Plot objects

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Line2d | plot::Plane | plot::Reflect2d | plot::Transform2d |
plot::Transform3d
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plot::Rotate2d
Rotations of 2D objects

Syntax
plot::Rotate2d(angle, <[cx, cy]>, obj1, <obj2, …>, <a = amin .. amax>, options)

Description
plot::Rotate2d(angle, [cx, cy], object) rotates a 2D object counterclockwise
by the given angle around the rotation center [cx, cy]. To rotate clock wise, use
negative angles.

Rotate objects can rotate several graphical objects simultaneously. Plotting the rotate
object renders all graphical objects inside.

Rotated objects have a tendency to overestimate their ViewingBox. See the help page of
ViewingBox. In such cases, specify a suitable ViewingBox explicitly.

Transformation objects can be used inside rotate objects. If they are animated, the
animations run simultaneously.

Animated rotate objects are rather “cheap” concerning computing and storing costs. For
more complex graphical objects, it is more efficient to use an animated rotate object than
to redefine the object for each frame.

The function op allows to extract the graphical objects inside a rotate object.

Attributes
Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Angle rotation angle 0

Center center of objects, rotation
center

[0, 0]
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Attribute Purpose Default Value

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

Frames the number of frames in an
animation

50

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Examples

Example 1

Ellipses of type plot::Ellipse2d have symmetry axes parallel to the coordinate axes.
You can use plot::Rotate2d to obtain ellipses with other orientations:

e0 := plot::Ellipse2d(3, 1, [0, 0]):

e1 :=  plot::Rotate2d(PI/4, [0, 0], e0):

e2 :=  plot::Rotate2d(-PI/4, [0, 0], e0):

plot(e0, e1, e2):
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delete e0, e1, e2

Example 2

Plot several copies of a function plot, rotated by different angles:

f := plot::Function2d(sin(x^3)/(x^2+1), x = -5..5, Mesh = 300):

plot(plot::Rotate2d(f, Angle = PI/11*a) $ a = 0..10):
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delete f

Example 3

Plot turning cogs. Each animated rotate object rotates a curve and a line simultaneously:

r1 := 2: x1 := -r1: y1:= 0:

r2 := 1: x2 :=  r2: y2:= 0:

dr := 0.2:

cog1 := plot::Curve2d([x1 + (r1 + dr*cos(36*u))*cos(u), 

                       y1 + (r1 + dr*cos(36*u))*sin(u)],

                      u = 0..2*PI, Mesh = 360):

cog2 := plot::Curve2d([x2 + (r2 - dr*cos(18*u))*cos(u), 

                       y2 + (r2 - dr*cos(18*u))*sin(u)],

                       u = 0..2*PI, Mesh = 360):

line1 :=  plot::Line2d([x1, y1], [x1 + r1 + dr, y1],

                       Color = RGB::Red):

line2 :=  plot::Line2d([x2, y2], [x2 - r2 + dr, y2],

                       Color = RGB::Red):

Cog1 := plot::Rotate2d(-a, [x1,  y1], cog1, line1, 

                       a = 0..2*PI, Frames = 180):
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Cog2 := plot::Rotate2d(2*a, [x2, y2], cog2, line2,

                       a = 0..2*PI, Frames = 180):

plot(Cog1, Cog2, Scaling = Constrained):

delete r1, x1, y1, r2, x2, y2, dr, cog1, cog2, 

       line1, line2, Cog1, Cog2:

Example 4

Use an animated rotation inside another animated rotation:

L1 := plot::Line2d([0, 0], [0, 1]):

L2 := plot::Rotate2d(a, [0, 1], a = 0..2*PI,

                     plot::Line2d([0, 1], [1, 1])):

plot(plot::Rotate2d(a, [0, 0], L1, L2, a = 0..PI/2)):
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delete L1, L2:

Parameters

angle

The rotation angle in radians: a numerical real value or an arithmetical expression of the
animation parameter a.

angle is equivalent to the attribute Angle.

cx, cy

The components of the rotation center: numerical real values or arithmetical expressions
of the animation parameter a. If no rotation center is specified, the center [0, 0] is
used.

cx, cy are equivalent to the attributes Center, CenterX, CenterY.
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obj1, obj2, …

Arbitrary plot objects of the appropriate dimension

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Rotate3d | plot::Scale2d | plot::Scale3d | plot::Transform2d |
plot::Transform3d | plot::Translate2d | plot::Translate3d
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plot::Rotate3d

Rotations of 3D objects

Syntax

plot::Rotate3d(angle, <[cx, cy, cz], [dx, dy, dz]>, obj1, <obj2, …>, <a = amin .. amax>, options)

Description

plot::Rotate3d(angle, [cx, cy, cz], [dx, dy, dz], object) rotates a 3D
object by the given angle around the rotation axis defined by the point [cx, cy, cz] and
the direction [dx, dy, dz].

The rotation is implemented following the “right hand rule”: Stretch the thumb of your
right hand and bend the fingers. When the thumb points into the direction of the rotation
axis, your finger tips indicate the direction of the rotation. Use negative angles to rotate
in the opposite direction.

Rotate objects can rotate several graphical objects simultaneously. Plotting the rotate
object renders all graphical objects inside.

Rotated objects have a tendency to overestimate their ViewingBox. See the help page of
ViewingBox. In such cases, specify a suitable ViewingBox explicitly.

Transformation objects can be used inside rotate objects. If they are animated, the
animations run simultaneously.

Animated rotate objects are rather “cheap” concerning computing and storing costs. For
more complex graphical objects, it is more efficient to use an animated rotate object than
to redefine the object for each frame.

The function op allows to extract the graphical objects inside a rotate object.
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Angle rotation angle 0

Axis rotation axis [0, 0, 1]
AxisX x-component of rotation axis 0

AxisY y-component of rotation axis 0

AxisZ z-component of rotation axis 1

Center center of objects, rotation
center

[0, 0, 0]

CenterX center of objects, rotation
center, x-component

0

CenterY center of objects, rotation
center, y-component

0

CenterZ center of objects, rotation
center, z-component

0

Frames the number of frames in an
animation

50

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0
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Attribute Purpose Default Value

TimeRange the real time span of an
animation

0.0 .. 10.0

Examples

Example 1

3D boxes with arbitrary orientation can be generated via plot::Rotate3d. Use several
animated rotation objects:

b0 := plot::Box(-3..3, -2..2, -1..1):

b1 :=  plot::Rotate3d(a, [0, 0, 0], [0, 0, 1], b0, 

                      a = 0..PI/2, TimeRange = 0..3):

b2 :=  plot::Rotate3d(a, [0, 0, 0], [0, 1, 0], b1, 

                      a = 0..PI/2, TimeRange = 3..6):

b3 :=  plot::Rotate3d(a, [0, 0, 0], [1, 0, 0], b2, 

                      a = 0..PI/2, TimeRange = 6..9):

plot(b0, b3):
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delete b0, b1, b2, b3

Parameters

angle

The rotation angle in radians: a numerical real value or an arithmetical expression of the
animation parameter a.

angle is equivalent to the attribute Angle.

cx, cy, cz

The components of the rotation center: numerical real values or arithmetical expressions
of the animation parameter a. If no rotation center is specified, the center [0, 0, 0] is
used.

cx, cy, cz are equivalent to the attributes Center, CenterX, CenterY, CenterZ.

dx, dy, dz

The components of the direction of the rotations axis: numerical real values or
arithmetical expressions of the animation parameter a. If no direction is specified, the
direction [0, 0, 1] is used.

dx, dy, dz are equivalent to the attributes Axis, AxisX, AxisY, AxisZ.

obj1, obj2, …

Arbitrary plot objects of the appropriate dimension

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy
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MuPAD Graphical Primitives
plot::Rotate2d | plot::Scale2d | plot::Scale3d | plot::Transform2d |
plot::Transform3d | plot::Translate2d | plot::Translate3d
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plot::Scale2d
Scaling of 2D objects

Syntax
plot::Scale2d([sx, sy], obj1, <obj2, …>, <a = amin .. amax>, options)

Description

plot::Scale2d([sx, sy], objects) applies the scaling transformation 
with the diagonal matrix A = diag(sx, sy) to 2D objects.

Scale objects can scale several graphical objects simultaneously. Plotting the scale object
renders all graphical objects inside.

Transformation objects can be used inside scale objects. If they are animated, the
animations run simultaneously.

Animated scale objects are rather “cheap” concerning computing and storing costs. For
more complex graphical objects, it is more efficient to use an animated scale object than
to redefine the object for each frame.

The function op allows to extract the graphical objects inside a scale object.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Frames the number of frames in an
animation

50

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Scale scaling factors [1, 1]
ScaleX scaling factor in x-direction 1

ScaleY scaling factor in y-direction 1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Examples

Example 1

A scaling transformation turns a circle into an ellipse:

plot(plot::Scale2d([1 + 3*a, 1 + a], 

                   plot::Circle2d(1),

                   a = 0..1))
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Parameters

sx, sy

The scaling factors: numerical real values or arithmetical expressions of the animation
parameter a.

sx, sy are equivalent to the attributes Scale, ScaleX, ScaleY.

obj1, obj2, …

Arbitrary plot objects of the appropriate dimension

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Rotate2d | plot::Rotate3d | plot::Scale3d | plot::Transform2d |
plot::Transform3d | plot::Translate2d | plot::Translate3d
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plot::Scale3d
Scaling of 3D objects

Syntax
plot::Scale3d([sx, sy, sz], obj1, <obj2, …>, <a = amin .. amax>, options)

Description

plot::Scale3d([sx, sy, sz], objects) applies the scaling transformation 
with the diagonal matrix A = diag(sx, sy, sz) to 3D objects.

Scale objects can scale several graphical objects simultaneously. Plotting the scale object
renders all graphical objects inside.

Transformation objects can be used inside scale objects. If they are animated, the
animations run simultaneously.

Animated scale objects are rather “cheap” concerning computing and storing costs. For
more complex graphical objects, it is more efficient to use an animated scale object than
to redefine the object for each frame.

The function op allows to extract the graphical objects inside a scale object.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Frames the number of frames in an
animation

50

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Scale scaling factors [1, 1, 1]
ScaleX scaling factor in x-direction 1

ScaleY scaling factor in y-direction 1

ScaleZ scaling factor in z-direction 1

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Examples

Example 1

A scaling transformation turns a sphere into an ellipsoid:

plot(plot::Scale3d([1 + 3*a, 1 + 2*a, 1 + a], 

                   plot::Sphere(1, [0, 0, 0]),

                   a = 0..1))
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Plot a (southern) hemisphere and two scaled copies:

A0 := plot::Spherical([1, u, v], u = 0..2*PI, v = PI/2 .. PI):

A1 := plot::Scale3d([0.5, 0.4, 0.5], A0):

A2 := plot::Scale3d([0.2, 0.3, 0.2], A0):

plot(A0, A1, A2, CameraDirection = [-1, -2, 2.5]):
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delete A0, A1, A2:

Parameters

sx, sy, sz

The scaling factors: numerical real values or arithmetical expressions of the animation
parameter a.

sx, sy, sz are equivalent to the attributes Scale, ScaleX, ScaleY, ScaleZ.

obj1, obj2, …

Arbitrary plot objects of the appropriate dimension

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Rotate2d | plot::Rotate3d | plot::Scale2d | plot::Transform2d |
plot::Transform3d | plot::Translate2d | plot::Translate3d
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plot::Transform2d

Affine linear transformation of 2D objects

Syntax

plot::Transform2d(<b2d>, A2d, obj1, <obj2,...>, <a = amin .. amax>, options)

Description

plot::Transform2d(b, A, objects) with a vector b and a matrix A applies the
affine linear transformation x Ax bÆ +  to 2D objects.

The transformation matrix A can be specified by a list of lists, with the sublists
representing the rows.

[[A1, 1, A1, 2, …], [A2, 1, A2, 2, …], …]

A plain list [A1, 1, A1, 2, A2, 1, A2, 2] represents the matrix row by row.

Transform objects can transform several graphical objects simultaneously. Plotting the
transform object renders all graphical objects inside.

Transformed objects have a tendency to overestimate their ViewingBox. In such cases,
specify a suitable ViewingBox explicitly.

Transformation objects can be used inside transformation objects. If they are animated,
the animations run simultaneously.

Animated transform objects are rather “cheap” concerning computing and storing costs.
For more complex graphical objects, it is more efficient to use an animated transform
object than to redefine the object for each frame.

The function op allows to extract the graphical objects inside a transformation object.
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Frames the number of frames in an
animation

50

Matrix2d transformation matrices [1, 0, 0, 1]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Shift shift vector [0, 0]
ShiftX shift vector 0

ShiftY shift vector 0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Examples

Example 1

Visualize a linear transformation x AxÆ  without shift:
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x1 := plot::Arrow2d([0, 0], [1/3, 1], Color = RGB::Red):

x2 := plot::Arrow2d([0, 0], [1, 1], Color = RGB::Green):

x3 := plot::Arrow2d([0, 0], [1, 1/3], Color = RGB::Blue):

A :=  matrix([[1, -2], [-2, 1]]):

plot(plot::Scene2d(x1, x2, x3),

     plot::Scene2d(plot::Transform2d(A, x1, x2, x3)),

     Scaling = Constrained, Layout = Horizontal):

delete x1, x2, x3, A:

Parameters

b2d

The 2D shift vector: a list with 2 entries. Also vectors generated by matrix and arrays
are accepted. The entries must be numerical values or arithmetical expressions of the
animation paramater a.

b2d is equivalent to the attribute Shift.
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A2d

The 2D transformation matrix: a 2×2 matrix, a 2×2 array, a list of 2 lists, or a plain list
with 4 entries. The entries must be numerical values or arithmetical expressions of the
animation paramater a.

A2d is equivalent to the attribute Matrix2d.

obj1, obj2, …

Plot objects

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Rotate2d | plot::Rotate3d | plot::Scale2d | plot::Scale3d |
plot::Transform3d | plot::Translate2d | plot::Translate3d
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plot::Transform3d

Affine linear transformation of 3D objects

Syntax

plot::Transform3d(<b3d>, A3d, obj1, <obj2,...>, <a = amin .. amax>, options)

Description

plot::Transform3d(b, A, objects) with a vector b and a matrix A applies the
affine linear transformation x Ax bÆ +  to 3D objects.

The transformation matrix A may be specified by a list of lists, with the sublists
representing the rows:

[[A1, 1, A1, 2, …], [A2, 1, A2, 2, …], …]

A plain list [A1, 1, A1, 2, …, A3, 2, A3, 3] represents the matrix row by row.

Transform objects can transform several graphical objects simultaneously. Plotting the
transform object renders all graphical objects inside.

Transformed objects have a tendency to overestimate their ViewingBox. In such cases,
specify a suitable ViewingBox explicitly.

Transformation objects can be used inside transformation objects. If they are animated,
the animations run simultaneously.

Animated transform objects are rather “cheap” concerning computing and storing costs.
For more complex graphical objects, it is more efficient to use an animated transform
object than to redefine the object for each frame.

The function op allows to extract the graphical objects inside a transformation object.
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Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Frames the number of frames in an
animation

50

Matrix3d transformation matrices [1, 0, 0, 0, 1, 0, 0, 0, 1]
Name the name of a plot object (for

browser and legend)
 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Shift shift vector [0, 0, 0]
ShiftX shift vector 0

ShiftY shift vector 0

ShiftZ shift vector 0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0
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Examples

Example 1

For some applications, it is very popular to plot a function in 3D together with a
projection of its contour lines onto the lower or upper bounding plane. MuPAD has no
direct option for this, but with plot::Transform3d, it is possible to achieve the same
effect. Suppose that you have the function under consideration in a plot::Function3d
object:

f := plot::Function3d(sin(x*y)+cos(x^2-y),

                      x=-3..3, y=-3..3, Submesh=[1,1]):

To plot contour lines at all, use the attribute ZContours. To avoid changing f, create a
modified copy using plot::modify:

plot(plot::modify(f, ZContours = [Automatic, 10]))

To only get contour lines, change a few more parameters: switch off the surface and the
parameter lines. Then, add height coloring to the lines and use plot::Transform3d to
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project them onto the plane z = - 2.5. Finally, plot these lines together with the original
function:

plot(f,

     plot::Transform3d([0, 0, -2.5], // shift vector

                       [1, 0, 0,  // transformation matrix

                        0, 1, 0,

                        0, 0, 0],

             plot::modify(f,

                    Filled = FALSE,

                    XLinesVisible = FALSE, YLinesVisible = FALSE,

                    ZContours = [Automatic, 10],

                    LineColorFunction =  // height coloring

                ((x, y, z) -> [(z+2)/4, 0, (2-z)/4]))))
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Parameters

b3d

The 3D shift vector: a list with 3 entries. Also vectors generated by matrix or arrays
are accepted. The entries must be numerical values or arithmetical expressions of the
animation paramater a.

b3d is equivalent to the attribute Shift.

A3d

The 3D transformation matrix: a 3×3 matrix, a 3×3 array, a list of 3 lists, or a plain list
with 9 entries. The entries must be numerical values or arithmetical expressions of the
animation paramater a.

A3d is equivalent to the attribute Matrix3d.

obj1, obj2, …

Plot objects

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Rotate2d | plot::Rotate3d | plot::Scale2d | plot::Scale3d |
plot::Transform2d | plot::Translate2d | plot::Translate3d
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plot::Translate2d
Translation of 2D objects

Syntax
plot::Translate2d([dx, dy], obj1, <obj2, …>, <a = amin .. amax>, options)

Description

plot::Translate2d([dx, dy], object) shifts a 2D object by dx units along the x-
axis and dy units along the y-axis.

plot::Translate2d can translate several graphical objects simultaneously. Plotting
the translate object renders all graphical objects inside.

Transformation objects can be used inside translation objects. If they are animated, the
animations run simultaneously.

Animated translate objects are rather “cheap” concerning computing and storing costs.
For more complex graphical objects, it is more efficient to use an animated translate
object than to redefine the object for each frame.

The function op allows to extract the graphical objects inside a translate object.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Frames the number of frames in an
animation

50

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Shift shift vector [0, 0]
ShiftX shift vector 0

ShiftY shift vector 0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Examples

Example 1

Use an animated translation object to shift a vector to the tip of another vector:

A1 := plot::Arrow2d([0, 0], [2, 1], Color = RGB::Red):

A2 := plot::Arrow2d([0, 0], [2, 3], Color = RGB::Green):

plot(A1, plot::Translate2d([2*a, a], A2, a = 0..1,

                           TimeRange = 0..4),

     plot::Arrow2d([0, 0], [4, 4], Color = RGB::Blue,

                   VisibleFromTo = 4..6),

     Header = "how to add 2 vectors"):
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delete A1, A2:

Example 2

Note that plot::Translate2d does not actually change the objects translated, so
you can use the same object in different places in the same plot. For example, use the
following approach to construct the Sierpinski carpet, a flat version of the Menger
sponge.

The Sierpinski carpet is a fractal with the general shape of a square and the property
that the following operation maps it onto itself: Take eight copies, scale them by , and

arrange them in a square with the middle left unfilled. Now, this can be directly written
in MuPAD code:

Carpet := proc(iter)

  local square;

begin

  if iter <= 1 then

    return(plot::Polygon2d([[0,0], [0,1], [1,1], [1,0]],
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                           Closed, Filled, FillPattern = Solid,

                           FillColor = [0.2234, 0.4563, 0.4568],

                           LinesVisible, LineColor = RGB::White,

                           Scaling = Constrained, Axes = None));

  else

    square := plot::Scale2d([1/3, 1/3], Carpet(iter-1));

    return(plot::Group2d(

                 plot::Translate2d([  0,   0], square),

                 plot::Translate2d([  0, 1/3], square),

                 plot::Translate2d([  0, 2/3], square),

                 plot::Translate2d([1/3,   0], square),

               //   plot::Translate2d([1/3, 1/3], square),

                 plot::Translate2d([1/3, 2/3], square),

                 plot::Translate2d([2/3,   0], square),

                 plot::Translate2d([2/3, 1/3], square),

                 plot::Translate2d([2/3, 2/3], square)));

  end_if;

end_proc:

plot(Carpet(3))
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Parameters

dx, dy

The components of the shift vector: numerical real values or arithmetical expressions of
the animation parameter a.

dx, dy are equivalent to the attribute Shift.

obj1, obj2, …

Arbitrary plot objects of the appropriate dimension

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Rotate2d | plot::Rotate3d | plot::Scale2d | plot::Scale3d |
plot::Transform2d | plot::Transform3d | plot::Translate3d
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plot::Translate3d

Translation of 3D objects

Syntax

plot::Translate3d([dx, dy, dz], obj1, <obj2, …>, <a = amin .. amax>, options)

Description

plot::Translate3d([dx, dy, dz], object) shifts a 3D object.

plot::Translate3d can translate several graphical objects simultaneously. Plotting
the translate object renders all graphical objects inside.

Transformation objects can be used inside translation objects. If they are animated, the
animations run simultaneously.

Animated translate objects are rather “cheap” concerning computing and storing costs.
For more complex graphical objects, it is more efficient to use an animated translate
object than to redefine the object for each frame.

The function op allows to extract the graphical objects inside a translate object.

Attributes

Attribute Purpose Default Value

AffectViewingBox influence of objects on the
ViewingBox of a scene

TRUE

Frames the number of frames in an
animation

50

Name the name of a plot object (for
browser and legend)
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Attribute Purpose Default Value

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Shift shift vector [0, 0, 0]
ShiftX shift vector 0

ShiftY shift vector 0

ShiftZ shift vector 0

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Examples

Example 1

Use an animated translation object to shift a vector to the tip of another vector:

A1 := plot::Arrow3d([0, 0, 0], [1, 1, 0], Color = RGB::Red):

A2 := plot::Arrow3d([0, 0, 0], [1, 1, 1], Color = RGB::Green):

plot(A1, plot::Translate3d([a, a, 0], A2, a = 0..1,

                           TimeRange = 0..4),

     plot::Arrow3d([0, 0, 0], [2, 2, 1], Color = RGB::Blue,

                   VisibleFromTo = 4..6),

     Header = "how to add 2 vectors in 3D",

     CameraDirection = [3, -2, 1]):
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delete A1, A2:

Parameters

dx, dy, dz

The components of the shift vector: numerical real values or arithmetical expressions of
the animation parameter a.

dx, dy, dz are equivalent to the attribute Shift.

obj1, obj2, …

Arbitrary plot objects of the appropriate dimension

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.
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See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::Rotate2d | plot::Rotate3d | plot::Scale2d | plot::Scale3d |
plot::Transform2d | plot::Transform3d | plot::Translate2d
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plot::AmbientLight

Ambient light

Syntax

plot::AmbientLight(<intensity>, <a = amin .. amax>, options)

Description

plot::AmbientLight(intensity) generates undirected ambient light of the given
intensity.

Each 3D scene is illuminated by several light sources that are set automatically and
cannot be controlled by the user. Cf. the help page of Lighting.

If special light effects are desired, the user can create alternative light sources of various
types such as plot::AmbientLight, plot::DistantLight, plot::PointLight, and
plot::SpotLight.

If at least one user defined light source is inserted into the scene (e.g., by simply passing
the light objects as input parameters to the plot command), the automatic lights are
switched off and the user defined lights are used to illuminate the scene.

While directed lights such as plot::DistantLight etc. create shading effects that add
depth to the picture, a certain amount of undirected ambient light is usually needed.

plot::AmbientLight(intensity) creates ambient light whose intensity is given
by the parameter intensity. When the intensity is 1, the ambient light dominates all
other light sources.

By default, white light is created. Other colours can be chosen by the attribute
LightColor.

It does not make sense to have more than one ambient light object in a scene.
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Attributes

Attribute Purpose Default Value

Frames the number of frames in an
animation

50

LightColor the color of light RGB::White

LightIntensity intensity of light 1.0

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Visible visibility TRUE

Examples

Example 1

We create a 3D function graph in flat white and use ambient white light to illuminate it:

f := plot::Function3d(sin(x + y) + cos(x - y), 

                      x = -PI..PI, y = -PI..PI, 

                      FillColorType = Flat,
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                      Color = RGB::White):

ambientlight := plot::AmbientLight(0.7):

plot(f, ambientlight):

We create another ambient light with animated intensity:

ambientlight := plot::AmbientLight(a, a = 0..1):

plot(f, ambientlight)
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We add directed yellow light to the scene and study the mixture between the “sunlight”
and an increasing amount of ambient light. When the ambient light is at full intensity, it
dominates the directed light completely:

sunlight :=  plot::DistantLight([0, 0, 0], [5, 1, -3], 1,

                                LightColor = RGB::Yellow):

plot(f, ambientlight, sunlight)
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delete f, ambientlight, sunlight:

Parameters

intensity

The intensity of the light: a numerical value between 0 and 1 or an arithmetical
expression of the animation parameter a.

intensity is equivalent to the attribute LightIntensity.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy
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MuPAD Graphical Primitives
plot::DistantLight | plot::PointLight | plot::SpotLight
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plot::Camera
Camera

Syntax
plot::Camera([px, py, pz], [fx, fy, fz], angle, <a = amin .. amax>, options)

Description

plot::Camera([px, py, pz], [fx, fy, fz], angle) creates a camera at the
position [px, py, pz] pointing towards the focal point [fx, fy, fz]. The opening
angle of its lense is given by angle.

When creating a 3D scene, an “automatic camera” is used. Its location can be controlled
by the attribute CameraDirection, but there are now further means of manipulating its
parameters.

If the automatic camera does not suffice for your purposes, you may define your own
camera by plot::Camera. Inserting such a camera object in your scene (for example,
just by passing the camera as an argument to the plot command), the automatic camera
is switched off and the new camera determines the view.

A camera of type plot::Camera allows to set all parameters determining the view and
its perspective. Further, all parameters can be animated such that an animated “flight”
through a 3D scene can be realized.

The first argument [px, py, pz] in the call generating a camera is the Position of the
camera in 3-space. The second argument [fx, fy, fz] is the point the camera is aimed
at (FocalPoint).

The optical axis is given by the vector FocalPoint - Position.

Together with the opening angle of the zoom lense (ViewingAngle), these parameters
determine the view of the scene.

The FocalPoint vector can be replaced by any other point on the optical axes without
changing the view. (FocalPoint and Position should not coincide, though.)
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By default, the z-direction in 3-space corresponds to the vertical direction of the final
picture. If this is not desired, the camera can be rotated around its optical axes using the
attribute UpVector.

Depending on the distance of the camera to the graphical scene and the opening angle of
the lense, the scene may fill only a small portion of the viewing area if the camera is too
far away. If the camera is too close, only some parts of the scene may be visible

Just as for a real camera, you will have to move closer to or farther away from the scene
to make it fill the drawing area as desired. Alternatively, you may keep the camera
position fixed and use the zoom lense by choosing an appropriate ViewingAngle.

As in real life, you have to find appropriate parameters experimentally by looking at the
picture and changing the parameters interactively.

Alternatively, you may define the camera with the attribute OrthogonalProjection
= TRUE. This has the same effect as positioning the camera at a large distance from the
scene using a powerful tele lense.

In this case, the camera ignores the ViewingAngle and the Position in 3-space. It
is moved along the optical axis FocalPoint - Position to infinity and chooses an
infinitesimal small viewing angle such that the scene fills the drawing area optimally.

Several cameras can be present simultaneously in a graphical scene. The first camera
specified in the plot command determines the views.

One may switch between the cameras by clicking on the corresponding camera in the
interactive “object browser” of the MuPAD graphics tool (see section Viewer, Browser,
and Inspector: Interactive Manipulation of this document).

You may place your own light sources in the scene. When specifying the attribute
CameraCoordinates = TRUE in the definition of the lights, they are attached to the
camera and move automatically, when the camera is moved.

Attributes

Attribute Purpose Default Value

FocalPoint the focal point of a camera  
FocalPointX the focal point of a camera,

x-coordinate
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Attribute Purpose Default Value

FocalPointY the focal point of a camera,
y-coordinate

 

FocalPointZ the focal point of a camera,
z-coordinate

 

Frames the number of frames in an
animation

50

KeepUpVector keep the UpVector constant
when moving the camera?

TRUE

Name the name of a plot object (for
browser and legend)

 

OrthogonalProjection parallel projection without
perspective distortion

FALSE

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Position positions of cameras, lights,
and text objects

 

PositionX x-positions of cameras,
lights, and text objects

 

PositionY y-positions of cameras,
lights, and text objects

 

PositionZ z-positions of cameras,
lights, and text objects

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0
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Attribute Purpose Default Value

UpVector “up direction” of a camera [0.0, 0.0, 1.0]
UpVectorX x-component of the “up

vector” of the camera
0.0

UpVectorY y-component of the “up
vector” of the camera

0.0

UpVectorZ z-component of the “up
vector” of the camera

1.0

ViewingAngle opening angle of the camera
lense

 

Visible visibility TRUE

Examples

Example 1

We use our own camera to view the 3D graph of a function:

f := plot::Function3d(sin(x) + y^3 + 2*exp(-3*x^2 - 20*y^2),

                      x = -PI..PI, y = -1 .. 1, 

                      Submesh = [2, 2]):

camera := plot::Camera([-12, -4, 14], [0, 0, 0], PI/7):

plot(f, camera):
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We move the camera to another position:

camera::Position := [7, -5, 6]:

plot(f, camera):
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We turn the camera towards the central peak and zoom in by decreasing the openening
angle of the zoom lense:

camera::FocalPoint := [0, 0, 1]:

camera::ViewingAngle := PI/20:

plot(f, camera):
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We create an animated camera and fly through the scene:

camera := plot::Camera([-15 + 3*a, 4 - a, 3 +  (a - 4)^2], 

                       [0, 0, 1.5], PI/6, a = 0..8,

                       Frames = 100, TimeRange = 0..20):

plot(f, camera):
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delete f, camera:

Parameters

px, py, pz

Coordinates of the camera position: numerical real values or arithmetical expressions of
the animation parameter a.

px, py, pz are equivalent to the attributes PositionX, PositionY, PositionZ.

fx, fy, fz

Coordinates of the the focal point: numerical real values or arithmetical expressions of
the animation parameter a.

fx, fy, fz are equivalent to the attributes FocalPointX, FocalPointY, FocalPointZ.
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angle

The opening angle of the lense in radians: a numerical real value or an arithmetical
expression of the animation parameter a representing a value between 0 and π.

angle is equivalent to the attribute ViewingAngle.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
CameraCoordinates | CameraDirection | FocalPoint | KeepUpVector
| OrthogonalProjection | plot | plot::copy | Position | UpVector |
ViewingAngle

More About
• “Cameras in 3D”
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plot::DistantLight
Directed distant light (“sunlight”)

Syntax

plot::DistantLight([px, py, pz], [tx, ty, tz], <intensity>, <a = amin .. amax>, options)

Description

plot::DistantLight([px, py, pz], [tx, ty, tz], intensity) creates a distant
light source emitting parallel light shining into the direction [tx - px, ty - py, tz - pz]

Each 3D scene is illuminated by several light sources that are set automatically and
cannot be controlled by the user. Cf. the help page of Lighting.

If special light effects are desired, the user can create alternative light sources of various
types such as plot::AmbientLight, plot::DistantLight, plot::PointLight, and
plot::SpotLight.

If at least one user defined light source is inserted into the scene (e.g., by simply passing
the light objects as input parameters to the plot command), the automatic lights are
switched off and the user defined lights are used to illuminate the scene.

Note: The vector [px, py, pz] does not represent the position of a distant light in space.
The light source is infinitely far away.

When using [tx, ty, tz] = [0, 0, 0], you may think of [px, py, pz] as the
direction where the light source is located.

When using [px, py, pz] = [0, 0, 0], you may think of [tx, ty, tz] as the
direction into which the light is shining.

By default, white light is created. Other colors can be chosen by the attribute
LightColor.
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When using the attribute CameraCoordinates = TRUE, the light source is fixed to the
camera. It moves automatically, when the camera is moved.

Directed light such as plot::DistantLight create shading effects that add
depth to the picture. Usually, a certain amount of undirected ambient light of type
plot::AmbientLight enhances the picture.

Attributes

Attribute Purpose Default Value

CameraCoordinates position of light sources
relative to the camera?

FALSE

Frames the number of frames in an
animation

50

LightColor the color of light RGB::White

LightIntensity intensity of light 1.0

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Position positions of cameras, lights,
and text objects

 

PositionX x-positions of cameras,
lights, and text objects

 

PositionY y-positions of cameras,
lights, and text objects

 

PositionZ z-positions of cameras,
lights, and text objects

 

24-1155



24 Graphics and Animations

Attribute Purpose Default Value

Target the target point of a light  
TargetX the target point of a light, x

component
 

TargetY the target point of a light, y
component

 

TargetZ the target point of a light, z
component

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Visible visibility TRUE

Examples

Example 1

We create a white sphere and use a single directed white light to illuminate it:

f := plot::Surface(

        [cos(u)*sin(v), sin(u)*sin(v), cos(v)],

        u = 0..2*PI, v = 0..PI,

        FillColorType = Flat,

        FillColorFunction = RGB::White,

        Scaling = Constrained):

sunlight1 := plot::DistantLight([1, -2, 3], [0, 0, 0], 1/2):

plot(f, sunlight1):
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We create another distant light source shining from another direction, of yellow color and
with animated intensity:

sunlight2 := plot::DistantLight([-2, 1, 3], [0, 0, 0], a,

                                LightColor = RGB::Yellow,

                                a = 0..1):

plot(f, sunlight2)
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We use both lights simultaneously:

plot(f, sunlight1, sunlight2)
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delete f, sunlight1, sunlight2:

Parameters

px, py, pz

The coordinates of the sun's “position”: numerical values or arithmetical expressions of
the animation parameter a.

px, py, pz are equivalent to the attributes PositionX, PositionY, PositionZ.

tx, ty, tz

The coordinates of the point the light is shining to: numerical values or arithmetical
expressions of the animation parameter a.

tx, ty, tz are equivalent to the attributes TargetX, TargetY, TargetZ.
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intensity

The intensity of the light: a numerical value between 0 and 1 or an arithmetical
expression of the animation parameter a.

intensity is equivalent to the attribute LightIntensity.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::AmbientLight | plot::PointLight | plot::SpotLight
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plot::PointLight
Point light

Syntax
plot::PointLight([x, y, z], <intensity>, <a = amin .. amax>, options)

Description

plot::PointLight([x, y, z], intensity) generates a point light at the position
(x, y, z).

Each 3D scene is illuminated by several light sources that are set automatically and
cannot be controlled by the user. Cf. the help page of Lighting.

If special light effects are desired, the user can create alternative light sources of various
types such as plot::AmbientLight, plot::DistantLight, plot::PointLight, and
plot::SpotLight.

If at least one user defined light source is inserted into the scene (e.g., by simply passing
the light objects as input parameters to the plot command), the automatic lights are
switched off and the user defined lights are used to illuminate the scene.

plot::PointLight([x, y, z], intensity) creates a point light at the position (x,
y, z). It emits light into all directions.

Unlike in real life, the light flux of a point light does not decrease with the distance to the
light source.

By default, white light is created. Other colors can be chosen by the attribute
LightColor.

When using the attribute CameraCoordinates = TRUE, the light source is fixed to the
camera. It moves automatically, when the camera is moved.

Light sources such as plot::PointLight create shading effects that add depth to the
picture.
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Usually, you will use point lights to highlight special details of the scene. For the
illumination of the entire scene you will usually need additional undirected ambient light
of type plot::AmbientLight, too.

Note that all light sources create a homogeneous lighting effect for a 3D triangle.
Thus, realistic shading effects can only be achieved for surfaces with a sufficiently fine
triangulation. For function graphs (plot::Function3d) and parametrized surfaces
(plot::Surface), a fine triangulation is created by sufficiently high values of XMesh,
YMesh or UMesh, VMesh, respectively.

Attributes

Attribute Purpose Default Value

CameraCoordinates position of light sources
relative to the camera?

FALSE

Frames the number of frames in an
animation

50

LightColor the color of light RGB::White

LightIntensity intensity of light 1.0

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Position positions of cameras, lights,
and text objects

 

PositionX x-positions of cameras,
lights, and text objects
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Attribute Purpose Default Value

PositionY y-positions of cameras,
lights, and text objects

 

PositionZ z-positions of cameras,
lights, and text objects

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Visible visibility TRUE

Examples

Example 1

We create three blue surfaces and illuminate them by an animated point light. The
position of the point light is indicated by a white point:

s1 := plot::Surface([1, y, z], y = 0..1, z = 0..1):

s2 := plot::Surface([x, 1, z], x = 0..1, z = 0..1):

s3 := plot::Surface([x, y, 0], x = 0..1, y = 0..1):

p := plot::Point3d([a, 0.9, 0.2], a = 0..1,

                   PointSize = 2.0*unit::mm,

                   PointColor = RGB::White):

light := plot::PointLight([a, 0.9, 0.2], 1, a = 0..1):

plot(s1, s2, s3, p, light, Axes = Frame,

     FillColor = RGB::Blue, FillColorType = Flat):
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delete s1, s2, s3, p, light:

Parameters

x, y, z

The coordinates of the point light: numerical values or arithmetical expressions of the
animation parameter a.

x, y, z are equivalent to the attributes Position, PositionX, PositionY, PositionZ.

intensity

The intensity of the light: a numerical value between 0 and 1 or an arithmetical
expression of the animation parameter a.

intensity is equivalent to the attribute LightIntensity.
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a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy

MuPAD Graphical Primitives
plot::AmbientLight | plot::DistantLight | plot::SpotLight
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plot::SpotLight
Spot light

Syntax
plot::SpotLight([px, py, pz], [tx, ty, tz], angle, <intensity>, <a = amin .. amax>, options)

Description

plot::SpotLight([px, py, pz], [tx, ty, tz], angle, intensity) generates a
spot light at the position px, py, pz, aimed at the point tx, ty, tz. The opening angle
of the light cone is given by angle.

Each 3D scene is illuminated by several light sources that are set automatically and
cannot be controlled by the user. Cf. the help page of Lighting.

If special light effects are desired, the user can create alternative light sources of various
types such as plot::AmbientLight, plot::DistantLight, plot::PointLight, and
plot::SpotLight.

If at least one user defined light source is inserted into the scene (e.g., by simply passing
the light objects as input parameters to the plot command), the automatic lights are
switched off and the user defined lights are used to illuminate the scene.

plot::SpotLight([px, py, pz], [tx, ty, tz], angle) creates a spot light source
at the point [px, py, pz] emitting a light cone towards the point [tx, ty, tz]. In contrast
to real life, the light flux of a spot light does not decrease with the distance to the light
source.

By default, white light is created. Other colours can be chosen by the attribute
LightColor.

When using the attribute CameraCoordinates = TRUE, the light source is fixed to the
camera. It moves automatically, when the camera is moved.

Directed light such as plot::SpotLight create shading effects that add depth to the
picture.
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Usually, you will use spot lights to highlight special details of the scene. For the
illumination of the entire scene you will usually need additional undirected ambient light
of type plot::AmbientLight, too.

Note that all light sources create a homogeneous lighing effect for a 3D triangle. Thus,
realistic shading effects can only be achieved for surfaces with a sufficiently fine
triangulation. For function graphs (plot::Function3d) and parametrized surfaces
(plot::Surface), a fine triangulation is created by sufficiently high values of XMesh,
YMesh or UMesh, VMesh, respectively.

Attributes

Attribute Purpose Default Value

CameraCoordinates position of light sources
relative to the camera?

FALSE

Frames the number of frames in an
animation

50

LightColor the color of light RGB::White

LightIntensity intensity of light 1.0

Name the name of a plot object (for
browser and legend)

 

ParameterEnd end value of the animation
parameter

 

ParameterName name of the animation
parameter

 

ParameterBegin initial value of the
animation parameter

ParameterRange range of the animation
parameter

 

Position positions of cameras, lights,
and text objects

 

PositionX x-positions of cameras,
lights, and text objects
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Attribute Purpose Default Value

PositionY y-positions of cameras,
lights, and text objects

 

PositionZ z-positions of cameras,
lights, and text objects

 

SpotAngle opening angle of the light
cone of a spot light

 

Target the target point of a light  
TargetX the target point of a light, x

component
 

TargetY the target point of a light, y
component

 

TargetZ the target point of a light, z
component

 

TimeEnd end time of the animation 10.0

TimeBegin start time of the animation 0.0

TimeRange the real time span of an
animation

0.0 .. 10.0

Visible visibility TRUE

Examples

Example 1

We create three white surfaces and illuminate them by two animated white spot lights
and some ambient light. The spot lights are indicated by little cones:

s1 := plot::Surface([1, y, z], y = 0..1, z = 0..1):

s2 := plot::Surface([x, 1, z], x = 0..1, z = 0..1,

                    Submesh = [2, 2]):

s3 := plot::Surface([x, y, 0], x = 0..1, y = 0..1,

                    Submesh = [2, 2]):

ambientlight:= plot::AmbientLight(0.4):

spotlight1 := plot::SpotLight([1/3, a, 1/3], [1/3, 1, 1/3], 
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                              PI/5, a = 0..0.8):

c1 := plot::Cone(0, [1/3, a, 1/3],

                 0.2*tan(PI/10), [1/3, a + 0.2, 1/3],

                 a = 0..0.8, Color = RGB::Orange.[0.5]):

spotlight2 := plot::SpotLight([2/3, a, 2/3], [2/3, a, 0], 

                              PI/4, a = 0.15..0.95):

c2 := plot::Cone(0, [2/3, a, 2/3], 

                 0.2*tan(PI/8), [2/3, a, 2/3 - 0.2],

                 a = 0.15..0.95, Color = RGB::Orange.[0.5]):

plot(s1, s2, s3, FillColor = RGB::White, 

     FillColorType = Flat,

     ambientlight, c1, spotlight1, 

     c2, spotlight2, Axes = Frame):

delete s1, s2, s3, c1, c2, ambientlight, 

       spotlight1, spotlight2:
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Parameters

px, py, pz

The coordinates of the position: numerical values or arithmetical expressions of the
animation parameter a.

px, py, pz are equivalent to the attributes Position, PositionX, PositionY,
PositionZ.

tx, ty, tz

The coordinates of the point the light is shining to: numerical values or arithmetical
expressions of the animation parameter a.

tx, ty, tz are equivalent to the attributes Target, TargetX, TargetY, TargetZ.

angle

The opening angle of the light cone in radians: a numerical value between 0 and π or an
arithmetical expression of the animation parameter a.

angle is equivalent to the attribute SpotAngle.

intensity

The intensity of the light: a numerical value between 0 and 1 or an arithmetical
expression of the animation parameter a.

intensity is equivalent to the attribute LightIntensity.

a

Animation parameter, specified as a = amin..amax, where amin is the initial parameter
value, and amax is the final parameter value.

See Also

MuPAD Functions
plot | plot::copy
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MuPAD Graphical Primitives
plot::AmbientLight | plot::DistantLight | plot::PointLight

24-1171



24 Graphics and Animations

OutputFile, OutputOptions

File name to plot into

Value Summary

OutputFile,
OutputOptions

Optional See below

Description

The attribute OutputFile allows to specify a file name to direct the plot output into an
external file instead of rendering the plot on the screen. The extension of the file name
indicates the export format.

The available formats include .xvz and .xvc (the MuPAD proprietary XML format) as
well as various standard bitmap formats such as .bmp, .gif, .jpg etc. and vector
formats such as.eps, .svg etc. Animated MuPAD graphics can be exported to animated
GIF files. On Windows systems, it also can be exported to .avi format.

Some of the export formats allow to specify certain parameters such as “resolution,”
“quality” etc. Such parameters may be specified by the attribute OutputOptions.

MuPAD plots can be saved in “batch mode” by specifying the attribute OutputFile
= filename in a plot call or in plotfunc2d, plotfunc3d. The file name must be a
MuPAD string. For example:

plot(..graphical objects.., OutputFile = "mypicture.xvz"):

(Here, the extension .xvz of the file name "mypicture.xvz" indicates that the MuPAD
XML data are to be written).

If the MuPAD environment variable WRITEPATH does not have a value, the previous call
creates the file in the directory where MuPAD is running. (On Windows and Macintosh
systems, this is, by default, the directory where it is installed).
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After setting WRITEPATH to the absolute path of a folder, the file is created in that folder.
For example, after

WRITEPATH := "C:\\Documents":

the command

plot(..graphical objects.., OutputFile = "mypicture.xvz"):

stores the plot data in the file “C:\Documents\mypicture.xvz.” Alternatively, the file
name can be specified as an absolute pathname:

plot(..objects.., OutputFile = "C:\\Documents\\mypicture.xvz"):

If a MuPAD notebook was saved to a file, its location is available inside the notebook
as the environment variable NOTEBOOKPATH. If you wish to save your plot in the same
folder as the notebook, you may call

plot(..objects.., OutputFile = NOTEBOOKPATH."mypicture.xvz"):

The plot data can be stored in various formats indicated by the extension of the file
name. In particular, there are the MuPAD proprietary XML formats. The file extension
.xvz indicates that XML data are to be written and, finally, the file is to be compressed.
Alternatively, the extension .xvc may be used to write the XML data without final
compression (the resulting text file can be read with any text editor). Files in both
formats can be inserted into a MuPAD notebook and freely manipulated.

Apart from saving files as XML data, MuPAD pictures can also be saved in a variety of
standard bitmap formats such as .bmp, .gif, .jpg etc. Also .svg and .eps export is
available. Just use an appropriate extension of the file name indicating the format.

Note: Only XML files .xvz and .xvc retain the information necessary for interactive
manipulation in a MuPAD notebook. All other formats are intended for exporting
graphics to other programs.

If no file extension is specified in the file name, the default extension .xvz is used, i.e.,
XML data are written.

On Windows systems, animated MuPAD plots can be exported to .avi format. Cf.
“Example 2” on page 24-1175.
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In addition to OutputFile, there is the attribute OutputOptions to specify parameters
for some of the export formats. The admissible value for this attribute is a list of
equations:

OutputOptions = [<ReduceTo256Colors = b >, <DotsPerInch = n1>,

<Quality = n2>, <JPEGMode = n3>, <EPSMode = n4>, <AVIMode = n5>,

<WMFMode = n6>, <FramesPerSecond = n7>, <PlotAt = l1>]

Each entry of the list is optional. The parameters are

b TRUE or FALSE. Has an effect for export to
some raster formats only. With TRUE, only
256 different colors are stored in the raster
file. The default value is FALSE.

n1 Positive integer setting the resolution in
DPI (dots per inch). Has an effect for export
to raster formats only. The default value
depends on the hardware.

n2 One of the integers 1, 2, …, 100. This
integer represents a percentage value
determining the quality of the export. Has
an effect for JPG, 3D EPS, 3D WMF and
AVI export only. The default value is 75.

n3 0, 1, or 2. Has an effect for JPG export
only. The flag 0 represents the JPG
mode `Baseline Sequential', 1 represents
`Progressive', 2 represents `Sequential
Optimized'. The default value is 0.

n4 0 or 1. Has an effect for EPS export only.
The flag 0 represents the EPS mode
`Painter's Algorithm', 1 represents `BSP
Tree Algorithm'. The default value is 0.

n5 0, 1 or 2. Has an effect for AVI export only.
With 0, the `Microsoft Video 1 Codec' is
used. With 1, the `Uncompressed Single
Frame Codec' is used. With 2, the `Radius
Cinepak Codec' is used. The default value
is 0.
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n6 0, 1 or 2. Has an effect for WMF export
only. With 0, the `Painter's Algorithm' is
used. With 1, the `BSP Tree Algorithm'
is used. With 2, a `embedded bitmap' is
created. The default value is 0.

n7 Positive integer setting the frames per
second for the AVI to be generated. Has
an effect for AVI and animated GIF export
only. The default value is 15.

l1 List of real values between TimeBegin and
TimeEnd which determines the times at
which pictures should be saved from an
animation.

Examples

Example 1

The following commands save the plot in four different files in JPG, EPS, SVG, and BMP
format, respectively:

f1 := plot::Function2d(sin(x), x = 0..PI, Color = RGB::Red):

f2 := plot::Function2d(cos(x), x = 0..PI, Color = RGB::Blue):

plot(f1, f2, OutputFile = "mypicture.jpg"):

plot(f1, f2, OutputFile = "mypicture.eps"):

plot(f1, f2, OutputFile = "mypicture.svg"):

plot(f1, f2, OutputFile = "mypicture.bmp"):

If no file extension is specified in the file name, the default extension .xvz is used, i.e.,
XML data are written. The following command creates the file mypicture.xvz:

plot(f1, f2, OutputFile = "mypicture"):

Example 2

An animated MuPAD plot can be exported to .avi format:

plotfunc2d(sin(x - a), x = 0 .. 2*PI, a = 0 .. 5,
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           OutputFile = "myanimation.avi"):

Example 3

An animated MuPAD plot can be exported to serveral single images at given times:

plotfunc2d(sin(x - a), x = 0 .. 2*PI, a = 0 .. 5,

           OutputFile = "someName.png",

           OutputOptions=[PlotAt = [i $ i = 0..10 step  0.5]]):

More About
• “Save in Batch Mode”
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AffectViewingBox

Influence of objects on the ViewingBox of a scene

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects AffectViewingBox Default Values

plot::Arc2d, plot::Arc3d,
plot::Arrow2d, plot::Arrow3d,
plot::Bars2d, plot::Bars3d,
plot::Box, plot::Boxplot,
plot::Circle2d, plot::Circle3d,
plot::Cone, plot::Conformal,
plot::Curve2d, plot::Curve3d,
plot::Cylinder, plot::Cylindrical,
plot::Density, plot::Dodecahedron,
plot::Ellipse2d, plot::Ellipse3d,
plot::Ellipsoid, plot::Function2d,
plot::Function3d,
plot::Hatch, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron,
plot::Implicit2d, plot::Implicit3d,
plot::Inequality, plot::Integral,
plot::Iteration, plot::Line2d,
plot::Line3d, plot::Listplot,
plot::Lsys, plot::Matrixplot,
plot::MuPADCube, plot::Octahedron,
plot::Ode2d, plot::Ode3d,
plot::Parallelogram2d,

TRUE
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Objects AffectViewingBox Default Values

plot::Parallelogram3d,
plot::Piechart2d, plot::Piechart3d,
plot::Plane, plot::Point2d,
plot::Point3d, plot::PointList2d,
plot::PointList3d, plot::Polar,
plot::Polygon2d, plot::Polygon3d,
plot::Prism, plot::Pyramid,
plot::QQplot, plot::Raster,
plot::Rectangle, plot::Reflect2d,
plot::Reflect3d, plot::Rootlocus,
plot::Rotate2d, plot::Rotate3d,
plot::Scale2d, plot::Scale3d,
plot::Scatterplot, plot::Sequence,
plot::SparseMatrixplot,
plot::Sphere, plot::Spherical,
plot::Streamlines2d, plot::Sum,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Text2d,
plot::Text3d, plot::Transform2d,
plot::Transform3d,
plot::Translate2d,
plot::Translate3d, plot::Tube,
plot::Turtle, plot::VectorField2d,
plot::VectorField3d,
plot::Waterman, plot::XRotate,
plot::ZRotate

Description

AffectViewingBox determines whether the ViewingBox of an object should be taken
into account for the total ViewingBox of the graphical scene.

Usually, the visible area/volume of a graphical scene is automatically chosen as the
smallest box containing all objects of the scene. Objects with AffectViewingBox =
FALSE are ignored in the computation of this box.
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Examples

Example 1

We plot the sine and the exponential function in one scene:

plot(plot::Function2d(sin(x), x = -PI..PI),

     plot::Function2d(exp(x), x = -PI..PI))

The exponential function dominates the sine. We set AffectViewingBox = FALSE
for exp. Now, only the sine function determines the visible area and exp is only visible
where it is in the ViewingBox of the sine function:

plot(plot::Function2d(sin(x), x = -PI..PI),

     plot::Function2d(exp(x), x = -PI..PI,

                      AffectViewingBox = FALSE))
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See Also

MuPAD Functions
ViewingBox
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Angle
Rotation angle

Value Summary
Optional MuPAD expression

Graphics Primitives

Objects Angle Default Values

plot::Arc2d, plot::Arc3d,
plot::Prism, plot::Pyramid,
plot::Rotate2d, plot::Rotate3d

0

Description
Angle determines the rotation angle in transformation objects of type plot::Rotate2d
and plot::Rotate3d, respectively, and other graphical objects. The angle has to be
specified in radians.

In 2D, the direction of the rotation is counter clock wise. Use negative angles to rotate
clock wise.

In 3D, the rotation is implemented following the “right hand rule”: Stretch the thumb of
your right hand and bend the fingers. When the thumb points into the direction of the
rotation axis, your finger tips indicate the direction of the rotation. Use negative angles
to rotate in the opposite direction.

Examples

Example 1

Rectangles of type plot::Rectangle are always parallel to the coordinate axes. To
have one with a different orientation, we must rotate it:
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r0 := plot::Rectangle(0..2, 1..3):

r1 := plot::Rotate2d(r0, Center = [1, 2], Angle = PI/6)

As you can see in the output above, the rotate object contains the rotated object and
acts as a grouping construct. This means that we only need to plot r1 to see the rotated
object:

plot(r1)

Plotting both r0 and r1 yields a plot showing the rotated rectangle together with the
unrotated one:

plot(r0, r1)
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delete r0, r1:

Example 2

Using plot::Rotate2d, we plot several copies of a function plot, rotated at different
angles:

f := plot::Function2d(sin(x^3)/(x^2+1), x = -5..5, Mesh = 300):

plot(plot::Rotate2d(f, Angle = PI/11*a) $ a = 0..10):
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delete f:

Example 3

The rotation angle can be animated. We use an animated plot::Rotate2d object to
rotate a square around a center that moves along a circle around the origin:

p := plot::Point2d([cos(a), sin(a)], a = 0..2*PI,

                   Frames = 100):

r := plot::Rotate2d(plot::Rectangle(0..2, -1..1), Angle = a,

                    Center = [0, 0], a = 0..2*PI):

q := plot::Rotate2d(r, Angle = 4*a, Center = [cos(a), sin(a)],

                    a = 0..2*PI, Frames = 200):

plot(p, q)
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delete p, r, q:

Example 4

This is the 3D analogue of “Example 1” on page 24-1181. Boxes of type plot::Box are
always parallel to the coordinate axes. To have one with a different orientation, we must
rotate it:

b0 := plot::Box(0..2, 1..3, 2..3):

b1 := plot::Rotate3d(b0, Center = [1, 2, 2.5],

                     Axis = [1, 1, 1], Angle = PI/5)

plot(b0, b1)
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delete b0, b1:

Example 5

Some graphic objects, e.g. plot::Arc2d and plot::Pyramid, also accept a rotation
angle:

arc:= [3, 1], [0, 0], -PI/4..PI/4, Filled:

plot(

  plot::Arc2d(arc, Angle=0,      FillColor=RGB::Red),

  plot::Arc2d(arc, Angle=1/2*PI, FillColor=RGB::Green),

  plot::Arc2d(arc, Angle=PI,     FillColor=RGB::Yellow),

  plot::Arc2d(arc, Angle=3/2*PI, FillColor=RGB::Blue)

)
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plot(plot::Pyramid(1/2, Angle=0),

     plot::Pyramid(1/2, Angle=PI/4, FillColor2=RGB::Yellow))
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delete arc:

See Also

MuPAD Functions
Axis | Center
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AngleRange, AngleBegin, AngleEnd

Angle range

Value Summary

AngleRange [AngleBegin .. AngleEnd] Range of arithmetical
expressions

AngleBegin, AngleEnd Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::Tube, plot::XRotate,
plot::ZRotate

AngleRange: 0 .. 2*PI

AngleBegin: 0

AngleEnd: 2*PI
plot::Arc2d, plot::Arc3d AngleRange: 0 .. PI/2

AngleBegin: 0

AngleEnd: PI/2

Description

AngleRange, AngleBegin, AngleEnd define a range for the angle in circular arcs and
surfaces of revolution.

For circular arcs of type plot::Arc2d, the attributes AngleBegin and AngleEnd define
the starting point and the end point of the arc. The values are the usual polar angles
measuring the angle to the positive x-axis in radians.
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For surfaces of revolution of type plot::XRotate or plot::ZRotate, respectively, the
attributes AngleBegin and AngleEnd define the starting point and the end point of the
revolution.

For plot::XRotate, the values are the polar angles to the positive y-axis, specified in
radians.

For plot::ZRotate, the values are the usual angles to the positive x-axis in radians,
known from cylindrical coordinates.

Values for AngleBegin and AngleEnd may depend on the animation parameter and
must evaluate to real numbers for any given time stamp.

AngleRange provides a shortcut for setting AngleBegin and AngleEnd. The attribute
AngleRange = a_1..a_2 is equivalent to AngleBegin = a1, AngleEnd = a2.

Examples

Example 1

We define a semi-circle as a circular arc with a range of the polar angle from 0 to 180
degrees (i.e., π in radians):

arc := plot::Arc2d(1, 0 .. PI):

plot(arc)
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The range is stored as the attribute AngleRange in the object and can be accessed and
changed:

arc::AngleBegin, arc::AngleEnd, arc::AngleRange

arc::AngleRange :=  PI/2 .. 2*PI:

plot(arc)
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delete arc:

Example 2

We leave gaps in the following surfaces of revolution by restricting the revolution angle:

plot(plot::XRotate(sin(x), x = 0 .. PI/2, 

                   AngleRange = -0.8*PI .. 0.8*PI)):
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plot(plot::ZRotate(sin(x), x = 0 .. PI/2, 

                   AngleRange =  0.3*PI .. 2*PI)):
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Area
Area of a histogram plot

Value Summary

Optional Non-negative real number

Graphics Primitives

Objects Area Default Values

plot::Histogram2d 0

Description

Area determines whether bars of a histogram plot are scaled with respect to their
heights or with respect to their areas, and by how much.

By default, the bars of a histogram plot use a height that is equal to the absolute number
of data points in he corresponding cell. Using Area, the user can change this behavior to
make the areas of the bars proportional to this number.

Examples

Example 1

For any distribution with a continuous quantile, we can define, using
stats::equiprobableCells, a list of n cells where each cell is “hit” with the same
probability, . By the law of large numbers, we expect the number of elements in each

cell to be approximating  for large values of N, the number of samples:
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X := stats::normalRandom(10, 1):

cells := stats::equiprobableCells(40,

            stats::normalQuantile(10, 1)):

N := 1000:

data := [X() $ i = 1..N]:

plot(plot::Histogram2d(data, Cells = cells))

N := 10000:

data := [X() $ i = 1..N]:

plot(plot::Histogram2d(data, Cells = cells))
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On the other hand, if we want to display a histogram as an approximation to the
probability distribution, we want not the height, but rather the area of the rectangles to
correspond to our measurements. Moreover, the sum of all areas should be 1, so we set
Area to this value:

plot(plot::Histogram2d(data, Cells = cells, Area = 1))
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plot(plot::Histogram2d(data, Cells = cells, Area = 1),

     plot::Function2d(stats::normalPDF(10,1)(x), x = 7..13,

                      Color = RGB::Black, LineWidth = 0.5))
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See Also

MuPAD Functions
Cells
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Averaged

Mode for computing quantile lines in box plots

Value Summary

Optional TRUE or FALSE

Graphics Primitives

Objects Averaged Default Values

plot::Boxplot TRUE

Description

Statistical box plots indicate the 25%/50%/75% quantiles of data samples by horizontal
lines. With the default Averaged = TRUE, the quantile lines are computed using
stats::empiricalQuantile using the option Averaged.

A plot of type plot::Boxplot serves for visualizing and comparing statistical data
samples. The plot reduces the data to few simple descriptive parameters.

A typical notched box looks like this:
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The location of the 25%/50%/75% quantile lines are computed internally via
stats::empiricalQuantile. When using Averaged = TRUE in the box plot,
the quantile function is called with the option Averaged (see the help page of
stats::empiricalQuantile for details).

Examples

Example 1

By default, the quantile lines of the boxes are computed with the option Averaged. When
using Averaged = FALSE, the quantiles are computed without this option:

r := random(0..10):

SEED := 123:

data := [r() $ k = 1..250]:

24-1201



24 Graphics and Animations

plot(

     plot::Boxplot(data, Averaged = TRUE, BoxCenters = 0.5,

                         Color = RGB::Blue, Notched),

     plot::Boxplot(data, Averaged = FALSE, BoxCenters = 1.5,

                         Color = RGB::Red, Notched)

    ):

delete r, SEED, data:

See Also

MuPAD Functions
BoxCenters | BoxWidths | DrawMode | Notched
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Axis, AxisX, AxisY, AxisZ
Rotation axis

Value Summary
Axis Library wrapper

for “[AxisX, AxisY,
AxisZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

AxisX, AxisY, AxisZ Optional MuPAD expression

Graphics Primitives
Objects Default Values

plot::Rotate3d Axis: [0, 0, 1]

AxisX, AxisY: 0

AxisZ: 1

Description
Axis is a vector determining the direction of the rotation axis in rotation objects of type
plot::Rotate3d. It is given by a list of 3 components.

AxisX etc. refer to the x, y, z components of this vector.

A rotation in 3D is determined by a line around which is rotated. The line is given by a
point on the line (the Center) and a direction vector (the Axis). The rotation angle is
given by the attribute Angle.

The length of the Axis vector is of no relevance. However, it should not be zero.

The rotation is implemented following the “right hand rule”: Stretch the thumb of your
right hand and bend the fingers. When the thumb points into the direction of the rotation
axis, your finger tips indicate the direction of the rotation. Use negative angles to rotate
in the opposite direction or replace the Axis vector by its negative.
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Examples

Example 1

A cone is first rotated around the x-axis. The rotated cone is then rotated around the z-
axis:

c0 := plot::Cone(1, [0, 0, 1], [0, 0, 2]):

c1 := plot::Rotate3d(c0, Center = [0, 0, 0],

                     Axis = [1, 0, 0], Angle = PI/2):

c2 := plot::Rotate3d(c1, Center = [0, 0, 0],

                     Axis = [0, 0, 1], Angle = PI/2):

plot(plot::Scene3d(c0, Axes = Origin, 

                   ViewingBox = [-2..2, -2..2, -2..2]),

     plot::Scene3d(c1, Axes = Origin,

                   ViewingBox = [-2..2, -2..2, -2..2]),

     plot::Scene3d(c2, Axes = Origin,

                   ViewingBox = [-2..2, -2..2, -2..2]),

     TicksNumber = None,

     Width = 120*unit::mm, Height = 40*unit::mm,

     Layout = Horizontal):

delete c0, c1, c2:

Example 2

We illustrate the “right hand rule”. A small box b0 is rotated. The rotated copies b1, b2,
b3 are plotted together with the original box:

center := [1, 4, 1]:

axis := [0, 0, 1]:
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b0 := plot::Box(0.9..1.1, 2.9 .. 3.1, 0.9 .. 1.1):

b1 := plot::Rotate3d(b0, Center = center, Axis = axis,

                     Angle = PI/8):

b2 := plot::Rotate3d(b1, Center = center, Axis = axis,

                     Angle = PI/8):

b3 := plot::Rotate3d(b2, Center = center, Axis = axis,

                     Angle = PI/8):

centerplusaxis := [center[i] + axis[i] $ i = 1..3]:

plot(b0, b1, b2, b3, 

     plot::Arrow3d([0, 0, 0], center, Color = RGB::Black,

                   Title = "Center", 

                   TitlePosition = [0.1, 2, 0.5]),

     plot::Arrow3d(center, centerplusaxis, 

                   Title = "Axis", Color = RGB::Red,

                   TitlePosition = [0.7, 4, 1.5]),

     plot::Circle3d(1, center, axis),

     plot::Rotate3d(plot::Arrow3d([0, 4, 1], [0, 3.9, 1],

                                  Color = RGB::Blue),

                    Axis = axis, Center = center,

                    Angle = 0.43*PI + a*2*PI/3) $ a = 1..3,

     Axes = Origin

):
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delete center, axis, b0, b1, b2, b3, centerplusaxis:

See Also

MuPAD Functions
Angle | Center
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 Base, Top, BaseX, TopX, BaseY, TopY, BaseZ, TopZ

Base, Top, BaseX, TopX, BaseY, TopY, BaseZ, TopZ

Base center of cones, cylinders, pyramids and prisms

Value Summary

Base Library wrapper for
“[BaseX, BaseY]” (2D),
“[BaseX, BaseY,
BaseZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

Top Library wrapper for “[TopX,
TopY]” (2D), “[TopX, TopY,
TopZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

BaseX, BaseY, BaseZ,
TopX, TopY, TopZ

Mandatory MuPAD expression

Graphics Primitives

Objects Default Values

plot::Cone, plot::Cylinder,
plot::Prism, plot::Pyramid

Base: [0, 0, 0]

Top: [0, 0, 1]

BaseX, TopX, BaseY, TopY, BaseZ: 0

TopZ: 1

Description

Base is a vector determining the position of the base center of cones/conical frustums,
cylinders, pyramids/frustums of pyramids and prisms. It is given by a list or vector of 3
components.
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BaseX etc. refer to the x, y, z components of this vector.

Top is a vector determining the position of the top center of cones/conical frustums,
cylinders, pyramids/frustums of pyramids and prisms. For a cone, this is the tip. The
vector is given by a list or vector of 3 components.

TopX etc. refer to the x, y, z components of this vector.

The values of these attributes can be animated.

Examples

Example 1

We define a cone:

c := plot::Cone(1, [0, 0, 0], [0, 0, 1]):

plot(c)
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The second and third argument are the base center and the top center, respectively.
Internally, they are stored as the attributes Bottom and Top. We can access the object's
attributes and change them:

c::Base, c::Top

c::Top := [0, 1, 1]:

plot(c):

delete c:

Example 2

The values of Bottom and Top can be animated:

plot(plot::Cylinder(3, [2, 2, 2], [2, 2, a], a = 7..12)):
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See Also

MuPAD Functions
BaseRadius | TopRadius
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BaseRadius, TopRadius
Base and top radius of cones/conical frustums and pyramids/frustums of pyramids

Value Summary

BaseRadius, TopRadius Mandatory MuPAD expression

Graphics Primitives

Objects Default Values

plot::Cone, plot::Pyramid BaseRadius: 1

TopRadius: 0

Description

BaseRadius defines the radius of the base of a cone or the radius of the circumcircle
of the regular base of a pyramid. TopRadius defines the radius r of the top of a conical
frustum and the radius of the circumcircle of the top of a frustum of pyramid. With the
default r = 0, a cone or pyramid, respectively, is created. You get a frustum for r > 0.

The values of these attributes can be animated.

Examples

Example 1

We draw two cones forming an hour glass:

c := plot::Cone(3, [2, 2, 2], [2, 2, 6]):

d := plot::Cone(3, [2, 2, 10], [2, 2, 6]):

plot(c, d)
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The first argument is the base radius of the cone. Internally, is is stored as the attribute
BaseRadius. We can access the objects' attributes and change them:

c::BaseRadius, d::TopRadius

c::BaseRadius := 0: c::TopRadius := 3:

d::BaseRadius := 0: d::TopRadius := 3:

plot(c, d):
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delete c, d:

Example 2

The values of BaseRadius and TopRadius can be animated:

plot(plot::Cone(a, [0, 0, 0], 1 - a, [0, 0, 1], a = 0..1)):
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Example 3

For a pyramid and a frustum of pyramid, the attributes BaseRadius and TopRadius
determine the radius of the circumcircle of its regular base and top:

plot(plot::Prism(1,Edges=5), plot::Circle3d(1)):
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See Also

MuPAD Functions
Base | Top
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Cells

Classes of histogram plots

Value Summary

Mandatory List of arithmetical expressions

Graphics Primitives

Objects Cells Default Values

plot::Histogram2d [7]

Description

Cells determines the number and position of the classes used in a histogram.

Cells accepts either a single positive integer (or, equivalently, a list of one positive
integer) or a list of cells given as ranges or lists of two elements.

A single integer n in the specification Cells = n or Cells = [n] is interpreted as
“subdivide the range of data into n cells of equal size.”

The number n can be animated. In this case, n may be a symbolic expression of the
animation parameter.

The cells may be specified directly as in Cells = [[a1, b1], [a2, b2], …] or Cells
= [a_1..b_1, a_2..b_2, Symbol::dots].

Note: The i-th cell is the semi-open interval , i.e., a datum x is tallied into the i-th
cell if ai < x ≤ bi is satisfied.
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The cell boundaries must satisfy a1 < b1 ≤ a2 < b2 ≤ a3 < …. In most applications, b1 = a2,
b2 = a3 etc. is appropriate.

If giving cells directly, the leftmost border may be - infinity and the rightmost border
may be infinity. These rectangles will then be adjusted according to the average
widths of the other rectangles for display purposes.

With the attribute CellsClosed = Left, the cells [a_1..b_1, a_2..b_2,
Symbol::dots] are interpreted as the semi-open intervals .

Examples

Example 1

We create a sample of 1000 data points and plot a histogram of them:

X := stats::fRandom(100, 10):

data := [X() $ i = 1..1000]:

plot(plot::Histogram2d(data))
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The shape of the distribution becomes much better visible when we increase the number
of cells:

plot(plot::Histogram2d(data, Cells = 40))

plot(plot::Histogram2d(data, Cells = [40], Area = 1),

     plot::Function2d(stats::fPDF(100,10)(x), x = 0 .. 5,

                      Color = RGB::Black))
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With cells of different widths, setting Area to a positive value is highly recommended, to
still have the histogram follow the probability distribution:

cells :=  stats::equiprobableCells(50,

                  stats::fQuantile(100, 10))

plot(plot::Histogram2d(data, Cells = cells)):
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plot(plot::Histogram2d(data, Cells = cells, Area = 1),

     plot::Function2d(stats::fPDF(100, 10)(x), x = 0 .. 5,

                      Color = RGB::Black))
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See Also

MuPAD Functions
Area | CellsClosed
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CellsClosed, ClassesClosed
Interpretation of the classes in histogram plots

Value Summary

CellsClosed Optional Left, or Right
ClassesClosed [[CellsClosed]] See below

Graphics Primitives

Objects Default Values

plot::Histogram2d CellsClosed, ClassesClosed: Right

Description

CellsClosed determines whether the classes used in a histogram are intepreted as
semi-open intervals that are closed at the left or the right boundary.

The graphical primitive plot::Histogram2d tallies numerical data into cells (“classes”)
that are defined by the attribute Cells = [a_1 .. b_1, a_2 .. b_2, dots]. By
default, these classes are interpreted as a collection of semi-open intervals  that
are closed at the right boundary. A data item x is tallied into the i-th cell if it satisfies ai
< x ≤ bi. With the option CellsClosed = Left or the equivalent ClassesClosed =
Left the classes are interpreted as the semi-open intervals  that are closed at the
left boundary.

Examples

Example 1

We create a sample of 15 data points:
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data := [1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5]:

These data are to be tallied into the following cells (classes):

cells := [0 .. 1, 1 .. 2, 2 .. 3, 3 .. 4, 4 .. 5, 5 .. 6]:

With the default setting CellsClosed = Right, the 6 classes are the intervals ,
  etc. The interval  contains one of the data items, the interval 

contains two, etc.:

plot(plot::Histogram2d(data, Cells = cells))

Using CellsClosed = Left, the 6 classes are interpreted as the intervals , 
 etc. Now, the first class  contains none of the data items, the second class
 contains one item, etc.:

plot(plot::Histogram2d(data, Cells = cells, CellsClosed = Left))
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delete data, cells:

See Also

MuPAD Functions
Area | Cells
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Center, CenterX, CenterY, CenterZ
Center of objects, rotation center

Value Summary
Center Library wrapper for

“[CenterX, CenterY]” (2D),
“[CenterX, CenterY,
CenterZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

CenterX, CenterY,
CenterZ

Mandatory MuPAD expression

Graphics Primitives
Objects Default Values

plot::Arc3d, plot::Circle3d,
plot::Dodecahedron,
plot::Ellipse3d, plot::Ellipsoid,
plot::Hexahedron,
plot::Icosahedron,
plot::MuPADCube, plot::Octahedron,
plot::Parallelogram3d,
plot::Piechart3d, plot::Rotate3d,
plot::Sphere, plot::Tetrahedron,
plot::Waterman

Center: [0, 0, 0]

CenterX, CenterY, CenterZ: 0

plot::Arc2d, plot::Circle2d,
plot::Ellipse2d,
plot::Parallelogram2d,
plot::Piechart2d, plot::Rotate2d

Center: [0, 0]

CenterX, CenterY: 0

Description
The vector Center determines the center of various objects such a circles, spheres, pie
charts etc. In rotation objects, it refers to the center of rotation.
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Depending on the dimension of the object, it is given by a list or vector of 2 or 3
components.

CenterX etc. refer to the x, y, z components of this vector.

Center, CenterX etc. also denotes the rotation center in rotation objects of type
plot::Rotate2d or plot::Rotate3d.

The values of these attributes can be animated.

Examples

Example 1

We create circles around the origin:

c1 := plot::Circle2d(1, [0, 0]):

c2 := plot::Circle2d(2, [0, 0]):

The second argument in plot::Circle2d is the center. Internally, it is stored as the
attribute Center and can be changed by assigning a new value:

c1::Center := [1, 0]:

c2::Center := [-1, 1]:

plot(c1, c2):
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delete c1, c2:

Example 2

We create an ellipse with an animated center. A copy of it is rotated around this center:

e1 := plot::Ellipse2d(1, 3, Center = [a, a], a = 0..5):

e2 := plot::Rotate2d(e1, Angle = a*PI/2, 

                     Center = e1::Center, a = 0..5):

plot(e1, e2)
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delete e1, e2:

Example 3

We create a sphere of radius 2 and change the default center [0, 0, 0] to [1, 2, 3]:

s := plot::Sphere(2):

s::Center := [1, 2, 3]:

plot(s)
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delete s:

See Also

MuPAD Functions
Radius | SemiAxes
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Closed
Open or closed polygons

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects Closed Default Values

plot::Arc2d, plot::Arc3d,
plot::Polygon2d, plot::Polygon3d

FALSE

Description

Closed switches between open and closed polygons.

Closed determines whether objects of type plot::Polygon2d and plot::Polygon3d
are drawn as “real” polygons (i.e., closed) or as broken lines (open polygons).

Open polygons can be filled, too. The filled area is exactly the same as if the polygon were
closed.

Examples

Example 1

By default, polygons are not closed automatically:

p := plot::Polygon2d([[1, 2], [3, 4], [5, -6]]):

plot(p)
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p := plot::Polygon2d([[1, 2], [3, 4], [5, -6]], Closed = TRUE):

plot(p)
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Note that Filled and Closed are independent:

p::Closed := FALSE:

p::Filled := TRUE:

plot(p)
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delete p:

See Also

MuPAD Functions
Filled
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ColorData

Color values of a raster plot

Value Summary

Mandatory List of arithmetical expressions

Graphics Primitives

Objects ColorData Default Values

plot::Raster  

Description

ColorData is a nested list of RGB color values visualized by a plot::Raster object.

The internal reresentation of the ColorData entry of a plot::Raster object is a list
of lists of color values. Also a matrix or a 2-dimensional array of color values can be
assigned to this entry: they are converted to a list of lists.

Examples

Example 1

We create a raster plot object:

colordata := [[RGB::Red,   RGB::Green, RGB::Blue ],

              [RGB::Black, RGB::Cyan,  RGB::White]]:

r := plot::Raster(colordata, x = 0..3, y = 0..2):

plot(r):

24-1234



 ColorData

The color data of the raster object can be accessed via the ColorData slot:

colordata := r::ColorData

The list of list of color values is turned into an array. After changing one entry, the new
colors are written back into the raster object:

colordata := array(1..2, 1..3, colordata):

colordata[2, 3] := RGB::Magenta:

colordata

r::ColorData := colordata:

plot(r)
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Although the color values were assigned as an array, they are internally stored as a list
of lists:

r::ColorData

delete colordata, r:
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CommandList
Turtle movement commands

Value Summary

Mandatory List of arithmetical expressions

Graphics Primitives

Objects CommandList Default Values

plot::Turtle []

Description

CommandList stores the command sequence of a plot::Turtle. See the documentation
of plot::Turtle for admissible commands and examples.
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Contours

Contours of an implicit function

Value Summary

Mandatory List of arithmetical expressions

Graphics Primitives

Objects Contours Default Values

plot::Implicit2d, plot::Implicit3d [0]

Description

With Contours, you can set the contour(s) of an implicit function.

By default, plot::Implicit2d and plot::Implicit3d plot the set
. Using Contours, you can instead plot the set  for any

real c or for a sequence of such values.

Examples

Example 1

The following command plots a series of cuts through a sphere:

plot(plot::Implicit2d(x^2 + y^2, x = -1..1, y = -1..1,

                      Contours = [0, 0.25^2, 0.5^2, 

                                  0.75^2, 1.0])):
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Example 2

Being an expression attribute, Contours can be animated:

plot(plot::Implicit2d(x^2-y^2, x = -1..1, y = -1..1,

                Contours = [1/2*cos(a)], a = 0..2*PI)):
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Example 3

The contour currently plotted is passed to the color functions and can be used to
distinguish them visually:

plot(

  plot::Implicit3d(x^y - y*z, x = 1..4, y = 1..4, z = -2..2,

                   Contours = [$0..5],

                   FillColorFunction = ((x,y,z,dx,dy,dz,c) ->

                                 RGB::ColorList[round(c)+1]))

    )
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CoordinateType

Linear versus logarithmic plots in 2D

Value Summary

Inherited See below

Graphics Primitives

Objects CoordinateType Default Values

plot::CoordinateSystem2d LinLin

Description

CoordinateType allows to switch between linear and logarithmic 2D plots.

By default, a linear (Cartesian) scaling of all coordinate axes is used in 2D. This
corresponds to CoordinateType = LinLin. Logarithmic plots are created by choosing
a CoordinateType different from LinLin.

In 2D, the following coordinate types are available:

• LinLin: Straight lines given by y = c1 x + c2 are rendered as straight lines on the
screen.

• LinLog: Linear coordinates are plotted along the horizontal axis, logarithmic

coordinates along the vertical axis. The curves  are rendered as straight
lines on the screen.

• LogLin: Logarithmic coordinates are plotted along the horizontal axis, linear
coordinates along the vertical axis. The curves y = c1 ln(x) + c2 are rendered as straight
lines on the screen.
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• LogLog: Logarithmic coordinates are plotted along both axes. The curves y = c1 xc2 are
rendered as straight lines on the screen.

The objects to be plotted must have strictly positive coordinate values in “logarithmic
directions”.

Examples

Example 1

We consider an exponential function:

plot(plot::Function2d(5*exp(x/4), x = -10 .. 100), 

     CoordinateType = LinLin):

In a singly logarithmic plot, the graph is a straight line:

plot(plot::Function2d(5*exp(x/4), x = 0 .. 100), 

     CoordinateType = LinLog):
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Example 2

We render the function  in a log-log plot:

plot(plot::Function2d(sqrt(x) + x^2, x = 10^(-3) .. 10^3), 

     CoordinateType = LogLog):
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Data
The (statistical) data to plot

Value Summary

Mandatory List of arithmetical expressions

Graphics Primitives

Objects Data Default Values

plot::Bars2d, plot::Bars3d,
plot::Boxplot, plot::Histogram2d,
plot::Listplot, plot::Matrixplot,
plot::QQplot, plot::Scatterplot,
plot::SparseMatrixplot

 

plot::Piechart2d, plot::Piechart3d [1]

Description

Data is used internally to store the statistical data displayed, for example, in a pie-chart
diagram. While it is possible to manipulate this data (as shown in “Example 2” on page
24-1247), Data is mostly seen as a storage space irrelevant to the user.

For speed and clarity, Data will be displayed in the object inspector only if the amount of
data is small. This may cause problems when using the “recalculate” feature. In such a
case, the remedy is to assign the plot object in question to an identifier before plotting.

Examples

Example 1

All object types listed above store the data given in Data:
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X := stats::normalRandom(0, 1):

h := plot::Histogram2d([X() $ i = 1..30])

h::Data

Example 2

It is possible to change the data in an object using Data:

p := plot::Piechart2d([1, 2, 3, 4]):

plot(p)

p::Data := [1, 1, 3, 2, 3]:

plot(p)
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See Also

MuPAD Functions
Cells
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DensityData, DensityFunction
Density values for a density plot

Value Summary

DensityData,
DensityFunction

Optional List of arithmetical
expressions

Graphics Primitives

Objects Default Values

plot::Density  

Description

DensityData is a nested list of “density values” visualized by a plot::Density object.

DensityFunction is a symbolic expression or a procedure defining the “density values”
of a plot::Density object.

Density objects of type plot::Density can be defined either by discrete density data or
by a density function. In the first case, the object has the slot DensityData. In the latter
case, the function describing the densities is stored in the slot DensityFunction.

The internal representation of the DensityData entry of a plot::Density object is a
list of lists of density values. Also a matrix or a 2-dimensional array of density values can
be assigned to this entry: they are converted to a list of lists.

The DensityFunction of a density object can be a symbolic expression, a procedure or a
piecewise object.

Assigning a value to the DensityData entry deletes an existing DensityFunction
entry and vice versa.
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Examples

Example 1

We create a density plot object defined by a density function:

d := plot::Density(sin(x^2 + y^2), x = -2..2, y = -2..2):

plot(d, Scaling = Constrained):

The density function of this object can be accessed via the DensityFunction slot:

d::DensityFunction

We change the density function by assigning a new value to the DensityFunction slot:

d::DensityFunction := exp(-(x^2 + y^2)/2):

plot(d, Scaling = Constrained)
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delete d:

Example 2

We create a density plot object defined by discrete density data:

densitydata := [[0.1, 0.2, 0.3],

                [0.4, 0.5, 0.6]]:

d := plot::Density(densitydata, x = 0..3, y = 0..2):

plot(d):
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The density data of the density object can be accessed via the DensityData slot:

densitydata := d::DensityData

The list of list of density values is turned into a matrix. After changing one entry, the
new density values are written back into the density object:

densitydata := matrix(densitydata):

densitydata[2, 3] := 0.2:

densitydata

d::DensityData := densitydata:

plot(d)
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Although the density values were assigned as a matrix, they are internally stored as a
list of lists:

d::DensityData

delete densitydata, d:
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Edges
Number of Edges

Value Summary

Mandatory MuPAD expression

Graphics Primitives

Objects Edges Default Values

plot::Pyramid 4

plot::Prism 3

Description

Edges determines the number of edges for the regular base plane of a prism or pyramid.
Edges is a positive integer number.

Examples

Example 1

The default values for the attribute Edges are:

plot::Prism();

plot::Pyramid();
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Example 2

The attribute Edges can be animated:

plot(plot::Pyramid(Edges=a, a=3..13)):
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Extension
Line extensions

Value Summary

Inherited Finite, Infinite, or SemiInfinite

Graphics Primitives

Objects Extension Default Values

plot::Line2d, plot::Line3d Finite

Description

Extension allows to extent a line segment to an infinite ray or an infinite line.

Lines of type plot::Line2d and plot::Line3d are defined by specifying two points
through which the line passes. For example: plot::Line2d([x1, y1], [x2, y2]).
The first point [x1, y1] corresponds to the attribute From, the second point [x2, y2]
corresponds to the attribute To.

With Extension = Finite, a line segment from From to To is drawn.

With Extension = SemiInfinite, an infinite ray is drawn starting at From passing
through To. The ray extends to the border of the ViewingBox.

With Extension = Infinite, an infinite line is drawn passing through From and To.
The line extends in both directions to the border of the ViewingBox.

Examples

Example 1

We plot two lines with the default value Extension = Finite:
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plot(plot::Line2d([0, 0], [1, 1], Color = RGB::Blue),

     plot::Line2d([1, 0], [2, 1], Color = RGB::Red),

     ViewingBox = [-1..3, -1..3])

Now, with Extension = SemiInfinite, the blue line becomes a ray extending to the
ViewingBox in one direction:

plot(plot::Line2d([0, 0], [1, 1], Color = RGB::Blue,

                  Extension = SemiInfinite),

     plot::Line2d([1, 0], [2, 1], Color = RGB::Red),

     ViewingBox = [-1..3, -1..3])
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With Extension = Infinite, the blue line extends to the ViewingBox in both
directions:

plot(plot::Line2d([0, 0], [1, 1], Color = RGB::Blue,

                  Extension = Infinite),

     plot::Line2d([1, 0], [2, 1], Color = RGB::Red),

     ViewingBox = [-1..3, -1..3])
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Example 2

Here we define a finite line segment and use plot::modify to create an extended copy.
It is drawn as an infinite dashed line:

line := plot::Line2d([0, 0], [1, 1]):

plot(plot::modify(line, Extension = Infinite,

                  LineStyle = Dashed),

     line, ViewingBox = [-1..2, -1..2]):
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delete line:

See Also

MuPAD Functions
AffectViewingBox | From | To
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 From, To, FromX, FromY, FromZ, ToX, ToY, ToZ

From, To, FromX, FromY, FromZ, ToX, ToY, ToZ

Starting point of arrows and lines

Value Summary

From Library wrapper for
“[FromX, FromY]” (2D),
“[FromX, FromY,
FromZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

To Library wrapper for “[ToX,
ToY]” (2D), “[ToX, ToY,
ToZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

FromX, FromY, FromZ, ToX,
ToY, ToZ

Mandatory MuPAD expression

Graphics Primitives

Objects Default Values

plot::Arrow2d, plot::Line2d From: [0, 0]

To: [1, 0]

FromX, FromY, ToY: 0

ToX: 1
plot::Arrow3d, plot::Line3d From: [0, 0, 0]

To: [1, 0, 0]

FromX, FromY, FromZ, ToY, ToZ: 0

ToX: 1
plot::Reflect2d  
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Description

The vectors From and To determine the starting point and the end point, respectively, of
arrows and lines.

From is a vector determining the position of the starting point of arrows and lines.
Depending on the dimension, it is given by a list or vector of 2 or 3 components.

FromX etc. refer to the x, y, z components of this vector.

To is a vector determining the position of the end point of arrows and lines. Depending on
the dimension, it is given by a list or vector of 2 or 3 components.

To etc. refer to the x, y, z components of this vector.

The values of these attributes can be animated.

Examples

Example 1

We define an arrow:

p := plot::Arrow2d([0, 0], [1, 2]):

plot(p):
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The arguments are the starting point and the end point of the arrow. Internally, they are
stored as the attributes From and To. We can access the object's attributes and change
them:

p::From, p::To

p::From := [1, 0]:

p::To := [0, 1]:

plot(p):
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delete p:

Example 2

The values of From and To can be animated. Here is a simple clock:

plot(plot::Circle2d(1, [0, 0], Color = RGB::Black),

     plot::Line2d([0.9*cos(a*PI/6), 0.9*sin(a*PI/6)], 

                  [1.0*cos(a*PI/6), 1.0*sin(a*PI/6)], 

                  Color = RGB::Black, LineWidth = 0.8*unit::mm)

                 $ a = 0 .. 11,

     plot::Line2d([0.95*cos(a*PI/30), 0.95*sin(a*PI/30)], 

                  [1.0*cos(a*PI/30), 1.0*sin(a*PI/30)], 

                  Color = RGB::Black, LineWidth = 0.5*unit::mm)

                 $ a = 0 .. 59,

     plot::Arrow2d([0, 0], [0.85*sin(12*a), 0.85*cos(12*a)], 

                   a = 0 .. 2*PI, LineWidth = 2*unit::mm),

     plot::Arrow2d([0, 0], [0.6*sin(a), 0.6*cos(a)], 

                   a = 0 .. 2*PI, LineWidth = 3*unit::mm),

     Axes = None, Frames = 600, TimeRange = 0..120):
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Function, XFunction, YFunction, ZFunction
Function expression or procedure

Value Summary

Function, XFunction,
YFunction, ZFunction

Mandatory MuPAD expression

Graphics Primitives

Objects Default Values

plot::Conformal, plot::Curve2d,
plot::Curve3d, plot::Cylindrical,
plot::Function2d, plot::Function3d,
plot::Implicit2d, plot::Implicit3d,
plot::Iteration, plot::Ode2d,
plot::Ode3d, plot::Polar,
plot::Sequence, plot::Spherical,
plot::Streamlines2d, plot::Sum,
plot::Surface, plot::Tube,
plot::VectorField2d,
plot::VectorField3d, plot::XRotate,
plot::ZRotate

 

Description

Function, XFunction, YFunction, ZFunction correspond to function expressions or
procedures in various plot objects given by a mathematical function.

The attribute Function is used for graphs of functions in 2D and 3D, implicit plots,
conformal plots etc. which are characterized by a single function.

The attributes XFunction etc. refer to the parametrization of the x, y or z-coordinate
of parametrized curves and surfaces. In vector field plots they correspond to the
components of the vector field.
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When defining a graphical primitive such as a function plot, the mathematical expression
defining the function is passed directly to the plot routine generating this object. E.g.,
one calls plot::Function2d(x*sin(x), x = -5 .. 5) to define the graph of
f(x) = x sin(x). Internally, the attribute Function = x*sin(x) is associated with the
graphical object.

Wherever function expressions are expected, also piecewise objects or MuPAD
procedures can be used. E.g., the calls plot::Function2d(sin(x), x = 0..PI) and
plot::Function2d(x -> sin(x), x = 0..PI) are equivalent and associate the
attributes Function = sin(x) or Function = x -> sin(x), respectively, with the
plot objects.

Examples

Example 1

We define an object of type plot::Function2d representing the graph of f(x) = x sin(x):

f := plot::Function2d(x*sin(x), x = -4 .. 4):

plot(f)
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Internally, the expression defining the function is turned into the attribute Function =
x*sin(x). It is accessible via a corresponding slot of the object:

f::Function

One can change the object by reassigning a new value to this attribute:

f::Function := 1/x:

plot(f):

delete f:

Example 2

For implicit plots as produced by plot::Implicit2d and plot::Implicit3d, the
attribute Function refers to the function whose zero set is to be plotted:

p := plot::Implicit2d(y*sin(x) - x*cos(y), x=-5..5, y=-5..5):
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Internally, the expression defining the function is turned into the attribute Function =
y*sin(x) - x*cos(y). It is accessible via a corresponding slot of the object:

p::Function

delete p:

Example 3

For parametrized curves and surfaces, the attributes XFunction, YFunction etc.
correspond to the parametrization of the coordinates x, y etc:

c2 := plot::Curve2d([u*cos(u), u*sin(u)], u = 0..5*PI):

c2::XFunction, c2::YFunction

c3 := plot::Curve3d([u*cos(u), u*sin(u), u^2], u = 0..5*PI):

c3::XFunction, c3::YFunction, c3::ZFunction

s := plot::Surface([u*cos(v), u*sin(v), u^2*sin(2*v)],

                   u = 0..1, v = 0..2*PI):

s::XFunction, s::YFunction, s::ZFunction

delete c2, c3, s:

Example 4

Wherever a function expression is expected, also a piecewise object or a procedure can
be used:

f1 := piecewise([x < 0, 0], [x >= 0, x]):

f2 := proc(x) begin
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         if x < 0 then

              1

         else 1 - x^2/2

         end_if;

      end_proc:

F1 := plot::Function2d(f1, x = -1..PI/2):

F2 := plot::Function2d(f2, x = -1..PI/2):

F1::Function, F2::Function

plot(F1, F2)

delete f1, f2, F1, F2:

See Also

MuPAD Functions
Function1 | Function2
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Function1, Function2, Baseline

First function/curve delimiting hatch

Value Summary

Baseline, Function1,
Function2

Mandatory Text string

Graphics Primitives

Objects Default Values

plot::Hatch, plot::Integral  

Description

Function1 and Function2 refer to the functions that define the borders of a hatched
2D region of type plot::Hatch.

Baseline is the y value of a straight horizontal border line of a hatch.

Function1, Function2 are very technical attributes that a user will hardly ever use.

If f1, f2 are function objects of type plot::Function2d, the hatch object
h := plot::Hatch(f1, f2) stores references to the objects f1, f2 as the slots
h::Function1, h::Function2. These are text references (i.e., strings) by which the
function objects f1, f2 can be identified, but not the function objects themselves.

Function1 points to a function object of type plot::Function2d or a curve object of
type plot::Curve2d.

Function1 is usually set implicitly by plot::Hatch to the Name attribute of its first
argument.
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When Function1 refers to a curve of type plot::Curve2d, Function2 and Baseline
are ignored.

Function2 is the (optional) second border function of a hatch. In the plot, the hatched
area is bounded by the two functions referred to by Function1 and Function2.

If Function2 is given, Function1 must refer to a function graph of type
plot::Function2d, too.

Function2 is usually set implicitly by plot::Hatch to the Name attribute of its second
argument.

Baseline is an alternative second delimiter of a hatch. It defines a horizontal border
line of the hatch with a y-value given by Baseline. The Baseline expression may be
animated.

Examples

Example 1

We hatch the area between the functions  and x2:

f1 := plot::Function2d(sqrt(x), x = 0..2, Color = RGB::Black):

f2 := plot::Function2d(x^2, x = 0..2, Color = RGB::Blue):

h := plot::Hatch(f1, f2):

plot(f1, f2, h)
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The references to the border functions are stored a strings in the hatch object h:

h::Function1, h::Function2

Baseline serves as an alternative for the special case of a constant border function. The
Baseline value can be animated:

h := plot::Hatch(f1, sqrt(2)*a, a = 0 .. 1):

h::Baseline

plot(f1, h)
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A (closed) curve of type plot::Curve2d may be used as the boundary of the hatch:

f1 := plot::Curve2d([sin(2*x), cos(3*x)], x = 0..2*PI,

                    Color = RGB::Black):

h := plot::Hatch(f1):

h::Function1

plot(f1, h)
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delete f1, f2, h, c:

See Also

MuPAD Functions
Name
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InitialConditions, TimeMesh
Initial conditions of the ODE

Value Summary

InitialConditions,
TimeMesh

Mandatory List of arithmetical
expressions

Graphics Primitives

Objects Default Values

plot::Ode2d, plot::Ode3d  

Description

InitialConditions = [y1(t0), y2(t0), …] sets the initial conditions for the initial
value problem

.

TimeMesh = [t0, t1, t2, …] sets the values of the independent variable t (the “time”)
of the ODE at which graphical points of the solution curve are plotted. The first entry t0
is the initial time for which initial conditions are set by InitialConditions.

Internally, plot::Ode2d and plot::Ode3d call the routine numeric::odesolve for
solving the given ODE numerically.

The list of initial conditions set by InitialConditions is forwarded to
numeric::odesolve. See the corresponding help page for further details.
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Examples

Example 1

We solve the initial value problem  numerically:

f := (t, Y) -> [-Y[1]]:

Y0 := [1]:

timemesh:= [0, 0.2, 0.5, 1, 1.5, 2, 3, 5]:

plot(plot::Ode2d(f, InitialConditions = Y0,

                 TimeMesh = timemesh))

delete f, Y0, timemesh:

See Also

MuPAD Functions
AbsoluteError | ODEMethod | Projectors | RelativeError | Stepsize
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IntMethod
Method for integral approximation

Value Summary

Optional Exact, RiemannLeft, RiemannRight,
RiemannLower, RiemannUpper,
RiemannMiddle, RiemannLowerAbs,
RiemannUpperAbs, Simpson, or
Trapezoid

Graphics Primitives

Objects IntMethod Default Values

plot::Integral Exact

Description

IntMethod determines the method of the visualization of plot::Integral objects.

Following methods are implemented:

• Exact

 the area between x-axis and function graph is colored
• RiemannLower

 display boxes between x-axis and function graph using the smallest value of the
function in each subinterval

• RiemannLowerAbs

 display boxes between x-axis and function graph using the smallest absolut value of
the function in each subinterval
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• RiemannUpper

 display boxes between x-axis and function graph using the greatest value of the
function in each subinterval

• RiemannUpperAbs

 display boxes between x-axis and function graph using the greatest absolut value of
the function in each subinterval

• RiemannLeft

 display boxes between x-axis and function graph using the function value of the left
border in each subinterval

• RiemannMiddle

 display boxes between x-axis and function graph using the function value of the
middle in each subinterval

• RiemannRight

 display boxes between x-axis and function graph using the function value of the right
border in each subinterval

• Trapezoid

 display an approximation of the integral using the Trapezoidal rule
• Simpson

 interpolate the graph of the function using Simpsons rule

Examples

Example 1

The following example shows all implemented methods:

f := plot::Function2d(x*(x-3)*(x+4), Color = RGB::Black):

plot(plot::Scene2d(plot::Integral(f, 7, IntMethod = method,

                                  Color = [frandom() $ i=1..3],

                                  ShowInfo = [IntMethod, Integral,

                                  Error, Position = [-5,90]]), f)
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     $ method in [RiemannLower, RiemannLowerAbs, Trapezoid,

                  RiemannUpper, RiemannUpperAbs, Simpson,

                  RiemannLeft,  RiemannRight,    RiemannMiddle],

     Columns = 3, TextFont = [8], Width = 200, Height = 180)
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 Generations, RotationAngle, IterationRules, StartRule, StepLength, TurtleRules

Generations, RotationAngle, IterationRules,
StartRule, StepLength, TurtleRules
Number of iterations of L-system rules

Value Summary

Generations,
IterationRules,
RotationAngle,
StartRule, StepLength,
TurtleRules

Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::Lsys Generations: 5

StepLength: 1.0

Description

Generations, RotationAngle, IterationRules, StartRule, StepLength, and
TurtleRules define a Lindenmayer system. The attribute meanings and examples of
their use can be found in the documentation of plot::Lsys.
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Ground
Base value

Value Summary

Optional MuPAD expression

Graphics Primitives

Objects Ground Default Values

plot::Bars3d, plot::Sweep 0

Description

In bar charts, the attribute Ground = g determines the vertical coordinate value of
one end of the bars. Data values m > g are displayed as bars stretching in the vertical
direction from the lower end g up to the upper end m. Data values m < g are displayed as
bars stretching in the vertical direction from the upper end g down to the lower end m.

In sweep surfaces of type plot::Sweep, a parametrized space curve (x(u), y(u), z(u)) is
projected to the x-y-plane with constant z = g, where g is set by the Ground attribute.

The parameter g has to be a numerical real value or an expression of the animation
parameter.

If the attribute Ground = g is not specified, the default value g = 0 is used.

Examples

Example 1

We plot the same data with different Ground values:
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A := matrix::random(5, 5, frandom):

plot(plot::Scene3d(plot::Bars3d(A, Ground = 0,

                                Color = RGB::Grey)),

     plot::Scene3d(plot::Bars3d(A, Ground = 0.5,

                                Color = RGB::Grey)),

     Layout = Horizontal):

In the next call, the ground level is animated. Note that in animations one must specify
ranges for the x and y coordinates. We include a transparent plane visualizing the ground
level:

plot(plot::Bars3d(A, x = 0 .. 1, y = 0 .. 1, a = 0 .. PI,

                  Color = RGB::Grey,

                  Gap = [0.5, 0.5],

                  Ground = sin(a)),

     plot::Surface([x, y, sin(a) + 0.001],

                   x = 0 .. 1, y = 0 .. 1, a = 0 .. PI,

                   Mesh = [2, 2], Color = RGB::Blue.[0.5])

):
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delete A:

Example 2

We use different Ground values to project a space curve to the x-y-plane:

plot(plot::Scene3d(plot::Sweep([u, 1-u, sin(2*PI*u)], u = 0..1,

                        Ground =  1), Header = "Ground = 1"),

     plot::Scene3d(plot::Sweep([u, 1-u, sin(2*PI*u)], u = 0..1,

                        Ground = 0.5), Header = "Ground = 0.5"),

     plot::Scene3d(plot::Sweep([u, 1-u, sin(2*PI*u)], u = 0..1,

                        Ground = 0), Header = "Ground = 0"),

     plot::Scene3d(plot::Sweep([u, 1-u, sin(2*PI*u)], u = 0..1,

                        Ground = -1), Header = "Ground = -1"),

     plot::Scene3d::BorderWidth = 0.5*unit::mm, 

     Layout = Tabular, Rows = 2)
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Heights, Moves

Heights of pieces in pie charts

Value Summary

Heights, Moves Optional List of arithmetical
expressions

Graphics Primitives

Objects Default Values

plot::Piechart3d Heights: [0.3]

Moves: [0]
plot::Piechart2d Moves: [0]

Description

Heights, Moves determine the heights and displacements of the single pieces in a pie
chart.

Heights determines the heights of the pieces in a plot::Piechart3d. If no height
value is given for a piece, 0.3 is used. The given values have to be real numbers or
expressions of the animation parameter.

Moves determines the movements of pieces away from the pie chart center. If no move
value is given for a piece, 0 is used. The given values have to be non-negative real
numbers or expressions of the animation parameter. The values are fractions of the
Radius of the pie chart. A value of 1 means a full pie chart radius, 0.5 half the radius of
the pie chart etc.

Heights, Moves accept its input in two formats:
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• The values can be given as a flat list of values with entries of the type specified above.
The first list entry will be used for the first piece etc. If the list contains less values
than the data set of the pie chart, the last value is repeated. Superfluous entries are
ignored.

• The values can be given as a list of equations with positive integers on the left
hand side and values – as specified above – on the right hand side. The integers are
interpreted as indices of the pieces.

Examples

Example 1

We move the third piece of the following pie chart away from the center by half the
radius of the pie chart:

plot(plot::Piechart2d([1, 2, 1, 3], 

                      Moves = [3 = 0.5]))
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The pieces are moved away from the center by different amounts:

plot(plot::Piechart2d([1, 2, 1, 3], 

                      Moves = [0, 0.5, 0.2, 0.1]))

Example 2

We plot an analogeous 3D pie chart:

plot(plot::Piechart3d([1, 2, 1, 3], 

                      Moves = [3 = 0.5]))
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The pieces are moved away from the center by different amounts:

plot(plot::Piechart3d([1, 2, 1, 3], 

                      Moves = [0, 0.5, 0.2, 0.1]))
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In 3D, the pieces of a pie chart can have different heights:

plot(plot::Piechart3d([1, 2, 1, 3], 

                      Heights = [0.4, 0.5, 0.2, 0.1]))
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Example 3

Here is a plot::Piechart3d with animated Heights, Moves, and Radius:

plot(plot::Piechart3d([4, 3, 2, 1], 

                      Radius = 3 + sin(a),

                      Heights = [cos(a)^2, cos(2*a)^2, 

                                 cos(3*a)^2, cos(4*a)^2],

                      Moves = [0.3*sin(a)^2], a = 0..PI)):
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See Also

MuPAD Functions
Data | Radius
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Inequalities
Inequalities displayed in inequality plots

Value Summary

Mandatory List of arithmetical expressions

Graphics Primitives

Objects Inequalities Default Values

plot::Inequality  

Description

Inequalities is the attribute used by plot::Inequality to store the inequalities to
plot.

plot::Inequality is used to plot the areas where one or more inequalities are fulfilled.
Inequalities is the internal attribute where the inequalities are stored. Most users
will never access this attribute directly; it exists for technical reasons only.
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InputFile
Input file for import functions

Value Summary

Mandatory Text string

Graphics Primitives

Objects InputFile Default Values

plot::SurfaceSTL  

Description

InputFile specifies the name of the input file for import functions.

InputFile can either be an absolute pathname or a pathname relative to the current
working directory or one of the directories specified by the MuPAD variable READPATH.

Note that some MuPAD functions do not react to the MuPAD variable READPATH. In this
case it might be necessary to specify InputFile as an absolute pathname.

Note that the current working directory of a MuPAD session may depend on how and
from where MuPAD has been started. Be careful when making assumptions about this.

See plot::SurfaceSTL for examples.

See Also

MuPAD Functions
OutputFile
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Iterations, StartingPoint
Number of iterations in plot::Iteration

Value Summary

Iterations,
StartingPoint

Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::Iteration Iterations: 10

Description

Iterations and StartingPoints are special attributes for iteration objects of type
plot::Iteration. StartingPoint sets the starting point, Iterations sets the
number of iteration steps.

The call it := plot::Iteration(f, x_0, n, x = `x_{min}`..`x_{max}`)
yields a visualization of the iteration xi = f(xi - 1) of the starting point x0 with i = 1, …, n.
The values x0 and n are stored as the attributes StartingPoint = x0 and Iterations
= n in the iteration object it. The values can be accessed and changed as the slots
it::StartingPoint and it::Iterations, respectively.

These attributes can be animated.

Examples

Example 1

We define and plot an iteration object:
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f := plot::Function2d(exp(-2*x), x = 0..1):

g := plot::Function2d(x, x = 0..1):

it := plot::Iteration(exp(-2*x), 0.2, 5, x = 0..1):

plot(f, g, it)

The starting point x0 = 0.2 and the number of iteration steps 5 are stored inside the
iteration object:

it::StartingPoint, it::Iterations

We change these values:

it::StartingPoint := 0.1:

it::Iterations := 30:

plot(f, g, it)
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delete f, g, it:
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LineColorFunction, FillColorFunction

Functional line coloring

Value Summary

FillColorFunction,
LineColorFunction

Optional Color function (see below)

Graphics Primitives

Objects Default Values

plot::Conformal, plot::Curve2d,
plot::Curve3d, plot::Cylindrical,
plot::Density, plot::Dodecahedron,
plot::Function2d, plot::Function3d,
plot::Hexahedron,
plot::Icosahedron,
plot::Implicit2d, plot::Implicit3d,
plot::Integral, plot::Listplot,
plot::Matrixplot, plot::Octahedron,
plot::Polar, plot::Polygon2d,
plot::Polygon3d, plot::Prism,
plot::Pyramid, plot::Rootlocus,
plot::Sequence, plot::Spherical,
plot::Streamlines2d, plot::Sum,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Tube,
plot::VectorField2d,
plot::VectorField3d,
plot::Waterman, plot::XRotate,
plot::ZRotate
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Description
These options accept functions that define the color of a plot at arbitrary points.

Using FillColorType and LineColorType, the user can control the color of many
graphical objects. The setting providing the most detailed (and most complicated)
control is Functional. In this case, a color function must be provided using one of
LineColorFunction, FillColorFunction.

A color function can be a list of three or four expressions.

If three expressions are given, they specify RGB colors. If four expressions are given, they
specify RGBA colors. See the introduction for more details on color specifications.

The expressions may contain the identifiers bound in the corresponding object. For
example, in a plot::Function2d(sin(x), x=0..PI), the color function may refer
to x. More formally, the expressions may contain the identifiers found in the attributes
XName, YName, ZName, UName, VName, and ParameterName of the plot object they are
found in.

All of these expressions must, for values in the given ranges, evaluate to real numbers in
the range . Real values outside this range do not yield errors, they are simply clipped.

See also “Example 1” on page 24-1301.

Alternatively, a color function can be a procedure or function environment.

A procedure (or a function environment) used as a color function must return lists of
three or four real numbers in the range . Real values outside this range are clipped.
(If this function ever returns a list of four numbers, it must always do so.) A list of three
numbers is interpreted as an RGB color, while a list of four values is interpreted as an
RGBA color. See the introduction for more details on color specifications.

The number and meaning of arguments a color function is called with depends on the
object type. Informally, we have:

Type (abbreviated) Parameters

Conformal(f(z)) z, Re(f(z)), Im(f(z)), flag (with flag
= 1 or flag = 2)

Curve2d(x(u),y(u)) u, x(u), y(u)
Curve3d(x(u),y(u),z(u)) u, x(u), y(u), z(u)
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Type (abbreviated) Parameters

Cylindrical(r(u,v),phi(u,v),z(u,v))u, v, r(u,v), phi(u,v), z(u,v), x(u),
y(u), z(u)

Density(f(x,y)) x, y, f(x,y)
Dodecahedron See below.
Function2d(f(x)) x, f(x)
Function3d(f(x,y)) x, y, f(x,y)
Hexahedron See below.
Icosahedron See below.
Implicit2d(f(x,y), Contours=[c]) x, y, D([1],f)(x,y), D([2],f)(x,y), c
Implicit3d(f(x,y,z),

Contours=[c])

x, y, z, D([1],f)(x,y,z), D([2],f)
(x,y,z), D([3],f)(x,y,z), c

Matrixplot x, y, z
Octahedron See below.
Polar([r(t),phi(t)]) t, r(t), phi(t), x(t), y(t)
Polygon2d([..,[xi,yi],..]) xi, yi, i
Polygon3d([..,[xi,yi,zi],..]) xi, yi, zi, i
Rootlocus(p(z, u)) u, Re(z), Im(z)
Spherical(r(u,v),phi(u,v),thet(u,v))u, v, r(u,v), phi(u,v), thet(u,v), x, y,

z

Streamlines2d(v(x,y), w(x, y)) x, y, v(x,y), w(x,y), t, l, n
Surface(x(u,v),y(u,v),z(u,v)) u, v, x(u,v), y(u,v), z(u,v)
SurfaceSTL See below.
SurfaceSet See below.
Tetrahedron See below.
Tube See below.
VectorField2d(v(x,y),w(x,y)) x, y, v(x,y), w(x,y)
XRotate(f(x)) x, phi, x, y(x,phi), z(x,phi)
ZRotate(f(t)) t, phi, x(t,phi), y(t,phi),

f(t)(=z(t,phi))
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Additionally, for animated objects, the current value of the animation parameter is
provided.

Dodecahedron, Hexahedron, Icosahedron, SurfaceSTL, SurfaceSet, and
Tetrahedron are built from triangles; the color functions are called once for each vertex
of these triangles and are passed the number of the triangle (an integer count starting at
1), the coordinates of the vertex and the animation parameter, if that is used.

For plot::Tube, the color functions are given the coordinates of the currently visited
point on the central curve, followed by the coordinates of the point on the surface,
followed by the animation parameter, if any. (That makes seven arguments altogether.)

The examples below show different usage environments of color functions for some of the
object types listed above.

Examples

Example 1

By default, most 3D-objects in MuPAD get “height coloring”:

plot(plot::Function3d(sin(x)*y^3))
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To change the direction of this color, you can use FillColorFunction:

xmin := -5:

xmax := 5:

color := zip(RGB::Red, RGB::CornflowerBlue,

             (a, b) -> (x-xmin)/(xmax-xmin)*a

                      +(xmax-x)/(xmax-xmin)*b)

plot(plot::Function3d(sin(x)*y^3,

         FillColorFunction = color))
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Example 2

Animated color functions can be combined with static objects:

plot(

  plot::Curve2d([sin(3*x), sin(4*x + 1)], x = 0..2*PI,

                LineColorFunction = ((u, x, y, a) ->

                             [(u-a)/5, (u-a)/5, 1]),

                a = -5..6)

    )
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cf := (i, x, y, z, a) -> [RGB::Red,

                          RGB::Green,

                          RGB::Blue][(floor(a*i)

                                       mod 3) + 1]:

plot(plot::Icosahedron(FillColorFunction = cf,

                       a = 0..9))
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Example 3

A color function should generate values in RGB color space. Since a plot::Box does not
allow a FillColorFunction, we use six (trivial) Surface objects to show the outside of
this color space:

rgb := (u, v, x, y, z) -> [x, y, z]:

plot(plot::Surface(formula, u = 0..1, v = 0..1,

                   FillColorFunction = rgb)

     $ formula in [[0, u, v], [1, u, v],

                   [u, 0, v], [u, 1, v],

                   [u, v, 0], [u, v, 1]],

     plot::Box(0..1, 0..1, 0..1, Filled = FALSE,

               LineColor = RGB::Black.[0.25]),

     Scaling = Constrained, Axes = None,

     ULinesVisible = FALSE, VLinesVisible = FALSE,

     Lighting = None, CameraDirection = [4, 7, 3])
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RGB colors are a very technical way of defining a color. The HSV color space is more
popular with designers, since there the “hue” (i.e., the perceived color type) is not a
combination of three numbers but rather one of the numbers making up a color:

hsv := (u, v, r, phi, z) -> RGB::fromHSV([180/PI*phi, r, z]):

plot(plot::Cylindrical([z, phi, z], z = 0..1, phi = 0..2*PI,

                       FillColorFunction = hsv),

     plot::Cylindrical([r, phi, 1], r = 0..1, phi = 0..2*PI,

                       FillColorFunction = hsv),

     plot::Circle3d(1, [0, 0, 1], [0, 0, 1],

                    Color = RGB::Black.[0.25]),

     ZXRatio = 1.5, Scaling = Unconstrained,

     Axes = None, Lighting = None,

     ULinesVisible = FALSE, VLinesVisible = FALSE,

     CameraDirection = [-17, -12, 3])
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Example 4

HSV color space is especially suitable for quick coloring of cylindrical,polar, or spherical
plots, due to its circular nature:

hsv := (u, v, r, phi,thet) ->

    RGB::fromHSV([180/PI*(phi+(thet+2)^3/PI^2),

                  3/4+sin(u)/4, 1]):

plot(plot::Spherical([1, u, v], u = 0..2*PI, v = 0..PI,

                     FillColorFunction = hsv))
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There are other examples, where the cyclic nature comes in handy, too:

hsv := (x, y, z) -> RGB::fromHSV([150*z, 1, 1]):

plot(plot::Function3d(sin(x*y)*(x-y), x = -3..3, y = -3..3,

                      Submesh = [2, 2], FillColorFunction = hsv))

24-1308



 LineColorFunction, FillColorFunction

The following example takes a long time to compute. Reducing the values set for Mesh
results in a shorter computation, while higher values lead to an image with finer details:

c := 0.377+0.2*I:

julia := proc(x, y)

           local i, z;

         begin

           i := 0;

           z := float(x + I*y);

           while i < 1000 and abs(z) < 4 do

             z := z^2 + c;

             i := i + 1;

           end_while;

           i;

         end_proc:

Jcol := (x, y, i) -> if i >= 1000 then

                       RGB::Black

                     else

                       RGB::fromHSV([i, 1, 3/4+i/2000])

                     end:

plot(plot::Density(julia, x = 0..0.5, y=0.25..0.75,

                   FillColorFunction = Jcol,
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                   Mesh = [100,75]))

Example 5

Another way of getting a smooth color transition is to use a periodic function in between,
for example trigonometric ones (note the (1+sin(a))/2: we need values between 0 and
1):

plot(

  plot::Polar([r*surd(r, 3), r], r = -4*PI..4*PI,

               AdaptiveMesh = 2,

               LineColorFunction = [(sin(r) + 1)/2,

                                    (cos(r/2) + 1)/2,

                                    1/3],

               LineWidth = 1*unit::mm)

    )
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This also applies for cyclic colors in terms of time:

plot(plot::Function3d(sin(x)+sin(y), x = -5..5, y = -5..5,

          FillColorFunction = [(x+5)/10, (y+5)/10,

                               abs(x+y+5*cos(a))/15,

                               (1+cos(x+y^2-a))/2],

          a = 0..2*PI),

     CameraDirection = [-1, -3, 3],

     Scaling = Constrained)
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Algorithms

Animation is handled by the general framework, not the individual objects. Therefore,
the framework also supplies the animation parameter to the color functions.

See Also

MuPAD Functions
FillColor | FillColorType | LineColor | LineColorType
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Matrix2d, Matrix3d
Transformation matrices

Value Summary
Matrix2d, Matrix3d Optional List of four real-valued

expressions

Description
Matrix2d, Matrix3d represent the transformation matrices of transformation objects.

The general transformation objects plot::Transform2d and plot::Transform3d
allow to apply the affine-linear transformation  to 2D and 3D objects,
respectively. Depending on the dimension, the transformation matrix A can be accessed
and changed via the attributes Matrix2d, Matrix3d, of the transformation object. The
shift vector b can be accessed and changed via the attribute Shift.

When setting the matrix attribute, matrices, arrays, lists of lists, and plain lists are
accepted. Internally, however, the matrix data are always stored as a plain list

[A1, 1, A1, 2, A2, 1, A2, 2]

in 2D or

[A1, 1, A1, 2, …, A3, 2, A3, 3]

in 3D, respectively, representing the matrix row by row. When reading the matrix by a
slot access, this plain list is returned.

The entries of Matrix2d, Matrix3d can be animated.

Examples

Example 1

We apply a linear transformation to an arrow:
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A := matrix([[1, -1], [1, 1]]):

g := plot::Transform2d(A, plot::Arrow2d([0, 0], [0, 1])):

plot(g)

The Matrix2d corresponding to the transformation is stored as a plain list in the
corresponding slot of g:

g::Matrix2d

delete f, g:

See Also

MuPAD Functions
Scale | Shift
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MeshList, MeshListType, MeshListNormals
Triangulation data

Value Summary
MeshList Mandatory List of arithmetical expressions
MeshListType Optional ColorQuads, Quads, QuadStrip,

Triangles, TriangleFan, or
TriangleStrip

MeshListNormals Optional BeforeFacets, BeforePoints,
BehindFacets, BehindPoints, or None

Graphics Primitives

Objects Default Values

plot::SurfaceSet MeshListType: Triangles

MeshListNormals: None

Description
MeshList is a list of data defining the triangulation of a 3D surface of type
plot::SurfaceSet.

MeshListType specifies how the data in the list MeshList are to be interpreted.

MeshListNormals specifies which of the data in the list MeshList are to be interpreted
as normals.

MeshList contains coordinates of points (and optional normals) of either triangles or
quads which define a mesh of a 3D surface. The points must be given homogenous: If
a normal is given, it must be given for all points or facets, respectively. The attribute
MeshListType specifies how these points are to be interpreted for plotting the surface.
The attribute MeshListNormals specifies whether the list contains normal vectors and
at which positions they located.
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About normals and facet orientation: The facets (triangles or quads) define the surface
of a 3D object. As such, each facet is part of the boundary between the interior and the
exterior of the object. The orientation of the facets (which way is "out" and which way is
"in") is specified redundantly in two ways which should be consistent: First, the direction
of the normal is outward. Second, which is most commonly used now-a-day, the facet
vertices are listed in counter-clockwise order when looking at the object from the outside
(right-hand rule). Normals must be given as unit vectors.

MeshList must not contain color values. Use the color functions LineColorFunction
and FillColorFunction instead.

MeshListType specifies how the points in MeshList are to be interpreted. Supported
mesh list types are:

Value Info Description

Triangles Set of separate
triangles

Each tuple of three points define one new
triangle.

TriangleFan Triangle fan The first triangle is defined by the first three
points. The next triangles are defined by the
first point, the previous point and the current
point.

TriangleStrip Triangle strip The first triangle is defined by the first three
points. The next triangles are defined by the
two previous points and the current point.

Quads Set of separate
quads

Each tuple of four points define one new quad.

QuadStrip Strip of quads The first quad is defined by the first four points.
The next quads are defined by the two previous
points and the next two points.

MeshListNormals specifies whether MeshList contains normal vectors and at which
positions they are located. Valid options are:

Value Description

None No normals are specified.
BeforePoints A normal is given before each point.
BehindPoints A normal is given behind each point.
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Value Description

BeforeFacets A normal is given before each triangle or quad, respectively.
This option is only valid for MeshListType = Triangles and
MeshListType = Quads.

BehindFacets A normal is given behind each triangle or quad, respectively.
This option is only valid for MeshListType = Triangles and
MeshListType = Quads.

Examples

Example 1

We create a triangle set with normals in front of each triangle and plot this object, a
tetrahedron, afterwards:

meshList:= [  

   0.0 ,  0.0 , -1.0 ,

  -1.5 , -1.5 ,  1.4 ,  0.0,  1.7, 1.4, 1.5, -1.5,  1.4,

   0.0 ,  0.88,  0.47,

  -1.5 , -1.5 ,  1.4 ,  1.5, -1.5, 1.4, 0.0,  0.0, -1.4,

  -0.88, -0.41,  0.25,

   1.5 , -1.5 ,  1.4 ,  0.0,  1.7, 1.4, 0.0,  0.0, -1.4,

   0.88, -0.41,  0.25,

   0.0 ,  1.7 ,  1.4 , -1.5, -1.5, 1.4, 0.0,  0.0, -1.4

]:

plot(plot::SurfaceSet(meshList, 

                      MeshListType = Triangles,

                      MeshListNormals = BeforeFacets)):
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delete meshList:

Example 2

See plot::SurfaceSet for further examples.

See Also

MuPAD Functions
OutputFile | UseNormals
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Name
Name of an object

Value Summary

Optional Text string

Graphics Primitives

Objects Name Default Values

plot::AmbientLight, plot::Arc2d,
plot::Arc3d, plot::Arrow2d,
plot::Arrow3d, plot::Bars2d,
plot::Bars3d, plot::Box,
plot::Boxplot, plot::Camera,
plot::Canvas, plot::Circle2d,
plot::Circle3d, plot::ClippingBox,
plot::Cone, plot::Conformal,
plot::CoordinateSystem2d,
plot::CoordinateSystem3d,
plot::Curve2d, plot::Curve3d,
plot::Cylinder, plot::Cylindrical,
plot::Density, plot::DistantLight,
plot::Dodecahedron,
plot::Ellipse2d, plot::Ellipse3d,
plot::Ellipsoid, plot::Function2d,
plot::Function3d,
plot::Group2d, plot::Group3d,
plot::Hatch, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron,
plot::Implicit2d, plot::Implicit3d,
plot::Inequality, plot::Integral,
plot::Iteration, plot::Line2d,
plot::Line3d, plot::Listplot,
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Objects Name Default Values

plot::Lsys, plot::Matrixplot,
plot::MuPADCube, plot::Octahedron,
plot::Ode2d, plot::Ode3d,
plot::Parallelogram2d,
plot::Parallelogram3d,
plot::Piechart2d, plot::Piechart3d,
plot::Plane, plot::Point2d,
plot::Point3d, plot::PointLight,
plot::PointList2d,
plot::PointList3d, plot::Polar,
plot::Polygon2d, plot::Polygon3d,
plot::Prism, plot::Pyramid,
plot::QQplot, plot::Raster,
plot::Rectangle, plot::Reflect2d,
plot::Reflect3d, plot::Rootlocus,
plot::Rotate2d, plot::Rotate3d,
plot::Scale2d, plot::Scale3d,
plot::Scatterplot, plot::Scene2d,
plot::Scene3d, plot::Sequence,
plot::SparseMatrixplot,
plot::Sphere, plot::Spherical,
plot::SpotLight,
plot::Streamlines2d, plot::Sum,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Text2d,
plot::Text3d, plot::Transform2d,
plot::Transform3d,
plot::Translate2d,
plot::Translate3d, plot::Tube,
plot::Turtle, plot::VectorField2d,
plot::VectorField3d,
plot::Waterman, plot::XRotate,
plot::ZRotate
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Description

The attribute Name sets the name of a graphical object. The object is displayed by this
name in the legend and the interactive object browser of the graphics tool.

Giving a name to a graphical object has no significance whatsoever for the graphical
appearance of the object. The main purpose of the name is to make it easier to identify
the object in the interactive “object browser” of the MuPAD graphics tool (see section
Viewer, Browser, and Inspector: Interactive Manipulation of this document).

If no name is specified, the type of the object is diplayed in the object browser.

If the legend is “switched on” by setting LegendVisible to TRUE, the name slot of an
object is used (if if exists), unless the object has a specific LegendText.

Name has a special technical semantics for objects of type plot::Hatch. The bounding
functions or curves of the hatch are referenced via their name slot. If the bounding
function or curve has no name slot, it is set implicitly by plot::Hatch to the output of
expr2text of the function/curve. Cf. “Example 2” on page 24-1322Example 2.

Examples

Example 1

The first two of the following function objects are given the names Sin and Cos,
respectively. Generate the graphics and doubleclick on the plot. The two function objects
are visible under their names in the object browser. The third function is just labeled as a
'Function2d' object. Also the legend uses this labeling:

plot(plot::Function2d(sin(x), x = -PI..PI, Name = "Sin",

                      Color = RGB::Red),

     plot::Function2d(cos(x), x = -PI..PI, Name = "Cos",

                      Color = RGB::Green),

     plot::Function2d(x/PI , x = -PI..PI, Color = RGB::Blue),

     LegendVisible = TRUE)

24-1321



24 Graphics and Animations

Example 2

By default, an object does not have a Name entry:

f := plot::Function2d(cos(x), x=0..PI):

f::Name

When creating a plot::Hatch object, the Name slot is set implicitly for the border
function(s):

h := plot::Hatch(f):

f::Name

We plot the hatch with its bounding function:

plot(h, f)
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Doubleclick on the graphics and observe the way the objects are labeled in the object
inspector.

delete f, h:

See Also

MuPAD Functions
Function1 | Function2 | LegendText | Title
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Nodes

Number of subintervals or list of x-values for subintervals

Value Summary

Optional List of arithmetical expressions

Graphics Primitives

Objects Nodes Default Values

plot::Integral [10]

Description

Nodes is a positive number of subintervals for numeric approximation of integrals. The
given interval for approximation is divided into the given number of subintervals, all of
the same width.

Otherwise, Nodes can be a list of x-values for dividing the given interval. The interval is
divided into subintervals at the given x-values.

When a number is given for Nodes, the number can be given as a list with this one
number, too.

When a list with x-values is given, the left and right border of the whole (approximation)
interval can be omitted. In this case, the number of subintervals is the number of given x-
values plus one.

Nodes outside the approximation interval are ignored. Duplicate values are ignored.

The nodes need not be ordered.
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Examples

Example 1

Nodes determines the number of rectangles for Riemann sums:

f := plot::Function2d(x*(x+4)*(x-4)):

plot(plot::Integral(f, Nodes = 25, IntMethod = RiemannLower), f)

Increasing of Nodes decreases the error or the approximation:

plot(plot::Integral(f, Nodes = 125, IntMethod = RiemannLower), f)
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delete f:

Example 2

We request a specific division into subintervals:

f := plot::Function2d(sin(x), x = -2*PI..2*PI):

plot(

  plot::Integral(f, Nodes = [i*PI/2 $ i = -4..4],

                    IntMethod = Trapezoid),

    f)
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The subintervals do not need to be of equal width:

f := plot::Function2d(sin(x), x = 0..PI):

plot(

  plot::Integral(f, [PI/3, PI/2, 2*PI/3],

                  IntMethod = Trapezoid),

   f)
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delete f:

See Also

MuPAD Functions
IntMethod
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Normal, NormalX, NormalY, NormalZ
Normal vector of circles and discs, etc. in 3D

Value Summary

Normal Library wrapper for
“[NormalX, NormalY]” (2D),
“[NormalX, NormalY,
NormalZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

NormalX, NormalY,
NormalZ

Mandatory MuPAD expression

Graphics Primitives

Objects Default Values

plot::Prism, plot::Pyramid Normal: [0, 0, 0]

NormalX, NormalY, NormalZ: 0
plot::Arc3d, plot::Circle3d,
plot::Ellipse3d, plot::Plane,
plot::Reflect3d

Normal: [0, 0, 1]

NormalX, NormalY: 0

NormalZ: 1

Description

Normal determines the normal vector of the plane of the 3D circle, prism or pyramid. It
is given by a list or vector of 3 components.

NormalX etc. refer to the x, y, z components of this vector.

The values of these attributes can be animated.

With Filled = TRUE, a circle becomes a disc.
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Examples

Example 1

We create a circle around the origin lying in the x-y plane:

c := plot::Circle3d(1, [0, 0, 0], [0, 0, 1])

The second argument in plot::Circle3d is the center, the third argument is the
normal. Internally, these vectors are stored as the attributes Center and Normal and
can be changed by assigning a new value:

c::Normal := [-0.5, 0.5, 1]:

plot(c):

delete c:
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Example 2

Normal can be animated:

plot(plot::Circle3d(1, [0, 0, 0], [cos(a), sin(a), 0],

                    a = 0 .. 2*PI, Filled = TRUE),

     Axes = Origin):

Example 3

Normal can be used to create crooked prisms, pyramids and frustums of pyramids. If this
attribute is set to [0, 0, 0], the axis between Base and Top ist used as normal vector:

plot(plot::Scene3d(plot::Pyramid(2,[0,0,0],1,[0,4,4], Normal=[0,0,0])),

     plot::Scene3d(plot::Pyramid(2,[0,0,0],1,[0,4,4], Normal=[0,0,1]))):

24-1331



24 Graphics and Animations

24-1332



 ParameterName, ParameterBegin, ParameterEnd, ParameterRange

ParameterName, ParameterBegin, ParameterEnd,
ParameterRange

Name of the animation parameter

Value Summary

ParameterBegin,
ParameterEnd,
ParameterName

Optional MuPAD expression

ParameterRange [ParameterBegin ..
ParameterEnd]

Range of arithmetical
expressions

Description

Typically, animations are triggered by passing an equation of the form a =
`a_{min}`..`a_{max}` in the definition of an object.

This is equivalent to passing the attributes ParameterName = a, ParameterBegin =
amin, and ParameterEnd = amax in the definition of the object.

The attribute ParamterRange = `a_{min}`..`a_{max}` is equivalent to setting both
ParameterBegin = amin and ParameterEnd = amax.

Animations are defined object by object, not frame by frame.

In most cases, the user will define animations by passing an equation of the form a =
`a_{min}`..`a_{max}` in the definition of an object. Any equation of this form that
is not essential for the definition of a static version of the object is interpreted as an
animation parameter and an animation range.

Passing such an equation is equivalent to setting the three attributes

ParameterName = a, ParameterBegin = amin, ParameterEnd = amax.

24-1333



24 Graphics and Animations

The attribute ParamterRange = `a_{min}`..`a_{max}` serves as a short cut for
setting both ParameterBegin = amin and ParameterEnd = amax.

The values amin and amax are the parameter values at the beginning and the end of the
real time range in which an object is animated. This time range is set by the attributes
TimeBegin and TimeEnd, respectively.

The parameter range `a_{min}`..`a_{max}` is mapped linearly to this time interval.

The name of the animation parameter may be an identifier or an indexed identifier. This
parameter is a `global variable' that may be present in other quantities or attributes
defining the object.

The definition of an object may involve procedures rather than symbolic expressions.
E.g., a 2D function plot may be defined by plot::Function2d(f, x = x_0..x_1),
where f is a procedure accepting one numerical argument x from the plot range between
x0 und x1.

In an animated version plot::Function2d(f, x = x_0..x_1, a =
`a_{min}`..`a_{max}`), the function f will be called with two arguments x and a.
Thus, f may be defined as a function accepting two parameters x, a or as a function with
one parameter x, using the animation parameter a as a global variable.

Each animated object has its own animation parameter and range
`a_{min}`..`a_{max}`. It is not necessary that several animated objects in a scene
use the same parameter name. It is not used to synchronize the animations.

The synchronization is determined uniquely by the linear correspondence between the
animation range `a_{min}`..`a_{max}` and the real time span of the animation set
by the attributes TimeBegin and TimeEnd of the object.

Examples

Example 1

The definition of a static 2D function plot involves the specification of one range (for the x
variable):

plot(plot::Function2d(sin(x), x = 0 .. 2*PI))
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When a “surplus equation” a = `a_{min}`..`a_{max}` is passed, this is interpreted
as a call to animate the function. The animation parameter may turn up in the
expression defining the function:

plot(plot::Function2d(sin(x + a), x = a .. 2*PI, a = 0..PI))
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A static function plot in 3D requires two ranges (for the x and the y variable):

plot(plot::Function3d(sin(x)*sin(y), x = 0 .. PI, y = 0..PI))
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Now, a third equation a = `a_{min}`..`a_{max}` triggers an animation:

plot(plot::Function3d(sin(x + a)*sin(y - a), x = 0 .. PI, 

                      y = 0..PI, a = 0..PI))
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Example 2

We define an animated 2D function plot:

f := plot::Function2d(x^3 + a*x, x = -1..1, a = 0..2):

plot(f):

24-1338



 ParameterName, ParameterBegin, ParameterEnd, ParameterRange

We swap the role of the independent variable x and the animation parameter a:

[f::XName, f::ParameterName] := [f::ParameterName, f::XName]:

[f::XRange, f::ParameterRange] := 

                              [f::ParameterRange, f::XRange]:

The function now is drawn as a function of a for various values of the “time” x:

plot(f)
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delete f:

Example 3

We demonstrate the use of procedures in the definition of animated functions.

We wish to plot the eigenvalues of a matrix that depends on two parameters x and a.
The eigenvalues are computed numerically in the procedure eigenvals. This procedure
uses option remember, because it is called thrice with the same arguments by the
procedures f1, f2, f3 that produce the smallest, the middle, and the largest eigenvalue,
respectively, as functions of the parameters x and a:

eigenvals := 

   proc(x, a) 

     option remember;

     local A;

   begin

     A:= matrix([[1,  a,  x ],

                 [a,  2, a*x],

                 [x, a*x, 3 ]]):
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     sort(numeric::eigenvalues(A)):

   end_proc:

f1:= (x, a) -> eigenvals(x, a)[1]:

f2:= (x, a) -> eigenvals(x, a)[2]:

f3:= (x, a) -> eigenvals(x, a)[3]:

plot(plot::Function2d(f1, x = -2..2, a = 0..2,

                      Color = RGB::Red),

     plot::Function2d(f2, x = -2..2, a = 0..2,

                      Color = RGB::Green),

     plot::Function2d(f3, x = -2..2, a = 0..2,

                      Color = RGB::Blue)):

delete eigenvals, f1, f2, f3:

See Also

MuPAD Functions
Frames | TimeBegin | TimeEnd | TimeRange | VisibleAfter | VisibleAfterEnd
| VisibleBefore | VisibleBeforeBegin | VisibleFromTo
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More About
• “The Number of Frames and the Time Range”
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Points2d, Points3d

List of 2D points

Value Summary

Points2d, Points3d Mandatory List of 2D points

Graphics Primitives

Objects Default Values

plot::PointList2d,
plot::PointList3d, plot::Polygon2d,
plot::Polygon3d

 

Description

Points2d is the list of 2D points in objects of type plot::PointList2d and
plot::Polygon2d, respectively.

Points3d is the list of 3D points in objects of type plot::PointList3d and
plot::Polygon3d, respectively.

One usually defines such an object p, say, via

p := plot::PointList2d([[x1, y1], [x2, y2], …]) or

p := plot::Polygon2d([[x1, y1], [x2, y2], …]), respectively.

Internally, the points are stored as the attribute

Points2d = [[x1, y1], [x2, y2], …]
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and can be accessed via the slot call p::Points2d. Assigning a new list to p::Points2d
changes the object p accordingly.

The corresponding statements hold for 3D point lists and polygons.

The points in the list Points2d may consist of lists with 2 elements (the x and y
coordinates) or of lists with 3 elements (the x and y coordinates and the RGB color of the
point).

The points in the list Points3d may consist of lists with 3 elements (the x, y, and z
coordinates) or of lists with 4 elements (the x, y, z coordinates and the RGB/RGBa color of
the point).

If you specify the color of one point, you must specify the colors of all other points in the
list. See “Example 2” on page 24-1346.

The points in the lists Points2d and Points3d can be animated.

Examples

Example 1

We define a 2D polygon with 5 points:

p := plot::Polygon2d([[0, 0], [1, 1], [1, 2], [2, 2], [2, 1]]):

plot(p):
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The points in the polygon can be accessed as the Points2d attribute:

pts := p::Points2d

We change the polygon be assigning a new point list:

p::Points2d := [pts[1], pts[5], pts[2], pts[4], pts[3]]:

plot(p):

24-1345



24 Graphics and Animations

delete p, pts:

Example 2

Points2d and Points3d allow you to specify the colors of the points. For example,
the following list contains two points. The plot function uses the default color for both
points on the plot:

Coords := [[3, 4], [5, 5]];

plotCoords := plot::PointList2d(Coords):

plot(plotCoords, PointSize = 5)
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To access and modify the list of points, use Points2d. For example, include the color of
each point in the list:

plotCoords::Points2d := [[3, 4, RGB::Red], [5, 5, RGB::Green]]

Now the first point appears in red, and the second point appears in green:

plot(plotCoords, PointSize = 5)
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If you specify the color of one point, you must also specify the colors of all other points in
the list:

plotCoords::Points2d := [[3, 4, RGB::Red], [5, 5]]

Error: The attribute 'Points2d' in the 'PointList2d' object must be a list of lists of two expressions and an optional color value. [plot]
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Position, PositionX, PositionY, PositionZ

Positions of cameras, lights, and text objects

Value Summary

Position Library wrapper
for “[PositionX,
PositionY]” (2D),
“[PositionX, PositionY,
PositionZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

PositionX, PositionY,
PositionZ

Mandatory MuPAD expression

Graphics Primitives

Objects Default Values

plot::Camera, plot::DistantLight,
plot::PointLight, plot::SpotLight,
plot::Text2d, plot::Text3d

 

plot::Point2d Position: [0, 0]

PositionX, PositionY: 0
plot::Plane, plot::Point3d,
plot::Reflect3d

Position: [0, 0, 0]

PositionX, PositionY, PositionZ: 0

Description

Position determines the positions of cameras, lights, and text objects.

PositionX etc. refer to the single coordinate values of the position.
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The attribute Position refers to the location of a camera taking pictures of a 3D scene.
Its a value is a list or vector of coordinates.

Also the position of light sources illuminating the 3D scene is set by Position.

Further, Position determines the coordinates where text objects are to be placed.

These attributes can be animated. Animating a camera position one can realize a flight
through a 3D scene.

By default, the position of lights is given in model coordinates that have nothing to do
with the camera that is used to view the scene.

The attribute CameraCoordinates also allows to position a light relative to the camera.
In particular, the light moves automatically, when the camera is moved.

Examples

Example 1

We define a 3D scene consisting of a function, a distant light, and a camera. The light
shines from the direction of the camera:

f := plot::Function3d(sin(x^2 - y^2), x = -2..2, y = -2..2, 

                      Color = RGB::White):

light := plot::DistantLight([3, 4, 5], [0, 0, 0], 0.75,

                            Color = RGB::Yellow): 

camera := plot::Camera([3, 4, 5], [0, 0, 0], 0.25*PI):

plot(f, light, camera)
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We animate the camera position but keep the light position fixed:

camera::Position := [3*sqrt(2)*cos(a + PI/4), 

                     4*sqrt(2)*sin(a + PI/4), 

                     5*(0.7 + 0.3*cos(2*a))]:

camera::ParameterName := a:

camera::ParameterRange := 0..2*PI:

plot(f, light, camera)
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Using the same objects, we fix the camera and animate the light position:

camera::Position := [3, 4, 5]:

camera::Frames := 1:

light::Position := [3*sqrt(2)*cos(a + PI/4), 

                    4*sqrt(2)*sin(a + PI/4), 

                    5]:

light::ParameterName := a:

light::ParameterRange := 0..2*PI:

plot(f, light, camera)

24-1352



 Position, PositionX, PositionY, PositionZ

delete f, light, camera:

See Also

MuPAD Functions
CameraCoordinates | CameraDirection | FocalPoint | SpotAngle | Target |
ViewingAngle
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Radius
Radius of circles, spheres etc.

Value Summary

Mandatory MuPAD expression

Graphics Primitives

Objects Radius Default Values

plot::Circle2d, plot::Circle3d,
plot::Cylinder, plot::Dodecahedron,
plot::Hexahedron,
plot::Icosahedron, plot::MuPADCube,
plot::Octahedron, plot::Piechart2d,
plot::Piechart3d, plot::Prism,
plot::Sphere, plot::Tetrahedron

1

plot::Waterman  

Description

Radius defines the radius of circles (plot::Circle2d and plot::Circle3d,
respectively), spheres (plot::Sphere), cylinders (plot::Cylinder), circumcircles
of regular bases of prisms (plot::Prism) and pie charts (plot::Piechart2d and
plot::Piechart3d, respectively). Also polyhedra such as plot::Dodecahedron use
this attribute to set their size.

Examples

Example 1

We generate a sphere around the origin with radius 2:
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s := plot::Sphere(2, [0, 0, 0])

The first argument in plot::Sphere is the radius, the second argument is the center.
Internally, these values are stored as the attributes Radius and Center, respectively.
We can access the objects' attributes and change them:

s::Radius, s::Center

s2 := plot::copy(s):

s2::Center := [4, 0, 0]:

s2::Radius := 1:

plot(s, s2):

delete s, s2:
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Example 2

The attribute Radius can be animated:

plot(plot::Sphere(a, [0, 0, 0], a = 1..2)):

Example 3

For a prism, the attribute Radius determines the radius of the circumcircle of its regular
bases:

plot(plot::Prism(1,Edges=5), plot::Circle3d(1)):
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See Also

MuPAD Functions
Base | Center | Normal | SemiAxes | Top
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RadiusFunction
Radius of a tube plot

Value Summary

Mandatory Arithmetical expression or function

Graphics Primitives

Objects RadiusFunction Default Values

plot::Tube 1/10

Description

RadiusFunction is the internal name of the radius function in plot::Tube.

With RadiusFunction = r(t), plot::Tube will draw (part of) a circle of radius r(t)
at the point (x(t), y(t), z(t)) around the central curve.

Usually, a user will have no need to access RadiusFunction directly, since it is set by
plot::Tube directly.

Examples

Example 1

By default, plot::Tube uses a constant radius of :

t := plot::Tube([sin(3*x), sin(2*x), sin(x)], x = 0..2*PI):

plot(t)
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To change this default, either set some other radius when creating the tube plot (see the
documentation of plot::Tube for this) or set RadiusFunction:

t::RadiusFunction := (1+sin(3*x)/2)/10:

plot(t)
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RationalExpression
Rational expression in a rootlocus plot

Value Summary

Mandatory MuPAD expression

Graphics Primitives

Objects RationalExpression Default Values

plot::Rootlocus  

Description

RationalExpression is the internal name of the expression whose roots are depicted
by plot::Rootlocus.

A rootlocus plot depicts the roots of a rational function p(z, u) in the complex plane,
depending on a parameter u. The expression p(z, u) is stored as the attribute
RationalExpression in the rootlocus object.

Usually, a user will have no need to access the attribute RationalExpression, since it
is set by plot::Rootlocus directly.

Examples

Example 1

We define a rootlocus plot:

r:= plot::Rootlocus(z^2 - 2*u*z + 0.81, u = -1..1):

plot(r)
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The function z2 - 2 u z + 0.81 is stored as the attribute r::RationalExpression in the
object r:

r::RationalExpression

We can redefine this attribute:

r::RationalExpression:= z^3 - 2*u*z + 0.81:

plot(r)

24-1362



 RationalExpression

24-1363



24 Graphics and Animations

Scale, ScaleX, ScaleY, ScaleZ
Scaling factors

Value Summary

Scale Library wrapper for
“[ScaleX, ScaleY]” (2D),
“[ScaleX, ScaleY,
ScaleZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

ScaleX, ScaleY, ScaleZ Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::Scale2d Scale: [1, 1]

ScaleX, ScaleY: 1
plot::Scale3d Scale: [1, 1, 1]

ScaleX, ScaleY, ScaleZ: 1

Description

Scale defines the scaling factors used by plot::Scale2d and plot::Scale3d.

ScaleX etc. correspond to the factors in the single coordinate directions.

The scaling objects plot::Scale2d and plot::Scale3d apply the scaling
transformation  with the matrix A = diag(sx, sy) in 2D and A = diag(sx, sy, sz) in
3D, repectively.

Scale is the list [sx, sy] resp. [sx, sy, sz] of the scaling factors. The attributes
ScaleX etc. correspond to sx etc.
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These attributes can be animated.

Examples

Example 1

We start with a 2D circle:

c := plot::Circle2d(3, [3, 3]):

We apply a scaling transformation:

S := plot::Scale2d([2, 3], c):

plot(c, S):

The scaling factors are stored as the Scale attribute in the scaling object S:

S::Scale, S::ScaleX, S::ScaleY
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We change the scaling factors:

S::Scale := [-2, -3]:

plot(c, S):

delete c, S:

See Also

MuPAD Functions
Matrix2d | Matrix3d | Shift
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SemiAxes, SemiAxisX, SemiAxisY, SemiAxisZ
Semi axes of ellipses and ellipsods

Value Summary

SemiAxes Library wrapper
for “[SemiAxisX,
SemiAxisY]” (2D),
“[SemiAxisX, SemiAxisY,
SemiAxisZ]” (3D)

List of two or three real-
valued expressions

SemiAxisX, SemiAxisY,
SemiAxisZ

Mandatory MuPAD expression

Graphics Primitives

Objects Default Values

plot::Ellipsoid SemiAxes: [1, 2, 3]

SemiAxisX: 1

SemiAxisY: 2

SemiAxisZ: 3
plot::Ellipse2d SemiAxes: [2, 1]

SemiAxisX: 2

SemiAxisY: 1
plot::Ellipse3d SemiAxisX: 2

SemiAxisY: 1
plot::Arc2d SemiAxes: [1, 1]

SemiAxisX, SemiAxisY: 1
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Objects Default Values

plot::Arc3d SemiAxisX, SemiAxisY: 1

Description

SemiAxes determines the lengths of the semi axes of ellipses in 2D and ellipsoids in 3D.

SemiAxes = [rx, ry] sets the lengths rx, ry of the semi axes of an ellipse in 2D.

SemiAxes = [rx, ry, rz] sets the lengths rx, ry, rz of the semi axes of an ellipsoid in
3D.

SemiAxisX = rx, SemiAxisY = ry, SemiAxisZ = rz refer to the semi axis in the x, y,
and z direction, respectively.

The values of these attributes can be animated.

Examples

Example 1

We create an ellipse around the origin with semi axes 1 and 2:

e := plot::Ellipse2d(1, 2, [0, 0]):

The first two arguments in plot::Ellipse2d are the semi axes. Internally, they are
stored as the attributes SemiAxisX and SemiAxisY and can be changed by assigning
new values:

e::SemiAxisX, e::SemiAxisY, e::SemiAxes

e::SemiAxes := [3, 2]:

plot(e):
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delete e:

Example 2

SemiAxes can be animated:

plot(plot::Ellipse2d(a, 3 - a, [3, 3], a = 1..2)):
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See Also

MuPAD Functions
Radius
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Shift, ShiftX, ShiftY, ShiftZ
Shift vector

Value Summary
Shift Library wrapper for

“[ShiftX, ShiftY]” (2D),
“[ShiftX, ShiftY,
ShiftZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

ShiftX, ShiftY, ShiftZ Optional MuPAD expression

Description
Shift is the shift vector in transformation objects. ShiftX etc. refer to the single
components of this vector.

The general transformation objects plot::Transform2d and plot::Transform3d
allow to apply the affine-linear transformation  to 2D and 3D objects,
respectively. The shift vector b can be accessed and changed via the attribute Shift.

Special transformation objects such as plot::Translate2d, plot::Translate3d
correspond to special matrices A and shifts b. They also allow to access and change the
shift vector by the attribute Shift.

When setting the Shift attribute, matrices, arrays, and lists with 2 or 3 elements are
accepted. Internally, however, the shift data are always stored as the list [b1, b2] in 2D
or [b1, b2, b3] in 3D, respectively. When reading the vector by a slot access, this list is
returned.

The entries of Shift can be animated.

Examples

Example 1

We move an arrow along the y-axis:
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T := plot::Translate2d([0, a], a = 0..5,

                       plot::Arrow2d([0, 0], [1, 1])):

plot(T)

The Shift vector is the first argument in the call above. It is stored in the corresponding
slot of the translation object T:

T::Shift

We change the shift vector:

T::Shift := [a, 0]:

plot(T)
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delete T:

See Also

MuPAD Functions
Matrix2d | Matrix3d | Scale
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Size

Size of a point list

Value Summary

Optional MuPAD expression

Graphics Primitives

Objects Size Default Values

plot::QQplot  

Description

Size represents the number of plot points in a plot::QQplot.

A plot::QQplot accepts two data lists, displaying a set of plot points with coordinate
values given by quantile values of the data. By default, the number of plot points is
chosen as the minimum of the sizes of the two data lists. In principle, however, the
number of plot points can be chosen independently of the data sizes. With Size = n, the
number of plot points of the QQ plot can be set to any positive integer value n.

The value of Size can be animated.

Examples

Example 1

We create a QQ plot:
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data1 := [stats::normalRandom(0, 1)() $ k = 1..100]:

data2 := [stats::normalRandom(0, 1)() $ k = 1..200]:

qq := plot::QQplot(data1, data2):

plot(qq)

By default, the minimum of the data sizes is chosen as the number of plot points in the
plot (i.e., Size = 100 in this case). We reduce the number of plot points by setting the
value of Size explicitly:

qq::Size := 30:

plot(qq)
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The number of plot points can also be specified directly by passing the attribute Size =
n. In the following graphics, this value is animated:

plot(plot::QQplot(data1, data2, Size = n, n = 10..200));
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delete data1, data2, qq:
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Tangent1, Tangent1X, Tangent1Y, Tangent1Z,
Tangent2, Tangent2X, Tangent2Y, Tangent2Z
First vector spanning parallelograms

Value Summary

Tangent1 Library wrapper
for “[Tangent1X,
Tangent1Y]” (2D),
“[Tangent1X, Tangent1Y,
Tangent1Z]” (3D)

List of 2 or 3 expressions,
depending on the dimension

Tangent1X, Tangent1Y,
Tangent1Z, Tangent2X,
Tangent2Y, Tangent2Z

Mandatory MuPAD expression

Tangent2 Library wrapper
for “[Tangent2X,
Tangent2Y]” (2D),
“[Tangent2X, Tangent2Y,
Tangent2Z]” (3D)

List of 2 or 3 expressions,
depending on the dimension

Graphics Primitives

Objects Default Values

plot::Parallelogram3d Tangent1: [0, 1, 0]

Tangent1X, Tangent1Z, Tangent2Y,
Tangent2Z: 0

Tangent1Y, Tangent2X: 1

Tangent2: [1, 0, 0]
plot::Parallelogram2d Tangent1: [0, 1]

Tangent1X, Tangent2Y: 0
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Objects Default Values

Tangent1Y, Tangent2X: 1

Tangent2: [1, 0]

Description

Tangent1 and Tangent2 determine the vectors spanning the parallelograms created by
plot::Parallelogram2d and plot::Parallelogram3d.

Parallelograms created by plot::Parallelogram2d and plot::Parallelogram3d
are specified by a vector defining the Center and two vectors Tangent1 and Tangent2
which span the plane of the parallelogram. The lengths of the “tangent” vectors are half
the side lengths of the parallelogram:

Depending on the dimension, the vectors Tangent1, Tangent2 are given by lists or
vectors of two or three components.

The attributes Tangent1X etc. represent the x, y, z coordinates of these vectors.
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The values of these attributes can be animated.

Examples

Example 1

The “tangent vectors” of a parallelogram are accessible via the slots Tangent1 and
Tangent2:

p := plot::Parallelogram3d([1, 1, 1], [0, 1, 0], [0, 0, 1],

                           Color = RGB::Blue): 

p::Tangent1, p::Tangent2

plot(p, 

     plot::Arrow3d([1, 1, 1], [1, 2, 1], Color = RGB::Red),

     plot::Arrow3d([1, 1, 1], [1, 1, 2], Color = RGB::Red),

     Axes = Origin, Scaling = Constrained):
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We change the “tangent vectors”:

p::Tangent1 := [1, 0, 0]:  p::Tangent2 := [1, 1,  0]:

plot(p, 

     plot::Arrow3d([1, 1, 1], [2, 1, 1], Color = RGB::Red),

     plot::Arrow3d([1, 1, 1], [2, 2, 1], Color = RGB::Red),

     Axes = Origin, Scaling = Constrained):

delete p:

See Also

MuPAD Functions
Center
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Text

Text of a text object

Value Summary

Mandatory String or function

Graphics Primitives

Objects Text Default Values

plot::Text2d, plot::Text3d  

Description

The attribute Text represents the text of a text object. It may be a text string or a
function generating a text string at runtime.

The Text attribute represents the text in text objects of type plot::Text2d and
plot::Text3d. When creating a text object such as

t := plot::Text2d("hello world", [0, 0]),

the text is the first argument. Internally, it is stored as the attribute Text = "hello
world" and can be accessed and changed via a slot call t::Text.

In most cases, the text is given as a string.

Note: Note that this string has to be quoted when changing it in the “property inspector”
of the interactive graphics tool (see section Viewer, Browser, and Inspector: Interactive
Manipulation of this document). If the string contains white space and the quotes are
removed, the recalculation following the change will produce a syntax error!
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A text given by a fixed string cannot be animated. Use a procedure to create animated
texts.

The attribute Text can be a procedure that is called at runtime with the animation
parameter as the only input parameter. The return value is used as the text of the
text object in the corresponding frame of the animation. If the result is not a string,
expr2text is applied to the return value.

Examples

Example 1

Usually, a text is given by a string:

t := plot::Text2d("hello world", [1, 1], TextFont = [24]):

plot(t)

We access and change the text:
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t::Text

t::Text := "HELLO WORLD":

plot(t)

The same message in 3D:

plot(plot::Text3d("HELLO WORLD", [1, 1, 1],

                  TextFont = [24]))
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delete t:

Example 2

The text of a text object can be animated if the text string is provided by a procedure.
We use stringlib::formatf to format the animation parameter that is passed to the
procedure as a floating-point number for each frame of the animation:

plot(plot::Rectangle(-1..1, -1..1),

     plot::Text2d(a -> stringlib::formatf(a, 2, 5)." sec",

                  [0, 0], a = 0..20,

                  TextFont = [60], 

                  HorizontalAlignment = Center, 

                  VerticalAlignment = Center),

     Axes = Frame, Frames = 201, TimeRange = 0..20)
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Here is the corresponding example in 3D:

plot(plot::Text3d(a -> stringlib::formatf(a, 2, 5)." sec",

                  [0, 0, 0], a = 0..20,

                  TextFont = [60], 

                  HorizontalAlignment = Center, 

                  VerticalAlignment = Center),

     Axes = Frame, Frames = 201, TimeRange = 0..20)
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See Also

MuPAD Functions
Billboarding | HorizontalAlignment | stringlib::formatf | TextFont |
VerticalAlignment
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TextOrientation
Orientation of a 3D text

Value Summary

Optional List of six real-valued expressions

Graphics Primitives

Objects TextOrientation Default Values

plot::Text3d [1, 0, 0, 0, 0, 1]

Description

TextOrientation defines the orientation of a text object of type plot::Text3d. Its
orientation in 3 space is given by 2 directions. There is the “writing direction” from the
first character of the text to the last. The direction from the bottom of the characters to
their top shall be referred to as the “up direction”.

Together with the anchor point of the text (the attribute Position of a plot::Text3d
object), these two directions define a 2 dimensional plane in 3D. You may regard this
plane as the sheet onto which the text is written.

The value of TextOrientation has to be a list of 6 numerical values or expressions
of the animation parameter. The first 3 components of this list define the “writing
direction”, the last 3 components the “up direction”.

The length of these two vectors is irrelevant, only their directions matter. The lengths
should not be zero, though.

Further, the “up direction” should be orthogonal to the “writing direction”. If this is not
the case, the “up direction” is automatically replaced by the vector orthogonal to the
“writing direction” that lies in the plane given by the original directions.
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“Writing direction” and “up direction” should not be parallel.

Note: TextOrientation only has an effect in conjunction with the attribute
Billboarding = FALSE.

TextOrientation can be animated.

The effect of TextOrientation is independent of the HorizontalAlignment and
VerticalAlignment of the text relative to its anchor point (Position).

While TextOrientation is used for orienting 3D texts, TextRotation is used for
rotating a 2D text of type plot::Text2d.

Examples

Example 1

The “writing direction” of the text object text1 is rotated around an axis parallel to the
z-axis. The “up direction” of its characters is the z direction.

The “writing direction” of the text object text2 is parallel to the x axis. The animated
“up direction” is rotated around an axis pointing into the x direction:

p1 := plot::Point3d([1, 2, 3], PointSize = 3*unit::mm):

text1 := plot::Text3d("Hello world!", [1, 2, 3], 

             TextOrientation = [cos(a), sin(a), 0, 0, 0, 1],

             a = 0..2*PI, TextFont = [24],

             Billboarding = FALSE):

p2 := plot::Point3d([3, 6, 9], PointSize = 3*unit::mm):

text2 := plot::Text3d("MuPAD", [3, 6, 9], 

             TextOrientation = [1, 0, 0, 0, sin(a), cos(a)],

             a = 0..2*PI, TextFont = [24],

             Billboarding = FALSE):

plot(p1, text1, p2, text2)
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When Billboarding is set to TRUE, TextOrientation does not have any effect:

text1::Billboarding := TRUE:

text2::Billboarding := TRUE:

plot(p1, text1, p2, text2)
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delete p1, text1, p2, text2:

See Also

MuPAD Functions
TextRotation
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TextRotation

Rotation of a 2D text

Value Summary

Optional Real-valued expression (interpreted in
radians)

Graphics Primitives

Objects TextRotation Default Values

plot::Integral, plot::Text2d 0

Description

TextRotation sets the rotation angle of a 2D text object relative to the horizontal axis.

TextRotation rotates a text object of type plot::Text2d. around its anchor point
(the attribute Position of a plot::Text2d object). Note that a plot::Text2d allows
different alignments (HorizontalAlignment, VerticalAlignment) relative to this
point.

The rotation angle in TextRotation = angle has to be entered in radians. If positive,
the rotation is counterclockwise.

The rotation of the text refers to 'rotation on the screen'. It is invariant w.r.t. rescaling of
the canvas, aspect ratio etc.

While TextRotation is used for rotating 2D texts, TextOrientation is used for
rotating a 3D text of type plot::Text3d.

TextRotation can be animated.
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Examples

Example 1

We draw a rectangle and a rotating text inside:

r := plot::Rectangle(0..4, 0..4):

p := plot::Point2d([2, 2], PointSize = 3*unit::mm):

text := plot::Text2d("Hello world!", [2, 2], 

                     HorizontalAlignment = Center,

                     TextRotation = a, a = 0..2*PI,

                     TextFont = [24]):

plot(r, p, text):

We change the alignment of the text w.r.t. its anchor point [2, 2]:

text:: HorizontalAlignment := Left:

text:: VerticalAlignment := Top:

plot(r, p, text):

24-1393



24 Graphics and Animations

text:: HorizontalAlignment := Center:

text:: VerticalAlignment := Center:

plot(r, p, text):
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delete r, p, text:

See Also

MuPAD Functions
TextOrientation
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UName, URange, UMin, UMax, VName, VRange,
VMin, VMax, XName, XRange, XMin, XMax,
YName, YRange, YMin, YMax, ZName, ZRange,
ZMin, ZMax
Names and values ranges of parameters

Value Summary

UMax, UMin, UName, VMax,
VMin, VName, XMax, XMin,
XName, YMax, YMin, YName,
ZMax, ZMin, ZName

Mandatory MuPAD expression

URange [UMin .. UMax] Range of arithmetical
expressions

VRange [VMin .. VMax] Range of arithmetical
expressions

XRange [XMin .. XMax] Range of arithmetical
expressions

YRange [YMin .. YMax] Range of arithmetical
expressions

ZRange [ZMin .. ZMax] Range of arithmetical
expressions

Graphics Primitives

Objects Default Values

plot::Curve2d, plot::Curve3d,
plot::Function2d, plot::XRotate

URange, XRange: -5 .. 5

UMin, XMin: -5

UMax, XMax: 5
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 UName, URange, UMin, UMax, VName, VRange, VMin, VMax, XName, XRange, XMin, XMax, YName, YRange, YMin, YMax,
 ZName, ZRange, ZMin, ZMax

Objects Default Values

plot::Bars3d, plot::ClippingBox,
plot::Conformal, plot::Cylindrical,
plot::Density, plot::Implicit2d,
plot::Implicit3d,
plot::Inequality, plot::Iteration,
plot::Listplot, plot::Matrixplot,
plot::Polar, plot::Raster,
plot::Rootlocus, plot::Sequence,
plot::SparseMatrixplot,
plot::Spherical,
plot::Streamlines2d, plot::Sum,
plot::Surface, plot::Sweep,
plot::Tube, plot::VectorField2d,
plot::VectorField3d

 

plot::ZRotate XRange: 0 .. 5

XMin: 0

XMax: 5
plot::Function3d XRange, YRange: -5 .. 5

XMin, YMin: -5

XMax, YMax: 5
plot::Box XRange, YRange, ZRange: -1 .. 1

XMin, YMin, ZMin: -1

XMax, YMax, ZMax: 1
plot::Rectangle XRange, YRange: -1 .. 1

XMin, YMin: -1

XMax, YMax: 1
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Objects Default Values

plot::Hatch XRange: -infinity .. infinity

XMin: -infinity

XMax: infinity

Description

UName, VName, XName, YName, ZName specify the names of parameters defining
parametrized objects such as functions, curves and surfaces.

UMin, UMax, VMin, VMax, XMin, XMax, YMin, YMax, ZMin, ZMax specify the
minimal and maximal values of the range of the parameters.

URange, VRange, XRange, YRange, ZRange serve as shortcuts for setting UMin,
UMax etc.

In most cases, the user has no need for using these attributes explicitly, because
parameter ranges are set implicitly during creation of plot objects. For example, the
definition

f := plot::Function2d(sin(x), x = 0 .. 2*PI)

sets the attribute values XName = x, XMin = 0, XMax = 2*PI automatically for the
function object f. In fact, you can define f by the equivalent call

f := plot::Function2d(sin(x), XName = x, XMin = 0, XMax = 2*PI).

In the interactive object browser of the MuPAD graphics tool (see section Viewer,
Browser, and Inspector: Interactive Manipulation of this document), you will not see a
specification such as x = 0 .. 2*PI, but you find separate entries for XName, XMin,
XMax.

The use of 'X', 'Y', 'Z' as opposed to 'U', 'V' depends on the type of the object.

Functions of type plot::Function2d refer to the independent variable (“the
parameter”) as XName.

Functions of type plot::Function3d refer to the two independent variables as XName,
YName.
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 UName, URange, UMin, UMax, VName, VRange, VMin, VMax, XName, XRange, XMin, XMax, YName, YRange, YMin, YMax,
 ZName, ZRange, ZMin, ZMax

Parametrized curve of type plot::Curve2d or plot::Curve3d refer to the curve
parameter as UName.

Parametrized surfaces of type plot::Surface, plot::XRotate etc. refer to the two
surface parameters as UName, VName.

Various other plot objects of type plot::Implicit2d, plot::VectorField2d etc.
also use the attributes XName etc. Here, the ranges from XMin to XMax etc. denote the
coordinate range in which the objects are placed.

After a definition such as f := plot::Function2d(sin(x), x = 0 .. 2*PI), the
parameter and its range can be accessed as the slots f::XName, f::XMin, f::XMax.

The slot f::XRange yields the range 0 .. 2*PI consisting of the values of XMin
and XMax. Setting the attribute XRange is a short cut for setting XMin and XMax
simultaneously. For example, setting f::XRange := -PI .. PI is equivalent to
setting f::XMin := -PI and f::XMax := PI.

Of course, the analogous statements hold for YRange, ZRange, URange, VRange, too.

Examples

Example 1

We define a function object:

f1 := plot::Function2d(sin(x), x = 0.. 2*PI)

This is equivalent to:

f2 := plot::Function2d(sin(x), XName = x, XMin = 0, XMax = 2*PI)

The objects f1 and f2 have the same entries for the parameter x:

f1::XName = f1::XMin .. f1::XMax, f2::XName = f2::XRange
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Changing the x range via XRange is equivalent to changing XMin and XMax separately:

f1::XRange := -PI..PI:

f2::XMin := -PI: 

f2::XMax := PI:

f1, f2

delete f1, f2:

See Also

MuPAD Functions
AngleBegin | AngleEnd | AngleRange | ParameterBegin | ParameterEnd |
ParameterName | ParameterRange | TimeBegin | TimeEnd | TimeRange
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 ViewingBox, ViewingBoxXMin, ViewingBoxXMax, ViewingBoxXRange, ViewingBoxYMin, ViewingBoxYMax, ViewingBoxYRange,
 ViewingBoxZMin, ViewingBoxZMax, ViewingBoxZRange

ViewingBox, ViewingBoxXMin, ViewingBoxXMax,
ViewingBoxXRange, ViewingBoxYMin,
ViewingBoxYMax, ViewingBoxYRange,
ViewingBoxZMin, ViewingBoxZMax,
ViewingBoxZRange
Visible coordinate range

Value Summary

ViewingBox Library wrapper for
“[ViewingBoxXMin
.. ViewingBoxXMax,
ViewingBoxYMin ..
ViewingBoxYMax]” (2D),
“[ViewingBoxXMin
.. ViewingBoxXMax,
ViewingBoxYMin ..
ViewingBoxYMax,
ViewingBoxZMin ..
ViewingBoxZMax]” (3D)

See below

ViewingBoxXMax,
ViewingBoxXMin,
ViewingBoxYMax,
ViewingBoxYMin,
ViewingBoxZMax,
ViewingBoxZMin

Optional MuPAD expression

ViewingBoxXRange [ViewingBoxXMin ..
ViewingBoxXMax]

See below

ViewingBoxYRange [ViewingBoxYMin ..
ViewingBoxYMax]

See below

ViewingBoxZRange [ViewingBoxZMin ..
ViewingBoxZMax]

See below
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Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d ViewingBox: [Automatic .. Automatic,
Automatic .. Automatic]

ViewingBoxXMin, ViewingBoxXMax,
ViewingBoxYMin, ViewingBoxYMax:
Automatic

ViewingBoxXRange, ViewingBoxYRange:
Automatic .. Automatic

plot::CoordinateSystem3d ViewingBox: [Automatic .. Automatic,
Automatic .. Automatic, Automatic ..
Automatic]

ViewingBoxXMin, ViewingBoxXMax,
ViewingBoxYMin, ViewingBoxYMax,
ViewingBoxZMin, ViewingBoxZMax:
Automatic

ViewingBoxXRange, ViewingBoxYRange,
ViewingBoxZRange: Automatic ..
Automatic

Description

The ViewingBox attributes set the coordinate range that is visible in a plot.

ViewingBoxXMin = xmin, ViewingBoxXMax = xmax, equivalent to ViewingBoxXRange =
xmin .. xmax, restricts the visibility to x values between xmin and xmax. ViewingBoxYMin
etc. work analogously.

Setting ViewingBox = [xmin .. xmax, ymin .. ymax] in 2D and ViewingBox = [xmin
.. xmax, ymin .. ymax, zmin .. zmax] in 3D

respectively, serves as a short cut for setting the single entries ViewingBoxXMin etc.
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 ViewingBox, ViewingBoxXMin, ViewingBoxXMax, ViewingBoxXRange, ViewingBoxYMin, ViewingBoxYMax, ViewingBoxYRange,
 ViewingBoxZMin, ViewingBoxZMax, ViewingBoxZRange

The ViewingBox of a plot is computed automatically by default. It is chosen as the
smallest box containing all graphical objects in the coordinate system.

The values xmin etc. of the ViewingBox attributes must be real numerical expressions
or the special flag Automatic. With Automatic, the system chooses appropriate values
automatically.

When plotting a function or a curve with singularities, a heuristics is used to set a
“reasonable” restricted viewing box for the plot. This heuristics sometimes fails to
produce a pleasing picture. We recommended to request an explicit ViewingBox in such
a case.

When using plot::Rotate2d or plot::Rotate3d, the ViewingBox may be larger
than necessary. Its size is computed by rotating the common viewing box of all objects in
the rotation object. See “Example 4” on page 24-1411.

The ViewingBox of an animation is automatically chosen as the union of all viewing
boxes of the frames of the animation.

The ViewingBox itself cannot be animated. However, the object plot::ClippingBox
may be used to implement animated visibility regions.

Examples

Example 1

In the following plot, the horizontal axis is placed at the minmal y-value produced by the
function:

f := plot::Function2d(exp(-x^2), x = -1.7 .. 1.7):

plot(f)
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We wish to make the x-axis appear at y = 0. To this end, we request the y range to start
with y = 0 and use Automatic to let MuPAD find the maximal y-value automatically:

plot(f, ViewingBoxYRange = 0..Automatic)
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 ViewingBox, ViewingBoxXMin, ViewingBoxXMax, ViewingBoxXRange, ViewingBoxYMin, ViewingBoxYMax, ViewingBoxYRange,
 ViewingBoxZMin, ViewingBoxZMax, ViewingBoxZRange

The previous command is equivalent to:

plot(f, ViewingBoxYMin = 0)
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delete f:

Example 2

Here is a 3D plot of a singular function:

f := plot::Function3d((sin(x) + cos(y))/(x^2 + y^2),

                      x = -PI..PI, y = -PI..PI):

plot(f)
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 ViewingBox, ViewingBoxXMin, ViewingBoxXMax, ViewingBoxXRange, ViewingBoxYMin, ViewingBoxYMax, ViewingBoxYRange,
 ViewingBoxZMin, ViewingBoxZMax, ViewingBoxZRange

We specify the upper z value of the visible volume:

plot(f, ViewingBoxZRange = Automatic..3)

24-1407



24 Graphics and Animations

delete f:

Example 3

Usually, a plot uses the whole drawing aera:

f := plot::Function2d(ln(x), x = 0..2):

plot(f)
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 ViewingBox, ViewingBoxXMin, ViewingBoxXMax, ViewingBoxXRange, ViewingBoxYMin, ViewingBoxYMax, ViewingBoxYRange,
 ViewingBoxZMin, ViewingBoxZMax, ViewingBoxZRange

We extend the viewing box in x direction to make it symmetric w.r.t. x:

plot(f, ViewingBoxXRange = -2..2)
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We specify the viewing box both in x and y direction:

plot(f, ViewingBox = [-2..2, -2..2])
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 ViewingBox, ViewingBoxXMin, ViewingBoxXMax, ViewingBoxXRange, ViewingBoxYMin, ViewingBoxYMax, ViewingBoxYRange,
 ViewingBoxZMin, ViewingBoxZMax, ViewingBoxZRange

delete f:

Example 4

The following viewing box is larger than expected:

c := plot::Ellipse2d(1, 0.5, [0, 0]):

r := plot::Rotate2d(c, PI/3):

plot(r)
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The reason is how the viewing box of the rotation is computed. The blue rectangle is the
viewing box of the ellipse. The rotated viewing box is the black rectangle. The viewing
box of the rotation is the smallest rectangle containing the rotated viewing box of the
ellipse (the dashed black rectangle):

rect1 := plot::Rectangle(-1..1, -0.5..0.5, Color = RGB::Black):

rect2 := plot::modify(rect1, Color = RGB::Blue):

r := plot::Rotate2d(c, rect1, a, a = 0..PI/2):

X := cos(a) + 0.5*sin(a):

Y := 0.5*cos(a) + sin(a):

rect3 := plot::Rectangle(-X..X, -Y..Y, a = 0..PI/2,

                         Color = RGB::Black,

                         LineStyle = Dashed):

plot(r, rect2, rect3)
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 ViewingBox, ViewingBoxXMin, ViewingBoxXMax, ViewingBoxXRange, ViewingBoxYMin, ViewingBoxYMax, ViewingBoxYRange,
 ViewingBoxZMin, ViewingBoxZMax, ViewingBoxZRange

delete c, r, rect1, rect2, rect3, X, Y:

Example 5

The x-range from - π to π is generated by all frames of the following animation and does
not change from frame to frame:

plot(plot::Function2d(sin(x), x = -PI + a .. a, a = 0 .. PI)):
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See Also

MuPAD Functions
AffectViewingBox

MuPAD Graphical Primitives
plot::ClippingBox
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Visible
Visibility

Value Summary

Optional FALSE, or TRUE

Graphics Primitives

Objects Visible Default Values

plot::AmbientLight, plot::Arc2d,
plot::Arc3d, plot::Arrow2d,
plot::Arrow3d, plot::Bars2d,
plot::Bars3d, plot::Box,
plot::Boxplot, plot::Camera,
plot::Circle2d, plot::Circle3d,
plot::ClippingBox, plot::Cone,
plot::Conformal, plot::Curve2d,
plot::Curve3d, plot::Cylinder,
plot::Cylindrical, plot::Density,
plot::DistantLight,
plot::Dodecahedron,
plot::Ellipse2d, plot::Ellipse3d,
plot::Ellipsoid, plot::Function2d,
plot::Function3d,
plot::Group2d, plot::Group3d,
plot::Hatch, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron,
plot::Implicit2d, plot::Implicit3d,
plot::Inequality, plot::Integral,
plot::Iteration, plot::Line2d,
plot::Line3d, plot::Listplot,
plot::Lsys, plot::Matrixplot,
plot::MuPADCube, plot::Octahedron,

TRUE
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Objects Visible Default Values

plot::Ode2d, plot::Ode3d,
plot::Parallelogram2d,
plot::Parallelogram3d,
plot::Piechart2d, plot::Piechart3d,
plot::Plane, plot::Point2d,
plot::Point3d, plot::PointLight,
plot::PointList2d,
plot::PointList3d, plot::Polar,
plot::Polygon2d, plot::Polygon3d,
plot::Prism, plot::Pyramid,
plot::QQplot, plot::Raster,
plot::Rectangle, plot::Rootlocus,
plot::Scatterplot, plot::Sequence,
plot::SparseMatrixplot,
plot::Sphere, plot::Spherical,
plot::SpotLight,
plot::Streamlines2d, plot::Sum,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Text2d,
plot::Text3d, plot::Tube,
plot::Turtle, plot::VectorField2d,
plot::VectorField3d,
plot::Waterman, plot::XRotate,
plot::ZRotate

Description

Visible = FALSE makes an object invisible.

All graphical objects react to the attribute Visible. With Visible = FALSE, an object
is made invisible. This attribute can be set in the property inspector of the interactive
viewer (see section Viewer, Browser, and Inspector: Interactive Manipulation in this
document) to make a selected object disappear without needing to change and re-execute
the plot call.

Invisible objects do influence the viewing box of their coordinate systems.

24-1416



 Visible

Visible cannot be animated. However, the attributes VisibleBefore,
VisibleBeforeBegin, VisibleAfter, and VisibleAfterEnd serve for some form of
animated visibility. See section Frame by Frame Animations in this document for further
details and examples.

Examples

Example 1

Consider the following scene:

plot(plot::Function2d(sin(x), x = -2..2),

     plot::Point2d([1, 2], PointSize = 5*unit::mm))

Obviously, the point influences the visible region of the coordinates. This region is not
affected by making the point invisible:

plot(plot::Function2d(sin(x), x=-2..2),

     plot::Point2d([1, 2], PointSize = 5*unit::mm,
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                    Visible = FALSE))

See Also

MuPAD Functions
VisibleAfter | VisibleAfterEnd | VisibleBefore | VisibleBeforeBegin
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 XFunction1, YFunction1, ZFunction1, XFunction2, YFunction2, ZFunction2

XFunction1, YFunction1, ZFunction1, XFunction2,
YFunction2, ZFunction2

Parametrization of the curves in sweep surfaces

Value Summary

XFunction1, XFunction2,
YFunction1, YFunction2,
ZFunction1, ZFunction2

Mandatory Arithmetical expression or
function

Graphics Primitives

Objects Default Values

plot::Sweep  

Description

XFunction1 etc. are the parametrization functions of the curves delimiting a surface of
type plot::Sweep.

In most cases, the user passes parametrizations [x1(u), y1(u), z1(u)] and [x2(u),
y2(u), z2(u)] as expressions of a curve parameter u directly to plot::Sweep.
Internally, these expressions are stored as the attributes XFunction1 = x1(u), …,
ZFunction2 = z2(u) in the sweep object. They can be accessed and changed via the
corresponding slots "XFunction1" etc. of the sweep object.

The attributes XFunction1 etc. can also be defined by procedures instead of symbolic
expressions.
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Examples

Example 1

Typically, the user sets the parametrization of the bounding curves directly by
passing lists of corresponding expressions to plot::Sweep. Here, XFunction1 = u,
YFunction1 = 1 - u

2, ZFunction1 = u3, XFunction2 = u, YFunction2 = 1 -
u
2, ZFunction2 = 0:

s := plot::Sweep([u, 1 - u^2, u^3], [u, 1 - u^2, 0], u = 0..1)

plot(s):

s::XFunction1, s::YFunction1, s::ZFunction1
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 XFunction1, YFunction1, ZFunction1, XFunction2, YFunction2, ZFunction2

s::XFunction2, s::YFunction2, s::ZFunction2

We change the z-component of the “target curve”:

s::ZFunction2 := s::ZFunction1 / 2:

s

plot(s)

Instead of expressions, the attributes XFunction1 etc. can be defined by procedures:

s::ZFunction2 :=  u -> u:

s
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plot(s)

delete s:
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 Axes

Axes
Type of the coordinate axes

Value Summary

Inherited Automatic, Boxed, Frame, None, or
Origin

Graphics Primitives

Objects Axes Default Values

plot::CoordinateSystem2d Automatic

plot::CoordinateSystem3d Boxed

Description

Axes determines the type of the coordinate axes.

The following types of coordinate axes are available:

• Automatic: The axes are displayed as a coordinate cross. The cross point is not taken
from the attribute AxesOrigin, but is chosen automatically.

• Origin: The axes are displayed as a coordinate cross. The cross point is set by the
attribute AxesOrigin. If AxesOrigin is not set, the origin of the coordinate system
is used as the default cross point. If the AxesOrigin is not inside the “viewing box” of
the scene, parts of the axes may not be visible (cf. “Example 4” on page 24-1429).

• Boxed: The axes are displayed as a box around the graphical scene. It corresponds to
the “viewing box” of the scene and may be set explicitly by the attribute ViewingBox.

• Frame: As with Axes = Boxed, the edges of the “viewing box” are used. However,
only the labeled edges are displayed.

• None: No coordinate axes are displayed.
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As an alternative to Axes = None, you may also “switch the axes off” by setting
AxesVisible = FALSE in the plot command or via the interactive object inspector (see
Viewer, Browser, and Inspector: Interactive Manipulation in this document).

Single coordinate axes can also be “switched off” separately via XAxisVisible = FALSE
etc.

Examples

Example 1

We demonstrate the axes styles in 2D:

b1 := plot::Rectangle(0..1, 0..1, Color = RGB::Red):

b2 := plot::Rectangle(3..4, 3..4, Color = RGB::Blue):

plot(plot::Scene2d(b1, b2, Axes = None),

     plot::Scene2d(b1, b2, Axes = Boxed),

     plot::Scene2d(b1, b2, Axes = Frame),

     plot::Scene2d(b1, b2, Axes = Automatic),

     plot::Scene2d(b1, b2, Axes = Origin),

     plot::Scene2d(b1, b2, Axes = Origin,

                   AxesOrigin = [2, 2]),

     plot::Scene2d::BorderWidth = 0.5*unit::mm,

     Rows = 2):
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 Axes

delete b1, b2:

Example 2

We demonstrate the axes styles in 3D:

b1 := plot::Box(0..1, 0..1, 0..1, Color = RGB::Red):

b2 := plot::Box(3..4, 3..4, 3..4, Color = RGB::Blue):

plot(plot::Scene3d(b1, b2, Axes = None),

     plot::Scene3d(b1, b2, Axes = Boxed),

     plot::Scene3d(b1, b2, Axes = Frame),

     plot::Scene3d(b1, b2, Axes = Automatic),

     plot::Scene3d(b1, b2, Axes = Origin),

     plot::Scene3d(b1, b2, Axes = Origin,

                   AxesOrigin = [2, 2, 2]),

     plot::Scene3d::BorderWidth = 0.5*unit::mm,

     Rows = 2):
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delete b1, b2:

Example 3

Here is a hyperboloid with various axes:

f1 := plot::Function3d(sqrt(0.2 + x^2 + y^2),

                       x = -1..2, y = -1..2):

f2 := plot::Function3d(-sqrt(0.2 + x^2 + y^2),

                       x = -1..2, y = -1..2):

plot(f1, f2):
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plot(f1, f2, Axes = Origin,

     AxesOrigin = [-1, -1, 0]):
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plot(f1, f2, Axes = Frame):
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 Axes

delete f1, f2:

Example 4

We draw a portion of the normal distribution density:

F := plot::Function2d(stats::normalPDF(0, 1)(x), 

                      x = -2.5 .. 2.5):

plot(F)
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Note that with the default setting Axes = Automatic, the x-axis does not pass through
the origin but is shifted along the y-axis to fit into the viewing box of the scene.

With Axes = Origin, the x-axis passes through the origin, but is outside the viewing
box:

plot(F, Axes = Origin)
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We extend the viewing box in the y direction:

plot(F, Axes = Origin, ViewingBoxYRange = 0 .. Automatic):
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delete F:

See Also

MuPAD Functions
AxesInFront | AxesLineColor | AxesLineWidth | AxesOrigin | AxesTips
| AxesTitleAlignment | AxesTitleFont | AxesTitles | AxesVisible |
YAxisTitleOrientation
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AxesInFront

Coordinate axes in front of or behind graphical objects?

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects AxesInFront Default Values

plot::CoordinateSystem2d FALSE

Description

AxesInFront = TRUE versus AxesInFront = FALSE places 2D axes in front of or behind
the graphical objects in the scene.

By default, the coordinate axes are plotted behind the graphical objects in a scene.
Consequently, the objects may cover the axes. If only line objects and points are present
in a 2D scene, this is desirable in most cases.

However, if there are filled areas such as filled polygons in the scene, the view to the
axes, tick marks, and tick labels may be totally blocked. In such a situation, you may
want to draw the axes in front of the objects to guarantee visibility of the axes.

Although the default setting is AxesInFront = FALSE, some objects which create filled
areas send AxesInFront = TRUE as a “hint” (see the section Primitives Requesting
Special Scene Attributes: “Hints” of this documentation).

This attribute is available only in 2D.
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Examples

Example 1

It is usually desirable to let line objects and points cover the axes:

p1 := plot::Point2d(0, 0.62, PointSize = 3*unit::mm,

                    Color = RGB::Green):

p2 := plot::Point2d(0, 0.93, PointSize = 3*unit::mm,

                    Color = RGB::Green):

f1 := plot::Function2d(x^5*heaviside(x), x = -1 .. 1,

                       Color = RGB::Blue):

f2 := plot::Function2d(x^2, x = -1 .. 1, Color = RGB::Red):

plot(plot::Scene2d(p1, p2, f1, f2, AxesInFront = FALSE),

     plot::Scene2d(p1, p2, f1, f2, AxesInFront = TRUE)):

However, you probably want to have the axes visible in front of the following density plot:

d := plot::Density(exp(-x^2 - y^2), x = -1..1, y = -1 ..1,

                   FillColor = RGB::White):
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plot(plot::Scene2d(d, AxesInFront = FALSE),

     plot::Scene2d(d, AxesInFront = TRUE),

     Layout = Horizontal):

Note that density objects of type plot::Density automatically send the “hint”
AxesInFront = TRUE, so there is no need to set this attribute explicitly:

plot(d):
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delete p1, p2, f1, f2, d:

See Also

MuPAD Functions
Axes | AxesLineColor | AxesLineWidth | AxesOrigin | AxesTips |
AxesTitleAlignment | AxesTitleFont | AxesTitles | AxesVisible |
YAxisTitleOrientation
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 AxesLineColor

AxesLineColor

Color of the coordinate axes

Value Summary

Inherited Color

Graphics Primitives

Objects AxesLineColor Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

RGB::Black

Description

AxesLineColor sets the RGB color for the coordinate axes and the tick marks.

The color of the axes titles and the tick labels are not set by AxesLineColor. Choose
an appropriate color for the corresponding fonts via the attributes AxesTitleFont and
TicksLabelFont.

Examples

Example 1

The black axes are not appropriate for the following density graphics:

d := plot::Density(exp(-x^2 - y^2), x = -1..1, y = -1 ..1,

                   FillColor = RGB::Black):

plot(d)
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We change the axes color to `white' via AxesLineColor. The titles and the tick labels
along the axes do not turn white, automatically, so we choose white font colors as well:

plot(d, 

     AxesLineColor = RGB::White,

     AxesTitleFont = [RGB::White],

     TicksLabelFont = [RGB::White],

     plot::Scene2d::BackgroundColor = RGB::Black)
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delete d:

Example 2

We display the axes as a blue box:

plot(plot::Sphere(1, [0, 0, 0]), AxesLineColor = RGB::Blue):
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See Also

MuPAD Functions
Axes | AxesInFront | AxesLineWidth | AxesOrigin | AxesTips |
AxesTitleAlignment | AxesTitleFont | AxesTitles | AxesVisible |
YAxisTitleOrientation
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AxesLineWidth
Width of the coordinate axes

Value Summary

Inherited Positive output size

Graphics Primitives

Objects AxesLineWidth Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

0.18

Description

AxesLineWidth sets the width for the coordinate axes, the ticks, and the AxesTips.
The value should be specified as an absolute physical length including a length unit such
as AxesLineWidth = 0.5*unit::mm. Numbers without a physical unit give the size in
mm.

The length of the ticks is not affected by AxesLineWidth and can be set separately via
TicksLength.

Note that the graphics cannot always react to small changes of the line width because of
the discretization into pixels.

Examples

Example 1

We create a graticule with “thick” wiring. Note that LineWidth refers to the circles,
whereas AxesLineWidth relates to the coordinate axes:
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plot(plot::Circle2d(1, [0, 0]), 

     TicksDistance = 0.2, TicksLength = 5*unit::mm,

     LineWidth = 0.5*unit::mm, AxesLineWidth = 1*unit::mm):

See Also

MuPAD Functions
Axes | AxesInFront | AxesLineColor | AxesOrigin | AxesTips |
AxesTitleAlignment | AxesTitleFont | AxesTitles | AxesVisible |
TicksLength | YAxisTitleOrientation
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AxesOrigin, AxesOriginX, AxesOriginY, AxesOriginZ
Crosspoint of the coordinate axes

Value Summary

AxesOrigin Library wrapper
for “[AxesOriginX,
AxesOriginY]” (2D),
“[AxesOriginX,
AxesOriginY,
AxesOriginZ]” (3D)

See below

AxesOriginX,
AxesOriginY,
AxesOriginZ

Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d AxesOrigin: [0, 0]

AxesOriginX, AxesOriginY: 0
plot::CoordinateSystem3d AxesOrigin: [0, 0, 0]

AxesOriginX, AxesOriginY,
AxesOriginZ: 0

Description

AxesOrigin determines the crosspoint of the coordinate axes.

These attributes only have an effect with Axes = Origin. The coordinate axes are
displayed as a cross.
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The vector AxesOrigin determines the point where the coordinate axes cross.
Depending on the dimension of the scene, it is given by a list of 2 or 3 components.

AxesOriginX etc. refer to the x, y, z components of this point.

Note: If the crosspoint of the axes is not inside the “viewing box” of the scene, parts of the
axes may not be visible.

The viewing box may be set explicitly via the attribute ViewingBox. With Axes =
Automatic, the point given by AxesOrigin is ignored; the crosspoint of the axes is
chosen automatically inside the viewing box.

Examples

Example 1

We plot two spheres representing a planet with a moon. The coordinate axes cross at
their common center of gravity:

m1 := 1: x1 := 0: 

x2 := 1: m2 := 0.2:

earth := plot::Sphere(0.1, [x1, 0, 0], 

                      FillColor = RGB::SkyBlue):

moon := plot::Sphere(0.03, [x2, 0, 0], 

                     FillColor = RGB::Grey):

plot(earth, moon, Axes = Origin,

     YTicksNumber = None, ZTicksNumber = None, 

     AxesOrigin = [(m1*x1 + m2*x2)/(m1 + m2), 0, 0],

     ViewingBox = [-0.2 .. 1.1, -0.2..0.2, -0.2..0.2]):
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delete m1, m2, x1, x2, earth, moon:

See Also

MuPAD Functions
Axes | AxesInFront | AxesLineColor | AxesLineWidth | AxesTips |
AxesTitleAlignment | AxesTitleFont | AxesTitles | AxesVisible |
YAxisTitleOrientation
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AxesTips
Arrow tips at the coordinate axes?

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects AxesTips Default Values

plot::CoordinateSystem2d TRUE

plot::CoordinateSystem3d FALSE

Description

With AxesTips = TRUE, the coordinate axes are drawn with arrow tips.

This attribute only has an effect with Axes = Automatic or Axes = Origin. In both
cases the coordinate axes are displayed as a cross.

With AxesTips = TRUE, little arrows are drawn on the end of the coordinate axes
pointing into the positive direction.

The size of the arrow tips that are displayed as lines is controlled by AxesLineWidth.

AxesTips = FALSE suppresses any coordinate axes tips.

Examples

Example 1

In order to emphasize on AxesTips, we plot empty scenes. The tick marks are “switched
off” via TicksNumber = None:
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S1 := plot::Scene2d(AxesTips = FALSE):

S2 := plot::Scene2d(AxesTips = TRUE):

plot(S1, S2, TicksNumber = None, Layout = Horizontal):

S1 := plot::Scene3d(AxesTips = FALSE):

S2 := plot::Scene3d(AxesTips = TRUE):

plot(S1, S2, Axes = Origin, TicksNumber = None, 

     Layout = Horizontal):
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See Also

MuPAD Functions
Axes | AxesInFront | AxesLineColor | AxesLineWidth | AxesOrigin |
AxesTitleAlignment | AxesTitleFont | AxesTitles | AxesVisible | TipAngle
| TipLength | TubeDiameter | YAxisTitleOrientation
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AxesTitleAlignment, XAxisTitleAlignment,
YAxisTitleAlignment, ZAxisTitleAlignment
Alignment of axes titles

Value Summary

AxesTitleAlignment Library wrapper for
“{XAxisTitleAlignment,
YAxisTitleAlignment}” (2D),
“{XAxisTitleAlignment,
YAxisTitleAlignment,
ZAxisTitleAlignment}” (3D)

See below

XAxisTitleAlignment,
YAxisTitleAlignment,
ZAxisTitleAlignment

Inherited Begin, Center, or End

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d AxesTitleAlignment,
XAxisTitleAlignment,
YAxisTitleAlignment: End

plot::CoordinateSystem3d AxesTitleAlignment,
XAxisTitleAlignment,
YAxisTitleAlignment,
ZAxisTitleAlignment: Center

Description

AxesTitleAlginment governs the alignment of axes titles along the coordinate axes.

With AxesTitleAlignment = End, titles for all coordinate axes are displayed at that
end of the axes with higher coordinate values.
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With AxesTitleAlignment = Begin, titles are displayed at that end of the axes with
lower coordinate values.

With AxesTitleAlignment = Center, titles are centered along the axes.

XAxisTitleAlignment etc. allow to set the title alignments separately for each single
axis.

Examples

Example 1

We plot the Coulomb potential of a charged particle:

F := plot::Function2d(-1/r, r = 0..1, 

                      ViewingBoxYRange = -10..0):

S1 := plot::Scene2d(F, AxesTitles = ["distance", "potential"],

                    XAxisTitleAlignment = Center,

                    YAxisTitleAlignment = Begin):

S2 := plot::Scene2d(F, AxesTitles = ["distance", "potential"],

                    XAxisTitleAlignment = Begin,

                    YAxisTitleAlignment = End):

S3 := plot::Scene2d(F, AxesTitles = ["distance", "potential"],

                    XAxisTitleAlignment = Begin,

                    YAxisTitleAlignment = Begin):

plot(S1, S2, S3, Layout = Horizontal,

     Width = 120*unit::mm, Height = 50*unit::mm):
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delete F, S1, S2, S3:

Example 2

We use the 3D analogue of the previous example to demonstrate the alignment of axes
titles in 3D: :

F := plot::Function3d(-1/sqrt(x^2 + y^2), x = -1..1, y = -1..1,

                      ViewingBoxZRange = -10 .. 0):

S1 := plot::Scene3d(F, AxesTitles = ["x", "y", "potential"],

                    XAxisTitleAlignment = Begin,

                    YAxisTitleAlignment = Center,

                    ZAxisTitleAlignment = End):

S2 := plot::Scene3d(F, AxesTitles = ["x", "y", "potential"],

                    XAxisTitleAlignment = Center,

                    YAxisTitleAlignment = End,

                    ZAxisTitleAlignment = Begin):

plot(S1, S2, Layout = Vertical,

     Width = 80*unit::mm, Height = 120*unit::mm):
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delete F, S1, S2:

See Also

MuPAD Functions
Axes | AxesInFront | AxesLineColor | AxesLineWidth | AxesOrigin | AxesTips
| AxesTitleFont | AxesTitles | AxesVisible | YAxisTitleOrientation
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AxesTitles, XAxisTitle, YAxisTitle, ZAxisTitle
Titles for the coordinate axes

Value Summary

AxesTitles Library wrapper
for “[XAxisTitle,
YAxisTitle]” (2D),
“[XAxisTitle,
YAxisTitle,
ZAxisTitle]” (3D)

See below

XAxisTitle, YAxisTitle,
ZAxisTitle

Optional Text string

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d AxesTitles: [" x ", " y "]

XAxisTitle: " x "

YAxisTitle: " y "
plot::CoordinateSystem3d AxesTitles: [" x ", " y ", " z "]

XAxisTitle: " x "

YAxisTitle: " y "

ZAxisTitle: " z "

Description

AxesTitles sets the titles attached to the coordinate axes.
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Depending on the dimension of the coordinate system, the value of the attribute
AxisTitles must be a list with two or three strings.

Per default, the coordinate axes titles are ["x", "y"] in 2D and ["x", "y", "z"] in
3D regardless of the names of involved parameters. Cf. “Example 1” on page 24-1454.

Using AxesTitles, axes titles can be edited as desired.

With XAxisTitle etc., the titles can be edited separately for the different coordinate
directions.

Set empty strings AxesTitles = ["",""] in 2D or AxesTitles = ["","",""] in
3D, respectively, if no axes titles shall be displayed.

Some objects in the MuPAD plot library override the default setting via the “hint
mechanism” (see the section Primitives Requesting Special Scene Attributes: “Hints” in
this document). Whenever such an object is plotted in a scene, the axes titles chosen by
the object are used. A complete list of these objects is given further up on this help page.

You can still override these titles via AxesTitles etc.

The attribute AxesTitleAlignment can be used to change the default alignment of the
titles along the axes.

The attribute YAxisTitleOrientation can be used in 2D to rotate the title of the
vertical axis.

Examples

Example 1

We set appropriate axes titles for a damped vibration given by a plot of the “amplitude
over time”:

F := plot::Function2d(exp(-t)*cos(PI*t), t = 0 .. 4):

plot(F, AxesTitles = ["time", "amplitude"]):
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It might be desirable to use the attribute YAxisTitleOrientation to twist the title for
the vertical axis:

plot(F, AxesTitles = ["time", "amplitude"],

     YAxisTitleOrientation = Vertical):
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See Also

MuPAD Functions
Axes | AxesInFront | AxesLineColor | AxesLineWidth | AxesOrigin
| AxesTips | AxesTitleAlignment | AxesTitleFont | AxesVisible |
YAxisTitleOrientation
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AxesVisible, XAxisVisible, YAxisVisible, ZAxisVisible

Display coordinate axes?

Value Summary

AxesVisible Library wrapper for
“{XAxisVisible,
YAxisVisible}” (2D),
“{XAxisVisible,
YAxisVisible,
ZAxisVisible}” (3D)

TRUE, FALSE, or list of 2 or
3 of these, depending on the
dimension

XAxisVisible,
YAxisVisible,
ZAxisVisible

Inherited FALSE, or TRUE

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d AxesVisible, XAxisVisible,
YAxisVisible: TRUE

plot::CoordinateSystem3d AxesVisible, XAxisVisible,
YAxisVisible, ZAxisVisible: TRUE

Description

With AxesVisible = TRUE versus AxesVisible = FALSE all coordinate axes are
“switched on” or “off”.

With XAxisVisible etc., the coordinate axes in the different coordinate directions can
be switched on and off, separately.
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With Axes = Box, the coordinate axes are displayed as a box about the scene. With
XAxisVisible = FALSE etc., the four edges of this box parallel to the respective axis
are suppressed.

Alternatively to AxesVisible = FALSE, you may switch the axes off by setting Axes =
None, too.

Examples

Example 1

In the following illustration, you probably do not want any axes:

plot(

  plot::Arrow2d([1.5, 1], [2.5, 3],

                Title = "a", TitlePosition = [2.05, 1.9],

                LineStyle = Dashed, Color = RGB::Red),

  plot::Arrow2d([1, 2], [2.5, 3],

                Title = "b", TitlePosition = [1.6, 2.5],

                LineStyle = Dashed, Color = RGB::Blue),

  plot::Arrow2d([0, 0], [1, 2], Color = RGB::Red,

                 Title = "a", TitlePosition = [0.4, 1.0]),

  plot::Arrow2d([0, 0], [1.5, 1], Color = RGB::Blue,

                Title = "b", TitlePosition = [0.8, 0.3]),

  plot::Arrow2d([0, 0], [2.5, 3], Color = RGB::Black,

                Title = "a + b", TitlePosition = [1.35, 1.3]),

  AxesVisible = FALSE, TitleFont = [14],

  TipLength = 5.0*unit::mm, LineWidth = 1.0*unit::mm, 

  HeaderFont = [20], Header = "how to add two vectors"

)
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Example 2

Using the default axes style Axes = Box in 3D, we suppress all parts of the axes box in
the x direction:

plot(plot::Sphere(1, [0, 0, 0]), XAxisVisible = FALSE):
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See Also

MuPAD Functions
Axes | AxesInFront | AxesLineColor | AxesLineWidth | AxesOrigin
| AxesTips | AxesTitleAlignment | AxesTitleFont | AxesTitles |
YAxisTitleOrientation
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YAxisTitleOrientation

Orientation of the vertical axis title in 2D

Value Summary

Inherited Horizontal, or Vertical

Graphics Primitives

Objects YAxisTitleOrientation Default Values

plot::CoordinateSystem2d Horizontal

Description

YAxisTitleOrientation determines whether the title of the vertical axis in 2D is
plotted horizontally or vertically.

If the title of the vertical axis in 2D is long, it uses up a lot of horizontal space when
rendered from left to right with YAxisTitleOrientation = Horizontal. This space may
be taken away from the drawing region for the graphical objects. In such a case it might
be desirable to use YAxisTitleOrientation = Vertical to let the title be rendered
from bottom to top instead, parallel to the vertical axis.

This attribute is ignored in 3D.

Examples

Example 1

We plot the density of the normal distribution function:
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f := plot::Function2d(stats::normalPDF(0, 1)(x), x = -3 .. 3):

plot(f, Axes = Automatic,

     AxesTitles = ["x", "normal distribution"],

     YAxisTitleOrientation = Horizontal):

There is plenty of room to draw the long title "normal distribution", because the
vertical axis is placed in the middle of the plot. In the next plot, however, the vertical axis
is flushed left and a lot of space is “wasted” for the axis title:

plot(f, Axes = Frame,

     AxesTitles = ["x", "normal distribution"],

     YAxisTitleOrientation = Horizontal):
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You make better use of the drawing area by plotting the title of the vertical axis parallel
to this axis:

plot(f, Axes = Frame,

     AxesTitles = ["x", "normal distribution"],

     YAxisTitleOrientation = Vertical):
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delete f:

See Also

MuPAD Functions
Axes | AxesInFront | AxesLineColor | AxesLineWidth | AxesOrigin | AxesTips
| AxesTitleAlignment | AxesTitles | AxesVisible | YAxisTitleOrientation
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TicksAnchor, XTicksAnchor, YTicksAnchor,
ZTicksAnchor

User defined start of axes tick marks

Value Summary

TicksAnchor Library wrapper for
“{XTicksAnchor,
YTicksAnchor}” (2D),
“{XTicksAnchor,
YTicksAnchor,
ZTicksAnchor}” (3D)

MuPAD expression

XTicksAnchor,
YTicksAnchor,
ZTicksAnchor

Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d TicksAnchor, XTicksAnchor,
YTicksAnchor: 0

plot::CoordinateSystem3d TicksAnchor, XTicksAnchor,
YTicksAnchor, ZTicksAnchor: 0

Description

With TicksAnchor = t0, TicksDistance = d, the automatic ticks along the coordinate
axes are switched off and replaced by equidistant ticks with distance d at the positions tj
= t0 + j d, j ∈ ℤ.
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With TicksAnchor = t0, TicksDistance = d, these ticks are used for all coordinate
axes.

With XTicksAnchor = t0, XTicksDistance = d etc., these ticks may be defined
separately for each single coordinate axis.

When executing a plot command, per default a “reasonable” placing for tick marks on
coordinate axes is automatically computed. Through this process tick marks may not
come to lie on desired positions. The attributes TicksAnchor and TicksDistance allow
to generate an alternative mesh of equidistant tick marks.

Note: The attributes TicksAnchor, XTicksAnchor etc. only have an effect when a
positive distance d > 0 between major ticks marks is set explicitly via TicksDistance =
d, XTicksDistance = d etc.

The ticks set by TicksAnchor and TicksDistance are “major” tick marks bearing
labels. Depending on the value of TicksBetween, there may be additional “minor” ticks
without labels between each pair of major tick marks.

Additional tick marks at specific positions can be inserted with TicksAt.

Examples

Example 1

For the following plot of the sine function, the tick marks along the x-axis are chosen to
match the period:

plot(plot::Function2d(sin(x), x = 0..4*PI),

     XTicksAnchor = 0, XTicksDistance = PI):

24-1466



 TicksAnchor, XTicksAnchor, YTicksAnchor, ZTicksAnchor

The ticks along the y-axis are re-defined with a distance of 0.2:

plot(plot::Function2d(sin(x), x = 0..4*PI),

     XTicksAnchor = 0, XTicksDistance = PI,

     YTicksAnchor = 0, YTicksDistance = 0.2):
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We increase the number of “minor” ticks along the x-axis:

plot(plot::Function2d(sin(x), x = 0..4*PI),

     XTicksAnchor = 0, XTicksDistance = PI,

     XTicksBetween = 4,

     YTicksAnchor = 0, YTicksDistance = 0.2):
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Example 2

We plot the two-dimensional normal distribution centered around the mean (m1, m2) =
(3.2, 4.9). This point is used as the anchor for the tick marks along the x-axis and the
y-axis, respectively. Ticks are positioned at distances that are integer multiples of the
standard deviations (s1, s2) = (0.8, 1.2):

m1:= 3.2: s1 := 0.8: 

m2:= 4.9: s2 := 1.1:

plot(plot::Function3d( stats::normalPDF(m1, s1^2)(x)

                      *stats::normalPDF(m2, s2^2)(y),

                      x = 0 .. 10, y = 0 .. 10,

                      Submesh = [3, 3]),

     TicksBetween = 0, 

     XTicksAnchor = m1, XTicksDistance = s1, 

     YTicksAnchor = m2, YTicksDistance = s2, 

     XTicksLabelStyle = Vertical,

     YTicksLabelStyle = Diagonal,

     GridVisible = TRUE):
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delete m1, s1, m2, s2:

See Also

MuPAD Functions
TicksAt | TicksBetween | TicksDistance | TicksLabelFont | TicksLabelStyle
| TicksLabelsVisible | TicksLength | TicksNumber | TicksVisible
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TicksAt, XTicksAt, YTicksAt, ZTicksAt

Special axes tick marks

Value Summary

TicksAt Library wrapper
for “[XTicksAt,
YTicksAt]” (2D),
“[XTicksAt, YTicksAt,
ZTicksAt]” (3D)

See below

XTicksAt, YTicksAt,
ZTicksAt

Optional See below

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

 

Description

XTicksAt = [x1, x2, …] allows to set additional tick marks on the x-axis at the
positions x1, x2 etc. With XTicksAt = [x1 = L1, x2 = L2, …], the special tick marks
at the positions x1, x2 etc. are labeled with the strings L1, L2 etc.

YTicksAt, ZTicksAt work analogously for the other coordinate directions.

TicksAt = [[x1, x2, …], [y1, y2, …]] in 2D and TicksAt = [[x1, x2, …],
[y1, y2, …], [z1, z2, …]] in 3D serve as shortcuts for setting XTicksAt, YTicksAt
etc.
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Per default, equidistant tick marks along the coordinate axes are chosen automatically.

With XTicksAt = [x1, x2, …], additional tick marks are inserted along the x-axis
at arbitrary positions x1, x2 etc. These values must be numbers or exact numerical
expressions such as PI or sqrt(2) that can be converted to floating-point numbers via
float.

The special ticks set by XTicksAt are labeled automatically by floating-point numbers
approximating x1, x2 etc.

Special labels for these ticks may be requested by replacing the coordinate values x1,
x2 etc. by equations x1 = L1, x2 = L2 etc., where L1, L2 etc. are  strings to be used as the
labels. Note that MuPAD strings have to be enclosed by the string delimiters ". For
example, XTicksAt = [3.14 = "pi"] adds a single tick as the position x = 3.14 with
the label pi. Cf. “Example 1” on page 24-1472.

With YTicksAt = [y1, y2, …] or YTicksAt = [y1 = L1, y2 = L2, …] etc., special
ticks can be inserted along the y-axis.

In 3D, ZTicksAt allows to insert special ticks along the z-axis.

If no automatic tick marks are desired, set TicksNumber = None or XTicksNumber
= None etc. to switch them off on all coordinate axes or on single coordinate axes,
respectively.

Use TicksAt, XTicksAt etc. to set alternative tick marks.

Examples

Example 1

We plot the cosine function. The automatic tick marks along the x-axis are suppressed
via XTicksNumber = None. Points of special interest such as the extrema and the zeroes
of the function are set as special tick marks:

plot(plot::Function2d(cos(x), x = -PI..PI),

     XTicksNumber = None,

     XTicksAt = [-PI = "-π", -PI/2 = "-π/2",
                 0 = "0", PI/2 = "π/2", PI = "π"])
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We improve the labeling of the tick marks by specifying the font . This font allows to
typeset Greek characters such as π better:

plot(plot::Function2d(cos(x), x = -PI..PI),

     XTicksNumber = None, TicksLabelFont = ["Times New Roman"],

     XTicksAt = [-PI = "-π", -PI/2 = "-π/2",
                 0 = "0", PI/2 = "π/2", PI = "π"])
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Example 2

The Newton iteration  finds successive approximations to a zero of a

function f(x). We switch the automatic ticks along the x-axis off via XTicksNumber =
None and display some elements of the Newton sequence as tick marks:

f := x -> x^4/10 - 2:

x[0] := 4.12:

for i from 0 to 3 do

   x[i + 1] := x[i] - f(x[i])/f'(x[i]);

end_for:

plot(plot::Function2d(f(X), X = 1..4.5),

     plot::Line2d([x[i], f(x[i])], [x[i+1], 0], 

                  Color = RGB::Black) $ i = 0..3,

     plot::Line2d([x[i], 0], [x[i], f(x[i])],

                  Color = RGB::Black, 

                  LineStyle = Dashed) $ i = 0..4,

     XTicksNumber = None, XTicksAt = [x[i] $ i = 0..3])
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delete f, x, i:

See Also

MuPAD Functions
TicksAnchor | TicksBetween | TicksDistance | TicksLabelFont |
TicksLabelStyle | TicksLabelsVisible | TicksLength | TicksNumber |
TicksVisible
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TicksBetween, XTicksBetween, YTicksBetween,
ZTicksBetween
Number of minor (unlabeled) axes tick marks between major (labeled) axes tick marks

Value Summary

TicksBetween Library wrapper for
“{XTicksBetween,
YTicksBetween}” (2D),
“{XTicksBetween,
YTicksBetween,
ZTicksBetween}” (3D)

Non-negative integer

XTicksBetween,
YTicksBetween,
ZTicksBetween

Inherited Non-negative integer

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d TicksBetween, XTicksBetween,
YTicksBetween: 1

plot::CoordinateSystem3d TicksBetween, XTicksBetween,
YTicksBetween, ZTicksBetween: 1

Description

The tick marks along the coordinate axes consist of “major” tick marks bearing labels and
of “minor” tick marks without labels.

TicksBetween sets the number of minor ticks between each pair of major ticks for all
coordinate axes.
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With XTicksBetween etc., the number of minor ticks may be set separately for each
single coordinate axis.

Per default between every two major tick marks one minor tick mark is rendered. Via
TicksBetween this number can be increased or set to zero. In contrast to major tick
marks, minor tick marks are never labelled.

Minor tick marks are rendered always with half the length of the major tick marks. Cf.
TicksLength.

Examples

Example 1

We request few “major” tick marks in the x direction and place 9 “minor” tick marks
between each pair. The ticks in y direction are chosen automatically:

plot(plot::Curve2d([u*cos(u*PI), u*sin(u*PI)], u = 0..2),

     XTicksNumber = Low, XTicksBetween = 9)
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Example 2

We request few “major” tick marks in all directions. In the horizontal directions, we place
4 “minor” tick marks between each pair. The ticks in z direction consist of the labeled
ticks only:

plot(plot::Function3d(exp(-x^2 - y^2), x = -3..3, y = -3..3,

                      Submesh = [2, 2]),

     TicksNumber = Low, XTicksBetween = 4, YTicksBetween = 4,

     ZTicksBetween = 0, GridVisible = TRUE)

See Also

MuPAD Functions
TicksAnchor | TicksAt | TicksDistance | TicksLabelFont | TicksLabelStyle
| TicksLabelsVisible | TicksLength | TicksNumber | TicksVisible
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TicksDistance, XTicksDistance, YTicksDistance,
ZTicksDistance

User defined axes tick mark distance

Value Summary

TicksDistance Library wrapper for
“{XTicksDistance,
YTicksDistance}” (2D),
“{XTicksDistance,
YTicksDistance,
ZTicksDistance}” (3D)

MuPAD expression

XTicksDistance,
YTicksDistance,
ZTicksDistance

Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d TicksDistance, XTicksDistance,
YTicksDistance: 0

plot::CoordinateSystem3d TicksDistance, XTicksDistance,
YTicksDistance, ZTicksDistance: 0

Description

With TicksAnchor = t0, TicksDistance = d, the automatic ticks along the
coordinate axes are switched off and replaced by equidistant ticks with distance d at the
positions tj = t0 + j d, j ∈ ℤ.
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With TicksAnchor = t0, TicksDistance = d, these ticks are used for all coordinate
axes.

With XTicksAnchor = t0, XTicksDistance = d etc., these ticks may be defined
separately for each single coordinate axis.

When executing a plot command, per default a “reasonable” placing for tick marks on
coordinate axes is automatically computed. Through this process tick marks may not
come to lie on desired positions. The attributes TicksAnchor and TicksDistance allow
to generate an alternative mesh of equidistant tick marks.

Note: The attributes TicksAnchor, XTicksAnchor etc. only have an effect when a
positive distance d > 0 between major ticks marks is set explicitly via TicksDistance =
d, XTicksDistance = d etc.

The ticks set by TicksAnchor and TicksDistance are “major” tick marks bearing
labels. Depending on the value of TicksBetween, there may be additional “minor” ticks
without labels between each pair of major tick marks.

Additional tick marks at specific positions can be inserted with TicksAt.

Examples

Example 1

For the following plot of the sine function, the tick marks along the x-axis are chosen to
match the period:

plot(plot::Function2d(sin(x), x = 0..4*PI),

     XTicksAnchor = 0, XTicksDistance = PI):
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The ticks along the y-axis are re-defined with a distance of 0.2:

plot(plot::Function2d(sin(x), x = 0..4*PI),

     XTicksAnchor = 0, XTicksDistance = PI,

     YTicksAnchor = 0, YTicksDistance = 0.2):
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We increase the number of “minor” ticks along the x-axis:

plot(plot::Function2d(sin(x), x = 0..4*PI),

     XTicksAnchor = 0, XTicksDistance = PI,

     XTicksBetween = 4,

     YTicksAnchor = 0, YTicksDistance = 0.2):
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Example 2

We plot a hyperbolic spiral about the point (1.07, 1.07) which is not included in
the automatic tick marks. We increase the number of ticks along the vertical axis and
position the ticks relative to this point. Note that the tick marks along the horizontal axis
miss the center of the spiral:

plot(plot::Point2d(1.07, 1.07), 

     plot::Curve2d([1.07 - cos(t)/t, 1.07 + sin(t)/t], 

                   t = 2*PI..50*PI, Submesh = 20),

     YTicksDistance = 0.025, YTicksAnchor = 1.07)
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Example 3

We plot the two-dimensional normal distribution centered around the mean (m1, m2) =
(3.2, 4.9). This point is used as the anchor for the tick marks along the x-axis and the
y-axis, respectively. Ticks are positioned at distances that are integer multiples of the
standard deviations (s1, s2) = (0.8, 1.2):

m1:= 3.2: s1 := 0.8: 

m2:= 4.9: s2 := 1.2:

plot(plot::Function3d( stats::normalPDF(m1, s1^2)(x)

                      *stats::normalPDF(m2, s2^2)(y),

                      x = 0 .. 10, y = 0 .. 10,

                      Submesh = [3, 3]),

     XTicksAnchor = m1, XTicksDistance = s1, 

     YTicksAnchor = m2, YTicksDistance = s2, 

     TicksBetween = 0, GridVisible = TRUE):
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delete m1, s1, m2, s2:

See Also

MuPAD Functions
TicksAnchor | TicksAt | TicksBetween | TicksLabelFont | TicksLabelStyle |
TicksLabelsVisible | TicksLength | TicksNumber | TicksVisible
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TicksLabelStyle, XTicksLabelStyle, YTicksLabelStyle,
ZTicksLabelStyle
Display style of axes tick labels

Value Summary

TicksLabelStyle Library wrapper for
“{XTicksLabelStyle,
YTicksLabelStyle}” (2D),
“{XTicksLabelStyle,
YTicksLabelStyle,
ZTicksLabelStyle}” (3D)

See below

XTicksLabelStyle,
YTicksLabelStyle,
ZTicksLabelStyle

Inherited Diagonal, Horizontal,
Shifted, or Vertical

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d TicksLabelStyle, XTicksLabelStyle,
YTicksLabelStyle: Horizontal

plot::CoordinateSystem3d TicksLabelStyle, XTicksLabelStyle,
YTicksLabelStyle, ZTicksLabelStyle:
Horizontal

Description

TicksLabelStyle allows to modify the display style of the tick labels on all coordinate
axes.

XTicksLabelStyle etc. allow to set the label styles separately for each single
coordinate axis.
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It may occur that tick labels overlap if too many tick marks along the coordinate axes are
requested. The following styles for the tick labels are available to deal with this problem:

Horizontal: The labels are displayed in the usual horizontal reading order from left to
right.

Vertical: The labels are tilted 90 degrees counter clockwise, i.e., they have to be read
from bottom to top.

Diagonal: The labels are tilted 45 degrees counter clockwise.

Shifted: Each second label is shifted to avoid overlapping.

Note that also in 3D the orientation Horizontal, Diagonal, Vertical refers to the
screen output irrespectively of the 3D orientation of the corresponding axis.

TicksLabelStyle sets the display style for the ticks labels along all coordinate axes.

With XTicksLabelStyle etc. the style may be set separately for each single axis.

Independently from TicksLabelStyle, the titles of the axes are rendered horizontally.
In 2D, the attribute YAxisTitleOrientation is available to tilt the title of the vertical
axis by 90 degrees.

Examples

Example 1

We demonstrate the styles for the ticks labels:

f := plot::Function2d(sin(x), x = 0 .. 2*PI):

S1 := plot::Scene2d(f, TicksLabelStyle = Horizontal):

S2 := plot::Scene2d(f, TicksLabelStyle = Vertical):

S3 := plot::Scene2d(f, TicksLabelStyle = Diagonal):

S4 := plot::Scene2d(f, TicksLabelStyle = Shifted):

plot(S1, S2, S3, S4, Height = 10*unit::cm, 

     Width = 10*unit::cm):
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Here is a corresponding picture in 3D:

f := plot::Function3d(exp(-x^2 - y^2), x = -3..3,

                      y = -3..3, Submesh = [2, 2]):

S1 := plot::Scene3d(f, TicksLabelStyle = Horizontal):

S2 := plot::Scene3d(f, TicksLabelStyle = Vertical):

S3 := plot::Scene3d(f, TicksLabelStyle = Diagonal):

S4 := plot::Scene3d(f, TicksLabelStyle = Shifted):

plot(S1, S2, S3, S4, Height = 10*unit::cm, 

     Width = 10*unit::cm):

24-1488



 TicksLabelStyle, XTicksLabelStyle, YTicksLabelStyle, ZTicksLabelStyle

delete f, S1, S2, S3, S4:

Example 2

The tick labels along the x-axis nearly collide in the following plot:

f := plot::Function2d(exp(30*x)*sin(x*100*PI), 

                      x = 10.04 .. 10.05):

plot(f, GridVisible = TRUE, XTicksNumber = High):
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Tilting the labels yields a more tidy looking graphics:

plot(f, GridVisible = TRUE, XTicksNumber = High,

     XTicksLabelStyle = Diagonal):
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Example 3

In the following graphics, there is not enough space to squeeze in the requested high
number of ticks in the x and y direction:

plot(plot::Function3d(exp(-x^2 - y^2), x = -2..2, y = -2..2, 

                      Submesh = [2, 2]),

     TicksNumber = High,

     AxesTitles = ["North <--> South",

                   "East <--> West", 

                   "Heaven <--> Earth"]):
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The tick labels fit with Vertical and Diagonal orientation:

plot(plot::Function3d(exp(-x^2 - y^2), x = -2..2, y = -2..2, 

                      Submesh = [2, 2]),

     TicksNumber = High, 

     XTicksLabelStyle = Vertical,

     YTicksLabelStyle = Diagonal,

     ZTicksLabelStyle = Horizontal,

     AxesTitles = ["North <--> South",

                   "East <--> West",

                   "Heaven <--> Earth"]):
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See Also

MuPAD Functions
TicksAnchor | TicksAt | TicksBetween | TicksDistance | TicksLabelFont |
TicksLabelsVisible | TicksLength | TicksNumber | TicksVisible
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TicksLength

Length of axes tick marks

Value Summary

Inherited Positive output size

Graphics Primitives

Objects TicksLength Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

2

Description

The tick marks along the coordinate axes consist of “major” tick marks bearing labels and
of “minor” tick marks without labels.

TicksLength sets the length for the major tick marks on all coordinate axes. The length
of minor tick marks (cf. TicksBetween) is half of TicksLength .

The value should be specified as an absolute physical length including a length unit such
as TicksLength = 2.5*unit::mm. Numbers without a physical unit give the length in
mm.

TicksLength sets the length of automatic tick marks (cf. TicksNumber) as well of
special tick marks set via TicksAt.

It is not possible to change the length of tick marks on any single axis alone.
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Examples

Example 1

We plot the density of the standard normal distribution. Compared to the default length
of 2 mm, the ticks length is increased by 50%:

plot(plot::Function2d(stats::normalPDF(0, 1)(x), x = -4..4),

     TicksLength = 3*unit::mm):

A corresponding plot in 3D:

plot(plot::Function3d(exp(-x^2 - y^2), x = -3..3, y = -3..3,

                      Submesh = [2, 2]),

     TicksLength = 3*unit::mm)
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Example 2

In the following plot of the sine function, we switch the automatic tick marks along the x-
axis off via XTicksNumber = None. Some extra ticks are set via XTicksAt:

plot(plot::Function2d(sin(x), x = 0 .. PI),

     XTicksAt = [0 = "0", PI/2 = "p/2", PI = "p"],

     XTicksNumber = None, TicksLength = 4*unit::mm,

     TicksLabelFont = ["Symbol"], YAxisVisible = FALSE)
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See Also

MuPAD Functions
TicksAnchor | TicksAt | TicksBetween | TicksDistance | TicksLabelFont |
TicksLabelStyle | TicksLabelsVisible | TicksNumber | TicksVisible
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TicksNumber, XTicksNumber, YTicksNumber,
ZTicksNumber
Number of axes tick marks

Value Summary
TicksNumber Library wrapper for

“{XTicksNumber,
YTicksNumber}” (2D),
“{XTicksNumber,
YTicksNumber,
ZTicksNumber}” (3D)

See below

XTicksNumber,
YTicksNumber,
ZTicksNumber

Inherited High, Low, None, or Normal

Graphics Primitives
Objects Default Values

plot::CoordinateSystem2d TicksNumber, XTicksNumber,
YTicksNumber: Normal

plot::CoordinateSystem3d TicksNumber, XTicksNumber,
YTicksNumber, ZTicksNumber: Normal

Description
TicksNumber directs the internal routine that chooses tick marks along coordinate axes
to produce no, few, or many ticks.

With XTicksNumber etc., the number of tick marks can be controlled separately for each
single axis.

The tick marks along the coordinate axes consist of “major” tick marks bearing labels and
of “minor” tick marks without labels.
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The attributes TicksNumber, XTicksNumber etc. only refer to the labeled “major” tick
marks. The “minor” tick marks are governed by the attribute TicksBetween.

Automatically generated equidistant tick marks are displayed along the coordinate
axes, unless the user specifies the ticks explicitly via the attributes TicksAnchor and
TicksDistance.

TicksNumber provides a hint for the automatic computation process, how many tick
marks are to be displayed. The possible values are None, Low, Normal, and Many.

With XTicksNumber etc., ticks numbers may be controlled separately for each single
axis.

If equidistant tick marks are set explicitly via TicksAnchor and TicksDistance, the
attributes TicksNumber, XTicksNumber etc. are ignored.

There is no influence on special tick marks set via TicksAt, XTicksAt etc. either.

With TicksNumber = None, XTicksNumber = None etc., no automatically generated tick
marks are displayed.

Tick marks may also be suppressed via TicksVisible = FALSE, XTicksVisible
= FALSE etc. However, in contrast to TicksNumber = None, XTicksNumber = None
etc., this also suppresses equidistant tick marks set explicitly via TicksAnchor,
TicksDistance as well as special tick marks set via TicksAt, XTicksAt etc.

Examples

Example 1

We demonstrate the effect of various TicksNumber values:

f := plot::Function2d(sinh(x), x = -5 .. 5):

S1 := plot::Scene2d(f, TicksNumber = None):

S2 := plot::Scene2d(f, TicksNumber = Low):

S3 := plot::Scene2d(f, TicksNumber = Normal):

S4 := plot::Scene2d(f, TicksNumber = High):

plot(S1, S2, S3, S4):
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delete f, S1, S2, S3, S4:

Example 2

We demonstrate the effect of various TicksNumber values in a 3D plot:

s := plot::Function3d(x^2 + y^2, x = -1..1, y = -2..2):

plot(s):
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plot(s, XTicksNumber = High, YTicksNumber = Normal,

     ZTicksNumber = Low):
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All tick marks are suppressed:

plot(s, TicksNumber = None)
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delete s:

See Also

MuPAD Functions
TicksAnchor | TicksAt | TicksBetween | TicksDistance | TicksLabelFont |
TicksLabelStyle | TicksLabelsVisible | TicksLength | TicksVisible
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TicksVisible, XTicksVisible, YTicksVisible,
ZTicksVisible
Display axes tick marks?

Value Summary
TicksVisible Library wrapper for

“{XTicksVisible,
YTicksVisible}” (2D),
“{XTicksVisible,
YTicksVisible,
ZTicksVisible}” (3D)

TRUE, FALSE, or list of 2 or
3 of these, depending on the
dimension

XTicksVisible,
YTicksVisible,
ZTicksVisible

Inherited FALSE, or TRUE

Graphics Primitives
Objects Default Values

plot::CoordinateSystem2d TicksVisible, XTicksVisible,
YTicksVisible: TRUE

plot::CoordinateSystem3d TicksVisible, XTicksVisible,
YTicksVisible, ZTicksVisible: TRUE

Description
TicksVisible = TRUE versus TicksVisible = FALSE switches tick marks along all
coordinate axes on or off.

With XTicksVisible = TRUE/FALSE etc., the tick marks can be switched on or off
separately for each single axis.

With TicksVisible = FALSE, the tick marks along all coordinate axes are switched
off. The labels of the tick marks, however, remain visible.
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TicksVisible etc. refers to automatically generated tick marks (cf. TicksNumber), to
equidistant tick marks that are requested explicitly via TicksAnchor, TicksDistance
as well as to special tick marks set via TicksAt.

Ticks can also be suppressed via TicksNumber = None, XTicksNumber = None etc.
In contrast to TicksVisible = FALSE, however, this affects only the automatically
generated ticks and their labels. Ticks set by TicksAnchor, TicksDistance, TicksAt
are not affected.

Examples

Example 1

Visualizing that the sine function is nearly linear near its zeroes, we suppress the
automatic tick marks along the x-axis via XTicksNumber = None. Three special ticks
are set via XTicksAt:

f := plot::Function2d(sin(x), x = 3.0 .. 3.3):

plot(f, XTicksNumber = None, XTicksAt = [3.1, PI = "p", 3.2],

     TicksLabelFont = ["Symbol"])
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The tick marks along the x-axis are switched off:

plot(f, XTicksNumber = None, XTicksAt = [3.1, PI = "p", 3.2],

     TicksLabelFont = ["Symbol"], XTicksVisible = FALSE)

The labels of the ticks are switched off, too:

plot(f, XTicksNumber = None, XTicksAt = [3.1, PI = "p", 3.2],

     TicksLabelFont = ["Symbol"], XTicksVisible = FALSE,

     XTicksLabelsVisible = FALSE)
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delete f:

See Also

MuPAD Functions
TicksAnchor | TicksAt | TicksBetween | TicksDistance | TicksLabelFont |
TicksLabelStyle | TicksLabelsVisible | TicksLength | TicksNumber
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TicksLabelsVisible, XTicksLabelsVisible,
YTicksLabelsVisible, ZTicksLabelsVisible
Display axes tick labels?

Value Summary

TicksLabelsVisible Library wrapper for
“{XTicksLabelsVisible,
YTicksLabelsVisible}” (2D),
“{XTicksLabelsVisible,
YTicksLabelsVisible,
ZTicksLabelsVisible}” (3D)

See below

XTicksLabelsVisible,
YTicksLabelsVisible,
ZTicksLabelsVisible

Inherited FALSE, or TRUE

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d TicksLabelsVisible,
XTicksLabelsVisible,
YTicksLabelsVisible: TRUE

plot::CoordinateSystem3d TicksLabelsVisible,
XTicksLabelsVisible,
YTicksLabelsVisible,
ZTicksLabelsVisible: TRUE

Description

TicksLabelsVisible = TRUE versus TicksLabelsVisible = FALSE switches the
labeling of the tick marks along all coordinate axes on or off.
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With TicksLabelsVisible = FALSE, the labeling of the tick marks along all coordinate
axes is switched off. The tick marks themselves, however, remain visible. They are
switched off via TicksVisible = FALSE.

With XTicksLabelsVisible = TRUE/FALSE etc., the tick labeling can be switched on or
off separately for each single axis.

TicksLabelsVisible, XTicksLabelsVisible etc. refer to automatically generated
tick marks (cf. TicksNumber), to equidistant tick marks that are requested explicitly via
TicksAnchor, TicksDistance as well as to special tick marks set via TicksAt.

Ticks can also be suppressed via TicksNumber = None, XTicksNumber = None etc. In
contrast to TicksLabelsVisible = FALSE, however, this affects only the automatically
generated ticks and their labels. Ticks set by TicksAnchor, TicksDistance, TicksAt
are not affected.

Examples

Example 1

We approximate the cosine function by a fourth order polynomial (a Taylor polynomial
around the expansion point 0). The automatic tick marks along the x-axis are suppressed
via XTicksNumber = None. Some special tick marks including the zero of the cosine
function at  are inserted via XTicksAt:

f1 := plot::Function2d(cos(x), x = 0..2):

f2 := plot::Function2d(1 - x^2 + x^4/4!, x = 0..2,

                       LineColor = RGB::Blue):

plot(f1, f2, XTicksNumber = None, 

     XTicksAt = [1, PI/2 = "p/2", 2], 

     TicksLabelFont = ["Symbol"])
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The labeling of the tick marks along the x-axis is switched off:

plot(f1, f2, XTicksNumber = None, 

     XTicksAt = [1, PI/2 = "p/2", 2], 

     TicksLabelFont = ["Symbol"], 

     XTicksLabelsVisible = FALSE)
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The ticks themselves are switched off, too:

plot(f1, f2, XTicksNumber = None, 

     XTicksAt = [1, PI/2 = "p/2", 2], 

     TicksLabelFont = ["Symbol"], XTicksLabelsVisible = FALSE,

     XTicksVisible = FALSE)
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delete f1, f2:

See Also

MuPAD Functions
TicksAnchor | TicksAt | TicksBetween | TicksDistance | TicksLabelFont |
TicksLabelStyle | TicksLength | TicksNumber | TicksVisible
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GridInFront

Coordinate grid in front of or behind graphical objects?

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects GridInFront Default Values

plot::CoordinateSystem2d FALSE

Description

GridInFront = TRUE versus GridInFront = FALSE places 2D coordinate lines in front
of or behind the graphical objects in the scene.

Setting GridVisible = TRUE, SubgridVisible = TRUE, one can display a coordinate
grid extending the tick marks on the coordinate axes. See the help page of GridVisible
for further information.

By default, the lines of the coordinate grid are plotted behind the graphical objects in a
scene. Consequently, the objects may cover the coordinate grid. If only line objects and
points are present in a 2D scene, this is desirable in most cases.

However, if there are filled areas such as filled polygons in the scene, the view to the
coordinate grid may be totally blocked. In such a situation, you may want to draw the
grid lines in front of the objects to guarantee visibility of the coordinate grid.

Although the default setting is GridInFront = FALSE, some objects which create filled
areas send GridInFront = TRUE as a “hint” (see the section Primitives Requesting
Special Scene Attributes: “Hints” of this documentation).
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This attribute is available only in 2D.

Examples

Example 1

It is usually desirable to let line objects and points cover the coordinate grid:

p1 := plot::Point2d(0.5, 0.5, PointSize = 3*unit::mm,

                    Color = RGB::Green):

p2 := plot::Point2d(0.5, 1.0, PointSize = 3*unit::mm,

                    Color = RGB::Green):

f1 := plot::Function2d(cos(x*PI), x = -1 .. 1,

                       Color = RGB::Blue):

f2 := plot::Function2d(sin(x*PI), x = -1 .. 1, Color = RGB::Red):

plot(plot::Scene2d(p1, p2, f1, f2, 

                   AxesInFront = FALSE, GridInFront = FALSE),

     plot::Scene2d(p1, p2, f1, f2, 

                   AxesInFront = TRUE, GridInFront = TRUE),

     GridVisible = TRUE, SubgridVisible = TRUE):
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However, you probably want to have the coordinate grid visible in front of the following
density plot:

d := plot::Density(exp(-x^2 - y^2), x = -1..1, y = -1 ..1,

                   FillColor = RGB::Blue):

plot(

 plot::Scene2d(d, AxesInFront = FALSE, GridInFront = FALSE),

 plot::Scene2d(d, AxesInFront = TRUE, GridInFront = TRUE),

 GridVisible = TRUE, SubgridVisible = TRUE,

 Layout = Horizontal

):

Note that density objects of type plot::Density automatically send the “hint”
GridInFront = TRUE, so there is no need to set this attribute explicitly:

plot(d, GridVisible = TRUE, SubgridVisible = TRUE):
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delete p1, p2, f1, f2, d:

See Also

MuPAD Functions
GridLineColor | GridLineStyle | GridLineWidth | GridVisible
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GridLineColor, SubgridLineColor

Line color of the coordinate grid

Value Summary

GridLineColor,
SubgridLineColor

Inherited Color

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

GridLineColor: RGB::Grey60

SubgridLineColor: RGB::Grey80

Description

GridLineColor, SubgridLineColor govern the color of coordinate grid and subgrid
lines extending the tick marks on coordinate axes.

Setting GridVisible = TRUE, SubgridVisible = TRUE, one can display a coordinate
grid extending the tick marks on the coordinate axes. See the help page of GridVisible
for further information.

GridLineColor, SubgridLineColor set the RGB color for the coordinate grid and
subgrid lines.

The color of the coordinate grid lines cannot be specified separately for the single
coordinate directions.
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Examples

Example 1

The usual grey lines of the coordinate grid are not appropriate for the following density
graphics:

d := plot::Density(exp(-x^2 - y^2), x = -1..1, y = -1 ..1,

                   FillColor = RGB::White):

plot(d, TicksNumber = Normal, TicksBetween = 4,

     GridVisible = TRUE, SubgridVisible = TRUE)

We change the grid color to a darker grey:

plot(d, TicksNumber = Normal, TicksBetween = 4,

     GridVisible = TRUE, SubgridVisible = TRUE,

     GridLineColor = RGB::SlateGreyDark,

     SubgridLineColor = RGB::SlateGreyDark,

     GridLineWidth = 0.5*unit::mm)
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delete d:

See Also

MuPAD Functions
GridInFront | GridLineStyle | GridLineWidth | GridVisible
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GridLineStyle, SubgridLineStyle
Line style of the coordinate grid

Value Summary

GridLineStyle,
SubgridLineStyle

Inherited Dashed, Dotted, or Solid

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

GridLineStyle, SubgridLineStyle:
Solid

Description

GridLineStyle, SubgridLineStyle govern the style of the coordinate grid lines and
subgrid lines extending the tick marks on coordinate axes.

Setting GridVisible = TRUE, SubgridVisible = TRUE, one can display a coordinate
grid extending the tick marks on the coordinate axes. See the help page of GridVisible
for further information.

Styles for coordinate grid and subgrid lines can be either Solid, Dashed, or Dotted.

The line style of the coordinate grid cannot be specified separately for the single
coordinate directions.

Examples

Example 1

We use horizontal coordinate lines to visualize quantiles for the normal distribution:
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plot(plot::Function2d(stats::normalCDF(0, 1)(x), x = -3..3),

     Axes = Frame, TicksBetween = 4, 

     YGridVisible = TRUE, YSubgridVisible = TRUE,

     GridLineStyle = Solid, SubgridLineStyle = Dashed):

Example 2

Here is an example of a function graph in 3D with different style settings for the
coordinate grid and subgrid:

plot(plot::Function3d(sin(x*y), x = -2..2, y = -2..2), 

     GridVisible = TRUE, SubgridVisible = TRUE,

     GridLineStyle = Dashed, SubgridLineStyle = Dotted):
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See Also

MuPAD Functions
GridInFront | GridLineColor | GridLineWidth | GridVisible
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GridLineWidth, SubgridLineWidth
Width of coordinate grid lines

Value Summary

GridLineWidth,
SubgridLineWidth

Inherited Positive output size

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

GridLineWidth, SubgridLineWidth:
0.1

Description

GridLineWidth, SubgridLineWidth govern the width of coordinate grid lines and
subgrid lines extending the tick marks on coordinate axes.

Setting GridVisible = TRUE, SubgridVisible = TRUE, one can display a coordinate
grid extending the tick marks on the coordinate axes. See the help page of GridVisible
for further information.

GridLineWidth, SubgridLineWidth set the linewidth for the coordinate grid and
the subgrid, respectively. The values should be specified as absolute physical lengths
including a length unit such as GridLineWidth = 0.5*unit::mm. Numbers without a
physical unit give the size in mm.

GridLinesWidth and SubgridLinesWidth set a common line width for the grid lines
in all coordinate directions.

XGridLinesWidth and XSubgridLinesWidth set the line width only for the grid lines
extending the axes tick marks on the x-axis.

YGridLinesWidth etc. work correspondingly for the other coordinate directions.
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Note that the graphics cannot always react to small changes of the line width because of
the discretization into pixels.

Examples

Example 1

We use the coordinate lines to plot the sine function on “lined paper”. Because of the
rather high number of subgrid lines set by TicksBetween = 10, we use extra fine lines
for the subgrid:

plot(plot::Function2d(sin(x), x = 0 .. 2*PI),

     TicksNumber = Normal, TicksBetween = 10,

     GridVisible = TRUE, SubgridVisible = TRUE,

     GridLineWidth = 0.5*unit::mm,

     SubgridLineWidth = 0.1*unit::mm)

Here is a corresponding plot in 3D:

plot(plot::Function3d(cos(x*PI)*cos(y*PI), x = 0 .. 2,
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 GridLineWidth, SubgridLineWidth

                      y = 0 .. 2),

     TicksNumber = Low, TicksBetween = 9,

     GridVisible = TRUE, SubgridVisible = TRUE,

     GridLineWidth = 0.5*unit::mm,

     SubgridLineWidth = 0.1*unit::mm)

See Also

MuPAD Functions
GridInFront | GridLineColor | GridLineStyle | GridVisible
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GridVisible, SubgridVisible, XGridVisible,
XSubgridVisible, YGridVisible, YSubgridVisible,
ZGridVisible, ZSubgridVisible
Display a coordinate grid?

Value Summary

GridVisible Library wrapper for
“{XGridVisible,
YGridVisible}” (2D),
“{XGridVisible,
YGridVisible,
ZGridVisible}” (3D)

See below

SubgridVisible Library wrapper for
“{XSubgridVisible,
YSubgridVisible}” (2D),
“{XSubgridVisible,
YSubgridVisible,
ZSubgridVisible}” (3D)

See below

XGridVisible,
XSubgridVisible,
YGridVisible,
YSubgridVisible,
ZGridVisible,
ZSubgridVisible

Inherited FALSE, or TRUE

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d GridVisible, SubgridVisible,
XGridVisible, XSubgridVisible,
YGridVisible, YSubgridVisible:
FALSE
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 GridVisible, SubgridVisible, XGridVisible, XSubgridVisible, YGridVisible, YSubgridVisible, ZGridVisible, ZSubgridVisible

Objects Default Values

plot::CoordinateSystem3d GridVisible, SubgridVisible,
XGridVisible, XSubgridVisible,
YGridVisible, YSubgridVisible,
ZGridVisible, ZSubgridVisible:
FALSE

Description

With GridVisible = TRUE versus GridVisible = FALSE, a coordinate grid extending
the “major” axes tick marks is “switched on” or “off”.

With SubgridVisible, additional grid lines extending the “minor” axes tick marks are
switched on or off.

With XGridVisible, XSubgridVisible etc., the coordinate lines can be switched on or
off separately for each single coordinate direction.

The regular equidistant tick marks along the coordinate axes consist of “minor” tick
marks without labels (cf. TicksBetween) between “major” tick marks bearing labels (cf.
TicksNumber, TicksAnchor, TicksDistance).

Extending the major tick marks, one obtains a grid of coordinate lines. Likewise,
extending the minor tick marks yields a refined subgrid of coordinate lines.

With GridVisible = TRUE, the coordinate grid extending the major tick marks is
displayed. With SubgridVisible = TRUE, the refined subgrid is displayed.

With XGridVisible = TRUE, XSubgridVisible = TRUE, only the coordinate lines
passing through the ticks along the x-axis are displayed. Likewise, YGridVisible,
YSubgridVisible, ZGridVisible, ZSubgridVisible allow to display the coordinate
lines passing through the ticks along the y and z-axis, respectively.

The coordinate grid is controlled by the ticks marks displayed along the coordinate axes.

Use TicksNumber to control the number of automatically generated major tick marks.
Alternatively, use TicksAnchor, TicksDistance to specify the major tick marks
explicitly.
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Use TicksBetween to control the number of minor tick marks.

Non-regular tick marks added via TicksAt do not generate additional grid lines.

Examples

Example 1

We plot the graph of the sine function without grid lines:

plot(plot::Function2d(sin(x), x = 0..2*PI),

     XTicksNumber = Normal, YTicksNumber = High)

The grid lines are “switched on”:

plot(plot::Function2d(sin(x), x = 0..2*PI),

     XTicksNumber = Normal, YTicksNumber = High,

     GridVisible = TRUE):
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 GridVisible, SubgridVisible, XGridVisible, XSubgridVisible, YGridVisible, YSubgridVisible, ZGridVisible, ZSubgridVisible

The subgrid lines are switched on as well:

plot(plot::Function2d(sin(x), x = 0..2*PI),

     XTicksNumber = Normal, YTicksNumber = High,

     GridVisible = TRUE, SubgridVisible = TRUE):
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We refine the subgrid in the x-direction via XTicksBetween:

plot(plot::Function2d(sin(x), x = 0..2*PI),

     XTicksNumber = Normal, XTicksBetween = 4,

     YTicksNumber = High,

     GridVisible = TRUE, SubgridVisible = TRUE):
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Example 2

We consider the probabiliy of at least k successes when performing 10 independent
experiments each with a 50% chance of success. Consider for this the cumulative density
of the binomial distribution given by stats::binomialCDF. Quantiles are visualized by
introducing horizontal grid lines:

f := stats::binomialCDF(10, 0.5):

plot(plot::Bars2d([f(k) $ k = 0..10]),

     XTicksDistance = 1, XTicksBetween = 0,

     XAxisVisible,

     YTicksDistance = 0.1, YTicksBetween = 4,

     YGridVisible, YSubgridVisible)
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delete f:

Example 3

Consider a curve in 3D with two of its projections to the coordinate planes. We render the
coordinate grid visible:

c1 := plot::Curve3d([t, cos(t)/t, sin(t)], t = 1..10,

                    LineColor = RGB::Red):

c2 := plot::Curve3d([1, cos(t)/t, sin(t)], t = 1..10,

                    LineColor = RGB::ForestGreen):

c3 := plot::Curve3d([t, cos(t)/t, -1], t = 1..10,

                    LineColor = RGB::Blue):

plot(c1,c2, c3, TicksBetween = 4, GridVisible = TRUE, 

     SubgridVisible = TRUE)
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delete c1, c2, c3:

Example 4

Because of the rather large number of grid lines in the following plot, we use extra fine
lines to render the subgrid:

plot(plot::Function3d(cos(x*PI)*cos(y*PI), x = 0 .. 2,

                      y = 0 .. 2),

     TicksNumber = Low, TicksBetween = 9,

     GridVisible = TRUE, SubgridVisible = TRUE,

     GridLineWidth = 0.5*unit::mm,

     SubgridLineWidth = 0.1*unit::mm)
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See Also

MuPAD Functions
GridInFront | GridLineColor | GridLineStyle | GridLineWidth
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AnimationStyle
Behaviour of the animation toolbar

Value Summary

Inherited BackAndForth, Loop, or RunOnce

Graphics Primitives

Objects AnimationStyle Default Values

plot::Canvas RunOnce

Description

AnimationStyle determines how an animation is played in VCam once it is activated.

AnimationStyle determines what has to be done when an animation reaches the end of
its playing time. With RunOnce the animation stops, with BackAndForth the animation
reverts and runs through to the beginning and with Loop it jumps back to the beginning
and runs on from there on.

AnimationStyle sets the initial value of the Animation Style menu in the animation
toolbar according to its value.

Examples

Example 1

This example shows an animation which builds up a picture frame by frame and at the
end of the animation time the complete picture is visible. For this kind of animation the
value RunOnce is a good choice for AnimationStyle:
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plot(plot::Line2d([a/36, 0], [sin(a/18*PI), cos(a/18*PI)], 

                  VisibleAfter = a/7.2, 

                  Color = [sin(a/18*PI), sin(a/18*PI), cos(a/18*PI)])

                  $ a = -36..36, 

     AnimationStyle = RunOnce)

Example 2

This example plays in an endless loop and the value Loop is choosen because first frame
is the natural successor of the last frame of the animation:

plot(plot::Function2d(sin(a*x), x = -PI..PI, a = -PI..PI),

     AnimationStyle = Loop)
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Example 3

In this example the circle grows from radius 0 to radius 1. With AnimationStyle =
BackAndForth the circle grows and shrinks in an endless loop:

plot(plot::Circle2d(a, a = 0..1),

     AnimationStyle = BackAndForth)
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See Also

MuPAD Functions
InitialTime
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 AutoPlay

AutoPlay
Start animations automatically

Value Summary

Optional FALSE, or TRUE

Graphics Primitives

Objects AutoPlay Default Values

plot::Canvas TRUE

Description

When plotting with AutoPlay = TRUE, animations will start automatically when the
plot is activated. This is the default setting.

Animations created with AutoPlay = FALSE start when the corresponding button is
pressed.
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Frames
Number of frames in an animation

Value Summary

Inherited Positive integer

Description

Frames determines the number of frames in the animation of an object.

Frames = n with a positive integer n sets the number of frames for the animation of an
object to n.

These frames are played during the real time period given by TimeBegin = t0 and
TimeEnd = t1 (in seconds).

The resulting frame rate is n/(t1 - t0) (frames per second).

Increasing the number of frames does not mean that the animation lasts longer, because
the renderer does not work with a fixed number of frames per second.

Keeping the play period from TimeBegin = t0 to TimeEnd = t1 fixed, an increased
number of frames just produces a higher frame rate leading to a smoother animation.

Note that the human eye cannot distinguish between different frames if they change
with a rate of more than 25 frames per second. Thus, the number of frames n for an
animation should satisfy n < 25 (t1 - t0).

With the default time range TimeBegin = t0 = 0, TimeEnd = t1 = 10 (seconds), it does
not make sense to specify Frames = n with n > 250. If a higher n is required to obtain
a sufficient resolution of the animated object, one should increase the time for the
animation by a sufficiently high value of TimeEnd.

Since the values of Frames, TimeBegin, TimeEnd may be set separately for different
objects, it is possible to animate objects in a scene with different frame rates. Cf.
“Example 2” on page 24-1541.
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Examples

Example 1

We set the number of frames for the following animation to 40. The default animation
range of 10 seconds is used. This results in a frame rate of 4 frames per second:

plot(plot::Function2d(sin(a*x), x = -PI..PI, 

                      a = 1..2, Frames = 40)):

Example 2

Here is an example of different frame rates in one plot. The default animation range of 10
seconds is used.

The red point is sampled with 30 frames in 10 seconds, the blue one with 100 frames in
10 seconds. The animation of the blue point is much smoother:

plot(plot::Function2d(sin(x), x = 0..PI, 

                      Color = RGB::Black),
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     plot::Point2d([a , sin(a) + 0.07], a = 0 .. PI, 

                   Color = RGB::Red, Frames = 30),

     plot::Point2d([a , sin(a) - 0.07], a = 0 .. PI,

                   Color = RGB::Blue, Frames = 100),

     PointSize = 4*unit::mm):

See Also

MuPAD Functions
ParameterBegin | ParameterEnd | ParameterName | ParameterRange |
TimeBegin | TimeEnd | TimeRange | VisibleAfter | VisibleAfterEnd |
VisibleBefore | VisibleBeforeBegin | VisibleFromTo

More About
• “The Number of Frames and the Time Range”
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 TimeBegin, TimeEnd, TimeRange, InitialTime

TimeBegin, TimeEnd, TimeRange, InitialTime
Time of the animation

Value Summary
InitialTime, TimeBegin,
TimeEnd

Inherited Real number

TimeRange [TimeBegin .. TimeEnd] Range of arithmetical
expressions

Graphics Primitives
Objects Default Values

plot::Canvas  

Description
TimeBegin = t0 defines the starting time t0 of the animation of an object.

TimeEnd = t1 defines the time t1 for the end of the animation.

TimeRange = t_0 .. t_1 is a short cut for setting both TimeBegin = t0 and TimeEnd
= t1.

InitialTime = t2 defines the time t2 for the initial position of the animation slider.

Animations are defined object by object. Each animated object is animated for a certain
time span specified by TimeBegin and TimeEnd setting the real start and end time in
seconds.

The total real time span of an animated plot is the physical real time given by the
minimum of the TimeBegin values of all animated objects in the plot to the maximum of
the TimeEnd values of all the animated objects:

• When a plot containing animated objects is created, the real time clock is set to the
minimum of the TimeBegin values of all animated objects in the plot. The real time
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clock is started when pushing the `play' button for animations in the graphical user
interface.

• Before the real time reaches the TimeBegin value t0 of an animated object, this
object is static in the state corresponding to the begin of its animation. Depending on
the attribute VisibleBeforeBegin, it may be visible or invisible before t0.

• During the time from t0 to t1, the object changes from its original to its final state.
• After the real time reaches the TimeEnd value t1, the object stays static in the

state corresponding to the end of its animation. Depending on the attribute
VisibleAfterEnd, it may stay visible or become invisible after t1.

• The animation of the entire plot ends with the physical time given by the maximum of
the TimeEnd values of all animated objects in the plot.

If all animated objects in a plot share the same values TimeBegin = t0 and TimeEnd
= t1, the physical time span of the animation is t1 - t0 (in seconds). During this time, all
animated objects change from their initial to their final state.

Separate settings for TimeBegin and TimeEnd in different animated objects allow to
synchronize the animations.

With the optional attribute InitialTime the initial position of the animation slider can
be set to any time value t2 between t0 and t1. If InitialTime is not set, the slider will
be placed at the beginning of the animation.

The attributes VisibleAfter, VisibleBefore, and VisibleFromTo allow special
“visibility animations” in which objects are visible for a limited time only.

Note: The attributes VisibleAfter, VisibleBefore, and VisibleFromTo
implicitly set values for TimeBegin and TimeEnd (and, therefore, also for TimeRange).
Consequently, these attributes should not be used simultaneously in the definition of an
animated object.

Examples

Example 1

By default, an animation plays for 10 seconds. Keeping the default value TimeBegin =
0, this time can be reduced to 5 seconds by setting TimeEnd = 5:
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 TimeBegin, TimeEnd, TimeRange, InitialTime

plot(plot::Function2d(sin(a*x), x= - PI .. PI, a = -PI..PI, 

                      TimeEnd = 5)):

The total time of the animation is the difference between TimeEnd and TimeBegin.
Hence, the following animation plays 5 seconds as well:

plot(plot::Function2d(sin(a*x), x = -PI..PI, a = -PI..PI, 

                      TimeRange = 5..10)):
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Example 2

Using different time ranges allows to synchronize the animations of different objects.
Here we plot two functions. The first function is animated from 0 to 5 (seconds) and then
stays static in its final state. The second function stays static in its initial state for 5
seconds and is then animated in the range from 5 to 10 (seconds):

f1 := plot::Function2d(a*sin(x), x = -PI..PI, a = -1..1, 

                       Color = RGB::Red, TimeRange = 0..5):

f2 := plot::Function2d(a*cos(x), x = -PI..PI, a = -1..1, 

                       Color = RGB::Blue, TimeRange = 5..10):

plot(f1 ,f2):
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 TimeBegin, TimeEnd, TimeRange, InitialTime

Both functions are visible outside the time range of their animations. We use the
attributes VisibleAfterEnd and VisibleBeforeBegin to make them visible only
during their animations:

f1::VisibleAfterEnd := FALSE:

f2::VisibleBeforeBegin := FALSE:

plot(f1, f2):
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delete f1, f2:

Example 3

The following animation uses the implicitly given TimeRange from 0 to 10 seconds, but
the first image shown is at the time 5:

plot(plot::Function2d(a*sin(x), x = -PI..PI, a = -1..1), 

                      InitialTime=5):
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 TimeBegin, TimeEnd, TimeRange, InitialTime

See Also

MuPAD Functions
AnimationStyle | Frames | ParameterBegin | ParameterEnd | ParameterName
| ParameterRange | VisibleAfter | VisibleAfterEnd | VisibleBefore |
VisibleBeforeBegin | VisibleFromTo

More About
• “The Number of Frames and the Time Range”
• “Advanced Animations: The Synchronization Model”
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VisibleAfter, VisibleBefore, VisibleFromTo

Object visible at time value

Value Summary

VisibleAfter,
VisibleBefore,
VisibleFromTo

Library wrapper for
“TimeEnd, TimeBegin,
VisibleAfterEnd, and
VisibleBeforeBegin”

Non-negative real number

Description

VisibleAfter = t0 renders an object invisible until the real time t0 has elapsed in an
animation. Then the object becomes visible.

VisibleBefore = t1 renders an object visible until the time t1. Then the object
becomes invisible.

VisibleFrom = t_0 .. t_1 renders an object invisible until the time t0. Then the
object becomes visible. After the time t1 it becomes invisible again.

VisibleAfter, VisibleBefore, VisibleFromTo allow to implement animated
visibility of objects. This also includes otherwise static objects, which become animated
objects when one of these attributes is used.

The attributes VisibleBeforeBegin and VisibleAfterEnd control the visibility of
objects outside the time range of their animation set by TimeBegin and TimeEnd. See
TimeBegin, TimeEnd for details.

VisibleAfter, VisibleBefore, VisibleFromTo provide short cuts for
suitable settings of the attributes TimeBegin, VisibleBeforeBegin, TimeEnd,
VisibleAfterEnd that produce the desired visibility effects.

VisibleAfter = t0 is a short cut for setting the following attribute values:
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TimeBegin = t0, VisibleBeforeBegin = FALSE,

TimeEnd = t0, VisibleAfterEnd = TRUE.

The resulting effect is that the corresponding object is invisible at the beginning of
the animation. It becomes visible at the time t0, staying visible until the end of the
animation.

The time t0 has to be a real numerical value giving the real time in seconds.

VisibleBefore = t1 is a short cut for setting the following attribute values:

TimeBegin = t1, VisibleBeforeBegin = TRUE,

TimeEnd = t1, VisibleAfterEnd = FALSE.

The resulting effect is that the corresponding object is visible at the beginning of the
animation. At the time t1 it becomes invisible, staying invisible until the end of the
animation.

The time t1 has to be a real numerical value giving the real time in seconds.

VisibleFromTo = t_0 .. t_1 is a short cut for setting the following attribute values:

TimeBegin = t0, VisibleBeforeBegin = FALSE,

TimeEnd = t1, VisibleAfterEnd = FALSE.

The resulting effect is that the corresponding object is visible only from the time t0 until
the time t1.

Note: The attributes VisibleAfter = t0 and VisibleBefore = t1 should not be
combined to create visibility for the time range between t0 and t1. (Conflicting values
are set implicitly for VisibleBeforeBegin etc.) Use VisibleFromTo = t_0 .. t_1
instead.

Note: VisibleAfter, VisibleBefore, VisibleFromTo should not be combined
with any of the the attributes TimeBegin, TimeEnd, VisibleBeforeBegin or
VisibleAfterEnd, since implicit values for these attributes are set.
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Examples

Example 1

The following animation consists of 100 pieces of the graph of the function x sin(x). At the
times t = 0.1, 0.2 etc., an additional piece of the function becomes visible until, finally, the
whole graph is built up:

plot(plot::Function2d(x*sin(x), x = (i - 1)*PI/100 .. i*PI/100, 

                      VisibleAfter = i/10) $ i = 1..100)

Example 2

This example creates an animated “spider net”. It consists of several lines which appear
one after the other at the times given by VisibleAfter until the full net is visible at the
end of the animation:

SpiderNet := 

proc(move, move1, rc, gc, bc)

  local r, lines, x, y, x1, y1;
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 VisibleAfter, VisibleBefore, VisibleFromTo

begin

  r := 1.0:  

  lines := [FAIL $ 361]:

  for i from 0 to 360 do 

    thet := float(i*PI/180);

    x     := r * cos(move  * thet); 

    y     := r * sin(move  * thet); 

    x1    := r * cos(move1 * thet);

    y1    := r * sin(move1 * thet);

    lines[i+1] := 

      plot::Line2d([x, y] ,[x1, y1], 

                   Color = [abs(rc*sin(i*PI/360)), 

                            abs(gc*sin(i*PI/360 + PI/4)),  

                            abs(bc*sin(i*PI/360 + PI/2))],

                   VisibleAfter = i/36

      );

  end_for:

  plot::Group2d(op(lines), Name = "SpiderNet",

                Axes = None, Scaling = Constrained)

end_proc:

plot(SpiderNet(3, 7, 0.9, 0.1, 0.5))
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delete SpiderNet:

Example 3

This example creates an animated “Maurer rose”. Here the animation starts with the full
object. During the animation the lines disappear at the times given by VisibleBefore:

MaurerRose := proc(n, b, rc, gc, bc)

  local lines, i, thet, r, x, y, x1, y1;

begin

  r := 1.0;

  lines := [FAIL $ 361]:

  b := float(b*PI/180);

  for i from 0 to 360 do 

    thet := float(i*PI/180); 

    x     := r * sin(n*thet)    * cos(thet); 

    y     := r * sin(n*thet)    * sin(thet); 

    x1    := r * sin(n*(thet+b))* cos(thet+b);

    y1    := r * sin(n*(thet+b))* sin(thet+b);

    lines[i+1] := 

      plot::Line2d([x, y], [x1, y1], 

                   Color = [abs(rc*sin(i*PI/360)), 

                           abs(gc*sin(i*PI/360 + PI/4)),  

                           abs(bc*sin(i*PI/360 + PI/2))],

                   VisibleBefore = i/36

      );

  end_for:

  plot::Group2d(op(lines), Name = "MaurerRose",

                Axes = None, Scaling = Constrained):

end_proc:

plot(MaurerRose(4, 120, 0.1, 0.5, 0.9)):
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delete MaurerRose:

Example 4

This example creates an animated “Lissajous net”. It is built up from lines that have a
life span of only 2 seconds each, set by VisibleFromTo:

LissajousNet := proc(r, a, b, R, A, B, rc, gc, bc)

  local lines, i, thet;

begin

  lines := [FAIL $ 361]:

  for i from 0 to 360 do 

    thet := float(i*PI/180);

    x     := r * cos(a*thet); 

    y     := r * sin(b*thet); 

    x1    := R * cos(A*thet);

    y1    := R * sin(B*thet);

    lines[i+1] := 

      plot::Line2d([x, y], [x1, y1], 

                   Color = [abs(rc*sin(i*PI/360)), 

                            abs(gc*sin(i*PI/360 + PI/4)),  
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                            abs(bc*sin(i*PI/360 + PI/2))],

                   VisibleFromTo = i/36 .. i/36 + 2

      );

  end_for:

  plot::Group2d(op(lines), Name = "LissajousNet",

                Axes = None, Scaling = Constrained):

end_proc:

plot(LissajousNet(2, 3, 4, 1, 6, 3, 0.7, 0.1, 0.99))

delete LissajousNet:

Example 5

Here is a 3D example of an animation. A “spider net” is built up with lines that have a
life span of 4 seconds each:

SpiderNet3d := proc(a, b, c, rc, gc, bc)

  local r, lines, i, x, x1, y, y1, thet, z1, z; 

begin 
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  r := 1.0:

  lines := [FAIL $ 361]:

  for i from 0 to 360 do 

    thet := float(i*PI/180);

    x     := r * cos(thet)*cos(thet);

    y     := r * sin(thet)*cos(thet);

    z     := r * sin(thet):

    x1    := r * cos(a*thet)*cos(a*thet);

    y1    := r * sin(b*thet)*cos(b*thet);

    z1    := r * sin(c*thet):

    lines[i+1] := 

      plot::Line3d([x,y,z],[x1,y1,z1], 

                   Color = [abs(rc*sin(i*PI/360)),

                            abs(gc*sin(i*PI/360 + PI/4)), 

                            abs(bc*sin(i*PI/360 + PI/2))],

                   VisibleFromTo = i/36 .. i/36 + 4

      );

  end_for:

  plot::Group3d(op(lines), Name = "SpiderNet3d"):

end_proc:

plot(SpiderNet3d(2, 1, 3, 0.99, 0.9, 0.1))
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Algorithms

The last examples on this page are taken from the mathPAD Online Edition (http://
www.mupad.com/mathpad/recreations.html) written by Prof. Mirek Majewski. See
there for details about the mathematics behind the examples above.

See Also

MuPAD Functions
Frames | ParameterBegin | ParameterEnd | ParameterName | ParameterRange |
TimeBegin | TimeEnd | TimeRange | VisibleAfterEnd | VisibleBeforeBegin

More About
• “Animations”
• “Frame by Frame Animations”

24-1558



 VisibleBeforeBegin, VisibleAfterEnd

VisibleBeforeBegin, VisibleAfterEnd
Object visible before or after its animation time starts?

Value Summary

VisibleAfterEnd,
VisibleBeforeBegin

Inherited FALSE, or TRUE

Description

VisibleBeforeBegin, VisibleAfterEnd determine the visibility of an object before
the begin and after the end of its own animation time span, respectively.

Animations are defined object by object. Each animated object is animated for a certain
time span specified by TimeBegin and TimeEnd setting the real start and end time in
seconds.

The total real time span of an animated plot is the physical real time given by the
minimum of the TimeBegin values of all animated objects in the plot to the maximum of
the TimeEnd values of all the animated objects.

Thus, the time span of an animated plot may be larger than the time spans of the
animations of individual objects.

With VisibleBeforeBegin = TRUE, an object is visible as a static object when the
animation of the entire plot starts. Its state correponds to the start of its own animation.
It begins to change, when the starting time of its own animation set by TimeBegin is
reached.

With VisibleBeforeBegin = FALSE, an object is invisible when the animation of
the entire plot starts. It becomes visible when the starting time of its own animation is
reached.

With VisibleAfterEnd = TRUE, an object stays visible in the final state of its
animation after the end of its own animation time span set by TimeEnd.

With VisibleAfterEnd = FALSE, an object becomes invisible at the end of its own
animation.
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VisibleBeforeBegin, VisibleAfterEnd is useful only in plots consisting of several
animated objects with different time spans of their animations.

Also consider the attributes VisibleAfter, VisibleBefore, and VisibleFromTo to
animate the visibility of objects.

Examples

Example 1

In the first 5 seconds of the following animation, the sine function draws itself.
Afterwards, a point wanders along the graph:

f := plot::Function2d(sin(x), x = -PI..a, a = -PI..PI, 

                      TimeRange = 0..5):

p := plot::Point2d(a, sin(a), PointSize = 5*unit::mm, 

                   a = -PI..PI, TimeRange = 5..10):

plot(f, p)
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The point is visible for the first 5 seconds, too, because it used the default setting
VisibleBeforeBegin = TRUE. With VisibleBeforeBegin = FALSE, the point
is invisible at the start of the animation. It appears after 5 seconds, when its own
animation begins:

p::VisibleBeforeBegin := FALSE:

plot(f, p)

delete p, f:

Example 2

The plot::Polar object in the following animation is only visible in its TimeRange
from the 3rd to the 7th second:

Speaker := 

     plot::Polygon2d([[0.5, -1], [0.5, 1], [0, 0.3], 

                     [-0.5, 0.3], [-0.5, -0.3], [0, -0.3], 

                     [0.5, -1]], Color = RGB::Black, Filled):
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Point := plot::Point2d([2, a], a = -2.5..2.5, 

                       PointSize = 3*unit::mm):

plot(plot::Polar([1 + 0.1*(2 + sin(20*a))*cos(20*phi), phi],

                 phi = -1..1, a = 0..3, TimeRange = 3..7,

                 VisibleBeforeBegin = FALSE,

                 VisibleAfterEnd = FALSE),

     Speaker, Point, Axes = None)

The previous command is equivalent to:

plot(plot::Polar([1 + 0.1*(2 + sin(20*a))*cos(20*phi), phi],

                 phi = -1..1, a = 0..3, VisibleFromTo = 3..7),

     Speaker, Point, Axes = None)
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delete Speaker, Point:

Example 3

A circle is tumbling around in 3D. After 3 seconds, a growing sphere becomes visible.
From the 5th second through to the end of the animation, the sphere stays visible with
the constant radius 5, while the circle moves further out:

plot(plot::Circle3d(4, [sin(a), cos(a), a], 

                    [sin(a), cos(a), a], a = 0..10, 

                    Frames = 100, TimeRange = 0..10,

                    Filled = TRUE, FillColor = RGB::Blue),

     plot::Sphere(a, [0, 0, 0], Color=RGB::Red,

                  a = 3..5, TimeRange = 3 .. 5, Frames = 20,

                  VisibleBeforeBegin = FALSE)):
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See Also

MuPAD Functions
Frames | ParameterBegin | ParameterEnd | ParameterName | ParameterRange
| TimeBegin | TimeEnd | TimeRange | VisibleAfter | VisibleBefore |
VisibleFromTo
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Footer, Header
Footer text

Value Summary

Footer, Header Optional Text string

Graphics Primitives

Objects Default Values

plot::Canvas, plot::Scene2d,
plot::Scene3d

 

Description

Footer = "…" sets a text to be displayed at the bottom of a scene or canvas.

Header = "…" sets a text to be displayed at the top of a scene or canvas.

As described in the introduction, each plot consists of a canvas containing one or more
scenes. Using Header and Footer, you can set captions for both levels of nesting, above
and/or below the contents.

To change the appearance of the captions, please use the attributes FooterAlignment
and HeaderAlignment for positioning and FooterFont and HeaderFont to control
fonts and sizes.

Examples

Example 1

The easiest way of setting a caption is to include a canvas-caption in a plot command:
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plot(plot::Function2d(sin(x), x = 0..2*PI),

     Footer = "the sine function"):

You can also set style controlling attributes in this context:

plot(plot::Function2d(sin(x), x = 0..2*PI),

     Header = "the sine function",

     HeaderFont = ["Monotype Corsiva", 17, RGB::Red],

     HeaderAlignment = Left):
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Example 2

Advanced users may want to plot several scenes together. These can be given individual
captions:

f1 := plot::Function3d(sin(x^2 + y^2)*(x^2 + y^2),

                       x = -3..3, y = -3 ..3,

                       AdaptiveMesh = 0):

f2 := plot::modify(f1, AdaptiveMesh = 2):

s1 := plot::Scene3d(f1, Footer = "AdaptiveMesh = 0"):

s2 := plot::Scene3d(f2, Footer = "AdaptiveMesh = 2"):

plot(s1, s2, Layout = Horizontal)
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See Also

MuPAD Functions
FooterAlignment | FooterFont | HeaderAlignment | HeaderFont | Title
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FooterAlignment, HeaderAlignment

Alignment of footer of canvas and scenes

Value Summary

FooterAlignment,
HeaderAlignment

Inherited Center, Left, or Right

Graphics Primitives

Objects Default Values

plot::Canvas, plot::Scene2d,
plot::Scene3d

FooterAlignment, HeaderAlignment:
Center

Description

Using the attributes Footer and Header, a canvas or scene can be given a caption.
FooterAlignment and HeaderAlignment control the horizontal alignment of these
captions.

Examples

Example 1

Using the default placement, a footer is centered:

plot(plot::Point2d([1,1]), Footer="Point2d")
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We may want to place the footer more to the right:

plot(plot::Point2d([1,1]), Footer="Point2d",

     FooterAlignment = Right)
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See Also

MuPAD Functions
Footer | FooterFont | Header | HeaderFont | HorizontalAlignment |
LegendAlignment | VerticalAlignment
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HorizontalAlignment, TitleAlignment,
VerticalAlignment
Horizontal alignment of text objects w.r.t. their coordinates

Value Summary

HorizontalAlignment,
TitleAlignment

Inherited Center, Left, or Right

VerticalAlignment Inherited BaseLine, Bottom, Center,
or Top

Graphics Primitives

Objects Default Values

plot::Text2d, plot::Text3d HorizontalAlignment: Left

TitleAlignment: Center

VerticalAlignment: BaseLine
plot::Integral HorizontalAlignment: Left

TitleAlignment: Center

VerticalAlignment: Bottom

Description

TitleAlignment controls the interpretation of the TitlePosition of the titles of
graphical objects.

HorizontalAlignment and VerticalAlignment control the interpretation of the
coordinates of text objects.
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Titles of graphical objects are placed at the position defined by TitlePosition.
TitleAlignment determines whether the beginning, the center, or the end of the title
text is aligned at this position. See “Example 1” on page 24-1573.

Text objects (i.e., objects of type plot::Text2d or plot::Text3d) carry, in their
Position attribute, a position. HorizontalAlignment and VerticalAlignment
together determine which point of the text this position refers to. For example, with
HorizontalAlignment = Left and HorizontalAlignment = Bottom, the given
position is the lower left corner of the rendered text.

Examples

Example 1

We plot three points with title positions 0.1 above each point. The titles are aligned such
that the beginning of the text (Left), the center of the text (Center), or the end of the
text (Right) is at the TitlePosition:

plot(plot::Point2d(0, 0, Title = "Point 1", 

                   TitlePosition = [0, 0.1],

                   TitleAlignment = Left),

     plot::Point2d(1, 1, Title = "Point 2", 

                   TitlePosition = [1, 1.1],

                   TitleAlignment = Center),

     plot::Point2d(2, 2, Title = "Point 2", 

                   TitlePosition = [2, 2.1],

                   TitleAlignment = Right),

     PointSize = 2.5*unit::mm)
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Example 2

The following call generates a table showing all the combinations of
HorizontalAlignment and VerticalAlignment:

Hor := [Left, Center, Right]:

Vert := [Top, BaseLine, Center, Bottom]:

plot((plot::Text2d(expr2text(Hor[i], Vert[j]), [i, j],

                   HorizontalAlignment = Hor[i],

                   VerticalAlignment   = Vert[j]),

      plot::Point2d([i, j], Color = RGB::Black))

     $ i = 1..3 $ j = 1..4, Axes = None,

     TitleFont = [13], PointSize = 2.5*unit::mm)
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delete Hor, Vert:

See Also

MuPAD Functions
Position | Title | TitlePosition
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Legend

Makes a legend entry

Value Summary

Library wrapper for “LegendText,
LegendEntry, and LegendVisible”

See below

Description

Legend makes a legend entry and activates the legend.

Legend is a library wrapper which sets a LegendText and simultaneously switches the
legend on by setting LegendEntry and LegendVisible to TRUE.

Examples

Example 1

Legend is used to set a LegendText for the function and activate the legend. The line
does not appear in the legend:

plot(plot::Function2d(cos(x), x = 0..2*PI, Legend = "cos(x)"),

     plot::Line2d([0, 1], [4, cos(4)], Color = RGB::Black))
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See Also

MuPAD Functions
LegendAlignment | LegendEntry | LegendPlacement | LegendText |
LegendVisible

More About
• “Legends”
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LegendEntry
Add this object to the legend?

Value Summary

Inherited FALSE, or TRUE

Description

LegendEntry turns legend entries of individual objects on and off, if LegendVisible is
TRUE.

Note: LegendEntry is a technical internal attribute. You will most likely want to use the
library interface attribute Legend in order to set legend entries.

If legends are active (i.e., LegendVisible is set to TRUE), LegendEntry controls which
objects have entries in the legend. Only objects with LegendEntry = TRUE show up
there.

As long as LegendVisible has its default value of FALSE, LegendEntry has no effect
whatsoever.

Examples

Example 1

By default, functions have LegendEntry = TRUE, while, e.g., lines do not:

plot(plot::Function2d(cos(x), x = 0..2*PI, Name = "cos(x)"),

     plot::Line2d([0, 1], [4, cos(4)], Name = "cos(0) .. cos(4)",

                  Color = RGB::Black),

     LegendVisible)
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Use LegendEntry to turn on the legend entry for the line:

plot(plot::Function2d(cos(x), x = 0..2*PI, Name = "cos(x)"),

     plot::Line2d([0, 1], [4, cos(4)], Name = "cos(0) .. cos(4)",

                  Color = RGB::Black, LegendEntry = TRUE),

     LegendVisible)
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See Also

MuPAD Functions
Legend | LegendAlignment | LegendPlacement | LegendText | LegendVisible

More About
• “Legends”

24-1580



 LegendAlignment, LegendPlacement, LegendVisible

LegendAlignment, LegendPlacement, LegendVisible
Legend at left, center, or right

Value Summary

LegendAlignment Inherited Center, Left, or Right
LegendPlacement Inherited Bottom, or Top
LegendVisible Inherited FALSE, or TRUE

Graphics Primitives

Objects Default Values

plot::Scene2d, plot::Scene3d LegendAlignment: Center

LegendPlacement: Bottom

LegendVisible: FALSE

Description

LegendVisible activates a legend identifying the individual objects in a plot.

LegendAlignment and LegendPlacement control the placement of this legend.

For complex plots with multiple objects, it is often helpful to include an explanation in
form of a legend that states the connection from object color to object meaning.

The entry for “object meaning” is usually not provided automatically but must be given
using LegendText. As an exception, plotfunc2d and plotfunc3d set the function
terms as “meaning”. Cf. “Example 1” on page 24-1582.

Using LegendPlacement, the legend can be moved from below the plot to above it.
LegendAlignment controls whether the legend is displayed flush left, flush right, or
centered (which is the default).
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Examples

Example 1

When plotting more than one object, plotfunc2d and plotfunc3d set LegendVisible
= TRUE:

plotfunc2d(sin(x), cos(x))

It is possible to explicitly switch this automatic legend off:

plotfunc2d(sin(x), cos(x), LegendVisible = FALSE)
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Using LegendPlacement and LegendAlignment, we place the legend in the upper
right corner of the graphics:

plotfunc2d(sin(x), cos(x),

           LegendPlacement = Top, LegendAlignment = Right)
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Example 2

When plotting many objects with active legend entries, the legend is abbreviated: It will
never take up more than half of the scene height and it will not contain more than 20
entries:

plotfunc2d(-i*x^3+i/10*x^2+x-i $ i = -15..15, x=-1..1)
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plotfunc2d(-i*x^3+i/10*x^2+x-i $ i = -15..15, x=-1..1,

           Height = 15*unit::cm)

24-1585



24 Graphics and Animations

24-1586



 LegendAlignment, LegendPlacement, LegendVisible

See Also

MuPAD Functions
Legend | LegendFont | LegendText

24-1587



24 Graphics and Animations

LegendText

Short explanatory text for legend

Value Summary

Optional Text string

Description

LegendText sets the text for the legend entry of an object.

Note: LegendText is a technical internal attribute. You will most likely want to use the
library interface attribute Legend in order to set legend entries.

To have a legend entry, the object must have Legend set to TRUE and LegendVisible
must be TRUE for the enclosing scene. Cf. “Example 1” on page 24-1588.

If LegendText is unset, but Legend and LegendVisible are TRUE, the legend entry
is taken from the attribute Name. If that is unset, too, the name of the object type is
displayed. Cf. “Example 2” on page 24-1590.

Examples

Example 1

We create a few objects with values for LegendText set:

f := plot::Function2d(sin(x), x = 0..PI,

                      LegendText = "f(x)", Color = RGB::Red):

g := plot::Function2d(cos(x), x = 0..PI,

                      LegendText = "f'(x)", Color = RGB::Blue):
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p := plot::Point2d([2, sin(2)], PointSize = 3*unit::mm,

                   LegendText = "(2; f(2))", Color = RGB::Black):

Switching on the legend, we plot these objects:

plot(f, g, p, LegendVisible = TRUE)

As we can see, only the function objects show up in the legend. If p is supposed to be
shown there, too, we must explicitly set LegendEntry to TRUE:

p::LegendEntry := TRUE:

plot(f, g, p, LegendVisible = TRUE)
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Example 2

If an object has a legend entry, but LegendText is not set, the first fall-back is the Name
attribute of the object:

plot(plot::Function3d(sin(x^2 + y^2), x = -2..2, y = -2..2,

                      Color = RGB::Green, FillColorType = Flat,

                      LegendText = "LegendText: sin",

                      Name = "Name: sin"),

     plot::Function3d(cos(x + y), x = -2..2, y = -2..2,

                      Color = RGB::Blue, FillColorType = Flat,

                      Name = "Name: cos"),

     LegendVisible)
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As a last resort, the name of the type of object is used:

plot(plot::Rectangle(0..1, 0..1),

     plot::Point2d(frandom(), frandom()),

     plot::Point2d(frandom(), frandom()),

     plot::Point2d(frandom(), frandom()),

     plot::Point2d(frandom(), frandom()),

     plot::Point2d(frandom(), frandom()),

     LegendEntry = TRUE, LegendVisible = TRUE)
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See Also

MuPAD Functions
Legend | LegendVisible | Name

More About
• “Legends”
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ShowInfo
Information about integral approximation

Value Summary
Optional List of arithmetical expressions

Graphics Primitives

Objects ShowInfo Default Values

plot::Integral [2, IntMethod, Integral]

Description
ShowInfo defines the text information displayed by plot::Integral.

In plot::Integral, text information about the used approximation method, the values
of the approximation and the exact integral, the number of subintervals and the error of
the approximation can be displayed within the approximation object.

The attribute is specified by ShowInfo = [entry1, entry2, …] with a list of various
entries. The user may specify the entries in arbitrary order.

If the list is empty, no text information is displayed.

Each entry in the list can be of one of the following types:

• an arbitrary string

In the text, this entry is appended to the current line. No white space or line break is
prepended or appended. The string itself, however, may contain white space or a line
break (given by \n).

• "" (empty string)

This inserts an empty line in the text.
• IntMethod
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In the text, this creates a new line

name: float_value,

where name is the value of the attribute IntMethod and float_value is the
numerical value of the integral approximation. This value is computed internally and
inserted in the text, automatically.

• IntMethod = name

In the text, this creates a new line

name: float_value,

where float_value is the numerical value of the integral approximation.

If name is one of the flags RiemannLower etc. listed on the help page of the attribute
IntMethod, this flag is displayed in the text.

Alternatively, name may be a string. When name is the empty string "", only the
numerical approximation of the integral value is displayed.

• Integral

In the text, this creates a new line

Integral: float_value,

where float_value is a high precision float approximation of the exact integral
value.

• Integral = string

In the text, this creates a new line

string: float_value,

where string is an arbitrary text string and float_value is a high precision float
approximation of the exact integral value .

When string is the empty string "", only the high precision approximation
float_value is displayed.

• Error
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In the text, this creates a new line

Error: float_value,

where float_value is the absolute difference between the numerical value obtained
by the chosen approximation method and a high precision float approximation of the
exact integral value.

• Error = string

In the text, this creates a new line

string: float_value,

where string is an arbitrary text string and float_value is the absolute difference
between the numerical value obtained by the chosen approximation method and a
high precision float approximation of the exact integral value.

When string is the empty string "", only the absolute quadrature error
float_value is displayed.

• Nodes

In the text, this creates a new line

Nodes: n,

where the integer n is the number of intervals used for the integral approximation.
• Nodes = string

In the text, this creates a new line

string: n,

where string is an arbitrary text string and the integer n is the number of intervals
used for the integral approximation.

When string is the empty string "", only the integer n is displayed.
• Position = [X, Y]

This entry determines the position of the text information. X and Y are the
coordinates of the anchor point of the text. The alignment of the text with respect
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to the anchor point can be chosen by the attributes HorizontalAlignment and
VerticalAlignment.

• a positive integer digits

The integer digits determines the number of digits after the decimal point for all
following float values.

Different float values can be displayed with a different number of digits by inserting
several digits entries at appropriate positions in the list.

Without an explicit specification of Position = [X, Y], the text is positioned
automatically.

Examples

Example 1

By default, the approximation method, the value of approximation and the integral is
displayed with 2 digits after the decimal point:

f := plot::Function2d(x^2, x = -5..5, Color = RGB::DarkGrey):

plot(plot::Integral(f, IntMethod = RiemannLower), f)
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This call is equivalent to:

plot(plot::Integral(f, IntMethod = RiemannLower,

                  ShowInfo = [2, IntMethod, Integral]), f):

The text can be changed:

plot(plot::Integral(f, IntMethod = RiemannLower,

       ShowInfo = [IntMethod = "value of the lower Riemann sum",

                   Integral = "exact numerical value",

                   Error = "difference"]), f)
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delete f:

Example 2

The position can be specified explicitely. In this case, the entries to be displayed must be
specified explicitely, too. The text attribute VerticalAlignment aligns the text object:

f := plot::Function2d(x^2, x = -5..5, Color = RGB::DarkGrey):

plot(plot::Integral(f, IntMethod = RiemannUpper, Color = RGB::Lime,

                       ShowInfo = [IntMethod, Integral,

                                   Position = [-5, -1]],

                       VerticalAlignment = Top),

     plot::Integral(f, IntMethod = RiemannLower, Color = RGB::Gold,

                       ShowInfo = [IntMethod,

                                   Position = [0, -1]],

                       VerticalAlignment = Top),

     f)
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delete f:

Example 3

The number of digits after the decimal point can be specified for each value. In the
following example all values are displayed with four digits:

f := plot::Function2d(x^2*(x-4)*(x+2), x = -3..5,

                      Color = RGB::Black):

plot(plot::Integral(f, 4, IntMethod = Simpson, 

                    LineColor = RGB::Red,

                    ShowInfo = [4, IntMethod, Integral, Error]),

     f)
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Only the error shall be displayed with four digits after the decimal point. All other values
are shown with only one digit:

plot(plot::Integral(f, 4, IntMethod = Simpson, LineColor = RGB::Red,

                    ShowInfo = [1, IntMethod, Integral, 4, Error]),

     f)
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delete f:

Example 4

Two approximation objects shall be displayed in one plot. To prevent collision of the
automatically positioned texts, we insert an empty line into the text of one of the objects
to prevent collision of the automatically positioned texts:

f := plot::Function2d(x^2, x = -5..5, Color = RGB::DarkGrey):

plot(plot::Integral(f, IntMethod = RiemannUpper, Color = RGB::Rose,

                       ShowInfo = [IntMethod, "", Integral]),

     plot::Integral(f, IntMethod = RiemannLower,

                       ShowInfo = [IntMethod, Integral]),

     f)
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Alternatively, the position can be given explicitly:

f := plot::Function2d(x^2, x = -5..5, Color = RGB::DarkGrey):

plot(plot::Integral(f, IntMethod = RiemannUpper, Color = RGB::Lime,

                       ShowInfo = [IntMethod, Integral,

                                   Position = [-5, -1]],

                       VerticalAlignment = Top),

     plot::Integral(f, IntMethod = RiemannLower, Color = RGB::Gold,

                       ShowInfo = [IntMethod,

                                   Position = [0, -1]],

                       VerticalAlignment = Top),

     f)
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delete f:

Example 5

The text may contain additional messages:

f := plot::Function2d(x^2, x = -5..5):

plot(plot::Integral(f, IntMethod = RiemannUpper, 

        ShowInfo = ["Approximation value:", IntMethod = "",

                    "\nUsed rectangles:", Nodes = ""],

        Color = RGB::Rose),

     f)
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delete f:

See Also

MuPAD Functions
HorizontalAlignment | IntMethod | TextFont | TextRotation |
VerticalAlignment
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Title, Titles

Object title

Value Summary

Title, Titles Optional Text string

Graphics Primitives

Objects Default Values

plot::Piechart2d, plot::Piechart3d Titles: [" "]

Description

Title sets the title of an object to be displayed in the graphics.

Titles is a list of titles for parts of an object, e.g., the pieces of a pie chart.

Using Title, any graphical object can be given a title that will be displayed at the
position given by the TitlePosition attribute.

The Title can additionally be horizontically aligned at the TitlePosition via
TitleAlignment.

The object attribute Visible also affects the object's title: Invisible objects do not show
their titles.

Titles is used to set a number of titles for sub-objects, such as the bars of a bar plot or
the segments of a pie chart. These do not react to TitlePosition.

Title and Titles cannot be animated. But note that TitlePosition can.
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Examples

Example 1

The default positioning of a title relative to TitlePosition is to have the lower left
corner of the title at this place:

plot(plot::Point2d(1, 1, Title = "Test",

                   TitlePosition = [1, 1]))

This position depends on the title alignment:

plot(plot::Point2d(1, 1, Title = "Test",

                   TitlePosition = [1, 1],

                   TitleAlignment = Left))
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Example 2

In 3D, titles have so-called “bill-boarding”: Instead of having a fixed orientation, they are
always drawn in a readable orientation and their sizes are not affected by zooming and
perspective scaling:

plot(plot::Point3d(1, 1, 1,

                   Title = "Nr. 1",

                   TitlePosition = [1, 1, 1]),

     plot::Point3d(2, 20, 2,

                   Title = "Nr. 2",

                   TitlePosition = [2, 20, 2]),

     plot::Point3d(10, 10, 10,

                   Title = "Nr. 3",

                   TitlePosition = [10, 10, 10]),

     TitleFont = [30])

24-1607



24 Graphics and Animations

Example 3

Titles of invisible objects are invisible themselves. This also applies to objects that are
temporarily invisible:

plot(plot::Point2d(i, i, 

          Title = expr2text(i), TitlePosition = [i+1/10, i],

          VisibleAfter = i) $ i = 1..5,

     TimeRange = 0..5,

     ViewingBox = [0..5, 0..5])
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Example 4

Use Titles to label individual parts of statistical plots such as pie charts:

plot(plot::Piechart2d([3267, 2629, 4970, 18094,

                       4189, 1236, 4003, 297],

                      Titles = ["<= 1900", "1901-1918",

                              "1919-1948", "1949-1978",

                              "1979-1986", "1987-1990",

                              "1991-2000", ">= 2001"]))
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Note that pie charts with many pies are in general tricky to label nicely:

p := plot::Piechart3d([10601, 12330, 3388, 2593, 660, 1726,

                       6078, 1760, 7956, 18052, 4049, 1066,

                       4384, 2581, 2804, 2411],

             Titles = ["Baden-Württemberg", "Bayern", "Berlin",

                       "Brandenburg", "Bremen",

                       "Hamburg", "Hessen",

                       "Mecklenburg-Vorpommern",

                       "Niedersachsen", "Nordrhein-Westfalen",

                       "Rheinland-Pfalz", "Saarland", "Sachsen",

                       "Sachsen-Anhalt", "Schleswig-Holstein",

                       "Thüringen"]):

plot(p, Header = "Einwohner 2001")
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p::Moves := [0.3]:

plot(p, Header = "Einwohner 2001")
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See Also

MuPAD Functions
TitleAlignment | TitleFont | TitlePosition
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TitlePosition, TitlePositionX, TitlePositionY,
TitlePositionZ
Position of object titles

Value Summary

TitlePosition Library wrapper for
“[TitlePositionX,
TitlePositionY]” (2D),
“[TitlePositionX,
TitlePositionY,
TitlePositionZ]” (3D)

See below

TitlePositionX,
TitlePositionY,
TitlePositionZ

Optional MuPAD expression

Description

TitlePosition sets the position where the object title is displayed.

TitlePositionX, TitlePositionY, and TitlePositionZ refer to the individual
components of TitlePosition.

An object can be given a title to be displayed in the graphic with the attribute Title.
TitlePosition, TitlePositionX, TitlePositionY, TitlePositionZ determines
the position of this title.

TitlePosition, TitlePositionX, TitlePositionY, TitlePositionZ determines
the anchor point of the title, which is in 3D displayed in “bill-boarding mode,” which
means that the text will always face the observer and will always be displayed in the
same size, regardless of zooming or perspective. The alignment of the text w.r.t. the
anchor point is further determined by the setting of TitleAlignment, cf. “Example 1”
on page 24-1614.

MuPAD does not have automatic positioning of titles; to have a title properly positioned,
TitlePosition must be set.
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Examples

Example 1

We plot three points with titles attached to them, changing the alignment. For
demonstration purposes, the title positions coincide with the points:

plot(plot::Point2d(0, 3, Title = "Left",   TitlePosition = [0, 3],

                   TitleAlignment = Left),

     plot::Point2d(0, 2, Title = "Center", TitlePosition = [0, 2],

                   TitleAlignment = Center),

     plot::Point2d(0, 1, Title = "Right",  TitlePosition = [0, 1],

                   TitleAlignment = Right),

     Axes = None, PointSize = 2.0*unit::mm,

     ViewingBox = [-1..1, 0..4])

Example 2

A more realistic placement of titles is to separate them slightly from the points:
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plot(plot::Polygon2d([[0, 0], [5, 0], [9/5, 12/5]], Closed),

     plot::Point2d([0, 0], Title = "A", 

                   TitlePosition = [-0.2, -0.1]),

     plot::Point2d([5, 0], Title = "B", 

                    TitlePosition = [5.2, -0.1]),

     plot::Point2d([9/5, 12/5], Title = "C",

                    TitlePosition = [2.0, 2.5]),

     Axes = None, TitleFont = [15], LineColor = RGB::Black,

     LineWidth = 0.5*unit::mm, PointSize = 3*unit::mm)

See Also

MuPAD Functions
Title | TitleAlignment | TitleFont
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Bottom, Left
Positioning of a scene in a canvas

Value Summary

Bottom, Left Optional See below

Graphics Primitives

Objects Default Values

plot::Scene2d, plot::Scene3d Bottom, Left: 0

Description

With the canvas attribute Layout set to Absolute or Relative, scenes in the canvas
can be scaled and positioned freely.

Bottom = b places the bottom side of a scene at a distance b above the bottom side of
the canvas.

Left = l places the left hand side of a scene at a distance l to the right of the left hand
side of the canvas.

The automatic layout schemes Layout = Horizontal, Layout = Vertical, and
Layout = Tabular are available for a canvas that contains several scenes.

The canvas settings Layout = Absolute and Layout = Relative switch the automatic
layout mode off and allow to position each scene freely via the attributes Bottom and
Left, respectively. These attributes set the distances of the lower left corner of the
scene to the bottom, respectively left hand side of the canvas. These values can be set
separately for each scene.

Note: Bottom and Left are only respected for plots with Layout = Absolute or Layout
= Relative.
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The following pictures illustrates the positioning of scenes in a canvas via the scene
attributes Bottom and Left:

With Layout = Absolute, the distance of the lower left corner of the scene to the lower
left corner of the canvas must be specified via physical lengths with a unit, e.g., Bottom
= 2*unit::mm, Left = 0.1*unit::inch. Missing units are assumed to be mm.

With Layout = Relative, the distance of the bottom side of the scene to the bottom
side of the canvas must be specified as a fraction of the canvas height, i.e., as a number
between 0 and 1. The distance of the left hand side of the scene to the left hand side of
the canvas must be specified as a fraction of the canvas width, i.e., as a number between
0 and 1.

The lower left corner of a scene may be placed outside the canvas. The parts of a scene
outside the canvas are clipped.

Overlapping scenes can be created. In such a situation it may be useful to create
transparent scenes (without a background) via BackgroundTransparent = TRUE.
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Examples

Example 1

We demonstrate the layout of the canvas with Layout = Absolute. The scene S1 is
positioned automatically in the canvas using the default values Bottom = 0, Left = 0.
The smaller scenes S2 and S3 are positioned explicitly via Bottom and Left:

S1 := plot::Scene3d(plot::Sphere(1, [0, 0, 0], 

                                 Color = RGB::Red),

                    Width = 70*unit::mm, Height = 70*unit::mm,

                    BackgroundColor = RGB::Grey):

S2 := plot::Scene3d(plot::Box(-1..1, -1..1, -1..1, 

                              Color = RGB::Green),

                    Width = 30*unit::mm, Height = 30*unit::mm,

                    Left = 60*unit::mm, Bottom = 3*unit::mm):

S3 := plot::Scene3d(plot::Cone(1, [0, 0, 0], [0, 0, 1],

                               Color = RGB::Blue),

                    Width = 30*unit::mm, Height = 30*unit::mm,

                    Left = 60*unit::mm, Bottom = 36*unit::mm):

plot(S1, S2, S3, Layout = Absolute, 

     plot::Canvas::BorderWidth = 1.0*unit::mm,

     plot::Canvas::BorderColor = RGB::Black,

     plot::Canvas::Width = 92*unit::mm,

     plot::Canvas::Height = 72*unit::mm,

     plot::Scene3d::BorderWidth = 0.5*unit::mm,

     plot::Scene3d::BorderColor = RGB::Black):
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We make the background of the small scenes transparent and switch the axes off:

S2::BackgroundTransparent := TRUE:

S2::Axes := None: 

S3::BackgroundTransparent := TRUE:

S3::Axes := None: 

plot(S1, S2, S3, Layout = Absolute, 

     plot::Canvas::BorderWidth = 1.0*unit::mm,

     plot::Canvas::BorderColor = RGB::Black,

     plot::Canvas::Width = 92*unit::mm,

     plot::Canvas::Height = 72*unit::mm,

     plot::Scene3d::BorderWidth = 0.5*unit::mm,

     plot::Scene3d::BorderColor = RGB::Black):
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delete S1, S2, S3:

Example 2

We demonstrate the layout of the canvas with Layout = Relative. Apart from the scene
headers and the positioning via Bottom and Left, all scene attributes are set in the
plot call via specifications such as plot::Scene2d::Width etc. This distinguishes the
scene attributes from the canvas attributes Width, BorderWidth etc.

S1 := plot::Scene2d(plot::Function2d(sin(x), x = 0..2*PI),

                    Left = 0.02, Bottom = 0.46,

                    Header = "the sine function"):

S2 := plot::Scene2d(plot::Function2d(cos(x), x = 0..2*PI),

                    Left = 0.51, Bottom = 0.46,

                    Header = "the cosine function"):

S3 := plot::Scene2d(plot::Function2d(tan(x), x = 0..PI),

                    Left = 0.02, Bottom = 0.02,

                    Header = "the tan function"):

S4 := plot::Scene2d(plot::Function2d(cot(x), x = 0..PI),

                    Left = 0.51, Bottom = 0.02,

                    Header = "the cot function"):

plot(S1, S2, S3, S4, Layout = Relative,

     Width = 120*unit::mm, Height = 80*unit::mm,

24-1620



 Bottom, Left

     BorderWidth = 0.5*unit::mm,

     HeaderFont = ["Times New Roman", 18, Bold],

     Header = "trigonometric functions",

     plot::Scene2d::Width = 0.475,

     plot::Scene2d::Height = 0.42,

     plot::Scene2d::BorderWidth = 0.2*unit::mm,

     plot::Scene2d::HeaderFont =

                ["Times New Roman", Italic, 12]):

delete S1, S2, S3, S4:

See Also

MuPAD Functions
Layout
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Height, Width

Heights and widths of canvases and scenes

Value Summary

Height, Width Inherited Positive output size

Graphics Primitives

Objects Default Values

plot::Canvas, plot::Scene2d,
plot::Scene3d

Height: 80

Width: 120

Description

Height = h and Width = w set the size of the canvas or scene to the height h and the
width w.

For the canvas, the width and the height should be specified as physical lengths with a
unit, e.g., Width = 120*unit::mm, Height = 4.72*unit::inch. Numbers without
a physical unit give the size in mm.

These values specify the (approximate) physical size of the canvas, with which the
graphics appears on the screen. A printout of the MuPAD graphics will have this physical
size precisely.

The following picture illustrates the layout of the canvas:
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The width and height of the canvas include the margin set by Margin and the border set
by BorderWidth.

When only one scene is displayed in the canvas, this scene fills the canvas, i.e., the scene
size coincides with the canvas size. When the canvas contains several scenes, there are
various layout schemes, set by the canvas attribute Layout, to arrange the scenes in the
canvas. Two schemes allow to set the size of the scenes indepently of the canvas size:

Note: For scenes, the attributes Width and Height are only used when plotting with the
canvas attribute Layout set to Absolute or Relative.

With Layout = Absolute, width and height of a scene must be specified as physical
lengths with a unit, e.g., Height = 40*unit::mm, Width = 2.4*unit::inch
(missing units are assumed to be mm).

24-1623



24 Graphics and Animations

With Layout = Relative, width and height of a scene must be specified as fractions of
the canvas widht and height, i.e., as numbers between 0 and 1.

The lower left corner of a scene can be moved to any position via the attributes Bottom
and Left.

The following picture illustrates the layout of a scene:

The width and height of the scene include the margin set by Margin and the border set
by BorderWidth.

If a scene exceeds the canvas, the corresponding parts of the scene are clipped.

Examples

Example 1

The following calls produce plots of the physical sizes 8 ×4 cm and 11 ×7 cm, respectively.

f := plot::Function2d(sin(x), x = 0..2*PI):

plot(f, Width = 80*unit::mm, Height = 4*unit::cm,

     BorderWidth = 1.0*unit::mm):
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plot(f, Width = 110*unit::mm, Height = 7*unit::cm,

     BorderWidth = 1.0*unit::mm):

delete f:

Example 2

In the following graphics, we place two scenes in one canvas:

f1 := plot::Function2d(sin(x), x = 0..2*PI):
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f2 := plot::Function2d(cos(x), x = 0..2*PI):

S1 := plot::Scene2d(f1, BorderWidth = 0.5*unit::mm,

                    Height = 7*unit::cm, Width = 11*unit::cm):

S2 := plot::Scene2d(f2, BorderWidth = 0.5*unit::mm,

                    Height = 3*unit::cm, Width = 5*unit::cm):

plot(S1, S2, Layout = Horizontal, BorderWidth = 1.0*unit::mm,

     Height = 7*unit::cm, Width = 11*unit::cm):

Note that with Layout = Horizontal, the size attributes of the scenes were ignored
in the plot above. They affect the graphic when switching Layout to Absolute, either
interactively in the inspector or directly in the plot call:

plot(S1, S2, Layout = Absolute, BorderWidth = 1.0*unit::mm,

     Height = 7*unit::cm, Width = 11*unit::cm):
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Note that we did not set the attributes Bottom and Left of the scenes, so the bottom left
corners of the scenes are placed in the bottom left corner of the canvas.

We make the background of the scene S2 transparent via BackgroundTransparent =
TRUE and shift this scene via suitable values of Bottom and Left:

S2::BackgroundTransparent := TRUE:

S2::Bottom := 3.7*unit::cm:

S2::Left := 5.4*unit::cm:

plot(S1, S2, Layout = Absolute, BorderWidth = 1.0*unit::mm,

     Height = 7*unit::cm, Width = 11*unit::cm):
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delete f1, f2, S1, S2:

See Also

MuPAD Functions
BorderWidth | Bottom | Layout | Left | Margin
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Layout, Rows, Columns
Arrangement/layout of several scenes in a canvas

Value Summary

Layout Optional Absolute, Horizontal,
Relative, Tabular, or
Vertical

Columns, Rows Optional Positive integer

Graphics Primitives

Objects Default Values

plot::Canvas Layout: Tabular

Rows, Columns: 0

Description

Layout determines the arrangement of several scenes in a canvas.

Rows determines the number of scene rows in a tabular arrangement of several scenes.

Columns determines the number of scene columns in a tabular arrangement of several
scenes.

If a canvas contains more than one scene, the Layout attribute determines how the
scenes are arranged in the canvas:

• With the default setting Layout = Tabular, a sequence of scenes in a canvas is
arranged like a table with several columns and rows. The number of columns or
rows may be chosen via the attributes Columns or Rows, respectively. If none of
these attributes is given, the tabular layout scheme chooses some suitable values,
automatically.
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The scenes are filled into the table according to standard western reading order,
filling the upper row from left to right, then proceeding to the next row etc:

• Layout = Horizontal is a shortcut for Layout = Tabular, Rows = 1. The scenes are
placed side by side in a single row.
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• Layout = Vertical is a shortcut for Layout = Tabular, Columns = 1. The scenes a
placed below each other in a single column.

The settings Layout = Absolute and Layout = Relative switch the automatic layout
mode off and allow to position each scene via the scene attributes Left and Bottom.
These attributes determine the position of the lower left corner of the scene and can be
set separately for each scene.

• With Layout = Absolute, the values for the lower left corner of the scene as well
as its width and height must be specified as absolute physical lengths such as Left
= 3.0*unit::mm, Bottom = 4.5*unit::mm, Width = 10*unit::cm, Height =
4*unit::inch.

• With Layout = Relative, these values must be specified as fractions of the canvas
height and width. E.g.,

Layout = Relative,

Left = 0.3, Bottom = 0.2, Width = 0.5, Height = 0.5

is equivalent to

Layout = Absolut,

Left = 0.3*canvaswidth, Bottom = 0.2*canvasheight,

Width = 0.5*canvaswidth, Height = 0.5*canvasheight,

24-1631



24 Graphics and Animations

where canvaswidth and canvasheight are the physical width and height of the
canvas.

With Layout = Absolute and Layout = Relative overlapping scenes can be created.
In such a situation it may be useful to create transparent scenes (without a background)
via BackgroundTransparent = TRUE.

Examples

Example 1

We define four scenes:

S1 := plot::Scene3d(plot::Sphere(1, [0, 0, 0],

                                 Color = RGB::Red),
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                    BorderWidth = 0.2*unit::mm,

                    BorderColor = RGB::Black):

S2 := plot::Scene3d(plot::Box(-1..1, -1..1, -1..1,

                              Color = RGB::Green),

                    BorderWidth = 0.2*unit::mm,

                    BorderColor = RGB::Black):

S3 := plot::Scene3d(plot::Cone(1, [0, 0, -1], [0, 0, 1],

                               Color = RGB::Blue),

                    BorderWidth = 0.2*unit::mm,

                    BorderColor = RGB::Black):

S4 := plot::Scene3d(plot::Cone(1, [0, 0, 1], [0, 0, -1],

                               Color = RGB::Orange),

                    BorderWidth = 0.2*unit::mm,

                    BorderColor = RGB::Black):

These scenes are positioned in the canvas in various ways:

plot(S1, S2, S3, S4, Layout = Tabular, 

     Height = 80*unit::mm, Width = 80*unit::mm):

plot(S1, S2, Layout = Horizontal,

     Height = 40*unit::mm, Width = 80*unit::mm):
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plot(S1, S2, Layout = Vertical,

     Height = 80*unit::mm, Width = 40*unit::mm):

For explicit placement of the scenes, we set values for the Left, Bottom, Width, and
Height attributes of the scenes:

S1::Left := 0:            S1::Bottom := 15*unit::mm: 

S1::Width := 60*unit::mm: S1::Height:= 60*unit::mm:

S2::Left := 60*unit::mm:  S2::Bottom :=  0*unit::mm: 

S2::Width := 40*unit::mm: S2::Height:= 30*unit::mm:

S3::Left := 60*unit::mm:  S3::Bottom := 30*unit::mm: 
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S3::Width := 40*unit::mm: S3::Height:= 30*unit::mm:

S4::Left := 60*unit::mm:  S4::Bottom := 60*unit::mm: 

S4::Width := 40*unit::mm: S4::Height:= 30*unit::mm:

We use Layout = Absolute:

plot(S1, S2, S3, S4, Layout = Absolute,

     BorderWidth = 0.5*unit::mm, BorderColor = RGB::Black,

     BackgroundColor = RGB::LightGrey,

     Height = 90*unit::mm, Width = 100*unit::mm):

For Layout = Relative, the scene attributes Left, Width, Bottom, Height must be
given as fractions of the canvas width and height, respectively:

S1::Left := 0:      S1::Width := 0.6: 

S1::Bottom := 0:    S1::Height := 0.6:

S2::Left := 0:      S2::Width := 0.5:

S2::Bottom := 0.6:  S2::Height := 0.4:

S3::Left := 0.5:    S3::Width := 0.5:

S3::Bottom := 0.6:  S3::Height := 0.4:
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S4::Left := 0.58:   S4::Width := 0.4: 

S4::Bottom := 0.35: S4::Height := 0.4:

S4::BackgroundTransparent := TRUE:

plot(S1, S2, S3, S4, Layout = Relative,

     BorderWidth = 0.5*unit::mm, BorderColor = RGB::Black,

     BackgroundColor = RGB::LightGrey,

     Height = 87*unit::mm, Width = 104*unit::mm):

delete S1, S2, S3, S4:

Example 2

We demonstrate the layout of the canvas with Layout = Relative. Apart from the scene
headers and the positioning via Bottom and Left, all scene attributes are set in the
plot call via specifications such as plot::Scene2d::Width etc. This distinguishes the
scene attributes from the canvas attributes Width, BorderWidth etc.

S1 := plot::Scene2d(plot::Function2d(sin(x), x = 0..2*PI),

                    Left = 0.02, Bottom = 0.46,

                    Header = "the sine function"):
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S2 := plot::Scene2d(plot::Function2d(cos(x), x = 0..2*PI),

                    Left = 0.51, Bottom = 0.46,

                    Header = "the cosine function"):

S3 := plot::Scene2d(plot::Function2d(tan(x), x = 0..PI),

                    Left = 0.02, Bottom = 0.02,

                    Header = "the tan function"):

S4 := plot::Scene2d(plot::Function2d(cot(x), x = 0..PI),

                    Left = 0.51, Bottom = 0.02,

                    Header = "the cot function"):

plot(S1, S2, S3, S4, Layout = Relative,

     Width = 120*unit::mm, Height = 80*unit::mm,

     BorderWidth = 0.5*unit::mm,

     HeaderFont = ["Times New Roman", 18, Bold],

     Header = "trigonometric functions",

     plot::Scene2d::Width = 0.475,

     plot::Scene2d::Height = 0.42,

     plot::Scene2d::BorderWidth = 0.2*unit::mm,

     plot::Scene2d::HeaderFont =

                ["Times New Roman", Italic, 12]):

Finally, we demonstrate the attributes Rows and Columns. The automatic tabular layout
ignores the explicit positioning of the scenes and chooses the following arrangement:
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plot(S1, S2, S3, S4)

We explicitly request three rows:

plot(S1, S2, S3, S4, Rows = 3)
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We explicitly request three columns:

plot(S1, S2, S3, S4, Columns = 3)
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We generate an empty scene:

empty := plot::Scene2d(Axes = None):

The tabular layout is filled in with empty scenes:

plot(S1, S2, empty, S3, empty, S4, Rows = 3)
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plot(S1, S2, S3, empty, S4, empty, Columns = 3)
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delete S1, S2, S3, S4, empty:

See Also

MuPAD Functions
BorderColor | BorderWidth | Bottom | BottomMargin | Left | LeftMargin |
Margin | RightMargin | Spacing | TopMargin
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Margin, BottomMargin, TopMargin, LeftMargin,
RightMargin
Margins around canvas and scenes

Value Summary

Margin [{BottomMargin,
LeftMargin,
RightMargin,
TopMargin}]

Non-negative output size

BottomMargin,
LeftMargin,
RightMargin, TopMargin

Inherited Non-negative output size

Graphics Primitives

Objects Default Values

plot::Canvas, plot::Scene2d,
plot::Scene3d

Margin, BottomMargin, TopMargin,
LeftMargin, RightMargin: 1

Description

Margin = d sets a margin of size d around a canvas or scene. The margins at the
bottom, to the left etc. can also be specified separately via BottomMargin = d1,
LeftMargin = d2 etc.

The canvas as well as the scenes have a margin that is not used for displaying graphical
objects or captions. Its color coincides with the background color of the canvas or the
scenes, respectively.

The size d of this margin is set by specifying Margin = d in a canvas or in a scene (of
type plot::Scene2d or plot::Scene3d), respectively. Here, d is the physical width of
the margin, e.g., Margin = 0.5*unit::mm.
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The margin sizes at the bottom, left, right, top of the canvas or the scenes can be
specified separately via BottomMargin = d1, LeftMargin = d2, RightMargin = d3,
TopMargin = d4.

The attribute Margin = d is a shortcut for BottomMargin = d, LeftMargin = d,
RightMargin = d, TopMargin = d.

The following picture illustrates the layout of the canvas:

The following picture illustrates the layout of a scene:
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The size of a canvas, set by the attributes Width and Height, includes the width of the
margin set by Margin. The same holds for the scenes.

With BackgroundTransparent = TRUE, transparent scenes (without a background)
can be created. The margin becomes transparent as well.

The margins do not react to Layout = Relative. One always has to specify the margin
width as absolut physical lengths such as 0.5*unit::mm.

Scenes do not inherit margin widths from the enclosing canvas. You can set margin
widths for all scenes simultaneously by specifying them in plot::setDefault as
plot::Scene2d::Margin or plot::Scene3d::Margin, respectively. Cf. “Example 2”
on page 24-1646.

Examples

Example 1

The following two scenes display the same function graph using different margins:

f := plot::Function2d(exp(-x^2), x = -3..3):

plot(plot::Scene2d(f, Margin = 2*unit::mm, 

                   BackgroundColor = RGB::Grey),

     plot::Scene2d(f, Margin = 8*unit::mm, 

                   BackgroundColor = RGB::Grey),
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     Layout = Horizontal, Axes = Frame,

     Width = 120*unit::mm, Height = 60*unit::mm):

delete f:

Example 2

We use plot::setDefault to define new default values for the layout and style
parameters BorderWidth, BorderColor, Margin, and BackgroundColor:

plot::setDefault(

  plot::Canvas::BorderWidth = 0.5*unit::mm,

  plot::Canvas::BorderColor = RGB::Black,

  plot::Canvas::Margin = 1.5*unit::mm,

  plot::Canvas::BackgroundColor = RGB::SlateGrey,

  plot::Scene2d::BorderWidth = 0.5*unit::mm,

  plot::Scene2d::BorderColor = RGB::Black,

  plot::Scene2d::Margin = 2*unit::mm,

  plot::Scene2d::BackgroundColor = RGB::Grey

):

The following canvas contains two scenes. This plot uses the new defaults:

plot(plot::Scene2d(plot::Rectangle(-1..1, -1..1,

                      Filled = TRUE, FillColor = RGB::Red,

                      Header = "Scene 1")),

     plot::Scene2d(plot::Rectangle(-1..1, -1..1,
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                      Filled = TRUE, FillColor = RGB::Blue,

                      Header = "Scene 2")),

     Layout = Horizontal, Axes = None,

     Header = "Canvas Header"):

See Also

MuPAD Functions
BackgroundColor | BackgroundColor2 | BackgroundStyle |
BackgroundTransparent | BorderColor | BorderWidth | Bottom | Left
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OutputUnits
Physical length unit used by the inspector

Value Summary

Optional unit::cm, unit::dm, unit::inch,
unit::km, unit::m, unit::mm, or
unit::pt

Graphics Primitives

Objects OutputUnits Default Values

plot::Canvas unit::mm

Description

Various length parameters in the MuPAD graphics such as the width and the height
of the canvas, the length of tick marks, the width of lines, the size of points etc. may
be specified as physical lengths with a length unit. The inspector allows to display a
physical length in the physical unit set by OutputUnits.

For example, when specifying the canvas size by the attributes Width =
120*unit::mm, Height = 80*unit::mm, the MuPAD graphics will appear on the
screen in a canvas of 120 ×80 mm (approximately). A printout of the MuPAD graphics
will have this physical size precisely.

One may also specify these lengths as pure numbers such as Width = 120, Height =
80. In this case, the physical length unit is given in mm.

In the “object inspector” of the MuPAD Graphics Tool (see the section Viewer, Browser,
and Inspector: Interactive Manipulation of this document), lengths are displayed as
numbers without unit. The actual physical length is given by these numbers times the
physical length unit given by OutputUnits.
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Note: Note that the specification Width = 10, OutputUnit = unit::inch does not
mean Width = 10*unit::inch, but Width = 10*unit::mm, displayed as 0.3937...
inches.

It is recommended to specify output sizes always as products of the numerical values
times the unit.

Changing the value of OutputUnits does not change the physical lengths! When
changing OutputUnits = unit::mm to OutputUnits = unit::inch, say, the numbers
in the object inspector such as Width = 120 (corresponding to a canvas size of 120 mm
in the real world) change automatically to Width = 4.7244... (corresponding to the
same canvas size 120 mm = 4.7244... inches).

If you want to change the physical length, you need to change the number in the input
region of Width in the object inspector.

Switching between different output units via OutputUnits is convenient if physical
conditions such as the real world size of a printout have to be met. Depending on your
nationality, you will have a preference for inches or millimeters.

Examples

Example 1

The following calls all produce graphical output of the same physical size:

f := plot::Function2d(sin(x), x = 0..PI):

plot(f, Width = 90*unit::mm, Height = 40*unit::mm):
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plot(f, Width = 90, Height = 40, OutputUnits = unit::mm):

plot(f, Width = 90, Height = 40, OutputUnits = unit::inch):

plot(f, Width = 3.544*unit::inch, Height = 40*unit::mm):

plot(f, Width = 3.544*unit::inch, Height = 1.575*unit::inch):
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In the following plot command, the size of graphical points is specified in millimeters.
The specification of OutputUnits = unit::inch does not change the physical point size
of 2 mm = 0.07874... inch. It just means that the value of the point size is displayed as
0.07874 in the object inspector of the MuPAD Graphics Tool, not as 2:

plot(plot::Function2d(sin(x), x = 0..PI, Mesh = 30),

     PointsVisible = TRUE, PointSize = 2*unit::mm,

     Width = 90*unit::mm, Height = 40*unit::mm, 

     OutputUnits = unit::inch):

delete f:

Example 2

The conversion between the output sizes can be computed via MuPAD:

120.0*unit::mm = unit::convert(120.0*unit::mm, unit::inch),

4.7244*unit::inch = unit::convert(4.7244*unit::inch, unit::pt)
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See Also

MuPAD Functions
AxesLineWidth | Bottom | BottomMargin | GridLineWidth | Height |
Left | LeftMargin | LineWidth | PointSize | RightMargin | Spacing |
SubgridLineWidth | TicksLength | TipLength | TopMargin | TubeDiameter |
VerticalAsymptotesWidth | Width
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Spacing

Space between scenes

Value Summary

Optional Non-negative output size

Graphics Primitives

Objects Spacing Default Values

plot::Canvas 1.0

Description

Spacing = d sets a gap of size d between neighboring scenes in a canvas.

If a canvas contains several scenes, an automatic layout of the canvas may be requested
by Layout = Horizontal, Layout = Tabular, or Layout = Vertical. In these
modes, the scenes are separated by a gap that is set by Spacing = d. Here, d is the
physical width of the gap, e.g., Spacing = 0.5*unit::mm.

The Spacing attribute has an effect only in conjunction with the automatic layout modes
Layout = Horizontal, Layout = Tabular, or Layout = Vertical, respectively.

The following picture illustrates the layout of the canvas:
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Examples

Example 1

We define four scenes:

S1 := plot::Scene3d(plot::Sphere(1, [0, 0, 0]),

                    BackgroundColor = RGB::Grey,

                    BorderWidth = 0.5*unit::mm):

S2 := plot::Scene3d(plot::Cylinder(1, [0, 0, 0], [0, 0, 1]),

                    BackgroundColor = RGB::Grey,

                    BorderWidth = 0.5*unit::mm):

S3 := plot::Scene3d(plot::Cone(1, [0, 0, 0], [0, 0, 1]),

                    BackgroundColor = RGB::Grey,

                    BorderWidth = 0.5*unit::mm):

S4 := plot::Scene3d(plot::Cone(1, [0, 0, 1], [0, 0, 0]),

                    BackgroundColor = RGB::Grey,
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                    BorderWidth = 0.5*unit::mm):

These scenes are positioned in the canvas with no gap between them (Spacing = 0). By
default, the automatic layout mode Layout = Tabular is used:

plot(S1, S2, S3, S4, Spacing = 0, 

     BorderWidth = 1.0*unit::mm):

We introduce a gap of 1 mm:

plot(S1, S2, S3, S4, Spacing = 1.0*unit::mm,

     BorderWidth = 1.0*unit::mm):
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delete S1, S2, S3, S4:

See Also

MuPAD Functions
Bottom | BottomMargin | Layout | Left | LeftMargin | Margin | RightMargin |
TopMargin
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AbsoluteError, RelativeError
Maximal absolute discretization error

Value Summary

AbsoluteError,
RelativeError

Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::Ode2d, plot::Ode3d  
plot::Streamlines2d RelativeError: 1/100000

Description

AbsoluteError = atol sets the tolerance atol for the maximal absolute
discretization error in the numerical solution of ODEs.

RelativeError = rtol sets the tolerance rtol for the maximal relative discretization
error.

Internally, plot::Ode2d and plot::Ode3d call the routine numeric::odesolve for
solving the given ODE numerically. The attributes AbsoluteError, RelativeError
are forwarded to numeric::odesolve. See the corresponding help page for further
details.

Examples

Example 1

We consider the initial value problem . The ODE is solved
numerically with different tolerances for the relative discretization error. The 'oscillating'
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behaviour of the red solution curve is a numerical artifact. The blue solution curve,
computed with a smaller tolerance, is more precise:

f:= (t, Y) -> [-t*cos(Y[1])]:

Y0 := [4.7]:

plot(plot::Ode2d(f, [i $ i = 0..20], Y0, Color = RGB::Blue,

                 RelativeError = 0.0001), 

     plot::Ode2d(f, [i $ i = 0..20], Y0, Color = RGB::Red,

                 RelativeError = 0.001))

delete f, Y0:

See Also

MuPAD Functions
InitialConditions | ODEMethod | Projectors | Stepsize | TimeMesh
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AdaptiveMesh
Adaptive sampling

Value Summary

Inherited Non-negative integer

Graphics Primitives

Objects AdaptiveMesh Default Values

plot::Function2d 2

plot::Conformal, plot::Curve2d,
plot::Curve3d, plot::Cylindrical,
plot::Function3d, plot::Implicit3d,
plot::Polar, plot::Spherical,
plot::Surface, plot::Sweep,
plot::XRotate, plot::ZRotate

0

plot::Rootlocus 4

Description

AdaptiveMesh = n controls the adaptive sampling in the numerical evaluation of
functions, curves and surfaces. With n = 0, adaptive sampling is disabled. With n > 0,
adaptive sampling is enabled.

The “depth” n of the adaptive sampling should be a small integer such as 0, 1, 2, or 3.

Continuous graphical objects such as function graphs, parameterized curves and surfaces
are approximated by a discrete mesh of numerical points.

This mesh may be controlled by the user via the attributes Mesh, Submesh, and
AdaptiveMesh. (Depending on the object, the Mesh attribute splits into more specific
versions such us UMesh and VMesh for curve and surface plots, or XMesh, YMesh, ZMesh
for function and implicit plots.)
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First, the object is evaluated numerically on an equidistant “initial mesh” set via the
attribute Mesh (or the more specific versions mentioned above).

With AdaptiveMesh = 0, the numerical data over the initial mesh are used to render
the object without any further adaptive refinement.

With AdaptiveMesh = n, n > 0, further numerical data are computed before the
renderer is called. In particular, the data of neighboring points on the initial mesh are
investigated. If a point is not reasonably represented by a straight line connecting the
neighboring points, the corresponding intervals of the initial mesh are sub-divided
recursively. The adaptive mechanism descends into the sub-intervals of the initial mesh
if consecutive line segments of the discretized plot object deviate from a straight line by a
“bend angle” of more than 10 degrees. The intervals involved in such a situation are split
into halves, recursively.

The value of n should be a small integer that determines the recursive depth of the
adaptive refinement. In each direction, up to 2n - 1 additional points are placed between
the points of the initial mesh.

If the object looks smooth on the initial mesh set via the attribute Mesh or its more
detailed variants, the adaptive mechanism does not descend into the intervals of the
initial mesh. If there are fine structures hidden inside these intervals, specifying
AdaptiveMesh = n with n > 0 will not help to improve the plot. In such a case, the
initial mesh should be refined via the appropriate attribute for the initial mesh.

On the other hand, if the initial mesh is fine enough to indicate finer internal structures
via the “max bend angle” criterion, it is often more efficient to use AdaptiveMesh = n
than to refine the initial mesh, because the adaptive mechanism refines only those parts
of the object that do need refinement. This effect can be seen in “Example 3” on page
24-1666.

Note: Note that increasing the recursive depth n by 1 may increase the run time by a
factor of 2 for line objects (2D function graphs and curves) and by a factor of 4 for surface
objects (3D function graphs and surfaces). In most cases, a small value such as n ∈ {1, 2,
3} suffices to obtain a reasonably smooth plot object.

Note: Note that the adaptive algorithm for surface objects in 3D is very expensive!
As an alternative to values n > 0 in AdaptiveMesh = n, you may experiment
with AdaptiveMesh = 0, Submesh = [2n- 1, 2n- 1] in 3D function graphs or
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surfaces. The granularity of the “initial mesh” generated with these attribute values is
approximately of the same size as the adaptive mesh generated with AdaptiveMesh =
n, Submesh = [0, 0]. The non-adaptive evaluation on the refined regular mesh may
still be more efficient than the evaluation on the (irregular) non-adaptive mesh.

Examples

Example 1

The following function plot contains areas of high variation. Without a specification
of AdaptiveMesh, the default mode AdaptiveMesh = 0 is used and we clearly see
artifacts caused by the evaluation on a discrete mesh:

plot(plot::Function2d(

     sin(x) + exp(-5*(x - PI/2)^2)*sin(110*x)/10, x = 0..PI)):

We activate the adaptive refinement with a high level of 3:
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plot(plot::Function2d(

     sin(x) + exp(-5*(x - PI/2)^2)*sin(110*x)/10, x = 0..PI, 

     AdaptiveMesh = 3)):

We set the attribute PointsVisible = TRUE so that the points of the adaptive mesh
become visible:

plot(plot::Function2d(

     sin(x) + exp(-5*(x - PI/2)^2)*sin(110*x)/10, x = 0..PI, 

     AdaptiveMesh = 3, PointsVisible = TRUE)):
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Example 2

The default value of Mesh does not provide a sufficient resolution for the following spiral:

plot(plot::Curve2d([x*cos(x), x*sin(x)], x = 0..50*PI)):
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Increasing the Mesh value improves the plot:

plot(plot::Curve2d([x*cos(x), x*sin(x)], x = 0..50*PI,

                   Mesh = 1000)):
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Alternatively, adaptive plotting can be used:

plot(plot::Curve2d([x*cos(x), x*sin(x)], x = 0..50*PI,

                   AdaptiveMesh = 3)):
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Example 3

In 3D the typical artifacts caused by the rectilinear initial mesh are “dents” on
surface features that are not parallel to a parameter axis. Without a specification of
AdaptiveMesh, the default mode AdaptiveMesh = 0 is used:

f := plot::Function3d(sin(x*y)/(abs(x*y) + 1), 

                      x = -4 .. 4, y = -4 .. 4):

plot(f):
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Activating the adaptive refinement, we get a much more accurate plot. However, the
computation takes much longer:

plot(f, AdaptiveMesh = 2):
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To see how local the refinement is, we set the attribute MeshVisible = TRUE so that
the internal triangulation of the adaptive mesh becomes visible:

plot(f, AdaptiveMesh = 2, MeshVisible = TRUE):
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We use a non-adaptive evaluation, but refine the regular mesh by setting Submesh
values 2n - 1 that correspond to the adaptive depth n = 2 used above. The result is of a
similar quality as before:

plot(plot::Function3d(sin(x*y)/(abs(x*y) + 1), 

                      x = -4 .. 4, y = -4 .. 4,

                      Submesh = [3, 3])):
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delete f:

See Also

MuPAD Functions
Mesh | MeshVisible | Submesh | UMesh | USubmesh | VMesh | VSubmesh | XMesh |
XSubmesh | YMesh | YSubmesh | ZMesh
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DiscontinuitySearch
Semi-symbolic search for discontinuities

Value Summary
Inherited FALSE, or TRUE

Graphics Primitives
Objects DiscontinuitySearch Default Values

plot::Curve2d, plot::Curve3d,
plot::Function2d, plot::Polar,
plot::Sweep

TRUE

Description
DiscontinuitySearch = TRUE versus DiscontinuitySearch = FALSE determines
whether a graphical object is checked (semi-)symbolically for discontinuities and
singularities.

Certain graphical objects such as function graphs or parametrized curves may have
singularities. This may create graphical artifacts such as spurious lines between
numerical sample points that enclose a singularity. With DiscontinuitySearch =
TRUE, the object is pre-processed to find potential singularities. If singular points are
found, the object is split into several disjoint sub-objects (“branches”), each of which is
smooth.

Note: DiscontinuitySearch is only available for line objects (2D function graphs and
parametrized curves in 2D and 3D). It is not available for surface objects such as 3D
function graphs and parametrized surfaces!

Discontinuities will only be detected if they are caused by system functions that are
implemented as a function environment with an appropriate "realDiscont" or
"numericDiscont" slot.
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The search for discontinuities uses interval arithmetic. If special functions are involved
that do not support this kind of arithmetic, the search will not succeed.

For efficiency reasons, it is recommended to disable the search for discontinuities
with DiscontinuitySearch = FALSE when it is known that the graphical object is
continuous.

Examples

Example 1

The following plot contains first order poles. When the discontinuity search is disabled,
spurious vertical lines occur connecting sample points to the left of a pole with
neighboring sample points to the right of the pole. Further, the neighborhood of the poles
is poorly sampled:

plot(plot::Function2d(tan(x^2), x=-3..3, 

                      ViewingBoxYRange = -10..10,

                      DiscontinuitySearch = FALSE)):
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Without specification of DiscontinuitySearch, the default setting
DiscontinuitySearch = TRUE is used. The spurious lines disappear. With the
default VerticalAsymptotesVisible = TRUE, they are replaced by dashed vertical
asymptotes indicating the poles. Also note that the numerical sampling near the poles is
better, because the existence of the singularities and their positions is known before the
numerical evaluation of the function graph starts:

plot(plot::Function2d(tan(x^2), x=-3..3, 

                      ViewingBoxYRange = -10..10)):

Example 2

The Heaviside function has a jump discontinuity. Without a discontinuity search, a
spurious line connecting the left and the right limit points of the jump appears:

plot(plot::Function2d(heaviside(x-1), x = -1..3,

                      DiscontinuitySearch = FALSE)):

24-1673



24 Graphics and Animations

This spurious line disappears with the default setting DiscontinuitySearch = TRUE:

plot(plot::Function2d(heaviside(x-1), x = -1..3),

                      VerticalAsymptotesVisible = FALSE):
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Example 3

Without a discontinuity search, the poles of the following singular 3D curve are poorly
presented graphically:

plot(plot::Curve3d([cos(u), sin(u), tan(2*u)],  u = 0..2*PI, 

                      ViewingBox = [-1..1, -1..1, -10..10],

                      DiscontinuitySearch = FALSE)):
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The default setting DiscontinuitySearch = TRUE produces a better graphical
presentation:

plot(plot::Curve3d([cos(u), sin(u), tan(2*u)],  u = 0..2*PI, 

                      ViewingBox = [-1..1, -1..1, -10..10])):
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Mesh, Submesh
Number of sample points

Value Summary

Mesh Library wrapper for “UMesh,
VMesh, XMesh, YMesh, and
ZMesh”

See below

Submesh Library wrapper for
“USubmesh, VSubmesh,
XSubmesh, and YSubmesh”

See below

Graphics Primitives

Objects Default Values

plot::Cylindrical,
plot::Function3d, plot::Spherical,
plot::Surface, plot::XRotate,
plot::ZRotate

Mesh: [25, 25]

Submesh: [0, 0]

plot::Rootlocus Mesh: 51
plot::Sweep Mesh: 25

Submesh: 4
plot::Curve2d, plot::Curve3d,
plot::Function2d, plot::Polar

Mesh: 121

Submesh: 0
plot::Conformal Mesh: [11, 11]

Submesh: [0, 0]
plot::Plane Mesh: [15, 15]
plot::Implicit2d, plot::Raster,
plot::VectorField2d

Mesh: [11, 11]
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Objects Default Values

plot::VectorField3d Mesh: [7, 7, 7]
plot::Implicit3d Mesh: [11, 11, 11]
plot::Inequality Mesh: [256, 256]
plot::Density Mesh: [25, 25]
plot::Tube Mesh: [60, 11]

Submesh: [0, 1]
plot::Matrixplot Submesh: [2, 2]
plot::Ode2d, plot::Ode3d Submesh: 4
plot::Listplot Submesh: 6

Description

The attributes Mesh and Submesh determine the number of sample points used for the
numerical approximation of plot objects.

Many plot objects have to be evaluated numerically on a discrete mesh. Depending on
the object type, there are type specific attributes such as XMesh (for 2D function graphs),
UMesh, VMesh (for parametrized surfaces), XMesh, YMesh, ZMesh (for implicit plots in
3D) etc. setting the number of sample points of the numerical mesh.

The Mesh attribute unifies these more specific attributes and can be set for all objects
that use a discrete numerical mesh. Depending on the object, the values for Mesh
must be integer numbers or lists of such numbers. The more specific attributes are set
automatically when Mesh values are specified.

E.g., in a 2D function plot of type plot::Function2d, Mesh = 200 is equivalent
to XMesh = 200. In a 3D surface plot of type plot::Surface, Mesh = [40, 50] is
equivalent to UMesh = 40, VMesh = 50.

In the “object inspector” of the interactive graphics tool (see section Viewer, Browser, and
Inspector: Interactive Manipulation in this document), only the type specific attributes
are visible, not the Mesh attribute.

Roughly speaking, high Mesh values yield smooth plots but cost run time.
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With the attribute Submesh = m, additional m equidistant sample points are inserted
between each pair of adjacent sample points set by the Mesh attribute. This smoothens
the object.

Like Mesh, the attribute Submesh unifies type specific attributes such as XSubmesh,
USubmesh etc. Depending on the object, the values of Submesh have to be integers or
lists of integers.

There is a semantical difference between the “major” mesh points set by Mesh and the
“minor” mesh points inserted by Submesh. There are coordinate lines associated with the
(regular) numerical mesh. See XLinesVisible, ULinesVisible etc. The coordinates
lines are available only for the mesh given by the “major” mesh points, whereas Submesh
does not influence the number of coordinate lines. Thus, increased Mesh values yield a
smoother plot with more coordinate lines, whereas Submesh can be used to smoothen the
plot without adding further coordinate lines.

Apart from this effect, the pair Mesh = n, Submesh = m corresponds to the combination
Mesh = (n - 1) (m + 1) + 1, Submesh = 0.

If adaptive sampling is enabled, further non-equidistant sample points are chosen
automatically between the equidistant points of the `initial mesh' set via the Mesh and
Submesh attributes.

Examples

Example 1

In the following plot, the default value of Mesh does not suffice to produce a sufficiently
exact picture:

plot(plot::Function2d(sin(x^2), x = 0..10)):
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A mesh with more sample points yields a higher resolution graphics:

plot(plot::Function2d(sin(x^2), x = 0..10, Mesh = 500)):
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Example 2

The default value of Mesh does not provide a sufficient resolution for the following spiral:

plot(plot::Curve2d([x*cos(x), x*sin(x)], x = 0..50*PI)):
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The spiral winds around the origin 25 times. We wish to have approximately 40 sample
points per revolution, so we need to use a total of 1000 sample points:

plot(plot::Curve2d([x*cos(x), x*sin(x)], x = 0..50*PI,

                   Mesh = 1000)):

24-1683



24 Graphics and Animations

Example 3

Note the difference between increased Mesh values and additional sample points inserted
via Submesh. Submesh does not introduce additional coordinate lines:

S1 := plot::Scene3d(plot::Function3d(

        x^2 + y^2, x = 0..1/2, y = 0..1, Mesh = [4, 4])):

S2 := plot::Scene3d(plot::Function3d(

        x^2 + y^2, x = 0..1/2, y = 0..1, Mesh = [4, 4], 

       Submesh = [2, 2])):

S3 := plot::Scene3d(plot::Function3d(

        x^2 + y^2, x = 0..1/2, y = 0..1, Mesh = [10, 10])):

plot(S1, S2, S3, Layout = Horizontal, 

     Height = 5*unit::cm, Width = 12*unit::cm,

     LineColor = RGB::Black):
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delete S1, S2, S3:

See Also

MuPAD Functions
AdaptiveMesh | UMesh | USubmesh | VMesh | VSubmesh | XMesh | YMesh | ZMesh
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MinimumDistance

Space between stream lines

Value Summary

Optional MuPAD expression

Graphics Primitives

Objects MinimumDistance Default Values

plot::Streamlines2d  

Description

MinimumDistance determines how closely spaced the stream lines generated by a
plot::Streamlines2d object are.

plot::Streamlines2d displays orbits (stream lines) of ODEs which are at least m and
at most 2 m units apart from one another, if MinimumDistance has been set to m.

The distance of stream lines is taken as the Euclidean distance, measured in coordinate
units. If MinimumDistance is not set, it defaults to 0.02 times the maximum extent in
either direction.

Examples

Example 1

The default setting is adequate for many stream lines plots:
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plot(plot::Streamlines2d([sin(x)^2-cos(y^2),

                          sin(x^2)-cos(y)^2],

                         x=0..4, y=0..4))

To display simple ODEs, you may wish to reduce the number of stream lines:

plot(plot::Streamlines2d([1, 1], x=0..4, y=0..4))
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plot(plot::Streamlines2d([1, 1], x=0..4, y=0..4, MinimumDistance=0.25))
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ODEMethod, Stepsize

Numerical scheme used for solving the ODE

Value Summary

ODEMethod, Stepsize Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::Ode2d, plot::Ode3d ODEMethod: DOPRI78
plot::Streamlines2d ODEMethod: ABM4

Description

ODEMethod = method determines the numerical scheme for solving the ODE. The
parameter method is a name such as EULER1, RK4, RKF78 etc.

Stepsize = h sets a constant step size h that is used to compute the numerical
solution.

Internally, plot::Ode2d, plot::Ode3d, and plot::Streamlines2d call the routine
numeric::odesolve for solving the given ODE numerically. The method set by
the attribute ODEMethod = method and/or the step size set by Stepsize = h are
forwarded to numeric::odesolve. See the corresponding help page for a complete list
of all methods available and for further details on the step size.

The setting ODEMethod = ABM4 is an exception to the above: It is only available with
plot::Streamlines2d and makes the plot use a fast Adams-Bashforth-Moulton
predictor corrector integrator of fourth order with fixed step size. It ignores the settings
of RelativeError and AbsoluteError.
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Examples

Example 1

We solve the initial value problem  numerically by the classical
4th order Runge-Kutta scheme RK4 using a constant step size 0.1:

f := (t, Y) -> [-Y[1]]:

Y0 := [1]:

timemesh:= [0, 1, 2, 3, 4, 5]:

plot(plot::Ode2d(f, timemesh, Y0, ODEMethod = RK4,

                 Stepsize = 0.1))

delete f, Y0, timemesh:

Example 2

With the default settings, plot::Streamlines2d is not able to plot the vector field

 (which is not Lipschitz continous) in a satisfying way:
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plot(plot::Streamlines2d([1, surd(3,y)^2], 

                         x=-3..3, y=-2..2))

By using a different numerical integrator, the problems can be overcome (at the cost of
longer computation):

plot(plot::Streamlines2d([1, surd(3,y)^2], 

                         x=-3..3, y=-2..2,

                         ODEMethod=RKF43,

                         RelativeError=1e-3))
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See Also

MuPAD Functions
AbsoluteError | InitialConditions | ODEMethod | Projectors |
RelativeError
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UMesh, VMesh, USubmesh, VSubmesh

Number of sample points

Value Summary

UMesh, USubmesh, VMesh,
VSubmesh

Inherited Positive integer

Graphics Primitives

Objects Default Values

plot::Curve2d, plot::Curve3d,
plot::Polar

UMesh: 121

USubmesh: 0
plot::Cylindrical, plot::Spherical,
plot::Surface, plot::XRotate,
plot::ZRotate

UMesh, VMesh: 25

USubmesh, VSubmesh: 0

plot::Rootlocus UMesh: 51
plot::Sweep UMesh: 25

USubmesh: 4
plot::Plane UMesh, VMesh: 15
plot::Tube UMesh: 60

VMesh: 11

USubmesh: 0

VSubmesh: 1
plot::Ode2d, plot::Ode3d USubmesh: 4
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Description

The attributes UMesh etc. determine the number of sample points used for the numerical
approximation of parameterized plot objects such as curves and surfaces.

Many plot objects have to be evaluated numerically on a discrete mesh. The attributes
described on this help page serve for setting the number of sample points of the
numerical mesh.

For curves in 2D and 3D given by a parametrization x(u), y(u) and, possibly, z(u) with the
curve parameter u, the attribute UMesh = n creates a numerical mesh of n equidistant u
values. The attribute USubmesh = m inserts additional m mesh points between each pair
of adjacent points set by UMesh.

The combinations UMesh = n, USubmesh = m and UMesh = (m + 1) (n - 1) + 1,
USubmesh = 0 are equivalent.

Specifying Mesh, Submesh has the same effekt as specifying UMesh, USubmesh.

The sample points of a curve can be made visible by setting PointsVisible = TRUE.

Surface objects in 3D are parameterized by coordinate functions x(u, v), y(u, v), z(u, v) of
two surface parameters u, v.

The attribute UMesh = nu sets the number nu of sample points for the first surface
parameter. The attribute VMesh = nv sets the number nv of sample points for the second
surface parameter. The parametrization is evaluated on a regular mesh of nu×nv values
of the surface parameters u, v.

With the USubmesh, VSubmesh attributes, additional equidistant sample points can be
inserted between each pair of adjacent sample points set by the UMesh, VMesh attributes.

With ULinesVisible = TRUE and VLinesVisible = TRUE, respectively, the
parameter lines of the regular mesh set by the attributes UMesh, VMesh are displayed on
the surface. Additonal points inserted via USubmesh, VSubmesh do not create additional
parameter lines.

You can also specify UMesh = nu, VMesh = nv, USubmesh = mu, VSubmesh = mv in the
shorter form Mesh = [nu, nv], Submesh = [mu, mv].
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If adaptive sampling is enabled, further non-equidistant sample points are chosen
automatically between the equidistant points of the `initial mesh' set via the UMesh,
USubmesh, VMesh, VSubmesh attributes.

Examples

Example 1

It is possible to use low settings of mesh parameters to achieve special effects. As an
example, we draw a parametrization of a circle with just six evaluation points:

plot(plot::Curve2d([cos(t), sin(t)], t = 0..2*PI, UMesh = 6,

     Scaling = Constrained))

The reason we get a pentagon here and not a hexagon is that the first and the last
evaluation points coincide: six points in a line means five line segments.

With UMesh = 30, the circle looks like a circle:
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plot(plot::Curve2d([cos(t), sin(t)], t = 0..2*PI, UMesh = 30,

     Scaling = Constrained))

Example 2

The default values of UMesh, VMesh do not provide a sufficient resolution for the
following graphics:

plot(plot::Surface([r*cos(phi), r*sin(phi), r*phi], 

                   r = 0.. 1, phi = 0..10*PI)):
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The spiral winds around the z-axis 5 times. We wish to have approximately 40 sample
points per revolution, so we need to use a total of 200 sample points with respect to the
angle parameter phi. The coordinate lines related to the radial parameter r are straight
lines, so a very low resolution in this direction suffices:

plot(plot::Surface([r*cos(phi), r*sin(phi), r*phi], 

                   r = 0.. 1, phi = 0..10*PI,

                   UMesh = 2, VMesh = 200)):
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When refining the mesh via VSubmesh, no additional parameter lines are created:

plot(plot::Surface([r*cos(phi), r*sin(phi), r*phi], 

                   r = 0.. 1, phi = 0..10*PI,

                   UMesh = 2, VMesh = 25, VSubmesh = 8)):
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See Also

MuPAD Functions
AdaptiveMesh | Mesh | Submesh | XMesh | YMesh | ZMesh
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 XMesh, XSubmesh, YMesh, YSubmesh, ZMesh

XMesh, XSubmesh, YMesh, YSubmesh, ZMesh

Number of sample points

Value Summary

XMesh, XSubmesh, YMesh,
YSubmesh, ZMesh

Inherited Positive integer

Graphics Primitives

Objects Default Values

plot::Function2d XMesh: 121

XSubmesh: 0
plot::Function3d XMesh, YMesh: 25

XSubmesh, YSubmesh: 0
plot::Implicit2d, plot::Raster,
plot::VectorField2d

XMesh, YMesh: 11

plot::Implicit3d XMesh, YMesh, ZMesh: 11
plot::VectorField3d XMesh, YMesh, ZMesh: 7
plot::Conformal XMesh, YMesh: 11

XSubmesh, YSubmesh: 0
plot::Inequality XMesh, YMesh: 256
plot::Density XMesh, YMesh: 25
plot::Matrixplot XSubmesh, YSubmesh: 2
plot::Listplot XSubmesh: 6

24-1701



24 Graphics and Animations

Description

The attributes XMesh etc. determine the number of sample points used for the numerical
approximation of plot objects such as function graphs, implicit plots etc.

Various object types use numerical function evaluations on a discrete equidistant mesh.
XMesh, YMesh, and for plot::Implicit3d also ZMesh set the number of points of
this mesh. An exception of this are parameterized curves and surfaces, which use the
attributes UMesh, USubmesh, VMesh, and VSubmesh.

For most of the object types listed above, the interpretation of the integers set by these
attributes is as follows: In each of XRange, YRange, ZRange, the corresponding number
of points is spread out equidistantly. For XMesh = 2 and XRange = 0..1, for example,
evaluation takes place for x = 0 and x = 1. For XMesh = 3, a further mesh point at 

is used.

The exception to this rule is plot::Implicit2d: Here, the values of XMesh and YMesh
determine the density of the grid usd for finding components and increasing their values
helps exactly in those cases where components (i.e., lines) are missing from the plot.
Decreasing XMesh and YMesh in a 2D implicit plot will not make the curves appear
rougher; it may result in curves missing.

For types reacting to AdaptiveMesh and for plot::Implicit3d, this mesh is used to
find initial values that can be refined further. See the documentation of the specific types
and of AdaptiveMesh for details.

In general, a finer mesh (higher values) leads to a longer computation, while a coarser
mesh may cause details being missed.

One may specify XMesh = nx, YMesh = ny, XSubmesh = mx, YSubmesh = mv also in the
shorter Form Mesh = [nx, ny], Submesh = [mx, my].

Examples

Example 1

The notorious function  oscillates wildly near the origin. The standard mesh

values do not suffice to resolve the behavior of the function near the critical point:
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 XMesh, XSubmesh, YMesh, YSubmesh, ZMesh

plot(plot::Function2d(sin(1/x), x = -1 .. 1))

We get a better result with an increased value of XMesh:

plot(plot::Function2d(sin(1/x), x = -1 .. 1), XMesh = 1000)
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Example 2

In the following plot, the default values of XMesh, YMesh do not suffice to produce a
sufficiently smooth function graph:

plot(plot::Function3d(besselJ(0, sqrt(x^2 + y^2)), 

                      x = -20 .. 20, y = -20 .. 20)):
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 XMesh, XSubmesh, YMesh, YSubmesh, ZMesh

Increasing the default values XSubmesh = 0, YSubmesh = 0 yields a higher resolution
plot. Note that this does not influence the number of mesh lines that are displayed:

plot(plot::Function3d(besselJ(0, sqrt(x^2 + y^2)), 

                      x = -20 .. 20, y = -20 .. 20,

                      XSubmesh = 2, YSubmesh = 2)):
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Alternatively, we increase the values of XMesh, YMesh and use the default values
XSubmesh = 0, YSubmesh = 0. This, however, increases the number of mesh lines that
are displayed:

plot(plot::Function3d(besselJ(0, sqrt(x^2 + y^2)), 

                      x = -20 .. 20, y = -20 .. 20,

                      XMesh = 73, YMesh = 73)):
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 XMesh, XSubmesh, YMesh, YSubmesh, ZMesh

Yet another possibility is to use the default values of XMesh, YMesh, XSubmesh,
YSubmesh and activate the adaptive mechanism to smoothen the critical regions of the
plot. However, this plot consists almost completely of critical regions and the adaptive
mechanism will therefore be slower than a direct calculation with a finer mesh that leads
to almost the same result:

plot(plot::Function3d(besselJ(0, sqrt(x^2 + y^2)), 

                      x = -20 .. 20, y = -20 .. 20,

                      AdaptiveMesh = 2)):
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Example 3

For two-dimensional implicit plots, XMesh and YMesh determine the mesh of “seed
points” that are used to find components (see the documentation of plot::Implicit2d
for more details). In effect, this means that if some components are missing from a plot,
the values of these attributes should be increased:

plot(plot::Implicit2d(sin(2*x*y), x = -3..3, y = -3..3))
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 XMesh, XSubmesh, YMesh, YSubmesh, ZMesh

plot(plot::Implicit2d(sin(2*x*y), x = -3..3, y = -3..3,

                      XMesh = 20, YMesh = 20))

24-1709



24 Graphics and Animations

See Also

MuPAD Functions
AdaptiveMesh | Mesh | Submesh | UMesh | USubmesh | VMesh | VSubmesh
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 CameraCoordinates

CameraCoordinates

Position of light sources relative to the camera?

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects CameraCoordinates Default Values

plot::DistantLight,
plot::PointLight, plot::SpotLight

FALSE

Description

With CameraCoordinates = FALSE, the coordinates defining the position of a light are
interpreted as model coordinates in 3 space. Thus, the lights are positioned relative to
the objects in the scene. They do not move when the camera moves.

With CameraCoordinates = TRUE, these coordinates are interpreted as “camera
coordinates”. Thus, the lights are attached to the camera and move automatically with
the camera when it is moved.

A vector (x, y, z) in “camera coordinates” has to be interpreted as follows:

The x-coordinate refers to the horizontal axis of the picture that you see in the finder of
the camera. Positive x values are to your right hand side, negative x values to your left
hand side.

The y-coordinate refers to the vertical axis of the picture that you see in the finder.
Positive y values are above you, negative y values below you.
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The z-coordinate refers to the position along the optical axis of the camera. Positive z
values refer to points in front of you, negative z values to points behind you.

In camera coordinates, the camera position is (0, 0, 0).

For example, a point light positioned at the point (0, 1, 0) in camera coordinates is a
“head lamp” fixed at a distance of 1 above the camera.

A 3D plot may contain several cameras. Changing the state of CameraCoordinates for
a light affects its relation to all cameras of a scene. With CameraCoordinates = TRUE,
the position of the light in 3 space changes, when a new camera is chosen interactively.

Examples

Example 1

We define a sphere:

sphere := plot::Spherical(

    [1, u, v], u = 0..2*PI, v = 0..PI,

    FillColorType = Functional,

    FillColorFunction = 

        proc(u, v) begin

          [(2 + cos(2*u))/3, (2 + sin(2*u))/3, 0]

        end_proc):

We define sunlight shining from above:

sunlight := plot::DistantLight([0, 0, 1], [0, 0, 0]):

plot(sphere, sunlight):
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Next, the sunlight is defined relative to the camera. In camera coordinates, “above the
camera” is given by the Position[0, 1, 0]. Because the camera points downwards,
we set the direction of the sunlight “behind” the camera as well by choosing the direction
[0, 1, -1.5] w.r.t. the camera:

sunlight := plot::DistantLight([0, 1, -1.5], [0, 0, 0],

                               CameraCoordinates = TRUE):

plot(sphere, sunlight):
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delete sphere, sunlight, pointlight:

Example 2

We define the same sphere as in the previous example:

sphere := plot::Spherical(

    [1, u, v], u = 0..2*PI, v = 0..PI,

    FillColorType = Functional,

    FillColorFunction = 

        proc(u, v) begin

          [(2 + cos(2*u))/3, (2 + sin(2*u))/3, 0]

        end_proc):

We define an animated camera. First, we use sunlight fixed in space:

camera := plot::Camera([-3*sin(a), -3*cos(a), 2],

                       [0, 0, 0], 0.3*PI, a = 0..2*PI):

sunlight:= plot::DistantLight([0, -2, 3], [0, 0, 0]):

plot(sphere, camera, sunlight):
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Next, we use sunlight moving with the camera:

sunlight:= plot::DistantLight([0, 3, -2], [0, 0, 0],

                              CameraCoordinates = TRUE):

plot(sphere, camera, sunlight):
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We define a point light that is fixed to some point above the camera:

pointlight := plot::PointLight([0, 1, 0], 

                               CameraCoordinates = TRUE):

plot(sphere, camera, pointlight):
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delete sphere, camera, sunlight, pointlight:

Example 3

We define the same sphere as in the previous examples:

sphere := plot::Spherical(

    [1, u, v], u = 0..2*PI, v = 0..PI,

    FillColorType = Functional,

    FillColorFunction = 

        proc(u, v) begin

          [(2 + cos(2*u))/3, (2 + sin(2*u))/3, 0]

        end_proc):

We define an animated point light that is positioned below the camera initially. It moves
to some point above the camera during the animation:

pointlight := plot::PointLight([0, 10*a, 0], a = -1..1,

                               CameraCoordinates = TRUE):

plot(sphere, pointlight):
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We define an animated point light that is positioned to the left of the camera initially. It
moves to the right of the camera:

pointlight := plot::PointLight([10*a, 0, 0], a = -1 .. 1,

                               CameraCoordinates = TRUE):

plot(sphere, pointlight):
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delete sphere, pointlight:

See Also

MuPAD Functions
LightColor | LightIntensity | Position | SpotAngle | Target
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CameraDirection, CameraDirectionX,
CameraDirectionY, CameraDirectionZ
Direction of the automatic camera

Value Summary

CameraDirection Library wrapper for
“[CameraDirectionX,
CameraDirectionY,
CameraDirectionZ]” (3D)

See below

CameraDirectionX,
CameraDirectionY,
CameraDirectionZ

  See below

Graphics Primitives

Objects Default Values

plot::Scene3d  

Description

CameraDirection controls the direction where the automatically set camera is
positioned.

CameraDirectionX etc. refer to the single coordinates of this direction.

When creating a 3D scene, an “automatic camera” is used. It is placed somewhere
along the ray starting at the center of the scene (or the center of an explicitly requested
ViewingBox, respectively) with the direction given by CameraDirection.

The distance to the scene is chosen automatically such that the graphical scene or
ViewingBox fills the drawing area optimally.
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 CameraDirection, CameraDirectionX, CameraDirectionY, CameraDirectionZ

The CameraDirection value is a list or vector of numbers.

Note: This vector represents a direction, where the camera is found when starting at the
center of the scene or viewing box. It is not the position of the camera!

The length of the CameraDirection does not matter, only its direction. The length
should not be zero, though.

CameraDirection = [0, 0, 1] (looking straight down onto the x-y plane along the z-
axis) does not yield a well defined camera view. This direction is automatically replaced
by a direction that is close to, but not exactly equal to the z direction and orients the
scene similiar to a 2D plot.

The CameraDirection attributes cannot be animated.

The automatic camera is designed to produce a picture of the entire scene or viewing box,
filling the drawing area optimally. CameraDirection is the only means to control it.

If only parts of a scene shall be visible, or if the camera is not to aim at the center of the
scene, or if large perspective distortions are desired, or if the camera position is to be
animated, one has to define one's own camera of type plot::Camera. It can be placed
at an arbitrary Position with an arbitrary FocalPoint and can have an arbitrary
ViewingAngle. Further, it can be animated (allowing to realize a flight through a 3D
scene).

When such a camera object is inserted in a graphical scene, the automatic camera is
switched off and the user defined camera takes over, automatically. It uses its own
perspective parameters and ignores the attribute CameraDirection.

Examples

Example 1

We look at a function with the default direction of the automatic camera:

f := plot::Function3d(x^2 + y^3, x = 0..1, y = -1 ..1):

plot(f):
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We look from different directions:

S1 := plot::Scene3d(f, CameraDirection = [-3,-4, 5]):

S2 := plot::Scene3d(f, CameraDirection = [ 3,-4, 5]):

S3 := plot::Scene3d(f, CameraDirection = [ 3, 4, 5]):

S4 := plot::Scene3d(f, CameraDirection = [-3, 4, 5]):

plot(S1, S2, S3, S4)

24-1722



 CameraDirection, CameraDirectionX, CameraDirectionY, CameraDirectionZ

We look straight down onto the x-y plane along the z-axis:

plot(f, CameraDirection = [0, 0, 1])
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delete f, S1, S2, S3:

See Also

MuPAD Functions
FocalPoint | OrthogonalProjection | Position | ViewingAngle
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 FocalPoint, FocalPointX, FocalPointY, FocalPointZ

FocalPoint, FocalPointX, FocalPointY, FocalPointZ

Focal point of a camera

Value Summary

FocalPoint Library wrapper
for “[FocalPointX,
FocalPointY,
FocalPointZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

FocalPointX,
FocalPointY,
FocalPointZ

Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::Camera  

Description

The attribute FocalPoint refers to the point a camera taking pictures of a 3D scene
is aimed at. Its value is a list or vector of coordinates (numerical values or symbolic
expressions of an animation parameter).

FocalPointX etc. refer to the single coordinates x etc.

The optical axis of the camera is given by the vector from the camera Position to its
FocalPoint.

When creating a camera by

camera := plot::Camera(camera_position, focal_point, opening_angle),
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the focal point is the second argument. Internally, this point is stored as the attribute
FocalPoint and can be accessed and changed as camera::FocalPoint.

The focal point attributes can be animated.

Of course, the focal point should be set such that the camera points into the direction
of the objects that are to be rendered. Typically, for a camera positioned outside the
graphical scene, a good focal point is the center of the scene.

Examples

Example 1

We define a scene consisting of 4 geometric objects:

b := plot::Box(4..5, -1..1, -1..1, Filled = FALSE, 

               LineColor = RGB::Red):

c1 := plot::Cone(1, [0, 4, 0], [0, 4, 1], Color = RGB::Green):

s := plot::Sphere(1, [-4, 0, 0], Color = RGB::Blue):

c2 := plot::Cone(1, [0, -4, 1], [0, -4, 0], 

                 Color = RGB::Orange):

We use a small black object to mark the point (0, 0, 0.5), where we wish to place an
animated camera:

cameraposition := plot::Group3d(

      plot::Box(-0.1..0.1, -0.3..0.3, 0.3..0.7,

                Color = RGB::Black),

      plot::Cone(0.1, [0, 0, 0.5], 0.3, [0.5, 0, 0.5],

                 Color = RGB::DarkGrey)):

plot(b, c1, s, c2, cameraposition)
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When defining the camera, the second argument is the FocalPoint. In this case, it is
animated: The camera is to turn around the z-axis.

camera := plot::Camera([0, 0, 0.5], [4*cos(a), 4*sin(a), 0], 

                      PI/4, a = 0..2*PI):

camera::FocalPoint

We insert the animated camera:

plot(b, c1, s, c2, camera)

24-1727



24 Graphics and Animations

delete b, c1, s, c2, cameraposition, camera:

Example 2

We define a function and a camera with an animated focal point:

f := plot::Function3d(sin(x^2-y^2), x = -2..2, y = -2..2,

                      Submesh = [2, 2]):

camera := plot::Camera([3, 3, 3], [sin(a), cos(a), 0], 

                       PI/6, a = 0..2*PI):

plot(f, camera)
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delete f, camera:

See Also

MuPAD Functions
CameraDirection | OrthogonalProjection | Position | ViewingAngle
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LightColor

Color of light

Value Summary

Inherited Color

Description

LightColor sets the color of user-defined light sources such as plot::AmbientLight,
plot::DistantLight etc.

The value of LightColor must be an RGB or RGBa color, i.e., a list of three or four
numerical values between 0 and 1. (The fourth value is the opacity entry of an RGBa
color. It is accepted but does not have any effect on the light color.)

The RGB library provides many predefined colors such as RGB::Blue etc. See Section  of
this document for more information on colors.

LightColor cannot be animated.

Examples

Example 1

We define a white box and illuminate it by a yellow distant light:

b := plot::Box(-1..1, -1..1, -1..1, Color = RGB::White):

light := plot::DistantLight([-1, -2, 3], [0, 0, 0], 

                            Color = RGB::Yellow):

plot(b, light, Axes = None)
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We change the color of the light source:

light::LightColor := RGB::Blue:

plot(b, light, Axes = None)
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delete b, light:

See Also

MuPAD Functions
CameraCoordinates | LightIntensity | Position | SpotAngle | Target
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Lighting
Light schemes for 3D graphics

Value Summary

Inherited Automatic, Explicit, or None

Graphics Primitives

Objects Lighting Default Values

plot::Scene3d Automatic

Description

Lighting determines the light scheme used to illuminate a 3D scene.

With the default Lighting = Automatic, several light sources are set
automatically to illuminate a 3D scene. Firstly, there is ambient white light of type
plot::AmbientLight:

• Light 0: LightIntensity = 0.25, LightColor = RGB::White

In addition, there are 6 directed lights of type plot::DistantLight with LightColor
= RGB::White. Their directions is given as follows: Think of the graphical scene as being
scaled to a standard box extending from - 1 to 1 in each coordinate direction. In these
scaled coordinates, the directed lights shine into the directions given by the following
Target attributes:

• Light 1: Target = [-5, -6, -8], LightIntensity = 0.50,
• Light 2: Target = [ 5,  6,  8], LightIntensity = 0.60,
• Light 3: Target = [ 5, -6, -8], LightIntensity = 0.20,
• Light 4: Target = [-5,  6,  8], LightIntensity = 0.25,
• Light 5: Target = [-5,  6, -8], LightIntensity = 0.20,
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• Light 6: Target = [ 5, -6,  8], LightIntensity = 0.25.

User-defined lights in the scene are ignored with Lighting = Automatic.

With Lighting = Explicit, the light sources set via Lighting = Automatic are
switched off and user-defined light sources are switched on.

A plot command searches for light objects set by the user. If Lighting is not specified
and any kind of user-defined light object is found in the scene, Lighting = Explicit is
set automatically.

Switching between Lighting = Automatic and Lighting = Explicit in the
inspector, one can easily compare the effect of the automatic lights with the effect of ones
own lights.

With Lighting = None, the 3D shading algorithm based on reflections of light emitted
from light sources in the graphical scene is switched off. This does not mean that the
graphical scene turns black: all objects are painted in the color they are defined with.
However, the scene will appear flat, because the depth of a 3D scene is created via the
shading caused by different reflections of light at different points of the scene.

The maximal number of lights that can be used to illuminate a 3D scene depends on the
OpenGL driver installed on the computer.

Note: Some OpenGL drivers do not allow more than 6 light sources. If there are more
light sources in the scene, the surplus lights are ignored. Lights that are switched off via
Visible = FALSE are not counted.

After activating a 3D plot (by clicking it), the “Help” menu contains an item “OpenGL
Info” that provides information about the maximal number of lights.

Examples

Example 1

In our first scene, no lights are specified. The default setting Lighting = Automatic is
used:
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f := plot::Function3d(sin(x^2 + y^2), x = -2..2, y = -2..2):

plot(f):

When specifying Lighting = Explicit, the lights set by the user are used. Since the
scene does not contain any lights, the scene turns dark:

plot(f, Lighting = Explicit):
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Lights are specified in the next scene. The setting Lighting = Explicit is used
automatically:

Light0 := plot::AmbientLight(0.25):

Light1 := plot::DistantLight([ 1,  0, 1], [0, 0, 0], 0.3):

Light2 := plot::DistantLight([-1,  0, 1], [0, 0, 0], 0.3):

Light3 := plot::DistantLight([ 0,  1, 1], [0, 0, 0], 0.3):

Light4 := plot::DistantLight([ 0, -1, 1], [0, 0, 0], 0.3):

plot(f, Light0, Light1, Light2, Light3, Light4):
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We switch off the parameter lines:

plot(f, Light0, Light1, Light2, Light3, Light4,

     XLinesVisible = FALSE, YLinesVisible = FALSE,

     Axes = None):

24-1737



24 Graphics and Animations

In the next scene, the 3D shading model is switched off via Lighting = None:

plot(f, Lighting = None):
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In the previous picture, the axes box and the mesh lines are switched on and create a
certain 3D effect. After switching the box and the mesh lines off, the scene appears flat
when rendered without shading:

plot(f, Lighting = None, Axes = None,

     XLinesVisible = FALSE, YLinesVisible = FALSE):
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delete f, Light0, Light1, Light2, Light3, Light4:

See Also

MuPAD Functions
LightColor | LightIntensity | SpotAngle

MuPAD Graphical Primitives
plot::AmbientLight | plot::DistantLight | plot::PointLight |
plot::SpotLight
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LightIntensity
Intensity of light

Value Summary

Optional Arithmetical expression between 0 and 1

Description

LightIntensity governs the intensity of user defined light sources such as
plot::AmbientLight, plot::DistantLight etc.

The intensity of all user defined light source can be set by Intensity = intensity.
The value intensity must be a number between 0 and 1. Values smaller than 0 or
larger than 1 are accepted and handled like 0 or 1, respectively.

This attribute can be animated.

Undirected ambient light of intensity 1 dominates all other light sources.

Examples

Example 1

When generating a light source of type plot::DistantLight, the third argument is the
light intensity. Internally, this value is stored as the attribute LightIntensity and can
be accessed and changed as the corresponding slot of the light object:

light := plot::DistantLight([2, -1, 3], [0, 0, 0], 0.5):

light::LightIntensity

light::LightIntensity:= 0.4:
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light::LightIntensity

We illuminate a function plot by two distant lights with animated intensities:

plot(plot::Function3d(exp(-x^2 - y^2), x = -2..2, y = -2..2),

     plot::DistantLight([5, -1, 3], [0, 0, 0], 1 - a, a = 0..1),

     plot::DistantLight([-3, 5, 2], [0, 0, 0], a, a = 0..1)):

delete light:

See Also

MuPAD Functions
CameraCoordinates | LightColor | Position | SpotAngle | Target
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OrthogonalProjection
Parallel projection without perspective distortion

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects OrthogonalProjection Default Values

plot::Camera FALSE

Description

Setting OrthogonalProjection = TRUE, a camera uses parallel projection without
perspective distortion.

By default, a camera uses OrthogonalProjection = FALSE. Depending on the distance
of the camera to the graphical scene (set by the attribute Position), the scene is subject
to some natural perspective distortion. The distortion is large when the camera is near
the scene. It is small when the camera is far away.

In principle, using parallel projection is equivalent to placing a camera at a very large
distance from the scene, looking through a very powerful tele lense.

For technical reasons, however, you should not suppress perspective distortion by placing
the camera yourself somewhere far away via the attribute Position and turning
the camera's lens into a tele lense by setting a small value for its opening angle (cf.
ViewingAngle). This may lead to problems with the hidden line algorithm used by the
3D renderer. Further, a suitable opening angle has to be found experimentally such that
the scene fills a reasonable portion of the drawing area.

Use OrthogonalProjection = TRUE instead. The scaling of the scene is done
automatically to fill the drawing area optimally.
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With OrthogonalProjection = TRUE, the view is only determined by the direction of
the vector from the FocalPoint of the camera to its Position. (The camera is moved to
infinity along the ray given by this “optical axis”, using an infinitesimal opening angle.)

The absolute camera position in 3-space as well as its opening angle are ignored.

Examples

Example 1

We look at a box with side length 2 using cameras at different positions. We double the
distance between the camera and the center of the box from one scene to the next. At
the same time, we use more and more powerful tele lenses by decreasing the camera's
opening angle by a factor of , so that the box has approximately the same size.

• In S1, the camera is close to the box. The box is distorted heavily.
• In S2, the camera is farther away. The perspective distortions are smaller.
• In S3, the distance of the camera to the box center is about 5 times the diameter of

the box. Only minor perspective distortions are visible.
• In S4, the distance of the camera is about 10 times the diameter of the box. The

perspective distortions are almost gone:

b := plot::Box(-1..1, -1..1, -1..1, Filled = FALSE,

               LineColor = RGB::Black):

S1:= plot::Scene3d(b, plot::Camera([ 2,  1.8,  2.5], [0, 0, 0], PI/3)):

S2:= plot::Scene3d(b, plot::Camera([ 4,  3.6,  5.0], [0, 0, 0], PI/6)):

S3:= plot::Scene3d(b, plot::Camera([ 8,  7.2, 10.0], [0, 0, 0], PI/12)):

S4:= plot::Scene3d(b, plot::Camera([16, 14.4, 20.0], [0, 0, 0], PI/24)):

plot(S1, S2, S3, S4, Axes = None)
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We suppress the distortions completely by setting OrthogonalProjection = TRUE.
Note the automatic scaling of the scene:

plot(S1, S2, S3, S4, Axes = None, OrthogonalProjection = TRUE)
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delete b, S1, S2, S3, S4:

Example 2

The following camera is too close to the scene to make all parts of the function graph
visible:

f := plot::Function3d(sin(x^2 - y^2), x = -2..2, y = -2..2):

camera := plot::Camera([2, 2, 2], [0, 0, 0], PI/5):

plot(f, camera)
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With OrthogonalProjection = TRUE, the specified position and opening angle are
ignored. The effect of OrthogonalProjection is the same as placing the camera
far away and choosing a tiny opening angle such that the scene fills the drawing area
optimally:

camera::OrthogonalProjection := TRUE:

plot(f,camera)
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delete f, camera:

See Also

MuPAD Functions
CameraDirection | FocalPoint | Position | ViewingAngle
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SpotAngle
Opening angle of the light cone of a spot light

Value Summary

Mandatory Real-valued expression (interpreted in
radians)

Graphics Primitives

Objects SpotAngle Default Values

plot::SpotLight  

Description

SpotAngle sets the opening angle of the light cone of a spot light in radians, and defines
the opening angle of the light cone emitted by spot lights of type plot::SpotLight.

The values for SpotAngle have to be given in radians. Reasonable value lie between 0
and π.

SpotAngle can be animated.

Examples

Example 1

When creating a spot light, the third argument is the SpotAngle:

spotlight := plot::SpotLight([0, 0, 1], [0, 0, 0], a*PI, 1, 

                             a = 0..0.4, LightColor = RGB::White):

spotlight::SpotAngle
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We illuminate the x-y plane by the animated spot light and some ambient light. The spot
light is visualized by a cone:

ambientlight := plot::AmbientLight(0.2):

s := plot::Surface([x, y, 0], x = -1..1, y = -1..1, 

                   Submesh = [2, 2], Color = RGB::White, 

                   FillColorType = Flat):

c := plot::Cone(0, [0, 0, 1], 

                0.6*tan(a*PI/2), [0, 0, 1 - 0.6],

                a = 0..0.4, Color = RGB::Orange.[0.5]): 

plot(s, c, spotlight, ambientlight,

     CameraDirection = [-9, -18, 12])

delete spotlight, ambientlight, s, c:

See Also

MuPAD Functions
CameraCoordinates | LightColor | LightIntensity | Position | Target
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Target, TargetX, TargetY, TargetZ
Target point of a light

Value Summary

Target Library wrapper for
“[TargetX, TargetY,
TargetZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

TargetX, TargetY,
TargetZ

Mandatory MuPAD expression

Graphics Primitives

Objects Default Values

plot::DistantLight,
plot::SpotLight

 

Description

The Target attribute refers to the point a spot light is aimed at. It also controls the
direction of a distant light which is given by the vector Target - Position.

Target sets the position of the point lights of type plot::DistantLight and
plot::SpotLight are aimed at. TargetX etc. refer to the single coordinates of this
point.

The value of Target is a list or vector of coordinates. TargetX = x etc. refer to the
single coordinates of this list.

These attributes can be animated.

By default, the positions and the targets of light objects are given in model coordinates
that have nothing to do with the camera that is used to view the scene.
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When using the attribute CameraCoordinates = TRUE, the light source is fixed to the
camera. It moves automatically, when the camera is moved.

Examples

Example 1

When generating lights of type plot::DistantLight and plot::SpotLight, the
second argument ist the Target. In the following expample, it is animated:

sunlight := plot::DistantLight([0, 0, 2], 

                               [cos(a), sin(a), 1],

                               a = 0..2*PI):

spotlight := plot::SpotLight([0, 0, 1], 

                             [cos(a), sin(a), 1/2], 

                             PI/5, a = 0..2*PI):

sunlight::Target, spotlight::Target

We illuminate a paraboloid with sunlight. Its direction is animated by the Target
attribute:

f := plot::Function3d(x^2 + y^2, x = -1..1, y = -1..1):

plot(f, sunlight, CameraDirection = [-1, -2, 6])
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We use the animated spot light:

plot(f, spotlight, CameraDirection = [-1, -2, 6])
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delete sunlight, spotlight, f:

See Also

MuPAD Functions
CameraCoordinates | LightIntensity | Position | SpotAngle
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 UpVector, UpVectorX, UpVectorY, UpVectorZ, KeepUpVector

UpVector, UpVectorX, UpVectorY, UpVectorZ,
KeepUpVector

Up direction of a camera

Value Summary

UpVector Library wrapper for
“[UpVectorX, UpVectorY,
UpVectorZ]” (3D)

List of 2 or 3 expressions,
depending on the dimension

UpVectorX, UpVectorY,
UpVectorZ

Optional MuPAD expression

KeepUpVector Inherited FALSE, or TRUE

Graphics Primitives

Objects Default Values

plot::Camera UpVector: [0.0, 0.0, 1.0]

UpVectorX, UpVectorY: 0.0

UpVectorZ: 1.0

KeepUpVector: TRUE

Description

UpVector = [x, y, z] sets the 3D vector that corresponds to the vertical direction of
the 2D picture taken by the camera.

UpVectorX etc. denote the coordinates of the UpVector.
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KeepUpVector = TRUE keeps the UpVector constant when the camera is moved. With
KeepUpVector = FALSE, the UpVector is kept orthogonal to the optical axis when the
camera is moved.

The picture taken by a camera is defined by the attributes Position (the 3D position of
the camera) and FocalPoint (the 3D point the camera is pointed at). The vector from
the position to the focal point is the optical axis of the camera.

As an additional degree of freedom, the camera may be rotated around the optical axis.
This rotation is defined by specifying a 3D vector UpVector. In the final 2D picture
taken by the camera, this vector is parallel to the vertical axis, pointing upwards.

With the default value UpVector = [0, 0, 1] the z-axis in 3D points upwards in the
2D picture.

The UpVector of a camera must not be zero and must not be parallel to the optical axis.

The default values are UpVector = [0, 0, 1] and KeepUpVector = TRUE.

The restriction that the UpVector must not be parallel to the optical axis leads to
discontinuities when the camera moves in such a way that this restriction is violated.
In such a case, KeepUpVector = FALSE should be used. Cf. “Example 2” on page
24-1758.

Examples

Example 1

We view a cross of three arrows by a camera with the usual UpVector pointing into z-
direction:

camera := plot::Camera([0.3, -4.0, 0.2], [0, 0, 0], PI/4,

                       UpVector = [0, 0, 1]):

plot(plot::Arrow3d([-1, 0, 0], [1, 0, 0], Color = RGB::Red),

     plot::Arrow3d([0, -1, 0], [0, 1, 0], Color = RGB::Green),

     plot::Arrow3d([0, 0, -1], [0, 0, 1], Color = RGB::Blue),

     camera)
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We redefine the UpVector of the camera to point into the direction [1, 0, 1]. Now,
this 3D direction becomes the vertical direction of the 2D picture:

camera::UpVector := [1, 0, 1]:

plot(plot::Arrow3d([-1, 0, 0], [1, 0, 0], Color = RGB::Red),

     plot::Arrow3d([0, -1, 0], [0, 1, 0], Color = RGB::Green),

     plot::Arrow3d([0, 0, -1], [0, 0, 1], Color = RGB::Blue),

     camera)
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delete camera:

Example 2

We use an animated camera to fly over the north pole of a planet using the default
UpVector = [0, 0, 1]. With KeepUpVector = TRUE, we encounter a discontinuity
when the camera is positioned exactly over the north poly pointing straight down. The
UpVector is parallel to the optical axis at this point:

camera := plot::Camera([4*cos(a), 0, 4*sin(a)], [0, 0, 0], PI/4,

                       a = 0..PI, Frames = 300,

                       UpVector = [0, 0, 1], 

                       KeepUpVector = TRUE):

planet := plot::Surface([cos(u)*sin(v), sin(u)*sin(v), cos(v)],

    u = 0..2*PI, v = 0..PI, 

    FillColorFunction = proc(u, v) 

             begin 

               [cos(u)*cos(v)^2, cos(u)*cos(v)^2, cos(u)]

             end_proc):

font := ["sans-serif", 10, RGB::Grey80]:
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text1 := plot::Text3d("North", [0, 0, 1.2], TextFont = font):

text2 := plot::Text3d("South", [0, 0, -1.2], TextFont = font):

plot(camera, planet, text1, text2, Scaling = Constrained);

With KeepUpVector = FALSE, no such discontinuity is encountered. However, when
reaching the equator on the dark side of the planet, the UpVector has turned around:
the upper side of the picture now is south, the lower side is north:

camera::KeepUpVector := FALSE:

plot(camera, planet, text1, text2, Scaling = Constrained);
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delete camera, planet, font, text1, text2:

See Also

MuPAD Functions
FocalPoint | Position
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ViewingAngle
Opening angle of the camera lense

Value Summary

Mandatory MuPAD expression

Graphics Primitives

Objects ViewingAngle Default Values

plot::Camera  

Description

ViewingAngle defines the viewing angle of a camera. It is also known as the “opening
angle” of the camera's lense and is determined by its focal length.

Small viewing angles correspond to a tele lense, large opening angles to a wide angle
lense. Angles close to π correspond to an (extreme) fish eye lense.

The values for ViewingAngle have to be given in radians. The angles should be larger
than  and smaller than π. Other values are replaced by some small positive angle or

by an angle slightly less than π, respectively.

Note that when using a wide angle lense, the scene may fill only a part of the drawing
area. With a tele lense, only parts of the scene may be visible.

When using a camera object with a given Position, you have to find out experimentally
what viewing angle is suitable to make the scene fill a reasonable portion of the drawing
area.

ViewingAngle does not have any effect when the attribute OrthogonalProjection =
TRUE is set for the camera.
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Note: In fact, when a parallel projection without perspective distortion is desired, one
should not position the camera far away from the scene and use an extreme tele lense
(i.e, very small ViewingAngle values). This may lead to problems with the hidden line
algorithm of the 3D renderer. Use OrthogonalProjection = TRUE instead.

ViewingAngle can be animated. Increasing or decreasing values of ViewingAngle
correspond to “zooming out” or “zooming in”, respectively.

Examples

Example 1

When creating a camera object, the third argument is the ViewingAngle:

camera:= plot::Camera([5, 5, 5], [0, 0, 0], PI/4):

camera::ViewingAngle

We animate ViewingAngle. With the initial value of  the scene is fully visible (but

rather small). Zooming in by decreasing the viewing angle, only parts of the scene are
visible:

f  := plot::Function3d(sin(x^3 - y^2), x = -2..2, y = -2..2,

                       Submesh = [2, 2]):

camera:= plot::Camera([5, 5, 5], [0, 0, 0], 

                      (1 - a)*PI/3 + a*PI/10,

                      a = 0..1, Frames = 200):

plot(f, camera)
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delete f, camera:

See Also

MuPAD Functions
CameraDirection | FocalPoint | OrthogonalProjection | Position
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AntiAliased

Antialiased lines and points

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects AntiAliased Default Values

plot::Arc2d, plot::Arrow2d,
plot::Circle2d, plot::Conformal,
plot::Curve2d, plot::Ellipse2d,
plot::Function2d, plot::Hatch,
plot::Histogram2d,
plot::Implicit2d, plot::Integral,
plot::Line2d, plot::Listplot,
plot::Ode2d, plot::Parallelogram2d,
plot::Piechart2d, plot::Point2d,
plot::PointList2d,
plot::Polar, plot::Polygon2d,
plot::QQplot, plot::Rootlocus,
plot::Scatterplot, plot::Sequence,
plot::SparseMatrixplot,
plot::Streamlines2d, plot::Turtle,
plot::VectorField2d

TRUE

plot::Bars2d, plot::Boxplot,
plot::Density, plot::Inequality,
plot::Iteration, plot::Lsys,
plot::Raster, plot::Rectangle,
plot::Sum

FALSE
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Description

AntiAliased controls whether lines and points are drawn antialiased or not. With
AntiAliased enabled graphics usually look smoother.

Examples

Example 1

We draw a points in different sizes and point styles. The black points are drawn with
AntiAliased = FALSE, the blue points are drawn with AntiAliased = TRUE:

pointStyles := [Squares, FilledSquares, Circles,

                FilledCircles, Crosses, XCrosses,

                Diamonds, FilledDiamonds, Stars]:

pointSizes := [1.5, 3, 4.5, 6]:

plot(Axes = None, 

     (plot::Point2d(i, 2*j, AntiAliased = TRUE, 

                            PointStyle = pointStyles[i], 

                            PointSize = pointSizes[j],

                            Color = RGB::Blue), 

      plot::Point2d(i, 2*j + 1, AntiAliased = FALSE,

                                PointStyle = pointStyles[i], 

                                PointSize = pointSizes[j],

                                Color = RGB::Black))

      $ i = 1..nops(pointStyles) $ j = 1..nops(pointSizes)

    )

24-1765



24 Graphics and Animations

With horizontal lines we see not much difference between AntiAliased = FALSE (black
lines) and AntiAliased = TRUE (blue lines):

lineStyles := [Solid, Dashed, Dotted]:

lineWidth := [.25, .5, .75, 1, 1.25, 1.5]:

plot(Axes = None, 

     (plot::Line2d([i, 2*j], [i+.8, 2*j],

                      AntiAliased = TRUE,

                      LineStyle = lineStyles[i], 

                      LineWidth = lineWidth[j],

                      Color = RGB::Blue), 

      plot::Line2d([i, 2*j+1], [i+.8, 2*j+1],

                         AntiAliased = FALSE,

                         LineStyle = lineStyles[i], 

                         LineWidth = lineWidth[j],

                         Color = RGB::Black))

      $ i = 1..nops(lineStyles) $ j = 1..nops(lineWidth)

    )
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Diagonal lines are much smoother with AntiAliased = TRUE:

lineStyles := [Solid, Dashed, Dotted]:

lineWidth := [.25, .5, .75, 1, 1.25, 1.5]:

plot(Axes = None, 

     (plot::Line2d([i, 2*j], [i + .8, 2*j + 1], 

                            AntiAliased = TRUE,

                            LineStyle = lineStyles[i], 

                            LineWidth = lineWidth[j],

                            Color = RGB::Blue), 

      plot::Line2d([i, 2*j + 1], [i + .8, 2*j + 2],

                               AntiAliased = FALSE,

                               LineStyle = lineStyles[i], 

                               LineWidth = lineWidth[j],

                               Color = RGB::Black))

     $ i = 1..nops(lineStyles) $ j = 1..nops(lineWidth)

    )
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By default curves are plotted with AntiAliased = TRUE (blue curve) which is much
nicer:

f := plot::Curve2d([Re, Im](zeta(I*y + 1/2)), y = 0..42,

                                      AdaptiveMesh = 3):

f1 := plot::modify(f, AntiAliased = FALSE,

                      Color = RGB::Black):

plot(

     f, plot::Translate2d([5, 0], f1), XAxisTitle = "Re(z)",

                                       YAxisTitle = "Im(z)"

    )
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See Also

MuPAD Functions
LineStyle | PointStyle
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ArrowLength
Scaling of arrows in a vector field

Value Summary

Inherited Fixed, Logarithmic, or Proportional

Graphics Primitives

Objects ArrowLength Default Values

plot::VectorField2d,
plot::VectorField3d

Proportional

Description

ArrowLength determines how the lengths of the arrows in a vector field plot depend on
the norms of the field at the evaluated points.

plot::VectorField2d plots a vector field by placing arrows at regular intervals,
pointing in the directions of the field at these points. ArrowLength determines whether
the lengths of those arrows are constant (ArrowLength =Fixed), proportional to the
norms of the field (ArrowLength =Proportional, the default), or proportional to the
logarithm of these values increased by 1 (ArrowLength =Logarithmic).

Examples

Example 1

The vector field defined by f(x, y) = (x, y)t takes on different absolute values at different
points. By default, plot::VectorField2d plots arrows whose lengths are proportional
to the norms of the field:
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v := plot::VectorField2d(x, y, x=-3..3, y=-3..3):

plot(v)

If you only want to display the direction of the field, not its “strength”, use ArrowLength
=Fixed:

v::ArrowLength := Fixed:

plot(v)
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 AxesTitleFont, FooterFont, HeaderFont, LegendFont, TextFont, TicksLabelFont, TitleFont

AxesTitleFont, FooterFont, HeaderFont, LegendFont,
TextFont, TicksLabelFont, TitleFont
Font of axes titles

Value Summary

AxesTitleFont,
FooterFont, HeaderFont,
LegendFont, TextFont,
TicksLabelFont,
TitleFont

Inherited Font definition

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

AxesTitleFont: [" sans-serif ", 10]

TicksLabelFont: [" sans-serif ", 8]
plot::Canvas FooterFont, HeaderFont: [" sans-

serif ", 12]
plot::Scene2d, plot::Scene3d FooterFont, HeaderFont: [" sans-

serif ", 12]

LegendFont: [" sans-serif ", 8]
plot::Integral, plot::Piechart2d,
plot::Piechart3d, plot::Text2d,
plot::Text3d

TextFont, TitleFont: [" sans-serif
", 11]

Description

AxesTitleFont etc. determine the fonts to be used for axes titles etc.
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A font is specified as follows:

XXXFont = [< family >, < size >, <<Bold>>, <<Italic>, < color >>, <

alignment >]

The meaning of the parameters is as follows.

family Font family name: a string.

The available font families depend on the fonts that are installed on your
machine. For example, typical font families available on Windows systems
are "Times New Roman" (of type “serif”), "Arial" (of type “sans-serif”), or
"Courier New" (of type “monospace”).

To find out which fonts are available on your machine, open the menu
“Format”, submenu “Font” in your MuPAD notebook. The first column in
the font dialog provides the names of the font families that you may specify.
You may also specify one the three generic family names "serif", "sans-
serif", or "monospace", and the system will automatically choose one of
the available font families of the specified type for you.

size Size of the font in integral points: a positive integer.
Bold If specified, the font is bold.
Italic If specified, the font is italic.
color RGB color value: a list of 3 numerical values between 0 and 1
alignmentText alignment in case of new-lines: one of the flags Left, Center, or Right.

All font parameters are optional; some default values are chosen for entries that are not
specified. For example, if you do not care about the footer font family for your plot, but
you insist on a specific font size, you may specify an 18 pt font for the canvas footer by
FooterFont = [18].

Examples

Example 1

We specify the font for the canvas header:
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plot(plot::Function2d(sin(x), x = 0 .. 2*PI),

     Header = "The sine function",

     HeaderFont = ["monospace", 14, Bold])

We specify a font size of 18 pt for the canvas footer:

plot(plot::Function2d(sin(x), x = 0 .. 2*PI),

     Footer = "The sine function", FooterFont = [18])
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Example 2

Display Greek characters for the tick labels:

plot(plot::Function2d(cos(x), x = -PI..PI),

     XTicksNumber = None,

     XTicksAt = [-PI/2 = "-π/2", PI = "π"])
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You can change the appearance of Greek characters by specifying the font. Note that this
font is used for all tick labels.

plot(plot::Function2d(cos(x), x = -PI..PI),

     XTicksNumber = None,

     XTicksAt = [-PI/2 = "-π/2", PI = "π"],
     TicksLabelFont = ["Times New Roman", 12])
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See Also

MuPAD Functions
AxesTitles | Footer | Header | LegendText | LegendVisible | TicksAt |
TicksLabelsVisible | Title

More About
• “Fonts”
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BackgroundColor, BackgroundColor2
Background color

Value Summary
BackgroundColor,
BackgroundColor2

Inherited Color

Graphics Primitives
Objects Default Values

plot::Canvas, plot::Scene2d BackgroundColor: RGB::White
plot::Scene3d BackgroundColor: RGB::White

BackgroundColor2: RGB::Grey75

Description
These attributes set background colors for scenes, scene margins, and the remaining
space in a canvas.

BackgroundColor sets the background color of a scene or canvas, where “background”
refers to any area not occupied by graphical elements, including the margin.

For a 3D-scene, if BackgroundStyle is not Flat, the actual scene background (not
including the margin) is a blend from BackgroundColor to BackgroundColor2. See
BackgroundStyle for details.

Examples

Example 1

In the following plot, we combine three scenes with backgrounds in red, blue, and green
and set the background color of the canvas to yellow:
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s1 := plot::Scene3d(plot::Sphere(1, Color = RGB::White),

                    BackgroundColor = RGB::Red):

s2 := plot::modify(s1, BackgroundColor = RGB::Blue):

s3 := plot::modify(s1, BackgroundColor = RGB::Green):

plot(s1, s2, s3, BackgroundColor = RGB::Yellow):

Example 2

Using BackgroundColor2 and BackgroundStyle, you can set the background of 3D-
scenes to use a color blend:

plotfunc3d(x^2-y^2, 

           BackgroundStyle = LeftRight,

           BackgroundColor2 = RGB::Chartreuse)
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But note that the margin of the scene is still painted in its BackgroundColor:

plotfunc3d(x^2-y^2,

           plot::Scene3d::BackgroundColor = RGB::Yellow,

           plot::Scene3d::BackgroundStyle = LeftRight,

           plot::Scene3d::BackgroundColor2 = RGB::LightBlue)
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To avoid this margin, we set its width to zero:

plotfunc3d(x^2-y^2,

           plot::Scene3d::BackgroundColor = RGB::Yellow,

           plot::Scene3d::BackgroundStyle = LeftRight,

           plot::Scene3d::BackgroundColor2 = RGB::LightBlue,

           plot::Scene3d::Margin = 0)

24-1782



 BackgroundColor, BackgroundColor2

Example 3

The fact that BackgroundColor is an attribute of both canvas and scenes has the effect
that giving it directly in a plot command will only affect the canvas, not the implicitly
generated scenes of a plot:

plot(plot::Circle2d(1),

     BackgroundColor = RGB::Yellow)
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plotfunc2d(sin(x), BackgroundColor = RGB::Black)
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To set the background color of a scene, use one of the styles illustrated above: Either
create a scene explicitly:

plot(plot::Scene2d(plot::Circle2d(1),

                   BackgroundColor = RGB::Yellow))
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Or, set the attribute explicitly for scenes:

plotfunc2d(sin(x),

           plot::Scene2d::BackgroundColor = RGB::Orange)
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There is also a third option, not used in the examples above: You can set
BackgroundColor as a hint in an object to be shown (but this does not work for
plotfunc2d and plotfunc3d):

plot(plot::Text2d("Sample", [0, 0],

                  TextFont = [RGB::White, 60],

                  HorizontalAlignment = Center,

                  BackgroundColor = RGB::Black))
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See Also

MuPAD Functions
BackgroundStyle | BackgroundTransparent | Margin
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BackgroundStyle
Color blends in the background

Value Summary

Inherited Flat, LeftRight, Pyramid, or
TopBottom

Graphics Primitives

Objects BackgroundStyle Default Values

plot::Scene3d Flat

Description

BackgroundStyle gives a color blend in the background of a 3D scene.

The background of a 3D scene may be set to a single color (BackgroundStyle = Flat,
using BackgroundColor) or to a blend from BackgroundColor to BackgroundColor2,
in one of three possible directions: LeftRight and TopBottom are linear blends from
left to right or from top to bottom, respectively, while Pyramid sets a linear blend from
the center to the borders.

Examples

Example 1

We demonstrate all possible styles, using a simple plot and the default values for
BackgroundColor and BackgroundColor2:

c1 := plot::Cone(1, [0, 0, 0], [0, 0, 1]):

c2 := plot::Cone(1, [0, 0, 2], [0, 0, 1]):
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plot(plot::Scene3d(c1, c2, BackgroundStyle = Flat),

     plot::Scene3d(c1, c2, BackgroundStyle = TopBottom),

     plot::Scene3d(c1, c2, BackgroundStyle = LeftRight),

     plot::Scene3d(c1, c2, BackgroundStyle = Pyramid),

     Layout = Tabular)

delete c1, c2:

See Also

MuPAD Functions
BackgroundColor | BackgroundColor2
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BackgroundTransparent

Plot a scene on a transparent background

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects BackgroundTransparent Default Values

plot::Scene2d, plot::Scene3d FALSE

Description

Using BackgroundTransparent, you can have a scene “without a background.”

By default, each scene has an opaque background. In the case of overlapping scenes
(which you can achieve by setting Layout = Absolute or Layout = Relative in the
canvas and providing suitable values for Bottom and Left for the scenes), this may be
undesirable. Using BackgroundTransparent, you can make the background of a scene
transparent, so the canvas background and scenes behind it are visible.

With BackgroundTransparent = TRUE, other background settings
(BackgroundColor, BackgroundStyle, BackgroundColor2) are ignored.

Examples

Example 1

We create a number of random points and two statistical plots of this sample:
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gen := stats::normalRandom(0, 1):

data := [gen() $ i = 1..1000]:

s1 := plot::Scene2d(plot::PointList2d([[i, data[i]]

                                       $ i = 1..1000]),

                    Left = 0, Bottom = 10,

                    Width = 120, Height = 80):

s2 := plot::Scene2d(plot::Histogram2d(data, Cells=[20]),

                    Left = 80, Bottom = 0,

                    Width = 50, Height = 40):

plot(s1, s2, Layout = Absolute, Width = 130, Height = 90)

The histogram plot obscures parts of the point list in a rectangle much larger than the
bars of the histogram plot. Using BackgroundTransparent, we an set this rectangle to
transparent:

s2::BackgroundTransparent := TRUE:

plot(s1, s2, Layout = Absolute, Width = 130, Height = 90)
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See Also

MuPAD Functions
BackgroundColor | BackgroundColor2 | Bottom | Layout | Left
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Billboarding
Text orientation in space or towards observer

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects Billboarding Default Values

plot::Piechart3d, plot::Text3d TRUE

Description

With Billboarding = TRUE, text objects are always facing the observer. With
Billboarding = FALSE, text objects retain their orientation relative to other objects.

Often, text objects in 3D are used to label certain places in a graphic (note that objects
can contain a title, so text objects are usually only necessary for additional descriptions).
In this case, it is desirable that they always face the observer to be readable and not
rotate along with the rest of the scene. This is the default behavior. To get text objects
that are actually part of the scene in the sense that rotating the scene also rotates the
texts, set Billboarding = FALSE.

Examples

Example 1

In the following image, the prime numbers use Billboarding = TRUE, while other
numbers do not:

plot(plot::Text3d(expr2text(i),
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                 [3*i, 0, 0],

                 TextOrientation = [1, 0, 0, 0, 1, 0],

                 Billboarding = isprime(i))

     $ i = 1..15, 

     TextFont = [20], Scaling = Constrained, Axes = None)

Note that text objects with Billboarding = TRUE ignore TextOrientation.

See Also

MuPAD Functions
Title
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BorderColor, BorderWidth

Color of frame/border around canvas and scenes

Value Summary

BorderColor,
BorderWidth

Inherited Color

Graphics Primitives

Objects Default Values

plot::Canvas, plot::Scene2d,
plot::Scene3d

BorderColor: RGB::Grey50

BorderWidth: 0

Description

The canvas as well as the scenes in a canvas can be framed by a rectangular border. The
width of the border is set by BorderWidth, its color is set by BorderColor.

With the attributes BorderWidth and BorderColor, a canvas or individual scenes
can be given a border, similar to an image frame. The border is “switched off” with the
default value BorderWidth = 0. Set the border width to some positive value such as
BorderWidth = 0.5*unit::mm to make the border visible.

The following picture illustrates the layout of the canvas:
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The following picture illustrates the layout of a scene:

The size of a canvas, set by the attributes Width and Height, includes the width of the
border set by BorderWidth. The same holds for the scenes.
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With BackgroundTransparent = TRUE, transparent scenes (without a background)
can be created. The borders do not become transparent!

The scene borders do not react to Layout = Relative. One always has to specify the
border width as absolut physical lengths such as BorderWidth = 0.5*unit::mm.

Scenes do not inherit borders from the enclosing canvas. You can set the borders for all
scenes simultaneously by specifying them in plot::setDefault as

plot::Scene2d::BorderWidth, plot::Scene2d::BorderColor

or

plot::Scene3d::BorderWidth, plot::Scene3d::BorderColor,

respectively. Cf. “Example 2” on page 24-1799.

Examples

Example 1

Two scenes are displayed side by side. The borders of the canvas and the two scenes are
“switched on” by specifying positive values for BorderWidth:

S1 := plot::Scene2d(plot::Function2d(sin(x), x = 0 .. 2*PI),

                    Header = "The sine function",

                    BorderWidth = 0.5*unit::mm):

S2 := plot::Scene2d(plot::Function2d(cos(x), x = 0 .. 2*PI),

                    Header = "The cosine function",

                    BorderWidth = 0.5*unit::mm):

plot(S1, S2, Header = "Trigonometric functions",

     Width = 120*unit::mm, Height = 50*unit::mm,

     BorderWidth = 1.0*unit::mm, BorderColor = RGB::Black,

     Layout = Horizontal):
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delete S1, S2:

Example 2

We use plot::setDefault to define new default values for the layout and style
parameters BorderWidth, BorderColor, Margin, and BackgroundColor:

plot::setDefault(

  plot::Canvas::BorderWidth = 0.5*unit::mm,

  plot::Canvas::BorderColor = RGB::Black,

  plot::Canvas::Margin = 1.5*unit::mm,

  plot::Canvas::BackgroundColor = RGB::SlateGrey,

  plot::Scene2d::BorderWidth = 0.5*unit::mm,

  plot::Scene2d::BorderColor = RGB::Black,

  plot::Scene2d::Margin = 2*unit::mm,

  plot::Scene2d::BackgroundColor = RGB::Grey

):

The following canvas contains two scenes. This plot uses the new defaults:

plot(plot::Scene2d(plot::Rectangle(-1..1, -1..1,

                      Filled = TRUE, FillColor = RGB::Red,

                      Header = "Scene 1")),

     plot::Scene2d(plot::Rectangle(-1..1, -1..1,

                      Filled = TRUE, FillColor = RGB::Blue,

                      Header = "Scene 2")),

     Layout = Horizontal, Axes = None,

     Header = "Canvas Header"):
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See Also

MuPAD Functions
BackgroundColor | BackgroundColor2 | BackgroundStyle |
BackgroundTransparent | Bottom | Left | Margin
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BoxCenters, BoxWidths

Position of boxes in a box plot

Value Summary

BoxCenters, BoxWidths Optional List of arithmetical
expressions

Graphics Primitives

Objects Default Values

plot::Boxplot BoxCenters: [1]

BoxWidths: [0.8]

Description

BoxCenters and BoxWidths govern horizontal center positions and widths of boxes in
statistical box plots of Type plot::Boxplot.

A plot of type plot::Boxplot serves for visualizing and comparing statistical data
samples.

A data sample defines the vertical coordinates of the corresponding box. The position
along the horizontal axis as well as the horizontal width, however, is arbitrary and may
be manipulated by the attributes BoxCenters and BoxWidths.

By default, the box of the i-th data sample is positioned at the horizontal value x = i.
With the default width of 0.8, the i-th box extends from x = i - 0.4 to x = i + 0.4.

The value of the attribute BoxCenters must be a list of x-values for the horizontal
centers of the boxes.
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If the length of this list is smaller than the number of data samples in the box plot, the
center values are incremented by 1 for each surplus box.

If the length of the BoxCenters list is larger than the number of data samples, the
surplus center values are ignored.

Setting BoxCenters = [x1], the first box is centered at x = x1, while the standard
distance between the boxes is kept. Thus, BoxCenters = [x1] allows to shift the entire
box plot along the horizontal axis.

The value of the attribute BoxWidths must be a list of positive real values.

If the length of this list is smaller than the number of data samples in the box plot, the
default width 0.8 is used for the surplus boxes.

If the length of the BoxWidth list is larger than the number of data samples, the surplus
width values are ignored.

If the attribute DrawMode = Horizontal is set in the plot::Boxplot object, the boxes
are drawn from left to right instead from bottom to top.

In this case, the attributes BoxCenters and BoxWidths refer to the vertical coordinates
of the boxes.

Examples

Example 1

We create a box plot visualizing 5 data samples:

data1 := [stats::uniformRandom(2, 4)() $ k = 1..100]:

data2 := [stats::normalRandom(3, 0.3)() $ k = 1..100]:

data3 := [stats::normalRandom(3, 1)() $ k = 1..100]:

data4 := [stats::normalRandom(3, 1)() $ k = 1..100]:

data5 := [stats::normalRandom(3, 1)() $ k = 1..100]:

plot(plot::Boxplot(data1, data2, data3, data4, data5,

                   Notched = TRUE)):
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We specify the horizontal centers and the widths of the boxes such that the first two and
the last three boxes touch each other:

plot(plot::Boxplot(data1, data2, data3, data4, data5,

                   Notched = TRUE, 

                   BoxCenters = [1, 2, 4, 5, 6], 

                   BoxWidths = [1, 1, 1, 1, 1])):
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We place two of the data boxes on top of each other for direct comparison:

plot(plot::Boxplot(data1, data4, Notched = TRUE, 

                   BoxCenters = [1, 1], BoxWidths = [2, 2]))
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delete data1, data2, data3, data4, data5:

See Also

MuPAD Functions
DrawMode | Notched | NotchWidth
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DrawMode
Orientation of boxes and bars

Value Summary

Optional Horizontal or Vertical

Graphics Primitives

Objects DrawMode Default Values

plot::Bars2d, plot::Boxplot,
plot::Histogram2d

Vertical

Description

DrawMode = Vertical versus DrawMode = Horizontal determines the orientation of
boxes in a box plot and bars in bar plots and histogram plots.

A plot of type plot::Boxplot serves for visualizing and comparing statistical data
samples. The plot reduces the data to few simple descriptive parameters.

One coordinate direction provides information on the statistical data (25% quantile,
median, 75% quantile etc.). The other coordinate direction just serves for placing several
boxes associated with different data samples side by side for comparison.

With DrawMode = Vertical, the vertical direction provides the information on the
statistical data.

With DrawMode = Horizontal, the boxes are turned by 90 degrees. Now, the horizontal
direction provides the information on the statistical data.

Corresponding statements hold for the bars in a 2D bar plot of type plot::Bars2d and
2D histograms of type plot::Histogram2d.
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Examples

Example 1

We create a box plot:

data1 := [2, 6, 4, 3, 1, 7, 9, 5, 3]: 

data2 := [2, 4, 8, 8, 7, 6, 8, 7, 3, 1, 10]: 

data3 := [stats::normalRandom(6, 2)() $ k = 1 .. 100]: 

plot(plot::Boxplot(data1, data2, data3, Notched = TRUE)):

The boxes are rendered horizontally:

plot(plot::Boxplot(data1, data2, data3, Notched = TRUE,

                   DrawMode = Horizontal)):
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delete data1, data2, data3:

See Also

MuPAD Functions
BoxCenters | BoxWidths | Notched | NotchWidth
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Gap, XGap, YGap

Gaps between the bars of a bar chart

Value Summary

Gap [[XGap, YGap]] See below
XGap, YGap Optional MuPAD expression

Graphics Primitives

Objects Default Values

plot::Bars3d Gap: [0, 0]

XGap, YGap: 0

Description

Gap, XGap, YGap sets gaps between the bars of a bar chart.

In plot::Bars3d, the attribute Gap = [gx, gy] or, equivalently, XGap = gx, YGap
= gy allows to introduce gaps between adjacent bars. The values gx, gy may be real
numerical values between 0 and 1 or expressions of the animation parameter. These
values set the fraction of the space reserved for a bar that is not filled by the bar.

With gx = 0, gy = 0, there are no gaps. With gx = 0.5, gy = 0.5, the gaps between
adjacent bars are of the same size as the bars. With gx = 1, gy = 1, there bars become
lines.

Values of gx, gy larger than 1 are treated like 1, negative values like 0.

The Gap attribute has an effect only for BarStyle = Boxes.
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Examples

Example 1

We display the same data with different Gap values:

A := matrix::random(5, 5, frandom) :

plot(plot::Scene3d(plot::Bars3d(A, Gap = [0, 0])),

     plot::Scene3d(plot::Bars3d(A, Gap = [0.4, 0.4])),

     plot::Scene3d(plot::Bars3d(A, Gap = [0.7, 0.7])),

     Width = 150*unit::mm, Height = 50*unit::mm,

     Layout = Horizontal):

delete A:
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Notched, NotchWidth

Notched boxes in box plots

Value Summary

Notched, NotchWidth Optional TRUE or FALSE

Graphics Primitives

Objects Default Values

plot::Boxplot Notched: FALSE

NotchWidth: 0.2

Description

With Notched = TRUE, the boxes in a statistical box plot of type plot::Boxplot are
notched. The notches provide further information on the statistical data.

The attribute NotchWidth determines the horizontal width of the notches.

A plot of type plot::Boxplot serves for visualizing and comparing statistical data
samples. The plot reduces the data to few simple descriptive parameters.

One graphical parameter is the height of notches that are displayed in the sides of the
boxes when using Notched = TRUE. A typical notched box looks like this:
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The height of the notches is 3.14 times the height of the central box divided by the square
root of the number of data elements in the corresponding data sample.

Notched box plots are useful for determining whether two random samples were drawn
from the same population. Similar notches of boxes indicate that the data visualized by
the boxes have the same distribution.

This, however, is not a rigorous criterion that the data samples are indeed identically
distributed.

The horizontal width of the notches bears no statistical significance and is just a layout
parameter. Setting NotchWidth = r, the absolute horizontal notch width of a box is r
times the width of the box. Reasonable values for r lie between 0 and .

The widths of the boxes can be set via the attribute BoxWidths.
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Examples

Example 1

We create a notched box plot of several random samples:

r := stats::normalRandom(0, 1):

data1 := [r() $ k = 1..100]:

data2 := [r() $ k = 1..200]:

data3 := [r() $ k = 1..300]:

plot(plot::Boxplot(data1, data2, data3, Notched = TRUE)):

We change the NotchWidth:

plot(plot::Boxplot(data1, data2, data3, Notched = TRUE,

                   NotchWidth = 0.4)):
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delete r, data1, data2, data3:

See Also

MuPAD Functions
BoxCenters | BoxWidths | DrawMode
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Projectors
Project an ODE solution to graphical points

Value Summary

Mandatory List of arithmetical expressions

Graphics Primitives

Objects Projectors Default Values

plot::Ode2d, plot::Ode3d  

Description

Projectors defines “generators of plot data” that project solution points (t, Y(t)) of an
ODE to graphical points [x, y] in 2D or [x, y, z] in 3D, respectively.

Internally, plot::Ode2d and plot::Ode3d generate a sequence of numerical solution
points (t0, Y(t0)), (t1, Y(t1)) etc. of an ODE. Each of these solution points is mapped to a
graphical point via the “projectors” defined by Projectors.

Each projector Gi in Projectors = [[G1], [G2], …] is a list

[Gi]=[(t, Y) -> [x(t,Y), y(t,Y), <z(t, Y)>], <Style = style>, <Color =
color>] .

The procedures (t, Y) -> [x(t, Y), y(t, Y), <z(t, Y)>] map the solution
points (ti, Yi) of the ODE to points [x(ti, Yi), y(ti, Yi)] in 2D (for plot::Ode2d) or [x(ti,
Yi), y(ti, Yi), z(ti, Yi)] in 3D (for plot::Ode3d). These points are drawn in the picture,
interpolated by linear or cubic spline interpolation according to the attribute Style=
style in the color set by the attribute Color = color.

The style parameter may be one of the flags Points (only the points are displayed),
Lines (only interpolating line segments are displayed), Splines (only the interpolating
cubic spline curve is displayed), [Lines, Points] (interpolating line segments together

24-1815



24 Graphics and Animations

with the interpolation points are displayed) , or [Splines, Points] (the interpolating
cubic spline curve together with the interpolation points are displayed).

The default style is Style= [Splines, Points].

Each of the projectors G1, G2 etc. (denoted by G in the following) is a mapping
 in 2D or  in 3D. It must

accept a numerical argument t and a vector Y (a list or a one-dimensional array) and
must return a list of numerical coordinate values [x, y] (in plot::Ode2d) or [x, y,
z] (in plot::Ode3d), respectively. Defining appropriate projectors, any information on
the solution curve of the ODE can be displayed graphically.

Here are some examples:

G := (t, Y) -> [t, Y[1]] creates a 2D plot of the first component of the solution
vector along the y-axis, plotted against the time variable t along the x-axis

G := (t, Y) -> [Y[1], Y[2]] creates a 2D phase plot, plotting the first component
of the solution along the x-axis and the second component along the y-axis. The result is a
solution curve in phase space (parametrized by the time t).

G := (t, Y) -> [Y[1], Y[2], Y[3]] creates a 3D phase plot of the first three
components of the solution curve.

If no projectors are specified in a call to plot::Ode2d, the default projectors
Generators = [[G1], [G2], …] are used, where

[G_i] = [(t, Y) -> [t, Y[i]], Style = [Splines, Points]].

This plots the i-th component of the solution vector along the y-axis against the “time” t
plotted along the x-axis.

In plot::Ode3d, the default projectors are

[G_i] = [(t, Y) -> [t, Y[2*i - 1], Y[2*i]], Style =

[Splines,Points]].

This plots two of the components of the solution vector along the y- and z-axis against the
“time” t plotted along the x-axis.
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Examples

Example 1

We consider the 2nd order ODE . As a dynamical
system for , the ODE to be solved is

.

The first projector G1 plots the solution in red as a phase curve in the (x, y)-plane.

The second projector G2 plots the kinectic energy  in green along the z-axis.

The third projector G3 plots the potential energy  in blue

along the z-axis.

The fourth projector G4 plots the total energy in black along the z-axis:

f := (t, Y) -> [Y[2], - Y[1] + sin(3*Y[1])]:

Y0 := [0, 1]:

G1 := (t, Y) -> [Y[1], Y[2], 0]:

G2 := (t, Y) -> [Y[1], Y[2], Y[2]^2/2]:

G3 := (t, Y) -> [Y[1], Y[2], Y[1]^2/2 + cos(3*Y[1])/3]:

G4 := (t, Y) -> [Y[1], Y[2], Y[1]^2/2 + cos(3*Y[1])/3 + Y[2]^2/2]:

plot(plot::Ode3d(

      f, [i/10 $ i = 0..100], Y0, 

      [G1, Style = Splines, Color = RGB::Red],

      [G2, Style = Lines, Color = RGB::Green],

      [G3, Color = RGB::Blue],

      [G4, Style = [Lines, Points], Color = RGB::Black]))
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delete f, Y0, G1, G2, G3, G4:

See Also

MuPAD Functions
AbsoluteError | InitialConditions | ODEMethod | RelativeError | Stepsize
| TimeMesh
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Scaling, YXRatio, ZXRatio
Scaling ratios

Value Summary

Scaling Inherited Automatic, Constrained,
or Unconstrained

YXRatio, ZXRatio Inherited Positive real numberReal
number

Graphics Primitives

Objects Default Values

plot::CoordinateSystem2d,
plot::CoordinateSystem3d

Scaling: Unconstrained

plot::Scene3d YXRatio: 1

ZXRatio: 2/3

Description

With Scaling = Constrained, the graphics output is scaled like the model
coordinates, i.e., circle appear as circles, spheres as spheres.

With Scaling = Unconstrained, the graphics output is scaled independently in each
coordinate direction such that the graphics fits optimally into the viewing area. Circles
may appear as ellipses, spheres as ellipsoids.

For Scaling = Unconstrained, the scaling ratios of the different coordinate directions
in a 3D plot can be set via the attributes YXRatio and ZXRatio.

If the graphics consists of geometrical objects such as circles, pie charts, spheres etc.,
the setting Scaling = Constrained is appropriate. This prevents circles from being
deformed to ellipses in the graphical output.

24-1819



24 Graphics and Animations

For the visualization of non-geometrical data (usually, in function plots etc.), a scaling
constrained to model coordinates is usually not appropriate. Think of the graph of y = ex

for , where the y values extend over the range , which is roughly
. With Scaling = Constrained, the graphical output would consist of a

narrow vertical strip with the side ratio y : x = 22025 : 10. Here, Scaling =
Unconstrained is appropriate.

The default value is Scaling = Unconstrained. However, many “geometrical” objects
in the MuPAD plot library override this default setting via the “hint mechanism” (see
section Primitives Requesting Special Scene Attributes: “Hints” in this document).
Whenever such an object is plotted in a scene, the whole scene uses Scaling =
Constrained. A complete list of these “geometrical objects” such as circles, spheres,
cones etc. is given further up on this help page.

With Scaling = Automatic, the graphics uses Scaling = Constrained for plots
in which the coordinate ranges to be displayed have a ratio close to 1 : 1 in 2D or 1 :
1 : 1 in 3D. Otherwise, Scaling = Unconstrained is used.

The attributes YXRatio = r1 and ZXRatio = r2 only have an effect in 3D with
Scaling = Unconstrained. The graphical scene is scaled to a box with side ratios z :
y : x = r2: r1: 1. On the screen, the bounding box of the scene looks like a box with
these side ratios.

Examples

Example 1

We plot a scene containing a function graph and some circles highlighting the extrema.
Because the circle sends the “hint”Scaling = Constrained, this scaling is used for the
whole scene. Consequently, the circles appear as circles:

plot(plot::Function2d(sin(x), x = 0 .. 2*PI),

     plot::Circle2d(0.2, [PI/2, 1], Color = RGB::Black),

     plot::Circle2d(0.2, [3*PI/2, -1], Color = RGB::Black),

     BorderWidth = 1.0*unit::mm,

     Header = "Scaling = Constrained")
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With Scaling = UnConstrained, we get a better fit of the plot in the canvas.
However, the circles are deformed to ellipses:

plot(plot::Function2d(sin(x), x = 0 .. 2*PI),

     plot::Circle2d(0.2, [PI/2, 1], Color = RGB::Black),

     plot::Circle2d(0.2, [3*PI/2, -1], Color = RGB::Black),

     Scaling = Unconstrained, BorderWidth = 1.0*unit::mm,

     Header = "Scaling = Unconstrained")
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Example 2

A sphere of type plot::Sphere sends the “hint” Scaling = Constrained. With this
scaling, YXRatio, ZXRatio have no effect:

s := plot::Sphere(1, [0, 0, 0]):

plot(s, BorderWidth = 0.5*unit::mm, 

     Header = "Scaling = Constrained",

     YXRatio = 3, ZXRatio = 10)
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We use Scaling = Unconstrained. With the default values YXRatio = 1, ZXRatio
= 2/3, the objects in a 3D scene are displayed like a box with side ratios X : Y : Z =
3 : 3 : 2:

plot(s, BorderWidth = 0.5*unit::mm, 

     Scaling = Unconstrained, Header = "X:Y:Z = 3:3:2")
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We request different scaling ratios:

plot(s, BorderWidth = 0.5*unit::mm, Header = "X:Y:Z = 5:5:1",

     Scaling = Unconstrained, YXRatio = 1, ZXRatio = 1/5, 

     BorderWidth = 0.5*unit::mm)
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plot(s, BorderWidth = 0.5*unit::mm, Header = "X:Y:Z = 7:3:1",

     Scaling = Unconstrained, YXRatio = 3/7, ZXRatio = 1/7, 

     BorderWidth = 0.5*unit::mm)

24-1825



24 Graphics and Animations

delete s:
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 VerticalAsymptotesVisible, VerticalAsymptotesStyle, VerticalAsymptotesColor, VerticalAsymptotesWidth

VerticalAsymptotesVisible, VerticalAsymptotesStyle,
VerticalAsymptotesColor, VerticalAsymptotesWidth

Vertical asymptotes indicating poles

Value Summary

VerticalAsymptotesVisibleInherited FALSE, or TRUE
VerticalAsymptotesStyleInherited Dashed, Dotted, or Solid
VerticalAsymptotesColor,
VerticalAsymptotesWidth

Inherited Color

Graphics Primitives

Objects Default Values

plot::Function2d VerticalAsymptotesVisible: TRUE

VerticalAsymptotesStyle: Dashed

VerticalAsymptotesColor:
RGB::Grey50

VerticalAsymptotesWidth: 0.2

Description

These options control the appearance of vertical asymptotes in 2D function plots.

plot::Function2d and plotfunc2d are able to indicate poles by drawing vertical
asymptotes. These asymptotes can be switched off with VerticalAsymptotesVisible
= FALSE. Other than that, the attributes VerticalAsymptotesStyle,
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VerticalAsymptotesColor, and VerticalAsymptotesWidth influence their
appearance, in the same way LineStyle, LineColor, and LineWidth do for other
lines.

Examples

Example 1

By default, vertical asymptotes are drawn as dashed, gray lines:

plotfunc2d(tan(x))

The attributes mentioned above can be used to change these settings:

plotfunc2d(tan(x),

           VerticalAsymptotesColor = RGB::Blue,

           VerticalAsymptotesWidth = 1.0*unit::mm,

           VerticalAsymptotesStyle = Dotted)
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Example 2

Note that vertical asymptotes obey the setting of Visible of their function object: No
asymptotes are drawn for an invisible object.

t := plot::Function2d(tan(x), x = -2*PI..2*PI, Visible = FALSE):

s := plot::Function2d(sin(x), x = -2*PI..2*PI):

plot(s, t)
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To have t show its asymptotes, we must set Visible to TRUE. If we only want to see the
asymptotes, we can set LinesVisible to FALSE:

t::Visible := TRUE:

t::LinesVisible := FALSE:

plot(s, t)
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 VerticalAsymptotesVisible, VerticalAsymptotesStyle, VerticalAsymptotesColor, VerticalAsymptotesWidth

See Also

MuPAD Functions
LineColor | LineStyle | LineWidth
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LineColor, LineColor2
Color of lines

Value Summary

LineColor, LineColor2 Inherited Color

Graphics Primitives

Objects Default Values

plot::Bars2d, plot::Histogram2d,
plot::Piechart2d

LineColor: RGB::Black

plot::Cylindrical,
plot::Dodecahedron,
plot::Function3d, plot::Hexahedron,
plot::Icosahedron,
plot::Matrixplot, plot::Octahedron,
plot::Prism, plot::Pyramid,
plot::Spherical, plot::Surface,
plot::SurfaceSet, plot::SurfaceSTL,
plot::Sweep, plot::Tetrahedron,
plot::Tube, plot::XRotate,
plot::ZRotate

LineColor: RGB::Black.[0.25]

LineColor2: RGB::DeepPink

plot::Arc2d, plot::Arrow2d,
plot::Arrow3d, plot::Circle2d,
plot::Circle3d, plot::Density,
plot::Ellipse2d, plot::Inequality,
plot::Line2d, plot::Line3d,
plot::Lsys, plot::Parallelogram2d,
plot::Raster, plot::Rectangle,
plot::Rootlocus, plot::Turtle

LineColor: RGB::Blue

plot::Arc3d, plot::Conformal,
plot::Curve2d, plot::Curve3d,

LineColor: RGB::Blue

LineColor2: RGB::DeepPink
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Objects Default Values

plot::Ellipse3d, plot::Function2d,
plot::Implicit2d, plot::Listplot,
plot::Polar, plot::Polygon2d,
plot::Polygon3d, plot::Sequence,
plot::Sum, plot::VectorField2d,
plot::VectorField3d

plot::Bars3d, plot::Box,
plot::Cone, plot::Cylinder,
plot::Parallelogram3d,
plot::Piechart3d, plot::Plane

LineColor: RGB::Black.[0.25]

plot::QQplot, plot::Scatterplot LineColor: RGB::Red
plot::Iteration LineColor: RGB::Grey50
plot::Implicit3d LineColor: RGB::Black.[0.15]

LineColor2: RGB::DeepPink
plot::Waterman LineColor: RGB::Grey40.[0.4]

LineColor2: RGB::DeepPink
plot::Streamlines2d LineColor: RGB::Black

LineColor2: RGB::DeepPink
plot::Integral LineColor: RGB::Black

LineColor2: RGB::Grey

Description

LineColor sets the color of line objects such as 2D function graphs, curves in 2D and
3D, parameter lines on surfaces etc.

LineColor2 is a secondary color used for color blends.

LineColor determines the RGB color of line objects. The RGB library provides many pre-
defined colors such as RGB::Red etc. See the section Colors of this document for more
information on colors.
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For pure line objects such as lines, curves, arrows, 2D function graphs etc., the line color
can also be set by the attribute Color.

For surface objects such as 3D function graphs, surfaces etc., however, the attribute
Color sets the FillColor. If you wish to change the color of the parameter lines on a
surface, you have to use LineColor.

The RGB color set by LineColor cannot be animated. However, setting LineColorType
= Functional, you can define a LineColorFunction that overrides the color set by
LineColor. The line color function accepts an animation parameter, thus allowing to
implement animated coloring of lines. See the help page of LineColorFunction for
further details.

When the attribute LineColorType is set to one of the values Dichromatic or
Rainbow, many line objects react to a secondary color set by the attribute LineColor2.

A gradient between the colors defined by LineColor and LineColor2 is created.

The color of the coordinate axes is set by the attribute AxesLineColor.

Examples

Example 1

We draw arrows of different colors:

plot(plot::Arrow2d([0, 0], [1, 2], LineColor = RGB::Red),

     plot::Arrow2d([0, 0], [1, 1], LineColor = RGB::Green),

     plot::Arrow2d([0, 0], [2, 1], LineColor = RGB::Blue)):
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Example 2

We draw a parabola with a gradient between green and blue:

plot(plot::Function2d(x^2, x = 1..10, 

                      LineColorType = Dichromatic, 

                      LineColor = RGB::Green, 

                      LineColor2 = RGB::Blue)):
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Example 3

As with any attribute, the line color can be read and changed using the ::-notation:

p := plot::Line2d([1, 2], [4, 5]):

p::LineColor := RGB::Blue

p::LineColor

delete p:

Example 4

For surface objects such as 3D function graphs, LineColor sets the color of the
parameter lines on the surface. Here, a semi-transparent RGBa color is chosen that gives
only a faint indication of these lines:
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plot(plot::Function3d(x^2 + y^2, x = -1..1, y = -1 ..1,

                      LineColor = RGB::Green.[0.25])):

See Also

MuPAD Functions
AxesLineColor | LineColorFunction | LineColorType | LineStyle |
LinesVisible | LineWidth
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LineColorDirection, LineColorDirectionX,
LineColorDirectionY, LineColorDirectionZ
Direction of color transitions on lines

Value Summary

LineColorDirection Library wrapper for
“[LineColorDirectionX,
LineColorDirectionY]” (2D),
“[LineColorDirectionX,
LineColorDirectionY,
LineColorDirectionZ]” (3D)

See below

LineColorDirectionX,
LineColorDirectionY,
LineColorDirectionZ

Inherited Real number

Graphics Primitives

Objects Default Values

plot::Arc3d, plot::Circle3d,
plot::Curve3d, plot::Cylindrical,
plot::Dodecahedron,
plot::Ellipse3d, plot::Function3d,
plot::Hexahedron,
plot::Icosahedron,
plot::Implicit3d, plot::Matrixplot,
plot::Octahedron, plot::Polygon3d,
plot::Prism, plot::Pyramid,
plot::Spherical, plot::Surface,
plot::SurfaceSet, plot::SurfaceSTL,
plot::Sweep, plot::Tetrahedron,
plot::Tube, plot::VectorField3d,
plot::XRotate, plot::ZRotate

LineColorDirection: [0, 0, 1]

LineColorDirectionX,
LineColorDirectionY: 0

LineColorDirectionZ: 1
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Objects Default Values

plot::Arrow2d, plot::Circle2d,
plot::Conformal, plot::Curve2d,
plot::Ellipse2d, plot::Function2d,
plot::Implicit2d, plot::Polar,
plot::Polygon2d, plot::Rectangle,
plot::Sum, plot::VectorField2d

LineColorDirection: [0, 1]

LineColorDirectionX: 0

LineColorDirectionY: 1

plot::Arrow3d, plot::Box,
plot::Cone

LineColorDirection: [0, 0, 1]

LineColorDirectionX,
LineColorDirectionY: 0

plot::Listplot LineColorDirection: [0, 1]

LineColorDirectionX: 0

LineColorDirectionY,
LineColorDirectionZ: 1

plot::Waterman LineColorDirection: [0, 1, 1]

LineColorDirectionX: 0

LineColorDirectionY,
LineColorDirectionZ: 1

Description

LineColorDirection determines the direction in which the color transitions for
LineColorType = Dichromatic etc. take place.

When setting LineColorType to some other value than Flat or Functional, MuPAD
produces a “height-coloring.” By default, this color method actually uses the height of a
point. Using LineColorDirection, the axis along which the color method should be
applied can be changed.
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Examples

Example 1

By default, MuPAD uses height coloring along the y axis for 2D objects:

f := plot::Function2d(sin(x), x=-PI..PI,

                      LineWidth = 1, LineColorType = Rainbow):

plot(f)

By changing LineColorDirection, this direction can be set to any angle. Note that
LineColorDirection is an inherited attribute and may therefore be set at “top level”
in the plot call:

plot(f, LineColorDirection = [1, 1])
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See Also

MuPAD Functions
FillColorDirection | LineColor | LineColor2 | LineColorType
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LineColorType

Line coloring types

Value Summary

Inherited Dichromatic, Flat, Functional,
Monochrome, or Rainbow

Graphics Primitives

Objects LineColorType Default Values

plot::Arc3d, plot::Conformal,
plot::Curve2d, plot::Curve3d,
plot::Cylindrical,
plot::Dodecahedron,
plot::Ellipse3d, plot::Function2d,
plot::Function3d, plot::Hexahedron,
plot::Icosahedron,
plot::Implicit2d, plot::Implicit3d,
plot::Integral, plot::Listplot,
plot::Matrixplot, plot::Octahedron,
plot::Polar, plot::Polygon2d,
plot::Polygon3d, plot::Prism,
plot::Pyramid, plot::Rootlocus,
plot::Sequence, plot::Spherical,
plot::Streamlines2d, plot::Sum,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Tube,
plot::VectorField2d,
plot::VectorField3d,
plot::Waterman, plot::XRotate,
plot::ZRotate

Flat
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Description

LineColorType controls the type of line coloring used. With the exception of Flat and
Functional, the coloring schemes depend on the height, i.e., the z or y value (in 2D or
3D, respectively) of points on the line, relative to the extension of the viewing box.

By default, lines are drawn in the color set by the attribute LineColor. This is caused
by the setting LineColorType = Flat. The other possible values for LineColorType
mean:

• Dichromatic

The color of a point on a line depends on its height, with the lowest point using
LineColor2, the highest one using LineColor, and all other points using a linear
interpolation in RGB color space.

• Flat

The line is drawn with LineColor. No blend is used.
• Monochrome

The line is drawn with a blend from LineColor to a dimmed version of LineColor.
• Rainbow

This setting is technically similar to Dichromatic, but the effect is vastly different,
since interpolation takes place in HSV color space. This creates a “rainbow effect”,
which mostly conforms with a physical rainbow for suitable choices of colors.

• Functional

Both LineColor and LineColor2 are ignored; the color scheme is derived from
LineColorFunction. See ?LineColorFunction for details (which depend
on the object type). If no color function is given, the object will be rendered with
LineColorType = Flat.

Examples

Example 1

By default, lines are drawn in one flat color:

24-1843



24 Graphics and Animations

plotfunc2d(sin(x))

plot(plot::Polygon2d([[-1,-1], [1,-1], [1,1], [-1,1]],

                     Closed = TRUE, Filled = FALSE))
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Example 2

Using LineColorType = Dichromatic, Monochrome, or Rainbow causes a height-
dependent color effect:

plotfunc2d(sin(x), LineColorType = Rainbow)

24-1845



24 Graphics and Animations

Note that height coloring depends on the height of the whole scene, not only on that of
individual objects:

plot(

 plot::Function2d(sin(x) + 0.2, LineColorType = Dichromatic),

 plot::Function2d(sin(x) + 0.0, LineColorType = Monochrome),

 plot::Function2d(sin(x) - 0.2, LineColorType = Rainbow),

 LineColor = RGB::Red, LineColor2 = RGB::Blue

)

24-1846



 LineColorType

See Also

MuPAD Functions
FillColorType | LineColor | LineColor2 | LineColorFunction
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LineStyle

Solid, dashed or dotted lines?

Value Summary

Inherited Dashed, Dotted, or Solid

Graphics Primitives

Objects LineStyle Default Values

plot::Arc2d, plot::Arc3d,
plot::Arrow2d, plot::Arrow3d,
plot::Bars2d, plot::Bars3d,
plot::Box, plot::Boxplot,
plot::Circle2d, plot::Circle3d,
plot::Cone, plot::Conformal,
plot::Curve2d, plot::Curve3d,
plot::Cylinder, plot::Cylindrical,
plot::Density, plot::Dodecahedron,
plot::Ellipse2d, plot::Ellipse3d,
plot::Function2d,
plot::Function3d, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron,
plot::Implicit2d, plot::Implicit3d,
plot::Inequality, plot::Integral,
plot::Iteration, plot::Line2d,
plot::Line3d, plot::Listplot,
plot::Lsys, plot::Matrixplot,
plot::Octahedron, plot::Ode2d,
plot::Ode3d, plot::Parallelogram2d,
plot::Parallelogram3d,
plot::Piechart2d, plot::Piechart3d,

Solid
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Objects LineStyle Default Values

plot::Polar, plot::Polygon2d,
plot::Polygon3d, plot::Prism,
plot::Pyramid, plot::QQplot,
plot::Raster, plot::Rectangle,
plot::Rootlocus, plot::Scatterplot,
plot::Sequence, plot::Spherical,
plot::Streamlines2d, plot::Sum,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Turtle,
plot::Waterman, plot::XRotate,
plot::ZRotate

Description

LineStyle controls whether lines are drawn as solid, dashed or dotted lines.

LineStyle sets the style of line objects such as 2D function graphs, curves in 2D and
3D, arrows, parameter lines on surfaces etc.

The available line styles are Solid, Dashed, or Dotted.

This attribute may be useful to distinguish different curves.

LineStyle does not have an effect on the line style of axes and coordinate grid lines.
Axes are always displayed as solid lines. The style of the coordinate grid can be set by the
attribute GridLineStyle.

Examples

Example 1

We draw a dashed parabola:

plot(plot::Function2d(x^2, x = -2..5, LineStyle = Dashed))
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We draw a paraboloid with dashed coordinate lines:

plot(plot::Function3d(x^2 + y^2, x = -2..5, y = -2..5, 

                      Mesh = [8, 8], Submesh = [3, 3],

                      LineStyle = Dashed))
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See Also

MuPAD Functions
GridLineStyle | LineColor | LineColorType | LinesVisible | LineWidth
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LinesVisible, ULinesVisible, VLinesVisible,
XLinesVisible, YLinesVisible
Visibility of lines

Value Summary
LinesVisible,
ULinesVisible,
VLinesVisible,
XLinesVisible,
YLinesVisible

Inherited FALSE, or TRUE

Graphics Primitives

Objects Default Values

plot::Arc2d, plot::Arc3d,
plot::Bars2d, plot::Bars3d,
plot::Box, plot::Boxplot,
plot::Circle2d, plot::Circle3d,
plot::Cone, plot::Conformal,
plot::Curve2d, plot::Curve3d,
plot::Cylinder, plot::Dodecahedron,
plot::Ellipse2d, plot::Ellipse3d,
plot::Function2d, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron,
plot::Implicit2d, plot::Integral,
plot::Listplot, plot::Lsys,
plot::Octahedron, plot::Ode2d,
plot::Ode3d, plot::Parallelogram2d,
plot::Parallelogram3d,
plot::Piechart2d, plot::Piechart3d,
plot::Plane, plot::Polar,
plot::Polygon2d, plot::Polygon3d,
plot::Prism, plot::Pyramid,

LinesVisible: TRUE
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Objects Default Values

plot::QQplot, plot::Rectangle,
plot::Rootlocus, plot::Scatterplot,
plot::Sum, plot::Tetrahedron,
plot::Turtle, plot::Waterman
plot::Density, plot::Inequality,
plot::Raster, plot::Sequence

LinesVisible: FALSE

plot::Function3d LinesVisible, XLinesVisible,
YLinesVisible: TRUE

plot::Cylindrical,
plot::Matrixplot, plot::Spherical,
plot::Surface, plot::Sweep,
plot::Tube, plot::XRotate,
plot::ZRotate

ULinesVisible, VLinesVisible,
XLinesVisible, YLinesVisible: TRUE

Description
LinesVisible = TRUE versus LinesVisible = FALSE governs the visibility of line
objects.

ULinesVisible, VLinesVisible governs the visibility of coordinate lines on
parametrized surfaces in 3D.

XLinesVisible, YLinesVisible governs the visibility of coordinate lines on 3D
function graphs and matrix plots.

For most object types, LinesVisible determines whether lines are drawn. This includes
the lines making up 2D function plots, curves, polygons, etc. as well as the circumference
of (filled) circles, the edges of 2D rectangles and 3D boxes etc.

The exception are surface objects that exhibit parameter lines in two directions, such as
3D function plots, parameterized surfaces, tube plots etc. Depending on whether they
react to XMesh, YMesh or to UMesh, VMesh, the parameter lines on the surfaces can
be made visible or invisible with the attributes XLinesVisible, YLinesVisible or
ULinesVisible, VLinesVisible, respectively.

Note that setting LinesVisible = FALSE for a 2D function plot without setting
PointsVisible = TRUE will render the function invisible. (In case of singular functions,
the vertical asymptotes may remain visible, though).
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The same holds true for plots involving filled areas: switching off the lines and the filling
makes such objects invisible.

LinesVisible etc. do not have an effect on coordinate axes and coordinate grid lines.
Use the attributes AxesVisible and GridVisible to control the visibility of axes and
coordinate grid.

Examples

Example 1

By default, the lines of a box are visible:

plot(plot::Box(1..4, 2..5, 3..6), Axes = None)

We set LinesVisible = FALSE to switch them off:

plot(plot::Box(1..4, 2..5, 3..6, LinesVisible = FALSE),

     Axes = None)
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Example 2

By default, parameter lines are drawn on a parametrized surface:

plot(plot::Surface([u*cos(v), u*sin(v), u^2*sin(5*v)],

                   u = 0..2, v = 0..2*PI, VSubmesh = 3)):

24-1855



24 Graphics and Animations

You can switch these lines off interactively, or, as we do here, by setting ULinesVisible
and VLinesVisible to FALSE in the plot command:

plot(plot::Surface([u*cos(v), u*sin(v), u^2*sin(5*v)],

                   u = 0..2, v = 0..2*PI, VSubmesh = 3,

                   ULinesVisible = FALSE, 

                   VLinesVisible = FALSE)):

24-1856



 LinesVisible, ULinesVisible, VLinesVisible, XLinesVisible, YLinesVisible

When the surface is created with an adaptive mesh, we can make the irregular adaptive
mesh visible by setting MeshVisible = TRUE:

plot(plot::Surface([u*cos(v), u*sin(v), u^2*sin(5*v)],

                   u = 0..2, v = 0..2*PI,

                   UMesh =  5, VMesh = 10, 

                   ULinesVisible = FALSE,

                   VLinesVisible = FALSE,

                   AdaptiveMesh = 3,

                   MeshVisible = TRUE)):
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Example 3

We plot a dodecahedron with and without the border lines of its faces:

plot(plot::Scene3d(plot::Dodecahedron(LinesVisible = TRUE)),

     plot::Scene3d(plot::Dodecahedron(LinesVisible = FALSE)),

     Layout = Horizontal, Axes = None):

24-1858



 LinesVisible, ULinesVisible, VLinesVisible, XLinesVisible, YLinesVisible

See Also

MuPAD Functions
AxesVisible | GridVisible | LineColor | LineColorType | LineStyle |
LineWidth
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LineWidth
Width of lines

Value Summary
Inherited Positive output size

Graphics Primitives
Objects LineWidth Default Values

plot::Arc2d, plot::Arc3d,
plot::Arrow2d, plot::Arrow3d,
plot::Bars2d, plot::Bars3d,
plot::Box, plot::Boxplot,
plot::Circle2d, plot::Circle3d,
plot::Cone, plot::Conformal,
plot::Curve2d, plot::Curve3d,
plot::Cylinder, plot::Cylindrical,
plot::Density, plot::Dodecahedron,
plot::Ellipse2d, plot::Ellipse3d,
plot::Function2d,
plot::Function3d, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron,
plot::Implicit2d, plot::Implicit3d,
plot::Inequality, plot::Integral,
plot::Iteration, plot::Line2d,
plot::Line3d, plot::Listplot,
plot::Lsys, plot::Matrixplot,
plot::Octahedron, plot::Ode2d,
plot::Ode3d, plot::Parallelogram2d,
plot::Parallelogram3d,
plot::Piechart2d, plot::Piechart3d,
plot::Polar, plot::Polygon2d,
plot::Polygon3d, plot::Prism,
plot::Pyramid, plot::QQplot,

0.35

24-1860



 LineWidth

Objects LineWidth Default Values

plot::Raster, plot::Rectangle,
plot::Rootlocus, plot::Scatterplot,
plot::Sequence, plot::Spherical,
plot::Sum, plot::Surface,
plot::SurfaceSet, plot::SurfaceSTL,
plot::Sweep, plot::Tetrahedron,
plot::Tube, plot::Turtle,
plot::VectorField2d, plot::XRotate,
plot::ZRotate

plot::VectorField3d 0.1

plot::Waterman 0.25

plot::Streamlines2d 0.35*unit::mm

Description
LineWidth sets the width of line objects such as 2D function graphs, curves in 2D and
3D, arrows, parameter lines on surfaces etc.

The value should be specified as an absolute physical length including a length unit such
as LineWidth = 1.5*unit::mm. Numbers without a physical unit give the size in mm.

Note that the graphics cannot always react to small changes of the line width because of
the discretization into pixels.

One cannot make lines invisible by setting their width to 0. Use LinesVisible = FALSE
instead.

LineWidth does not have an effect on the line width of axes and coordinate grid lines.
Use the attributes AxesLineWidth and GridLineWidth to manipulate axes and
coordinate grid, respectively.

Examples

Example 1

We draw a house with thick walls:
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plot(plot::Polygon2d(

     [[0, 0], [0, 3], [2, 5], [4, 3], [0, 3],

      [4, 0], [0, 0], [4, 3], [4, 0] ], 

     LineWidth = 4*unit::mm, Color = RGB::Grey),

     Axes = None):

The building instructions are added by arrows. The drawing order is indicated by the
titles of the arrows and their increasing line width:

plot(plot::Polygon2d(

     [[0, 0], [0, 3], [2, 5], [4, 3], [0, 3],

      [4, 0], [0, 0], [4, 3], [4, 0] ], 

     LineWidth = 4*unit::mm, Color = RGB::Grey),

     plot::Arrow2d([0, 0], [0, 3], LineWidth = 0.3*unit::mm,

                   Title = "1", TitlePosition = [0.2, 1.4]), 

     plot::Arrow2d([0, 3], [2, 5], LineWidth = 0.5*unit::mm,

                   Title = "2", TitlePosition = [0.5, 3.9]), 

     plot::Arrow2d([2, 5], [4, 3], LineWidth = 0.7*unit::mm, 

                   Title = "3", TitlePosition = [3.4, 3.9]), 

     plot::Arrow2d([4, 3], [0, 3], LineWidth = 0.9*unit::mm,  

                   Title = "4", TitlePosition = [1.9, 3.2]), 

     plot::Arrow2d([0, 3], [4, 0], LineWidth = 1.1*unit::mm,  
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                   Title = "5", TitlePosition = [1.0, 2.5]), 

     plot::Arrow2d([4, 0], [0, 0], LineWidth = 1.3*unit::mm,  

                   Title = "6", TitlePosition = [1.9, 0.2]), 

     plot::Arrow2d([0, 0], [4, 3], LineWidth = 1.5*unit::mm,  

                   Title = "7", TitlePosition = [0.7, 0.9]), 

     plot::Arrow2d([4, 3], [4, 0], LineWidth = 1.7*unit::mm,  

                   Title = "8", TitlePosition = [3.7, 1.4]), 

     Axes = None,

     TipLength = 5*unit::mm

    ):

See Also

MuPAD Functions
AxesLineWidth | GridLineWidth | LineColor | LineColorType | LineStyle |
LinesVisible
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MeshVisible
Visibility of irregular mesh lines in 3D

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects MeshVisible Default Values

plot::Cylindrical,
plot::Function3d, plot::Implicit3d,
plot::Spherical, plot::Surface,
plot::SurfaceSet, plot::SurfaceSTL,
plot::XRotate, plot::ZRotate

FALSE

Description

MeshVisible = TRUE versus MeshVisible = FALSE controls the visibility of the
irregular mesh defining surfaces that are either computed by an adaptive algorithm or
are given explicitly by a triangulation.

3D function plots and parametrized surfaces are usually defined over a regular mesh.
When setting AdaptiveMesh = n with n > 0, an irregular adaptive mesh is created that
refines the graphical object automatically in critical regions.

While visibility of the regular mesh is controlled by the attributes XLinesVisible,
YLinesVisible or ULinesVisible, VLinesVisible, respectively, the visibility of the
adaptively refined mesh is set MeshVisible.

Also special surfaces created from a given triangulation such as plot::SurfaceSet and
plot::SurfaceSTL allow to make the triangulation visible by setting MeshVisible =
TRUE.
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The irregular mesh lines switched on by MeshVisible = TRUE react to the attributes
LineColor, LineStyle, and LineWidth.

Examples

Example 1

We create a 3D function plot:

plot(plot::Function3d(sin(x*y), x = -3..3, y = -3..3))

By default, only the regular mesh is visible, even if adaptive evaluation is used:

plot(plot::Function3d(sin(x*y), x = -3..3, y = -3..3,

                      AdaptiveMesh = 2))
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The irregular mesh is made visible when using MeshVisible = TRUE:

plot(plot::Function3d(sin(x*y), x = -3..3, y = -3..3,

                      AdaptiveMesh = 2, MeshVisible = TRUE))
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A 3D plot of an implicit surface does not have regular mesh lines. We plot such a surface
with and without the irregular mesh:

plot(plot::Implicit3d(z^4 + z^2 - x^2 + y^3,

                      x = -1..1, y = -1..1, z = -1..1,

                      MeshVisible = TRUE))
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plot(plot::Implicit3d(z^4 + z^2 - x^2 + y^3,

                      x = -1..1, y = -1..1, z = -1..1,

                      MeshVisible = FALSE))
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See Also

MuPAD Functions
AdaptiveMesh | LineColor | LineStyle | LineWidth
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XContours, YContours, ZContours

Contour lines at constant x values

Value Summary

XContours, YContours,
ZContours

Optional List of arithmetical
expressions

Graphics Primitives

Objects Default Values

plot::Implicit3d XContours, YContours, ZContours:
[Automatic, 15]

plot::Cylindrical,
plot::Function3d, plot::Spherical,
plot::Surface, plot::XRotate,
plot::ZRotate

XContours, YContours, ZContours: []

Description

XContours, YContours, and ZContours cause contour lines on surface objects at
constant x, y, or z-values, respectively.

By setting these attributes, many surface objects (such as implicit surfaces, function
objects etc.) can be instructed to display contour lines.

By setting ZContours = [z1, z2, …], contour lines can be requested at specific places.
This is demonstrated in “Example 1” on page 24-1871.

ZContours = [Automatic, n] causes n contour lines to be evenly spaced along the
range of z values of the object. Cf. “Example 2” on page 24-1872.

24-1870



 XContours, YContours, ZContours

Examples

Example 1

A function plot by default uses height coloring and mesh lines to improve the visual
display. With mesh lines disabled, height coloring is often still sufficient:

plotfunc3d(sin(x+cos(0.3*y))*cos(y),

           XLinesVisible=FALSE, YLinesVisible=FALSE,

           CameraDirection=[0,0.01,1])

To get a better depth impression, it would help in this example to add contour lines:

plotfunc3d(sin(x+cos(0.3*y))*cos(y),

           ZContours=[$ -1..1 step 0.25],

           XLinesVisible=FALSE, YLinesVisible=FALSE,

           CameraDirection=[0,0.01,1])
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Example 2

In the previous example, we set z values for the contour lines explicitly. There is
an easier way of specifying equidistant lines, though, by giving the special value
Automatic, followed by the number of lines to use. For example, implicit surfaces by
default use 15 lines in each direction of space:

plot(plot::Implicit3d(abs(x)^3+abs(y)^3+abs(z)^3 - 1,

                      x = -1..1, y=-1..1, z=-1..1),

     Axes = None, Scaling = Constrained)
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To change the number of lines, we use the syntax outlined above:

plot(plot::Implicit3d(abs(x)^3+abs(y)^3+abs(z)^3 - 1,

                      x = -1..1, y=-1..1, z=-1..1,

                      XContours = [Automatic, 4],

                      YContours = [Automatic, 11],

                      ZContours = [Automatic, 21]),

     Axes = None, Scaling = Constrained)
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Note that two of the lines are at the extremal values and therefore usually not visible.

Example 3

Contour lines are drawn using the same settings for LineWidth and LineColor as
parameter lines are. In the following example, we use a modified copy of a function object
that only displays contour lines, but with settings different from the function object
proper.

f := plot::Function3d(x^2 - 2*x*y - y^2, x = -2..2, y = -2..2):

plot(f, plot::modify(f, ZContours = [Automatic, 15],

                        LineWidth = 1,

                        LineColor = RGB::Gray30.[0.8],

                        XLinesVisible = FALSE,

                        YLinesVisible = FALSE,

                        Filled = FALSE))
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By using a transformation that maps space into a plane, we can use this technique (by
setting some more options) to display height-colored contour lines below a function plot:

f := plot::Function3d(8*sin(x-cos(y))+(x^2+x*y),

                      x = -3..3, y = -3..3, Submesh=[2,2]):

plot(f, plot::Transform3d([0, 0, -9], [1, 0, 0, 0, 1, 0, 0, 0, 0], 

             plot::modify(f, ZContours = [Automatic, 15],

                             LineWidth = 0.5,

                             LineColorType = Dichromatic,

                             LineColor = RGB::Red,

                             LineColor2 = RGB::CornflowerBlue,

                             XLinesVisible = FALSE,

                             YLinesVisible = FALSE,

                             Filled = FALSE)))
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See Also

MuPAD Functions
LineColor | LinesVisible | LineWidth
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PointColor

Color of points

Value Summary

Inherited Color

Graphics Primitives

Objects PointColor Default Values

plot::Matrixplot, plot::Point2d,
plot::Point3d, plot::PointList2d,
plot::PointList3d,
plot::SparseMatrixplot, plot::Sum

RGB::MidnightBlue

plot::Listplot, plot::QQplot,
plot::Scatterplot

RGB::Black

Description

PointColor determines the color of points. The RGB library provides many pre-defined
colors such as RGB::Red etc. See section Colors of this document for more information on
colors.

Many graphical objects such as curves, surfaces etc. are approximated by a numerical
mesh. With PointsVisible = TRUE, the points of this mesh become visible. These
points do not react to PointColor.

PointColor cannot be animated.

For points of type plot::Point2d and plot::Point3d, the point color can also be set
by the attribute Color.
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Examples

Example 1

We plot a cluster of random points with random sizes and random colors:

r := frandom:

plot(plot::Point2d([r(),r()], PointSize = 5*r()*unit::mm,

                   PointColor = [r(), r(), r()]) 

     $ i = 1 .. 200):

delete r:

Example 2

We can access the PointColor attribute from a point and change it:

p := plot::Point2d(1, 2):

p::PointColor := RGB::Black:

p::PointColor
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delete p:

See Also

MuPAD Functions
PointColor2 | PointColorType | PointSize | PointStyle | PointsVisible
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PointColor2
Secondary point color for color blends

Value Summary
Optional Color

Graphics Primitives
Objects PointColor2 Default Values

plot::SparseMatrixplot RGB::Red

Description
PointColor2 sets the secondary point color in objects of type
plot::SparseMatrixplot.

Objects of type plot::SparseMatrixplot color their points according to the attribute
PointColorType = Flat or PointColorType = Dichromatic, respectively.

With PointColorType = Flat, all points in a plot::SparseMatrixplot object are
displayed in the color given by PointColor.

With PointColorType = Dichromatic, the points are colored differently using a color
blend from the color PointColor to the color PointColor2. The actual color of a point
indicates the size of the matrix entry visualized by plot::SparseMatrixplot.

PointColor corresponds to small matrix entries, PointColor2 corresponds to large
matrix entries.

Examples

Example 1

We create a 30×50 matrix with 500 random entries.

24-1880



 PointColor2

smp := plot::SparseMatrixplot(

             matrix::random(30, 50, 500, frandom)):

We use the color type Dichromatic and request a dark green for large matrix entries
and a light green for small matrix entries:

smp::PointColorType := Dichromatic:

smp::PointColor := RGB::LightGreen:

smp::PointColor2 := RGB::DarkGreen:

smp::PointStyle := FilledDiamonds:

smp::PointSize := 2.5*unit::mm:

plot(smp):

The secondary color is changed to a dark red:

smp::PointColor2 := RGB::DarkRed:

plot(smp):

24-1881



24 Graphics and Animations

delete smp:

See Also

MuPAD Functions
PointColor | PointColorType | PointSize | PointStyle
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PointColorType
Point coloring types

Value Summary

Optional Dichromatic, or Flat

Graphics Primitives

Objects PointColorType Default Values

plot::SparseMatrixplot Flat

Description

PointColorType controls the type of point coloring used in objects of type
plot::SparseMatrixplot.

With PointColorType = Flat, all points in a plot::SparseMatrixplot object are
displayed in the color given by PointColor.

With PointColorType = Dichromatic, the points are colored differently using a color
blend from the color PointColor to the color PointColor2. The actual color of a point
indicates the size of the matrix entry visualized by plot::SparseMatrixplot.

Examples

Example 1

We create a 30×50 matrix with 500 random entries. With the default setting of
PointColorType = Flat, all nonzero entries are displayed in the color given by
PointColor:
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smp := plot::SparseMatrixplot(

              matrix::random(30, 50, 500, frandom)):

plot(smp):

We change the color type to Dichromatic and request a dark green for large matrix
entries and a light green for small matrix entries:

smp::PointColorType := Dichromatic:

smp::PointColor := RGB::LightGreen:

smp::PointColor2 := RGB::DarkGreen:

smp::PointStyle := FilledDiamonds:

smp::PointSize := 2.5*unit::mm:

plot(smp):
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delete smp:

See Also

MuPAD Functions
PointColor | PointColor2 | PointSize | PointStyle
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PointSize
Size of points

Value Summary

Inherited Positive output size

Graphics Primitives

Objects PointSize Default Values

plot::Bars2d, plot::Bars3d,
plot::Conformal, plot::Curve2d,
plot::Curve3d, plot::Cylindrical,
plot::Dodecahedron,
plot::Function2d,
plot::Function3d, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron, plot::Integral,
plot::Listplot, plot::Matrixplot,
plot::Octahedron, plot::Ode2d,
plot::Ode3d, plot::Point2d,
plot::Point3d, plot::PointList2d,
plot::PointList3d, plot::Polar,
plot::Polygon2d, plot::Polygon3d,
plot::Prism, plot::Pyramid,
plot::QQplot, plot::Scatterplot,
plot::Spherical, plot::Surface,
plot::SurfaceSet, plot::SurfaceSTL,
plot::Sweep, plot::Tetrahedron,
plot::Turtle, plot::VectorField3d,
plot::Waterman, plot::XRotate,
plot::ZRotate

1.5

plot::Rootlocus,
plot::SparseMatrixplot

1.0

24-1886



 PointSize

Objects PointSize Default Values

plot::Sequence 2

Description

PointSize determines the physical size of points. The value should be specified as an
absolute physical length including a length unit such as PointSize = 1.5*unit::mm.
Numbers without a physical unit give the size in mm.

Typical points have a size of only a few pixels on the screen. Hence, the renderers cannot
always react to small changes of the PointSize, because the actual size of the graphical
points can attain only discrete values.

Depending on your hardware, there is a maximal size of the graphical points that can
be rendered in 3D. If the PointSize is too large, the 3D renderer uses the maximal size
that is supported.

Many graphical objects such as curves, surfaces etc. are approximated by a numerical
mesh. With PointsVisible = TRUE, the points of this mesh become visible. These
points react to PointSize.

PointSize cannot be animated.

Examples

Example 1

We plot a cluster of points with random sizes within the unit square:

r := frandom:

plot(plot::Point2d(r(),r(), PointSize = 2*r()*unit::mm) 

     $ i = 1 .. 200)
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delete r:

Example 2

Due to pixelation, there is only a discrete number of PointSize values that the
renderers can display faithfully. Further, note that the large points may protrude over
the edges of the viewing box without being clipped:

plot(plot::Point2d([i, 5], PointSize = i*0.1*unit::mm,

                   Color = RGB::Red)

     $ i = 1 .. 30,

     plot::Point2d([3*i, 15], PointSize = i*unit::mm,

                   Color = RGB::Green)

     $ i = 1 .. 10,

     plot::Point2d([9*i , 30], PointSize = i*unit::cm,

                   Color = RGB::Blue)

     $ i in [0.3, 0.5, 0.8, 1.3, 2, 3],

     ViewingBox = [0 .. 30, 0 .. 35], Axes = Boxed)
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Here are the same points in 3D. Note the threshold for PointSize beyond which the
graphical points do not grow:

plot(plot::Point3d([i, 5, 0], PointSize = i*0.1*unit::mm,

                   Color = RGB::Red)

     $ i = 1 .. 30,

     plot::Point3d([3*i, 15, 0], PointSize = i*unit::mm,

                   Color = RGB::Green)

     $ i = 1 .. 10,

     plot::Point3d([9*i , 30, 0], PointSize = i*unit::cm,

                   Color = RGB::Blue)

     $ i in [0.3, 0.5, 0.8, 1.3, 2, 3],

     ViewingBox = [0 .. 30, 0 .. 35, -1 .. 1], 

     Axes = Boxed, CameraDirection = [0, -10, 1000],

     YXRatio = 2/3)

24-1889



24 Graphics and Animations

Example 3

We can access the PointSize attribute from a point and change it:

p := plot::Point2d(1, 2):

p::PointSize := 4*unit::inch:

p::PointSize

delete p:

See Also

MuPAD Functions
PointColor | PointStyle | PointsVisible
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PointStyle
Presentation style of points

Value Summary

Inherited Squares, FilledSquares, Circles,
FilledCircles, Crosses, XCrosses,
Diamonds, FilledDiamonds, or Stars
(2D),FilledSquares or FilledCircles
(3D)

Graphics Primitives

Objects PointStyle Default Values

plot::Bars2d, plot::Bars3d,
plot::Curve2d, plot::Curve3d,
plot::Cylindrical,
plot::Dodecahedron,
plot::Function2d,
plot::Function3d, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron,
plot::Implicit3d, plot::Integral,
plot::Listplot, plot::Matrixplot,
plot::Octahedron, plot::Ode2d,
plot::Ode3d, plot::Point2d,
plot::Point3d, plot::PointList2d,
plot::PointList3d, plot::Polar,
plot::Polygon2d, plot::Polygon3d,
plot::Prism, plot::Pyramid,
plot::QQplot, plot::Rootlocus,
plot::Scatterplot, plot::Sequence,
plot::Spherical, plot::Surface,
plot::SurfaceSet, plot::SurfaceSTL,

FilledCircles
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Objects PointStyle Default Values

plot::Sweep, plot::Tetrahedron,
plot::Turtle, plot::VectorField3d,
plot::Waterman, plot::XRotate,
plot::ZRotate

plot::SparseMatrixplot Diamonds

Description

PointStyle determines the presentation style of points. The various styles are
demonstrated in “Example 1” on page 24-1892.

In 3D, only two styles FilledCircles and FilledSquares are supported by the
renderer.

Many graphical objects such as curves, surfaces etc. are approximated by a numerical
mesh. With PointsVisible = TRUE, the points of this mesh become visible. These
points react to PointStyle.

PointStyle cannot be animated.

Examples

Example 1

We plot 2D points in all available styles:

styles := [Circles, FilledCircles, 

           Crosses, XCrosses, 

           Diamonds, FilledDiamonds, 

           Squares, FilledSquares, 

           Stars]:

points := null():

for i from 1 to nops(styles) do

  points := points, 

            plot::Point2d([i, i], PointStyle = styles[i],

                          Title = expr2text(styles[i]),
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                          TitlePosition = [i + 0.3, i - 0.15]):

end_for:

plot(points, PointSize = 3*unit::mm, Axes = None,

     TitleAlignment = Left):

delete styles, points, i:

Example 2

In 3D, the renderer only supports the point styles FilledCircles and FilledSquares:

plot(plot::Point3d([-1, -1, 0], PointStyle = FilledCircles,

                   Title = "FilledCircles",

                   TitlePosition = [-1, -0.8, 0]),

     plot::Point3d([1, 1, 0], PointStyle = FilledSquares,

                   Title = "FilledSquares",

                   TitlePosition = [1, 1.2, 0]),

     PointSize = 3*unit::mm, 

     ViewingBox = [-2..2, -2..2, 0..1],

     CameraDirection = [0, -1, 1000]):
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Example 3

We can access the PointStyle attribute from a point and change it:

p := plot::Point2d(1, 2):

p::PointStyle := Diamonds:

p::PointStyle

delete p:

See Also

MuPAD Functions
PointColor | PointSize | PointsVisible
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PointsVisible

Visibility of mesh points

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects PointsVisible Default Values

plot::Conformal, plot::Curve2d,
plot::Curve3d, plot::Cylindrical,
plot::Dodecahedron,
plot::Function2d, plot::Function3d,
plot::Hexahedron,
plot::Icosahedron,
plot::Implicit3d, plot::Integral,
plot::Octahedron, plot::Polar,
plot::Polygon2d, plot::Polygon3d,
plot::Prism, plot::Pyramid,
plot::Rootlocus, plot::Spherical,
plot::Sum, plot::Surface,
plot::SurfaceSet, plot::SurfaceSTL,
plot::Sweep, plot::Tetrahedron,
plot::Tube, plot::Turtle,
plot::Waterman, plot::XRotate,
plot::ZRotate

FALSE

plot::Listplot,
plot::Matrixplot, plot::Ode2d,
plot::Ode3d, plot::QQplot,
plot::Scatterplot, plot::Sequence,
plot::SparseMatrixplot,
plot::VectorField3d

TRUE
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Description
PointsVisible = TRUE/FALSE enables/disables the plotting of mesh and submesh
points.

The mesh points react to the attributes PointSize and PointStyle. However, they do
not react to the attribute PointColor. Typically, mesh points are painted in the same
color used for the line objects defined by the mesh points.

PointsVisible cannot be animated.

Examples

Example 1

We plot the sine function on a rather coarse mesh using the PointsVisible default
value FALSE:

f := plot::Function2d(sin(x), x = -PI .. PI, Mesh = 20):

plot(f):
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We use PointsVisible = TRUE to make the mesh points visible:

f::PointsVisible := TRUE:

plot(f, PointSize = 2*unit::mm)

We enable adaptive plotting:

f::AdaptiveMesh := 2:

plot(f, PointSize = 2*unit::mm)
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delete f:

See Also

MuPAD Functions
PointSize | PointStyle
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BarCenters, BarWidths
Position of bars

Value Summary

BarCenters, BarWidths Optional List of arithmetical
expressions

Graphics Primitives

Objects Default Values

plot::Bars2d BarWidths: [[1.0]]

Description
BarCenters and BarWidths govern horizontal center positions and widths of the bars
in 2D bar plots of Type plot::Bars2d.

A plot of type plot::Bars2d serves for visualizing and comparing discrete data samples
by a 2D bar plot.

The data values define the vertical coordinates of the bars. The position along the
horizontal axis and the horizontal width of the bars are controlled by the attributes
BarCenters and BarWidths.

The value of the attribute BarCenters may be a list [x1, x2, …] of numerical values or
expressions of the animation parameter. These values define the horizontal coordinates
of the bar centers.

If several data samples are to be displayed simultaneously, the value of BarCenters
may be a list of lists [[x11, x12, …], [x21, x22, …], …], where xij is the center position of the
bar indicating the j-th data point in the i-th sample.

If the length of a list in the BarCenters attribute is smaller than the number of data
in the corresponding sample, the center values are chosen automatically for the surplus
data items.
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If the length of the BarCenters list is larger than the number of corresponding data
items, the surplus center values are ignored.

Setting BarCenters = [x1], the first bar is centered at x = x1, while the standard
distance between the bars is kept. Thus, BarCenters = [x1] allows to shift the entire
bar plot along the horizontal axis.

The value of the attribute BarWidths may be a numerical value or an expression of the
animation parameter. This sets the horizontal width of all bars.

Alternatively, it may be a list of values [w1, w2, …] allowing to define differents widths
of the bars. If several data samples are specified, each data sample uses the same list of
BarWidths values.

Alternatively, the value of BarWidths may be a list of lists [[w11, w12, …], [w21, w22, …],
…], where wij is the horizontal width of the bar indicating the j-th data point in the i-th
sample.

If the length of a list in the BarWidths attribute is smaller than the number of data in
the corresponding sample, the width values are chosen automatically for the surplus data
items.

If the length of the BarWidths list is larger than the number of corresponding data
items, the surplus width values are ignored.

The BarWidths attribute only has an effect in conjunction with the (default) BarStyle =
Boxes.

If the attribute DrawMode = Horizontal is set in the plot::Bars2d object, the bars
are drawn from left to right instead from bottom to top.

In this case, the attributes BarCenters and BarWidths refer to the vertical coordinates
of the bars.

Examples

Example 1

We display some discrete values as a bar plot:
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data := [binomial(10, j) $ j = 0..10]:

plot(plot::Bars2d(data, BarCenters = [j $ j = 0..10])):

We reduce the widths of the bars:

plot(plot::Bars2d(data, BarCenters = [j $ j = 0..10],

                  BarWidths = 0.6)):
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delete data:

Example 2

For large values of n and small values of p, the binomial distribution
stats::binomialPF(n, p) is approximated by the Poisson distribution
stats::poissonPF(n*p). We demonstrate this fact by plotting the probability values
of these distributions in one bar plot:

n := 100: p:= 0.1:

data1 := [stats::binomialPF(n, p)(j) $ j = 0..20]:

data2 := [stats::poissonPF(n*p)(j) $ j = 0..20]:

plot(plot::Bars2d([data1, data2], 

           BarCenters = [[j $ j = 0..20], [j + 0.4 $ j = 0..20]],

           BarWidths = 0.4)):
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The approximation is better for larger values of n. We reduce p accordingly to have the
same value of n p as in the previous plot:

n := 500: p:= 0.02:

data1 := [stats::binomialPF(n, p)(j) $ j = 0..20]:

data2 := [stats::poissonPF(n*p)(j) $ j = 0..20]:

plot(plot::Bars2d([data1, data2], 

           BarCenters = [[j $ j = 0..20], [j + 0.4 $ j = 0..20]],

           BarWidths = 0.4)):
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delete n, p, data1, data2:

See Also

MuPAD Functions
BarStyle | DrawMode
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BarStyle, Shadows

Display style of bar plots

Value Summary

BarStyle Optional Boxes, Lines,
LinesPoints, or Points

Shadows Optional TRUE or FALSE

Graphics Primitives

Objects Default Values

plot::Bars3d BarStyle: Boxes
plot::Bars2d BarStyle: Boxes

Shadows: FALSE

Description

BarStyle selects between bars drawn as boxes, as lines, just points, or lines with points.
For box diagrams, Shadows can be used to have simple “shadows” drawn.

Bar plots can use different types of bars. The options are shown in the examples.

Examples

Example 1

With only few data, the option Boxes is often the most useful one:
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plot(plot::Bars2d([[1,2,3],[2,5,4],[1,0.5,-1]],

                  BarStyle = Boxes))

It can be combined with Shadows = TRUE and possibly LinesVisible = FALSE for a
more pleasant display:

plot(plot::Bars2d([[1,2,3],[2,5,4],[1,0.5,-1]],

                  BarStyle = Boxes, Shadows = TRUE,

                  LinesVisible = FALSE))
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Shadows are not displayed for the other bar styles:

plot(plot::Bars2d([[1,2,3],[2,5,4],[1,0.5,-1]],

                  BarStyle = Lines, Shadows = TRUE))
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Example 2

When more data is to be displayed, a bar plot may be less adequate:

b := plot::Bars2d([[1/i^k$i=1..20] $ k = 1..4]):

plot(b)
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We demonstrate the alternatives without any further comment:

b::BarStyle := Lines:

plot(b)

24-1909



24 Graphics and Animations

b::BarStyle := Points:

plot(b)
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b::BarStyle := LinesPoints:

plot(b)
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See Also

MuPAD Functions
Colors | FillPatterns
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Color
Main color

Value Summary

Library wrapper for “Colors, FillColor,
LightColor, LineColor, and
PointColor”

See below

Graphics Primitives

Objects Color Default Values

plot::Histogram2d RGB::GeraniumLake

plot::Cylindrical, plot::Density,
plot::Dodecahedron,
plot::Function3d, plot::Hatch,
plot::Hexahedron,
plot::Icosahedron,
plot::Implicit3d, plot::Matrixplot,
plot::Octahedron, plot::Prism,
plot::Pyramid, plot::Spherical,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL,
plot::Tetrahedron, plot::XRotate,
plot::ZRotate

RGB::Red

plot::Box, plot::Cone,
plot::Ellipsoid,
plot::Parallelogram3d, plot::Plane,
plot::Sphere

RGB::LightBlue

plot::Arrow2d, plot::Arrow3d,
plot::Circle2d, plot::Circle3d,
plot::Conformal, plot::Curve2d,
plot::Curve3d, plot::Ellipse2d,

RGB::Blue
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Objects Color Default Values

plot::Function2d, plot::Implicit2d,
plot::Line2d, plot::Line3d,
plot::Lsys, plot::Parallelogram2d,
plot::Polar, plot::Polygon2d,
plot::Polygon3d, plot::Raster,
plot::Rectangle, plot::Sequence,
plot::Sum, plot::Turtle,
plot::VectorField2d,
plot::VectorField3d

plot::Point2d, plot::Point3d,
plot::PointList2d,
plot::PointList3d,
plot::SparseMatrixplot

RGB::MidnightBlue

plot::Sweep RGB::Black.[0.25]

plot::Iteration RGB::Grey50

plot::Bars2d, plot::Bars3d,
plot::Boxplot, plot::Piechart2d,
plot::Piechart3d

 

plot::Waterman RGB::SafetyOrange

plot::Integral RGB::PaleBlue

Description

Color refers to the “main color” of an object.

Depending on the object type, Color refers to the line color (e.g., plot::Function2d),
the fill color (plot::Surface), the point color (plot::Point2d), the light color
(plot::PointLight), or the one-and-only entry in Colors (plot::Histogram2d).

In general, the main color of an object is the first one available in the list

1 The first entry of Colors, if Colors contains exactly one entry.
2 FillColor

3 LineColor
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4 PointColor

5 LightColor

The following object types deviate from this general rule and choose the line color
as main color: plot::Arc2d, plot::Arc3d, plot::Circle2d, plot::Circle3d,
plot::Ellipse2d, plot::Ellipse3d, plot::Ode2d, plot::Ode3d,
plot::Parallelogram2d, plot::Polygon2d, plot::Polygon3d, and
plot::Rectangle. plot::Sequence uses PointColor as the main color.

Note: Color is a library attribute and does not appear in the inspector.

Examples

Example 1

Color is useful for unified input of different object types:

plot(plot::Function3d(sin(x-y/2), Color = RGB::Green),

     plot::Point3d([0, 0, 0], Color = RGB::Red),

     plot::Curve3d([x, 0, sin(x)], x = -6..6,

                   LineWidth = 2*unit::mm,

                   Color = RGB::Blue),

     Scaling = Constrained)
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See Also

MuPAD Functions
Colors | FillColor | LineColor | PointColor
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Colors
List of colors to use

Compatibility

For colors in MATLAB, see linespec. This functionality does not run in MATLAB.

Value Summary

Optional List of colors

Graphics Primitives

Objects Colors Default Values

plot::Bars2d, plot::Bars3d,
plot::Ode2d, plot::Ode3d

[RGB::Blue, RGB::Red,
RGB::Green, RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
RGB::Magenta, RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson, RGB::Aqua,
RGB::Lavender, RGB::SeaGreen,
RGB::AureolineYellow, RGB::Banana,
RGB::Beige, RGB::YellowGreen,
RGB::Wheat, RGB::IndianRed,
RGB::Black]

plot::MuPADCube [RGB::Green, RGB::Blue, RGB::Red,
RGB::Yellow, RGB::Antique]

plot::Boxplot, plot::Piechart2d,
plot::Piechart3d

[RGB::Blue, RGB::Red,
RGB::Green, RGB::MuPADGold,
RGB::Orange, RGB::Cyan,
RGB::Magenta, RGB::LimeGreen,
RGB::CadmiumYellowLight,
RGB::AlizarinCrimson]
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Description

Colors sets a list of colors to use for object parts.

Plot objects like plot::Piechart3d or plot::MuPADCube that use more than one color
use Colors to have a configurable list of colors to use.

The length of the list in Colors need not be fixed, it just must not be empty. If the list
contains more colors than needed, the remaining colors are simply not used; if the list
contains fewer colors than needed, it will be used cyclically, i.e., as if it were repeated as
often as necessary. Cf. “Example 2” on page 24-1919.

Examples

Example 1

Most of the statistical plots use Colors for the colors of their groups:

plot(plot::Bars2d([[frandom() $i=1..2] $ i = 1..3]))
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plot(plot::Bars2d([[frandom() $i=1..2] $ i = 1..3],

           Colors = [RGB::Orange, RGB::Yellow, RGB::Magenta]))

Example 2

If more colors are required than given in Colors, the given list is used cyclically:

plot(plot::Piechart2d([1, 1, 1, 1], Colors = [RGB::White, RGB::Blue]))
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See Also

MuPAD Functions
Color | FillColor | LineColor | PointColor
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 FillColor, FillColor2

FillColor, FillColor2
Color of areas and surfaces

Value Summary

FillColor, FillColor2 Inherited Color

Graphics Primitives

Objects Default Values

plot::Histogram2d FillColor: RGB::GeraniumLake
plot::Cylindrical, plot::Density,
plot::Dodecahedron,
plot::Function3d, plot::Hexahedron,
plot::Icosahedron,
plot::Implicit3d, plot::Matrixplot,
plot::Octahedron, plot::Prism,
plot::Pyramid, plot::Spherical,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Tube,
plot::XRotate, plot::ZRotate

FillColor: RGB::Red

FillColor2: RGB::CornflowerBlue

plot::Box, plot::Circle3d,
plot::Cone, plot::Cylinder,
plot::Ellipsoid, plot::Plane,
plot::Polygon3d, plot::Sphere

FillColor: RGB::LightBlue

plot::Arc2d, plot::Circle2d,
plot::Ellipse2d, plot::Hatch,
plot::Parallelogram2d,
plot::Polygon2d, plot::Rectangle,
plot::Sum

FillColor: RGB::Red

plot::Arc3d, plot::Ellipse3d,
plot::Parallelogram3d

FillColor: RGB::LightBlue
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Objects Default Values

FillColor2: RGB::CornflowerBlue
plot::Waterman FillColor: RGB::SafetyOrange

FillColor2: RGB::CornflowerBlue
plot::Integral FillColor: RGB::PaleBlue

Description

FillColor determines the color used to fill all types of areas and surfaces. FillColor2
is used for color blends. FillColors is used for objects that need more than one color.

2D objects that have a notion of “area” and 3D objects that have a surface support
FillColor to determine the primary color to show objects in. If FillColorType is set
to Dichromatic, FillColor2 sets the second color to blend to.

Functions and primitives displaying more than one object, such as plot::Bars2d, use
FillColors for a list of colors used cyclically.

Examples

Example 1

By default, plot::Hatch objects are hatched in RGB ::Red, the same color used by
default for plot::Function2d:

f := plot::Function2d(cos(2*x)+cos(x), x=-PI..PI):

h := plot::Hatch(f):

plot(h, f)
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To change the color of the hatch, simply set the "FillColor"-slot to some other value:

h::FillColor := RGB::Grey:

plot(h, f)
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Example 2

The default setting for a surface is to have a height-dependent coloring with a linear
blend from FillColor to FillColor2:

s := plot::Surface([cos(2*u+v), sin(u+2*v), sin(u+v)],

                   u = 0..2*PI, v = 0..2*PI,

                   ULinesVisible = FALSE, 

                   VLinesVisible = FALSE):

plot(s)
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These colors can be manipulated in the usual way. As an example, we set the transition
to a monochrome transition from opaque to transparent:

s::FillColor  := RGB::Green:

s::FillColor2 := s::FillColor . [0.0]:

plot(s)
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Example 3

Using a utility function randrange that returns random ranges in [0, 1], we can plot
random rectangles with random colors:

randrange := () -> _range(op(sort([frandom(), frandom()]))):

plot(plot::Rectangle(randrange(), randrange(),

                     LinesVisible = FALSE,

                     Filled = TRUE, FillPattern = Solid,

                     FillColor = [frandom(), frandom(), frandom()])

     $k=1..20,

     AxesVisible = FALSE)
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See Also

MuPAD Functions
FillColorType | Filled | FillPattern | LineColor | Shading
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FillColorDirection, FillColorDirectionX,
FillColorDirectionY, FillColorDirectionZ
Direction of color transitions on surfaces

Value Summary

FillColorDirection Library wrapper for
“[FillColorDirectionX,
FillColorDirectionY]” (2D),
“[FillColorDirectionX,
FillColorDirectionY,
FillColorDirectionZ]” (3D)

See below

FillColorDirectionX,
FillColorDirectionY,
FillColorDirectionZ

Inherited Real number

Graphics Primitives

Objects Default Values

plot::Arc3d, plot::Cylindrical,
plot::Dodecahedron,
plot::Ellipse3d, plot::Function3d,
plot::Hexahedron,
plot::Icosahedron,
plot::Implicit3d,
plot::Matrixplot, plot::Octahedron,
plot::Parallelogram3d, plot::Prism,
plot::Pyramid, plot::Spherical,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Tube,
plot::Waterman, plot::XRotate,
plot::ZRotate

FillColorDirection: [0, 0, 1]

FillColorDirectionX,
FillColorDirectionY: 0

FillColorDirectionZ: 1

plot::Listplot FillColorDirection: [0, 0]
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Description

FillColorDirection determines the direction in which the color transitions for
FillColorType = Dichromatic etc. take place.

When setting FillColorType to some other value than Flat or Functional, MuPAD
produces a “height-coloring.” By default, this color method actually uses the height of a
point. Using FillColorDirection, the axis along which the color method should be
applied can be changed.

Examples

Example 1

By default, MuPAD uses height coloring along the z axis for 3D objects:

s := plot::Spherical([sin(r),thet/(r+1)+1, thet*r], 

                     r=0..1, thet=0..3*PI, Submesh=[2,2]):

plot(s)
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By changing FillColorDirection, the color can be rotated on the object:

plot(s, FillColorDirection = [0, 1, 0])

See Also

MuPAD Functions
FillColor | FillColor2 | FillColorType | LineColorDirection
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FillColorTrue, FillColorFalse, FillColorUnknown

Color for “true” areas (inequality plot)

Value Summary

FillColorFalse,
FillColorTrue,
FillColorUnknown

Optional Color

Graphics Primitives

Objects Default Values

plot::Inequality FillColorTrue: RGB::Green

FillColorFalse: RGB::Red

FillColorUnknown: RGB::Black

Description

FillColorTrue, FillColorFalse, and FillColorUnknown define the three colors
use by plot::Inequality for the areas where the inequalities are fulfilled (true),
violated (false) or the granularity is too small to decide (unknown).

plot::Inequality divides the plot area into rectangles that are colored according to
these three attributes. Rectangles over which the inequalities are true get the color set
by FillColorTrue; rectangles over which at least one inequality is violated (i.e., false
over the whole rectangle) use FillColorFalse. If neither of these two apply and the
rectangle is already too small for subdivision (the settings for XMesh and YMesh control
this), it will be painted in FillColorUnknown.
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Examples

Example 1

We show the same inequality plot with different settings of these three attributes:

ineq := plot::Inequality([sin(x)^2>y, y>x^5], x=-1..1, y=-1..1):

plot(ineq)

ineq::FillColorTrue := RGB::Green:

ineq::FillColorFalse := RGB::Red:

ineq::FillColorUnknown := RGB::Blue:

plot(ineq)
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FillColorType
Surface filling types

Value Summary

Inherited Dichromatic, Flat, Functional,
Monochrome, or Rainbow

Graphics Primitives

Objects FillColorType Default Values

plot::Cylindrical, plot::Density,
plot::Dodecahedron,
plot::Function3d, plot::Hexahedron,
plot::Icosahedron,
plot::Implicit3d, plot::Matrixplot,
plot::Octahedron, plot::Prism,
plot::Pyramid, plot::Spherical,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Tube,
plot::XRotate, plot::ZRotate

Dichromatic

plot::Arc3d, plot::Ellipse3d,
plot::Parallelogram3d,
plot::Waterman

Flat

Description

FillColorType selects the type of surface fill color used.

With the exception of Flat and Functional, the coloring schemes depend on the
height, i.e., the z value of points on the surface, in relation to the height of the whole
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coordinate system. (Everything on this page relating to surfaces holds for objects of type
plot::Density, too, with the values plotted replacing height information.)

By default, surfaces are drawn with a linear blend from FillColor to FillColor2.
This behavior may be changed with FillColorType, using one of the following options:

• Dichromatic

The default just described.
• Flat

The surface is filled with FillColor. No blend is used.
• Monochrome

The surface is filled with a blend from FillColor to a dimmed version of
FillColor.

• Rainbow

This setting is technically similar to Dichromatic, but the effect is vastly different,
since interpolation takes place in HSV color space. This creates a rainbow effect,
similar to a physical rainbow for suitable choices of colors.

• Functional

Both FillColor and FillColor2 are ignored; the color scheme is derived from
FillColorFunction. See FillColorFunction for details (which depend on
the object type). If no color function is given, the object will be rendered with
FillColorType = Flat.

In this context, “a blend from A to B” means that color A is used at the top of the
coordinate system (the part with the lowest z coordinate), color B is used at the bottom
and in between each or the red, green, blues, and alpha channel are interpolated linearly.

Examples

Example 1

By default, function plots use FillColorType = Dichromatic with a color range from
blue to red (as in a temperature scale):
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plotfunc3d(sin(x)*sin(y))

Using FillColorType, we color the graph completely in red:

plotfunc3d(sin(x)*sin(y), FillColorType = Flat)
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Note, however, that the coloring is a visual aid, e.g., when looking from above:

plotfunc3d(sin(x)*sin(y),

           CameraDirection = [0, 0, 1])
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plotfunc3d(sin(x)*sin(y), FillColorType = Flat,

           CameraDirection = [0, 0, 1])
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Example 2

In MuPAD, rainbow coloring does react to FillColor and FillColor2. The following
plot uses different color settings to show this effect:

plot(plot::Function3d(sin(y), x = 0..10, y = -PI..PI,

                      FillColor = RGB::BlueLight,

                      FillColor2 = RGB::Blue),

     plot::Function3d(sin(y), x = 0..10, y = PI..3*PI,

                      FillColor = RGB::Green,

                      FillColor2 = RGB::Red),

     FillColorType = Rainbow,

     XLinesVisible = FALSE, YLinesVisible = FALSE)
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What is happening here technically is that MuPAD performs a linear interpolation in
HSV color space, i.e., the longest path round the following color circle is followed, with
saturation and value (roughly speaking, whiteness and blackness) interpolated linearly:
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The opacity of colors is treated the same way in both the Rainbow and Dichromatic
settings of FillColorType, by linear interpolation:

plot((f:=plot::Function3d(sin(y), x = 0..10, y = -PI..PI,

     FillColorType = Rainbow, FillColor2 = RGB::VioletDark.[0.2],

     XLinesVisible = FALSE, YLinesVisible = FALSE)))

24-1941



24 Graphics and Animations

Example 3

Setting a FillColorFunction for an object automatically sets FillColorType to
Functional:

colorfunc := (x, y) -> [abs(x)/PI, 0, abs(y)/PI]:

f := plot::Function3d(sin(x)*cos(y), x = -PI..PI, y = -PI..PI,

                      FillColorFunction = colorfunc):

f::FillColorType

plot(f)
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delete colorfunc, f:

See Also

MuPAD Functions
FillColor | FillColor2 | Filled | FillPattern | LineColorType | Shading
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Filled
Filled or transparent areas and surfaces

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects Filled Default Values

plot::Bars2d, plot::Bars3d,
plot::Box, plot::Boxplot,
plot::Cone, plot::Cylinder,
plot::Cylindrical,
plot::Dodecahedron,
plot::Function3d, plot::Hexahedron,
plot::Histogram2d,
plot::Icosahedron,
plot::Implicit3d, plot::Integral,
plot::Matrixplot, plot::Octahedron,
plot::Parallelogram3d,
plot::Piechart2d, plot::Piechart3d,
plot::Plane, plot::Prism,
plot::Pyramid, plot::Spherical,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL, plot::Sweep,
plot::Tetrahedron, plot::Tube,
plot::Waterman, plot::XRotate,
plot::ZRotate

TRUE

plot::Arc2d, plot::Arc3d,
plot::Circle2d, plot::Circle3d,
plot::Ellipse2d, plot::Ellipse3d,
plot::Parallelogram2d,
plot::Polygon2d, plot::Polygon3d,
plot::Rectangle, plot::Sum

FALSE
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Description

Filled controls whether areas and surfaces are filled or transparent.

With Filled = FALSE, areas and surfaces are not filled. This means that, e.g., a surface
plot is reduced to a wire frame model.

Examples

Example 1

The following parametrization of a sphere uses a mesh similar to the graticule
(longitudes and latitudes) of geography:

globe := plot::Surface([sin(u)*cos(v), cos(u)*cos(v), sin(v)],

                       u = 0..2*PI, v = 0..2*PI,

                       Mesh = [12, 12], Submesh = [3, 3]):

plot(globe, Scaling = Constrained)
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To get a wire frame model, we set Filled = FALSE:

plot(globe, Filled = FALSE, LineColor = RGB::Black,

     Scaling = Constrained)

See Also

MuPAD Functions
Colors | FillColor | FillColor2 | FillColorType | FillPattern | FillStyle
| LinesVisible | ULinesVisible | VLinesVisible
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FillPattern, FillPatterns
Type of area filling

Value Summary

FillPattern Inherited CrossedLines,
DiagonalLines,
FDiagonalLines,
HorizontalLines, Solid,
VerticalLines, or
XCrossedLines

FillPatterns Optional Solid, HorizontalLines,
VerticalLines,
DiagonalLines,
FDiagonalLines,
CrossedLines, or
XCrossedLines

Graphics Primitives

Objects Default Values

plot::Arc2d, plot::Boxplot,
plot::Circle2d, plot::Ellipse2d,
plot::Hatch, plot::Parallelogram2d,
plot::Polygon2d, plot::Rectangle

FillPattern: DiagonalLines

plot::Bars2d, plot::Histogram2d,
plot::Inequality, plot::Integral,
plot::Piechart2d, plot::Sum

FillPattern, FillPatterns: Solid

Description

FillPattern determines the style of area filling used: lines, grids, or a solid fill.
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FillPatterns is used for objects with more than one type of area to fill.

Areas can be filled in various ways. You can have horizontal, vertical, or diagonal
lines (HorizontalLines, VerticalLines, DiagonalLines, FDiagonalLines), a
horizontal/vertical grid (CrossedLines), a diagonal grid (XCrossedLines), or a solid fill
(Solid).

For types like plot::Bars2d, FillPatterns is a list of fill patterns used cyclically, in
this case for the groups of data plotted.

Examples

Example 1

The fill patterns look like this:

plot(

 plot::Rectangle(0..1, 0..1, FillPattern = Solid),

 plot::Rectangle(1..2, 0..1, FillPattern = DiagonalLines),

 plot::Rectangle(2..3, 0..1, FillPattern = FDiagonalLines),

 plot::Rectangle(3..4, 0..1, FillPattern = HorizontalLines),

 plot::Rectangle(4..5, 0..1, FillPattern = VerticalLines),

 plot::Rectangle(5..6, 0..1, FillPattern = CrossedLines),

 plot::Rectangle(6..7, 0..1, FillPattern = XCrossedLines),

 Filled = TRUE, AxesInFront = TRUE

)
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Except for Solid, the fill patterns let objects below be seen:

plot(

 plot::Function2d(sin(x*PI/14), x = 0..7, Color = RGB::Black),

 plot::Function2d(cos(x*PI/14), x = 0..7, Color = RGB::Blue),

 plot::Rectangle(0..1, 0..1, FillPattern = Solid),

 plot::Rectangle(1..2, 0..1, FillPattern = DiagonalLines),

 plot::Rectangle(2..3, 0..1, FillPattern = FDiagonalLines),

 plot::Rectangle(3..4, 0..1, FillPattern = HorizontalLines),

 plot::Rectangle(4..5, 0..1, FillPattern = VerticalLines),

 plot::Rectangle(5..6, 0..1, FillPattern = CrossedLines),

 plot::Rectangle(6..7, 0..1, FillPattern = XCrossedLines),

 Filled = TRUE, AxesInFront = TRUE

)
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See Also

MuPAD Functions
Color | Colors | FillColor | FillColorType | Filled
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FillStyle

Definition of inside/outside

Value Summary

Inherited EvenOdd, or Winding

Graphics Primitives

Objects FillStyle Default Values

plot::Polygon2d EvenOdd

Description

For self-intersecting closed curves, FillStyle determines how holes are detected/
defined.

Closed curves have an inside and an outside. With self-intersecting curves, the inside
may have holes which are considered outside and not filled. To explain the difference
between EvenOdd and Winding, we use the following two polygons which differ only in
the order the inner points are visited:
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If plotted with FillStyle = EvenOdd, there is no difference between the two:
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This is because for FillStyle = EvenOdd, a point is considered “inside” if a ray
starting from the point and extending to infinity has an odd number of intersections with
the polygon:
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With FillStyle = Winding, however, the triangles look different from one another:
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For FillStyle = Winding, the winding number of a point must be nonzero for this
point to be “inside”. The winding number is the number of times the polygon line actually
“runs around” the point. It can be determined by sequentially looking at all the edges,
summing up the angles under which neighboring edges are seen (take care of the sign of
he angle!) and dividing by 2 π. In our example, a point in the square in the upper triangle
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has a winding number of 2, while one in the square in the lower triangle has a winding
number of 0:

FillStyle = Winding is similar to a complete filling of the polygon area, but it is
stable under small displacements of the polygon points:
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See Also

MuPAD Functions
Filled
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GroupStyle
Grouping options in 2D bar plots

Value Summary

Optional MultipleBars, or SingleBars

Graphics Primitives

Objects GroupStyle Default Values

plot::Bars2d MultipleBars

Description
GroupStyle determines whether a bar plot visualizes the data of different groups by
separate bars or by single bars that are split into colored regions.

2D bar plots can group the bars in various ways. With the default setting GroupStyle
= MultipleBars, data that are split into several groups are displayed by separate bars
for each value in each group. With GroupStyle = SingleBars, corresponding data
items in different groups are stacked up to one single bar. It is split into differently
colored parts that correspond to the different groups.

With SingleBars, all data must be nonnegative.

SingleBars has no effect if the data of only one group are given. If you wish to visualize
the data in a single bar, you have to turn each data item into a separate group. Cf.
“Example 2” on page 24-1962.

Examples

Example 1

The attribute GroupStyle can have the values MultipleBars or SingleBars:
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group1 := [1.0, 1.2, 0.9, 1.0]:

group2 := [2.2, 1.9, 1.7, 2.1]:

data:= [group1, group2]:

plot(plot::Bars2d(data, GroupStyle = MultipleBars))

With SingleBars, corresponding data items in the different groups are collected in a
single bar:

plot(plot::Bars2d(data, GroupStyle = SingleBars))
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The following data are the australian market shares (in percent) of major car producers
in the years 2004 and 2005:

           // 2004  2005

Toyota:=     [21.1, 20.2]:

Holden_GM:=  [18.7, 17.9]:

Ford:=       [14.0, 13.0]:

Mazda:=      [ 5.8,  6.7]:

Mitsubishi:= [ 5.9,  6.4]:

Others:=     [34.5, 35.8]:

data:= [Toyota, Holden_GM, Ford, Mazda, Mitsubishi, Others]:

We visualize the change of the market shares by bar plots using different group styles:

plot(plot::Bars2d(data, GroupStyle = MultipleBars))
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plot(plot::Bars2d(data, GroupStyle = SingleBars))
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delete group1, group2, data, Toyota, Holden_GM, 

       Ford, Mazda, Mitsubishi, Others:

Example 2

The option SingleBars has no effect when the data of only one group are given:

group:= [1, 0.5, 2, PI/3, 2.7]:

plot(plot::Bars2d(group, GroupStyle = SingleBars))
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Each value is turned into a separate group:

groups:= [[x] $ x in group]

Now, SingleBars has an effect:

plot(plot::Bars2d(groups, GroupStyle = SingleBars, 

           BarCenters = [0.4], BarWidths = [0.3]),

           ViewingBox = [0..1, Automatic])
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delete group, groups:

See Also

MuPAD Functions
BarStyle | Colors | FillPatterns
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InterpolationStyle

Interpolation via linear or cubic splines

Value Summary

Optional Cubic, or Linear

Graphics Primitives

Objects InterpolationStyle Default Values

plot::Listplot, plot::Matrixplot Linear

Description

InterpolationStyle determines whether discrete data are interpolated linearly or via
cubic splines.

With the default setting InterpolationStyle = Linear, the curve connecting the
data points in a plot of type plot::Listplot consists of line segments. Similarly,
the surface generated from the matrix data in plot::Matrixplot consists of linear
segments (triangles).

These plot objects do not react to the attribute Submesh when using linear interpolation.

With InterpolationStyle = Cubic, the curve connecting the data points in a plot
of type plot::Listplot is the graph of the cubic spline function interpolating the data
points. Similarly, the surface generated by plot::Matrixplot is the graph of the cubic
spline function interpolating the matrix data.

The spline functions can be rendered smoothly by setting appropriate values for the
attribute Submesh.
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For large amounts of data, rendering with cubic spline interpolation may be much more
costly than linear interpolation.

Examples

Example 1

We sample the function  at various points and store the data in a list. The

data are displayed via plot::Listplot with different interpolation styles:

L := [1 - (i/2)^2 $ i = -2..2]:

plot(plot::Listplot(L, x = -1..1, InterpolationStyle = Cubic,

                    Color = RGB::Red),

     plot::Listplot(L, x = -1..1, InterpolationStyle = Linear,

                    Color = RGB::Blue)):

delete L:
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Example 2

We sample the function f(x, y) = 1 - x2 - y2 at various points and store the data in a
matrix. The matrix data are displayed as a matrix plot with different interpolation
styles:

A := matrix([[1 - (i/2)^2 - (j/2)^2 $ j = 0..2] $ i = 0..2]):

plot(plot::Matrixplot(A, x = 0..2, y = 0..2, 

                      InterpolationStyle = Cubic),

     plot::Matrixplot(A, x = 4..6, y = 0..2, 

                      InterpolationStyle = Linear),

     CameraDirection = [10, 15, 9]):

delete A:

See Also

MuPAD Functions
Submesh
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Shading

Smooth color blend of surfaces

Value Summary

Inherited Flat, or Smooth

Graphics Primitives

Objects Shading Default Values

plot::Cone, plot::Dodecahedron,
plot::Ellipsoid, plot::Function3d,
plot::Hexahedron,
plot::Icosahedron,
plot::Implicit3d, plot::Matrixplot,
plot::Octahedron, plot::Prism,
plot::Pyramid, plot::Sphere,
plot::Surface, plot::SurfaceSet,
plot::SurfaceSTL,
plot::Tetrahedron, plot::Tube,
plot::Waterman, plot::XRotate,
plot::ZRotate

Smooth

Description

Using Shading, a smooth color blend of triangulated surfaces can be (de-)activated.

Most surfaces in 3D are triangulated for display. The triangles are then drawn using
Gouraud-shading to achieve a smooth visual effect. Using Shading = Flat, you can
instruct the viewer to display the plain triangles.
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Examples

Example 1

Reducing the mesh density of a surface usually has more effect on its outer rim than on
the display of the middle:

plot(plot::Spherical([1, u, v], u=0..PI, v=0..2*PI,

                     UMesh=5, VMesh=5))

Setting Shading = Flat, you can see the triangles from which the sphere is
constructed:

plot(plot::Spherical([1, u, v], u=0..PI, v=0..2*PI,

                     UMesh=5, VMesh=5),

     Shading = Flat)
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See Also

MuPAD Functions
Lighting | UMesh | USubmesh | VMesh | VSubmesh
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UseNormals

Use predefined normals?

Value Summary

Optional TRUE or FALSE

Graphics Primitives

Objects UseNormals Default Values

plot::SurfaceSet, plot::SurfaceSTL TRUE

Description

UseNormals controls whether predefined normals of triangulation data are used when
plotting a surface.

With UseNormals = FALSE, the predefined normals given in the triangulation
data (MeshList) of a plot::SurfaceSet or in an STL file imported by a
plot::SurfaceSTL are ignored when plotting this surface. This may reduce the data
volume of the graphical object and the computing time as well. However, it usually leads
to a somewhat less brilliant image.

Examples

Example 1

By default, the normals defined in STL files are used when plotting the corresponding
MuPAD object. For comparison, an STL graphics is plotted with and without using the
normals provided by the STL file:
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plot(plot::Scene3d(plot::SurfaceSTL("skin.stl")),

     plot::Scene3d(plot::SurfaceSTL("skin.stl", 

                                    UseNormals = FALSE)),

     Width = 120*unit::mm, Height = 140*unit::mm,

     Layout = Vertical, BackgroundStyle = Pyramid,

     Axes = None):

24-1972



 UseNormals

See Also

MuPAD Functions
Filled | MeshList | MeshListNormals
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TipAngle

Opening angle of arrow heads

Value Summary

Inherited Positive real number

Graphics Primitives

Objects TipAngle Default Values

plot::Arrow2d, plot::Arrow3d,
plot::Streamlines2d

(2*PI)/15

plot::VectorField2d 0.6283185307

Description

TipAngle determines the opening angle of arrow heads in radians.

TipAngle determines the opening angle of the tips of arrows of type
plot::Arrow2d and plot::Arrow3d. Also the arrow tips in a vector field of type
plot::VectorField2d are controlled by TipAngle. The opening angle must be
specified in radians. Values for TipAngle between 0 and π are reasonable.

The tip angle is the geometric angle of the arrow heads as visible in the graphical output.
It is invariant under scaling and zooming.

The values of TipAngle cannot be animated.

The attribute TipStyle sets the presentation style of arrow tips. TipLength sets the
physical tip length.
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Examples

Example 1

We create an arrow whose arrow tip has an angle of 20 degrees. This corresponds to 

radians:

plot(plot::Arrow2d([0, 0], [1, 1], TipAngle = PI/9,

                   TipLength = 10*unit::mm)):

We create several arrows with different tip angles. The angle is increased by 10 degrees
from one arrow to the next:

plot(plot::Arrow2d([0, 0], [cos(a*2*PI/18), sin(a*2*PI/18)],

                   TipAngle = a*PI/18) $ a = 0 .. 17,

     Scaling = Constrained):
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Here are corresponding arrows in 3D:

plot(plot::Arrow3d([0, 0, 0], 

                   [cos(a*2*PI/18), sin(a*2*PI/18), 0],

                   TipAngle = a*PI/18) $ a = 0 .. 17, 

     Scaling = Constrained, 

     CameraDirection = [0, -10, 1000]):
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We use Tubular = TRUE:

plot(plot::Arrow3d([0, 0, 0], 

                   [cos(a*2*PI/18), sin(a*2*PI/18), 0],

                   TipAngle = a*PI/18) $ a = 0 .. 17, 

     Tubular = TRUE, Scaling = Constrained, 

     CameraDirection = [0, -10, 1000]):
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See Also

MuPAD Functions
TipLength | TipStyle | TubeDiameter | Tubular
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TipLength

Length of arrow heads

Value Summary

Inherited Non-negative output size

Graphics Primitives

Objects TipLength Default Values

plot::Arrow2d, plot::Arrow3d 4

plot::VectorField2d 1.5

plot::Streamlines2d 0

Description

TipLength determines the physical length of arrow heads

TipLength determines the length of the tips of arrows of type plot::Arrow2d and
plot::Arrow3d. Also the arrow tips in a vector field of type plot::VectorField2d
are controlled by TipLength. The value should be specified as an absolute physical
length including a length unit such as TipLength = 2.5*unit::mm. Numbers without
a physical unit give the size in mm.

The tip length is the physical length of the arrow heads as visible in the graphical output.
It is invariant under scaling and zooming.

The values of TipLength cannot be animated.

The attribute TipStyle sets the presentation style of arrow tips. TipAngle sets the
opening angle of the tips.
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Examples

Example 1

We create an arrow whose tip has physical length of 10 mm:

plot(plot::Arrow2d([0, 0], [1, 1], TipAngle = PI/9,

                   TipLength = 10*unit::mm)):

We create several arrows with different tip lengths. The length is increased by 0.7 mm
from one arrow to the next:

plot(plot::Arrow2d([0, 0], [cos(a*2*PI/18), sin(a*2*PI/18)],

                   TipLength = a*unit::mm) $ a = 0 .. 17, 

     plot::Circle2d(1, [0, 0]),

     Scaling = Constrained):
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Here are corresponding arrows in 3D:

plot(plot::Arrow3d([0, 0, 0],

                   [cos(a*2*PI/18), sin(a*2*PI/18), 0],

                   TipLength = a*unit::mm) $ a = 0 .. 17,  

     plot::Circle3d(1, [0, 0, 0], [0, 0, 1]),

     Scaling = Constrained, 

     CameraDirection = [0, -10, 1000]):
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We use Tubular = TRUE:

plot(plot::Arrow3d([0, 0, 0],

                   [cos(a*2*PI/18), sin(a*2*PI/18), 0],

                   TipLength = a*unit::mm) $ a = 0 .. 17, 

     plot::Circle3d(1, [0, 0, 0], [0, 0, 1]),

     Tubular = TRUE, Scaling = Constrained,

     CameraDirection = [0, -10, 1000]):
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See Also

MuPAD Functions
TipAngle | TipStyle | TubeDiameter | Tubular
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TipStyle

Presentation style of arrow heads

Value Summary

Inherited Closed, Filled, or Open

Graphics Primitives

Objects TipStyle Default Values

plot::Arrow2d, plot::Arrow3d,
plot::Streamlines2d

Filled

plot::VectorField2d Open

Description

TipStyle governs the appearance of arrow heads.

TipStyle determines how the tips of arrows of type plot::Arrow2d
and plot::Arrow3d look. Also the arrow tips in a vector field of type
plot::VectorField2d are controlled by TipStyle.

With TipStyle = Open, the tips are given by two lines.

With TipStyle = Closed, the tips are given by a triangle.

With TipStyle = Filled, the tips are given by a filled triangle.

TipStyle cannot be animated.

The opening angle and the physical length of the arrow tips are set by the attributes
TipAngle and TipLength, respectively.
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Examples

Example 1

We draw arrows with different tip styles:

plot(plot::Arrow2d([0, 0], [1, 0], 

                   TipStyle = Open),

     plot::Arrow2d([0, 0], [cos(2*PI/3), sin(2*PI/3)], 

                   TipStyle = Closed),

     plot::Arrow2d([0, 0], [cos(4*PI/3), sin(4*PI/3)], 

                   TipStyle = Filled),

     Axes = None, ViewingBox = [-1..1, -1..1],

     TipLength = 8*unit::mm, TipAngle = PI/5,

     Scaling = Constrained):

Here are corresponding arrows in 3D:

plot(plot::Arrow3d([0, 0, 0], [1, 0, 0], 

                   TipStyle = Open),
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     plot::Arrow3d([0, 0, 0], [cos(2*PI/3), sin(2*PI/3), 0], 

                   TipStyle = Closed),

     plot::Arrow3d([0, 0, 0], [cos(4*PI/3), sin(4*PI/3), 0], 

                   TipStyle = Filled),

     ViewingBox = [-1..1, -1..1, -1..1],

     TipLength = 8*unit::mm, TipAngle = PI/5,

     Scaling = Constrained, CameraDirection = [2, -10, 15]):

We use Tubular = TRUE:

plot(plot::Arrow3d([0, 0, 0], [1, 0, 0], 

                   TipStyle = Open),

     plot::Arrow3d([0, 0, 0], [cos(2*PI/3), sin(2*PI/3), 0], 

                   TipStyle = Closed),

     plot::Arrow3d([0, 0, 0], [cos(4*PI/3), sin(4*PI/3), 0], 

                   TipStyle = Filled),

     TipLength = 8*unit::mm, TipAngle = PI/5,

     Tubular = TRUE, ViewingBox = [-1..1, -1..1, -1..1],

     Scaling = Constrained, CameraDirection = [2, -10, 15]):
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See Also

MuPAD Functions
TipAngle | TipLength | TubeDiameter | Tubular
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TubeDiameter
Diameter of tubular arrows and lines. , and coordinate axes

Value Summary

Inherited Positive output size

Graphics Primitives

Objects TubeDiameter Default Values

plot::Arrow3d, plot::Line3d 1.0

Description

TubeDiameter governs the size of tubular arrows and lines in 3D.

Arrows of type plot::Arrow3d as well as lines of type plot::Line3d can be rendered
as 3D tubes by setting the attribute Tubular = TRUE.

The attribute TubeDiameter determines the diameter of tubular arrows and lines. Its
value should be specified as an absolute physical length including a length unit such as
TubeDiameter = 2.5*unit::mm. Numbers without a physical unit give the size in
mm.

Tubular arrows have a tip that is rendered as a little cone. The size of these cones is
adjusted when the diameter of the arrow shaft changes.

The attribute TubeDiameter is not available in 2D.

Examples

Example 1

We draw some tubular arrows with different tube diameters:
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plot(plot::Arrow3d([0, 0, 0], [1, 3, 5], Color = RGB::Red,

                   TubeDiameter = 2.0*unit::mm),

     plot::Arrow3d([0, 0, 0], [5, 3, 1], Color = RGB::Green,

                   TubeDiameter = 3.0*unit::mm),

     plot::Arrow3d([0, 0, 0], [5, 1, 3], Color = RGB::Blue,

                   TubeDiameter = 4.0*unit::mm),

     Tubular = TRUE, TipLength = 18*unit::mm, Axes = Origin):

See Also

MuPAD Functions
TipAngle | TipLength
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Tubular
Display 3D arrows and lines as tubes?

Value Summary

Inherited FALSE, or TRUE

Graphics Primitives

Objects Tubular Default Values

plot::Arrow3d, plot::Line3d FALSE

Description

With Tubular = TRUE, arrows of type plot::Arrow3d and lines of type plot::Line3d
are rendered as tubes (cylinders). The diameter is set by the attribute TubeDiameter.

Tubular arrows have a tip that is rendered as a little cone. The tip is determined by the
attributes TipLength and TipAngle.

With Tubular = FALSE, arrows and lines are displayed as simple lines.

The attribute Tubular is not available in 2D.

Examples

Example 1

We draw a tubular arrow together with an arrow displayed as a line:

plot(plot::Arrow3d([0, 0, 0], [1/2, 3, 5], Tubular = TRUE, 

                   TubeDiameter = 2*unit::mm, 

                   Color = RGB::Red), 
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     plot::Arrow3d([0, 0, 0], [3, 5, 1], Tubular = FALSE, 

                   Color = RGB::Blue),

     TipLength = 12*unit::mm, Axes = Origin):

See Also

MuPAD Functions
TipAngle | TipLength | TubeDiameter
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polylib::coeffRing
Coefficient ring of a polynomial

Syntax
polylib::coeffRing(P)

polylib::coeffRing(p)

Description

polylib::coeffRing(p) returns the coefficient ring of p.

polylib::coeffRing(p) allows to query in a uniform way the coefficient ring of the
polynomial p or the polynomial domain P.

P can be any polynomial domain (Dom::UnivariatePolynomialx,
Dom::DistributedPolynomial[x,y], ...).

P can also be of the form polylib::Poly([x,y],K). If K is Expr or IntMod(n), then
the corresponding domains Dom::ExpressionField() or Dom::IntegerMod(p) is
returned. See poly for the details about Expr and IntMod(n).

p can be a kernel polynomial (DOM_POLY), or an element of one of the above domains

Examples

Example 1

We define a polynomial ring over the ring of integers modulo 4, and query for its
coefficient ring:

P := Dom::UnivariatePolynomial(x, Dom::IntegerMod(4)):

polylib::coeffRing(P)
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The coefficient ring of the elements of this domain can be queried the same way:

polylib::coeffRing(P(x))

polylib::coeffRing(Dom::Matrix(Dom::IntegerMod(3)))

Example 2

When no coefficient ring is specified, poly currently constructs kernel polynomials
over the fake domain Expr instead of the mathematically equivalent field
Dom::ExpressionField() of arbitrary expression (this happens to be more efficient
with the current kernels):

extop(poly(x))

polylib::coeffRing(poly(x))

This makes it possible to plug the result right away as coefficient ring of some other
domain:

Dom::UnivariatePolynomial(x, polylib::coeffRing(poly(x)))

Parameters

P

A polynomial domain
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p

A polynomial

Return Values

Domain
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polylib::cyclotomic
Cyclotomic polynomials

Syntax
polylib::cyclotomic(n, x)

Description

polylib::cyclotomic(n, x) computes the n-th cyclotomic polynomial, expressed in
the indeterminate x.

The n-th cyclotomic polynomial is defined to be the minimal polynomial of any n-th
primitive root of unity over the field of rational numbers.

Examples

Example 1

We compute the 20th cyclotomic polynomial.

polylib::cyclotomic(20, z);

Parameters

n

Positive integer

x

Identifier
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Return Values

Polynomial over Expr in the indeterminate x.

See Also

MuPAD Functions
numlib::phi
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polylib::decompose
Functional decomposition of a polynomial

Syntax
polylib::decompose(p)

polylib::decompose(p, x)

Description

polylib::decompose(p,x) returns a sequence of polynomials q1, …, qn such that p(x)
= q1(… qn(x) …).

The second argument may be left out if the polynomial is univariate, as in “Example 1”
on page 25-7.

If a polynomial has several decompositions, it is not specified which of them is returned.

Examples

Example 1

In the simplest case, an univariate polynomial is decomposed with respect to its only
variable:

polylib::decompose(x^4+x^2+1)

Example 2

If there are several variables, a main variable must be specified:
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polylib::decompose(y*x^4+y,y);

Parameters

p

Polynomial or polynomial expression

x

One of the indeterminates of the polynomial p

Return Values

If a decomposition is possible, polylib::decompose returns it as an expression
sequence, each element being of the same type as the input. If no decomposition is
possible, the input is returned.

Overloaded By

p

References

A description of the algorithm behind polylib::decompose can be found in Barton
and Zippel, Polynomial decomposition algorithms, Journal of Symbolic Computation, 1
(1985), pp. 159–168.

See Also

MuPAD Functions
factor
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polylib::discrim
Discriminant of a polynomial

Syntax
polylib::discrim(p, x)

Description

polylib::discrim(p, x) returns the discriminant of the polynomial p with respect to
the variable x.

The function normal is applied to the discriminant before returning it.

Examples

Example 1

We compute the discriminant of the general quadratic equation:

polylib::discrim(a*x^2 + b*x + c, x);

Parameters

x

Indeterminante

p

Polynomial or polynomial expression
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Return Values

polylib::discrim returns an element of the coefficient ring of p. If the coefficient ring
is Expr or IntMod(n), an expression is returned.

Overloaded By

p

Algorithms

The discriminant of p with respect to the variable x is defined as:

,

where d is the degree and c is the leading coefficient of p.

See Also

MuPAD Functions
polylib::resultant
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polylib::divisors
Divisors of a polynomial, polynomial expression, or Factored element

Syntax
polylib::divisors(p)

polylib::divisors(f)

polylib::divisors(e)

Description

polylib::divisors(p) computes the set of all monic divisors of the polynomial or
polynomial expression p.

polylib::divisors(f) returns all monic divisors of a pre-factored polynomial. Cf.
“Example 3” on page 25-12.

polylib::divisors works on polynomials of category Cat::Polynomial as well. Cf.
“Example 4” on page 25-12.

Examples

Example 1

If the argument is a polynomial, a set of polynomials is returned:

polylib::divisors(poly(x^2 - 2*x + 1))

Example 2

If the argument is a polynomial expression, a set of polynomial expressions is returned:
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polylib::divisors(x^2 - 1)

Example 3

If the argument is of type Factored (a factor return value) a set of polynomials is
returned:

p := factor(poly(x^2 - 1));

polylib::divisors(p)

The polynomials in the resulting set have the same type as the polynomials in the
Factored element:

p := factor(x^2 - 1);

polylib::divisors(p)

Example 4

polylib::divisors works on polynomials from category Cat::Polynomial as well:

P := Dom::Polynomial(Dom::IntegerMod(7)):

polylib::divisors(P(x^3 + 2*x^2 + 1))

25-12



 polylib::divisors

Parameters

p

A polynomial or polynomial expression

f

Factored (return value of factor)

e

Element of a domain of category Cat::Polynomial

Return Values

polylib::divisors returns a set of polynomials. The polynomials are from the same
type as the polynomials in the argument.

See Also

MuPAD Categories
Cat::Polynomial

MuPAD Domains
Dom::MultivariatePolynomial | Dom::Polynomial |
Dom::UnivariatePolynomial | DOM_POLY

MuPAD Functions
factor | irreducible | numlib::divisors | polylib::sqrfree
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polylib::Dpoly
Differential operator for polynomials

Syntax
polylib::Dpoly(f)

polylib::Dpoly(indexlist, f)

Description

If f is a polynomial in the indeterminates x1 through xn,
polylib::Dpoly([i1,..,ik], f) computes the k-th partial derivative

.

polylib::Dpoly(f) returns the derivative of f with respect to its only variable for an
univariate polynomial f.

If some element of indexlist is greater than the number of indeterminates of f, the
zero polynomial is returned.

polylib::Dpoly([], p) returns p.

If the coefficients of the polynomial are elements of a domain d, then this domain must
have the method "intmult" (d::intmult(e,i)) that must calculate the integer
multiple of a domain element e and a positive integer i.

Examples

Example 1

We differentiate a univariate polynomial with respect to its only indeterminate. In this
case, we may leave out the first argument.
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polylib::Dpoly(poly(2*x^2 + x + 1));

Example 2

Now we differentiate a bivariate polynomial, and must specify the indeterminate in this
case.

polylib::Dpoly([1], poly(x^2*y + 3*x + y, [x, y]));

Example 3

It is also possible to compute second or higher partial derivatives.

polylib::Dpoly([1, 2], poly(x^2*y + 3*x + y, [x, y]));

Parameters

f

Polynomial

indexlist

List of positive integers

Return Values

polylib::Dpoly returns a polynomial in the same indeterminates and over the same
coefficient ring as the input.
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Overloaded By

f

See Also

MuPAD Functions
D | diff
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polylib::elemSym
Elementary symmetric polynomials

Syntax
polylib::elemSym(l, k)

Description

polylib::elemSym([x1,...,xn], k) returns the k-th elementary symmetric
polynomial in the given variables x1 through xn.

A given list l is a valid first argument only if its elements can be used as indeterminates
of a polynomial .

Examples

Example 1

The first elementary symmetric polynomial is just the sum of its variables:

polylib::elemSym([x,y,z], 1);

Example 2

Indeterminates may also be e.g. trigonometric functions:

polylib::elemSym([sin(u),cos(u), exp(u)], 2);
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Parameters

l

List of indeterminatess

k

Positive integer

Return Values

Result is a polynomial over the coefficient ring Expr. If k is greater than the number of
operands of l, undefined is returned.

References

For more information about elementary symmetric polynomials, see v.d. Waerden,
Algebra, vol. 1.

See Also

MuPAD Functions
polylib::representByElemSym
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polylib::makerat
Convert expression into rational function over a suitable field

Syntax
polylib::makerat(a, <maxd>)

polylib::makerat(l, <maxd>)

Description

polylib::makerat(a) returns two polynomials f and g over the rationals and a list of
substitutions such that applying the substitutions to the rational function  gives a.

polylib::makerat(l) does the same for every element of the list l and returns lists of
resulting f's and g's.

polylib::makerat(a, maxd) replaces d-th roots of integers by elements of some
algebraic extension field over the rationals if d ≤ maxd, and returns polynomials f and g
over that extension field.

polylib::makerat(a) replaces all irrational subexpressions (except identifiers) in a
by newly created identifiers, thereby producing a rational function over the rationals. It
returns the numerator and denominator of that rational function as polynomials over
Expr, and the substitutions to be made to get back the numerator and denominator of
the original input a.

polylib::makerat(l) replaces all irrational subexpressions in all elements of l by
newly created identifiers.

Every subexpression is replaced by the same identifier every time it occurs.

All indeterminates of the input and all of the new identifiers become indeterminates of
the result, unless a second argument maxd is given.

The imaginary unit I is handled in a special way: it is replaced by the element `#I` of
the algebraic extension field with minimal polynomial `\#I`^2 + 1. If I occurs in the
input, the result consists of polynomials over that extension field.
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If a second argument maxd is given, d-th roots of rationals are replaced by elements of a
suitable field extension of the rationals if d ≤ maxd. In the same way, nested fractional
powers of rationals are replaced unless the denominator of some exponent exceeds maxd.
In this case, the returned result consists of polynomials over a tower of extension fields
over the rationals.

Examples

Example 1

In the simplest case (integer polynomial), the numerator equals the input, the
denominator equals 1, and no substitutions are necessary:

polylib::makerat(x^2+3)

Example 2

Transcendental expressions are replaced by new identifiers. The result indicates on
which variables the generated identifiers depend:

polylib::makerat(sin(u)/x)

Example 3

Floating point numbers are considered transcendental:

polylib::makerat(0.27*x)

Example 4

By default, radicals are treated like transcendental subexpressions:
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polylib::makerat(sqrt(2)/x)

Example 5

If a sufficiently large second argument is given, radicals are replaced by elements of
algebraic extensions:

polylib::makerat(sqrt(2)/x, 2)

Parameters

a

Polynomial over Expr or arithmetical expression

l

List or set of polynomials over Expr or arithmetical expressions

maxd

Positive integer

Return Values

polylib::makerat returns an expression sequence consisting of three operands:

• The first operand represents the numerator (or the list/set of numerators,
respectively). It is a single polynomial if the call was polylib::makerat(a),
otherwise it is a set or list of polynomials (the same type as the input). The
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polynomial(s) may have more indeterminates than the input. The coefficient ring is
either Expr or a Dom::AlgebraicExtension.

• The second operand represents the denominator (or the list/set of denominators,
respectively). It is of the same type as the first operand.

• The third operand is a list of equations.

See Also

MuPAD Functions
rationalize
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polylib::minpoly
Approximate minimal polynomial

Syntax
polylib::minpoly(a, n, x)

Description

polylib::minpoly(a, n, x) computes a univariate polynomial f in the variable x
of degree n with integer coefficients such that a equals a root of f up to the precision
given by DIGITS, and such that the sum of squares of its coefficients is minimal among
all polynomials with this property.

Environment Interactions

polylib::minpoly is sensitive to the environment variable DIGITS.

Examples

Example 1

We compute a polynomial of degree 4 that has a root close to PI (up to 6 decimal digits)
and small integer coefficients:

DIGITS:=6: polylib::minpoly(PI, 4, x); delete DIGITS:

If the root has to be even closer to PI, bigger coefficients are needed:

DIGITS:=20: polylib::minpoly(PI, 4, x); delete DIGITS
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Parameters

a

Arithmetical expression that can be converted to a floating point number

n

Positive integer

x

Identifier

Return Values

polylib::minpoly returns a polynomial in x. Its coefficient ring is Expr, all of its
coefficients are integers.

Algorithms

The problem reduces to finding a shortest integer vector in the lattice
, where ei denotes the vector with ei [j] = δi, j (Kronecker symbol).

This problem is solved using the algorithm of Lenstra/Lenstra/Lovasz.

References

Lenstra/Lenstra/Lovasz, Factoring polynomials with rational coefficients, Math. Ann.
261(1982), pp. 515–534.

See Also

MuPAD Functions
interpolate | lllint | stats::linReg

25-24



 polylib::Poly

polylib::Poly
Domain of polynomials

Syntax

Domain Creation

polylib::Poly([x1, …], <R>)

Description

polylib::Poly([x1,...,xn], R) creates the ring of polynomials in the unknowns
x1 through xn over the coefficient ring R. If the argument R is missing, Expr is used.

polylib::Poly is a facade domain; it has no domain elements. It serves only as a
coefficient ring for polynomials.

The attempt to create an element of polylib::Poly results in a DOM_POLY.

The arithmetical operations of the domain are realized by the corresponding kernel
methods.

Examples

Example 1

polylib::Poly can be used for defining polynomials in x whose coefficients are
polynomials in y. Such polynomials must not be confused with bivariate polynomials in x
and y.

delete x,y: e:= x*(y^2*2 + y) + 3*y:

poly(e, [x, y]);  poly(e, [x], polylib::Poly([y]))
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Parameters

x1

Unknown

R

Admissible coefficient ring for polynomials. See poly.

Entries

"zero" the zero polynomial
"one" the constant polynomial one
"indets" list of unknowns
"coeffRing" the coefficient ring R

See Also

MuPAD Domains
Dom::DistributedPolynomial
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polylib::primitiveElement
Primitive element for tower of field extensions

Syntax
polylib::primitiveElement(F, G)

Description
For given field extensions F = K(α) and G = F(β), polylib::primitiveElement(F, G)
returns a list consisting of a simple algebraic extension of K that is K-isomorphic to G, a
symbol for a primitive element of that extension, and the images of α and β under some
fixed K-isomorphism.

It is presumed that the extension is separable. Otherwise, it may happen that the
algorithm does not terminate.

Examples

Example 1

Since the rational numbers are perfect, extensions of them can always be handled:

F := Dom::AlgebraicExtension(Dom::Rational, sqrt2^2 - 2):

G := Dom::AlgebraicExtension(F, sqrt3^2 - 3):

Now , and we use polylib::primitiveElement to find a primitive
element for G:

polylib::primitiveElement(F, G)
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This means that a primitive element X1 of the extension is determined by its minimal
polynomial X1

4 - 10 X1
2 + 1. The last two operands of the list are field elements whose

squares are 2 and 3, respectively.

Example 2

The function works also for subdomains of Dom::AlgebraicExtension, e.g., Galois
fields.

F := Dom::GaloisField(7, 2):

G := Dom::GaloisField(F, 2):

polylib::primitiveElement(F, G)

Parameters

F

A field created by Dom::AlgebraicExtension

G

A field created by Dom::AlgebraicExtension with ground field F

Return Values

List consisting of four operands:

• a field H of type Dom::AlgebraicExtension over the same ground field as F;
• an identifier that equals the entry H::variable;
• an object of type H that satisfies the minimal polynomial for α;
• an object of type H that satisfies the minimal polynomial for β.
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Algorithms

The chosen primitive element is α + s β, where s is a positive integer.

See Also

MuPAD Domains
Dom::AlgebraicExtension

MuPAD Functions
polylib::splitfield
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polylib::primpart
Primitive part of a polynomial

Syntax
polylib::primpart(f)

polylib::primpart(q)

polylib::primpart({xpr}, <{inds}>)

Description

polylib::primpart(f) returns the primitive part of the polynomial f.

If the input is a polynomial, the greatest common divisor of its coefficients is removed.
The function gcd must be able to calculate this gcd.

If the first argument is an expression, it is converted into a polynomial in the
indeterminates specified by the second argument, or in all of its indeterminates if no
second argument is given. polylib::primpart returns FAIL if the expression cannot
be converted into a polynomial.

For a rational number, its sign is returned.

Examples

Example 1

In the following example, a bivariate polynomial is given. Its coefficients are the integers
3, 6, and 9; the primitive part is obtained by dividing the polynomial by their gcd.

polylib::primpart(poly(6*x^3*y + 3*x*y + 9*y, [x, y]));
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However, consider the same polynomial viewed as a univariate polynomial in x. Its
coefficients are polynomials in y in this case, and their gcd 3*y is divided off.

polylib::primpart(poly(6*x^3*y + 3*x*y + 9*y, [x]));

Example 2

polylib::primpart divides the coefficients by their gcd, but does not normalize the
result. This must be done explicitly:

polylib::primpart(4*x*y + 6*x^3 + 6*x*y^2 + 9*x^3*y, [x])

normal(polylib::primpart(4*x*y + 6*x^3 + 6*x*y^2 + 9*x^3*y, [x]))

Parameters

f

Polynomial

q

Rational number

xpr

Expression

inds

List of identifiers
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Return Values

polylib::primpart returns an object of the same type as the input, or FAIL.

Overloaded By

f

Algorithms

The primitive part of a polynomial f is a polynomial g whose coefficients are relatively
prime such that f = rg for some element r of the coefficient ring.

See Also

MuPAD Functions
content | factor | gcd | icontent | irreducible
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polylib::randpoly
Create a random polynomial

Syntax
polylib::randpoly()

polylib::randpoly(<list>, <ring>, <Degree = n>, <Terms = k>, <Coeffs = f>, <Monic>)

Description

polylib::randpoly() returns a univariate random polynomial with integer
coefficients; the global identifier x is used as the indeterminate.

polylib::randpoly(list) returns a random polynomial in all indeterminates given
in list.

polylib::randpoly(list, ring) returns a random polynomial in the
indeterminates given in list over the coefficient ring ring.

See poly for a detailed description of possible indeterminates and coefficient rings.

The polynomial is created by randomly choosing as many exponents as specified through
the option Terms and then choosing random coefficients. It may of course happen that
for some coefficient 0 is chosen, therefore the actual number of terms in the result can be
smaller than the value of the option Terms.

If the option Coeffs=f is given, the random coefficients are generated by calling f().
Otherwise, if ring is Expr, the coefficients will be random integers in the range - 999,
…, 999. If ring is a user-defined domain, it must have a method "random" to create the
coefficients if no function is given.

If the option Monic is given, the resulting polynomial has exactly the specified degree
and the leading coefficient is 1.

If the requested number of terms exceeds the maximal possible number of terms for the
specified degree and number of variables, a warning is emitted and a dense polynomial is
created.
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Environment Interactions

Unless a generator is specified through the option Coeffs, polylib::randpoly
uses random to create the exponents and coefficients. Therefore it is sensitive to the
environment variable SEED.

Examples

Example 1

We generate a univariate random polynomial in the indeterminate z, and use the default
values for the other options. Therefore the polynomial has integer coefficients, is of
degree 5, and has 6 terms.

polylib::randpoly([z])

Example 2

We create a bivariate random polynomial over the finite field with 7 elements. This
works because Dom::IntegerMod has a "random" slot that generates random elements:

polylib::randpoly([x,y],Dom::IntegerMod(7),Degree=3,Terms=4);

Parameters

list

List of indeterminates

ring

Coefficient ring

25-34



 polylib::randpoly

Options

Degree

Option, specified as Degree = k

The maximum degree the result can have in each variable. k must be a nonnegative
integer. Default is 6.

Terms

Option, specified as Terms = t

Makes polylib::randpoly generate the sum of t random terms. t must be a positive
integer or infinity. If t equals infinity, polylib::randpoly returns a dense
polynomial. Default is 5.

Coeffs

Option, specified as Coeffs = f

Create the coefficients of the result by calling f().

Monic

The created polynomial is monic, i.e., the leading coefficient is 1.

Return Values

Polynomial in the given indeterminates over the given ring. If no list of indeterminates is
given, [x] is used. If no ring is given, Expr is used.

See Also

MuPAD Functions
poly | random
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polylib::realroots
Isolate all real roots of a real univariate polynomial

Syntax
polylib::realroots(p)

polylib::realroots(p, eps)

Description

polylib::realroots(p) returns intervals isolating the real roots of the real
univariate polynomial p.

polylib::realroots(p, eps) returns refined intervals approximating the real roots
of p to the relative precision given by eps.

All coefficients of p must be real and numerical, i.e., either integers, rationals or floating-
point numbers. Numerical symbolic objects such as sqrt(2), exp(10*PI) etc. are
accepted, if they can be converted to real floating-point numbers via float. The same
holds for the precision goal eps.

The isolating intervals are ordered such that their centers are increasing, i.e., ai + bi < ai

+ 1 + bi + 1.

The number nops(realroots(p)) of intervals is the number of real roots of p. Multiple
roots are counted only once. Cf. “Example 3” on page 25-38.

Isolating intervals may be quite large. The optional argument eps may be used to refine
the intervals such that they approximate the real roots to a relative precision eps. With

this argument the returned intervals satisfy , i.e., each center 

approximates a root with a relative precision eps/2.

Note: Some care should be taken when trying to obtain highly accurate approximations
of the roots via small values of eps. Internally, bisectioning with exact rational
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arithmetic is used to locate the roots to the precision eps. This process may take much
more time than determining the isolating intervals without using the second argument
eps in polylib::realroots. It may be faster to use moderate values of eps to obtain
first approximations of the roots via polylib::realroots. These approximations
may then be improved by a fast numerical solver such as numeric::fsolve with an
appropriately high value of DIGITS. Cf. “Example 6” on page 25-40. However, note
that polylib::realroots will always succeed in locating the roots to the desired
precision eventually. Numerical solvers may fail or return a root not belonging to the
interval which was used for the initial approximation.

Note: Unexpected results may be obtained when the polynomial contains irrational
coefficients. Internally, any such coefficient c is converted to a floating-point number.
This float is then replaced by an approximating rational number r satisfying

. Finally, polylib::realroots returns rigorous bounds for

the real roots of the rationalized polynomial. Despite the fact that all coefficients are
approximated correctly to DIGITS decimal places this may change the roots drastically.
In particular, multiple roots or clusters of poorly separated simple roots are very
sensitive to small perturbations in the coefficients of the polynomial. See “Example 4” on
page 25-39 and “Example 5” on page 25-39.

Environment Interactions

The function is sensitive to the environment variable DIGITS, if there are non-integer or
non-rational coefficients in the polynomial. Any such coefficient is replaced by a rational
number approximating the coefficient to DIGITS significant decimal places.

Examples

Example 1

We use a polynomial expression as input to polylib::realroots:

p := (x - 1/3)*(x - 1)*(x - 4/3)*(x - 2)*(x - 17):

polylib::realroots(p)
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The roots 1 and 2 are found exactly: the corresponding intervals have length 0. The other
isolating intervals are quite large. We refine the intervals such that they approximate
the roots to 12 decimal places. Note that this is independent of the current value of
DIGITS, because no floating-point arithmetic is used:

polylib::realroots(p, 10^(-12))

We convert these exact bounds for the real roots to floating point approximations. Note
that with the default value of DIGITS=10 we ignore 2 of the 12 correct digits the rational
bounds could potentially give:

map(%, map, float)

delete p:

Example 2

Orthogonal polynomials of degree n have n simple real roots. We consider the Legendre
polynomial of degree 5, available in the library orthpoly for orthogonal polynomials:

polylib::realroots(orthpoly::legendre(5, x), 10^(-DIGITS)):

map(%, float@op, 1)

Example 3

We consider a polynomial with a multiple root:

p := poly((x - 1/3)^3*(x - 1), [x])
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Note that only one isolating interval [0, 1] is returned for the triple root :

polylib::realroots(p)

delete p:

Example 4

We consider a polynomial with non-rational roots:

p := (x - 3)^2*(x - PI)^2:

Converting the result of polylib::realroots to floating-point numbers one sees that
the exact roots 3, 3, PI, PI are approximated only to 3 decimal places:

map(polylib::realroots(p, 10^(-10)), map, float)

This is caused by the internal rationalization of the coefficients of p.

The intervals returned by polylib::realroots(p, 10^(-10)) correctly locate
the 4 exact roots of this rationalized polynomial to a precision of 10 digits. However,
because all 4 roots are close, the small perturbations of the coefficients introduced
by rationalization have a drastic effect on the location of the roots. In particular,
rationalization splits the two original double roots into 4 simple roots.

delete p:

Example 5

We consider a further example involving non-exact coefficients. First we approximate the
roots of a polynomial with exact coefficients:
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p1 := (x - 1/3)^3*(x - 4/3):

map(polylib::realroots(p1, 10^(-10)), map, float)

Now we introduce roundoff errors by replacing one entry by a floating-point
approximation:

p2 := (x - 1.0/3)^3*(x - 4/3):

map(polylib::realroots(p2, 10^(-10)),map,float)

In this example rationalization caused the triple root 1/3 to split into one real root and
two complex conjugate roots.

delete p1, p2:

Example 6

We want to approximate roots to a precision of 1000 digits:

p := x^5 - 129/20*x^4 + 69/5*x^3 - 14*x^2 + 12*x - 8:

We recommend not to obtain the result directly by
polylib::realroots(p,10^(-1000)), because the internal bisectioning process
for refining crude isolating intervals converges only linearly. Instead, we compute first
approximations of the roots to a precision of 10 digits:

approx := map(polylib::realroots(p, 10^(-10)), float@op, 1)

These values are used as starting points for a numerical root finder. The internal Newton
search in numeric::fsolve converges quadratically and yields the high precision
results much faster than polylib::realroots:

DIGITS := 1000:
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roots := map(approx, x0 -> numeric::fsolve([p = 0], [x = x0]))

[[x = 1.489177598846870281338916114673844643894...],

      [x = 1.752191733304413195335101727880090131407...],

      [x = 3.255184555797733438479691333705558491124...]]

delete approx, DIGITS, roots, x0:

Parameters

p

A univariate polynomial: either an expression or a polyomial of domain type DOM_POLY.

eps

A (small) positive real number determining the size of the returned intervals.

Return Values

List of lists [[a1, b1], [a2, b2], …] with rational numbers ai ≤ bi is returned. Lists with ai
= bi represent exact rational roots. Lists with ai < bi represent open intervals containing
exactly one real root. If the polynomial has no real roots, then the empty list [ ] is
returned.

See Also

MuPAD Functions
numeric::fsolve | numeric::polyroots | numeric::realroot |
numeric::realroots
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polylib::representByElemSym
Represent symmetric by elementary symmetric polynomials

Syntax
polylib::representByElemSym(f, l)

Description

polylib::representByElemSym(f, [x1,...,xn]) returns a polynomial g in the
identifiers x1 through xn such that replacing each xi by the i-th elementary symmetric
polynomial gives f.

The list l must have as many operands as f has indeterminates.

The result is FAIL if the input is not symmetric.

Examples

Example 1

The symmetric polynomial x2 + y2 can be written as (x + y)2 - 2 (x y):

polylib::representByElemSym(poly(x^2+y^2), [u,v]);

Example 2

polylib::representByElemSym works over domains also:

f:=poly(x^2+y^2, Dom::IntegerMod(7)):

polylib::representByElemSym(f, [u,v])
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Parameters

f

Symmetric polynomial

l

List of indeterminates

Return Values

Result is a polynomial having the same coefficient ring as f.

Algorithms

It is a well-known theorem that every symmetric polynomial can be written in this way.

See Also

MuPAD Functions
polylib::elemSym

25-43



25 polylib – Manipulating Polynomials

polylib::resultant
Resultant of two polynomials

Syntax
polylib::resultant(f, g, <x>)

polylib::resultant(fexpr, gexpr, <inds>, <x>)

Description

polylib::resultant(f, g) returns the resultant of f and g with respect to their first
variable.

polylib::resultant(f, g, x) returns the resultant of f and g with respect to the
variable x.

polylib::resultant(fexpr, gexpr, inds, x) returns the resultant of fexpr and
gexpr with respect to the variable x; fexpr and gexpr are viewed as polynomials in the
indeterminates inds.

Both input polynomials must have exactly the same second and third operand, i.e. their
variables and coefficient rings must be identical.

If the arguments are expressions then these are converted into polynomials using poly.
polylib::resultant returns FAIL if the expressions cannot be converted.

If the argument inds is missing, the input expressions are converted into polynomials
in all indeterminates occurring in at least one of them. They are not independently
converted, hence the conversion cannot result in two polynomials with different variables
causing an error. See “Example 1” on page 25-45.

If the coefficient ring is a domain, it must have a "_divide" method.

If the coefficient ring is Expr, polylib::resultant returns an expression if called
with two univariate polynomials. See “Example 2” on page 25-45.

For polynomials over IntMod(n), the computation may stop with an error if n is not
prime.

25-44



 polylib::resultant

Examples

Example 1

If the input consists of expressions, the sets of indeterminates occurring in the
expressions need not coincide:

polylib::resultant(a*x + c, c*x + d, x);

Example 2

If the coefficient ring of two univariate input polynomials is Expr, the result is an
expression:

polylib::resultant(poly(x^2 -1), poly(x + 1));

Parameters

f, g

Polynomials

fexpr, gexpr

Expressions

x

Indeterminate

inds

List of indeterminates
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Return Values

If the input consists of polynomials in at least two variables, polylib::resultant
returns a polynomial in one variable less than the input.

Overloaded By

p, q

Algorithms

The resultant of two polynomials is defined to be the determinant of their Sylvester
matrix. A call to polylib::resultant is more efficient than consecutive calls to
linalg::sylvester and det.

See Also

MuPAD Functions
det | linalg::sylvester | polylib::discrim
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polylib::sortMonomials
Sorting monomials with respect to a term ordering

Syntax
polylib::sortMonomials(f)

polylib::sortMonomials(f, vars)

polylib::sortMonomials(f, ord)

polylib::sortMonomials(f, vars, ord)

Description

polylib::sortMonomials(f, ord) returns a list of all monomials constituting the
polynomial f, sorted in descending order with respect to ord.

A monomial ordering may be: one of the identifiers LexOrder, DegreeOrder,
DegInvLexOrder; or an object of type Dom::MonomOrdering or convertible to that type;
or any object returning a number when called as ord(m1,m2) for two degree vectors m1
and m2. A degree vector is a list of integers, as returned by degreevec.

If no order is given, the lexikographical order is used.

If no list of variables is given, all indeterminates of f are used.

Given two degree vectors, m1 is considered to be greater than m2 if and only if
ord(m1,m2) is positive.

Examples

Example 1

The monomials of the polynomial below are compared using a monomial ordering from
Dom::MonomOrdering .
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polylib::sortMonomials(poly(x^2+x*y^3+2, [x,y]), DegRevLex(2))

Parameters

f

Polynomial or polynomial expression

vars

Nonempty list of identifiers

ord

Monomial ordering

Return Values

List of polynomials or expressions of the same type as f.

Overloaded By

f

See Also

MuPAD Domains
Dom::MonomOrdering

MuPAD Functions
lmonomial | nthmonomial
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polylib::splitfield
Splitting field of a polynomial

Syntax
polylib::splitfield(p)

Description

Given a polynomial p over a field K in one indeterminate X, polylib::splitfield(p)
returns a simple field extension F of K and some elements α1, …, αn of F, such that

 is an associate of p, and such that F is the smallest extension of K

containing all of the αi.

If the input is a polynomial expression, as in “Example 1” on page 25-49, it is treated
as a polynomial over the rationals.

The polynomial p need not be irreducible.

The name for the primitive element of the field extension is generated using genident
and is therefore different in every call of polylib::splitfield, even if the same
polynomial is passed.

MuPAD must be able to factor polynomials over the coefficient field of p.

The coefficient field must be perfect. Otherwise, it may happen that
polylib::splitfield does not terminate.

Examples

Example 1

We adjoin  to the rationals:

25-49



25 polylib – Manipulating Polynomials

polylib::splitfield(x^2+1)

Example 2

A call to polylib::splitfield becomes more interesting for polynomials for of degree
at least 3:

polylib::splitfield(x^3-2)

Example 3

In this example, we work over the field of univariate rational functions (the quotient field
of the univariate polynomials) over the rationals:

R:=Dom::DistributedPolynomial([x], Dom::Rational):

F:=Dom::Fraction(R):

f:=poly(y^3-x,[y],F):

polylib::splitfield(f)

Parameters

p

Univariate polynomial over a field or univariate polynomial expression
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Return Values

polylib::splitfield returns a list of two operands: the first one is the splitting field
of the polynomial, i.e. a Dom::AlgebraicExtension of the coefficient ring; the second
one is a list of all roots of the polynomial in the splitting field, each root followed by its
multiplicity.

See Also

MuPAD Functions
evalp | factor
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polylib::sqrfree
Square-free factorization of polynomials

Syntax
polylib::sqrfree(f, <recollect>)

Description

polylib::sqrfree(f) returns the square-free factorization of f, that is, a factorization
of f in the form f = u p1

e1 … pr
er with primitive and pairwise different square-free divisors

pi.

polylib::sqrfree(f) returns the square-free factorization of the polynomial f, that is,
a factorization of f in the form f = u f1

e1 … fr
er with primitive and pairwise different square-

free divisors fi (i.e., gcd(fi, fj) = 1 for i ≠ j).

u is a unit of the coefficient ring of f, and ei are positive integers.

The result of polylib::sqrfree is an object of the domain type Factored. Let g:=
polylib::sqrfree(f) be such an object. It is represented internally as the list [u,
f1, e1, ..., fr, er] of odd length 2 r + 1.

You may extract the unit u and the terms fi
ei by the ordinary index operator [ ], i.e.,

g[1] = u, g[2] = f1^e1, g[2] = f2^e2, ....

The calls Factored::factors(g) and Factored::exponents(g) return a list of the
factors fi and the exponents ei (1 ≤ i ≤ r), respectively. The call convert(g, DOM_LIST)
gives the internal representation of a factored object, i.e., the list [u, f1, e1, ...,
fr, er].

Note that the result of polylib::sqrfree is printed as an expression and behaves
like that. As an example, the result of polylib::sqrfree(x^2+2*x+1) is the object
printed as (x+1)^2 which is of type "_power".

Please read the help page of Factored for details.

25-52



 polylib::sqrfree

The call polylib::sqrfree(f, FALSE) returns a square-free factorization of f, where
the exponents ei need not be pairwise different.

polylib::sqrfree can handle univariate and multivariate polynomials over Expr,
residue class rings IntMod(p) with prime modulus p, domains representing a unique
factorization domain of characteristic zero, and finite fields.

If the argument of polylib::sqrfree is an expression, its numerator and denominator
are converted into polynomials in all occurring indeterminates.

These polynomials are regarded as polynomials over some extension of the rational
numbers (i.e., over Expr, see poly). The choice of that extension follows the same rules
as in the case of the function factor.

Factors of the denominator of an expression are indicated by negative multiplicities.

Examples

Example 1

The factors in a squarefree factorization are pairwise relatively prime, but they need not
be irreducible:

polylib::sqrfree(

  2 - 2*x - 6*x^4 + 6*x^5 + 6*x^8 - 6*x^9 -2*x^12 + 2*x^13

)

Example 2

Even if a factorization into irreducibles has been found, irreducible factors with the same
multiplicity are collected again:

polylib::sqrfree(x^6 + x^4*y*6 + x^2*y^2*9)
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You can avoid this by giving a second argument:

polylib::sqrfree(x^6 + x^4*y*6 + x^2*y^2*9, FALSE)

Example 3

polylib::sqrfree works also for polynomials:

polylib::sqrfree(poly(2 + 5*x + 4*x^2 + x^3))

Parameters

f

A polynomial or an arithmetical expression

recollect

TRUE or FALSE

Return Values

Factored object, i.e., an object of the domain type Factored.

See Also

MuPAD Functions
content | factor | Factored | irreducible | polylib::primpart
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polylib::subresultant

Subresultants of two polynomials

Syntax

polylib::subresultant(f, g, <x>, <i>)

polylib::subresultant(fexpr, gexpr, <x>, <i>)

Description

polylib::subresultant(f, g) returns the table of subresultants of polynomials f
and g with respect to their first variable.

polylib::subresultant(f, g, i) returns the ith subresultant of polynomials f
and g with respect to their first variable.

polylib::subresultant(f, g, x) returns the table of subresultants of polynomials
f and g with respect to the variable x.

polylib::subresultant(f, g, x, i) returns the ith subresultant of polynomials f
and g with respect to the variable x.

polylib::subresultant(fexpr, gexpr, x) returns the table of subresultants of
polynomial expressions fexpr and gexpr with respect to the variable x.

polylib::subresultant(fexpr, gexpr, x, i) returns the ith subresultant of
polynomial expressions fexpr and gexpr with respect to the variable x.

polylib::subresultant returns a particular subresultant or a table of all
subresultants.

The variables and coefficient rings of both input polynomials must be identical.

The 0th subresultant is the resultant of two polynomials. See “Example 1” on page
25-56
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If you do not specify the variable when computing the subresultants of two polynomials,
polylib::subresultant returns subresultants of the polynomials with respect to
their first variable. See “Example 2” on page 25-57.

If you call polylib::subresultant for polynomial expressions, you must specify
the variable with respect to which you want to compute subresultants. MuPAD
uses the poly function to convert polynomial expressions to polynomials with the
specified variable. The system also converts computed subresultants back to polynomial
expressions.

If poly cannot convert expressions to polynomials, polylib::subresultant returns
FAIL.

If the degree of the polynomial f is less than the degree of the polynomial g, the
polylib::subresultant function interchanges f and g.

If the coefficient ring is a domain, it must have a _divide method.

Examples

Example 1

If you do not specify which subresultant to return, polylib::subresultant returns
the table of all subresultants:

f := poly(3*x^4 + 3*x^3 + 4):

g := poly(x^4 + x^3 + x^2 + x + 1):

polylib::subresultant(f, g)
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You can specify the number of the subresultant that you want to compute. For example,
compute the 0th subresultant of the polynomials f and g:

polylib::subresultant(f, g, 0)

The 0th subresultant is also the resultant of the polynomials:

polylib::resultant(f, g)

Example 2

polylib::subresultant handles multivariate polynomials and polynomial
expressions. When you compute subresultants of multivariate polynomials or polynomial
expressions, you can specify the variable with respect to which you want to compute
subresultants:

f := poly(3*x^4*y + 4*z^2):

g := poly(x^4 + x^3*y^3*z^3):

polylib::subresultant(f, g, z)

For multivariate polynomials, specifying the variable is not necessary. If you do
not specify the variable when computing the subresultants of two polynomials,
polylib::subresultant returns subresultants of the polynomials with respect to
their first variable:

f := poly(3*x^4*y + 4*z^2):

g := poly(x^4 + x^3*y^3*z^3):

polylib::subresultant(f, g)
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If you call polylib::subresultant for polynomial expressions, you must specify the
variable with respect to which you want to compute subresultants:

f := 3*x^4*y + 4*z^2:

g := x^4 + x^3*y^3*z^3:

polylib::subresultant(f, g)

Error: A variable is missing. [polylib::subresultant]

polylib::subresultant(f, g, x)

Parameters

f, g

Polynomials over Expr (the ring of arbitrary MuPAD expressions)
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fexpr, gexpr

Polynomial expressions

x

An indeterminate

i

A nonnegative integer

Return Values

Subresultant of two polynomials (or polynomial expressions) or a table of subresultants.

Overloaded By

p, q

See Also

MuPAD Functions
det | linalg::sylvester | polylib::discrim | polylib::resultant
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polylib::support
Support of a polynomial

Syntax
polylib::support(p)

Description

polylib::support(p) returns the support of p, that is, the list of indices with non zero
coefficient in p.

Examples

Example 1

The support of a multivariate polynomial is the list of the degree vectors of its terms:

polylib::support(poly(x*y*z + x + 1, [x, y, z]))

For a univariate polynomial, the support is the list of the degrees of its terms. In the
following polynomial x appears with degrees 3, 1, and 0:

polylib::support(Dom::UnivariatePolynomial(x)(x^3*y*z + x + 1))

Parameters

p

A polynomial.
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Return Values

List of elements of the support.
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Pref::abbreviateOutput
Controls the use of abbreviations in outputs

Syntax
Pref::abbreviateOutput(TRUE)

Pref::abbreviateOutput(FALSE)

Pref::abbreviateOutput(NIL)

Pref::abbreviateOutput()

Description

When displaying results, MuPAD by default finds common subexpressions and replaces
them with abbreviations. See “Example 1” on page 26-2.

If you want to see the results without abbreviations, use the
Pref::abbreviateOutput(FALSE) command. See “Example 2” on page 26-3.

The Pref::abbreviateOutput() command shows whether abbreviations are enabled
or disabled. See “Example 3” on page 26-4.

To restore the default setting, use the Pref::abbreviateOutput(NIL) command. See
“Example 4” on page 26-5.

The output of the Pref::abbreviateOutput command itself displays the previous
setting. You can save this previous setting and switch to a new setting in a single call of
Pref::abbreviateOutput. See “Example 5” on page 26-5.

Examples

Example 1

By default, you can see the abbreviations in long outputs:
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solve(a*x^3 + b*x + c, x, MaxDegree = 3, IgnoreSpecialCases)

Example 2

Setting Pref::abbreviateOutput(FALSE), you can disable the abbreviations in
outputs:

Pref::abbreviateOutput(FALSE):

solve(a*x^3 + b*x + c, x, MaxDegree = 3, IgnoreSpecialCases)
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Example 3

You can check the current setting:
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Pref::abbreviateOutput()

Example 4

You can restore the default setting:

Pref::abbreviateOutput(NIL):

Pref::abbreviateOutput()

Example 5

You can save the current setting and switch it to a new one in one function call:

old := Pref::abbreviateOutput(FALSE):

solve(x^3 + x + 1 = 0, x, MaxDegree = 3)

You can restore the saved setting:
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Pref::abbreviateOutput(old):

solve(x^3 + x + 1 = 0, x, MaxDegree = 3)

Return Values

Previously set value TRUE or FALSE

See Also

MuPAD Functions
output::asciiAbbreviate | output::subexpr
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Pref::alias
Controls the output of aliased expressions

Syntax
Pref::alias(TRUE)

Pref::alias(FALSE)

Pref::alias(NIL)

Pref::alias()

Description
An alias is an abbrevation for a MuPAD expression. If Pref::alias is enabled, the
alias abbrevations will be used for output.

Pref::alias() returns the current value.

Pref::alias(TRUE) switches the usage of alias abbrevations in outputs on. This is
the default setting.

Pref::alias(FALSE) switches the usage of aliases in outputs off.

Pref::alias(NIL) restores the default value which is TRUE.

Pref::alias has no effect on print and fprint.

Environment Interactions
Pref::alias changes the output of aliased expressions.

Examples

Example 1

If an aliased expression occurs in output, it is replaced by the alias abbrevation:
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alias(X = a + b):

X, a + b

This only works if the syntactical structure of expression matches the aliased expression:

2*X

prog::exprtree shows that 2*X does not contain a + b any more:

prog::exprtree(X): prog::exprtree(2*X):

_plus

|

+-- a

|

`-- b

_plus

|

+-- _mult

|   |

|   +-- a

|   |

|   `-- 2

|

`-- _mult

    |

    +-- b

    |

    `-- 2

The same holds for X+c:

X + c; prog::exprtree(X + c):
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_plus

|

+-- a

|

+-- b

|

`-- c

With Pref::alias(FALSE) the back translation of aliases in the output is disabled:

Pref::alias(FALSE):

X

Pref::alias has no effect on print and fprint outputs:

Pref::alias(TRUE):

print(X):

Return Values

Previously set value

See Also

MuPAD Functions
alias | expr2text | fprint | print

26-9



26 Pref – User Preferences

Pref::autoExpansionLimit
Set a limit for automatic expansions

Syntax
Pref::autoExpansionLimit(n)

Pref::autoExpansionLimit(NIL)

Pref::autoExpansionLimit()

Description

Pref::autoExpansionLimit(n) sets a limit for the size of the arguments up to which
the functions bernoulli, Ei, euler, fact, fact2, gamma, harmonic, igamma, psi, and
zeta produce explicit results. Cf. “Example 1” on page 26-10.

It also sets a limit for the exponent up to which real and imaginary parts of powers are
computed explicitly. Cf. “Example 2” on page 26-12.

Use expand for larger arguments if explicit results are desired. Cf. “Example 1” on page
26-10.

The call Pref::autoExpansionLimit() returns the current value of the limit without
changing it.

The call Pref::autoExpansionLimit(NIL) resets the limit to its default value 1000.

Examples

Example 1

The functions bernoulli, euler, gamma, zeta etc. automatically produce explicit
results if the arguments are not too large:

bernoulli(22),

euler(24),
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gamma(26),

zeta(28)

These functions return symbolic answers when the argument is larger than the limit set
by Pref::autoExpansionLimit:

Pref::autoExpansionLimit()

bernoulli(1002),

euler(2002),

gamma(3001),

zeta(4001)

We reduce this limit:

Pref::autoExpansionLimit(20):

bernoulli(22),

euler(24),

gamma(26),

zeta(28)

We can use expand to obtain explicit results:

expand(bernoulli(22)),

expand(euler(24)),

expand(gamma(26)),

expand(zeta(28))
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We restore the default value:

Pref::autoExpansionLimit(NIL):

Example 2

If binomial expansion is needed, the closed formula for the real part of an expression can
become quite large:

Re((a+sqrt(2)*I)^6) assuming a in R_

Thus, for exponents beyond Pref::autoExpansionLimit(), no expansion is carried
out:

Re((a+sqrt(2)*I)^123456) assuming a in R_

Parameters

n

The limit: a positive numerical real value

Return Values

Previously defined limit.
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See Also

MuPAD Functions
bernoulli | Ei | euler | fact | fact2 | gamma | harmonic | igamma | Im | psi |
Re | zeta
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Pref::autoPlot
Automatically plot graphical objects

Syntax
Pref::autoPlot(TRUE)

Pref::autoPlot(FALSE)

Pref::autoPlot(NIL)

Pref::autoPlot()

Description

Pref::autoPlot(TRUE) makes graphical objects be plotted instead of typeset.

By default, graphical objects such as plot::Function3d are output just like any
other MuPAD object, i.e., as a rendered representation of the input. After setting
Pref::autoPlot(TRUE), graphical objects and sequences of such objects are
automatically rendered instead, as if the user had written plot(...).

This setting only works when typesetting is enabled.

Return Values

Previously set value

See Also

MuPAD Functions
plot
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Pref::callBack
Informations during evaluation

Syntax
Pref::callBack(<func>)

Description

The function func defined by Pref::callBack(func) will be called permanently,
when the MuPAD kernel works. Therewith informations can be displayed to inform the
user.

A call of Pref::callBack without arguments returns the current value. The argument
NIL resets the default value, which is NIL.

Examples

Example 1

The following combination of Pref::postInput (initialization) and time count with
Pref::callBack shows the seconds during evaluating.

Pref::postInput(proc() begin START:= time(); TIME:= START end_proc):

Pref::callBack(proc()

               begin

                 if time() - TIME > 1000 then // 1 sec

                   TIME:= TIME+1000;

                   print(floor((time() - START)/1000))

                 end_if

               end_proc):

NOW:= time():

while time() - NOW <= 10000 do 1 end_while:
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Parameters

func

Function to display informations

Return Values

Previously defined function

See Also

MuPAD Functions
Pref::postInput | Pref::postOutput | Pref::report
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Pref::callOnExit
Defines an exit handler

Syntax
Pref::callOnExit(f)

Pref::callOnExit(list)

Pref::callOnExit(NIL)

Pref::callOnExit()

Description

Pref::callOnExit(f) defines a function f which is called on exit or reset of MuPAD.

Pref::callOnExit(list) defines a list of functions which are executed in the order of
their occurrence in list on exit of MuPAD.

Pref::callOnExit(NIL) sets the default value, which is NIL.

Pref::callOnExit() returns the current value.

Parameters

f

A function

list

A list of functions

Return Values

Pref::callOnExit returns the previously defined function, list of functions, or NIL.
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Algorithms

Pref::callOnExit can be used to send communication modules a disconnect message
or to remove temporary user-defined files when leaving MuPAD.

See Also

MuPAD Functions
Pref::postOutput | reset
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Pref::floatFormat

Representation of floating-point numbers

Syntax

Pref::floatFormat(mode)

Pref::floatFormat(NIL)

Pref::floatFormat()

Description

Pref::floatFormat controls the output format of floating-point numbers.

The representation mode can be one of the characters "e", "f", "g", "h", or "x". These
are the standard C-command printf switches. Their meaning is:

• "e":

exponential representation (floating-point representation, “scientific format”).
• "f":

decimal representation without exponents.
• "g":

a mix between "e" and "f". Numbers x satisfying  are

displayed without exponents. All other numbers are displayed in floating-point
representation.

• "h" or "x":

hexadecimal representation, except for expr2text and typesetting, which fall back to
"g".

The default value is "g".
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Pref::floatFormat() returns the current mode without changing it. The call
Pref::floatFormat(NIL) resets to the default value "g".

Examples

Example 1

The exponential representation of a floating-point number consists of its sign, its
mantissa and its exponent:

Pref::floatFormat("e"):

12345.67890, -0.00012345

Without exponents, the size of a number is indicated by trailing or leading zeroes:

Pref::floatFormat("f"):

7.0*10^21, 7.0/10^21

The mixed representation:

Pref::floatFormat("g"):

1e-10, 9.99e-11

2.0^36, 2.0^37

Hexadecimal display is ignored in typeset output and expr2text:

Pref::floatFormat("h"): 

12345.67890, 0.00012345;
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expr2text(12345.67890, 0.00012345)

Hexadecimal display is used in the ASCII print output:

PRETTYPRINT := FALSE:

print(Plain, 12345.67890, 0.00012345);

PRETTYPRINT := TRUE:

3.039adcc63f141208@3, 8.1725b672ee34260@-4

The representation is reset to the default mode:

Pref::floatFormat(NIL):

Parameters

mode

One of the character strings "e", "f", "g", "h", or "x"

Return Values

Previously defined representation mode

See Also

MuPAD Functions
DIGITS | Pref::outputDigits | Pref::trailingZeroes | print
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Pref::fourierParameters

Specify parameters for Fourier and inverse Fourier transforms

Syntax

Pref::fourierParameters(c, s)

Pref::fourierParameters([c, s])

Pref::fourierParameters(NIL)

Pref::fourierParameters()

Description

Pref::fourierParameters(c, s), or the equivalent call
Pref::fourierParameters([c, s]), specifies parameters used by the fourier
and ifourier functions when computing Fourier and inverse Fourier transforms. See
“Example 1” on page 26-23.

The Fourier transform of the expression f = f(t) with respect to the variable t at the
point w is defined as follows:

.

The inverse Fourier transform of the expression F = F(w) with respect to the variable w
at the point t is defined as follows:

.

c and s are the parameters of the Fourier transform controlled by
Pref::fourierParameters.
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By default, c = 1 and s = -1. Other common choices for the parameter c are  or

. Other common choices for the parameter s are 1, - 2 π, or 2 π.

Pref::fourierParameters() returns the current values of the Fourier parameters
without changing them.

Pref::fourierParameters(NIL) restores the default settings c = 1, s = -1.

Pref::fourierParameters also controls the parameters used by the
fourier::addpattern and ifourier::addpattern functions. See “Example 2” on
page 26-24.

Environment Interactions

Changing Fourier parameters using Pref::fourierParameters can affect results
returned by fourier and ifourier in the current MuPAD session.

Examples

Example 1

Compute the Fourier transform of this expression using the default values c = 1,
s = -1 of the Fourier parameters:

assume(Re(a) > 0):

fourier(t*exp(-a*t^2), t, w)

Use Pref::fourierParameters to change the values of the Fourier parameters to
c = 1, s = 1. Then compute the Fourier transform of the same expression again:
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Pref::fourierParameters(1, 1):

fourier(t*exp(-a*t^2), t, w)

Change the values of the Fourier parameters to  and 1. Compute the Fourier

transform using these values:

Pref::fourierParameters(1/(2*PI), 1):

fourier(t*exp(-a*t^2), t, w)

For further computations, restore the default values of the Fourier transform
parameters:

Pref::fourierParameters(NIL):

Example 2

Use the default values of the Fourier transform parameters:

Pref::fourierParameters()

Add this new Fourier transform pattern for the function foo:

fourier::addpattern(foo(t), t, w, bar(w)):

fourier(foo(t), t, w)

26-24



 Pref::fourierParameters

The Fourier pair (foo, bar) is assumed to be valid for the current values of the Fourier
parameters. When changing these parameters, you change the definition of the Fourier
transform. Therefore, after changing Fourier parameters, the transform of foo(t) is not
bar(w) anymore. The fourier function computes the result which is valid for the new
parameters:

Pref::fourierParameters(c, s):

fourier(foo(t), t, w)

Now restore the Fourier transform parameters to their default values 1 and -1:

Pref::fourierParameters(NIL):

Parameters

c

Arithmetical expression

s

Arithmetical expression

Return Values

List containing the previously set values of c and s

See Also

MuPAD Functions
fourier | fourier::addpattern | ifourier | ifourier::addpattern
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Pref::heavisideAtOrigin
Set value of Heaviside function at origin

Syntax
Pref::heavisideAtOrigin(val)

Pref::heavisideAtOrigin(NIL)

Pref::heavisideAtOrigin()

Description

Pref::heavisideAtOrigin(val) sets the value of the heaviside function at the
origin and returns the old value. See “Example 1” on page 26-26. The default value of
heaviside at the origin is 1/2. Other common choices for heaviside(0) are 0 or 1. This
preference can affect the output of functions that call heaviside.

Pref::heavisideAtOrigin() returns the current value of heaviside(0).

Pref::heavisideAtOrigin(NIL) restores the default setting heaviside(0) = 1/2.

Environment Interactions

Changing the value of heaviside(0) using Pref::heavisideAtOrigin
can affect results returned by functions that call heaviside, such as
ztrans(heaviside(x),x,z).

Examples

Example 1

Pref::heavisideAtOrigin controls the value of the heaviside function at the origin.
The default value is 1/2. Other common choices are 0 or 1.
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Return the value of heaviside(0) and ztrans(heaviside(x),x,z).

heaviside(0);

ztrans(heaviside(x),x,z)

Set heaviside(0) to 1 using Pref::heavisideAtOrigin. Store the old value
returned to restore it later.

oldval := Pref::heavisideAtOrigin(1)

Check the new value of heaviside(0). Find the Z-transform of heaviside(x) for this
value.

heaviside(0);

ztrans(heaviside(x),x,z)

The output of ztrans is affected by the new value of heaviside(0).

Restore the old value of heavisideAtOrigin using oldval.

Pref::heavisideAtOrigin(oldval):

Alternatively, restore the default value of heavisideAtOrigin by specifying the input
as NIL.

Pref::heavisideAtOrigin(NIL):
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Parameters

val

Arithmetical expression

Return Values

The previously set value of val.

See Also

MuPAD Functions
heaviside | Pref::fourierParameters
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Pref::ignoreNoDebug
Controls debugging of procedures

Syntax
Pref::ignoreNoDebug(TRUE)

Pref::ignoreNoDebug(FALSE)

Pref::ignoreNoDebug(NIL)

Pref::ignoreNoDebug()

Description

Pref::ignoreNoDebug(TRUE) allows debugging of procedures even if they have the
option noDebug set.

Pref::ignoreNoDebug() returns the current value.

Pref::ignoreNoDebug(NIL) resets the default value, which is FALSE.

Pref::ignoreNoDebug(FALSE) resets the default value, which is FALSE.

Return Values

Previously set value

See Also

MuPAD Domains
DOM_PROC

MuPAD Functions
debug
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Pref::keepOrder
Order of terms in sum outputs

Syntax
Pref::keepOrder(<Always>)

Pref::keepOrder(<DomainsOnly>)

Pref::keepOrder(<System>)

Pref::keepOrder(NIL)

Pref::keepOrder()

Description
Pref::keepOrder influences the output order of terms in sums.

Usually, the output system uses its own ordering of the terms in a sum to optimize the
appearance of the output. This order may be different from the internal ordering of the
sum. The output system prefers to re-order the terms such that the first term is positive.

Sometimes it is desirable to see the terms of a sum in the internal order. This can be
achieved with Pref::keepOrder(Always).

By default, the term order of polynomials and domain elements is left unchanged.

Pref::keepOrder(NIL) restores the default state, which is DomainsOnly.

Pref::keepOrder() returns the currently set value.

Examples

Example 1

Here we create a domain element e, an expression f, and a polynomial p containing
sums. With the default setting DomainsOnly, only the output of the expression f is not
in the internal order:
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d := newDomain("d"):  d::print := x -> extop(x):

e := new(d, b - a):  f := b - a:  p := poly(1 - x):

e, f, p

With the setting Always, e, f, and p are all printed in the internal order:

Pref::keepOrder(Always):

e, f, p

With the setting System, the output order differs from the internal ordering for e, f, and
p:

Pref::keepOrder(System):

e, f, p

Pref::keepOrder(NIL) restores the default state; Pref::keepOrder() returns the
current setting:

Pref::keepOrder(NIL):  Pref::keepOrder()

Options

Always

The output always corresponds to the internal order.

DomainsOnly

In polynomials and domain elements, the ordering of terms corresponds to the internal
order. Other sums may be re-ordered by the output system.
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This is the default setting of Pref::keepOrder.

System

The output order of terms in sums is determined by the output system and does not
necessarily correspond to the internal order.

Return Values

Previously defined value: Always, DomainsOnly, or System.

See Also

MuPAD Domains
Dom::MultivariatePolynomial | Dom::Polynomial |
Dom::UnivariatePolynomial | DOM_POLY

MuPAD Functions
print
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Pref::kernel
Version number of the presently used kernel

Syntax
Pref::kernel()

Pref::kernel(<BitsInLong>)

Pref::kernel(<BuildNr>)

Description

The version numbers of the kernel and the library may differ. Pref::kernel refers
to the kernel, whereas the call version() returns the version number of the installed
MuPAD library.

Examples

Example 1

Here the version numbers of kernel and library do not differ:

Pref::kernel() = version()

Example 2

A 32-bit architecture:

Pref::kernel(BitsInLong)
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Example 3

At the time of this writing, kernels build number was 42703:

Pref::kernel(BuildNr)

Options

BitsInLong

Pref::kernel(BitsInLong) returns the number of bits of a long integer number. On a
64-bit architecture it returns 64, otherwise 32.

BuildNr

The kernel has an additional build number which enables the developers to identify the
exact sources for this kernel.

Return Values

Version number: a list of three nonnegative integers or a number.

See Also

MuPAD Functions
buildnumber | version
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Pref::maxMem
Set a memory limit for the session

Syntax
Pref::maxMem(kbytes)

Pref::maxMem(NIL)

Pref::maxMem()

Description

Pref::maxMem(kbytes) with kbytes greater than 0 sets a limit for the physically
allocated memory of the current MuPAD session. A computation exceeding this memory
limit raises an error.

The physically allocated memory is the second of the values returned by bytes().

Note: The memory limit is “soft” because the memory is checked only occasionally.
Usually, more memory is actually used before the excess is detected. Cf. “Example 1” on
page 26-35.

The call Pref::maxMem() returns the current value of the memory limit without
changing it.

The call Pref::maxMem(NIL) switches off the memory watch dog.

Examples

Example 1

No computation should increase the memory usage of the current MuPAD session to
more than a total of 10 megabytes:
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Pref::maxMem(10 * unit::MByte):

The following loop creates larger and larger matrices until the memory limit is exceeded.
Note that the current physical memory allocation returned by bytes()[2] is measured
in bytes:

for n from 100 to 150 step 5 do

   A := linalg::vandermonde([x.j $ j=1..n]);

   print(n, ceil(bytes()[2]/1024)*unit::kByte);

end_for:

 Error: Out of

memory [watchdog-memory];   Evaluating: linalg::vandermonde 

Error: Out of memory. [watchdog-memory]

  Evaluating: linalg::vandermonde

Note that the memory limit was exceeded when computing the 115 ×115 Vandermonde
matrix. However, because the memory consumption is measured only occasionally, this
matrix was generated successfully without an error. Only in the next step, the memory
watchdog recognizes excessive memory usage and aborts the computation of the 120×120
Vandermonde matrix.

Pref::maxMem(NIL):

delete A:

Parameters
kbytes

The memory limit in kBytes: a nonnegative integer or an expression using unit::Byte,
unit::kByte, unit::MByte, or unit::GByte.
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Return Values

Previously defined memory limit: 0 or an expression involving unit::MByte.

See Also

MuPAD Functions
bytes | MAXDEPTH | Pref::maxTime
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Pref::maxTime
Time limit for computations

Syntax
Pref::maxTime(seconds)

Pref::maxTime(NIL)

Pref::maxTime()

Description

Pref::maxTime(seconds) with seconds greater than 0 sets a time limit for all
following MuPAD instructions. Each computation not finished within the given time
raises an error.

The call Pref::maxTime() returns the current value of the time limit without changing
it.

The call Pref::maxTime(NIL) switches off the timer watch dog.

Examples

Example 1

No computation should take more than 10 seconds:

Pref::maxTime(10 * unit::sec):

Note that time returns the CPU time in milliseconds. The following while loop is
designed to run longer than 10 seconds:

TIME:= time(): 

while time() - TIME < 20000 do null() end_while
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Error: Execution time is exceeded. [watchdog-time]

Pref::maxTime(NIL): delete TIME:

Parameters

seconds

The time limit in seconds: a nonnegative integer or an expression involving time units.

Return Values

Previously defined time limit: 0 or an expression involving unit::sec.

See Also

MuPAD Functions
Pref::maxMem | rtime | time | traperror
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Pref::output
Modify the screen output of objects

Syntax
Pref::output(f)

Pref::output(NIL)

Description

Pref::output allows to modify the screen output of objects returned by the MuPAD
kernel.

When the MuPAD kernel returns a result x, say, of a computation, the function f is
called before the result is printed to the screen. Instead of x, the return value f(x) is
used as screen output of the computation.

Make sure that a user-defined output function f processes arbitrary MuPAD objects.

The call Pref::output(NIL) resets the output function to the identity map: the screen
output coincides with the object returned by the computation. NIL is the default value of
the output function.

Examples

Example 1

All numbers of type Type::Numeric shall be displayed as floating point numbers.
Since the kernel may return sequences of objects, the output function may be called with
an unknown number of parameters. It uses map to apply its functionality to all of its
arguments. Whenever a numerical object of type Type::Numeric is encountered, it is
replaced by a floating-point approximation:

f := proc(x) 

begin

  if args(0) > 1 then
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       return(map(args(), f))

  end_if;

  if testtype(x, Type::Numeric) then

       return(float(x))

  else return(x)

  end_if;

end_proc:

Pref::output(f):

4/9; sin(3); 4/9, sin(3), 1/2 + 17*I

We restore the standard mode:

Pref::output(NIL): delete f:

Example 2

The procedure generate::TeX is applied to the result of a computation. The
corresponding TeX code (a string) is displayed:

Pref::output(generate::TeX):

sqrt(x^2 - 1/x)

We restore the standard mode:

Pref::output(NIL):

Parameters

f

The “output function”: a procedure
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Return Values

Previously defined “output function”, or NIL.

See Also

MuPAD Functions
Pref::keepOrder | Pref::postInput | Pref::postOutput
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Pref::outputDigits

Set the number of digits in floating-point outputs

Syntax

Pref::outputDigits(n)

Pref::outputDigits(<UseDigits>)

Pref::outputDigits(<InternalPrecision>)

Pref::outputDigits()

Description

Pref::outputDigits(n) sets the number of digits in outputs of floating-point numbers
to an integer n. This command does not set the precision for calculations. See “Example
1” on page 26-44.

Pref::outputDigits(InternalPrecision) sets the number of digits in floating-
point outputs to settings MuPAD used when creating these floating-point numbers. If
you use Pref::outputDigits(InternalPrecision), the lengths of floating-point
numbers in the same output region can differ because the numbers were created with
different precision. See “Example 2” on page 26-44.

Pref::outputDigits(UseDigits) restores the setting to the number of digits
previously set by DIGITS. The default value for DIGITS is 10. Suppose, you use
internal precision for displaying numbers or explicitly specify a number of digits in
outputs. If you want to switch back to the number of digits specified by DIGITS, use
Pref::outputDigits(UseDigits). See “Example 3” on page 26-45.

Pref::outputDigits() returns the current setting for the number of digits in outputs
of floating-point numbers. This command does not change the setting.
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Examples

Example 1

Display the floating-point approximation of  using 40 digits without changing the

precision for calculations. The default number of digits that MuPAD uses for calculations
with floating-point numbers is 10. MuPAD can increase the precision of calculations by
several digits (guard digits). Round-off errors cause the last digits in the following result
to be incorrect:

Pref::outputDigits(40):

float(1/3)

Note: Always explicitly set the precision you need. Do not rely on having guard digits.

To set the precision for calculations with floating-point numbers, use DIGITS. Display
the floating-point approximation of  using 40 and 15 digits:

DIGITS := 40:

float(1/3);

Pref::outputDigits(15):

float(1/3)

Example 2

Approximate the ratio  with different precisions:

DIGITS := 15:
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x := float(1/6):

DIGITS := 3:

y := float(1/6):

DIGITS := 40:

z := float(1/6):

Display the floating-point approximation of  using the number of digits that MuPAD

uses internally. The lengths of floating-point numbers in the same output region can
differ because the numbers were created with different precision:

Pref::outputDigits(InternalPrecision):

x;

y;

z

Example 3

To switch back to the number of digits set previously by DIGITS, use
Pref::outputDigits(UseDigits):

Pref::outputDigits(UseDigits):

x;

y;

z
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Parameters

n

An integer

Return Values

Previously set value

See Also

MuPAD Functions
DIGITS | float | Pref::floatFormat

26-46



 Pref::postInput

Pref::postInput
Actions after input

Syntax
Pref::postInput(f)

Pref::postInput(NIL)

Pref::postInput()

Description
Pref::postInput allows to set user actions directly after input.

After entering any MuPAD command x, say, and sending this command to the kernel,
f(x) is called before the kernel starts to process the input. This happens for any input
until the post-input is switched off via the call Pref::postInput(NIL).

The function f implicitly uses the option hold, i.e., f sees the input command as
entered and parsed without any evaluation.

f cannot change the input command that is sent to the kernel for evaluation. However, f
can store the input in some global variable for later processing, or some other actions can
be performed.

Pref::postInput() returns the current value of the post-input function or NIL,
respectively.

Pref::postInput, possibly in conjunction with Pref::postOutput, is useful for
initializing variables to compute status information such as the execution time for the
command that is to be executed. See “Example 2” on page 26-49.

Examples

Example 1

The post-input function sees the input as entered, i.e., before evaluation by the kernel:
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Pref::postInput(proc() begin 

  print(Unquoted, "input" = args()) 

end):

1 + 2

input = 1 + 2

1 + 2, x = sin(0.1)

input = (1 + 2, x = sin(0.1))

x := 1234; y := 5678

input = (x := 1234)

input = (y := 5678)

Post-input is switched off. This command calls the post-input function for the very last
time:

Pref::postInput(NIL):

input = Pref::postInput(NIL)

delete x, y:
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Example 2

For any command, the run time is to be computed and displayed. The function declared
in Pref::postInput sets a global timer value TIME after each input. After the output of
the result, the function declared in Pref::postOutput compares the current time and
the starting time TIME.

Pref::postInput(() -> (TIME:= time())):

Pref::postOutput(() -> "Time: ".expr2text((time() - TIME)*msec)):

int(cos(x)*exp(sin(x)), x)

Time: 40 msec 

Time: 40 msec

Pref::postInput(NIL): Pref::postOutput(NIL): 

delete TIME:

Example 3

As another example of using Pref::postInput for storing information to influence the
output, we combine it with Pref::output to include (a rendered version of) the input
and the result:

Pref::postInput(() -> (LASTINPUT := args())):

Pref::output(() -> val(LASTINPUT) = args()):

This makes MuPAD write “input = result” to the screen, while leaving the history
(accessible by %) intact:

int(x, x);

sum((-1)^i/(2*i+1), i=0..infinity);

sin(%)
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Parameters

f

The function to be executed after input: a procedure. The default value of this function is
NIL (no post-input).

Return Values

Previously set post-input function.

See Also

MuPAD Functions
Pref::postOutput
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Pref::postOutput
Actions after output

Syntax
Pref::postOutput(f)

Pref::postOutput(NIL)

Pref::postOutput()

Description

After the result x, say, of a MuPAD command is printed on the screen, f(x) is called
and executed before the next prompt for user input appears. This happens for any output
until the post-output is switched off via Pref::postOutput(NIL).

After the usual output of the result x of a MuPAD command, the return value of f(x) is
printed on the screen with PRETTYPRINT = FALSE. However, f(x) does not return any
value to the MuPAD session. It cannot be accessed via last.

Pref::postOutput() returns the current value of the post-output function or NIL,
respectively.

Pref::postOutput, possibly in conjunction with Pref::postInput, can be used to
produce status information after each output. One may think of timer informations,
memory usage, result types etc.

Examples

Example 1

Here, Pref::postOutput is used to enumerate the output line and display the type
of the result. It uses the global variable LineNumber which must be initialized before
any output is produced. The definition of the post-output operation as well as the
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initialization of the global variable can be done in the file “userinit.mu” which is read
automatically during start-up.

Pref::postOutput(

  proc()

  begin

    LineNumber:= LineNumber + 1;

    "Out[" . expr2text(LineNumber). "]: ".

    "type = ".expr2text(op(map([args()], domtype)));

  end_proc):

LineNumber:= 0:

int(x^5*exp(-x), x)

Out[1]: type = DOM_EXPR

int(x^5*exp(-x), x = 0..infinity),

numeric::int(x^5*exp(-x), x = 0..infinity)

Out[2]: type = DOM_INT, DOM_FLOAT

The following print command returns the void object null() to the MuPAD session.
The output of null() is suppressed:

print("print returns the void object")

The following command is terminated by a semicolon to suppress the output.
Consequently, no post-output is created, either.

x := sin(2):

Post-output is switched off:

Pref::postOutput(NIL): delete LineNumber, x:
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Example 2

For any command, the run time is to be computed and displayed. The function declared
in Pref::postInput sets a global timer value TIME after each input. After the output
of the result, the function declared in Pref::postInput compares the current time
and the starting time TIME. The current TEXTWIDTH is used to prepend some suitable
whitespace via stringlib::format to flush right the timer information:

Pref::postInput(() -> (TIME:= time())):

Pref::postOutput(

  proc() begin

   stringlib::format("Time: ".expr2text(time() - TIME)." msec",

                     TEXTWIDTH-1, Right)

  end_proc):

int(x^10*exp(-x), x)

 

                                           Time: 84.005 msec 

Pref::postInput(NIL): Pref::postOutput(NIL): 

delete T, TIME:

Example 3

The following post-output lists all identifiers with properties in the result of
the last MuPAD command. It extracts the indeterminates via indets and uses
property::hasprop to query whether they have properties:

Pref::postOutput(

  proc()

  begin

    select(indets({args()}), property::hasprop);

    "identifiers with properties: " . expr2text(op(%))

  end_proc):

assume(0 < a < b): a + b + c
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identifiers with properties: a, b

Pref::postOutput(NIL): delete a, b:

Parameters

f

The function to be executed after output: a procedure. The default value of this function
is NIL (no post-output).

Return Values

Previously set post-output function.

See Also

MuPAD Functions
Pref::postInput
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Pref::report
Informations during evaluation

Syntax
Pref::report(level)

Description

Pref::report controls the frequency of report messages of the MuPAD kernel during
evaluation.

A kernel function displays frequently the three informations memory used, memory
reserved and evaluation time in seconds.

The level 0 disables printing information. If level is 1, about every hour a message will
be printed. With 9 as argument the most reports will be printed. The frequency depends
on the machine's speed.

A call of Pref::report without arguments returns the current value. The argument
NIL resets the default value 0.

Examples

Example 1

Frequently information:

Pref::report(9):

limit((1+1/n)^n,n=infinity)

[used=1612k,

reserved=1738k, seconds=1] [used=2716k, reserved=2856k, seconds=2]

                              exp(1) 

Reset to no information:
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Pref::report(0):

Parameters

level

An integer between 0 and 9, or NIL

Return Values

Last defined level

See Also

MuPAD Functions
Pref::callBack
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Pref::trailingZeroes
Trailing zeroes when printing floating-point numbers

Syntax
Pref::trailingZeroes(value)

Pref::trailingZeroes()

Description

Pref::trailingZeroes determines, whether trailing zeroes will be appended, when
floating-point numbers are printed.

If enabled (with argument TRUE), after the significant numbers of a floating-point
number (behind the point) zeroes will be appended until the number of digits reaches the
value of DIGITS.

A call of Pref::trailingZeroes without arguments will return the current value. The
argument NIL will reset the default value, which is FALSE.

Examples

Example 1

By default, trailing zeroes will not be displayed:

DIGITS:= 10:

1.4

Display of trailing zeroes will be enabled:

Pref::trailingZeroes(TRUE):
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1.4

1.400000000

The default mode is restored:

Pref::trailingZeroes(NIL):

Parameters

value

TRUE, FALSE or NIL

Return Values

Last defined value.

See Also

MuPAD Functions
DIGITS | Pref::floatFormat | print
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Pref::typeCheck
Type checking of formal parameters

Syntax
Pref::typeCheck(Always | Interactive | None)

Pref::typeCheck(NIL)

Pref::typeCheck()

Description
Pref::typeCheck determines the kind of type checking of procedure parameters.

The definition of a MuPAD procedure may contain formal parameters. There is a syntax
to attach a type specification to these parameters. If and when type checking is enabled,
the types of actual parameters are checked against the type specifications and an error is
raised if a parameter does not meet the specification.

Type specifications are used as the second parameter of testtype. The most important
ones are “Domain Types” and objects of the domain Type. With Type, user defined types
can be easily added to the system to extend the type checking mechanism.

The arguments of Pref::typeCheck can be:

• None

No parameters are checked.
• Interactive

Parameters entered interactively are checked. This is the default.
• Always

All formal parameters are checked.

The default value Interactive means: When the user is calling a procedure f,
its parameters will be checked, but none of the procedures called by the user called
procedure f performs type checking.
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A call of Pref::typeCheck without arguments returns the current value. The argument
NIL resets the default value, which is Interactive.

Examples

Example 1

We define a procedure f expecting an identifier and an integer:

f:= proc(a : DOM_IDENT, b : DOM_INT)

    begin

      evalassign(a, b, 1)

    end_proc:

f(a, 2)

Now a has the value 2, but an identifier is expected:

f(a, 2)

Error: The object '2' is incorrect. The type of argument number 1 must be 'DOM_IDENT'.

  Evaluating: f

delete a:

Options

Always

Parameter types are checked for every call.

Interactive

Parameter types are checked for interactive calls, not for “inner” calls during the
computation.
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None

No parameter type checks are performed by the MuPAD kernel. Explicit checks inside
procedures still use the usual testargs mechanism.

Return Values

Previously defined value

Algorithms

The syntax to test parameters directly (without a test in the procedure body) is the
formal parameter followed by a colon and then the type object: proc(a : DOM_IDENT,
b : Type::Integer). This means: a must be of the type DOM_IDENT and b must be of
the type Type::Integer.

Note that you cannot use automatic type checking for arguments that are used for
overloading inside the procedure.

The objects of the Type library are usually more general than the MuPAD kernel types.

See Also

MuPAD Domains
DOM_PROC

MuPAD Functions
args | domtype | hastype | proc | testargs | testtype | type
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Pref::userOptions
Additional options when starting MuPAD

Syntax

Pref::userOptions()

Description

Pref::userOptions() returns additional options, given by the user when calling
MuPAD.

When starting the MuPAD kernel with the flag "-U" the user can define options that can
be used in the MuPAD session.

Examples

Example 1

If you start MuPAD with the command mupad -U "Hello World",
Pref::userOptions returns the string "Hello World":

Pref::userOptions()

"Hello World"

Example 2

To define several user options one can use a separator between the strings. MuPAD is
called with mupad -U "myhome,/home/user/myhome,2":

Pref::userOptions()

"myhome,/home/user/myhome,2"
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The following call splits the string into the three parts (to demonstrate, the string is
written explicitely):

s := "myhome,/home/user/myhome,2":

opts := []:

ind := 0:

while (ind := stringlib::contains(s, ",", Index)) <> FALSE do

  opts := opts . [s[1 .. ind-1]];

  s := s[ind+1 .. length(s)]:

end_while:

opts := opts . [s]

delete s, opts, ind:

Return Values

User defined options as strings
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Pref::verboseRead
Shows reading of files

Syntax
Pref::verboseRead(value)

Pref::verboseRead()

Description

With Pref::verboseRead the reading of library packages and files can be shown.

The arguments of Pref::verboseRead represent:

• 0:

no messages when reading files (default).
• 1:

message if a library packages will be read.
• 2:

messages if a package or any library function will be read.
• NIL:

restore the default value 0.

A call of Pref::verboseRead without arguments returns the current value.

Examples

Example 1

Show the reading of library packages:
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reset():

Pref::verboseRead(1):

sin(x)

loading package 'Type' [mupad/share/lib/lib.tar#lib/]

                           0.8414709848 

Show reading of all library files:

reset():

Pref::verboseRead(2):

sin(1.0)

reading file mupad/share/lib/lib.tar#lib/SPECFUNC/sin.mu

reading file mupad/share/lib/lib.tar#lib/SPECFUNC/sinh.mu reading

file mupad/share/lib/lib.tar#lib/STDLIB/infinity.mu loading package

'Type' [mupad/share/lib/lib.tar#lib/] reading file mupad/share/lib/lib.tar#lib/TYPE/Arith.mu

                           0.8414709848 

The default mode is restored:

Pref::verboseRead(NIL):

Parameters

value

0, 1, 2, or NIL

Return Values

Last defined value

See Also

MuPAD Functions
fread | prog::trace | read
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Pref::warnDeadProcEnv

Warnings about wrong usage of lexical scope

Syntax

Pref::warnDeadProcEnv(TRUE)

Pref::warnDeadProcEnv(FALSE)

Pref::warnDeadProcEnv(NIL)

Pref::warnDeadProcEnv()

Description

Pref::warnDeadProcEnv() returns the current setting.

Pref::warnDeadProcEnv(TRUE) switches on warnings about unreachable procedure
environments.

Pref::warnDeadProcEnv(FALSE) switches warning messages off.

Pref::warnDeadProcEnv(NIL) will reset the default value, which is FALSE.

If a procedure is executed a procedure environment is created for this procedure. It
contains the current values of formal parameters and local variables. On exit of the
procedure this procedure environment is normally not needed any more and destroyed.

If a procedure returns a local procedure as its result, this local procedure escapes its
scope. Usually this is no problem. Only if the escaping procedure contains references to
formal parameters or local variables of the outer procedure these variables escape their
scope. These variables can not be dereferenced since they reference values of a procedure
environment of the outer procedure which does not exist any more.

Use option escape in the outer procedure in order to keep its procedure environment
untouched.
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Environment Interactions

Allows or suppresses warning messages.

Examples

Example 1

Here we write procedure p which returns a local procedure. The returned procedure
adds the value of its argument y to the value of the argument x of the first procedure.
The following naive implementation produces a strange output and, when the resulting
procedure is called, a warning message and an error:

Pref::warnDeadProcEnv(FALSE): 

p := proc(x) begin y -> x + y end:  

f := p(1);  f(2)

 Warning:

Uninitialized variable 'unknown' used.   Evaluating: f 

 Error: Illegal operand. [_plus]   Evaluating:

f 

If Pref::warnDeadProcEnv is set to TRUE MuPAD will print a warning message when
the local procedure escapes its scope:

Pref::warnDeadProcEnv(TRUE): 

p := proc(x) begin y -> x + y end:  

f := p(1)

 Warning:

Found dead closure of procedure 'p'. 

Use option escape in the outer procedure to prevent this warning. The returned
procedure f will then work as expected:
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p := proc(x) option escape; begin y -> x + y end:  

f := p(1);  f(2)

Return Values

Previously set value

See Also

MuPAD Functions
proc
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prog::check
Checking objects

Syntax
prog::check(object, <infolevel>, options)

Description

The call prog::check(object) checks the MuPAD object object. object may be a
procedure, a function environment, or a domain. One may also give a list of such objects.

If All is given as first parameter, all defined procedures, function environments and
domains are checked (see anames).

infolevel determines the amount of information given while checking. The following
values are useful:

• 1

summarizing number of warnings per checked object, if at least one warning occurs
(default)

• 2

as 1, but a short message is printed even if no warning was produced
• 3

summary of warnings per checked object
• 5

displays each checked object, followed by individual warnings, followed by a summary
and the number of warnings, if any.

• 10 … 15

additional outputs (for debugging/information)

options can be any of the described options.
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With option All, all are checked. Without options, the set {Domain, Global,
Interface, Level, Local, Protect, Save} is used.

Note: The arguments of hold expressions are not checked.

Examples

Example 1

The following function contains a number of mistakes, some of which were actually legal
in previous versions of MuPAD.

Lines 1 and 2 contains declarations of local variables. In line 4 an undeclared (global)
variable g is used. Line 7 applies level to a local variable (the call simply returns the
value of X in MuPAD 2.0). Line 10 contains an assignment to a formal parameter. This
parameter will be overwritten and its old value lost:

f:= proc(X, Y)                //  1  Local

      local a, b;             //  2  Local

    begin                     //  3

      g:= proc(X)             //  4  Global

            option hold;      //  5

          begin               //  6

            a:= level(X, 2);  //  7  Level

            a:= a + X         //  8

          end_proc;           //  9

      Y:= g(Y);               // 10  Assign, Global

    end_proc:

prog::check(f, 3)

Critical usage of 'level' on local variable ' [f]

Function 'level' applied to variables: {X} in [f, proc in 'f']

Global idents: {g} in [f]

Unused local variables: {b} in [f]

Warnings: 3 [f]

Only search for global variables, but give more messages:
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prog::check(f, 5, Global)

Checking f (DOM_PROC)

  Global variable 'g' in [f]

  Global variable 'g' in [f]

  Global idents: {g} in [f]

  Warnings: 1 [f]

Now check everything:

prog::check(f, 5, All)

Checking f (DOM_PROC)

  Global variable 'g' in [f]

  Critical usage of 'level' on local variable ' [f]

  Function 'level' applied to variables: {X} in [f, proc in 'f']

  Procedure environment of [f] used by [f, proc in 'f']

  Assignment to formal parameter 'Y' in [f].

  Global variable 'g' in [f]

  Global idents: {g} in [f]

  Unused local variables: {b} in [f]

  Unused formal parameters: {X} in [f]

  Assignments to formal parameters: {Y} in [f]

  Warnings: 8 [f]

Global variables declared with the option “save” are allowed:

f:= proc(X)                   //  1  Local

      save g;                 //  2  Save

    begin                     //  3

      g:= X

    end_proc:

prog::check(f, 2, Global, Save)
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Warnings: 0 [f]

Parameters

object

Procedure, function environment or domain to check, the identifier All, or a list of
objects

infolevel

Positive integer that determines the completeness of messages

Options

All

Enables all known options

Global

Report unknown global identifiers

Local

Report unused local variables

These are variables that were declared by local, but never used in the procedure.

Localf

Report unused local variables and unused formal parameters

The same as Local, but the same check is additionally performed for formal parameters
of a procedure. Those are the argument names as given in the definition of the procedure.

Assign

Report assignments to formal parameters of procedures

Because a formal parameter will be overwritten, those assignments could indicate a
programming error (however, not imperative).
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Level

The application of level to local variables is reported. Starting with MuPAD 2.0, local
variables are simply replaced by their values on evaluation and calling level on them
does not have any effect.

Domain

Report undefined entries of domains (uses the slot "undefinedEntries")

Interface

Information about undefined entries of a domain interface are printed, i.e., entries in the
domain interface, that are not defined as entries of the domain.

Environment

Information about assignments to environment variables of MuPAD are printed. These
assignments could change the global behavior of MuPAD if the change is not undone
(preferably using save, to catch error conditions).

Protect

Information about assignments to protected variables of MuPAD are printed.

Save

A message about a global identifier is suppressed, when the checked object is a procedure
and the identifier is saved with option “save”.

Special

Information about some special cases are printed. Currently, the only implemented
special case is assignments to HISTORY.

Escape

prog::check prints warnings about procedures which may require the option escape.

Return Values

prog::check returns the void object null(). Output messages are printed on the
screen.
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See Also

MuPAD Functions
debug | prog::getname | prog::init | prog::isGlobal | prog::trace
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prog::exprlist
Convert an expression into a nested list

Syntax
prog::exprlist(ex)

Description

prog::exprlist returns a list that contains all operands of the expression ex. Each
operand of type DOM_EXPR is converted into a list, too.

The return value of prog::exprlist can be used directly as argument for adt::Tree
resp. output::tree.

Examples

Example 1

The example shows the nested list for the expression a + b*2 - d*(a + c):

prog::exprlist(a + b*2 - d*(a + c))

The return value can be used to create and display a tree:

expose(adt::Tree(prog::exprlist(a + b*2 - d*(a + c))))

_plus

|

+-- a

|

+-- _mult
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|   |

|   +-- b

|   |

|   `-- 2

|

`-- _mult

    |

    +-- d

    |

    +-- _plus

    |   |

    |   +-- a

    |   |

    |   `-- c

    |

    `-- -1

Parameters

ex

Expression to convert

Return Values

List

See Also

MuPAD Functions
adt::Tree | output::tree | prog::exprtree
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prog::exprtree
Visualize an expression as tree

Syntax
prog::exprtree(ex, <Quiet>)

Description

prog::exprtree(ex) visualizes any MuPAD expression ex as tree.

Every expression in MuPAD is internally a tree. The operations are the nodes, and the
operands are the leafs.

Examples

Example 1

The example shows the structure of the expression a + b*2 - d*(a + c):

prog::exprtree(a + b*2 - d*(a + c))

_plus

|

+-- a

|

+-- _mult

|   |

|   +-- b

|   |

|   `-- 2

|

`-- _mult

    |

    +-- d
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    |

    +-- _plus

    |   |

    |   +-- a

    |   |

    |   `-- c

    |

    `-- -1

Tree1 is the return value of type adt::Tree. This object can be exposed or taken for
other operations.

The option Quiet suppresses the output, only the tree is returned:

prog::exprtree(a + b*2 - d*(a + c), Quiet)

Parameters

ex

Expression to visualize

Options

Quiet

With this option no output will be printed on screen. The return value of type adt::Tree
represents the tree structure of ex.

Return Values

Object of type adt::Tree
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See Also

MuPAD Functions
adt::Tree
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prog::find
Find operands of objects

Syntax
prog::find(obj, piece, <Depth = d>, <Type>)

Description

prog::find(obj, piece) returns the position of the object piece in the MuPAD
object obj as list. The list represents a “path” to the given object. With this list and the
functions op and subsop, the object can directly be accessed.

A path to an object piece is a list that contains integers i1, ..., in.

The meaning is that piece is the in-th operand of the (in - 1)-st operand etc. of the
i1-st operand of the given object obj.

Stated differently, op(ex, [i1, ..., in]) = opr.

If the searched object is containing several times, a sequence of lists is returned.

An empty list [ ] as path determines the object obj itself.

Examples

Example 1

The identifier a is the first operand of the expression:

prog::find(a + b + c, a)

The number 1 occurs several times:
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prog::find(f(1, 1, 1), 1)

Example 2

The identifier a is the first operand of the second operand of the first operand of the
expression:

prog::find(b*(a - 1) + b*(x - 1), a)

The result of prog::find can be used to access the element with op or replace it with
subsop:

op(b*(a - 1) + b*(x - 1), [1, 2, 1]);

subsop(b*(a - 1) + b*(x - 1), [1, 2, 1] = A)

Example 3

How many calls of return does sin contain?

nops([prog::find(sin, return)])

sin contains many return calls! However, sin is a function environment and the slots
are examined, too. To examine only the main procedure, take the first operand of the
function environment:

nops(prog::find(op(sin, 1), return))
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Example 4

prog::find can also find all objects of a given type:

nops(prog::find(sin, DOM_PROC, Type))

To find only the top level procedures, option Depth can be used:

nops(prog::find(sin, DOM_PROC, Type, Depth = 1))

Example 5

prog::find works with tables and other containes, too:

T := table(1 = sin(x), 2 = cos(x), 3 = tan(x),

           4 = tan(y), 5 = sin(y), 6 = cos(y)):

prog::find(T, sin)

prog::find(T, "cos", Type)

Example 6

In this example we show how to manipulate an existing function by substitution. We use
subsop for the substitution and prog::find to get the path for the substitution. Here
we replace the ^-function by the function mypower which additionally counts the number
of its calls:

f := x -> `+`(x^j $ j = 1 .. random(10)()):

mypower := (b, e) -> (count := count + 1;  b^e):

27-15



27 prog – Programmer's Toolbox

map([prog::find(f, `^`)],

    X -> (f := subsop(f, X = mypower))):

After calling the function f ten times in a loop, we see the resulting number of calls of ^
in count:

count := 0:

for i from 1 to 10 do f(i); end:

count

Parameters

obj

Any MuPAD object

piece

Any MuPAD object

Options

Depth

Option, specified as Depth = d

This option allows examining operands of the given object, that are domains, procedures
and function environments, only with recursion depth d.

Option Depth can be used to find procedures, but not locally defined procedures inside
the procedures that were found in the first step.

Type

When the option Type is given, prog::find does not search positions p in obj such
that op(obj, p) = piece, but rather those with testtype(op(obj, p), piece) =
TRUE. Cf. “Example 4” on page 27-15.
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Return Values

List of numbers that determine the position of the given object inside of the given
expression, or a sequence of lists, if the expression contains the object several times

Algorithms

prog::find can be used to examine and manipulate complex MuPAD objects with
subsop.

See Also

MuPAD Functions
has | op | prog::exprtree | subsop
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prog::getname
Name of an object

Syntax
prog::getname(object)

Description

prog::getname(object) returns the name of the MuPAD object object.

The return value is a string, irrespective of the type of the input.

Names can be extracted from procedures, identifiers, function environments, domains
and their methods (and strings, of course). If no name can be extracted from an object,
the string "(noname)" is returned.

For all other MuPAD objects the result of expr2text(object) is returned as name.

Examples

Example 1

My own name:

prog::getname(prog::getname)

The name of a Domain:

prog::getname(Dom::ExpressionField())
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The “name” of an arbitrary MuPAD object:

prog::getname(1)

prog::getname(a + 2*b)

Parameters

object

Any MuPAD object

Return Values

Name as string

See Also

MuPAD Functions
expr2text | info | op | print | text2expr
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prog::getOptions

Get and verify options within a procedure

Syntax

prog::getOptions(n, arguments, allOptions, <ErrorOnUnexpected>, <optionTypes>)

Description

prog::getOptions called within a procedure collects and verifies all options from the
list of arguments of the calling procedure.

When you write your own procedure, prog::getOptions lets you embed the collection
and verification of all options of the procedure. When a user calls your procedure,
prog::getOptions scans all the arguments and provides a data structure that contains
all option values. See “Example 1” on page 27-21.

The prog::getOptions function returns a list that contains a table of all valid options
along with their values and a list of unexpected arguments. For expected options,
prog::getOptions returns the following values:

If an option can have only TRUE or FALSE values, a user of your procedure can provide
the option name, instead of providing an option-value pair. If a user provides an option
without specifying its value, prog::getOptions returns the Boolean value TRUE for
that option. See “Example 2” on page 27-22.

prog::getOptions returns a list with two components: a table of expected options and
a list of unexpected arguments. You can access the components of that list separately by
using the index operator (see _index). See “Example 3” on page 27-22.

By default, the prog::getOptions function does not error when it finds an unexpected
argument. To switch to issuing errors on unexpected arguments, use the parameter
ErrorOnUnexpected. See “Example 4” on page 27-23.

The procedure that includes prog::getOptions must accept the arguments
in the following order: first nonoptional parameters, and then all options. The
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prog::getOptions function lets you specify the number n of the argument from which
the function starts verifying options. The prog::getOptions function assumes that
the first n - 1 arguments are parameters and, therefore, does not verify them. See
“Example 5” on page 27-23.

The parameter optionTypes lets you specify acceptable types for the option values.
You can specify acceptable types for some or all of the expected options provided in the
allOptions table. See “Example 6” on page 27-24.

The first three parameters of prog::getOptions (n, arguments, and allOptions)
are required. ErrorOnUnexpected and optionTypes are optional. You must provide
the parameters of prog::getOptions using the order shown in the Calls section of this
page. Therefore, if you want to use the fifth parameter optionTypes, you also must
explicitly use the fourth parameter ErrorOnUnexpected.

The second parameter of the prog::getOptions function, arguments, is a list of all
arguments of your procedure. prog::getOptions scans the arguments provided in that
list. Although prog::getOptions accepts any list as a second argument, the calling
procedure always must provide a list of all its arguments (both parameters and options)
to avoid potential errors. The syntax [ args()] provides a list of all arguments of the
calling procedure. See “Example 7” on page 27-25.

Examples

Example 1

To embed the option collection and verification step into your procedure, call
prog::getOptions function within that procedure. To test the behaviour of
prog::getOptions, create a function f that calls prog::getOptions to scan and
verify the arguments of f. For example, create the function f that accepts only one option
All:

f := () -> prog::getOptions(1, [args()], table(All = TRUE)):

prog::getOptions returns a list. The first entry of the list is a table containing all
expected options and their values. The second entry is a list of unexpected arguments.
For example the function call f() does not contain any unexpected arguments:

f();
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The function call f(Unexpected) contains the unexpected argument Unexpected:

f(Unexpected);

Example 2

When users call the procedure that includes prog::getOptions, they can specify new
values for any of the valid options of that procedure. In this case, prog::getOptions
returns the new values. If a user uses the option without specifying its value,
prog::getOptions returns the Boolean value TRUE for that option. If a user does not
explicitly use an expected option, prog::getOptions returns the default value of that
option provided in the allOptions table. For example, in the function call f(Proc =
op, Warning), the prog::getOptions function returns the following values:

• If a user provides a value for the option, prog::getOptions returns that value.
• If a user does not use the option in a procedure call, prog::getOptions returns the

default value for that option.

f := () -> prog::getOptions(1, [args()],

                               table(All = FALSE,

                                     Proc = id,

                                     Warning = FALSE))[1]:

f(Proc = op, Warning)

Example 3

To access the table of expected options and the list of unexpected arguments separately,
use the index operator (see _index):
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f := () -> prog::getOptions(1, [args()],

                                  table(All = TRUE))[1]:

g := () -> prog::getOptions(1, [args()],

                                  table(All = TRUE))[2]:

ExpectedOptions = f(Unexpected);

UnexpectedOptions = g(Unexpected)

Example 4

When a user supplies unexpected arguments to your procedure, prog::getOptions
can collect these arguments and return them as a list. Also, prog::getOptions
can stop and issue an error when it finds the first unexpected argument. To issue an
error instead of listing unexpected arguments, use TRUE as the fourth parameter of
prog::getOptions:

f := () -> prog::getOptions(1, [args()], table(All = TRUE), TRUE):

f(Unexpected)

Error: The argument number 1 is invalid.

  Evaluating: f

Example 5

The prog::getOptions function does not distinguish parameters from options
automatically. If some arguments of a procedure are parameters, exclude them from
option verification. Otherwise, the prog::getOptions function lists those parameters
as unexpected arguments. For example, prog::getOptions lists 1 and 2 as unexpected
arguments of the function call f(1, 2, All):

f := () -> prog::getOptions(1, [args()], table(All = TRUE))[2]:

UnexpectedOptions = f(1, 2, All);
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If you set the prog::getOptions function to error on unexpected arguments, it will
error on the parameters too:

f := () -> prog::getOptions(1, [args()], table(All = TRUE), TRUE):

f(1, 2, All);

Error: The argument number 1 is invalid.

  Evaluating: f

To exclude first n parameters of a function from option verification, provide the number
n + 1 as a first argument of prog::getOptions. In a function call, specify all n
parameters before you specify options. For example, to avoid checking the first two
arguments in the function call f(1, 2, All), use the following syntax:

f := () -> prog::getOptions(3, [args()], table(All = TRUE))[2]:

UnexpectedOptions = f(1, 2, All);

When you use prog::getOptions, you must provide all nonoptional parameters
first, and then provide the options. The following syntax does not work because
prog::getOptions assumes that the first two arguments in the function call f(1,
All, 2) are parameters, and the number 2 is an option:

f := () -> prog::getOptions(3, [args()], table(All = TRUE), TRUE):

f(1, All, 2);

Error: The argument number 3 is invalid.

  Evaluating: f

Example 6

To specify acceptable types of the option values, use a table that contains acceptable
options as indices and their expected types as entries. For example, specify that the
All option must be of the type DOM_BOOL, and the Proc option must be of the type
Type::Function:

f:= () -> prog::getOptions(1, [args()],

                              table(All = TRUE, Proc = id),
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                              TRUE,

                              table(All = DOM_BOOL,

                                    Proc = Type::Function)

                              )[1]:

Now, options can have only values of the correct types:

f(All = FALSE, Proc = id)

If you try to use a value of the wrong type, the function issues an error:

f(All = FALSE, Proc = 0)

Error: The type of argument number 2 is incorrect.

  Evaluating: f

Also, you can define and use a procedure for performing the type check. For arguments of
the valid type, the procedure must return TRUE or an expression that can be evaluated to
TRUE by the bool function:

f := () -> prog::getOptions(

                    2, [args()],

                    table(File = ""), TRUE,

                    table(File = (X -> contains({DOM_STRING,

                                                 DOM_INT},

                                                 type(X))))

                           )[1]:

f(FALSE, File = 0), f(TRUE, File = "test.log")

Example 7

Using arguments to separate options from parameters is not recommended because
it can lead to errors. Always use the first parameter of prog::getOptions to specify
how many parameters you have. Although prog::getOptions accepts any list as a second
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argument, the best practice is to use only args(). The following example demostrates
that using arguments to separate options from parameters can result in the wrong error
message. Although this error message correctly indicates that one of the options has a
value of the wrong type, the index of the argument is wrong:

f := () -> prog::getOptions(1, [args(2..args(0))],

                            table(Option1 = TRUE), 

                            TRUE,

                            table(Option1 = DOM_BOOL)):

f(x, Option1 = 1, Option2)

Error: The type of argument number 1 is incorrect.

  Evaluating: f

To get the correct error message for this example, use the first parameter of
prog::getOptions to exclude x from option verification:

f := () -> prog::getOptions(2, [args()], table(Option1 = TRUE), 

                            TRUE, table(Option1 = DOM_BOOL)):

f(x, Option1 = 1, Option2)

Error: The type of argument number 2 is incorrect.

  Evaluating: f

Parameters

n

A positive integer that specifies the number of the first option in the list of arguments.
When calling the procedure, a user must provide all nonoptional paramaters before the
options.

arguments

A list of all arguments of the procedure. Use args() to access all arguments.

allOptions

A table that contains all acceptable options as indices and their default values as
entries: table(Option = defaultValue)
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ErrorOnUnexpected

A Boolean constant TRUE or FALSE. If the value is TRUE, prog::getOptions
issues an error when it finds an unexpected argument. If the value is FALSE,
prog::getOptions collects all unexpected arguments and returns them as a list. By
default, ErrorOnUnexpected = FALSE.

optionTypes

A table that contains acceptable options as indices and their expected types as entries:
table(Option = optionType). Here optionType must be a valid second argument
of the testtype function or a procedure that returns TRUE (or an expression that can be
evaluated to TRUE by the bool function) for arguments of the valid type. If you want to
specify optionTypes, you also must explicitly specify ErrorOnUnexpected.

Return Values

List that contains a table and a list. The table contains all valid options of the calling
procedure and their values. For expected options that are not specified in the procedure,
the values are their default values. The list contains all unexpected arguments in the
procedure.

See Also

MuPAD Functions
testtype
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prog::init
Loading objects

Syntax
prog::init(object)

Description

prog::init(object) initializes the MuPAD object object.

Almost all MuPAD objects (domains, procedures etc.) are loaded into memory at their
first use. This mechanism saves a lot of memory and time while starting MuPAD. Most of
the MuPAD objects are not needed in a given session and would only fill up the system.

This strategy is transparent with respect to the usage of MuPAD objects. On slower
computers, you may notice a delay on the first use of a function or domain.

Using Pref::verboseRead, you can make MuPAD print information on files loaded
automatically.

Examples

Example 1

Initializing all objects from any additional MuPAD library increases the memory
requirements. For example, you can initialize the object from the linalg library:

bytes()

 

                522304, 815604, 2147483647 

prog::init(linalg):

Check the memory usage again:
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bytes()

   

            15990660, 16507016, 2147483647 

Example 2

Using Pref::verboseRead, we obtain information on what is loaded by the system:

reset():

Pref::verboseRead(2):

prog::init(prog::trace)

loading package

'prog' [lib/] reading file lib/PROG/checkini.mu reading file lib/PROG/trace.mu 

Parameters

object

MuPAD object to initialize or option All

Options

All

Initializing all MuPAD objects

With this option (instead of some MuPAD object), all MuPAD objects will be initialized.

Return Values

prog::init returns the void object null().

See Also

MuPAD Functions
Pref::verboseRead | prog::check
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prog::isGlobal
Information about reserved identifiers

Syntax
prog::isGlobal(ident)

Description

prog::isGlobal(ident) checks whether the identifier ident is “used by the
system”. Here, “used by the system” means that ident is an environment variable (e.g.,
PRETTYPRINT), a system-wide constant (e.g., PI or undefined), an option (for some
function call, e.g., All), or a system function (such as sin).

The most of those identifiers are protected (see protect).

Examples

Example 1

Assume you would like to use some identifiers as options for a new function you wrote. In
this example, we will check the elements of the list [All, Beta, Circle, D, eval,
First] for suitability. (Note that eval would not be a good choice, even if it was not a
system function, because options should start with a capital letter.)

We define a test function which is mapped to the list and returns FAIL, if the tested
object is not an identifier, TRUE, if the identifier is used by the system and FALSE
otherwise:

LIST:= [All, Beta, Circle, D, eval, First]:

map(LIST, X -> if domtype(X) <> DOM_IDENT then

                 X = FAIL

               else

                 X = prog::isGlobal(X)

               end_if)
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The identifiers All and First can be used as options because they have already been
protected by the system (actually, they are already used as options, which makes them a
good choice), the identifiers Beta and Circle are free and one must only take care that
they have no value if they will be used as options—they should be protected first. D and
eval have values and cannot be used as options.

Parameters

ident

Identifier to check

Return Values

prog::isGlobal return TRUE, if the given identifier is used by the system, otherwise
FALSE.

See Also

MuPAD Functions
anames | domtype | prog::check | type
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prog::ntime
Hardware independent time unit

Syntax
prog::ntime()

Description
prog::ntime() returns a time unit that represents roughly the speed of the current
machine for typical library programs.

prog::ntime can be used to perform timing tests of typical MuPAD library programs on
different machines.

prog::ntime uses a mix of different operations to calculate the time factor.

One call to prog::ntime takes about 1.5 seconds.

A real timing value must be divided by the value of prog::ntime, to get a machine
independent timing value.

Examples

Example 1

On this machine, a timing must be divided by the value of prog::ntime, then the
timing is comparable with the timing of the same code on another machine, also divided
by the value of prog::ntime on the other machine:

prog::ntime()

                         0.7052155095 

Return Values
Floating point number
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See Also

MuPAD Functions
prog::testinit | time
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prog::profile

Display timing data of nested function calls

Syntax

prog::profile(stmt)

Description

prog::profile(stmt) evaluates the MuPAD statement stmt and displays timing data
of all nested function calls, additionally a graph with the calling structure.

prog::profile measures and displays the time usage of library functions. Kernel
functions are not measured. For every function called during the evaluation of stmt,
prog::profile prints the time spent in this function and the number of calls.

prog::profile can be helpful in finding time critical functions and unnecessary nested
function calls.

stmt could be reading a whole test file, too.

A trick to observe also kernel functions is to call prog::trace with the kernel function
as argument. prog::trace takes a library wrapper procedure around the kernel
function, that has the same name and can be found in the output of prog::profile,
when the kernel function is used during the evaluation of stmt. The time use of the
wrapper function is nearly zero.

The first part of the output is a table with the timing values for each procedure, the
second part is a graph, that presents information about the dependences between all
measured functions, when stmt is evaluated.

The table contains several columns that are described below.

Each row shows all data of one function (called “the function”), that was measured by
prog::profile. There is one special entry: The first entry is called procedure entry
point. It shows the sum of all functions and reperesents the evaluation of stmt.
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• "percent usage of all"

the time spent in the function with respect to the whole time used for the evaluation
of stmt (in percent)

• "time self per single call"

the value "time self" divided by the sum of all calls of the function (in milli
seconds)

• "time self"

the whole time spent in the body of the function, i.e., the sum of all calls, without the
time, used by all other measured functions called by the function (in milli seconds)

• "time children per single call"

the value "time children" divided by the sum of all calls of the function (in milli
seconds)

• "time children"

the sum of all time (self and children) spent in all functions that are called by the
function directly

• "calls/normal exit"

number of all calls of the function that leave the function without errors
• "calls/remember exit"

number of all calls of the function that return a remembered value by the kernel
remember mechanism (and does not call the function body)

• "calls/errors"

number of all calls of the function that leave the function with an error
• ["[index] function name"]

the index of the function (assigned by prog::profile) and the name of the function

An index is assigned to each function, in descending order of time usage, to identify and
find the function in the call graph that is described now.

The second part of the output of prog::profile is a dependence graph. It shows each
function, their parents (functions that call the function directly), and their children
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(functions that are called from the function directly), together with timing information
and the number of calls.

Each part of the graph that is separated by horizontal lines of minus chars, belongs to
one function. It contains several columns:

• "index"

the index, assigned unique to the function
• "%time"

the percentage of the function on the whole run time
• "self"

the sum of all times used by the function (in milli seconds)
• "children"

the sum of all times used by the children of the function (in milli seconds)
• "called"

the number of all calls of the function
• ["[index] name"]

the index and the name of the function

There are two kinds of entries: the function that belongs to the part has its index in
the first column of the part, and in this column, only their name is printed.

All other functions (parents and children of the function) are only printed in this
column with their index and name together, with small indentation for highlighting
the function that belongs to the part.

The parents are located above the function itself, all children are written below the
line with the function, the part belongs to.

For a more detailed explanation of the lines in a graph part see the first example.
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Examples

Example 1

We define three functions f, g and h. prog::profile displays the time spent in each
function and the number of calls to it:

f := proc()

       local t;

     begin

       t := time();

       while time() < 10 + t do nothing end_while

     end_proc:

g := proc()

       local t;

     begin

       f();

       t := time();

       while time() < 10 + t do nothing end_while;

       f()

     end_proc:

h := proc() begin g(), f(), g() end_proc:

prog::profile(h()):

  percent usage of all     |    time self per

single call     |      |    time self     |      |      |    time

children per single call     |      |      |      |    time children

    |      |      |      |      |   calls/normal exit     |      |

     |      |      |   |  calls/remember exit     |      |      |

     |      |   |  |  calls/errors     |      |      |      |    

 |   |  |  |  [index] funct. name -----------------------------------------------------------------

 100.0   70.0   70.0     .      .   1  .  .  [0]  proc. entry pt.

-----------------------------------------------------------------

  71.4   10.0   50.0     .      .   5  .  .  [1]  f   28.6   10.0

  20.0   20.0   40.0  2  .  .  [2]  g     .      .      .    70.0

  70.0  1  .  .  [3]  h -----------------------------------------------------------------

  index     %time      self  children     called  [index] name -----------------------------------------------------------------

  [0]     100.0        70         0          1  proc. entry point

                        0        70          1      [3]  h -----------------------------------------------------------------

                       40         0          4      [2]  g       

                10         0          1      [3]  h   [1]      71.4

       50         0          5  f -----------------------------------------------------------------
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                       20        40          2      [3]  h   [2] 

    28.6        20        40          2  g                       

40         0          4      [1]  f -----------------------------------------------------------------

  [3]       0.0         0        70          1  h                

       10         0          1      [1]  f                       

20        40          2      [2]  g -----------------------------------------------------------------

  Time sum: 70 ms 

(The output is shortened slightly, because the page is too small.)

The lines of the table above are described following:

  percent usage of all     |    time self per

single call     |      |    time self     |      |      |    time

children per single call     |      |      |      |    time children

    |      |      |      |      |   calls/normal exit     |      |

     |      |      |   |  calls/remember exit     |      |      |

     |      |   |  |  calls/errors     |      |      |      |    

 |   |  |  |  [index] funct. name -----------------------------------------------------------------

 100.0   70.0   70.0     .      .   1  .  .  [0]  proc. entry pt.

----------------------------------------------------------------- 

The whole function call takes 100 percent of the time (certainly), 70.0 milli seconds and
is called once (the evaluation of stmt), without an error.

  71.4   10.0   50.0     .      .   5  .  .

 [1]  f 

Function f takes 71.4 percent of all evaluation time in its body. It uses 10.0 milli
seconds per call on the average (in this case exactly), their children (if existing) uses no
time measurable (because it has no children), and it is called 5 times and returns without
errors. f has the index 1.

  28.6   10.0   20.0   20.0   40.0  2  .  .

 [2]  g 

Function g takes 28.6 percent of the whole time that are 20.0 milli seconds, and 10.0
milli seconds on the average per call. Their children uses 20.0 milli seconds pre call on
the average and 40.0 total, and g is called twice and returns without errors. g gets the
index 2.

    .      .      .    70.0   70.0  1  .  .

 [3]  h 
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Function h uses nearly no evaluation time, their children uses 70.0 milli seconds on the
average and 70.0 total, and h is called once and finished without errors. h gets the index
3.

The parts of the graph above are described following:

index     %time      self  children     called

 [index] name -----------------------------------------------------------------

  [0]     100.0        70         0          1  proc entry point 

                       0        70          1      [3]  h ----------------------------------------------------------------- 

The whole function call takes 100 percent of the evaluation time (by definition), that are
70.0 milli seconds, and it is called once.

It calls once the function h with index [3] (as argument of prog::profile), and h uses
70.0 milli seconds of the time that are spent in the children of h, not in the body.

index     %time      self  children     called

 [index] name -----------------------------------------------------------------

                       40         0          4      [2]  g       

                10         0          1      [3]  h   [1]      71.4

       50         0          5  f ----------------------------------------------------------------- 

Function f spends 71.4 percent of the whole evaluation time. It uses 50.0 milli seconds,
their children uses no time measurable, and it is called 5 times.

f has two parents and no children.

f is called by its parent g4 times and by h once.

f spends 40 milli seconds by itself (in its body), when it is called from g (the first line
in the part of f), and f spends 10 milli seconds in its body, when it is called from h (the
second line).

index     %time      self  children     called

 [index] name -----------------------------------------------------------------

                       20        40          2      [3]  h   [2] 

    28.6        20        40          2  g                       

40         0          4      [1]  f ----------------------------------------------------------------- 

Function g takes 28.6 percent of the whole time, 20 milli seconds in its body, and their
children take 40 milli seconds. g is called twice.

g is called from h twice, and spends 20 ms in its body and 40 ms in its children.
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g calls the function f four times, and f spend 40 ms in its body, when it is called from g.

index     %time      self  children     called

 [index] name -----------------------------------------------------------------

  [3]       0.0         0        70          1  h                

       10         0          1      [1]  f                       

20        40          2      [2]  g ----------------------------------------------------------------- 

Function h takes nearly no evaluation time, their children spends 70.0 milli seconds,
and h is called once.

h calls the functions f and g directly, f once and g twice.

f uses 10 ms in its body, when it is called from h, and g uses 20 ms in its body and 40 ms
in its children.

Parameters

stmt

A MuPAD statement

Return Values
Result of stmt

Algorithms
The timings displayed by prog::profile are generated by the kernel.

The evaluation of stmt inside prog::profile takes partly substantially longer than
evaluating stmt directly. This extra time does not influence the validity of the timings,
i.e., if prog::profile reports f taking three times as long as g, then this is also the
case when evaluating stmt directly.

See Also

MuPAD Functions
prog::trace | time
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prog::remember
Extended remember mechanism for procedures

Syntax
prog::remember(f, <depends>, <PreventRecursion, <predef>>)

Description
prog::remember(f) returns a modified copy of the procedure f that stores previously
computed results and additional information in a remember table. When you call f with
arguments that you already used in previous calls, f finds the results in its remember
table and returns them immediately.

If you assign f to an identifier or a domain slot, you also must assign the copy
returned by prog::remember to the same identifier or slot, for example, f :=
prog::remember(f).

f :=prog::remember(f) remembers results without context information, such as
properties or the value of DIGITS. The first time you call f with any new combination of
input parameters, the remember table of f stores `input`->`f(input)`. After that,
when you call f with the same input parameters, it takes the result f(input) from the
remember table instead of recomputing it. See “Example 1” on page 27-42.

f := prog::remember(f, depends) remembers results and additional context
information. The dependency function depends lets you specify the context information
to store along with computed results in the remember table and verify in each function
call. See “Example 2” on page 27-43.

Typically, it is useful to store and verify properties of the input and the values of
DIGITS and ORDER. To access properties of the input, use property::depends. This
dependency function verifies all three values:

() -> [property::depends(args()), DIGITS, ORDER]

Another common problem is that an overloading function does not register when its
overloading slot changes in some other function or domain. This dependency function
that uses slotAssignCounter lets you avoid this problem:
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() -> [property::depends, slotAssignCounter("foo")]

To combine all three tasks, use this dependency function:

() -> [property::depends(args()),

   DIGITS, ORDER, slotAssignCounter("foo")]

The first time you call f with any new combination of input parameters, the remember
table of f stores `[input, depends(input)]`->`f(input)`. After that, when
you call f with the same input parameters, it checks whether depends(input)
returns the same value as before. If it does, then f takes the result f(input) from
the remember table. Otherwise, it computes f(input) and adds the new values
`[input, depends(input)]`->`f(input)` to the remember table. The only
exception to this rule is results computed with different values of MAXEFFORT. If in
previous calls f(input) was computed with lower MAXEFFORT, then the new call with
higher MAXEFFORT is evaluated and remembered results are replaced with the new ones.

If the dependency function is constant or returns the value that does not depend on the
input, then the remember mechanism disregards context information.

You can call the modified procedure with the Remember option as the first argument, and
one of these special options as the second argument:

• Clear clears the remember table of the procedure.
• ClearPrevent clears the remember table that prevents infinite recursions inside the

procedure. For details about preventing infinite recursions, see the description of the
PreventRecursion option.

• Print returns the remember table of the procedure.

For example, the call f(Remember, Clear) clears the remember table of f. Also see
“Example 3” on page 27-45.

Examples

Example 1

Create this function:

f := X -> if X > 1 then f(X - 1)*f(X - 2) - f(X - 2) else 1 end_if:
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Calling this function is time-consuming because the function calls itself recursively and
evaluates every call:

f(20), time(f(20))

Using the remember mechanism eliminates these reevaluations. To enable the remember
mechanism, use prog::remember:

f := prog::remember(f):

f(200), time(f(200))

Example 2

Create the procedure pos that checks if its parameter is positive:

pos := proc(x)

       begin

         is(x > 0)

       end_proc:

Enable the remember mechanism for pos:

pos := prog::remember(pos):

pos returns UNKNOWN for variable a:

pos(a)

Now use assume to specify that variable a is positive:

assume(a > 0):

When you call pos for variable a, it finds the value of pos(a) in the remember table.
In this case, the remember table does not store the context information, and therefore
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does not check for the new assumptions on variable a. It returns the remembered result,
which is incorrect because of the new assumption:

pos(a)

Calling pos for a^3 returns the correct result because pos(a^3) is not in the remember
table yet:

pos(a^3)

Assume that a is negative:

assume(a < 0):

Now both calls return incorrect values because the results are taken from the remember
tables:

pos(a), pos(a^3)

To make the remember mechanism aware of the changes in assumptions, use
prog::remember with the second argument property::depends as the dependency
function:

unassume(a):

pos := proc(x)

       begin

         is(x > 0)

       end_proc:

pos := prog::remember(pos, property::depends):

pos(a)

Now pos reacts properly to the new assumption:

assume(a > 0):
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pos(a)

pos also returns the correct result after you clear the assumption:

unassume(a):

pos(a)

Example 3

Create the procedure pos and enable the remember mechanism for it:

pos := proc(x)

       begin

         is(x > 0)

       end_proc:

pos := prog::remember(pos, getprop):

Call pos for these parameters:

pos(a):

assume(b > a, _and):

pos(b):

After you call the procedure at least once, it creates the remember table. To see the
remember table of a procedure, use the special option Print. The value 106 in the second
column is the value of MAXEFFORT used during computations.

pos(Remember, Print)

To clear the remember table of a procedure and thus force the function to reevaluate all
results, use the special option Clear:

pos(Remember, Clear):

pos(b)
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Example 4

Create the procedure deps that collects all operands of the properties of a given
expression, including the identifiers of assumed properties:

deps := proc(x)

        begin

          if domtype(x) <> DOM_IDENT then

            op(map(indets(x), deps))

          else

            x, deps(getprop(x))

          end_if

        end_proc:

Set the following assumption. Note that now deps contains potentially infinite recursions
because the property of x refers to y, and the property of y refers back to x:

assume(x > y):

deps(x)

Error: Recursive definition [See ?MAXDEPTH]

To prevent infinite recursions, use prog::remember with the PreventRecursion
option:

deps := prog::remember(deps, PreventRecursion):

deps(x)

To simplify the return value of deps, rewrite the function so that it returns a set of all
identifiers:

deps := proc(x)

        begin

          if domtype(x) <> DOM_IDENT then

            _union(op(map(indets(x), deps)))

          else

            {x} union deps(getprop(x))

          end_if
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        end_proc:

deps := prog::remember(deps, PreventRecursion):

deps(x)

Now deps expects the return value to be a set. By default, when recursion is detected,
the procedure returns the value of its input (which is not a set in this example). When
preventing recursion in a procedure where the type of the input differs from the type of
the return value, specify the value predef that the procedure returns when recursion is
detected:

deps := proc(x)

        begin

          if domtype(x) <> DOM_IDENT then

            _union(op(map(indets(x), deps)))

          else

            {x} union deps(getprop(x))

          end_if

        end_proc:

deps := prog::remember(deps, PreventRecursion, () -> {args()}):

Here predef returns a set with the input as an operand:

deps(x)

Parameters

f

A procedure or function environment

depends

A procedure or expression

predef

A procedure or expression
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Options

PreventRecursion

With this option, the procedure returned by prog::remember uses remembered
information to prevent infinite recursion inside the procedure.

f := prog::remember(f, PreventRecursion, predef ) stores the input
parameters only during the function call. This approach lets you avoid reevaluating the
same function call when the function calls itself recursively. Instead, it returns the input
(by default) or the result of the call predef(input) (if you specify predef). If returning
the input is not an appropriate result for the function call (for example, if the return
value of f and the input are of different types), then you must specify the value predef.
See “Example 4” on page 27-46.

At the end of the function call, all remembered values are discarded. If you call the
function with the same input parameters again, the function call is evaluated with the
same costs as before.

You can prevent recursion inside the function call and simultaneously use the remember
mechanism outside the function call by using this syntax: f := prog::remember(f,
depends, PreventRecursion, predef ). If you want to use the remember
mechanism with the context information, specify the dependency function depends as
usual. If you want to use the remember mechanism without the context information and
prevent recursions inside a procedure, specify depends as a constant (or any function
whose return value does not depend on the input). Note that if you omit the depends
function and just use the syntax f := prog::remember(f, PreventRecursion,
predef ), then the remember mechanism does not work outside the function call. In
this case, you only prevent recursions.

Return Values

Modified procedure or function environment

See Also

MuPAD Functions
proc | property::depends | slotAssignCounter
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More About
• “Remember Mechanism”
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prog::sort
Sort objects by an index function

Syntax
prog::sort(list, func, <Reverse>, <p1, p2, …>)

Description

prog::sort(list, func) applies the function func to any object of the list list and
returns a list with the given objects sorted by the order of the indices calculated by func.

func is applied only once to any object in list.

If optional arguments are present, then the indices are computed from the objects x of
list by f(x, p1, p2, ...).

An alternative call to prog::sort is the call sort(list, (X, Y) -> func(X) <=
func(Y)).

Examples

Example 1

Sort a list of expressions by their length:

prog::sort([2*x, x - 4, sin(x), x + y + z], length)

Sort a list of lists by the number of operands, with descending order:

prog::sort([[1,2,3],[4,2],[0 $ 10],[]], nops, Reverse)
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Parameters

list

A list of MuPAD objects

func

A function that must return a numerical value, when applied to any object of the list

Reverse

An option

p1, p2, …

Any MuPAD objects accepted by func as additional parameters

Options

Reverse

prog::sort compares the calculated indices in reverse order.

Return Values

List with the same objects as the given list

See Also

MuPAD Functions
sort | stringlib::order | sysorder
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prog::tcov
Report on test coverage (passed program lines)

Syntax
prog::tcov(Reset)

prog::tcov(<stmt>, Write = fname)

prog::tcov(Append = fname)

prog::tcov(<stmt>, Info, <Summary>, <Lines>, <Hidden>, <Unused>, <All>)

prog::tcov(<stmt>, Annotate, <Path = pname>, <Comment = comment>)

prog::tcov(<stmt>, Export = fname, <Annotate>, <Path = pname>, <Comment = comment>, <Graphical>)

Description

prog::tcov inspects the data on the statements executed in library code. MuPAD
collects these data if you start the MuPAD engine with the option -t. To set different
options for starting the MuPAD engine, use the Arguments field in the Engine dialog.

You can use prog::tcov in two different modes:

• With a given first argument stmt, prog::tcov resets all tcov information, evaluates
the statement, and shows all debug node passes for this statement during the
evaluation. prog::tcov(stmt) clears all information about the debug node passes of
current session.

• Without the first argument stmt, prog::tcov shows the debug node pass
information collected by the MuPAD engine during the whole session.

You can display the logged debug node passes on the screen or export the data to an
HTML file. You also can save the data about the debug node passes to a file, which
enables you to read or recover a whole session state later.

prog::tcov can produce annotated source files containing the information collected by
prog::tcov and the MuPAD source code.
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Environment Interactions

prog::tcov can produce screen outputs.

If you use the Annotate option, prog::tcov creates new files. For some operating
systems creating new files might require special permissions.

Examples

Example 1

To use prog::tcov, start the kernel in tcov mode with option -t.

The outputs in the following examples are cropped in this documentation.

The following example shows a short procedure created and called inside prog::tcov.
The line numbers correspond to the ones in the Debugger:

f:=                  // 1

proc(a, b)           // 2

begin                // 3

  if a > b then      // 4

    return(a)        // 5

  else               // 6

    return(f(b, a))  // 7

  end_if             // 8

end_proc:            // 9

prog::tcov returns all the lines passed during the evaluation of f:

prog::tcov(f(2, 1), Info, Lines)

   File: /tmp/debug0.5932  Use index: 50% 

     Nodes: 2/4 (0 hidden)   Passes: 2          Line       4,0:  

  1 pass          Line       5,0:     1 pass 

prog::tcov(f(1, 2), Info, Lines)

   File: /tmp/debug0.5932  Use index: 75%       Nodes:

3/4 (0 hidden)   Passes: 4          Line       4,0:     2 passes 

        Line       5,0:     1 pass          Line       7,0:     1

pass 
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Example 2

The following example shows the logging of passes during a session. Before running this
example, define the function f from “Example 1” on page 27-53.

If you start the kernel with the option -v, the expose command shows the debug nodes
with pass information.

prog::tcov(Reset) resets all tcov information:

prog::tcov(Reset):

prog::tcov(Info)

SUMMARY   Files 

   : 1 in 1 libraries   Nodes     : 0/4 (0 hidden)   Use index : 0%

  Passes    : 0 (~  0.00 passes per all nodes) 

If you call the function f twice, the number of passes doubles:

f(1, 2): f(1, 4): prog::tcov(Info)

   File: /tmp/debug0.5932  Use index: 75% 

     Nodes: 3/4 (0 hidden)   Passes: 8          Line       4,0:  

  4 passes          Line       5,0:     2 passes          Line   

   7,0:     2 passes 

To see the passes, expose the function f:

expose(f)

 

proc(a, b)     name f;   begin     // /tmp/debug0.5932:4,0 [4 passes];

    if b < a then       // /tmp/debug0.5932:5,0 [2 passes];   

   return(a)     else       // /tmp/debug0.5932:7,0 [2 passes];  

    return(f(b, a))     end_if;     // /tmp/debug0.5932:9,0 [0 passes]

  end_proc 

You can write the tcov data to a data file:

prog::tcov(Write = "tcov_example.dat"):

To delete the information about the previous passes, use the Reset option:

prog::tcov(Reset):

27-54



 prog::tcov

prog::tcov(Info)

SUMMARY   Files 

   : 1 in 1 libraries   Nodes     : 0/4 (0 hidden)   Use index : 0%

  Passes    : 0 (~  0.00 passes per all nodes) 

To retrieve the former state, use the Append option:

prog::tcov(Append = "tcov_example.dat"):

prog::tcov(Info, Summary)

SUMMARY

  Files     : 1 in 1 libraries   Nodes     : 3/4 (0 hidden)   Use

index : 75%   Passes    : 8 (~  2.00 passes per all nodes) 

Also, you can use the Append option to add the passes:

prog::tcov(Append = "tcov_example.dat"):

prog::tcov(Info, Summary)

SUMMARY

  Files     : 1 in 1 libraries   Nodes     : 3/4 (0 hidden)   Use

index : 75%   Passes    : 16 (~  4.00 passes per all nodes) 

Example 3

The following example presents incomplete pieces of code. Note that you cannot execute
this example without additional code lines.

Suppose, you have a source file with the following function:

 1:  f := proc(a, b)

 2:       begin

 3:         if a > b then

 4:           return(a)

 5:         elif a = b then return(0)

 6:         else

 7:           f(b, a)

 8:         end_if

 9:       end_proc:

Before executing this source file, read the commands. After reading commands, all the
objects defined in the source file are available in the notebook. Calling the function f
several times and creating the annotated source file, you get:

27-55



27 prog – Programmer's Toolbox

ff(2, 1): // passing lines 3 and 4

f(1, 1): // passing lines 3 and 5 twice

         // because line 5 has two debug nodes

f(1, 2): // passing lines 3, 5, and 7 and 

         // recursively 3 and 4, leave via line 9

         // because the statement in line 7 has no return

prog::tcov(Annotate)

The annotated source file uses the same path as the source file and looks like this:

// Generated by prog::tcov session

 1:  f := proc(a, b)

 2:       begin

 3:4         if a > b then

 4:2           return(a)

 5:2         elif a = b then return(

 5:1                                0)

 6:          else

 7:1           f(b, a)

 8:          end_if

 9:1       end_proc:

Note that the line 5 contains two debug nodes and appears in two lines. The line splits
where the second debug node starts.

For better readability of the annotated source files, use the HTML export.

Parameters

stmt

Any MuPAD statement or MuPAD expression

fname

A file name given as a string

pname

A directory name given as a string
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comment

Any string

Options

Reset

Reset the number of passes at each debug node to 0.

Write

Option, specified as Write = fname

This option allows you to write the information about all debug node passes of the
current session to the file fname. You can use this file for external analysis (see the
Algorithms section) or to recover or merge the information collected by prog::tcov (see
the Append option).

Append

Option, specified as Append = fname

Append all information about debug node passes from the file fname to the current
session.

This option allows you to merge the data generated during several sessions.

Info

Display the information about debug node passes.

Summary

Display only a short summary.

Lines

Display each pass through a debug node.

Unused

Display all code lines with debug nodes, including unpassed ones.
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Hidden

This option allows you to display the hidden debug nodes. A hidden debug node is a node
in a procedure with the noDebug option.

All

Display unpassed and hidden debug nodes.

Export

Option, specified as Export = fname

This option allows you to display the debug node passes information in summary for all
read source files and for all individual source files.

The information is ordered according to the names of the directories containing the
source files. Directory names can be folded.

You can see the list of all the files of a library below each library name.

Each file name presents a link that points to the annotated source file.

You can select graphical indices. Each point leads to the related line in the annotated
source file.

Annotate

This option allows you to rewrite each executed MuPAD source file filename.mu as
filename.tcov with an annotation at the beginning of each line. The annotation
contains the line number of a debug node and the number of passes of this line, followed
by the source code.

In text mode the line containing several debug nodes splits so that each line contains one
debug node (see “Example 3” on page 27-55).

The new files have the extension '.tcov' instead of '.mu'. See also option Path.

If this option is used together with Export, prog::tcov creates the annotated source
files as HTML files with the extension .tcov.html. The line colors depend on the passes.

Path

Option, specified as Path = pname
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This option allows you to specify a path pname to the annotated source files and the
exported status file. If you do not specify the path, prog::tcov creates the files in the
same directory where the source files are.

Comment

Option, specified as Comment = comment

This option allows you to write the string comment on the first line of each annotated
source file (see the option Annotate) or in the header of an exported HTML file (see the
option Export).

Graphical

Show a graphical index for each source file in an HTML export file.

Return Values

prog::tcov returns the void object null() of type DOM_NULL.

Algorithms

To be able to use the prog::tcov function, start the MuPAD engine with option -t. Use
the Arguments field in the Engine dialog to set this option.

If you start the kernel using both options -v and -t, the function expose shows
information about the debug node and passes (see “Example 2” on page 27-54).

The functionality of prog::tcov depends on the internal debugger. For details, see the
help page for the debug command.

Some special considerations:

• If the MuPAD library is read from a tar archive (file lib.tar), prog::tcov excludes
from inspection all the files from this archive. The output of prog::tcov also
includes the call of prog::tcov itself and some other MuPAD utility function passes.

• prog::tcov counts only the lines containing a “debug node”.

When called with the option Write or the option Append, prog::tcov creates a data
file using the following format: "filename":fileindex:. For each read MuPAD source
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file, "filename" is the name of the source file and fileindex is a numerical index. For
temporary files, the index is negative:

• -1:-1:

The colon separates the first and the second parts:

• fileindex:line:column:hidden:passes:unused:

For each debug node, fileindex corresponds to the first part, line and column determine
the start of the debug node in the source file, hidden is 1 for hidden nodes, otherwise 0,
passes is the number of passes, unused is an empty and currently unused string.

See Also

MuPAD Functions
debug | expose | prog::check | prog::profile | prog::trace
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prog::test
Automatic comparing of calculation results

Syntax
prog::test(stmt, res | TrapError = errnr, <Timeout = sec>, <message>, options)

prog::test(stmt)

Description

prog::test works in two different modes: interactive and inside of test files.

In interactive mode a single call of prog::test can be used to compare two MuPAD
statements.

The call prog::test(stmt, res) evaluates both arguments stmt and res. When the
evaluation leads to exactly the same MuPAD object and no Enhancement was requested,
nothing is printed and prog::test returns the void object null().

If the results are different, the test fails and a message is printed.

The additional arguments are described in the following part for using prog::test in
test files.

Another mode is using prog::test inside of test files. A test file must start with
prog::testinit . This function initializes the test file. Then you can write several
tests using prog::test. The last statement in a test file must be prog::testexit().
You also can specify the name of the tested procedure by using print(Unquoted,
"testname") after prog::testinit. This name does not affect the tested procedure
itself. It only appears in the test reports generated by your test script.

The tests can be arbitrary MuPAD statements and prog::test statements. However,
most of the functionality should be executed as argument of prog::test. Only
initialization of variables should be performed outside of prog::test statements in
a test file, because prog::test traps every error (with the function traperror) and
prints a specific error message.
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Note: If an error occurs outside of prog::test, reading of the test file is interrupted.

If no error occurs (as should be the default case), the results are compared and a message
is printed, if they are different.

Timing information can be collected and compared that consider only the evaluation time
of the first argument stmt of prog::test (see prog::testinit).

If a test fails, for example, the two first arguments of prog::test lead to different
MuPAD objects, or if an enhancement request was given, prog::test prints a message.
This message lists the following pieces of information:

1 The first line starts with the Error in test string and contains the name and a
sequence number of the individual test.

2 The next three lines contain the input, the expected result, and the result actually
observed.

3 For each of the options Priority, Enhancement, Message, Developers, and
BugId, if the option has been set, a corresponding line will be printed. Note that
Message can be set by simply providing a message string.

This information is followed by an empty blank line.

If only one argument is given, the argument is evaluated and compared with TRUE, i.e.,
prog::test(ex) is equivalent to prog::test(ex, TRUE).

When a test is initialized with prog::testinit and ended by prog::testexit, a
short message is printed with the following format:

Info: 20 test, 1 error, runtime factor 1.7 (expected 2.0)

The message contains the number of all tests performed (20), the number of errors (1),
and two time factors: The first time factor is the based on the actual time of the test and
the second time factor is the expected value given by prog::testinit.

Examples

Example 1

prog::test can be called interactively:

27-62



 prog::test

prog::test(1 + 1, 2):

prog::test(is(2 > 1)):

prog::test(sin(PI), 0, "check sin"):

These tests checked all right. In the next tests wrong results are tested against, to
demonstrate the messages given by prog::test:

prog::test(1 + 2, 2):

Error in test 4

Input: 1 + 2

Expected:  2

Got:       3

Near line: 1

prog::test(is(x > 1)):

Error in test 5

Input: is(1 < x)

Expected:  TRUE

Got:       UNKNOWN

Near line: 1

prog::test(sin(PI), PI, "check sin"):

Error in test 6

Input: sin(PI)

Expected:  PI

Got:       0

Message: check sin

Near line: 1
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Example 2

A test file must contain calls to prog::testinit and prog::testexit. In the
following file, we test a function defined in the same file, which is rather uncommon,
obviously.

// test file "test.tst"

test:= (a, b) -> a^2 + 2*b^2 - a*b:

prog::testinit("test", 0.1):

print(Unquoted, "testname"):

prog::test(test(1, 4), 29, Message = "my first example"):

prog::test(test(3, -2), 24, "the second example"):

prog::test(error("test"), TrapError = 1028):

prog::testexit():

The first statement is only a comment. The second line contains an initialization of a test
procedure called test. Then the test is initialized with prog::testinit.

After that three tests are performed: The first test is right, the second expected result
is wrong, and the third test produces an error, but the expected result is this error, the
error number returned by traperror is 1028 (user call of error).

The whole test takes nearly no time:

read("test.tst")

Info: memory limit is 256 MB

Error in test 2

Input: test(3, -2)

Expected:  24

Got:       23

Message: the second example

Near line: 4

Info: time used outside of 'prog::test' takes 100%

Info: 3 tests, 1 error, runtime factor  0.0  (expected  0.1)

Info: CPU time:  1.1 s
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Info: Memory allocation 9026800 bytes [prog::testexit]

Example 3

Most of the options accepted by prog::test are more or less directly placed in the
output:

prog::test(1+1, 1, Baseline, Message(2)="well ...",

  Priority=Low, BugId="123-456")

Baseline Error in test 7

Input: 1 + 1

Expected:  1

Got:       2

Priority: Low

Message: well ...

BugId: 123-456

Near line: 2

Example 4

To test that a certain call does not take longer than a specified number of seconds, use
the option Timeout:

prog::test(prog::wait(5.0), null(), Timeout = 2)

Example 5

In most cases, the actual and the expected result are simply compared for equality.
Sometimes, however, this is not desirable, especially for floating-point results:

prog::test(float(PI), 3.1415926535897932385)

Error in test 8

Input: float(PI)
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Expected:  3.141592654

Got:       3.141592654

Near line: 1

The problem here is that there are many floating-point values which are not identical,
yet are displayed as such (unless you increase DIGITS far enough to see the difference).
Using the option Method, you can provide a function to compare the values:

prog::test(float(PI), 3.1415926535897932385, Method = `~=`)

Example 6

When implementing symbolic algorithms, there are often multiple correct and acceptable
answers. In some cases, getting any of a certain set of solutions is fine. In these cases,
using Method = _in is a reasonable way of writing tests (_in is the functional form of
the in operator):

prog::test(int(ln(ln(a*x)^(1/2)), x),

  {

    x*ln(ln(a*x)^(1/2)) - Li(a*x)/(2*a),

    x*ln(ln(a*x))/2 - Li(a*x)/(2*a)

  },

  Method = _in,

  Timeout = 20)

Sometimes, however, while multiple results are acceptable, you are actually targeting for
one particular output. For these cases, you can use Enhancement to set the golden goal:

prog::test((x^2+2*x+1)/(x+1),

  (x^2+2*x+1)/(x+1),

  Enhancement = x+1)

Enhancement request: 11

Input: (x^2 + 2*x + 1)/(x + 1)

Got:       (x^2 + 2*x + 1)/(x + 1)

Requested: x + 1

Near line: 3
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If the enhancement request ever is fulfilled, the output changes:

prog::test(normal((x^2+2*x+1)/(x+1)),

  (x^2+2*x+1)/(x+1),

  Enhancement = x+1)

Enhancement done: 12

Input: normal((x^2 + 2*x + 1)/(x + 1))

Got:       x + 1

Requested: x + 1

Near line: 3

Note that a test with an enhancement request is, first and foremost, still an ordinary test
and behaves as such:

prog::test((x^2+x+1)/(x+1),

  (x^2+2*x+1)/(x+1),

  Enhancement = x+1)

Error in test 13

Input: (x^2 + x + 1)/(x + 1)

Expected:  (x^2 + 2*x + 1)/(x + 1)

Got:       (x^2 + x + 1)/(x + 1)

Near line: 3

Parameters

stmt

A MuPAD statement to test

res

A MuPAD expression or statement that determines the expected result.
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message

A message (a string) that is displayed if the test fails – see option Message below

Options

TrapError

Option, specified as TrapError = errnr

Expect the test to throw an error. errnr must be the integer expected from the call
traperror(stmt) or a list of an integer and a string, as returned by getlasterror().

Method

Option, specified as Method = comp

A method used to compare the actual and the expected result. Will be called with both
expressions and must return TRUE or FALSE.

Timeout

Option, specified as Timeout = sec

A timeout for the evaluation of the tests. Both the actual and the expected result are
evaluated with this time limit. If the computation takes too long, prog::test behaves
as if the command had resulted in a timeout error (error number 1320).

Message

Option, specified as Message = message or Message(res1) = message

Append a message (a string) to the output of prog::test. If res1 is given, the message
is given if the result of evaluating stmt is res1.

Baseline

Mark this test as failing in some sort of “baseline,” to differentiate new bugs (stemming
from new code developments, regression failures) from bugs already present in some
specific earlier version. This affects the output of prog::test.
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Enhancement

Option, specified as Enhancement = res1

Request some other output than the one currently tested for. Semantically, a call of the
form prog::test(inp, out, Enhancement = out2) means “check that the call inp
results in the same thing as the call out, but note that we'd actually prefer to see out2.”

ExpectedWarnings

Option, specified as ExpectedWarnings = list

Gives a list of warnings the call should emit, as strings. Not emitting these warnings, or
additional ones, is considered an error.

High, Low, Medium, Priority

Option, specified as Priority = Low | Medium | High

Denote the importance of this test. This will usually be a very subjective question and
affects the output of prog::test only, to allow tools parsing the output displaying the
problems of higher priority more prominently.

Developers

Option, specified as Developers = devnames

A string included in the output of prog::test, denoting the developers deemed
responsible for the code tested. This is intended for post-processing tools.

BugId

Option, specified as BugId = bugid

Again, for the output of prog::test, include a reference to some bug tracking system.
bugid can be any MuPAD object.

Return Values

prog::test returns the void object null().
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See Also

MuPAD Functions
prog::testexit | prog::testinit | traperror
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prog::testexit
Closing tests

Syntax
prog::testexit()

Description

prog::testexit closes automatic tests from test files and prints a short statistic about
the test (see prog::test).

prog::testexit closes the last opened protocol file.

Note: prog::testexit must be called before beginning of a new test with
prog::testinit.

Return Values

prog::testexit returns the void object null() and closes the last opened protocol file.

See Also

MuPAD Functions
prog::test | prog::testinit
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prog::testinit
Initialize tests

Syntax
prog::testinit()

prog::testinit(string)

prog::testinit(expected_time, <All>)

prog::testinit(string, expected_time, <All>)

prog::testinit(arch = expected_time, …, <All>)

prog::testinit(string, arch = expected_time, …, <All>)

Description

The function prog::testinit initializes automatic tests (see prog::test).

The second argument expected_time determines the time, that the test should need.

Note: This time is not the real time, but a time factor that is given by prog::testexit
at the end of a complete test.

This time factor is computed to be independent of the real speed of the used machine.

In general (without option All) the base for the time factor is the sum of all times for the
evaluation of the first arguments of each call of prog::test.

The time factor can be useful to detect differences of the run time of tests, e.g., when the
system or programs where changed.

For tests which run time depends on the architecture of the computer, the expected test
time factor can be given apart for each test system as equation arch = time_factor.
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The string arch must be one of the results returned by the function sysname.
time_factor is the time factor given by prog::testexit at the end of the complete
test on the reference system.

Examples

Example 1

Initialize a test that should need a run time factor of 2.0:

prog::testinit("test1", 2.0):

Initialize a test that should need a run time factor of 2.8, where the time is measured
between prog::testinit and prog::testexit:

prog::testinit("test2", 2.8, All):

Initialize a test that should need a run time factor of 12.0 on Linux and 15.5 on
Windows:

prog::testinit("test3", "glnxa64" = 12.0, "win32" = 15.5):

Parameters

string

String: a test name

expected_time

Expected test time factor (see below) in seconds as floating point number

arch

The computer architecture name as string (see sysname)
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Options

All

The base for the time factor is the whole time between the command prog::testinit
and prog::testexit.

Return Values

prog::testinit returns the void object null().

See Also

MuPAD Functions
prog::test | prog::testexit
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prog::trace
Observe functions

Syntax
prog::trace(obj, <Recursive = FALSE>)

prog::trace({obj1, obj2, …}, <Recursive = FALSE>)

prog::trace(options)

Description

prog::trace(obj) manipulates the MuPAD object obj to observe entering and exiting
this object.

Note:  prog::trace has a new syntax and a new set of options. The old syntax has been
removed.

prog::trace lets you observe functions, domains, domain methods, and function
environments. Use the prog::trace function for debugging. See “Example 1” on page
24-77.

prog::trace lets you specify a set of functions, domains, methods, or function
environments that you want to observe. See “Example 2” on page 27-77.

prog::trace lets you observe the relations between calls to the traced objects.

To trace the object obj, use the function call prog::trace(obj). After that call,
every time the function call enters or exits the object obj, MuPAD prints a message
and returns the arguments and the return value of that call. See “Example 3” on page
27-78.

prog::trace lets you observe a domain or a function environment. When you call the
prog::trace function for a domain, the function observes all methods of the domain.
When you call prog::trace for a function environment, it observes all slots of the
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function environment. To trace only particular methods (slots), provide a set of these
methods (slots). See the slot help page for more details. See “Example 8” on page
27-82.

To prevent tracing of all slots of a function environment, set the value of the Recursive
option to FALSE. See “Example 7” on page 27-81.

The function prog::untrace(obj) terminates tracing of an object obj. Here obj is a
function, a set of functions, a domain, a domain method, or a function environment. The
function prog::traced detects whether the system currently traces a particular object.

Examples

Example 1

Define a function f, and observe this function:

f := x -> if x > 0 then x else -f(-x) end:

prog::trace(f):

f(-2)

enter f(-2)

  enter f(2)

  computed 2

computed -2

Change the function, and reassign the new function to f. Although you use the same
function name (f), MuPAD does not trace the new function:

f := x -> if x > 0 then x else f(-x) end:

f(-2)

To trace the new function, call prog::trace again. Now, the trace mechanism observes
the updated function:

prog::trace(f):
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f(-2)

enter f(-2)

  enter f(2)

  computed 2

computed 2

For further computations, stop observation of the function:

prog::untrace(f)

Example 2

If you want to trace more than one function, use a set to specify these functions in one
function call:

prog::trace({sin, cos, exp}):

sin(5*PI/2);

cos(5*PI);

exp(5)

enter sin((5*PI)/2)

  enter sin(PI/2)

  remembered 1

computed 1

enter cos(5*PI)

  enter cos(PI)

  remembered -1

computed -1
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enter exp(5)

computed exp(5)

To stop observation of all functions, use prog::untrace without arguments:

prog::untrace()

Example 3

Define a short function that calls itself recursively, and observe the calls:

fib:= proc(n)

      begin

        if n < 2 then

          n

        else

          fib(n - 1) + fib(n - 2)

        end_if

      end_proc:

prog::trace(fib):

fib(3)

enter fib(3)

  enter fib(2)

    enter fib(1)

    computed 1

    enter fib(0)

    computed 0

  computed 1

  enter fib(1)

  computed 1

computed 2

To limit the number of the nested function calls displayed by prog::trace, use the
Depth option. To specify the value of Depth, use a separate prog::trace function call:

prog::trace(fib):
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prog::trace(Depth = 2);

fib(12)

enter fib(12)

  enter fib(11)

  computed 89

  enter fib(10)

  computed 55

computed 144

The Depth option is independent of the fib procedure. Now, if you use prog::trace
to trace any other procedure, prog::trace displays the nested calls to that procedure
using Depth = 2. Remove this global option for further computations:

prog::untrace(fib):

prog::trace(Depth = 0)

Example 4

To display memory usage, use the Mem option:

prog::trace(Mem):

prog::trace(sin):

sin(3/2*PI)

enter

remember::sin((3*PI)/2) [mem: 3267052]   enter remember::sin(PI/2)

[mem: 4033596]   remembered 1 [mem: 4033436] computed -1 [mem: 4033072]

   -1 

The Mem option is independent of the traced procedure. Now, if you use prog::trace to
trace any other procedure, prog::trace displays memory usage in every step of that
procedure. Remove this global option for further computations::

prog::untrace(sin):

prog::trace(Mem = FALSE)

Example 5

The NoArgs option suppresses the output of arguments of traced objects:
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prog::trace(linalg):

prog::trace(NoArgs);

linalg::eigenvalues(matrix([[1,  0, 0],

                            [0, -1, 2],

                            [0,  1, 1]]))

enter linalg::eigenvalues

  enter linalg::checkForFloats

  return

  enter linalg::charpoly

    enter linalg::charpolyBerkowitz

    return

  return

return

The NoArgs option is independent of the traced procedure. Now, if you use prog::trace
to trace any other procedure, prog::trace hides arguments in every step of that
procedure. Remove this global option for further computations:

prog::untrace(linalg):

prog::trace(NoArgs = FALSE)

Example 6

If you use the Parent option, prog::trace shows the name of the procedure that calls
the traced object:

prog::trace(cos):

prog::trace(Parent):

f := x -> cos(2*x):

g := (x, y) -> f(x) + f(y):

g(3/2*PI, -3/2*PI)

enter cos(3*PI) (called from f)

  enter cos(PI) (called from cos)

  remembered -1

computed -1

enter cos(-3*PI) (called from f)

  enter cos(3*PI) (called from cos)

  remembered -1

computed -1
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prog::trace(f):

prog::trace(g):

g(-PI, PI)

enter g(-PI, PI)

  enter f(-PI) (called from g)

    enter cos(-2*PI) (called from f)

      enter cos(2*PI) (called from cos)

        enter cos(0) (called from cos)

        remembered 1

      computed 1

    computed 1

  computed 1

  enter f(PI) (called from g)

    enter cos(2*PI) (called from f)

    remembered 1

  computed 1

computed 2

The Parent option is independent of the traced procedures. Now, if you use
prog::trace to trace any other object, prog::trace shows relations between calls to
the traced objects. Remove this global option for further computations:

prog::untrace(cos):

prog::trace(Parent = FALSE)

Example 7

By default, the prog::trace function traces all slots of a function environment. For
example, trace the besselJ function and observe the following function call:

prog::trace(besselJ);

besselJ(1, 2.3)

enter besselJ(1, 2.3)

  enter besselJ::float(1, 2.3)

  computed 0.5398725326

computed 0.5398725326
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To omit tracing of all slots, set the value of the Recursive option to FALSE:

prog::untrace(besselJ);

prog::trace(besselJ, Recursive=FALSE);

besselJ(1, 4.5)

enter besselJ(1, 4.5)

computed -0.2310604319

For further computations, stop observation of the besselJ function:

prog::untrace(besselJ)

Example 8

You can trace domains and domain methods. For example, create the following small
domain:

T := newDomain("T"):

T::new := proc(h, m = 0) name T; begin new(T, h*60 + m) end:

T::intern := x -> [op(x) div 60, op(x) mod 60]:

T::print := x -> expr2text(T::intern(x)[1]).":".

                 substring(expr2text(100 + T::intern(x)[2]), 2, 2):

T::_plus := () -> new(T, _plus(map(args(), op))):

T::expr := op:

T::_mult := () -> new(T, _mult(map(args(), expr))):

prog::trace(T):

T(1, 30) + T(0, 45)*T(1, 05)

enter T(1, 30)

computed 1:30

enter T(0, 45)

computed 0:45

enter T(1, 5)

computed 1:05

enter T::_mult(0:45, 1:05)

computed 48:45

enter T::_plus(1:30, 48:45)
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computed 50:15

MuPAD does not trace the process of displaying traced outputs. Therefore, the
T::intern and T::print methods do not appear in the traced outputs.

Now, trace the arithmetic methods only. When specifying the methods to trace, use their
slot names, such as slot(T, "_plus") or T::_plus:

prog::untrace():

prog::trace({T::_plus, T::_mult}):

T(1, 30) + T(0, 45)*T(1, 05)

enter T::_mult(0:45, 1:05)

computed 48:45

enter T::_plus(1:30, 48:45)

computed 50:15

prog::untrace():

Parameters

obj

A MuPAD function, a domain, a method, or a function environment to observe. Specify
methods by their slot names (strings).

{obj1, obj2, …}

A set of MuPAD functions, domains, methods, or function environments to observe.

Options

Depth

Option, specified as Depth = level
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Display nested function calls only up to the recursion depth level. Here level is a
positive integer. After you set this option, all new and regenerated outputs for traced
objects show the nested function calls only up to the specified recursion depth. See
“Example 3” on page 27-78.

Mem

Show the current memory usage. After you set this option, all new and regenerated
outputs for traced objects show the information about the current memory usage. See
“Example 4” on page 27-79.

NoArgs

Do not show the arguments of calls to traced objects and the returned values. Without
this option, all outputs for traced objects show the arguments and returned values for
each call of a traced object. See “Example 5” on page 27-79.

Parent

Show the name of the procedure that calls the traced object. After you set this option, all
new and regenerated outputs for traced objects show the names of the procedures that
call the traced objects. See “Example 6” on page 27-80.

Recursive

Option, specified as Recursive = FALSE

Do not trace all slots of a function environment or domain. By default, Recursive =
TRUE. See “Example 7” on page 27-81.

Return Values

prog::trace returns the void object null().

See Also

MuPAD Functions
debug | prog::profile | prog::traced | prog::untrace
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prog::traced
Find traced functions

Syntax
prog::traced(<obj>)

Description

prog::traced() lists all traced functions.

prog::traced(obj) detects, whether the function obj is traced. If obj is a library or
a function environment, then all methods will be checked. If no argument is given, all
traced functions will be displayed.

prog::traced determines whether a copy exists and whether the function has been
manipulated the way prog::trace does.

Examples

Example 1

The sin function is traced:

prog::trace(sin):

prog::traced(sin)

The cos function is not traced:

prog::traced(cos)
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Parameters

obj

A MuPAD function, a function environment or a library

Return Values

prog::traced returns the void object null().

See Also

MuPAD Functions
prog::trace | prog::untrace
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prog::untrace
Terminates observation of functions

Syntax
prog::untrace(obj)

prog::untrace()

Description

prog::untrace(obj) terminates the observation of the MuPAD function obj
performed by prog::trace.

obj can be a domain or a function environment, too. Then all methods of the domain or
function environment will be restored.

If no argument is given, all observed objects will be restored from observation.

Examples

Example 1

The observation of a function will be terminated:

prog::trace(sin):

sin(2)

enter sin(2)

computed sin(2)

prog::untrace(sin):

sin(2)
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Parameters

obj

The MuPAD function that is observed, or a domain or a function environment

Return Values

prog::untrace returns the void object null().

See Also

MuPAD Functions
debug | prog::profile | prog::trace
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prog::wait
Wait for a while

Syntax
prog::wait(m)

prog::wait(s)

Description

prog::wait(m) waits for m milli seconds.

prog::wait(s) waits for s seconds.

prog::wait uses the function rtime for time measurement.

Examples

Example 1

Wait for 3 seconds:

prog::wait(3000)

Wait for 3 seconds again:

prog::wait(3.0)

The next example shows the difference between the system time and the CPU time used
by MuPAD:

time(prog::wait(2.5))
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In 2.5 seconds realtime the MuPAD process runs nearly two seconds.

Example 2

Use traperror to limit the evaluation time:

traperror(prog::wait(100.0), 5): lasterror()

Error: Execution time is exceeded.

Parameters

m

Milli seconds to wait as positive integer

s

Seconds to wait as positive floating-point number

Return Values

prog::wait returns the empty object null().

See Also

MuPAD Functions
rtime | time | traperror
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property::depends
Dependence table with all properties of an expression

Syntax
property::depends(ex, …)

Description

property::depends(...) returns a table which contains all information about the
properties of the whole input. This table can be used to determine any change of the
properties of an expression.

The returned table is mainly used inside the MuPAD library, to ensure the validity of
remembered results of the remember mechanism.

A MuPAD expression can have different properties at different times, without changing
its value.

Note: The kernel remember mechanism cannot determine the change of the properties
and returns wrong results, when the result depends on the properties of the input.

In this case the extended remember mechanism provided by prog::remember should be
used together with property::depends.

Examples

Example 1

A compare of the dependence table at different times detects changes of the properties of
an expression.

The first call to the defined function has_changed initializes the table DEPENDS that
keeps the dependence information:
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DEPENDS := table():

has_changed :=

  proc(ex)

  begin

    if not contains(DEPENDS, ex)

       or property::depends(ex) <> DEPENDS[ex] then

      DEPENDS[ex] := property::depends(ex);

      TRUE

    else

      FALSE

    end_if

  end_proc:

has_changed(sin(x*PI)):

The properties has not changed:

has_changed(sin(x*PI))

Every change is detected:

assume(x, Type::Integer):

has_changed(sin(x*PI))

assume(x, Type::PosInt):

has_changed(sin(x*PI))

assume(x >= 0):

has_changed(sin(x*PI))

unassume(x):

has_changed(sin(x*PI))
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delete DEPENDS, has_changed:

Example 2

The next example shows the problems with the kernel remember mechanism:

pos := proc(x)

         option remember;

       begin

         is(x > 0)

       end:

pos(x)

The result UNKNOWN was stored for the input x and is returned, although the properties
of x are changed:

assume(x > 0): pos(x);

assume(x < 0): pos(x)

This problem can only be solved by the extended remember mechanism together with
property::depends (x still is less than zero):

pos := proc(x)

       begin

         is(x > 0)

       end:

pos := prog::remember(pos, property::depends):

pos(x)
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After changing the properties of the input, the defined function recomputes the result:

assume(x > 0): pos(x);

unassume(x): pos(x)

Parameters

ex

Any MuPAD expression

Return Values

Table that can be compared with another dependence table

See Also

MuPAD Functions
assume | getprop | is | prog::remember
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property::hasprop
Does an object have properties?

Syntax
property::hasprop(object)

property::hasprop()

Description

property::hasprop(object) tests, whether the object has properties and returns
TRUE if the object or any subexpression has a property, otherwise FALSE.

Compared with getprop, property::hasprop is a fast function and can be used to
determine, whether an object has properties without using the slower functions getprop
or is.

Note: In some cases, the function is can derive some aspects without any defined
property (see “Example 2” on page 28-7)!

Examples

Example 1

Does the expression 2*(x+1) have any properties?

property::hasprop(2*(x + 1))

assume(x > 0):

property::hasprop(2*(x + 1))
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getprop(2*(x + 1))

delete x:

Example 2

property::hasprop returns FALSE, but is can determine an answer unequal to
UNKNOWN:

property::hasprop(0 < x/(x + y) + y/(x + y))

is(exp(x) = 0)

Parameters

object

Any MuPAD object

Return Values

TRUE or FALSE

See Also

MuPAD Functions
assume | getprop | indets | is | unassume
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property::showprops
What assumptions are made?

Syntax
property::showprops(object)

Description

property::showprops(object) shows all assumptions set for identifiers in object.
If no assumptions were set, the empty list ist returned.

Examples

Example 1

assume(x > 0);

property::showprops(x);

assumeAlso(x < 1):

property::showprops(x);

delete x:

Parameters

object

Any MuPAD object
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Return Values

List containing all assumptions.

See Also

MuPAD Functions
assume | getprop | unassume
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solvelib::BasicSet
Basic infinite sets

Syntax

Domain Creation

solvelib::BasicSet(Dom::Integer)

solvelib::BasicSet(Dom::Rational)

solvelib::BasicSet(Dom::Real)

solvelib::BasicSet(Dom::Complex)

Description

The domain solvelib::BasicSet comprises the four sets of integers, reals, rationals,
and complex numbers, respectively.

The four basic sets are assigned to the identifiers Z_, Q_, R_, and C_ during system
initialization.

The set of positive integers, too, is assigned to the identifier N_ during system
initialization. It is not represented by a basic set but by the intersection of Z_ and the
interval Dom::Interval([1], infinity).

Superdomain

Dom::BaseDomain

Axioms

Ax::canonicalRep
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Categories

Cat::Set

Examples

Example 1

The domain of basic sets know about the basic arithmetical and set-theoretic functions:

J:=Dom::Interval(3/2, 21/4):

Z_ intersect J

Methods

Mathematical Methods

contains — Test whether some object is a member

contains(a, S)

Equivalently, is(a in S) may be used.

Conversion Methods

convert — Convert a domain into a basic set

convert(d)

set2prop — Convert a set to a property

set2prop(S)
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See Also

MuPAD Domains
C_ | Dom::Interval | N_ | Q_ | R_ | Z_
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 C_

C_
Complex numbers

Description

C_, or equivalently solvelib::BasicSet(Dom::Complex), represents the set of
complex numbers.

The four basic sets are assigned to the identifiers Z_, Q_, R_, and C_ during system
initialization.

Superdomain

Dom::BaseDomain

Axioms

Ax::canonicalRep

Categories

Cat::Set

Methods

Mathematical Methods

contains — Test whether some object is a member

contains(a, S)
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Equivalently, is(a in S) may be used.

Conversion Methods

convert — Convert a domain into a basic set

convert(d)

set2prop — Convert a set to a property

set2prop(S)

See Also

MuPAD Domains
Dom::Interval | N_ | Q_ | R_ | solvelib::BasicSet | Z_
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 R_

R_
Real numbers

Description

R_, or equivalently solvelib::BasicSet(Dom::Real), represents the set of real
numbers.

The four basic sets are assigned to the identifiers Z_, Q_, R_, and C_ during system
initialization.

Superdomain

Dom::BaseDomain

Axioms

Ax::canonicalRep

Categories

Cat::Set

Methods

Mathematical Methods

contains — Test whether some object is a member

contains(a, S)
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Equivalently, is(a in S) may be used.

Conversion Methods

convert — Convert a domain into a basic set

convert(d)

set2prop — Convert a set to a property

set2prop(S)

See Also

MuPAD Domains
C_ | Dom::Interval | N_ | Q_ | solvelib::BasicSet | Z_
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 Q_

Q_
Rational numbers

Description

Q_, or equivalently solvelib::BasicSet(Dom::Rational), represents the set of
rational numbers.

The four basic sets are assigned to the identifiers Z_, Q_, R_, and C_ during system
initialization.

Superdomain

Dom::BaseDomain

Axioms

Ax::canonicalRep

Categories

Cat::Set

Methods

Mathematical Methods

contains — Test whether some object is a member

contains(a, S)
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Equivalently, is(a in S) may be used.

Conversion Methods

convert — Convert a domain into a basic set

convert(d)

set2prop — Convert a set to a property

set2prop(S)

See Also

MuPAD Domains
C_ | Dom::Interval | N_ | R_ | solvelib::BasicSet | Z_
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 Z_

Z_
Integers

Description

Z_, or equivalently solvelib::BasicSet(Dom::Integer), represents the set of
integers.

The four basic sets are assigned to the identifiers Z_, Q_, R_, and C_ during system
initialization.

The set of positive integers, too, is assigned to the identifier N_ during system
initialization. It is not represented by a basic set but by the intersection of Z_ and the
interval Dom::Interval([1], infinity).

Superdomain

Dom::BaseDomain

Axioms

Ax::canonicalRep

Categories

Cat::Set

Examples

Example 1

The domain of basic sets know about the basic arithmetical and set-theoretic functions:
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J:=Dom::Interval(3/2, 21/4):

Z_ intersect J

Methods

Mathematical Methods

contains — Test whether some object is a member

contains(a, S)

Equivalently, is(a in S) may be used.

Conversion Methods

convert — Convert a domain into a basic set

convert(d)

set2prop — Convert a set to a property

set2prop(S)

See Also

MuPAD Domains
C_ | Dom::Interval | N_ | Q_ | R_ | solvelib::BasicSet
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N_
Positive integers

Description
N_ represents the set of positive integers.

The four basic sets are assigned to the identifiers Z_, Q_, R_, and C_ during system
initialization.

The set of positive integers, too, is assigned to the identifier N_ during system
initialization. It is not represented by a basic set but by the intersection of Z_ and the
interval Dom::Interval([1], infinity).

Superdomain
Dom::BaseDomain

Axioms
Ax::canonicalRep

Categories
Cat::Set

Methods

Mathematical Methods

contains — Test whether some object is a member

contains(a, S)
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Equivalently, is(a in S) may be used.

Conversion Methods

convert — Convert a domain into a basic set

convert(d)

set2prop — Convert a set to a property

set2prop(S)

See Also

MuPAD Domains
C_ | Dom::Interval | Q_ | R_ | solvelib::BasicSet | Z_
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solvelib::cartesianPower
Cartesian power of a set

Syntax

Domain Creation

solvelib::cartesianPower()

solvelib::cartesianPower(S, n)

Description

solvelib::cartesianPower is the domain of all cartesian powers of subsets of the
complex numbers.

solvelib::cartesianPower(S, n) returns the set of all n-tuples of elements of S.

solvelib::cartesianPower(S, n) returns the n-fold cartesian product of S with
itself, that is, the set of all vectors of length n whose components are elements of S.

S must represent a subset of the complex numbers; see solve for an overview of the
different kinds of sets in MuPAD.

The set of one-tuples of elements of S consists of vectors and therefore differs from the set
S in the same way as matrices of type matrix with one row and one column are different
from numbers.

Superdomain

Dom::BaseDomain

Categories

Cat::Set
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Examples

Example 1

A cartesian power of a finite set of numbers is a finite set of vectors:

A:= solvelib::cartesianPower({1, 2, I}, 3)

We can select those vectors with all components real as follows:

A intersect solvelib::cartesianPower(R_, 3)

Example 2

Cartesian powers of the set of complex numbers may occur as the result of a call to
solve if every n-tuple of complex numbers is a solution of the given system:

solve([x+y = x+y], [x, y], VectorFormat)
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Parameters

S

Set

n

Positive integer

Methods

Access Methods

base — Set S

base(A)

dimension — Exponent n

dimension(A)

Technical Methods

print — Print a cartesian power

print(A)
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solvelib::cartesianProduct
Cartesian product of sets

Syntax
solvelib::cartesianProduct(S, …)

Description

solvelib::cartesianProduct(S,...) returns the cartesian product of its
arguments.

The arguments may be sets of any type, consisting of complex numbers; the result is a
set that consists of vectors, or a symbolic call to solvelib::cartesianProduct. See
solve for an overview of the different kinds of sets in MuPAD.

Examples

Example 1

For finite sets, the result is similar to that of combinat::cartesianProduct but
consists of vectors and not of lists:

S:= solvelib::cartesianProduct({1, 2}, {3, 4})

solvelib::splitVectorSet(S)

delete S:
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Example 2

For infinite sets, results of various types are possible, e.g.,
solvelib::VectorImageSet or solvelib::cartesianPower:

solvelib::cartesianProduct(R_, R_)

solvelib::cartesianProduct(PI*Z_, Z_)

Parameters

S

Set of complex numbers

Return Values

Set

See Also

MuPAD Functions
combinat::cartesianProduct | solve | solvelib::cartesianPower |
solvelib::splitVectorSet
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solvelib::conditionalSort

Possible sortings of a list depending on parameters

Syntax

solvelib::conditionalSort(l)

Description

solvelib::conditionalSort(l) sorts the list l in ascending order. Unlike for sort,
only the usual order on the real numbers and not the internal order (see sysorder)
is used. solvelib::conditionalSort does a case analysis if list elements contain
indeterminates.

solvelib::conditionalSort invokes the inequality solver to get simple conditions in
the case analysis. The ability of solvelib::conditionalSort to recognize sortings as
impossible is thus limited by the ability of the inequality solver to recognize an inequality
as unsolvable. See “Example 3” on page 29-21.

Only expressions representing real numbers can be sorted. It is an error if non-real
numbers occur in the list; it is implicitly assumed that all parameters take on only such
values that cause all list elements to be real.

Sorting is unstable, i.e. equal elements may be placed in any order in the resulting list;
these cases may be listed separately in the case analysis.

The usual simplifications for piecewise defined objects are applied, e.g., equalities that
can be derived from a condition are applied (by substitution) to the list.

Environment Interactions

solvelib::conditionalSort takes into account the assumptions on all occurring
identifiers.
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Examples

Example 1

In the simplest case, sorting a two-element list [a,b] just amounts to solving the
inequality a<=b w.r.t. all occurring parameters.

solvelib::conditionalSort([x,x^2])

Example 2

If, by implicit or explicit assumptions on the parameters, no different sortings can occur,
the result is just a list.

According to the implicit assumption that all list elements are real, x must be
nonnegative.

solvelib::conditionalSort([sqrt(x), -3])

Example 3

Sometimes cases are not recognized as impossible.

assume(x>5): solvelib::conditionalSort([x,gamma(x)])
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Parameters

l

List of arithmetical expressions

Return Values

List if the sorting is the same for all possible parameter values; or an object of type
piecewise if some case analysis is necessary.

Algorithms

The complexity of sorting a list of n elements is up to .

See Also

MuPAD Functions
piecewise | sort
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solvelib::getElement
Get one element of a set

Syntax
solvelib::getElement(S, <Random>)

Description

solvelib::getElement(S) returns an element of S.

S can be a set of any type; see solve for an overview of all sets.

solvelib::getElement returns the value FAIL if:

• S is the empty set
• the solver cannot find any element of the set due to the solver's limitations
• the solver cannot compute the first element of a set. You can use the Random option to

check a random element of a set instead of the first element
• the answer depends on a case analysis on some parameter

With the option Random, the probability to get any particular element of a set is:

• Roughly equal for the elements of a finite set
• Proportional to the multiplicities for the elements of a finite multiset of type

Dom::Multiset

• Unspecified for the elements of an infinite set. Practically, the same result does not
occur twice for infinite sets.

Examples

Example 1

If S is a finite set, the solver returns just one of the elements:
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solvelib::getElement({2, 7, a})

Example 2

For image sets, the solver replaces every parameter by a constant:

S:=Dom::ImageSet(k*PI, k, solvelib::BasicSet(Dom::Integer))

solvelib::getElement(S)

Example 3

If the set is empty, the solver cannot find any element:

solvelib::getElement({})

solvelib::getElement might fail to find an element of a set although that set is not
empty.

solvelib::getElement(solve(exp(x) + cos(x) = x^2,x))

Example 4

Without the option Random, solvelib::getElement always produces the same result
for a set:

solvelib::getElement({$1..5}) $i=1..5
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With the option Random, the returned element varies randomly from call to call:

solvelib::getElement({$1..5}, Random) $i=1..15

The distribution of the returned values is close to the uniform distribution. For multisets,
the multiplicity of elements is taken into account:

solvelib::getElement(Dom::Multiset(1$4, 2$2), Random) $i=1..18

Example 5

For the following set parametrized by integers, the solver fails to find an element. This is
because the solver tries only the first parameter-value pair k = 0 for which the result is
undefined. After that the solver does not try any other parameter-value pairs:

solvelib::getElement(1/Z_)

For the sets with the undefined first element, you can get the result calling the solver
with the option Random:

solvelib::getElement(1/Z_, Random)

Parameters

S

Any set
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Options

Random

Returns a random element of a set. Without this option, solvelib::getElement(S)
always returns the same element.

Return Values

solvelib::getElement returns a MuPAD object representing an element of S, or FAIL
if no element could be determined.

Overloaded By

S

See Also

MuPAD Functions
solve

29-26



 solvelib::isEmpty

solvelib::isEmpty
Predicate expressing the emptyness of a set

Syntax
solvelib::isEmpty(S)

Description

solvelib::isEmpty(S) returns a boolean expression that is equivalent to the
statement that S is the empty set.

Since functions operating on boolean expressions like assume, is, or solve cannot
handle equations involving sets, it is not possible to pass the expression S={} to them.
solvelib::isEmpty(S) helps to get around this problem, as it tries to express
the emptyness of S in an equivalent way that can be handled by the aforementioned
functions. If no suitable equivalen expression is found, the unevaluated call to
solvelib::isEmpty is returned.

S may be a set of any type; see solve for an enumeration of the various types of sets.

The solvelib::isEmpty function always returns Boolean expressions, even if the
function cannot resolve an expression. See “Example 4” on page 29-28.

Examples

Example 1

The emptyness of a DOM_SET can be decided immediately:

solvelib::isEmpty({a, b}), solvelib::isEmpty({})
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Example 2

The intersection of a finite set with any other set is empty if and only if none of the
elements of the finite set is in the other set:

solvelib::isEmpty({a, b} intersect Z_)

Example 3

The output of solve can be entered directly into solvelib::isEmpty:

solvelib::isEmpty(solve(a*x=b, x))

Example 4

Sometimes, no simpler equivalent expression can be found:

result := solvelib::isEmpty(solve(x^2 = sin(x), x))

The returned expression is a Boolean expression:

testtype(result, Type::Boolean)

Parameters

S

Any set
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Return Values

Boolean expression

Overloaded By

S

See Also

MuPAD Functions
assume | is | solve
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solvelib::isFinite

Test whether a set is finite

Syntax

solvelib::isFinite(S)

Description

solvelib::isFinite(S) returns TRUE, FALSE, or UNKNOWN depending on whether S is
finite, infinite, or the question could not be settled.

S may be a set of any type; see solve for an enumeration of the various types of sets.

Examples

Example 1

A DOM_SET is always finite:

solvelib::isFinite({2,5})

Example 2

The set of integers is infinite.

solvelib::isFinite(Z_)
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Parameters

S

Any set

Return Values

Boolean value

Overloaded By

S

See Also

MuPAD Functions
solve
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solvelib::pdioe

Solve polynomial Diophantine equations

Syntax

solvelib::pdioe(a, b, c)

solvelib::pdioe(aexpr, bexpr, cexpr, x)

Description

solvelib::pdioe(a, b, c) returns polynomials u and v that satisfy the equation au
+ bv = c.

solvelib::pdioe(aexpr, bexpr, cexpr, x) does the same after converting the
arguments into univariate polynomials a, b, c in the variable x.

The coefficient ring of the polynomials a, b, and c must be either Expr, or IntMod(p) for
some prime p, or a domain belonging to the category Cat::Field.

Examples

Example 1

If expressions are passed as arguments, a fourth argument must be provided:

solvelib::pdioe(x,

                13*x + 22*x^2 + 18*x^3 + 7*x^4 + x^5 + 3,

                x^2 + 1,

                x)
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Example 2

x is not a multiple of the gcd of x + 1 and x2 - 1. Hence the equation u(x + 1) + v(x2 - 1) = x
has no solution for u and v:

solvelib::pdioe(x + 1, x^2 - 1, x, x)

Example 3

If the arguments are polynomials, the fourth argument may be omitted:

solvelib::pdioe(poly(a + 1, [a]),

                poly(a^2 + 1, [a]),

                poly(a - 1, [a]))

Parameters

x

Identifier or indexed identifier

a, b, c

Univariate polynomials

aexpr, bexpr, cexpr

Polynomial expressions

Return Values

If the equation is solvable, solvelib::pdioe returns an expression sequence consisting
of two operands of the same type as the input (expressions or polynomials). If the
equation has no solution, solvelib::pdioe returns FAIL.
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See Also

MuPAD Functions
solve
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solvelib::preImage
Preimage of a set under a mapping

Syntax
solvelib::preImage(a, x, S)

Description

solvelib::preImage(a, x, S) returns the set of all numbers y such that
substituting y for x in a gives an element of S.

S can be a set of any type (finite or infinite).

Examples

Example 1

In case of a finite set S, the preimage of S is just the union of all sets solve(a=s, x),
where s ranges over the elements of S.

solvelib::preImage(x^2+2, x, {11, 15});

Note that computing this set may take a long time for large finite sets:

time(solvelib::preImage(x, x, 

           Z_ intersect Dom::Interval(0, 1000000)))

Example 2

For intervals, the preimage is usually an interval or a union of intervals.

29-35



29 solvelib – Datatypes and Utilities for the Solver

solvelib::preImage(x^2+2, x, Dom::Interval(3..7));

Parameters

a

Arithmetic expression

x

Identifier

S

Set

Return Values

Set

See Also

MuPAD Functions
solve
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solvelib::splitVectorSet
Factor a set of vectors into a cartesian product

Syntax
solvelib::splitVectorSet(S)

Description

solvelib::splitVectorSet(S) returns a list S1, …, Sn of sets of complex numbers
such that S is the cartesian product of the Si, or FAIL if such factorization could not be
found.

The set S may be finite or infinite, of any type.

Examples

Example 1

We split a finite set of vectors into its factors:

solvelib::splitVectorSet({[1, 2], [1, 3], [0, 2], [0, 3]})

The following set cannot be written as a cartesian product:

solvelib::splitVectorSet({[1, 2], [0, 2], [0, 3]})

Example 2

Infinite sets can also be handled:
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S:= Dom::ImageSet([k*PI, l*PI+2], [k, l], [Z_, Z_])

solvelib::splitVectorSet(S)

delete S:

Parameters

S

Set of vectors

Return Values

List of type DOM_LIST, or FAIL

See Also

MuPAD Functions
solve
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solvelib::Union
Union of a system of sets

Syntax
solvelib::Union(set, param, paramset)

solvelib::Union(set, paramlist, vectorset)

Description

solvelib::Union (set, paramlist, vectorset) returns the set of all objects
that can be obtained by replacing, in some element of set, the list of free parameters
paramlist by an element of vectorset.

set may be a set of any type; it need not depend on the parameter param, and it may
also contain other free parameters.

paramset may be a set of any type and may depend on some free parameters. See
“Example 1” on page 29-39.

If paramset is empty, the result is the empty set. Overloading has no effect in this case.

vectorset may be a set of any type, consisting of vectors whose dimension equals the
number of variables in paramlist.

Examples

Example 1

We compute the set of all numbers that are equal to k + 1 or k + 3 for k = 2, k = 4, or k = l,
where l is a free parameter.

solvelib::Union({k+1, k+3}, k, {2,4,l});
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Example 2

In the same way, we can let a pair of parameters range over a set of pairs:

solvelib::Union(Dom::ImageSet(PI*k + exp(x) + y, k, Z_),

                [x, y], {[3, 2], [1, 4]})

Parameters

set

Set of any type

param

Identifier

paramset

Set of any type

paramlist

List of identifiers

vectorset

Set of vectors

Return Values

solvelib::Union returns a set of any type; see solve for an overview of the different
types of sets. It may also return the unevaluated call if the union could not be computed.

Overloaded By

set
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See Also

MuPAD Functions
solve
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solvelib::VectorImageSet
Domain of set of vectors that are images of sets under mappings

Syntax

Domain Creation

solvelib::VectorImageSet()

Element Creation

solvelib::VectorImageSet(v, x, S)

Dom::ImageSet(v, [x1, …], [S1, …])

Description

Domain Creation

solvelib::VectorImageSet is the domain of all sets of vectors of complex numbers
that can be written as the set of all values taken on by some mapping, i.e., sets of the
form  for some complex-valued functions fj

and some sets S1, …, Sn of complex numbers.

Sets of this type are used by solve to express solutions of systems of equations like
 .

Element Creation

solvelib::VectorImageSet(v, x, S) represents the set of all vectors that can be
obtained by substituting some element of S for x in the vector v.

solvelib::VectorImageSet(v, [x1, ...], [S1, ...]) represents the set of all
values that can be obtained by substituting, for each i, the identifier xi by some element
of Si in the vector v.
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Superdomain

Dom::ImageSet

Categories

Cat::Set

Examples

Example 1

We create a set of two-dimensional vectors:

S:= Dom::ImageSet([k*PI, k*I*PI], k, Z_)

Since this is a set of vectors, a solvelib::VectorImageSet is created automatically:

type(S)

Set-theoretic operations (union, intersection, set difference) may be applied to S:

S intersect {[0, 0], [1, 1]}, S minus S

delete S:
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Parameters

v

List or matrix

x

Identifier or indexed identifier

S

Set of any type
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stats – Statistics

stats::betaCDF
stats::betaPDF
stats::betaQuantile
stats::betaRandom
stats::binomialCDF
stats::binomialPF
stats::binomialQuantile
stats::binomialRandom
stats::calc
stats::cauchyCDF
stats::cauchyPDF
stats::cauchyQuantile
stats::cauchyRandom
stats::chisquareCDF
stats::chisquarePDF
stats::chisquareQuantile
stats::chisquareRandom
stats::col
stats::concatCol
stats::concatRow
stats::correlation
stats::correlationMatrix
stats::covariance
stats::cutoff
stats::winsorize
stats::csGOFT
stats::empiricalCDF
stats::empiricalPF
stats::empiricalQuantile
stats::empiricalRandom
stats::equiprobableCells
stats::erlangCDF
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stats::erlangPDF
stats::erlangQuantile
stats::erlangRandom
stats::exponentialCDF
stats::exponentialPDF
stats::exponentialQuantile
stats::exponentialRandom
stats::fCDF
stats::fPDF
stats::fQuantile
stats::fRandom
stats::finiteCDF
stats::finitePF
stats::finiteQuantile
stats::finiteRandom
stats::frequency
stats::gammaCDF
stats::gammaPDF
stats::gammaQuantile
stats::gammaRandom
stats::geometricMean
stats::geometricCDF
stats::geometricPF
stats::geometricQuantile
stats::geometricRandom
stats::harmonicMean
stats::hodrickPrescottFilter
stats::hypergeometricCDF
stats::hypergeometricPF
stats::hypergeometricQuantile
stats::hypergeometricRandom
stats::ksGOFT
stats::kurtosis
stats::linReg
stats::logisticCDF
stats::logisticPDF
stats::logisticQuantile
stats::logisticRandom
stats::lognormalCDF
stats::lognormalPDF
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stats::lognormalQuantile
stats::lognormalRandom
stats::mean
stats::meandev
stats::median
stats::modal
stats::moment
stats::normalCDF
stats::normalPDF
stats::normalQuantile
stats::normalRandom
stats::obliquity
stats::poissonCDF
stats::poissonPF
stats::poissonQuantile
stats::poissonRandom
stats::quadraticMean
stats::reg
stats::row
stats::sample
stats::sample2list
stats::selectRow
stats::sortSample
stats::stdev
stats::swGOFT
stats::tabulate
stats::tCDF
stats::tPDF
stats::tQuantile
stats::tRandom
stats::tTest
stats::uniformCDF
stats::uniformPDF
stats::uniformQuantile
stats::uniformRandom
stats::unzipCol
stats::variance
stats::weibullCDF
stats::weibullPDF
stats::weibullQuantile
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stats::weibullRandom
stats::zipCol
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stats::betaCDF

Cumulative distribution function of the beta distribution

Syntax

stats::betaCDF(a, b)

Description

stats::betaCDF(a, b) returns a procedure representing the cumulative distribution
function

.

of the beta distribution with shape parameters a > 0, b > 0.

The procedure f := stats::betaCDF(a, b) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

• If x can be converted to a real floating-point number and a and b can be converted
to positive floating-point numbers, then the return value f(x) is a floating-point
number.

• For numerical values x ≤ 0 and x ≥ 1, the floating-point numbers 0.0, respectively
1.0, are returned even if a and b are symbolic quantities.

• The call f(- infinity ) returns 0.0; the call f( infinity ) return 1.0.
• In all other cases, f(x) returns the symbolic call stats::betaCDF(a, b)(x).

Numerical values of a and b are only accepted if they are positive.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the cumulative distribution function with a = 5 and b = 7 at various points:

f := stats::betaCDF(5, 7):

f(-infinity), f(-PI), f(1/sqrt(10)), f(0.75), f(1), f(infinity)

Nonpositive numerical values of a or b lead to an error:

stats::betaCDF(-5, 7)(0.75)

Error: The first shape parameter must be positive. [stats::betaCDF]

Error:

the first shape parameter must be positive [stats::betaCDF] 

delete f:

Example 2

For symbolic arguments, symbolic calls of stats::betaCDF are returned, unless x ≤ 0 or
x ≥ 1 can be decided:

f := stats::betaCDF(a, b):

f(-2), f(0), f(1/3), f(0.4), f(1), f(PI), f(x)
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When positive real numbers are assigned to a and b, the call f(x) returns a floating-point
number if x is numerical:

a := 2: b := PI: 

f(-2), f(1/3), f(0.4),  f(PI)

delete f, a, b:

Parameters

a, b

The shape parameters of the beta distribution: arithmetical expressions representing
positive real values.

Return Values

procedure.

See Also

MuPAD Functions
stats::betaPDF | stats::betaQuantile | stats::betaRandom
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stats::betaPDF

Probability density function of the beta distribution

Syntax

stats::betaPDF(a, b)

Description

stats::betaPDF(a, b) returns a procedure representing the probability density
function

.

of the beta distribution with shape parameters a > 0 and b > 0

The procedure f := stats::betaPDF(a, b) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

• If x is a real floating-point number and a and b can be converted to positive floating-
point numbers, then f(x) returns a floating-point number.

• If 0 < x < 1 can be decided, the expression x^(a-1)*(1-x)^(b-1)/beta(a, b) is
returned. If x ≤ 0 or x ≥ 1 can be decided, then 0, respectively 0.0, is returned.

• The calls f(- infinity ) and f( infinity ) return 0.
• In all other cases, f(x) returns the symbolic call stats::betaPDF(a, b)(x).

Numerical values of a and b are only accepted if they are positive.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The procedure returned by stats::betaPDF reacts to
properties of its argument.

Examples

Example 1

We evaluate the probability density function with a = 3 and b = 4 at various points:

f := stats::betaPDF(3, 4):

f(-infinity), f(-1), f(1/2), f(0.7), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether 0 < x < 1
holds. A symbolic function call is returned:

f := stats::betaPDF(a, b): f(x)

With suitable properties, an explicit expression is returned:

assume(0 < x < 1): f(x)

assume(x > 1): f(x)
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unassume(x): delete f:

Parameters

a, b

The shape parameters of the beta distribution: arithmetical expressions representing
positive real values.

Return Values

procedure.

See Also

MuPAD Functions
stats::betaCDF | stats::betaQuantile | stats::betaRandom
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stats::betaQuantile

Quantile function of the beta distribution

Syntax

stats::betaQuantile(a, b)

Description

stats::betaQuantile(a, b) returns a procedure representing the quantile function
(inverse) of the cumulative distribution function stats::betaCDF(a, b). For 0 ≤ x ≤ 1,
the solution of stats::betaCDF(a, b)(y) = x is given by y = stats::betaQuantile(a, b)(x).

The procedure f := stats::betaQuantile(a, b) can be called in the form f(x)
with an arithmetical expression x. The return value of f(x) is either a floating-point
number, or a symbolic expression:

• If a and b can be converted to positive floating-point numbers and x is a real number
between 0 and 1, then the return value f(x) is a floating-point number between 0.0
and 1.0 approximating the real solution y of stats::betaCDF(a, b)(y) = x.

• f(0), f(0.0), f(1), and f(1.0) produce 0, 0.0, 1, and 1.0, respectively, for all
values of a and b.

• In all other cases, f(x) returns the symbolic call stats::betaQuantile(a, b)
(x).

Numerical values of a and b are only accepted if they are positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

30-11



30 stats – Statistics

Examples

Example 1

We evaluate the quantile function with a = π and b = 11 at the point :

f := stats::betaQuantile(PI, 11): f(9/10)

The value f(x) satisfies stats::betaCDF(PI, 11)(f(x)) = x:

stats::betaCDF(PI, 11)(f(0.98765))

delete f:

Example 2

For symbolic arguments, symbolic calls are returned:

f := stats::betaQuantile(a, b): f(x), f(0.9)

If a, b evaluate to real numbers and x to a real number between 0 and 1, then the call
f(x) produces a float:

a := 17: b := 6: f(0.9)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(2)
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Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, a, b:

Parameters

a, b

The shape parameters of the beta distribution: arithmetical expressions representing
positive real values.

Return Values

procedure.

See Also

MuPAD Functions
stats::betaCDF | stats::betaPDF | stats::betaRandom
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stats::betaRandom
Generate a random number generator for beta deviates

Syntax
stats::betaRandom(a, b, <Seed = n>)

Description

stats::betaRandom(a, b) returns a procedure that produces beta deviates (random
numbers) with shape parameters a > 0, b > 0.

The procedure f := stats::betaRandom(a, b) can be called in the form f(). The
return value of f() is either a floating-point number or a symbolic expression:

• If a and b can be converted to positive floating-point numbers, then f() returns a
random floating-point number between 0.0 and 1.0.

• In all other cases, f() return the symbolic call stats::betaRandom(a, b)().

Numerical values of a and b are only accepted if they are positive.

The values X = f() are distributed randomly according to the beta distribution with
parameters a and b. For any 0 ≤ x ≤ 1, the probability that X ≤ x is given by

.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::betaRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::betaRandom(a, b): f() $ k = 1..K;

rather than by

stats::betaRandom(a, b)() $ k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::betaRandom(a, b, Seed = n)() $ k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate beta deviates with parameters a = 2 and :

f := stats::betaRandom(2, 3/4): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::betaRandom(a, b): f()
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When a and b evaluate to positive real numbers, the generator starts to produce random
numbers:

a := 1: b := 2: f() $ k = 1..4

delete f, a, b:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::betaRandom(1, 3, Seed = 1): f() $ k = 1..4

g := stats::betaRandom(1, 3, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

a, b

The shape parameters of the beta distribution: arithmetical expressions representing
positive real values.
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Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the shape parameters a and b must be convertible to positive
floating-point numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of the beta deviates uses gamma
deviates x, y to produce a beta deviate x/(x + y). For more information see: D. Knuth,
Seminumerical Algorithms (1998), Vol. 2, p. 134.

See Also

MuPAD Functions
stats::betaCDF | stats::betaPDF | stats::betaQuantile
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stats::binomialCDF
The (discrete) cumulative distribution function of the binomial distribution

Syntax
stats::binomialCDF(n, p)

Description

stats::binomialCDF(n, p) returns a procedure representing the (discrete)
cumulative distribution function

.

of the binomial distribution with “trial parameter” n and “probability parameter” p.

The procedure f := stats::binomialCDF(n, p) can be called in the form f(x) with
an arithmetical expression x. The return value of f(x) is either a floating-point number,
an exact numerical value, or a symbolic expression:

• If x is a numerical real value and n is a positive integer, then an explicit value is
returned. If p is a numerical value satisfying 0 ≤ p ∧ p ≤ 1, this is a numerical value.
Otherwise, it is a symbolic expression in p.

• If x is a numerical value with x < 0, then 0, respectively 0.0, is returned for any value
of n and p.

• For symbolic values of n, explicit results are returned if x is a numerical value with x
< 2.

• For symbolic values of n, explicit results are returned if n - x is a numerical value with
n - x ≤ 2.

• If n - x is a numerical value with n - x ≤ 0, then 1, respectively 1.0, is returned for
any value of n and p.
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• In all other cases, f(x) returns the symbolic call binomialCDF(n, p)(x).

Numerical values for n are only accepted if they are positive integers.

Numerical values for p are only accepted if they satisfy 0 ≤ p ≤ 1.

If x is a real floating-point number, the result is a floating number provided n and p are
numerical values. If x is an exact numerical value, the result is an exact number.

Note: Note that for large n, floating-point results are computed much faster than exact
results. If floating-point approximations are desired, pass a floating-point number x to
the procedure generated by stats::binomialCDF!

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the distribution function with n = 20 and  at various points:

f := stats::binomialCDF(5, 3/4): 

f(-1), f(2), f(PI), f(5), f(6)

f(-1.2), f(2.0), f(float(PI)), f(5.5)

delete f:
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Example 2

We use symbolic arguments:

f := stats::binomialCDF(n, p): f(x), f(8), f(8.0)

When numerical values are assigned to n and p, the function f starts to produce explicit
results if the argument is numerical:

n := 3: p := 1/3: 

f(2), f(2.5), f(PI +1), f(4.0)

delete f, n, p:

Example 3

If n and x are numerical, symbolic expressions are returned for symbolic values of p:

f := stats::binomialCDF(3, p):

f(-1), f(0), f(3/2), f(1 + sqrt(3)), f(2.999), f(3)

delete f:

Parameters

n

The “trial parameter”: an arithmetical expression representing a positive integer

p

The “probability parameter”: an arithmetical expression representing a real number 0 ≤ p
≤ 1.
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Return Values

procedure.

See Also

MuPAD Functions
stats::binomialPF | stats::binomialQuantile | stats::binomialRandom
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stats::binomialPF
Probability function of the binomial distribution

Syntax
stats::binomialPF(n, p)

Description

stats::binomialPF(n, p) returns a procedure representing the probability function

for x=0,1,..,n of the binomial distribution with “trial parameter” n and “probability
parameter” p.

The procedure f := stats::binomialPF(n, p) can be called in the form f(x) with
arithmetical expressions x. The return value of f(x) is either a floating-point number,
an exact numerical value, or a symbolic expression:

• If x is a non-integer numerical value, f(x) returns 0 or 0.0, respectively.
• If x is an integer or the floating point equivalent of an integer and n is a positive

integer, then an explicit value is returned. If p is a numerical value satisfying 0 ≤ p ≤
1, this is a numerical value. Otherwise, it is a symbolic expression in p.

For symbolic values of n, explicit results are returned if x is a numerical value withx <
2.

• For symbolic values of n, explicit results are returned if n - x is a numerical value
withn - x < 2.

• In all other cases, f(x) returns the symbolic call stats::binomialPF(n,p)(x).

Numerical values for n are only accepted if they are positive integers.

Numerical values for p are only accepted if they satisfy 0 ≤ p ≤ 1.
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If x is a floating-point number, the result is a floating number provided n and p are
numerical values. If x is an exact value, the result is an exact number.

Note that for large n, floating-point results are computed much faster than exact results.
If floating-point approximations are desired, pass a floating-point number x to the
procedure created by stats::binomialPF.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We compute the probability function with n = 3 and  at various points:

f := stats::binomialPF(3, 3/4): 

f(-1/2), f(0), f(1/2), f(1), f(7/4), f(2), f(3), f(4)

f(-0.2), f(0.0), f(0.7), f(1.0), f(2.0), f(2.7), f(3.0), f(4.0)

delete f:

Example 2

We use symbolic arguments:

f := stats::binomialPF(n, p): f(x), f(8), f(8.0)
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When real numbers are assigned to n and p, the function f starts to produce explicit
results if the argument is numerical:

n := 3: p := 1/3:

f(0), f(1), f(2.0), f(3.5), f(4)

delete f, n, p, x:

Example 3

If n and x are numerical, symbolic expressions are returned for symbolic values of p:

f := stats::binomialPF(3, p):

f(-1), f(0), f(3/2), f(2), f(3)

delete f:

Parameters

n

The “trial parameter”: an arithmetical expression representing a positive integer

p

The “probability parameter”: an arithmetical expression representing a real number 0 ≤ p
≤ 1.

Return Values

procedure.
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See Also

MuPAD Functions
stats::binomialCDF | stats::binomialQuantile | stats::binomialRandom
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stats::binomialQuantile
Quantile function of the binomial distribution

Syntax
stats::binomialQuantile(n, p)

Description

stats::binomialQuantile(n, p) returns a procedure representing
the quantile function (discrete inverse) of the cumulative distribution
function stats::binomialCDF(n, p). For 0 ≤ x ≤ 1, the quantile value k =
stats::binomialQuantile(n, p)(x) satisfies

.

The procedure f := stats::binomialQuantile(n, p) can be called in the form
f(x) with arithmetical expressions x. The return value of f(x) is either a natural
number between 0 and n, or a symbolic expression:

• If n is a positive integer, p a real number satisfying 0 ≤ p ≤ 1, and x a real number
satisfying 0 ≤ x ≤ 1, then f(x) returns an integer between 0 and n.

• If p = 0, then f(x) returns 0 for any values of n and x.
• If p = 1, then f(x) returns n for any values of n and x.
• For p ≠ 1, the call f(0) returns 0 for any value of n.
• For p ≠ 0, the call f(1) returns n for any value of n.
• In all other cases, f(x) returns the symbolic call stats::binomialQuantile(n,

p)(x).

Numerical values for n are only accepted if they are positive integers.

Numerical values for p are only accepted if they satisfy 0 ≤ p ≤ 1.

If floating-point arguments are passed to the quantile function f, the result is computed
with floating-point arithmetic. This is faster than using exact arithmetic, but the result
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is subject to internal round-off errors. In particular, round-off may be significant for
arguments x close to 1. Cf. “Example 3” on page 30-28.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the quantile function with n = 30 and  at some points:

f := stats::binomialQuantile(30, 1/3): 

f(0), f((2/3)^30), f(PI/10), f(0.5), f(1 - 1/10^10)

The quantile value f(x) satisfies

:

x := 0.7: f(x)

stats::binomialCDF(30, 1/3)(float(f(x) - 1)), x,

stats::binomialCDF(30, 1/3)(float(f(x)))

delete f, x:
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Example 2

We use symbolic arguments:

f := stats::binomialQuantile(n, p): f(x), f(9/10)

When n and p evaluate to suitable numbers, the function f starts to produce quantile
values:

n := 80: p := 1/10:

f(1/2),  f(999/1000), f(1 - 1/10^10), f(1 - 1/10^80)

delete f, n, p:

Example 3

If floating-point arguments are passed to the quantile function, the result is computed
with floating-point arithmetic. This is faster than using exact arithmetic, but the result is
subject to internal round-off errors:

f := stats::binomialQuantile(1000, 1/30): 

f(1 - 1/10^16) <> f(float(1 - 1/10^16))

delete f:

Parameters

n

The “trial parameter”: an arithmetical expression representing a positive integer
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p

The “probability parameter”: an arithmetical expression representing a real number 0 ≤ p
≤ 1.

Return Values

procedure.

See Also

MuPAD Functions
stats::binomialCDF | stats::binomialPF | stats::binomialRandom
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stats::binomialRandom
Generate a random number generator for binomial deviates

Syntax
stats::binomialRandom(n, p, <Seed = s>)

Description

stats::binomialRandom(n, p) returns a procedure that produces binomial-deviates
(random numbers) with trial parameter n and probability parameter p.

The procedure f := stats::binomialRandom(n, p) can be called in the form f().
The return value of f() is an integer between 0 and n or a symbolic expression:

• If n is a positive integer and p is a real value satisfying 0 ≤ p ≤ 1, then f() returns an
integer between 0 and n.

• If p = 0 or p = 0.0, then f() returns 0 for any value of n.
• If p = 1 or p = 1.0, then f() returns n for any value of n.

In all other cases, f() return the symbolic call stats::binomialRandom(n, p)().

Numerical values for n are only accepted if they are positive integers.

Numerical values for p are only accepted if they satisfy 0 ≤ p ≤ 1.

The values X = f() are distributed randomly according to the binomial distribution
with trial parameter n and probability parameter p. For any , the probability of
X ≤ x is given by

.

Without the option Seed = s, an initial seed is chosen internally. This initial seed is
set to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
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initialized with the reset function, random generators produce the same sequences of
numbers.

Note: With this option, the parameters n and p must evaluate to suitable numerical
values at the time, when the generator is created.

Note: In contrast to the function random, the generators produced by
stats::binomialRandom do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::binomialRandom(n, p): f() $k = 1..K;

rather than by

stats::binomialRandom(n, p)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::binomialRandom(n, p, Seed = s)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions
The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate binomial deviates with parameters n = 80 and :

f := stats::binomialRandom(80, 1/7): f() $ k = 1..10
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delete f:

Example 2

With symbolic parameters, no random numbers can be produced:

f := stats::binomialRandom(n, p): f()

When n and p evaluate to suitable numbers, the generator starts to produce random
numbers:

n := 200: p := 1/PI: f() $ k= 1..10

delete f, n, p:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::binomialRandom(70, 7/8, Seed = 1): f() $ k = 1..10

g := stats::binomialRandom(70, 7/8, Seed = 1): g() $ k = 1..10

f() = g(), f() = g()

delete f, g:
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Parameters

n

The “trial parameter”: an arithmetical expression representing a positive integer

p

The “probability parameter”: an arithmetical expression representing a real number 0 ≤ p
≤ 1.

Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters n and p must be numerical values at the time
when the random generator is generated.

Return Values

procedure.

See Also

MuPAD Functions
stats::binomialCDF | stats::binomialPF | stats::binomialQuantile
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stats::calc
Apply functions to a sample

Syntax
stats::calc(s, c, f1, f2, …)

stats::calc(s, [c1, c2, …], f1, f2, …)

Description

stats::calc applies functions to columns of the sample s.

In a call such as stats::calc(s, c, f1) the function f1 is applied to the elements of
the column c of s. This generates a new column which is appended to s. If present, the
next function f2 is applied to the new sample etc. Thus, a call of stats::calc with m
functions appends m new columns to s.

Each function must accept exactly one parameter.

In a call such as stats::calc(s, [c1, c2, …], f1) the i-th element of the new
column is given by f1(si, c1, si, c2, …).

Each function must accept as many parameters as specified by the second argument of
stats::calc.

Examples

Example 1

We create a sample of three rows and three columns:

stats::sample([[1, a1, b1], [2, a2, b2], [3, a3, b3]])

1  a1  b1

2  a2  b2
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3  a3  b3

We add and multiply the elements of the columns 2 and 3 by applying the system
functions _plus and _mult:

stats::calc(%, [2, 3], _plus, _mult)

1  a1  b1  a1 + b1  a1*b1

2  a2  b2  a2 + b2  a2*b2

3  a3  b3  a3 + b3  a3*b3

The following call maps each element of the second column of the original sample to its
fourth power:

stats::calc(%2, 2, x -> x^4)

1  a1  b1  a1^4

2  a2  b2  a2^4

3  a3  b3  a3^4

The following call computes the mean values of the rows of the last sample:

stats::calc(%, [1, 2, 3, 4], 

            (x1, x2, x3, x4) -> (x1 + x2 + x3 + x4)/4)

1  a1  b1  a1^4  a1^4/4 + a1/4 + b1/4 + 1/4

2  a2  b2  a2^4  a2^4/4 + a2/4 + b2/4 + 1/2

3  a3  b3  a3^4  a3^4/4 + a3/4 + b3/4 + 3/4

The same is achieved by the following call:

stats::calc(%2, [1, 2, 3, 4], stats::mean)

1  a1  b1  a1^4  a1^4/4 + a1/4 + b1/4 + 1/4

2  a2  b2  a2^4  a2^4/4 + a2/4 + b2/4 + 1/2

3  a3  b3  a3^4  a3^4/4 + a3/4 + b3/4 + 3/4

Parameters
s

A sample of domain type stats::sample

30-35



30 stats – Statistics

c, c1, c2, …

Positive integers representing column indices of the sample

f1, f2, …

Procedures

Return Values

Sample of domain type stats::sample.

See Also

MuPAD Functions
stats::tabulate
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stats::cauchyCDF

Cumulative distribution function of the Cauchy distribution

Syntax

stats::cauchyCDF(a, b)

Description

stats::cauchyCDF(a, b) returns a procedure representing the cumulative
distribution function

of the Cauchy distribution with median a and scale parameter b > 0.

The procedure f := stats::cauchyCDF(a, b) can be called in the form f(x) with
arithmetical expressions x. The return value of f(x) is either a floating-point number or
a symbolic expression:

• If x is a floating-point number and a and b can be converted to suitable floating-point
numbers, then f(x) returns a floating-point number.

• In all other cases, the symbolic expression arctan((x - a)/b)/PI + 1/2 is
returned.

Numerical values of a and b are only accepted if they are real and b is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the cumulative distribution function with a = 2 and  at various points:

f := stats::cauchyCDF(2, 3/4):

f(-infinity), f(-10), f(0.8), f(2), f(10.0^4), f(infinity)

delete f, x:

Example 2

We use symbolic arguments:

f := stats::cauchyCDF(a, b):

f(x), f(sqrt(2)), f(0.9)

When numbers are assigned to a and b, the function f starts to produce corresponding
numerical values:

a := PI:

b := 1/8:

f(sqrt(2)), f(0.9)

Parameters
a

The median: an arithmetical expression representing a real value
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b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::cauchyPDF | stats::cauchyQuantile | stats::cauchyRandom
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stats::cauchyPDF

Probability density function of the Cauchy distribution

Syntax

stats::cauchyPDF(a, b)

Description

stats::cauchyPDF(a, b) returns a procedure representing the probability density
function

of the Cauchy distribution with median a and scale parameter b > 0.

The procedure f := stats::cauchyPDF(a, b) can be called in the form f(x) with
arithmetical expressions x. The return value of f(x) is either a floating-point number or
a symbolic expression:

• If x is a floating-point number and a and b can be converted to suitable floating-point
numbers, then f(x) returns a floating-point number.

• In all other cases, the symbolic expression b/PI * 1/((x-a)^2 + b^2) is returned.

Numerical values of a and b are only accepted if they are real and b is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We calculate the Cauchy density with a = 2 and  at various points:

f := stats::cauchyPDF(2, 3/4):

f(-infinity), f(9/10), f(0.9), f(2), f(infinity)

delete f:

Example 2

We use symbolic arguments:

f := stats::cauchyPDF(a, b):

f(x), f(2), f(2.0)

When a and b evaluate to numbers, the function f starts to produce numerical values:

a := PI:

b:= 1/8:

f(2), f(2.0)

delete f, a, b:
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Parameters

a

The median: an arithmetical expression representing a real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::cauchyCDF | stats::cauchyQuantile | stats::cauchyRandom
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stats::cauchyQuantile

Quantile function of the Cauchy distribution

Syntax

stats::cauchyQuantile(a, b)

Description

stats::cauchyQuantile(a, b) returns a procedure representing the quantile
function (inverse) of the cumulative distribution function stats::cauchyCDF(a,
b): for 0 ≤ x ≤ 1, the solution of stats::cauchyCDF(a, b)(y) = x is given by y =
stats::cauchyQuantile(a, b)(x).

The procedure f := stats::cauchyQuantile(a, b) can be called in the form f(x)
with arithmetical expressions x. The return value of f(x) is either a floating-point
number,  or a symbolic expression:

If x is a floating-point number between 0 and 1 and a and b can be converted to suitable
floating-point numbers, then f(x) returns a floating-point number approximating the
real solution y of stats::cauchyCDF(a, b)(y) = x.

For any value of a and b, the calls f(0) and f(0.0) produce - ∞. The calls f(1) and
f(1.0) produce infinity.

In all other cases, the symbolic expression a + b*tan(PI*(x - 1/2)) is returned.

Numerical values of a and b are only accepted, if they are real and b is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the quantile function with a = 2 and  at various points:

f := stats::cauchyQuantile(2, 3/4): 

f(0), f(4/5), f(0.8), f(1)

delete f:

Example 2

We use symbolic arguments:

f := stats::cauchyQuantile(a, b):

f(0), f(x), f(1/sqrt(2)), f(0.9), f(1)

When numbers are assigned to a and b, the function f starts to produce numerical values
when called with arguments between 0 and 1:

a := PI: b := 1/8:

f(0), f(1/sqrt(2)), f(0.9), f(1)

Parameters

a

The median: an arithmetical expression representing a real value
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b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::cauchyCDF | stats::cauchyPDF | stats::cauchyRandom
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stats::cauchyRandom
Generate a random number generator for Cauchy deviates

Syntax
stats::cauchyRandom(a, b, <Seed = n>)

Description

stats::cauchyRandom(a, b) returns a procedure that produces Cauchy deviates
(random numbers) with median a and scale parameter b > 0.

The procedure f := stats::cauchyRandom(a, b) can be called in the form f(). The
return value of f() is either a floating-point number or a symbolic expression:

If a can be converted to a real floating point number and b to a positive real floating
point number, then f() returns a real floating point number.

In all other cases, f() returns the symbolic call stats::cauchyRandom(a, b)().

Numerical values of a and b are only accepted, if they are real and b is positive.

The values X = f() are distributed randomly according to the the Cauchy distribution
with parameters a and b. For any real x, the probability that X ≤ x is given by

.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is
set to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::cauchyRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::cauchyRandom(a, b): f() $ k = 1..K;

rather than by

stats::cauchyRandom(a, b)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::cauchyRandom(a, b, Seed = n)() $ k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate Cauchy deviates with parameters a = 2 and :

f := stats::cauchyRandom(2, 3/4): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::cauchyRandom(a, b): f()
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When a and b evaluate to suitable real numbers, the generator starts to produce random
numbers:

a := -PI: b := 1/2: f() $ k = 1..4

delete f, a, b:

Example 3

We use the option Seed = n to reproduce a sequence of random numbers:

f := stats::cauchyRandom(PI, 3, Seed = 1): f() $ k = 1..4

g := stats::cauchyRandom(PI, 3, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

a

The median: an arithmetical expression representing a real value

b

The scale parameter: an arithmetical expression representing a positive real value
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Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters a and b must be convertible to suitable
floating-point numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of the Cauchy deviates uses the quantile
function of the Cauchy distribution applied to uniformly distributed random numbers
between 0 and 1.

See Also

MuPAD Functions
stats::cauchyCDF | stats::cauchyPDF | stats::cauchyQuantile
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stats::chisquareCDF

Cumulative distribution function of the chi-square distribution

Syntax

stats::chisquareCDF(m)

Description

stats::chisquareCDF(m) returns a procedure representing the cumulative
distribution function

of the chi-square distribution with mean m > 0.

The procedure f := stats::chisquareCDF(m) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0. If x > 0 can be decided, then f(x) returns
the value .

If x is a floating-point number and m can be converted to a positive floating-point
number, then these values are returned as floating-point numbers. Otherwise, symbolic
expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x ≥ 0, the corresponding values are returned.

30-50



 stats::chisquareCDF

f(x) returns the symbolic call stats::chisquareCDF(m)(x)if neither x ≤ 0 nor x > 0
can be decided.

Numerical values for m are only accepted if they are real and positive.

Note that, for large m, exact results may be costly to compute. If floating-point values
are desired, it is recommended to pass floating-point arguments x to f rather than
to compute exact results f(x) and convert them via float. Cf. “Example 4” on page
30-53.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the cumulative distribution function with mean m = 2 at various points:

f := stats::chisquareCDF(2): 

f(-infinity), f(-3), f(1/2), f(0.5), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≥ 0 holds.
A symbolic function call is returned:

f := stats::chisquareCDF(m):

f(x)
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With suitable properties, it can be decided whether x ≥ 0 holds. An explicit expression is
returned:

assume(0 <= x):

f(x)

For integer values of m, the special function igamma can be expressed in terms of more
elementary functions:

m := 6:

f(x)

m := 5:

f(x)

unassume(x): delete f, m:

Example 3

We use a symbolic mean m:

f := stats::chisquareCDF(m):

f(3), f(3.0)
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When a numerical value is assigned to m, the function f starts to produce numerical
values:

m := PI:

f(3), f(3.0)

delete f, m:

Example 4

We consider a chi-square distribution with large mean m = 1000:

f := stats::chisquareCDF(1000):

For floating-point approximations, one should not compute an exact result and convert
it via float. For large mean m, it is faster to pass a floating-point argument to f.
The following call takes some time, because an exact computation of the huge integer
gamma(m/2) = gamma(500) = 499! is involved:

float(f(1023))

The following call is much faster:

f(float(1023))

delete f:

Parameters

m

The mean: an arithmetical expression representing a positive real value
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Return Values

procedure.

See Also

MuPAD Functions
gamma | igamma | stats::chisquarePDF | stats::chisquareQuantile |
stats::chisquareRandom
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stats::chisquarePDF
Probability density function of the chi-square distribution

Syntax
stats::chisquarePDF(m)

Description

stats::chisquarePDF(m) returns a procedure representing the probability density
function

of the chi-square distribution with mean m > 0.

The procedure f := stats::chisquarePDF(m) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0. If x > 0 can be decided, then f(x) returns

the value .

If x is a floating-point number and m can be converted to a positive floating-point
number, then these values are returned as floating-point numbers. Otherwise, symbolic
expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x ≥ 0, the corresponding values are returned.
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f(x) returns the symbolic call stats::chisquarePDF(m)(x) if neither x ≤ 0 nor x > 0
can be decided,

Numerical values of m are only accepted if they are positive.

Note that, for large m, exact results may be costly to compute. If floating-point values
are desired, it is recommended to pass floating-point arguments x to f rather than
to compute exact results f(x) and convert them via float. Cf. “Example 4” on page
30-57.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the probability density function with m = 2 at various points:

f := stats::chisquarePDF(2):

f(-infinity), f(-PI), f(1/2), f(0.5), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≥ 0 holds.
A symbolic function call is returned:

f := stats::chisquarePDF(m): f(x)
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With suitable properties, it can be decided whether x ≥ 0 holds. An explicit expression is
returned:

assume(0 <= x): f(x)

unassume(x): delete f:

Example 3

We use symbolic a symbolic mean m:

f := stats::chisquarePDF(m): f(x)

When a numerical value is assigned to m, the function f starts to produce numerical
values:

m := PI: f(3), f(3.0)

delete f, m:

Example 4

We consider a chi-square distribution with large mean m = 1000:

f := stats::chisquarePDF(1000):

For floating-point approximations, one should not compute an exact result and convert
it via float. For large mean m, it is faster to pass a floating-point argument to f.
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The following call takes some time, because an exact computation of the huge integer
gamma(m/2) = gamma(500) = 499! is involved:

float(f(1023))

The following call is much faster:

f(float(1023))

delete f:

Parameters

m

The mean: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
gamma | stats::chisquareCDF | stats::chisquareQuantile |
stats::chisquareRandom
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stats::chisquareQuantile

Quantile function of the chi-square distribution

Syntax

stats::chisquareQuantile(m)

Description

stats::chisquareQuantile(m) returns a procedure representing the quantile
function (inverse) of the cumulative distribution function stats::chisquareCDF(m).
For 0 ≤ x ≤ 1, the solution of stats::chisquareCDF(m)(y) = x is given by y =
stats::chisquareQuantile(m)(x).

The procedure f := stats::chisquareQuantile(m) can be called in the form f(x)
with an arithmetical expression x. The return value of f(x) is either a floating-point
number, infinity, or a symbolic expression:

If x is a real number between 0 and 1 and m can be converted to a positive floating-point
number, then f(x) returns a positive floating-point number approximating the solution
y of stats::chisquareCDF(m)(y) = x.

The calls f(0) and f(0.0) produce 0.0 for all values of m.

The calls f(1) and f(1.0) produce infinity for all values of m.

In all other cases, f(x) returns the symbolic call stats::chisquareQuantile(m)(x).

Numerical values of m are only accepted if they are real and positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the quantile function with m = π at various points:

f := stats::chisquareQuantile(PI): 

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::chisquareCDF(PI)(f(x)) = x:

Der Wert f(x) erfüllt stats::chisquareCDF(PI)(f(x)) = x:

stats::chisquareCDF(PI)(f(0.987654))

delete f:

Example 2

We use symbolic arguments:

f := stats::chisquareQuantile(m): f(x), f(9/10)

When a positive real value is assigned to m, the function f starts to produce floating-point
values:

m := PI + 1: f(0.999), f(1 - sqrt(2)/10^5)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:
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f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, m:

Parameters

m

The mean: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::chisquareCDF | stats::chisquarePDF | stats::chisquareRandom
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stats::chisquareRandom
Generate a random number generator for chi-square deviates

Syntax
stats::chisquareRandom(m, <Seed = n>)

Description
stats::chisquareRandom(m) returns a procedure that produces chi-square deviates
(random numbers) with mean m > 0.

The procedure f := stats::chisquareRandom(m) can be called in the form f(). The
return value of f() is either a floating-point number or a symbolic expression:

If m can be converted to a positive floating point number, then f() returns a nonnegative
floating point number.

In all other cases, stats::chisquareRandom(m)() is returned symbolically.

A numerical value of m is only accepted if it is positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the chi-square distribution with mean m. For any x ≥ 0, the probability that X
≤ x is given by

.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::chisquareRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::chisquareRandom(m): f() $k = 1..K;

rather than by

stats::chisquareRandom(m)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::chisquareRandom(m, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate chi-square deviates with mean m = 12:

f := stats::chisquareRandom(12): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::chisquareRandom(m): f()
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When m evaluates to a positive real number, the generator starts to produce random
numbers:

m := PI: f() $ k = 1..4

delete f, m:

Example 3

We use the option Seed = n to reproduce a sequence of random numbers:

f := stats::chisquareRandom(70, Seed = 1): f() $ k = 1..4

g := stats::chisquareRandom(70, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

m

The mean: an arithmetical expression representing a positive real value
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Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the mean m must be convertible to a positive floating-point
number at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of the chi-square deviates uses a gamma
deviate x with shape parameters m/2 and 2. For more information see: D. Knuth,
Seminumerical Algorithms (1998), Vol. 2, p. 135.

See Also

MuPAD Functions
stats::chisquareCDF | stats::chisquarePDF | stats::chisquareQuantile
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stats::col
Select and rearrange columns of a sample

Syntax
stats::col(s, c1, <c2, …>)

stats::col(s, c1 .. c2, <c3 .. c4, …>)

Description

stats::col(s, ...) creates a new sample from selected columns of the sample s.

stats::col is useful for selecting columns of interest or for rearranging columns.

The columns of s specified by the remaining arguments of stats::col are used to build
a new sample. The new sample contains the columns of s in the order specified by the
call to stats::col. Columns can be duplicated by specifying the column index more
than once.

Examples

Example 1

The following sample contains columns for “gender”, “age”, “height”, the “number of
yellow socks” and “eye color” of a person:

stats::sample([["m", 26, 180, 3, "blue"], 

               ["f", 22, 160, 0, "brown"], 

               ["f", 48, 155, 2, "green"], 

               ["m", 30, 172, 1, "brown"]])

"m"  26  180  3  "blue"

"f"  22  160  0  "brown"

"f"  48  155  2  "green"

"m"  30  172  1  "brown"
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Since nobody is really interested in the yellow socks, we create a new sample without
that column:

stats::col(%, 1..3, 5)

"m"  26  180  "blue"

"f"  22  160  "brown"

"f"  48  155  "green"

"m"  30  172  "brown"

We can use stats::col to rearrange the sample. As an illustrating example, we
duplicate the first column:

stats::col(%, 1, 3, 2, 1, 4)

"m"  180  26  "m"  "blue"

"f"  160  22  "f"  "brown"

"f"  155  48  "f"  "green"

"m"  172  30  "m"  "brown"

Parameters

s

A sample of domain type stats::sample.

c1, c2, …

Positive integers representing column indices of the sample s. A range c_1 .. c_2
represents all columns from c1 through c2.

Return Values

Sample of domain type stats::sample.

See Also

MuPAD Functions
stats::concatCol | stats::concatRow | stats::row
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stats::concatCol
Concatenate samples column-wise

Syntax
stats::concatCol(s1, s2, <s3, …>)

Description

stats::concatCol(s1, s2, …) creates a new sample consisting of the columns of the
samples s1, s2 etc.

If the samples s1, s2 etc. have different numbers of rows, then the number of rows in the
resulting sample is given by the “shortest” sample with the minimal number of rows.
Elements below this row in “longer” samples are ignored.

Examples

Example 1

We create two samples:

s1 := stats::sample([[a1, a2], [b1, b2]]);

s2 := stats::sample([[a3, a4], [b3, b4]])

a1  a2

b1  b2

a3  a4

b3  b4

Concatenation of the columns yields:

stats::concatCol(s1, s2)
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a1  a2  a3  a4

b1  b2  b3  b4

delete s1, s2:

Example 2

The following sample contains columns for “gender”, “age” and “height” of a person:

stats::sample([["m", 26, 180], ["f", 22, 160],

               ["f", 48, 155], ["m", 30, 172]])

"m"  26  180

"f"  22  160

"f"  48  155

"m"  30  172

We append a further column “nationality”, specified by a list:

stats::concatCol(%, ["German", "French", "Italian", 

                     "British", "German"])

"m"  26  180  "German"

"f"  22  160  "French"

"f"  48  155  "Italian"

"m"  30  172  "British"

Parameters

s1, s2, …

Samples of domain type stats::sample. Alternatively, lists may be entered, which are
treated as columns of a sample.

Return Values

Sample of domain type stats::sample.
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See Also

MuPAD Functions
stats::col | stats::concatRow | stats::row
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stats::concatRow
Concatenate samples row-wise

Syntax
stats::concatRow(s1, s2, <s3, …>)

Description
stats::concatRow(s1, s2, …) creates a new sample consisting of the rows of the
samples s1, s2 etc.

All samples must have the same number of columns.

Examples

Example 1

We create a small sample:

stats::sample([[123, g], [442, f]])

123  g

442  f

A list is concatenated to the sample as a row:

stats::concatRow(%, [x, y])

123  g

442  f

  x  y

Example 2

The following samples contain columns for “gender” and “age”:
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s1 := stats::sample([["f", 36], ["m", 25]]);

s2 := stats::sample([["m", 26], ["f", 22]])

"f"  36

"m"  25

"m"  26

"f"  22

We build a larger sample:

stats::concatRow(s1, s2)

"f"  36

"m"  25

"m"  26

"f"  22

delete s1, s2:

Parameters

s1, s2, …

Samples of domain type stats::sample. Alternatively, lists may be entered, which are
treated as rows of a sample.

Return Values

Sample of domain type stats::sample.

See Also

MuPAD Functions
stats::col | stats::concatCol | stats::row
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stats::correlation

Correlation between data samples

Syntax

stats::correlation([x1, x2, …], [y1, y2, …], <BravaisPearson | Fechner>)

stats::correlation([[x1, y1], [x2, y2], …], <BravaisPearson | Fechner>)

stats::correlation(s, <c1, c2>, <BravaisPearson | Fechner>)

stats::correlation(s, <[c1, c2]>, <BravaisPearson | Fechner>)

stats::correlation(s1, <c1>, s2, <c2>, <BravaisPearson | Fechner>)

Description

stats::correlation([x1, x2, …], [y1, y2, …]) returns the linear (Bravais-
Pearson) correlation coefficient

,

where  and  are the means of the data xi and yi.

stats::correlation([x1, x2, …], [y1, y2, …], Fechner) returns the Fechner
correlation , where n is the sample size. The number vi is 1, if  and

 have the same sign or are both 0. It is , if either  or  is 0. Otherwise, vi

= 0.

Both the Bravais-Pearson correlation as well as the Fechner correlation are numbers
between - 1 and 1.
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The Bravais-Pearson correlation is close to 1 if the data pairs xi, yi are approximately
related by a 'positive' linear relation (i.e., yi ≈ a xi + b with some positive coefficient a). It
is close to - 1 if there is a 'negative' linear relation (with some negative coefficient a).

Correlation coefficients close to 0 correspond to non-linear relations or to unrelated data,
respectively.

If the input data are floating-point numbers, the sums defining the Bravais-Pearson
correlation are computed in a numerically stable way. If a floating-point result is desired,
it is recommended to make sure that all input data are floats.

The Fechner correlation is always returned as a rational number.

The column indices c1, c2 are optional if the data are given by a stats::sample object
s containing only two non-string data columns. If the data are provided by two samples
s1, s2, the column indices are optional for samples containing only one non-string data
column.

Note: The Fechner correlation should not be computed for symbolic data. This may lead
to unexpected results, if the sign of symbolic parameters cannot be determined.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We compute the correlation of samples passed as lists:

X := [7, 33/7, 3, 5, 2]: Y := [3, 5, 1, 7, 2]:

stats::correlation(X, Y)

Alternatively, the data may be passed as a list of data pairs:
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stats::correlation([[7, 3], [33/7, 5], [3, 1], [5, 7], [2, 2]])

If all data are floating-point numbers, the result is a float:

stats::correlation(float(X), float(Y))

The Fechner correlation of the data is always returned as a rational number:

stats::correlation(X, Y, Fechner),

stats::correlation(float(X), float(Y), Fechner)

The following exact result indicates an exact linear between the data pairs:

stats::correlation([0, 1, 2, 3], [7, 5, 3, 1])

Indeed, there is the `negative' linear relation y = 7 - 2 x between the data pairs.

delete X, Y:

Example 2

We create a sample of type stats::sample:

s := stats::sample([[1.0, 2.4, 3.0], 

                    [7.0, 4.8, 4.0], 

                    [3.3, 3.0, 5.0]])

1.0  2.4  3.0
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7.0  4.8  4.0

3.3  3.0  5.0

We compute the correlation between the data of the first and the third column in several
equivalent ways:

stats::correlation(s, 1, 3),

stats::correlation(s, [1, 3]),

stats::correlation(s, 1, s, 3)

stats::correlation(s, 1, 3, Fechner),

stats::correlation(s, [1, 3], Fechner),

stats::correlation(s, 1, s, 3, Fechner)

delete s:

Example 3

With symbolic data, the Bravais-Pearson correlation is returned as a symbolic
expression:

stats::correlation([x1, x2], [y1, y2])

simplify(%)
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Parameters

x1, y1, x2, y2, …

The statistical data: arithmetical expressions. The number of data xi must coincide with
the number of data yi.

s, s1, s2

Samples of type stats::sample

c1, c2

Column indices: positive integers. Column c1 of s or s1, respectively, provides the data xi.
Column c2 of s or s_2, respectively, provides the data yi.

mode

Either BravaisPearson or Fechner. The default is the linear (Bravais-Pearson)
correlation.

Options

BravaisPearson, Fechner

Linear (Bravais-Pearson) or Fechner's correlation coefficient. Bravais-Pearson coefficient
is the default, but may in some cases where the data is not normally distributed be less
useful than Fechner's correlation.

Return Values

The Bravais-Pearson correlation is returned as an arithmetical expression. FAIL is
returned if the variance of one of the data samples vanishes (the Bravais-Pearson
correlation does not exist).

The Fechner correlation is returned as a rational number.

FAIL is returned if the data samples are empty.
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See Also

MuPAD Functions
stats::correlationMatrix | stats::covariance | stats::stdev

MuPAD Graphical Primitives
plot::Scatterplot
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stats::correlationMatrix
Compute the correlation matrix associated with a covariance matrix

Syntax
stats::correlationMatrix(cov)

Description

stats::correlationMatrix(cov) returns to correlation matrix cor of the variance-
covariance matrix cov. It is given by:

.

A covariance matrix C should be positive (semi-)definite and hence satisfies |Cij|2

≤ Cii Cjj for all indices i, j. Consequently, the absolute values of the entries of the
corresponding correlation matrix do not exceed 1.

With the option CovarianceMatrix, the routine stats::reg returns the variance-
covariance matrix of the fit parameters in a regression analysis. The corresponding
correlation matrix of the fit parameters is computed conveniently by applying
stats::correlationMatrix to this matrix. Cf. “Example 2” on page 30-80.

Examples

Example 1

We generate a positive definite matrix that may serve as a covariance matrix:

A := matrix([[4, -3, 2], [-1, 2, 1], [0, 1, 1]]):

cov := A*linalg::transpose(A)
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The corresponding correlation matrix is:

stats::correlationMatrix(cov)

If the input matrix consists of floating-point data, the result is a matrix of floats:

stats::correlationMatrix(float(cov))

delete A, cov:

Example 2

We consider a covariance matrix arising in a non-linear regression problem. The model
function y = a + b cos(x - c) is to be fit to the following randomized data:

r := stats::uniformRandom(-0.1, 0.1):

xdata := [i $i = 1..100]:

ydata := [1 + 2*cos(x - 3) + r() $ x in xdata]:

By construction, the variance of the y values is the variance of the uniformly distributed
random data on the interval [- 0.1, 0.1] generated by the random generator r. This
variance is . We use stats::reg to obtain estimates of the fit parameters a, b,
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c of the model. Appropriate weights for the regression are given by . The option

CovarianceMatrix makes stats::reg include the covariance matrix cov of the fit
parameters in its return list:

weights := [300 $ i = 1..100]:

DIGITS:= 4:

[abc, chisquare, cov] :=

   stats::reg(xdata, ydata, weights, a + b*cos(x - c), 

              [x], [a, b, c], StartingValues = [1, 2, 3],

              CovarianceMatrix)

The correlation matrix of the parameters a, b, c is obtained via
stats::correlationMatrix applied to the covariance matrix cov returned by
stats::reg:

stats::correlationMatrix(cov)

delete r, xdata, ydata, weights, DIGITS, abc, chisquare, cov:

Parameters

cov

The covariance matrix: a square matrix of category Cat::Matrix, or an array.

Return Values
Matrix of the same dimension and type as the input matrix cov. FAIL is returned if at
least one of the diagonal elements of the input matrix cov is zero.
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See Also

MuPAD Functions
stats::correlation | stats::covariance | stats::reg | stats::stdev
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stats::covariance
Covariance of data samples

Syntax
stats::covariance([x1, x2, …], [y1, y2, …], <Sample | Population>)

stats::covariance([[x1, y1], [x2, y2], …], <Sample | Population>)

stats::covariance(s, <c1, c2>, <Sample | Population>)

stats::covariance(s, <[c1, c2]>, <Sample | Population>)

stats::covariance(s1, <c1>, s2, <c2>, <Sample | Population>)

Description

stats::covariance([x1, x2, …, xn], [y1, y2, …, yn]) returns the covariance

,

where  and  are the arithmetic means of the data xi and yi, respectively.

stats::covariance([x1, x2, …, xn], [y1, y2, …, yn], Population) returns

.

If the input data are floating-point numbers, the sums defining the covariance are
computed in a numerically stable way. If a floating point result is desired, it is
recommended to make sure that all input data are floats.

For exact input data, exact symbolic expressions are returned.

30-83



30 stats – Statistics

The column indices c1, c2 are optional if the data are given by a stats::sample object
s containing only two non-string data columns. If the data are provided by two samples
s1, s2, the column indices are optional for samples containing only one non-string data
column.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We compute the covariance of samples passed as lists:

X := [2, 33/7, 21/9, PI]: Y :=  [3, 5, 1, 7]:

stats::covariance(X, Y)

Alternatively, the data may be passed as a list of data pairs:

stats::covariance([[2, 3], [33/7, 5], [21/9, 1], [PI, 7]])

If all data are floating-point numbers, the result is a float:

stats::covariance(float(X), float(Y))

delete X, Y:

Example 2

We create a sample of type stats::sample:
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s := stats::sample([[1.0, 2.4, 3.0],

                    [7.0, 4.8, 4.0],

                    [3.3, 3.0, 5.0]])

1.0  2.4  3.0

7.0  4.8  4.0

3.3  3.0  5.0

We compute the covariance of the first column and the third column in several equivalent
ways:

stats::covariance(s, 1, 3),

stats::covariance(s, [1, 3]),

stats::covariance(s, 1, s, 3)

delete s:

Example 3

The covariance of symbolic data is returned as a symbolic expression:

stats::covariance([x1, x2], [y1, y2])

expand(%)

Parameters

x1, y1, x2, y2, …

The statistical data: arithmetical expressions. The number of data xi must coincide with
the number of data yi.
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s, s1, s2

Samples of type stats::sample

c1, c2

Column indices: positive integers. Column c1 of s or s1, respectively, provides the data xi.
Column c2 of s or s2, respectively, provides the data yi.

Options

Sample

The data are regarded as a “sample”, not as a full population. This is the default.

Population

The data are regarded as the whole population, not as a sample.

Return Values

arithmetical expression.

See Also

MuPAD Functions
stats::correlation | stats::correlationMatrix | stats::stdev
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stats::cutoff
Discard outliers

Syntax
stats::cutoff([x1, x2,...], α)

stats::cutoff([[x11, x12,...], [x21, x22, …], …], α, i)

stats::cutoff(s, α, i)

Description

stats::cutoff([x1, x2,...], α) returns those elements of [x1, x2, …] larger than
the α quantile and smaller than the 1 - α quantile of this list.

stats::cutoff([[x11, x12,...], [x21, x22,...],...], α, i) and
stats::cutoff(stats::sample([[x11, x12,...], [x21, x22,...],...]), α,
i) works on the i-th entries of the input rows.

Measurement data often contains “outliers,” sample points rather far outside the range
containing the majority of the points. While expected both from theory and experience,
these outliers, for small or medium-sized samples, tend to distort statistical data, such as
the mean value.

One of the standard methods dealing with this problem for (real) continuous scales is
discarding the outliers. stats::cutoff discards all data points below or above a given
quantile.

Examples

Example 1

Create a normally distributed sample, slightly contaminated:
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r := stats::normalRandom(0, 1, Seed=2):

data := [r() $ i = 1..300, 100*r() $ i = 1..2]:

The two extra points distort the data significantly:

plot(plot::Histogram2d(data, Cells=20))

Using stats::cutoff removes this noise and the image shows more detail:

plot(plot::Histogram2d(stats::cutoff(data, 1/100), Cells=20))
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stats::cutoff reduces the standard deviation of the sample. Keeping in mind that the
standard deviation of the random number generator is 1, compute that of the data in its
various forms:

stats::stdev(data),

stats::stdev(stats::cutoff(data, 1/20))

Parameters

x1, x2, x11, …

Statistical data: arithmetical expressions. The data to filter on must be real-valued.

s

Sample of type stats::sample
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α

Cutoff parameter: a real-valued expression .

i

Column index: positive integer. The nested list or the sample is filtered on its i-th
column.

Return Values

The input data with outliers being removed.

See Also

MuPAD Functions
stats::sample | stats::winsorize

More About
• “Handle Outliers”
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stats::winsorize
Clamp (winsorize) extremal values

Syntax
stats::winsorize([x1, x2, …], α)

stats::winsorize([[x11, x12, …], [x21, x22, …], …], α, i)

stats::winsorize(s, α, i)

Description

stats::winsorize([x1, x2, …], α) returns a copy of [x1, x2, …] in which all entries
smaller than the α quantile are replaced by this value and likewise for all entries larger
than the 1 - α quantile.

stats::winsorize([[x11, x12,...], [x21, x22,...],...], α, i) and
stats::winsorize(stats::sample([[x11, x12,...], [x21, x22,...],...]),

α, i) works on the i-th entries of the input rows.

Measurement data often contains “outliers,” sample points rather far outside the range
containing the majority of the points. While expected both from theory and experience,
these outliers, for small or medium-sized samples, tend to distort statistical data such as
the mean value.

One of the standard methods dealing with this problem for (real) continuous scales
is clamping the outliers. stats::winsorize sets all data points below or above a
given quantile to these quantiles. This operation is named after its inventor, Charles P.
Winsor.

Examples

Example 1

Create a normally distributed sample, slightly contaminated:
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r := stats::normalRandom(0, 1, Seed=2):

data := [r() $ i = 1..300, 100*r() $ i = 1..2]:

The two extra points distort the data significantly:

plot(plot::Histogram2d(data, Cells=20))

Using either stats::winsorize removes this noise and the image shows more detail:

plot(plot::Histogram2d(stats::winsorize(data, 1/100), Cells=20))
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Both stats::winsorize reduces the standard deviation of the sample. Keeping in
mind that the standard deviation of the random number generator is 1, compute that of
the data in its various forms:

stats::stdev(data),

stats::stdev(stats::winsorize(data, 1/20))

Parameters

x1, x2, x11, …

Statistical data: arithmetical expressions. The data to filter on must be real-valued.

s

Sample of type stats::sample
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α

Cutoff parameter: a real-valued expression .

i

Column index: positive integer. The nested list or the sample is winsorized on its i-th
column.

Return Values

The input data with outliers being replaced by the values of quantiles.

See Also

MuPAD Functions
stats::cutoff | stats::sample

More About
• “Handle Outliers”
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stats::csGOFT

Classical chi-square goodness-of-fit test

Syntax

stats::csGOFT(x1, x2, …, [[a1, b1], [a2, b2], …], CDF = f | PDF = f | PF = f)

stats::csGOFT([x1, x2, …], [[a1, b1], [a2, b2], …], CDF = f | PDF = f | PF = f)

stats::csGOFT(s, <c>, [[a1, b1], [a2, b2], …], CDF = f | PDF = f | PF = f)

Description

stats::csGOFT(data, cells, CDF = f) applies the classical chi-square goodness-
of-fit test for the null hypothesis: “the data are f-distributed”.

The chi-square goodness-of-fit test divides the real line into k intervals  ('the
cells'). It computes the number of data xj falling into the cells ci and compares these
'empirical cell frequencies' with the 'expected cell frequencies' n pi, where n is the sample
size and pi = Pr(ai < x ≤ bi) are the 'cell probabilities' of a random variable with the
hypothesized distribution specified by X = f.

All data x1, x2 etc. must be convertible to real floating-point numbers. The data do not
have to be sorted on input: stats::csGOFT automatically converts the data to floats and
sorts them internally.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Finite cell boundaries ai, bi must be convertible to real floating-point numbers satisfying
a1 < b1 ≤ a2 < b2 ≤ a3 < …. They define semiopen intervalls .

When the hypothesized distribution f is specified as a cumulative distribution function
(CDF = f), the left boundary of the first cell and the right boundary of the last cell are
ignored. They are replaced by - ∞ and infinity, respectively, i.e., the cell partitioning
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is used internally.

The cells must be disjoint. Their union must cover the support area of the distribution,
i.e., the 'cell probabilities' pi = Pr(ai < x ≤ bi) must add up to 1 for a random variable x
with the hypothesized distribution given by f. For continuous distributions, adjacent
cells with b1 = a2, b2 = a3, … are appropriate.

You may use a1 = - ∞ and bk = ∞ for distributions supported on the entire real line.

Note: The cells must be chosen such that no cell probability pi vanishes!

See the `Background' section of this help page for recommendations on the cell
partitioning. In particular, the use of equiprobable cells (with constant pi) is
recommended. For convenience, a utility function stats::equiprobableCells is
provided to generate such cells. See “Example 1” on page 30-98, “Example 3” on page
30-101, and “Example 4” on page 30-104.

The distribution the data are tested for is specified by the equation X = f, where X is one
of the flags CDF, PDF or PF.

For efficiency, it is recommended to specify a cumulative distribution function (CDF = f).

The function f can be a procedure provided by the MuPAD stats library. Specifications
such as CDF = stats::normalCDF(m, v) or CDF = stats::poissonCDF(m) with
suitable numerical values of m, v are possible and recommended.

Distributions that are not provided by the stats-package can be implemented easily by
the user. A user defined procedure f can implement any distribution function. In the CDF
case, stats::csGOFT calls f with the boundary values ai, bi of the cells to compute the
cell probabilities via pi = f(bi) - f(ai) (automatically setting f(a1) = 0 and f(bk) = 1).

The function f must return a numerical real value between 0 and 1. See  “Example 5” on
page 30-105 and “Example 6” on page 30-106.

Alternatively, the function f can be specified by a univariate arithmetical expression g(x)
depending on a symbolic variable x. It is interpreted as the function . Cf.
“Example 6” on page 30-106.
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See the `Background' section of this help page for further information on the specification
of the distribution via CDF = f, PDF = f or PF = f.

The call stats::csGOFT(data, cells, X = f) returns the list [PValue = p,
StatValue = s, MinimalExpectedCellFrequency = m]:

• s is the observed value of the chi-square statistic

,

where n is the sample size, k is the number of cells, yi is the observed cell frequency
of the data (i.e., yiis the number of data xj falling into the cell ci), and pi is the cell
probabilitiy corresponding to the hypothesized distribution f.

• p is the observed significance level of the chi-square statistic with k - 1 degrees of
freedom, i.e., p = 1 - stats::chisquareCDF(k - 1)(s)

•  is the minimum of the expected cell frequencies n pi. This
information is provided by the test to make sure that the boundary conditions for a
“reasonable” cell partitioning are met (see the “Background” section of this help page).

The most relevant information returned by stats::csGOFT is the observed significance
level PValue = p. It has to be interpreted in the following way: Under the null
hypothesis, the chi-square statistic

is approximately chi-square distributed (for large samples):

.

Under the null hypothesis, the probability p = Pr(S > s) should not be small, where s is
the value of the statistic attained by the sample.

Specifically, p = Pr(S > s) ≥ α should hold for a given significance level 0 < α < 1, If this
condition is violated, the hypothesis may be rejected at level α.
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Thus, if the PValue (observed significance level) p = Pr(S > s) satisfies p < α, the sample
leading to the observed value s of the statistic S represents an unlikely event, and the
null hypothesis may be rejected at level α.

On the other hand, values of p close to 1 should raise suspicion about the randomness of
the data: they indicate a fit that is too good.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We consider random data that should be normally distributed with mean 15 and variance
2:

f := stats::normalRandom(15, 2, Seed = 0):

data := [f() $ i = 1..1000]:

According to the recommendations in the `Background' section of this help page, the
number of cells should be approximately , where n = 1000 is the sample size.

We wish to use 32 cells that are equiprobable with respect to the hypothesized normal
distribution. We estimate the mean m and the variance v of the data:

[m, v] := [stats::mean(data), stats::variance(data, Sample)]

The utility function stats::equiprobableCells is used to compute an equiprobable
cell partitioning via the quantile function of the normal distribution with the empirical
parameters:

cells := stats::equiprobableCells(32, stats::normalQuantile(m, v)):
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stats::csGOFT(data, cells, CDF = stats::normalCDF(m, v))

The observed significance level  attained by the sample is not small. Hence, one
should not reject the hypothesis that the sample is normally distributed with mean

 and variance .

In the following, we impurify the sample by appending some uniformly distributed
numbers. A new equiprobable cell partitioning appropriate for the new data is computed:

r := stats::uniformRandom(10, 20, Seed = 0):

data := append(data, r() $ 40):

[m, v] := [stats::mean(data), stats::variance(data, Sample)]:

k := round(2*nops(data)^(2/5)):

cells := stats::equiprobableCells(k, stats::normalQuantile(m, v)):

stats::csGOFT(data, cells, CDF = stats::normalCDF(m, v))

The impure data may be rejected as a normally distributed sample at levels as small as
.

delete f, data, m, v, k, cells, r:

Example 2

We create a sample of random data that should be binomially distributed with trial
parameter 70 and probability parameter :

r := stats::binomialRandom(70, 1/2, Seed = 123):

data := [r() $ k = 1..1000]:

With the expectation value of 35 and the standard deviation of  of this

distribution, we expect most of the data to have values between 30 and 40. Thus, a cell
partitioning consisting of 12 cells corresponding to the intervals
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should be appropriate. Note that all cells are interpreted as the intervals , i.e.,
the left boundary is not included in the interval. Strictly speaking, the value 0 is not
covered by these cells. However, with a CDF specification, stats::csGOFT ignores the
leftmost boundary and replaces it by -infinity. Thus, the union of the cells does cover
all integers 0, …, 70 that can be attained by the hypothesized binomial distribution with
`trial parameter' 70:

cells := [[0, 30], [i, i + 1] $ i = 30..39, [40, 70]]

We apply the χ2 test with various specifications of the binomial distribution. They all
produce the same result. However, the first call using a CDF specification is the most
efficient (fastest) call:

stats::csGOFT(data, cells, CDF = stats::binomialCDF(70, 1/2));

stats::csGOFT(data, cells, PF = stats::binomialPF(70, 1/2));

f := binomial(70, x)*(1/2)^x*(1/2)^(70 - x):

stats::csGOFT(data, cells, PF = f)

The observed significance level  indicates that the data pass the test well.

Next, we dote the sample by appending the value 35 forty times:

data := data . [35 $ 40]:
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stats::csGOFT(data, cells, CDF = stats::binomialCDF(70, 1/2));

Now, the data may be rejected as a binomial sample with the specified parameters at
levels as small as .

delete r, data, cells, f:

Example 3

We test data that purport to be a sample of beta distributed numbers with scale
parameters 3 and 2. Since beta deviates attain values between 0 and 1, we choose
an equidistant cell partitioning of the interval [0, 1] consisting of 10 cells. Various
equivalent calls to stats::csGOFT are demonstrated:

r := stats::betaRandom(3, 2, Seed = 1):

data := [r() $ i = 1..100]:

cells := [[(i - 1)/10, i/10] $ i = 1..10]:

stats::csGOFT(data, cells, CDF = stats::betaCDF(3, 2)); 

stats::csGOFT(data, cells, CDF = (x -> stats::betaCDF(3, 2)(x)))

Alternatively, the beta destribution may be passed by a PDF specification. This, however,
is less efficient than the CDF specification used before:

stats::csGOFT(data, cells, PDF = stats::betaPDF(3, 2));

stats::csGOFT(data, cells, PDF = (x -> stats::betaPDF(3, 2)(x)));
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The observed significance level  is not small. Hence, this test does not indicate
that the data should be rejected as a beta distributed sample with the specified
parameters. Note, however, that the minimal expected cell frequency given by the third
element of the returned list is rather small. This indicates that the cell partitioning is not
very fortunate. We investigate the expected cell frequencies by computing n pi = n (f(bi) -
f(ai)), where f is the cumulative distribution function of the beta distribution and n is the
sample size:

f:= stats::betaCDF(3, 2):

map(cells, cell -> 100*(f(cell[2]) - f(cell[1])))

These values show that the first two or three cells should be joined to a single cell. We
modify the cell partitioning by joining the first three and the last two cells:

cells := [[0, 3/10], [(i - 1)/10, i/10] $ i = 4..8, [8/10, 1]]

For this cell partitioning, the expected frequencies in a random sample of size 100 are
sufficiently large for all cells:

map(cells, cell -> 100*(f(cell[2]) - f(cell[1])))

We apply another χ2 test with this improved partitioning:

stats::csGOFT(data, cells, CDF = f)

Again, with the observed significance level , the test does not give any hint that
the data are not beta distributed with the specified parameters.

Now, we test whether the data can be regarded as being normally distributed. First, we
estimate the parameters (mean and variance) required for the normal distribution:
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[m, v] := [stats::mean(data), stats::variance(data, Sample)]

The cell partitioning used before was a partitioning of the interval [0, 1], because beta
deviates attain values in this interval. Now we construct a partitioning of 7 equiprobable
cells using the quantile function of the normal distribution:

k := 7:

cells := stats::equiprobableCells(7, stats::normalQuantile(m, v))

Indeed, theses cells are equiprobable:

f:= stats::normalCDF(m, v):

map(cells, cell -> f(cell[2]) - f(cell[1]))

We test for normality with the estimated mean and variance:

stats::csGOFT(data, cells, CDF = f)

With the observed significance level of , the data should not be rejected as
a normally distributed sample. We note that the nonparametric Shapiro-Wilk test
implemented in stats::swGOFT does detect nonnormality of the sample:

stats::swGOFT(data)
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With the observed significance level of , normality can be rejected at levels as
low as .

delete r, data, cells, f, m, v, k, boundaries:

Example 4

We demonstrate the use of samples of type stats::sample. We create a sample
consisting of one string column and two non-string columns:

s := stats::sample(

  [["1996", 1242, 156], ["1997", 1353, 162], ["1998", 1142, 168],

   ["1999", 1201, 182], ["2001", 1201, 190], ["2001", 1201, 190],

   ["2001", 1201, 205], ["2001", 1201, 210], ["2001", 1201, 220],

   ["2001", 1201, 213], ["2001", 1201, 236], ["2001", 1201, 260],

   ["2001", 1201, 198], ["2001", 1201, 236], ["2001", 1201, 245],

   ["2001", 1201, 188], ["2001", 1201, 177], ["2001", 1201, 233],

   ["2001", 1201, 270]])

"1996"  1242  156

"1997"  1353  162

"1998"  1142  168

"1999"  1201  182

"2001"  1201  190

"2001"  1201  190

"2001"  1201  205

"2001"  1201  210

"2001"  1201  220

"2001"  1201  213

"2001"  1201  236

"2001"  1201  260

"2001"  1201  198

"2001"  1201  236

"2001"  1201  245

"2001"  1201  188

"2001"  1201  177

"2001"  1201  233

"2001"  1201  270

We consider the data in the third column. The mean and the variance of these data are
computed:

[m, v] := float([stats::mean(s, 3), 
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                 stats::variance(s, 3, Sample)])

We check whether the data of the third column are normally distributed with the
empirical mean and variance computed above. We compute an appropriate cell
partitioning in the same way as explained in “Example 1” on page 30-98:

samplesize := s::dom::size(s):

k := round(2*samplesize^(2/5)):

cells := stats::equiprobableCells(k, stats::normalQuantile(m, v)):

stats::csGOFT(s, 3, cells, CDF = stats::normalCDF(m, v))

Thus, the data pass the test.

delete s, m, v, samplesize, k, cells:

Example 5

We demonstrate how user-defined distribution functions can be used. A die is rolled 60
times. The following frequencies of the scores 1, 2, …, 6 are observed:

             score  | 1 |  2 | 3

|  4 | 5 | 6           ----------+---+----+---+----+---+--       

   frequency | 7 | 16 | 8 | 17 | 3 | 9 

We test the null hypothesis that the dice is fair. Under this hypothesis, the variable X
given by the score of a single roll attains the values 1 through 6 with constant probability

. Presently, the stats-package does not provide a discrete uniform distribution, so we

implement a corresponding cumulative discrete distribution function f:

f := proc(x)

     begin

          if x < 0 then

               0

          elif x <= 6 then

               trunc(x)/6

          else 1

          end_if;
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     end_proc:

We create the data representing the 60 rolls:

data := [ 1 $ 7, 2 $ 16, 3 $ 8, 4 $ 17, 5 $ 3, 6 $ 9]:

We choose a collection of cells, each of which contains exactly one of the integers 1, …, 6:

Wir wählen sodann eine Zellzerlegung, so dass jede Zelle genau eine der ganzen Zahlen
1, …, 6 enthält:

cells := [[i - 1/2, i + 1/2] $ i = 1..6]

stats::csGOFT(data, cells, CDF = f)

At a significance level as small as , the null hypothesis `the dice is fair' should be
rejected.

delete f, data, cells:

Example 6

We give a further demonstration of user-defined distribution functions. The following
procedure represents the cumulative distribution function  of a
variable X supported on the interval . It will be called with values from the cell
boundaries and must return numerical values between 0 and 1:

f := proc(x)

     begin

       if x <= 0 then return(0)

       elif x <= 1 then return(x^2)

       else return(1)

       end_if

     end_proc:

We test the hypothesis that the following data are f-distributed. The cells form an
equidistant partitioning of the interval [0, 1]:
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data := [sqrt(frandom()) $ i = 1..10^3]:

k := 10:

cells := [[(i - 1)/k, i/k] $ i = 1..k]:

stats::csGOFT(data, cells, CDF = f)

The test does not disqualify the sample as being f-distributed. Indeed, for a uniform
deviate Y on the interval [0, 1] (as produced by frandom), the cumulative distribution
function of  is indeed given by f.

We note that the previous function yields the correct CDF values for all real arguments.
The chosen cell partitioning indicates that only values from the interval  are
considered. Since stats::csGOFT just evaluates the CDF on the cell boundaries to
compute the cell probability of the cell  by f(b) - f(a), it suffices to restrict f to the
interval . Hence, for the chosen cells, the symbolic expression f = x^2 can also be
used to specify the distribution:

stats::csGOFT(data, cells, CDF = x^2)

delete f, data, k, cells:

Parameters

x1, x2, …

The statistical data: real numerical values

s

A sample of domain type stats::sample

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc. There is no need to specify a column c if the sample has only one column.
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a1, b1, a2, b2, …

Cell boundaries: real numbers satisfying a1 < b1 ≤ a2 < b2 ≤ a3 < …. Also  is admitted
as a cell boundary. At least 3 cells have to be specified.

f

A procedure representing the hypothesized distribution: either a cumulative distribution
function (CDF = f), a probability density function (PDF = f), or a (discrete) probability
function (PF = f). Typically, f is one of the distribution functions of the stats package
such as stats::normalCDF(m, v) etc. Instead of a procedure, also an arithmetical
expression in some indeterminate x may be specified which will be interpreted as a
function of x.

Options

CDF, PDF, PF

This determines how the procedure f is interpreted by stats::csGOFT.

Return Values

a list of three equations

[PValue = p, StatValue = s, MinimalExpectedCellFrequency = m]

with floating-point values p, s, m. See the “Details” section below for the interpretation of
these values.

Algorithms

In R.B. D'Agostino and M.A. Stephens, “Goodness-Of-Fit Techniques”, Marcel
Dekker, 1986, p. 70-71, one finds the following recommendations for choosing the cell
partitioning:

• The number of cells used should be approximately , where n is the sample size.
• The cells should have equal probabilities pi under the hypothesized distribution.
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• With equiprobable cells, the average of the expected cell frequencies n pi should be
at least 1 when testing at the significance level α = 0.05. For α = 0.01, the average
expected cell frequency should be at least 2. When cells are not approximately
equiprobable, the average expected cell frequency for the significance levels
above should be doubled. For example, the average expected cell frequency at the
significance level α = 0.01 should be at least 4.

The distribution function f passed to stats::csGOFT via X = f is only used to compute
the cell probabilities pi = Pr(ai < x ≤ bi) of the cells .

A cumulative distribution function f specified by CDF = f is used to compute the cell
probabilities via pi = f(bi) - f(ai).

A probability density function f specified via PDF = f is used to compute the cell
probabilities via numerical integration: . This is rather
expensive!

A discrete probability function specified via PF = f is used to compute the cell
probabilities via the summation .

Note: Thus, with the specification PF = f, the distribution is implicitly supposed to
be supported on the integers in the cells . Do not use PF = f if the discrete
probability function is not supported on the integers! Use CDF = f with an appropriate
(discrete) cumulative distribution function instead!

With the specification PF = f, the value - ∞ is not admitted for the left boundary a1 of the
first cell c1 = Intval([a1], [b1]).

See Also

MuPAD Functions
stats::equiprobableCells | stats::ksGOFT | stats::swGOFT | stats::tTest
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stats::empiricalCDF
Empirical (discrete) cumulative distribution function of a finite data sample

Syntax
stats::empiricalCDF(x1, x2, …)

stats::empiricalCDF([x1, x2, …])

stats::empiricalCDF(s, c)

Description

stats::empiricalCDF(x1, x2, …, xn) returns a procedure representing the
empirical (discrete) cumulative distribution function  (the relative

frequency of data elements xi less than or equal to x).

All data x1, x2, … must be convertible to real floating-point numbers.

The procedure f := stats::empiricalCDF(x1, x2, …) can be called in the form
f(x) with an arithmetical expression x.

If x is a numerical value, f(x) returns a rational number from the interval [0, 1].

The call f(- infinity ) produces 0; the call f( infinity ) produces 1.

Otherwise, if x is a symbolic expression that cannot be converted to a real floating-point
number, f(x) returns the symbolic call stats::empiricalCDF([x1, x2, …])(x)
with the data x1, x2, … in ascending order.

For a sample of size n, the call f := stats::empiricalCDF(x1, x2, …) needs a run
time of O(n ln(n)) due to internal sorting of the data. Each call to f needs a run time of
O(ln(n)). If several evaluations of the distribution function are needed, a calling sequence
such as

f := stats::empiricalCDF(x1, x2, …); f(a1); f(a2); dots
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is more efficient than

stats::empiricalCDF(x1, x2, …)(a1);

stats::empiricalCDF(x1, x2, …)(a2);

dots.

stats::empiricalCDF is generalized by stats::finiteCDF, which allows
to specify different probabilities for the elements of the sample. The call
stats::empiricalCDF([x1, …, xn]) corresponds to stats::finiteCDF([x_1,
dots, x_n], [1/n, dots, 1/n]).

Further, stats::finiteCDF does not only allow numerical values x1, x2, …, but
arbitrary MuPAD objects.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. Note, however, that this function is implemented with
option remember. After the first call it does not react to changes of DIGITS unless the
input parameters are changed.

Examples

Example 1

We evaluate the empirical distribution function of the data -1, 0, 2.3, PI, 8 at
various points:

f := stats::empiricalCDF(-1, 0, 2.3, PI, 8):

f(-infinity), f(-3), f(2.4), f(PI), f(10), f(infinity)

Alternatively, the data may be passed as a list:
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f := stats::empiricalCDF([-1, 0, 2.3, PI, 8]):

f(-infinity), f(-3), f(2.4), f(PI), f(10), f(infinity)

delete f:

Example 2

We use a symbolic argument. In the symbolic return value, the input data appear as a
sorted list:

stats::empiricalCDF(PI, -3, 25, PI, 4/3)(x)

Example 3

We create a sample consisting of one string column and two non-string columns:

s := stats::sample(

  [["1996", 1242, PI - 1/2], ["1997", 1353, PI + 0.3],

   ["1998", 1142, PI + 0.5], ["1999", 1201, PI - 1],

   ["2001", 1201, PI]])

"1996"  1242  PI - 1/2

"1997"  1353  PI + 0.3

"1998"  1142  PI + 0.5

"1999"  1201    PI - 1

"2001"  1201        PI

We compute values of the empirical distributions of the data in the second and third
column, respectively:

f2 := stats::empiricalCDF(s, 2): f2(1000), f2(1200), f2(1201)
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f3 := stats::empiricalCDF(s, 3): f3(0.7), f3(3), f3(PI), f3(4)

delete s, f2, f3:

Parameters

x1, x2, …

The statistical data: real numerical values

s

A sample of domain type stats::sample

c

A column index of the sample s: a positive integer. This column provides the data x1, x2
etc. There is no need to specify a column number c if the sample has only one non-string
column.

Return Values

procedure.

See Also

MuPAD Functions
stats::empiricalPF | stats::empiricalQuantile | stats::empiricalRandom
| stats::finiteCDF | stats::finitePF | stats::finiteQuantile |
stats::finiteRandom
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stats::empiricalPF
Probability function of a finite data sample

Syntax
stats::empiricalPF(x1, x2, …)

stats::empiricalPF([x1, x2, …])

stats::empiricalPF(n, <c>)

stats::empiricalPF(n, <[c]>)

Description

stats::empiricalPF([x1, x2, …, xn]) returns a procedure representing the
probability function

of the sample given by the data x1, x2, ….

The procedure f := stats::empiricalPF([x1, x2, …]) can be called in the form
f(x) with an arithmetical expression x or sets of lists of such expressions.

If x is a numerical expression that is contained in the data x1, x2, …, then the
corresponding probability value  is returned (n is the size of the sample).

If x is a numerical expression that is not contained in the data x1, x2, …, then 0 is
returned.

If x is a symbolic expression that cannot be converted to a real floating-point number,
f(x) returns the symbolic call stats::empiricalPF([x1, x2, …])(x) with the data
x1, x2, … in ascending order.
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If x is a set, the sum of the probability values of its elements is returned.

If x is a list, it is treated like a set (i.e., duplicate entries in x are eliminated). The sum of
the probability values of the elements in x is returned.

Duplicate data elements are automatically combined to a single data element, adding up
the corresponding probability values. Cf. “Example 4” on page 30-117.

stats::empiricalPF is generalized by stats::finitePF, which allows
to specify different probabilities for the elements of the sample. The call
stats::empiricalPF([x_1, dots, x_n], [1/n, dots, 1/n]) corresponds to
stats::empiricalPF([x1, …, xn]).

Further, stats::finitePF does not only allow numerical values x1, x2, …, but
arbitrary MuPAD objects.

Examples

Example 1

We demonstrate the basic usage of this function:

f := stats::empiricalPF(1, 3, PI, 4.0):

f(0), f(1), f(1.0), f(3), f(PI), f(float(PI)), f(4), f(4.0)

Alternatively, the data may be passed as a list:

f := stats::empiricalPF(1, 3, PI, 4.0):

f(0), f(1), f(1.0), f(3), f(PI), f(float(PI)), f(4), f(4.0)

A symbolic value of the argument in f leads to a symbolic return value:

f(x)

30-115



30 stats – Statistics

Symbolic data are not accepted:

stats::empiricalPF(1, 3, x, 4.0):

Error: Some data cannot be converted to floating-point numbers. [stats::empiricalPF]

delete f:

Example 2

We create a sample of type stats::sample consisting of one string column and two non-
string columns:

s := stats::sample(

  [["1996", 1242, 2/5],

   ["1997", 1353, 0.1],

   ["1998", 1142, 0.2],

   ["1999", 1201, 0.2],

   ["2001", 1201, 0.1]])

"1996"  1242  2/5

"1997"  1353  0.1

"1998"  1142  0.2

"1999"  1201  0.2

"2001"  1201  0.1

We use the data in the first and third column:

f := stats::empiricalPF(s, 2):

f(1242), f(1353), f(1200), f(1201)

delete s, f:

Example 3

We consider a fair die:
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f:= stats::empiricalPF([1, 2, 3, 4, 5, 6]):

What is the probabiliy that tossing the die produces a score more than or equal to 4?

f({4, 5, 6})

delete f:

Example 4

Duplicate data elements are automatically combined to a single data element, adding up
the corresponding probability values:

f:= stats::empiricalPF([1, 2, 1, 1, 2]):

f(1), f(2)

delete f:

Parameters

x1, x2, …

The statistical data: real numerical values

s

A sample of domain type stats::sample

c

A column index of the sample s: a positive integer. This column provides the data x1, x2
etc. There is no need to specify a column number c if the sample has only one non-string
column.
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Return Values

procedure.

See Also

MuPAD Functions
stats::empiricalCDF | stats::empiricalQuantile |
stats::empiricalRandom | stats::finiteCDF | stats::finitePF |
stats::finiteQuantile | stats::finiteRandom
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stats::empiricalQuantile
Quantile function of the empirical distribution

Syntax
stats::empiricalQuantile(x1, x2, …)

stats::empiricalQuantile([x1, x2, …])

stats::empiricalQuantile(s, c)

Description

stats::empiricalQuantile(x1, x2, …) returns a procedure representing the
quantile function of the data x1, x2 etc. It is the (discrete) inverse of the empirical
cumulative distribution function stats::empiricalCDF(x1, x2, …). For 0 ≤ x ≤ 1, the
x-quantile y = stats::empiricalQuantile(x1, x2, …)(x) is the smallest of the data elements
x1, x2, … satisfying

.

All data x1, x2, … must be convertible to real floating-point numbers. The data do not
have to be sorted on input.

The procedure f := stats::empiricalQuantile(x1, x2, …) can be called in the
form f(x) or f(x, Averaged) with an arithmetical expression x.

If x is a real number satisfying 0 ≤ x ≤ 1, then f(x) returns one of the data elements;
f(x, Averaged) uses interpolation of adjacent data elements:

The x-quantile of n sorted values x1 ≤ … ≤ xn is computed as follows.

• f(x) returns xk with k = ceil(n*x).
• f(x, Averaged) returns xk with k = ceil(n*x) if n x is not an integer. Otherwise,

it returns .
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If x is a symbolic expression that cannot be converted to a real floating-point number,
f( x , <Averaged>) returns the symbolic call stats::empiricalQuantile([x1,
x2, …])(x, <Averaged>) with the data x1, x2, … in ascending order.

Numerical values of x are only accepted if 0 ≤ x ≤ 1.

y = stats::empiricalQuantile(x1, x2, …)(x) satisfies

for all data elements z in the sample satisfying z < y.

For a sample of size n, the call f := stats::empiricalQuantile(x1, x2, …) needs
a run time of O(n ln(n)) due to internal sorting of the data. The costs of a call to f are
essentially dependent of n. If several evaluations of the quantile function are needed, a
calling sequence such as

f := stats::empiricalQuantile(x1, x2, …); f(a1); f(a2); dots

is more efficient than

stats::empiricalQuantile(x1, x2, …)(a1);

stats::empiricalQuantile(x1, x2, …)(a2);

dots.

The -quantile is called “median”. The function stats::median implements this special

quantile.

stats::empiricalQuantile is generalized by stats::finiteQuantile,
which allows to specify different probabilities for the elements of the sample.
The call stats::empiricalQuantile([x1, …, xn]) corresponds to
stats::finiteQuantile([x_1, dots, x_n], [1/n, dots, 1/n]).

Further, stats::finiteQuantile does not only allow numerical values x1, x2, …,
but arbitrary MuPAD objects.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. Note, however, that this function is implemented with
option remember. After the first call it does not react to changes of DIGITS unless the
input parameters are changed.

Examples

Example 1

We compute various quantiles of the data -1, 0, 0, 2.3, PI, PI, 8:

f := stats::empiricalQuantile(-1, 0, 0, 2.3, PI, PI, 8):

f(0), f(0.1), f(3/10), f(0.5), f(1/sqrt(2)), f(99/100), f(1)

Alternatively, the data may be passed as a list:

f := stats::empiricalQuantile([-1, 0, 2.3, PI, 8]):

f(0), f(0.1), f(3/10), f(0.5), f(1/sqrt(2)), f(99/100), f(1)

delete f:

Example 2

We use a symbolic argument. In the symbolic return value, the input data appear as a
sorted list:

f := stats::empiricalQuantile(3, 25, PI, 4/3): f(x)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

30-121



30 stats – Statistics

f(0.5)

f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f:

Example 3

We create a sample of type stats::sample consisting of one string column and two non-
string columns:

s := stats::sample(

  [["1996", 1242, PI - 1/2], ["1997", 1353, PI + 0.3],

   ["1998", 1142, PI + 0.5], ["1999", 1201, PI - 1/3],

   ["2001", 1201, PI + 0.5]])

"1996"  1242  PI - 1/2

"1997"  1353  PI + 0.3

"1998"  1142  PI + 0.5

"1999"  1201  PI - 1/3

"2001"  1201  PI + 0.5

We compute quantile values of the data in the second and third column, respectively:

f2 := stats::empiricalQuantile(s, 2):

f2(0.1), f2(1/4), f2(0.7), f2(99/100)

f3 := stats::empiricalQuantile(s, 3):

f3(0.1), f3(1/4), f3(0.7), f3(99/100)

delete s, f2, f3:
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Parameters

x1, x2, …

The statistical data: real numerical values

s

A sample of domain type stats::sample

c

A column index of the sample s: a positive integer. This column provides the data x1, x2
etc. There is no need to specify a column number c if the sample has only one non-string
column.

Return Values

procedure.

See Also

MuPAD Functions
stats::empiricalCDF | stats::empiricalPF | stats::empiricalRandom
| stats::finiteCDF | stats::finitePF | stats::finiteQuantile |
stats::finiteRandom | stats::median
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stats::empiricalRandom
Generate a random generator for uniformly distributed elements of a data sample

Syntax
stats::empiricalRandom(x1, x2, …, <Seed = n>)

stats::empiricalRandom([x1, x2, …], <Seed = n>)

stats::empiricalRandom(n, <c>, <Seed = n>)

stats::empiricalRandom(n, <[c]>, <Seed = n>)

Description

stats::empiricalRandom([x1, x2, …, xn]) returns a procedure that picks out
random elements from the data x1, x2 etc.

All data x1, x2, … must be convertible to real floating-point numbers.

The procedure f := stats::empiricalRandom([x1, x2, …]) can be called in the
form f(). The call f() returns one of the data elements x1, x2, ….

The values produced by f() are distributed randomly. Each element of the sample is
chosen with the same probability.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::empiricalRandom do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random elements via

30-124



 stats::empiricalRandom

f := stats::empiricalRandom([x1, x2, …]):

f() $k = 1..K;

rather than by

stats::empiricalRandom([x_1, x_2, dots])() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::empiricalRandom([x_1, x_2, dots], Seed = s)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

stats::empiricalRandom is generalized by stats::finiteRandom,
which allows to specify different probabilities for the elements of the sample.
The call stats::empiricalRandom([x1, …, xn]) corresponds to
stats::finiteRandom([x_1, dots, x_n], [1/n, dots, 1/n]).

Further, stats::finiteRandom does not only allow numerical values x1, x2, …, but
arbitrary MuPAD objects.

Examples

Example 1

We pick out random elements of some data:

f := stats::empiricalRandom(1, 7, 4, PI, Seed = 234):

f(), f(), f(), f(), f(), f(), f(), f(), f()

Alternatively, the data may be passed as a list:

f := stats::empiricalRandom([1, 7, 4, PI], Seed = 234):

f(), f(), f(), f(), f(), f(), f(), f(), f()
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Symbolic data are not accepted:

stats::empiricalRandom(1, 7, 4, x):

Error: Some data cannot be converted to floating-point numbers. [stats::empiricalRandom]

delete f:

Example 2

We create a sample of type stats::sample consisting of one string column and two non-
string columns:

s := stats::sample(

  [["1996", 1242, 2/5],

   ["1997", 1353, 0.1],

   ["1998", 1142, 0.2],

   ["1999", 1201, 0.2],

   ["2001", 1201, 0.1]])

"1996"  1242  2/5

"1997"  1353  0.1

"1998"  1142  0.2

"1999"  1201  0.2

"2001"  1201  0.1

We pick random values using the data in the second and third column, respectively:

f := stats::empiricalRandom(s, 2, Seed = 12345):

f(), f(), f(), f(), f(), f(), f()

f := stats::empiricalRandom(s, 3, Seed = 12345):

f(), f(), f(), f(), f(), f(), f()
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delete s, f:

Example 3

We toss a fair die:

f:= stats::empiricalRandom([1, 2, 3, 4, 5, 6], Seed = 12345):

f(), f(), f(), f(), f(), f(), f(), f(), f(), f()

We toss the die 6000 times and count the frequencies of the scores 1 through 6:

t := [f() $ k = 1..6000]:

i = nops(select(t, _equal, i)) $ i = 1..6

The routine stats::finiteRandom allows to model a loaded die:

f:= stats::finiteRandom(

    [[1, 0.1], 

     [2, 0.1], 

     [3, 0.1], 

     [4, 0.1], 

     [5, 0.1], 

     [6, 0.5]], 

     Seed = 12345):

t := [f() $ k = 1..6000]:

i = nops(select(t, _equal, i)) $ i = 1..6

delete f, t:

Parameters

x1, x2, …

The statistical data: real numerical values
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s

A sample of domain type stats::sample

c

A column index of the sample s: a positive integer. This column provides the data x1, x2
etc. There is no need to specify a column number c if the sample has only one non-string
column.

Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random values. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
values.

Return Values

procedure.

See Also

MuPAD Functions
stats::empiricalCDF | stats::empiricalPF | stats::empiricalQuantile
| stats::finiteCDF | stats::finitePF | stats::finiteQuantile |
stats::finiteRandom | stats::median
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stats::equiprobableCells
Divide the real line into equiprobable intervals

Syntax
stats::equiprobableCells(k, q, <NoWarning>)

Description

stats::equiprobableCells is a utility function for the classical chi-square test
implemented by stats::csGOFT. The call stats::equiprobableCells(k, q)
creates a list of intervals (“cells”) that are equiprobable with respect to the statistical
distribution corresponding to the quantile function q.

The chi-square goodness-of-fit test needs a cell partitioning of the real line to compare
the empirical frequencies of data falling into the cells with the expected frequencies
corresponding to a hypothesized statistical distribution. It is recommended to use
equiprobable cells in this test. stats::equiprobableCells is a utility function to
compute such a partitioning.

The cell boundaries bi of the returned cell partitioning [[b0, b1], …, [bk - 1, bk]] are
computed via . Mathematically, each cell [bi - 1, bi] corresponds to

a semi-open interval .

If q is the quantile function of a continuous statistical distribution, all cells have the
same cell probability .

The function q can be a quantile procedure provided by the MuPAD stats-library.

Quantile functions not provided by the stats-package can be implemented easily by the
user. A user defined quantile procedure q can correspond to any statistical distribution.
Quantile functions must accept one numerical floating-point parameter x satisfying 0.0 ≤
x ≤ 1.0. The call q(x) must produce a real value. In particular, the return values q(0.0)
= -infinity and q(1.0) = infinity are allowed.
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Quantile functions must be monotonically increasing. stats::equiprobableCells
issues warnings if the computed quantile values  are not real or

, or if these values do not increase monotonically.

stats::equiprobableCells also accepts quantile functions of discrete distributions
such as stats::empiricalQuantile(data) or stats::binomialQuantile(n, p).

Note: Note, however, that in general, there are no equiprobable cell partitionings
for discrete distributions. Consequently, equiprobability of the cells returned by
stats::equiprobableCells is not guaranteed if q is not a continuous function.

In particular, it may happen for large k, that  coincides with , i.e., the

corresponding cell is empty. This will always happen, when k exceeds the number of
possible discrete values the random variable can attain.

In such a case, a warning is issued. Passing such a cell partitioning to stats::csGOFT
raises an error.

Further to the examples on this help page, see also the examples on the help page of
stats::csGOFT.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We divide the real line into 4 intervals that are equiprobable with respect to the standard
normal distribution:

k:= 4: q := stats::normalQuantile(0, 1):

cells := stats::equiprobableCells(k, q)
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We check equiprobability by applying the function stats::normalCDF(0, 1) to the
cell boundaries:

cdf := stats::normalCDF(0, 1):

p := map(cells, map, cdf)

The cell probabilities are given by the differences of the CDF function applied to the cell
boundaries:

(p[i][2] - p[i][1]) $ i = 1..k

We use these cells for a chi-square test for normality of some random data:

r := stats::normalRandom(0, 1, Seed = 0):

data := [r() $ i = 1..1000]:

stats::csGOFT(data, cells, CDF = cdf)

With the observed significance level , the data pass this test well. We experiment
with other equiprobable cell partitionings:

for k in [20, 30, 40, 50] do

    cells := stats::equiprobableCells(k, q);

    print(stats::csGOFT(data, cells, CDF = cdf));

end_for:
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delete k, cells, p, cdf, r, data:

Example 2

We create a sample of 1000 random integers between 0 and 100:

SEED := 10^2: r := random(0 .. 100): 

data := [r() $ i = 1..1000]:

We construct an `equiprobable' cell partitioning of 10 cells using the (discrete) empirical
distribution of the data. I.e., each of the following cells should contain approximately the
same number of data from the random sample:

k := 10:

quantile := stats::empiricalQuantile(data):

cells := stats::equiprobableCells(k, quantile)

For discrete distributions, `equiprobability' can only be achieved approximately. We
compute the cell probabilities with respect to the empirical cumulative distribution
function (CDF), by subtracting the CDF value of the left boundary from the CDF value of
the right boundary:

cdf := stats::empiricalCDF(data):

map(cells, cell -> cdf(cell[2]) - cdf(cell[1]))

The actual empirical frequency of the data in each cell is the cell probability times the
sample size (1000):

map(cells, cell -> 1000*(cdf(cell[2]) - cdf(cell[1])))
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When computing the probability of the cell [b[i-1], b[i]] via cdf(bi) - cdf(bi - 1), the
cell is regarded as the semiopen interval  mathematically. For this reason, the

data points 0 contained in the sample are not counted, and the cell frequencies do not
quite add up to the sample size:

_plus(op(%))

For the Symbol::chi^2 test, this does not matter because it replaces the left boundary of
the first cell by -infinity, anyway. With an observed significance level of , the
data pass the test for a uniform distribution at levels as high as :

stats::csGOFT(data, cells, CDF = stats::uniformCDF(0, 100))

We test whether the data fit a normal distribution with the empirical mean and variance:

[m, v] := [stats::mean(data), stats::variance(data)];

stats::csGOFT(data, cells, CDF = stats::normalCDF(m, v))

With the observed significance level , the hypothesis of a normal
distribution clearly has to be rejected.

delete r, data, k, quantile, cells, cdf, m, v:

Example 3

We consider a binomial distribution with `trial parameter' n = 100 and `probability
parameter' . It is the distribution of the number of successes in n = 100
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independent Bernoulli experiments, each with success probability . This random

variable can attain the discrete values 0, 1, …, 100. We create a cell partitioning of 4
cells:

n := 100: p := 1/2:

quantile := stats::binomialQuantile(n, p):

cells := stats::equiprobableCells(4, quantile)

Because of discreteness, an exact equiprobable cell partitioning does not exist. We
compute the expected cell frequencies in the same way as in the previous example:

cdf := stats::binomialCDF(n, p):

map(cells, cell -> n*(cdf(cell[2]) - cdf(cell[1])))

We create a random sample and apply the Symbol::chi^2 test:

r := stats::binomialRandom(n, p, Seed = 123):

data := [r() $ i = 1..100]:

stats::csGOFT(data, cells, CDF = cdf)

The observed significance level  is not small, i.e., the data pass the test well.

The `trial parameter' n = 100 is large enough for the binomial distribution to be
approximated by a normal distribution with mean n p and variance n p (1 - p). The data
pass the test for a normal distribution, too:

cdf := stats::normalCDF(n*p, n*p*(1 - p)):

stats::csGOFT(data, cells, CDF = cdf)
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We repeat the test with another cell partitioning:

quantile :=  stats::normalQuantile(n*p, n*p*(1 - p)):

cells := stats::equiprobableCells(4, quantile)

stats::csGOFT(data, cells, CDF = cdf)

delete k, quantile, cells, cdf, r, data:

Example 4

We demonstrate user-defined quantile functions. We consider the following distribution
of a random variable X supported on the interval [0, 1]:

The quantile function q is given by  for 0 ≤ x ≤ 1:

quantile := x -> sqrt(x):

We test the hypothesis that the following data are distributed as defined above.

cells := stats::equiprobableCells(6, quantile)

data := [sqrt(frandom()) $ i = 1..10^3]:

cdf := proc(x)

       begin

         if x <= 0 then return(0)
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         elif x <= 1 then return(x^2)

         else return(1)

         end_if

       end_proc:

stats::csGOFT(data, cells, CDF = cdf)

The data pass the test well. In fact, for a uniform deviate Y on the interval [0, 1] (as
produced by frandom), the cumulative distribution function of  is indeed given by cdf.

delete quantile, cells, data, cdf:

Parameters

k

The number of cells: a positive integer

q

A procedure representing a quantile function of a statistical distribution.
Typically, q is one of the quantile functions of the stats-package such as
stats::normalQuantile(m, v), stats::empiricalQuantile(data) etc.
Alternatively, user defined procedures may be passed if the stats-package does not
provide a suitable quantile function.

Options

NoWarning

stats::equiprobableCells issues warnings if the computed cell partitioning is not
suitable for stats::csGOFT. These warnings may be switched off with this option.

Return Values

List of k “cells”
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with floating-point values . This `cell partitioning' is suitable as

input parameter for stats::csGOFT.

See Also

MuPAD Functions
stats::csGOFT
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stats::erlangCDF
Cumulative distribution function of the Erlang distribution

Syntax
stats::erlangCDF(a, b)

Description

stats::erlangCDF(a, b) returns a procedure representing the cumulative
distribution function

of the Erlang distribution with shape parameter a > 0 and scale parameter b > 0.

The procedure f := stats::erlangCDF(a, b) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0. If x ≥ 0 can be decided, then f(x) returns
the value .

If x is a floating-point number and both a and b can be converted to positive floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x ≥ 0, the corresponding values are returned.

The call f(- infinity ) returns 0.

The call f( infinity ) returns 1.
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f(x) returns the symbolic call stats::erlangCDF(a, b)(x) if neither x ≤ 0 nor x ≥ 0
can be decided.

Numerical values for a and b are only accepted if they are real and positive.

Note that, for large a, exact results may be costly to compute. If floating-point values
are desired, it is recommended to pass floating-point arguments x to f rather than
to compute exact results f(x) and convert them via float. Cf. “Example 4” on page
30-140.

Note that .

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The procedure generated by stats::erlangCDF reacts to
properties of identifiers set via assume.

Examples

Example 1

We evaluate the cumulative probability function with a = 2 and b = 1 at various points:

f := stats::erlangCDF(2, 1):

f(-infinity), f(-3), f(0.5), f(2/3), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≥ 0 holds.
A symbolic function call is returned:
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f := stats::erlangCDF(a, b): f(x)

With suitable properties, it can be decided whether x ≥ 0 holds. An explicit expression is
returned:

assume(0 <= x): f(x)

unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::erlangCDF(a, b): f(3), f(3.0)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 2: b := 4: f(3), f(3.0)

delete f, a, b:

Example 4

We consider an Erlang distribution with large shape parameter:

f := stats::erlangCDF(2000, 2):
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For floating-point approximations, one should not compute an exact result and convert
it via float. For large shape parameter, it is faster to pass a floating-point argument to
f. The following call takes some time, because an exact computation of the huge integer

 is involved:

float(f(1010))

The following call is much faster:

f(float(1010))

delete f:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
gamma | igamma | stats::erlangPDF | stats::erlangQuantile |
stats::erlangRandom | stats::gammaCDF | stats::gammaPDF |
stats::gammaQuantile | stats::gammaRandom
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stats::erlangPDF
Probability density function of the Erlang distribution

Syntax

stats::erlangPDF(a, b)

Description

stats::erlangPDF(a, b) returns a procedure representing the probability density
function

of the Erlang distribution with shape parameter a > 0 and scale parameter b > 0.

The procedure f := stats::erlangPDF(a, b) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0. If x > 0 can be decided, then f(x) returns
the value .

If x is a floating-point number and both a and b can be converted to positive floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x > 0, the corresponding values are returned.

f(- infinity ) and f( infinity ) return 0.
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f(x) returns the symbolic call stats::erlangPDF(a, b)(x) if neither x ≤ 0 nor x > 0
can be decided.

Numerical values for a and b are only accepted if they are real and positive.

Note that, for large a, exact results may be costly to compute. If floating-point values
are desired, it is recommended to pass floating-point arguments x to f rather than
to compute exact results f(x) and convert them via float. Cf. “Example 4” on page
30-144.

Note that .

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The procedure generated by stats::erlangPDF reacts to
properties of identifiers set via assume.

Examples

Example 1

We evaluate the probability density function with a = 2 and b = 1 at various points:

f := stats::erlangPDF(2, 1):

f(-infinity), f(-PI), f(1/2), f(0.5), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x > 0 holds.
A symbolic function call is returned:
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f := stats::erlangPDF(a, b): f(x)

With suitable properties, it can be decided whether x > 0 holds. An explicit expression is
returned:

assume(0 < x): f(x)

unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::erlangPDF(a, b): f(x), f(3)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 2: b := 1: f(3), f(3.0)

delete f, a, b:

Example 4

We consider an Erlang distribution with large shape parameter:

f := stats::erlangPDF(2000, 1):
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For floating-point approximations, one should not compute an exact result and convert
it via float. For large shape parameter, it is faster to pass a floating-point argument to
f. The following call takes some time, because an exact computation of the huge integer

 is involved:

float(f(2010))

The following call is much faster:

f(float(2010))

delete f:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
gamma | stats::erlangCDF | stats::erlangQuantile | stats::erlangRandom
| stats::gammaCDF | stats::gammaPDF | stats::gammaQuantile |
stats::gammaRandom
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stats::erlangQuantile

Quantile function of the Erlang distribution

Syntax

stats::erlangQuantile(a, b)

Description

stats::erlangQuantile(a, b) returns a procedure representing the quantile
function (inverse) of the cumulative distribution function stats::erlangCDF(a, b).
For 0 ≤ x ≤ 1, the solution of stats::erlangCDF(a, b)(y) = x is given by

.

The procedure f := stats::erlangQuantile(a, b) can be called in the form f(x)
with an arithmetical expression x. The return value of f(x) is either a floating-point
number, infinity, or a symbolic expression:

If x is a real number between 0 and 1 and a and b can be converted to positive floating-
point numbers, then f(x) returns a positive floating-point number approximating the
solution y of stats::erlangCDF(a, b)(y) = x.

The calls f(0) and f(0.0) produce 0.0 for all values of a and b.

The calls f(1) and f(1.0) produce infinity for all values of a and b.

In all other cases, f(x) returns the symbolic call stats::erlangQuantile(a, b)(x).

Numerical values of x are only accepted if 0 ≤ x ≤ 1.

Numerical values of a and b are only accepted if they are real and positive.

Note that .
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the quantile function with a = π and b = 11 at various points:

f := stats::erlangQuantile(PI, 1/11):

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::erlangCDF(PI, 1/11)(f(x)) = x:

stats::erlangCDF(PI, 1/11)(f(0.987654))

delete f:

Example 2

We use symbolic arguments:

f := stats::erlangQuantile(a, b): f(x), f(9/10)

When positive real values are assigned to a and b, the function f starts to produce
floating-point values:

a := 17: b := 1/6: f(0.999), f(1 - sqrt(2)/10^5)
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Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)

f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, a, b:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::erlangCDF | stats::erlangPDF | stats::erlangRandom |
stats::gammaCDF | stats::gammaPDF | stats::gammaQuantile |
stats::gammaRandom
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stats::erlangRandom
Generate a random number generator for Erlang deviates

Syntax
stats::erlangRandom(a, b, <Seed = n>)

Description
stats::erlangRandom(a, b) returns a procedure that produces Erlang deviates
(random numbers) with shape parameter a > 0 and scale parameter b > 0.

The procedure f := stats::erlangRandom(a, b) can be called in the form f(). The
return value of f() is either a floating-point number or a symbolic expression:

If a and b can be converted to positive floating-point numbers, then f() returns a
nonnegative floating-point number.

In all other cases, stats::erlangRandom(a, b)() is returned symbolically.

Numerical values of a and b are only accepted if they are real and positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the Erlang distribution with parameters a and b. For any 0 ≤ x, the
probability that X ≤ x is given by

.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::erlangRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::erlangRandom(a, b): f() $k = 1..K;

rather than by

stats::erlangRandom(a, b)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::erlangRandom(a, b, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Note that stats::erlangRandom(a, b) = stats::gammaRandom(a, 1/b).

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate Erlang deviates with parameters a = 2 and :

f := stats::erlangRandom(2, 3/4): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:
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f := stats::erlangRandom(a, b): f()

When positive real numbers are assigned to a and b, the function f starts to produce
random floating point numbers:

a := PI: b := 1/8: f() $ k = 1..4

delete f, a, b:

Example 3

We use the option Seed = n to reproduce a sequence of random numbers:

f := stats::erlangRandom(PI, 3, Seed = 1): f() $ k = 1..4

g := stats::erlangRandom(PI, 3, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value
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b

The scale parameter: an arithmetical expression representing a positive real value

Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters a and b must be convertible to positive floating-
point numbers at the time when the random generator is generated.

Return Values

procedure.

See Also

MuPAD Functions
stats::erlangCDF | stats::erlangPDF | stats::erlangQuantile
| stats::gammaCDF | stats::gammaPDF | stats::gammaQuantile |
stats::gammaRandom
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stats::exponentialCDF
Cumulative distribution function of the exponential distribution

Syntax
stats::exponentialCDF(a, b)

Description

stats::exponentialCDF(a, b) returns a procedure representing the cumulative
distribution function

of the exponential distribution with real location parameter a and scale parameter b > 0.

The procedure f := stats::exponentialCDF(a, b) can be called in the form f(x)
with an arithmetical expression x. The return value of f(x) is either a floating-point
number or a symbolic expression:

If x ≤ a can be decided, then f(x) returns 0. If x > a can be decided, then f(x) returns
the value .

If x is a floating-point number and both a and b can be converted to floating-point
numbers, then these values are returned as floating-point numbers. Otherwise, symbolic
expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ a or x ≤ a, the corresponding values are returned.

f(x) returns the symbolic call stats::exponentialCDF(a, b)(x) if neither x ≤ a nor
x > a can be decided.

Numerical values for a and b are only accepted if they are real and b is positive.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the cumulative distribution function with a = 0 and b = 1 at various points:

f := stats::exponentialCDF(0, 1):

f(-infinity), f(-PI), f(1/2), f(0.5), f(PI), f(infinity)

delete f:

Example 2

If a or x are symbolic objects without properties, then it cannot be decided whether x ≥ a
holds. A symbolic function call is returned:

f := stats::exponentialCDF(a, b): f(x)

With suitable properties, it can be decided whether x ≥ a holds. An explicit expression is
returned:

assume(a <= x): f(x)

Note that assume(a <= x) attached properties both to a and x. When cleaning up, the
properties have to be removed separately for a and x via unassume:
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unassume(a): unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::exponentialCDF(a, b): f(x)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 0: b := 2: f(3), f(3.0)

delete f, a, b:

Parameters

a

The location parameter: an arithmetical expression representing a real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
exp | stats::exponentialPDF | stats::exponentialQuantile |
stats::exponentialRandom
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stats::exponentialPDF
Probability density function of the exponential distribution

Syntax
stats::exponentialPDF(a, b)

Description

stats::exponentialPDF(a, b) returns a procedure representing the probability
density function

of the exponential distribution with real location parameter a and scale parameter b > 0.

The procedure f := stats::exponentialPDF(a, b) can be called in the form f(x)
with an arithmetical expression x. The return value of f(x) is either a floating-point
number or a symbolic expression:

If x < a can be decided, then f(x) returns 0. If x ≥ a can be decided, then f(x) returns
the value .

If x is a floating-point number and both a and b can be converted to floating-point
numbers, then these values are returned as floating-point numbers. Otherwise, symbolic
expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x < a or x ≥ a, the corresponding values are returned.

f(x) returns the symbolic call stats::exponentialPDF(a, b)(x) if neither x < a nor
x ≥ a can be decided.

Numerical values for a and b are only accepted if they are real and b is positive.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the probability density function with a = 0 and b = 1 at various points:

f := stats::exponentialPDF(0, 1):

f(-infinity), f(-PI), f(1/2), f(0.5), f(PI), f(infinity)

delete f:

Example 2

If a or x are symbolic objects without properties, then it cannot be decided whether x ≥ a
holds. A symbolic function call is returned:

f := stats::exponentialPDF(a, b): f(x)

With suitable properties, it can be decided whether x ≥ a holds. An explicit expression is
returned:

assume(a <= x): f(x)

Note that assume(a <= x) attached properties both to a and x. When cleaning up, the
properties have to be removed separately for a and x via unassume:
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unassume(a): unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::exponentialPDF(a, b): f(x)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 0: b := 2: f(3), f(3.0)

delete f, a, b:

Parameters

a

The location parameter: an arithmetical expression representing a real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::exponentialCDF | stats::exponentialQuantile |
stats::exponentialRandom
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stats::exponentialQuantile

Quantile function of the exponential distribution

Syntax

stats::exponentialQuantile(a, b)

Description

stats::exponentialQuantile(a, b) returns a procedure representing the quantile
function (inverse)

of the cumulative distribution function stats::exponentialCDF(a, b). For 0 ≤ x ≤ 1,
the solution of stats::exponentialCDF(a, b)(y) = x is given by

.

The procedure f := stats::exponentialQuantile(a, b) can be called in the form
f(x) with an arithmetical expression x. The return value of f(x) is either a floating-
point number, infinity, or a symbolic expression:

If x is a real floating-point number between 0 and 1 and a and b can be converted to
suitable real floating-point numbers, then f(x) returns a floating-point number.

The calls f(1) and f(1.0) produce infinity.

In all other cases, f(x) returns the symbolic expression a-ln(1-x)/b.

Numerical values of x are only accepted if 0 ≤ x ≤ 1.

Numerical values of a and b are only accepted if they are real and b is positive.
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Environment Interactions

The function is sensitive to the environment variable DIGITS. which determines the
numerical working precision.

Examples

Example 1

We evaluate the quantile function with a = 2 and b = 3 at various points:

f := stats::exponentialQuantile(2, 3):

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::exponentialCDF(2, 3)(f(x)) = x:

stats::exponentialCDF(2, 3)(f(0.987654))

delete f:

Example 2

We use symbolic arguments:

f := stats::exponentialQuantile(a, b): f(x), f(1/3), f(0.4)

When suitable numerical values are assigned to a and b, the function f starts to produce
numerical values:
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a := 7: b := 1/8: f(0.999), f(999/1000)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)

f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, a, b:

Parameters

a

The location parameter: an arithmetical expression representing a real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::exponentialCDF | stats::exponentialPDF |
stats::exponentialRandom
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stats::exponentialRandom
Generate a random number generator for exponential deviates

Syntax
stats::exponentialRandom(a, b, <Seed = n>)

Description

stats::exponentialRandom(a, b) returns a procedure that produces exponential
deviates (random numbers) with real location parameter a and scale parameter b > 0.

The procedure f := stats::exponentialRandom(a, b) can be called in the form
f(). The return value of f() is either a floating-point number or a symbolic expression:

If a can be converted to a real floating point number and b to a positive floating-point
number, then f() returns nonnegative floating-point number.

In all other cases, stats::exponentialRandom(a, b)() is returned symbolically.

Numerical values of a and b are only accepted if they are real and b is positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the exponential distribution with parameters a and b. For real x ≥ a, the
probability that X ≤ x is given by

.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::exponentialRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::exponentialRandom(a, b): f() $k = 1..K;

rather than by

stats::exponentialRandom(a, b)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::exponentialRandom(a, b, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate exponential deviates with parameters a = 2 and :

f := stats::exponentialRandom(2, 3/4): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

30-163



30 stats – Statistics

f := stats::exponentialRandom(a, b): f()

When a and b evaluate to suitable real numbers, f starts to produce random floating-
point numbers:

a := PI: b := 1/8: f() $ k = 1..4

delete f, a, b:

Example 3

We use the option Seed = n to reproduce a sequence of random numbers:

f := stats::exponentialRandom(PI, 1/2, Seed = 1): f() $ k = 1..4

g := stats::exponentialRandom(PI, 1/2, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

a

The location parameter: an arithmetical expression representing a real value

30-164



 stats::exponentialRandom

b

The scale parameter: an arithmetical expression representing a positive real value

Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters a and b must be convertible to suitable
floating-point numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of the exponential deviates uses the
quantile function of the exponential distribution applied to uniformly distributed random
numbers between 0 and 1.

See Also

MuPAD Functions
stats::exponentialCDF | stats::exponentialPDF |
stats::exponentialQuantile
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stats::fCDF
Cumulative distribution function of Fisher's f-distribution (fratio distribution)

Syntax
stats::fCDF(a, b)

Description

stats::fCDF(a, b) returns a procedure representing the cumulative distribution
function

of Fisher's f-distribution with shape parameters a > 0, b > 0.

The procedure f:=stats::fCDF(a, b) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x can be converted to a real floating point number and the shape parameters can be
converted to positive floating-point numbers, then f(x) returns a floating point number
between 0.0 and 1.0.

For all values of a and b, the call f(x) returns 0.0 if x is a nonpositive numerical value
or a symbolic expression with the propertyx ≤ 0.

The call f(- infinity ) returns 0.0.

The call f( infinity ) returns 1.0.

In all other cases, f(x) returns the symbolic call stats::fCDF(a, b)(x).
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Numerical values for a and b are only accepted if they are real and positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. It reacts to properties of identifiers set via assume.

Examples

Example 1

We evaluate the cumulative distribution function with a = 2 and b = 1 at various points:

f := stats::fCDF(2, 1):

f(-infinity), f(-3), f(0.5), f(2/3), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≤ 0 holds.
A symbolic function call is returned:

f := stats::fCDF(a, b): f(x)

With suitable properties, it can be decided whether x ≤ 0 holds. The value 0.0 is returned:

assume(x <= 0): f(x)

MuPAD does not provide a special function to represent the cumulative distribution
function for positive arguments. A symbolic call is returned:
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assume(x > 0): f(x)

unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::fCDF(a, b): f(x), f(2)

When numerical values are assigned to a and b, the function f starts to produce floating-
point numbers for numerical arguments:

a := 2: b := 1: f(2)

delete f, a, b:

Parameters

a, b

The shape parameters: arithmetical expressions representing positive real values

Return Values

procedure.

See Also

MuPAD Functions
stats::fPDF | stats::fQuantile | stats::fRandom
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stats::fPDF

Probability density function of Fisher's f-distribution (fratio distribution)

Syntax

stats::fPDF(a, b)

Description

stats::fPDF(a, b) returns a procedure representing the probability density function

of Fisher's f-distribution with shape parameters a > 0, b > 0.

The procedure f:=stats::fPDF(a, b) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0 If x > 0 can be decided, then f(x) returns
the value

.
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If x is a floating-point number and both a and b can be converted to positive floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x ≥ 0, the corresponding values are returned.

f(- infinity ) and f( infinity ) return 0.

f(x) returns the symbolic call stats::fPDF(a, b)(x) if neither x ≤ 0 nor x > 0 can be
decided.

Numerical values for a and b are only accepted if they are real and positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. It reacts to properties of identifiers set via assume.

Examples

Example 1

We evaluate the probability density function with a = 2 and b = 4 at various points:

f := stats::fPDF(2, 4):

f(-infinity), f(-PI), f(1/2), f(0.5), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≥ 0 holds.
A symbolic function call is returned:
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f := stats::fPDF(a, b): f(x)

With suitable properties, it can be decided whether x ≥ 0 holds. An explicit expression is
returned:

assume(0 <= x): f(x)

unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::fPDF(a, b): f(x)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 2: b := 1: f(3), f(3.0)

delete f, a, b:

Parameters

a, b

The shape parameters: arithmetical expressions representing positive real values
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Return Values

procedure.

See Also

MuPAD Functions
stats::fCDF | stats::fQuantile | stats::fRandom
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stats::fQuantile
Quantile function of Fisher's f-distribution (fratio distribution)

Syntax
stats::fQuantile(a, b)

Description

stats::fQuantile(a, b) returns a procedure representing the quantile function
(inverse) of the cumulative distribution function stats::fCDF(a, b). For 0 ≤ x ≤ 1, the
solution of stats::fCDF(a, b)(y) = x is given by y = stats::fQuantile(a, b)(x).

The procedure f:=stats::fQuantile(a, b) can be called in the form f(x) with
arithmetical expressions x. The return value of f(x) is either a floating-point number,
infinity, or a symbolic expression:

If x is a real number between 0 and 1 and a and b can be converted to positive floating-
point numbers, then f(x) returns a positive floating-point number approximating the
solution y of stats::fCDF(a, b)(y) = x.

The calls f(0) and f(0.0) produce 0.0 for all values of a and b.

The calls f(1) and f(1.0) produce infinity for all values of a and b.

In all other cases, f(x) returns the symbolic call stats::fQuantile(a, b)(x).

Numerical values of x are only accepted if 0 ≤ x ≤ 1.

Numerical values of a and b are only accepted if they are real and positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The procedure generated by stats::fQuantile is
sensitive to properties of identifiers, which can be set via assume.
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Examples

Example 1

We evaluate the quantile function with a = π and b = 11 at various points:

f := stats::fQuantile(PI, 11):

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::fCDF(π, 11)(f(x)) = x:

stats::fCDF(PI, 11)(f(0.987654321))

delete f:

Example 2

We use symbolic arguments:

f := stats::fQuantile(a, b): f(x), f(9/10)

When positive real values are assigned to a and b, the function f starts to produce
floating-point values:

a := 17: b := 6: f(0.999), f(1 - sqrt(2)/10^5)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)
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f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, a, b:

Parameters

a, b

The shape parameters: arithmetical expressions representing positive real values

Return Values

procedure.

See Also

MuPAD Functions
stats::fCDF | stats::fPDF | stats::fRandom
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stats::fRandom

Generate a random number generator for Fisher's f-deviates (fratio deviates)

Syntax

stats::fRandom(a, b, <Seed = n>)

Description

stats::fRandom(a, b) returns a procedure that produces f-deviates (random
numbers) with shape parameters a > 0, b > 0.

The procedure f:=stats::fRandom(a, b) can be called in the form f(). The return
value of f() is either a floating-point number or a symbolic expression:

If a and b can be converted to positive floating-point numbers, then f() returns a
positive floating-point number.

In all other cases, stats::fRandom(a, b)() is returned symbolically.

Numerical values of a and b are only accepted if they are real and positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the f-distribution with shape parameters a and b. For 0 ≤ x, the probability
that X ≤ x is given by

.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.
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Note: In contrast to the function random, the generators produced by stats::fRandom
do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::fRandom(a, b): f() $k = 1..K;

rather than by

stats::fRandom(a, b)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::fRandom(a, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate f-deviates with shape parameters a = 2 and :

f := stats::fRandom(2, 3/4): f() $ k = 1..4

delete f:
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Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::fRandom(a, b): f()

When the shape parameters evaluate to positive real numbers, f starts to produce
random floating-point numbers:

a := PI: b := 8: f()

delete f, a, b:

Example 3

We use the option Seed = n to reproduce a sequence of random numbers:

f := stats::fRandom(4, 5, Seed = 1): f() $ k = 1..4

g := stats::fRandom(4, 5, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:
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Parameters

a, b

The shape parameters: arithmetical expressions representing positive real values

Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the shape parameters a and b must be convertible to positive
floating-point numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm uses independent gamma deviates X and Y to produce an
f-deviate . For more information see: D. Knuth, Seminumerical Algorithms (1998),

Vol. 2, p. 135.

See Also

MuPAD Functions
stats::fCDF | stats::fPDF | stats::fQuantile
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stats::finiteCDF

Cumulative distribution function of a finite sample space

Syntax

stats::finiteCDF([x1, x2, …], [p1, p2, …])

stats::finiteCDF([[x1, p1], [x2, p2], …])

stats::finiteCDF(s, <c1, c2>)

stats::finiteCDF(s, <[c1, c2]>)

Description

stats::finiteCDF([x1, x2, …, xn], [p1, p2, …, pn]) returns a procedure
representing the cumulative distribution function  of the finite sample

space consisting of the data elements x1, …, xn with the probabilities p1, …, pn. Here,
, i.e., xk is the largest element of the data sample less or equal to x (the

data elements are assumed to be ordered: x1 < x2 < x3 etc.)

The procedure f := stats::finiteCDF([x1, x2, …], [p1, p2, …]) can be called
in the form f(x) with an arithmetical expression x.

If x is a numerical value and the data elements x1, x2, … are all numerical, then f(x)
returns an arithmetical expression (the sum of the probabilities of all data elements
smaller or equal to x).

The call f(- infinity ) produces 0; the call f( infinity ) produces 1.

Otherwise, if x is a symbolic expression that cannot be converted to a real floating-point
number or if the data x1, x2, … contain elements that cannot be converted to real
floating-point numbers, then f(x) returns the symbolic call stats::finiteCDF([x1,
x2, …], [p1, p2, …])(x) with the data x1, x2, … in ascending order.
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If all probability values p1, p2, … are numerical, they must add up to 1. Otherwise, an
error is raised.

Duplicate data elements are automatically combined to a single data element, adding up
the corresponding probability values. Cf. “Example 5” on page 30-183.

The data elements x1, x2, … are assumed to be in ascending order: x1 < x2 < ….
If all data elements are numerical, they are re-ordered automatically, if they are not
ascending. If the data contain symbolic elements that cannot be converted to floating-
point numbers, the ordering is assumed implicitly.

stats::finiteCDF generalizes stats::empiricalCDF, which assumes equiprobable
data. For numerical data x1, x2, …, the call stats::finiteCDF([x_1, dots,
x_n], [1/n, dots, 1/n]) corresponds to stats::empiricalCDF([x1, …, xn]).

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. Note, however, that this function is implemented with
option remember. After the first call it does not react to changes of DIGITS unless the
input parameters are changed.

Examples

Example 1

We evaluate the finite distribution function of some numerical data at various points:

f := stats::finiteCDF([1, 0, 2.3, PI], [p1, p0, 0.2, 0.3]):

f(-infinity), f(0.1), f(2.3), f(PI), f(10), f(infinity)

Alternatively, the data may be passed as a list:

f := stats::finiteCDF([[1, p1], [0, p0], [2.3, 0.2], [PI, 0.3]]):

f(-infinity), f(0.1), f(2.3), f(PI), f(10), f(infinity)
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delete f:

Example 2

We use symbolic arguments. In the symbolic return value, the input data appear as a
sorted list:

stats::finiteCDF([3, 4, PI], [0.2, 0.5, 0.3])(x)

If the data contain symbolic elements, the return value is again a symbolic call:

stats::finiteCDF([3, x, PI], [0.2, 0.5, 0.3])(0.7)

Example 3

We create a sample consisting of one string column and two non-string columns:

s := stats::sample(

  [["1996", 1242, 2/5], 

   ["1997", 1353, 0.1],

   ["1998", 1142, 0.2], 

   ["1999", 1201, 0.2],

   ["2001", 1201, 0.1]])

"1996"  1242  2/5

"1997"  1353  0.1

"1998"  1142  0.2

"1999"  1201  0.2

"2001"  1201  0.1

We compute values of the finite distributions of the data in the second and third column:

f := stats::finiteCDF(s, 2, 3): 
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f(1000), f(1200), f(1201)

delete s, f:

Example 4

If numerical probability values are given, they must add up to 1:

f := stats::finiteCDF([Head, TAIL], [0.45, 0.54]):

Error: The probabilities do not add up to one. [stats::finiteCDF]

Symbolic probability values are not checked for consistency:

f := stats::finiteCDF([Head, TAIL], [0.45, p]): 

f(x)

However, when the probabilities are set to numerical values, they are checked:

p:= 0.7: f(x)

Error: The probabilities do not add up to one. [f]

delete f, p:

Example 5

Duplicate data elements are automatically combined to a single data element, adding up
the corresponding probability values:

f:= stats::finiteCDF([x1, x2, x1, x2], [0.1, 0.2, 0.3, 0.4]):

f(3)

30-183



30 stats – Statistics

x1 := 1: x2 := 3: f(2)

delete f, x1, x2:

Parameters

x1, x2, …

The statistical data: arbitrary MuPAD objects

p1, p2, …

Probability values: arithmetical expressions

s

A sample of domain type stats::sample

c1, c2

Column indices of the sample s: positive integers. Column c1 provides the data x1, x2 etc.
Column c2 provides the data p1, p2 etc. There is no need to specify column numbers if the
sample has only two columns.

Return Values

procedure.

See Also

MuPAD Functions
stats::empiricalCDF | stats::empiricalPF | stats::empiricalQuantile
| stats::empiricalRandom | stats::finitePF | stats::finiteQuantile |
stats::finiteRandom
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stats::finitePF
Probability function of a finite sample space

Syntax
stats::finitePF([x1, x2, …], [p1, p2, …])

stats::finitePF([[x1, p1], [x2, p2], …])

stats::finitePF(n, <c1, c2>)

stats::finitePF(n, <[c1, c2]>)

Description

stats::finitePF([x1, x2, …, xn], [p1, p2, …, pn]) returns a procedure
representing the probability function

of the sample space given by the data x1, x2, … with the probabilities p1, p2, ….

The procedure f := stats::finitePF([x1, x2, …], [p1, p2, …]) can be called in
the form f(x) with an arithmetical expression x or sets of lists of such expressions.

If x is an expression that is contained in the data x1, x2, …, then the corresponding
probability value is returned.

If x is an expression that is not contained in the data x1, x2, …, then 0 is returned.

If x is a set, the sum of the probability values of its elements is returned.

If x is a list, it is treated like a set (i.e., duplicate entries in x are eliminated). The sum of
the probability values of the elements in x is returned.
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If all probability values p1, p2, … are numerical, they must add up to 1. Otherwise, an
error is raised. Cf. “Example 4” on page 30-187.

Duplicate data elements are automatically combined to a single data element, adding up
the corresponding probability values. Cf. “Example 5” on page 30-188.

stats::finitePF generalizes stats::empiricalPF, which assumes equiprobable
data. For numerical data x1, x2, …, the call stats::finitePF([x_1, dots, x_n],
[1/n, dots, 1/n]) corresponds to stats::empiricalPF([x1, …, xn]).

Examples

Example 1

We demonstrate the basic usage of this function:

f := stats::finitePF([1, x, y, PI], [1/4, px, py, 0.25]):

f(0), f(1), f(1.0), f(x), f(y), f(PI), f(float(PI)), f(10)

Alternatively, the data may be passed as a list:

f := stats::finitePF([[1, 1/4], [x, px], [y, py], [PI, 0.25]]):

f(0), f(1), f(1.0), f(x), f(y), f(PI), f(float(PI)), f(10)

delete f:

Example 2

We create a sample of type stats::sample consisting of one string column and two non-
string columns:

s := stats::sample(

  [["1996", 1242, 2/5],
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   ["1997", 1353, 0.1],

   ["1998", 1142, 0.2],

   ["1999", 1201, 0.2],

   ["2001", 1201, 0.1]])

"1996"  1242  2/5

"1997"  1353  0.1

"1998"  1142  0.2

"1999"  1201  0.2

"2001"  1201  0.1

We use the data in the first and third column:

f := stats::finitePF(s, 1, 3):

f("1995"), f("1998"), f("2000"), f("2001")

delete s, f:

Example 3

We consider a loaded die:

f:= stats::finitePF([1, 2, 3, 4, 5, 6], 

                    [0.1, 0.1, 0.1, 0.2, 0.2, 0.3]):

What is the probabiliy that tossing the die produces a score more than or equal to 4?

f({4, 5, 6})

delete f:

Example 4

The probability values must add up to 1:

stats::finitePF([Head, TAIL], [0.45, 0.54]):
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Error: The probabilities do not add up to one. [stats::finitePF]

Example 5

Duplicate data elements are automatically combined to a single data element, adding up
the corresponding probability values:

f:= stats::finitePF([x1, x2, x1, x2], [0.1, 0.2, 0.3, 0.4]):

f(x1), f(x2)

delete f:

Parameters

x1, x2, …

The statistical data: arbitrary MuPAD objects

p1, p2, …

Probability values: arithmetical expressions

s

A sample of domain type stats::sample

c1, c2

Column indices of the sample s: positive integers. Column c1 provides the data x1, x2 etc.
Column c2 provides the data p1, p2 etc. There is no need to specify column numbers if the
sample has only two columns.

Return Values

procedure.
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See Also

MuPAD Functions
stats::empiricalCDF | stats::empiricalPF | stats::empiricalQuantile
| stats::empiricalRandom | stats::finiteCDF | stats::finiteQuantile |
stats::finiteRandom
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stats::finiteQuantile
Quantile function of a finite sample space

Syntax
stats::finiteQuantile([x1, x2, …], [p1, p2, …])

stats::finiteQuantile([[x1, p1], [x2, p2], …])

stats::finiteQuantile(s, <c1, c2>)

stats::finiteQuantile(s, <[c1, c2]>)

Description
stats::finiteQuantile([x1, x2, …, xn], [p1, p2, …, pn]) returns a procedure
representing the quantile function of the data x1, x2 etc. with the probabilities
p1, p2 etc. It is the (discrete) inverse of the cumulative distribution function
stats::finiteCDF([x1, x2, …], [p1, p2, …]). For 0 ≤ x ≤ 1, the x-quantile y =
stats::finiteQuantile([x1, x2, …], [p1, p2, …])(x) is the smallest of the data elements x1,
x2, … satisfying

.

(The data elements are assumed to be ordered: x1 < x2 < x3 etc.)

The procedure f := stats::finiteQuantile([x1, x2, …], [p1, p2, …]) can be
called in the form f(x) with an arithmetical expression x.

If x is a real number satisfying 0 ≤ x ≤ 1 and all probability values p1, p2, … are
numerical, then f(x) returns one of the data elements x1, x2, ….

Otherwise, if x is a symbolic expression that cannot be converted to a real floating-
point number or if the probabilities p1, p2, … contain elements that cannot be
converted to real floating-point numbers, then f(x) returns the symbolic call
stats::finiteQuantile([x1, x2, …], [p1, p2, …])(x) with the data x1, x2,
… in ascending order.
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Numerical values of x are only accepted if 0 ≤ x ≤ 1.

If all probability values p1, p2, … are numerical, they must add up to 1. Otherwise, an
error is raised.

Duplicate data elements are automatically combined to a single data element, adding up
the corresponding probability values. Cf. “Example 5” on page 30-194.

y = stats::finiteQuantile([x1, x2, …], [p1, p2, …])(x) satisfies

for all data elements xi in the sample satisfying xi < y.

The data elements x1, x2, … are assumed to be in ascending order: x1 < x2 < ….
If all data elements are numerical, they are re-ordered automatically, if they are not
ascending. If the data contain symbolic elements that cannot be converted to floating-
point numbers, the ordering is assumed implicitly.

stats::finiteQuantile generalizes stats::empiricalQuantile,
which assumes equiprobable data. For numerical data x1, x2, …, the call
stats::finiteQuantile([x_1, dots, x_n], [1/n, dots, 1/n]) corresponds to
stats::empiricalQuantile([x1, …, xn]).

Environment Interactions
The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. Note, however, that this function is implemented with
option remember. After the first call it does not react to changes of DIGITS unless the
input parameters are changed.

Examples

Example 1

We compute various quantiles of some numerical data:
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f := stats::finiteQuantile([1, x, y, PI],

                           [1/4, 3/8, 1/4, 1/8]):

f(0), f(0.1), f(3/10), f(0.5), f(1/sqrt(2)), f(99/100), f(1)

Alternatively, the data may be passed as a list:

f := stats::finiteQuantile([[1, 1/4], [x, 3/8],

                            [y, 1/4], [PI, 1/8]]):

f(0), f(0.1), f(3/10), f(0.5), f(1/sqrt(2)), f(99/100), f(1)

delete f:

Example 2

We use symbolic arguments. In the symbolic return value, the input data appear as a
sorted list:

f:= stats::finiteQuantile([3, 4, PI], [0.2, 0.5, 0.3]):

f(x)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)

f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f:

30-192



 stats::finiteQuantile

Example 3

We create a sample of type stats::sample consisting of one string column and two non-
string columns:

s := stats::sample(

  [["1996", 1242, 2/5],

   ["1997", 1353, 0.1],

   ["1998", 1142, 0.2],

   ["1999", 1201, 0.2],

   ["2001", 1201, 0.1]])

"1996"  1242  2/5

"1997"  1353  0.1

"1998"  1142  0.2

"1999"  1201  0.2

"2001"  1201  0.1

We compute quantile values of the data in the second and third column:

f := stats::finiteQuantile(s, 2, 3):

f(0.1), f(1/4), f(0.7), f(99/100)

delete s, f:

Example 4

If numerical probability values are given, they must add up to 1:

f := stats::finiteQuantile([Head, TAIL], [0.45, 0.54]):

Error: The probabilities do not add up to one. [stats::finiteQuantile]

Symbolic probability values are not checked for consistency:

f := stats::finiteQuantile([Head, TAIL], [0.45, p]):

f(x)
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However, when the probabilities are set to numerical values, they are checked:

p:= 0.7: f(x)

Error: The probabilities do not add up to one. [f]

delete f, p:

Example 5

Duplicate data elements are automatically combined to a single data element, adding up
the corresponding probability values:

f:= stats::finiteQuantile([x1, x2, x1, x2], [p1, p2, 0.3, 0.4]):

f(0.5)

p1 := 0.1: p2 := 0.2: f(0.5)

delete f, p1, p2:

Parameters

x1, x2, …

The statistical data: arbitrary MuPAD objects

p1, p2, …

Probability values: arithmetical expressions

s

A sample of domain type stats::sample
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c1, c2

Column indices of the sample s: positive integers. Column c1 provides the data x1, x2 etc.
Column c2 provides the data p1, p2 etc. There is no need to specify column numbers if the
sample has only two columns.

Return Values

procedure.

See Also

MuPAD Functions
stats::empiricalCDF | stats::empiricalPF | stats::empiricalQuantile
| stats::empiricalRandom | stats::finiteCDF | stats::finitePF |
stats::finiteRandom | stats::median
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stats::finiteRandom
Generate a random generator for elements of a finite sample space

Syntax
stats::finiteRandom([x1, x2, …], [p1, p2, …], <Seed = n>)

stats::finiteRandom([[x1, p1], [x2, p2], …], <Seed = n>)

stats::finiteRandom(n, <c1, c2>, <Seed = n>)

stats::finiteRandom(n, <[c1, c2]>, <Seed = n>)

Description

stats::finiteRandom([x1, x2, …, xn], [p1, p2, …, pn]) returns a procedure
that picks out random elements from the data x1, x2 etc. The chances of picking out
elements are given by the probabilities p1, p2 etc.

The procedure f := stats::finiteRandom([x1, x2, …], [p1, p2, …]) can be
called in the form f(). The call f() returns one of the data elements x1, x2, ….

The values X = f() are distributed randomly according to the discrete
distribution function of the sample space, i.e., the probability of X ≤ x is given by
stats::finiteCDF([x1, x2, …], [p1, p2, …])(x).

All probability values p1, p2, … must be convertible to floating-point numbers. They
must add up to 1.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::finiteRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::finiteRandom([x1, x2, …], [p1, p2, …]):

f() $k = 1..K;

rather than by

stats::finiteRandom([x_1, x_2, dots], [p_1, p_2, dots])() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::finiteRandom([x_1, x_2, dots], [p_1, p_2, dots], Seed = s)()

$k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

stats::finiteRandom generalizes stats::empiricalRandom, which
assumes equiprobable data. For numerical data x1, x2, …, the call
stats::finiteRandom([x_1, dots, x_n], [1/n, dots, 1/n]) corresponds to
stats::empiricalRandom([x1, …, xn]).

Examples

Example 1

We pick out random elements of some data:

f := stats::finiteRandom([1, x, y, PI],

                         [1/4, 3/8, 1/4, 1/8],

                                  Seed = 234):

f(), f(), f(), f(), f(), f(), f(), f(), f()

Alternatively, the data may be passed as a list:

f := stats::finiteRandom([[1, 1/4], [x, 3/8],
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                          [y, 1/4], [PI, 1/8]],

                                   Seed = 234):

f(), f(), f(), f(), f(), f(), f(), f(), f()

delete f:

Example 2

We create a sample of type stats::sample consisting of one string column and two non-
string columns:

s := stats::sample(

  [["1996", 1242, 2/5],

   ["1997", 1353, 0.1],

   ["1998", 1142, 0.2],

   ["1999", 1201, 0.2],

   ["2001", 1201, 0.1]])

"1996"  1242  2/5

"1997"  1353  0.1

"1998"  1142  0.2

"1999"  1201  0.2

"2001"  1201  0.1

We pick random values using the data in the first and third column:

f := stats::finiteRandom(s, 1, 3, Seed = 123):

f(), f(), f(), f(), f(), f(), f()

delete s, f:

Example 3

We toss a loaded coin:

f:= stats::finiteRandom([Head, Tail], [0.4, 0.6], Seed = 123):

f(), f(), f(), f(), f(), f(), f(), f(), f(), f()
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We toss the coin 10000 times and count the number of Heads and Tails:

t := [f() $ k = 1..10^4]:

NumberOfHeads = nops(select(t, _equal, Head)),

NumberOfTails = nops(select(t, _equal, Tail))

delete f, t:

Example 4

The probability values must add up to 1:

stats::finiteRandom([Head, TAIL], [0.45, 0.54]):

Error: The probabilities do not add up to one. [stats::finiteRandom]

Parameters

x1, x2, …

The statistical data: arbitrary MuPAD objects

p1, p2, …

Probability values: real numerical values

s

A sample of domain type stats::sample

c1, c2

Column indices of the sample s: positive integers. Column c1 provides the data x1, x2 etc.
Column c2 provides the data p1, p2 etc. There is no need to specify column numbers if the
sample has only two columns.
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Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random values. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
values.

Return Values

procedure.

Algorithms

The random values are chosen by applying the quantile function to uniformly distributed
random numbers between 0 and 1.

See Also

MuPAD Functions
stats::empiricalCDF | stats::empiricalPF | stats::empiricalQuantile
| stats::empiricalRandom | stats::finiteCDF | stats::finitePF |
stats::finiteQuantile | stats::median
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stats::frequency
Tally numerical data into classes and count frequencies

Syntax
stats::frequency(data, <ClassesClosed = Left | Right>)

stats::frequency(data, n, <ClassesClosed = Left | Right>)

stats::frequency(data, [n], <ClassesClosed = Left | Right>)

stats::frequency(data, [a1 .. b1, a2 .. b2, …], <ClassesClosed = Left | Right>)

stats::frequency(data, [[a1, b1], [a2, b2], …], <ClassesClosed = Left | Right>)

stats::frequency(data, Classes = n, <ClassesClosed = Left | Right>)

stats::frequency(data, Classes = [n], <ClassesClosed = Left | Right>)

stats::frequency(data, Classes = [a1 .. b1, a2 .. b2, …], <ClassesClosed = Left | Right>)

stats::frequency(data, Classes = [[a1, b1], [a2, b2], …], <ClassesClosed = Left | Right>)

stats::frequency(data, Cells = n, <CellsClosed = Left | Right>)

stats::frequency(data, Cells = [n], <CellsClosed = Left | Right>)

stats::frequency(data, Cells = [a1 .. b1, a2 .. b2, …], <CellsClosed = Left | Right>)

stats::frequency(data, Cells = [[a1, b1], [a2, b2], …], <CellsClosed = Left | Right>)

Description

stats::frequency(data, [[a1, b1], [a2, b2], …]) tallies numerical data into
different classes given by semiopen intervals . It counts how many data elements
fall into each class.

All data elements must be real numerical values. Exact numerical values such as π, 
etc. are allowed if they can be converted to real floating-point numbers via float. An
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error is raised if symbolic data are found that cannot be converted to real floating point
numbers.

Note: Note that stats::frequency is fast if all data elements are integers, rational
numbers, or floating point numbers. Exact numerical values such as π,  etc. are
processed, but have a noticeable impact on the efficiency of stats::frequency.

Data given by an array, a table etc. are internally treated like a list containing all
operands of the data container. In particular, all rows and columns of arrays, matrices
and stats::sample objects are taken into account. A stats::sample object must not
contain any text entries.

For the specification of the classes, stats::frequency accepts either a single positive
integer (or, equivalently, a list of one positive integer), or a list of classes given as ranges
or lists of two elements.

A single integer n in the specification Classes= n or Classes= [n] is interpreted as
“subdivide the range from min(data) to max(data) into n classes of equal size”. The left
border of the first class is set to - ∞.

The classes may be specified directly as in Classes = [[a1, b1], [a2, b2], …] or
Classes=[a_1..b_1, a_2..b_2, dots].

Note: With the default setting ClassesClosed = Right, the i-th class is the semi-open
interval , i.e., a datum x is tallied into the i-th class if ai < x ≤ bi is satisfied.

With ClassesClosed = Left, the i-th class is the semi-open interval , i.e., a
datum x is tallied into the i-th class if ai ≤ x < bi is satisfied.

The class boundaries must be numerical real values satisfying a1 ≤ b1 ≤ a2 ≤ b2 ≤ a3 ≤ ….
In most applications, b1 = a2, b2 = a3 etc. is appropriate.

Exact values such as π,  etc. are accepted and processed.

The classes need not cover the entire data range. Data are ignored if they do not fall into
one of the specified classes.
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If giving classes directly, the leftmost border may be - ∞ and the rightmost border may be
infinity.

Examples

Example 1

We split the following data into 10 classes of equal size (default). The first class covers
the values from - ∞ to 2:

data := [0, 1, 2, PI, 4, 5, 6, 7, 7.1, 20]:

T := stats::frequency(data)

We split the information on the classes into 3 separate tables:

TheClasses = map(T, op, 1)
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TheFrequencies = map(T, op, 2)

TheValues = map(T, op, 3)
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The classes are specified explicitly:

classes:= [[0, 5], [5, 10], [10, 20]]:

stats::frequency(data, classes)

Note that the value 0 is not tallied into any of the classes (the first class represents the
semi-open interval )! In order to include all values, we use  as class boundaries:

classes:= [[-infinity, 5], [5, 10], [10, infinity]]:

stats::frequency(data, classes)

delete data, T, classes:
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Example 2

We demonstrate the difference between the options ClassesClosed = Left and
ClassesClosed = Right. In the first case, the value 1 is tallied into the second class:

stats::frequency([0, 1, 2], Classes = [-infinity..1, 1..infinity],

                          ClassesClosed = Left)

With ClassesClosed = Right, the value 1 is tallied into the first class:

stats::frequency([0, 1, 2], Classes = [-infinity..1, 1..infinity],

                          ClassesClosed = Right)

The default setting is ClassesClosed = Right:

stats::frequency([0, 1, 2], Classes = [-infinity..1, 1..infinity])

Example 3

We create a sample of 1000 normally distributed data points:

X := stats::normalRandom(0, 10):

data := [X() $ i = 1..1000]:

These data are tallied into 5 different classes of equal width:

T := stats::frequency(data, 5):

We determine the number of data values in each class:
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for i from 1 to 5 do

    print(Class = T[i][1], NumberOfElements = T[i][2]);

end_for:

We determine the outliers of the data sample by collecting the values smaller than - 9
and the values larger than 10:

classes := [[-infinity, -9], [10, infinity]]:

T := stats::frequency(data, classes);

delete X, data, T, i, classes:

Parameters

data

The statistical data: a list, a set, a table, an array, a matrix, or an object of type
stats::sample containing numerical real data values

n

The number of classes (cells): a positive integer. If not specified, n = 10 is used.
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a1, b1, a2, …

The class boundaries: real numerical values satisfying

.

Also  are allowed as class boundaries.

Return Values

table is returned with integer indices from 1 through the number of classes. The i-th
entry of the table T = stats::frequency(data, ...) is the list T[i] = [[ai, bi], ni,
[v1, v2, …]], where [ai, bi] is the i-th class, ni is the number of data falling in this class,
and [v1, v2, …] is the sorted list of all data in this class (i.e., ai < vj ≤ bj for all j from 1
through ni).

See Also

MuPAD Functions
stats::mean | stats::stdev

MuPAD Graphical Primitives
plot::Histogram2d
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stats::gammaCDF
Cumulative distribution function of the gamma distribution

Syntax
stats::gammaCDF(a, b)

Description

stats::gammaCDF(a, b) returns a procedure representing the cumulative distribution
function

of the gamma distribution with shape parameter a > 0 and scale parameter b > 0.

The procedure f:=stats::gammaCDF(a, b) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0. If x ≥ 0 can be decided, then f(x) returns

the value .

If x is a floating-point number and both a and b can be converted to positive floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x ≥ 0, the corresponding values are returned.

The call f(- infinity ) returns 0.

The call f( infinity ) returns 1.
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f(x) returns the symbolic call stats::gammaCDF(a, b)(x) if neither x ≤ 0 nor x ≥ 0
can be decided.

Numerical values for a and b are only accepted if they are real and positive.

Note that, for large a, exact results may be costly to compute. If floating-point values
are desired, it is recommended to pass floating-point arguments x to f rather than
to compute exact results f(x) and convert them via float. Cf. “Example 4” on page
30-211.

Note that .

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The procedure generated by stats::gammaCDF reacts to
properties of identifiers set via assume.

Examples

Example 1

We evaluate the cumulative distribution function with a = 2 and b = 1 at various points:

f := stats::gammaCDF(2, 1):

f(-infinity), f(-3), f(0.5), f(2/3), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≥ 0 holds.
A symbolic function call is returned:
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f := stats::gammaCDF(a, b): f(x)

With suitable properties, it can be decided whether x ≥ 0 holds. An explicit expression is
returned:

assume(0 <= x): f(x)

unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::gammaCDF(a, b): f(x)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 2: b := 4: f(3), f(3.0)

delete f, a, b:

Example 4

We consider a gamma distribution with large shape parameter:

f := stats::gammaCDF(2000, 2):
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For floating-point approximations, one should not compute an exact result and convert
it via float. For large shape parameter, it is faster to pass a floating-point argument to
f. The following call takes some time, because an exact computation of the huge integer

 is involved:

float(f(4010))

The following call is much faster:

f(float(4010))

delete f:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
gamma | igamma | stats::erlangCDF | stats::erlangPDF |
stats::erlangQuantile | stats::erlangRandom | stats::gammaPDF |
stats::gammaQuantile | stats::gammaRandom
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stats::gammaPDF
Probability density function of the gamma distribution

Syntax
stats::gammaPDF(a, b)

Description

stats::gammaPDF(a, b) returns a procedure representing the probability density
function

of the gamma distribution with shape parameter a > 0 and scale parameter b > 0.

The procedure f:=stats::gammaPDF(a, b) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0. If x > 0 can be decided, then f(x) returns
the value .

If x is a floating-point number and both a and b can be converted to positive floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x ≥ 0, the corresponding values are returned.

f(- infinity ) and f( infinity ) return 0.
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f(x) returns the symbolic call stats::gammaPDF(a, b)(x) if neither x ≤ 0 nor x > 0
can be decided.

Numerical values for a and b are only accepted if they are real and positive.

Note that, for large a, exact results may be costly to compute. If floating-point values
are desired, it is recommended to pass floating-point arguments x to f rather than
to compute exact results f(x) and convert them via float. Cf. “Example 4” on page
30-215.

Note that .

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The procedure generated by stats::gammaPDF reacts to
properties of identifiers set via assume.

Examples

Example 1

We evaluate the probability density function with a = 2 and b = 1 at various points:

f := stats::gammaPDF(2, 1): 

f(-infinity), f(-PI), f(1/2), f(0.5), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≥ 0 holds.
A symbolic function call is returned:
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f := stats::gammaPDF(a, b): f(x)

With suitable properties, it can be decided whether x ≥ 0 holds. An explicit expression is
returned:

assume(0 < x): f(x)

unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::gammaPDF(a, b): f(x), f(3)

When numerical values are assigned to a and b, the function f starts to produce
numerical results:

a := 2: b := 4: f(3), f(3.0)

delete a, b, f:

Example 4

We consider a gamma distribution with large shape parameter:

f := stats::gammaPDF(2000, 2):
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For floating-point approximations, one should not compute an exact result and convert
it via float. For large shape parameter, it is faster to pass a floating-point argument to
f. The following call takes some time, because an exact computation of the huge integer

 is involved:

float(f(4050))

The following call is much faster:

f(float(4050))

delete f:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
gamma | igamma | stats::erlangCDF | stats::erlangPDF |
stats::erlangQuantile | stats::erlangRandom | stats::gammaCDF |
stats::gammaQuantile | stats::gammaRandom
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stats::gammaQuantile

Quantile function of the gamma distribution

Syntax

stats::gammaQuantile(a, b)

Description

stats::gammaQuantile(a, b) returns a procedure representing the quantile function
(inverse) of the cumulative distribution function stats::gammaCDF(a, b). For 0 ≤ x ≤
1, the solution of stats::gammaCDF(a, b)(y) = x is given by y = stats::gammaQuantile(a, b)
(x).

The procedure f:=stats::gammaQuantile(a, b) can be called in the form f(x) with
arithmetical expressions x. The return value of f(x) is either a floating-point number,
infinity, or a symbolic expression:

If x is a real number between 0 and 1 and a and b can be converted to positive floating-
point numbers, then f(x) returns a positive floating-point number approximating the
solution y of stats::gammaCDF(a, b)(y) = x.

The calls f(0) and f(0.0) produce 0.0 for all values of a and b.

The calls f(1) and f(1.0) produce infinity for all values of m.

In all other cases, f(x) returns the symbolic call stats::gammaQuantile(a, b)(x).

Numerical values of x are only accepted if 0 ≤ x ≤ 1.

Numerical values of a and b are only accepted if they are real and positive.

Note that .
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the quantile function with a = π and b = 11 at various points:

f := stats::gammaQuantile(PI, 11): 

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::gammaCDF(π, 11)(f(x)) = x:

stats::gammaCDF(PI, 11)(f(0.987654))

delete f:

Example 2

We use symbolic arguments:

f := stats::gammaQuantile(a, b): f(x), f(9/10)

When positive real values are assigned to a and b, the function f starts to produce
floating-point values:

a := 17: b := 6: f(0.999), f(1 - sqrt(2)/10^5)
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Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)

f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, a, b:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::erlangCDF | stats::erlangPDF | stats::erlangQuantile
| stats::erlangRandom | stats::gammaCDF | stats::gammaPDF |
stats::gammaRandom
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stats::gammaRandom
Generate a random number generator for gamma deviates

Syntax
stats::gammaRandom(a, b, <Seed = n>)

Description
stats::gammaRandom(a, b) returns a procedure that produces gamma deviates
(random numbers) with shape parameter a > 0 and scale parameter b > 0.

The procedure f:=stats::gammaRandom(a, b) can be called in the form f(). The
return value of f() is either a floating-point number or a symbolic expression:

If a and b can be converted to positive floating-point numbers, then f() returns a
nonnegative floating-point number.

In all other cases, stats::gammaRandom(a, b)() is returned symbolically.

Numerical values of a and b are only accepted if they are real and positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the gamma distribution with parameters a and b. For any 0 ≤ x, the
probability that X ≤ x is given by

.

Without the option Seed = n, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::gammaRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::gammaRandom(a, b): f() $k = 1..K;

rather than by

stats::gammaRandom(a, b)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::gammaRandom(a, b, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Note that .

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate gamma deviates with parameters a = 2 and :

f := stats::gammaRandom(2, 4/3): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:
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f := stats::gammaRandom(a, b): f()

When a and b evaluate to positive real numbers, the result is evaluated to a real floating
point number:

a := PI: b := 8: f() $ k = 1..4

delete f, a, b:

Example 3

We use the option Seed = n to reproduce a sequence of random numbers:

f := stats::gammaRandom(PI, 1/3, Seed = 10^3): f() $ k = 1..4

g := stats::gammaRandom(PI, 1/3, Seed = 10^3): g() $ k = 1..4

f() = g(), f() = g()

delete f:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value
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b

The scale parameter: an arithmetical expression representing a positive real value

Options

Seed

Option, specified as Seed = n

Initializes the random generator with the integer seed n. n can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed n which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters a and b must be convertible to positive floating-
point numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of gamma deviates uses a rejection
method applied to uniform random numbers. For more information see: D. Knuth,
Seminumerical Algorithms (1998), Vol. 2, pp. 133.

See Also

MuPAD Functions
stats::erlangCDF | stats::erlangPDF | stats::erlangQuantile
| stats::erlangRandom | stats::gammaCDF | stats::gammaPDF |
stats::gammaQuantile
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stats::geometricMean
Geometric mean of a data sample

Syntax
stats::geometricMean(x1, x2, …)

stats::geometricMean([x1, x2, …])

stats::geometricMean(s, <c>)

Description

stats::geometricMean(x1, x2, …, xn) returns the geometric mean 
of the data xi.

The column index c is optional, if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-225.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We calculate the geometric mean of three values:

stats::geometricMean(a, b, c)

Alternatively, the data may be passed as a list:
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stats::geometricMean([2, 3, 5])

Example 2

We create a sample:

stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1  b1  c1

a2  b2  c2

The geometric mean of the second column is:

stats::geometricMean(%, 2)

Example 3

We create a sample consisting of one string column and one non-string column:

stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996"  1242

"1997"  1353

"1998"  1142

We compute the geometric mean of the second column. In this case this column does not
have to be specified, since it is the only non-string column in the sample:

float(stats::geometricMean(%))
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Parameters

x1, x2, …

The statistical data: arithmetical expressions.

s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

Return Values

arithmetical expression.

See Also

MuPAD Functions
stats::harmonicMean | stats::mean | stats::median | stats::modal |
stats::quadraticMean | stats::stdev | stats::variance
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stats::geometricCDF
The (discrete) cumulative distribution function of the geometric distribution

Syntax
stats::geometricCDF(p)

Description

stats::geometricCDF(p) returns a procedure representing the (discrete) cumulative
distribution function

of the geometric distribution with 'probability parameter' p.

The procedure f:=stats::geometricCDF(p) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a number or a symbolic
expression:

If x < 1 can be decided, then f(x) returns 0. If x ≥ 1 can be decided, then f(x) returns
the value .

If x is a floating-point number and p can be converted to a floating-point number, then
these values are returned as floating-point numbers. Otherwise, symbolic expressions are
returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x < 1 or x ≥ 1, the corresponding values are returned.

f(x) returns the symbolic call stats::geometricCDF(p)(x) if neither x < 1 nor x ≥ 1
can be decided.

If p = 0 or p = 0.0, then f(x) returns 0 or 0.0, respectively, for any value of x.
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Numerical values for p are only accepted if they satisfy 0 ≤ p ≤ 1.

If x is a real floating-point number, f(x) produces a floating number provided p is a
numerical value. If x is an exact numerical value, no internal floating-point conversion of
the parameter p is attempted.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the distribution function with  at various points:

f := stats::geometricCDF(1/3):

f(-PI) = f(float(-PI)), f(1) = f(1.0), f(103/10) = f(10.3)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≥ 1 holds.
A symbolic function call is returned:

f := stats::geometricCDF(p): f(x)

With suitable properties, it can be decided whether x ≥ 1 holds. An explicit expression is
returned:
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assume(1 <= x): f(x)

unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::geometricCDF(p): f(x)

If x is a numerical value, symbolic expressions in p are returned:

f(-1), f(1), f(5/2), f(PI)

When numerical values are assigned to p, the function f starts to produce numbers if the
argument is numerical:

p := 1/3: f(-1), f(1), f(5/2), f(PI)

delete f, p:

Parameters

p

The 'probability parameter': an arithmetical expression representing a real number 0 ≤ p
≤ 1.
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Return Values

procedure.

Algorithms

The geometric distribution describes the number of Bernoulli trials with success
probability p up to and including the first success.

See Also

MuPAD Functions
stats::geometricPF | stats::geometricQuantile | stats::geometricRandom
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stats::geometricPF
Probability function of the geometric distribution

Syntax
stats::geometricPF(p)

Description

stats::geometricPF(p) returns a procedure representing the probability function

for x = 1, 2, 3, … of the geometric distribution with 'probability parameter' p.

The procedure f:=stats::geometricPF(p) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a number or a symbolic
expression:

If x is a non-integer numerical value, f(x) returns 0 or 0.0, respectively.

If x is a positive integer or the floating point equivalent of such an integer, then an
explicit value is returned.

In all other cases, f(x) returns the symbolic call stats::geometricPF(n,p)(x).

Numerical values for p are only accepted if they satisfy 0 ≤ p ≤ 1.

If x is a floating-point number, the result is a floating-point number provided p can be
converted to a floating-point number between 0.0 and 1.0. If x is an exact numerical
value, no internal floating point conversion of the parameter p is attempted.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We calculate the geometric probability with  at various points:

f := stats::geometricPF(1/8):

f(-1), f(0.5),  f(1), f(3/2), f(3) = f(float(3))

delete f:

Example 2

We use symbolic arguments:

f := stats::geometricPF(p): f(x)

If x is a numerical value, symbolic expressions in p are returned:

f(17/2), f(8), f(9.0), f(9.2)

When numerical values are assigned to p, the function f starts to produce numbers if the
argument is numerical:

p := 1/3: f(17/2), f(8), f(9.0), f(9.2)

delete f, p:
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Parameters

p

The `probability parameter': an arithmetical expression representing a real number 0 ≤ p
≤ 1.

Return Values

procedure.

See Also

MuPAD Functions
stats::geometricCDF | stats::geometricQuantile |
stats::geometricRandom
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stats::geometricQuantile
Quantile function of the geometric distribution

Syntax
stats::geometricQuantile(p)

Description

stats::geometricQuantile(p) returns a procedure representing the
quantile function (discrete inverse) of the cumulative distribution function
stats::geometricCDF(p). For 0 ≤ x ≤ 1, k = stats::geometricQuantile(p)(x) is the
smallest positive integer satisfying

.

The procedure f:=stats::geometricQuantile(p) can be called in the form f(x)
with an arithmetical expression x. The return value of the call f(x) is either a positive
integer, infinity, or a symbolic expression:

If p is a real number satisfying 0 < p ≤ 1 and x is a real number satisfying 0 ≤ x < 1, then
f(x) returns a positive integer.

If p = 0, then f(x) returns infinity for any x.

If p = 1, then f(x) returns 1 for any x.

If p ≠ 0, then f(0) and f(0.0) return 1.

If p ≠ 1, then f(1) and f(1.0) return infinity.

In all other cases, f(x) returns the symbolic call stats::geometricQuantile(p)(x).

Numerical values for p are only accepted if they satisfy 0 ≤ p ≤ 1.

If floating-point arguments are passed to the quantile function f, the result is computed
with floating-point arithmetic. This is faster than using exact arithmetic, but the result
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is subject to internal round-off errors. In particular, round-off may be significant for
arguments x close to 1. Cf. “Example 3” on page 30-236.

Finite quantile values k = stats::geometricQuantile(p)(x) satisfy

.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the quantile function with  at various points:

f := stats::geometricQuantile(1/PI): 

f(0), f(1/20), f(PI/6), f(0.7), f(1-1/10^10), f(1)

The value f(x) satisfies

:

x := 0.98: k := f(x)

float(stats::geometricCDF(1/PI)(k - 1)), x, 

float(stats::geometricCDF(1/PI)(k))
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delete f, x, k:

Example 2

We use symbolic arguments:

f := stats::geometricQuantile(p): f(x), f(9/10)

When p evaluates to a suitable real number, the function f starts to produce quantile
values:

p := 1/sqrt(2): 

f(1/2),  f(999/1000), f(1 - 1/10^10), f(1 - 1/10^80)

delete f, p:

Example 3

If floating-point arguments are passed to the quantile function, the result is computed
with floating-point arithmetic. This is faster than using exact arithmetic, but the result is
subject to internal round-off errors:

f := stats::geometricQuantile(1/123):

f(1 - 1/10^19) <> f(float(1 - 1/10^19))

delete f:

Parameters

p

The “probability parameter”: an arithmetical expression representing a real number 0 ≤ p
≤ 1.
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Return Values

procedure.

See Also

MuPAD Functions
stats::geometricCDF | stats::geometricPF | stats::geometricRandom
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stats::geometricRandom
Generate a random number generator for geometric deviates

Syntax
stats::geometricRandom(p, <Seed = s>)

Description

stats::geometricRandom(p) returns a procedure that produces geometric deviates
(random numbers) with `probability parameter' p.

The procedure f:=stats::geometricRandom(p) can be called in the form f(). The
return value of f() is a positive integer if p is a real number satisfying 0 ≤ p ≤ 1.

Otherwise, stats::geometricRandom(p)() is returned symbolically.

Numerical values for p are only accepted if they satisfy 0 ≤ p ≤ 1.

The values X = f() are distributed randomly according to the discrete distribution
function of the geometric distribution with parameter p, i.e., for 1 ≤ x, the probability of X
≤ x is given by .

Without the option Seed = s, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: With this option, the parameter p must evaluate to a numerical value at the time,
when the generator is created.

Note: In contrast to the function random, the generators produced by
stats::geometricRandom do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random numbers via
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f := stats::geometricRandom(p): f() $k = 1..K;

rather than by

stats::geometricRandom(p)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::geometricRandom(p, Seed = s)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate geometric deviates with :

f := stats::geometricRandom(1/3): f() $ k = 1..10

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::geometricRandom(p): f()
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When p evaluates to a real number between 0 and 1, the generator starts to produce
random numbers:

p := 1/sqrt(70): f(), f(), f()

delete f, p:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::geometricRandom(1/10, Seed = 1): f() $ k = 1..10

g := stats::geometricRandom(1/10, Seed = 1): g() $ k = 1..10

f() = g(), f() = g()

delete f, g:

Parameters

p

The “probability parameter”: an arithmetical expression representing a real number 0 ≤ p
≤ 1.
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Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameter p must be convertible to a floating-point number
between 0.0 and 1.0 at the time when the random generator is generated.

Return Values

procedure.

See Also

MuPAD Functions
stats::geometricCDF | stats::geometricPF | stats::geometricQuantile
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stats::harmonicMean
Harmonic mean of a data sample

Syntax
stats::harmonicMean(x1, x2, …)

stats::harmonicMean([x1, x2, …])

stats::harmonicMean(s, <c>)

Description

stats::harmonicMean(x1, x2, …, xn) returns the harmonic mean  of

the data xi.

The column index c is optional, if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-243.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We calculate the harmonic mean of three values:

stats::harmonicMean(a, b, c)
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Alternatively, data may be passed as a list:

stats::harmonicMean([2, 3, 5])

Example 2

We create a sample:

stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1  b1  c1

a2  b2  c2

The harmonic mean of the second column is:

stats::harmonicMean(%, 2)

Example 3

We create a sample consisting of one string column and one non-string column:

stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996"  1242

"1997"  1353

"1998"  1142

We compute the harmonic mean of the second column. In this case this column does not
have to be specified, since it is the only non-string column:

float(stats::harmonicMean(%))
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Parameters

x1, x2, …

The statistical data: arithmetical expressions.

s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

Return Values

arithmetical expression. FAIL is returned, if one of the data values is zero (the harmonic
mean does not exist).

See Also

MuPAD Functions
stats::geometricMean | stats::mean | stats::median | stats::modal |
stats::quadraticMean | stats::stdev | stats::variance
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stats::hodrickPrescottFilter

The Hodrick-Prescott filter

Syntax

stats::hodrickPrescottFilter([x1, x2, …], p)

stats::hodrickPrescottFilter(s, <c>, p)

Description

stats::hodrickPrescottFilter([x1, x2, …], p) returns a list of data from which
cyclic variations of the time series given by the input data x1, x2 etc. are eliminated using
the Hodrick-Prescott filter process.

The Hodrick-Prescott filter scheme tries to split a time series consisting of the data x1, x2
etc. into a “trend” that is approximately linear in time plus a “cyclic” contribution. The
data returned by stats::hodrickPrescottFilter describe the trend. The cyclic part
c may be computed by

x := [x1, x2, ...]:

y := stats::HodrickPrescottFilter(x, p):

c := zip(x, y, _subtract):

Thus, xi = yi + ci.

Large values of the penalty parameter p lead to smooth straight trend curves. Cf.
“Example 5” on page 30-250.

If the data are provided by a stats::sample object containing only one non-string
column, the column index c is optional. Cf. “Example 3” on page 30-247.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.
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Examples

Example 1

We apply the Hodrick-Prescott filter to some data. The result shows an obvious trend
towards increasing data values:

stats::hodrickPrescottFilter([1, 2, 3, 2, 3, 4, 3, 4, 5], 10)

Example 2

We create a sample:

s := stats::sample([[i + frandom() - 0.5, -i + frandom() - 0.5] 

                    $ i = 1..10])

0.7703581656  -0.6689628213

 1.653156516   -1.505187219

 2.766272902   -3.319835772

 3.952083055   -3.821218044

 4.854984926   -4.818141187

 6.221918655   -6.026170226

 7.288981492   -7.288474164

 8.355687175   -8.455102606

 9.379160127   -8.580615152

 10.23505742   -9.712454973

The Hodrick-Prescott filter process applied to the data in the first column yields:

p := 10:

stats::hodrickPrescottFilter(s, 1, p)
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stats::hodrickPrescottFilter(s, 2, p)

delete s, p:

Example 3

We create a sample consisting of one string column and one non-string column:

s := stats::sample([["1996", 1242], 

                    ["1997", 1353], 

                    ["1998", 1142],

                    ["1999", 1255],

                    ["2000", 1417],

                    ["2001", 1312],

                    ["2002", 1440],

                    ["2003", 1422],

                    ["2004", 1470]

                   ])

"1996"  1242

"1997"  1353

"1998"  1142

"1999"  1255

"2000"  1417

"2001"  1312

"2002"  1440

"2003"  1422

"2004"  1470

We apply the Hodrick-Prescott filter to the second column. In this case, this column
needs not be specified, since it is the only non-string column:

y := stats::hodrickPrescottFilter(s, 10)
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We convert this list to a sample object:

y := stats::sample(y)

1239.848378

1255.015604

1270.397993

1296.009146

1329.022865

1362.512038

1398.347268

1433.347951

1468.498758

We create a new sample consisting of the filtered data:

stats::concatCol(stats::col(s, 1), y)

"1996"  1239.848378

"1997"  1255.015604

"1998"  1270.397993

"1999"  1296.009146

"2000"  1329.022865

"2001"  1362.512038

"2002"  1398.347268

"2003"  1433.347951

"2004"  1468.498758

delete s, y:

Example 4

We model monthly data with a decaying trend of , where i is the index of the

month. These trend data are obscured by cyclic contributions and random noise:

monthlyData:= i -> 

    (   1/(1 + 0.01*i)             // the trend

      + 0.7*cos(i * 1.12*2*float(PI))  // cycle

      + 0.3*sin(i * 2.04*4*float(PI))  // cycle

      + 0.2*cos(i * 1.01*6*float(PI))  // cycle

      + 2.3*frandom()           // random noise
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    ):

We provide monthly data for 10 years, i.e., 120 months. The cyclic contributions and the
noise are eliminated from the time series by the Hodrick-Prescott filter process:

n := 120:

x := [monthlyData(i) $ i = 1..n]:

trend := stats::hodrickPrescottFilter(x, 10^5):

cycle := zip(x, trend, _subtract):

We visualize the splitting of the time series (black) into the approximately linear trend
contribution (red) plus the cyclic part (blue):

plot(

  plot::Listplot([[i, x[i]] $ i = 1..n], Color = RGB::Black),

  plot::Listplot([[i, trend[i]] $ i = 1..n], Color = RGB::Red),

  plot::Listplot([[i, cycle[i]] $ i = 1..n], Color = RGB::Blue)

)

We use a scatterplot to visualize a linear regression of the unfiltered data. The regression
line is in good accordance with the trend line above:
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plot(plot::Scatterplot([[i, x[i]] $ i = 1..n]))

delete monthlyData, n, x, trend, cycle:

Example 5

We demonstrate the effect of the penalty parameter p by an animated plot:

delete p:

n := 100:

data := [1/(1 + 0.01*i) + frandom() $ i = 1..n]:

for i from 0 to 30 step 1/5 do

  trend := stats::hodrickPrescottFilter(data, 10^(0.2*i));

  L[i] := plot::Listplot([[i, trend[i]] $ i = 1..n],

               Color = RGB::Red, VisibleFromTo = i .. i + 0.2);

  T[i] := plot::Text2d(expr2text(p = 10^(0.2*i)), [70, 1.7], 

                      VisibleFromTo = i .. i + 0.2);

end_for:

plot(plot::Listplot([[i, data[i]] $ i= 1..n], Color=RGB::Black), 

     L[i] $ i = 0..30 step 1/5, T[i] $ i = 0..30 step 1/5)
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Large penalty parameters p result in trend curves that are close to a straight line. This is
not always the desired information. The following animation features a time series with
a parabolic trend curve obscured by random noise. Too large values of p produce a trend
curve that just displays the mean of the data:

data := [8*frandom() + 5 - (i - 50)^2/100 $ i = 1..n]:

for i from 0 to 50 do

  trend := stats::hodrickPrescottFilter(data, 10^(0.2*i));

  L[i] := plot::Listplot([[i, trend[i]] $ i = 1..n],

               Color = RGB::Red, 

                      VisibleFromTo = i/5 .. (i + 1)/5);

  T[i] := plot::Text2d(expr2text(p = 10^(0.2*i)), [50, -5], 

                      VisibleFromTo = i/5 .. (i + 1)/5);

end_for:

plot(plot::Listplot([[i, data[i]] $ i= 1..n], Color=RGB::Black), 

     L[i] $ i = 0..50, T[i] $ i = 0..50)
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delete n, data, i, trend, L, T:

Parameters

x1, x2, …

The statistical data (time series): arithmetical expressions.

s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

p

The penalty parameter of the Hodrick-Prescott scheme: a real positive numerical value.
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If the data x1, x2 etc. represent monthly measurements, the literature recommends values
of p between 100 0 and 140 0.

If the data represent quaterly measurements, values of p around 1600 are recommended.

If the data represent yearly measurements, values of p between 6 and 14 are
recommended.

Return Values

List of floating-point data.

References

Robert Hodrick and Edwad C. Prescott, “Postwar U.S. Business Cycles: An Empirical
Investigation.” Journal of Money, Credit and Banking, 1997.

Maravall, Agustin and Ana del Rio, “Time Aggregation and the Hodrick-Prescott Filter”,
Banco de Espana, 2001.

See Also

MuPAD Functions
stats::linReg | stats::reg

MuPAD Graphical Primitives
plot::Listplot | plot::Scatterplot
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stats::hypergeometricCDF
The (discrete) cumulative probability function of the hypergeometric distribution

Syntax
stats::hypergeometricCDF(N, X, n)

Description
stats::hypergeometricCDF(N, X, n) returns a procedure representing the
probability function

of the hypergeometric distribution with “population size” N, “success population size” X
and “sample size” n.

The procedure f:=stats::hypergeometricCDF(N, X, n) can be called in the form
f(x) with arithmetical expressions x. The return value of f(x) is either a floating-point
number, an exact numerical value, or a symbolic expression:

If x is an integer, a rational or a floating point number, while N is a positive integer and
both X and n are nonnegative integers, then an explicit numerical value is returned.

The function f reacts to properties of identifiers set via assume.

If any of the parameters is symbolic with properties as follows, then 0, 1 or a symbolic
result is returned:

If x < max(0, n + X - N), then f(x) = 0.

If x ≥ min(n, X), then f(x) = 1.
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If X = N, then f(x) = 0 for x < n and f(x) = 1 for x ≥ n.

If n = N, then f(x) = 0 for x < X and f(x) = 1 for x ≥ X.

If X = N - 1, then f(x) = 0 for x < n - 1,  for n - 1 ≤ x < n and f(x) = 1 for x ≥ n.

If n = N - 1, then f(x) = 0 for x < X - 1,  for X - 1 ≤ x < X and f(x) = 1 for x ≥ X.

If X = 1, then  for 0 ≤ x < 1 and f(x) = 1 for x ≥ 1.

If n = 1, then  for 0 ≤ x < 1 and f(x) = 1 for x ≥ 1.

If X = 0 or n = 0, then f(x) = 1 for x ≥ 0.

If x and all parameters but N are numerical and the assumption on N is assume(N >
X), then symbolic values are returned.

f(x) returns the symbolic call stats::hypergeometricCDF(N, X, n)(x) in all
other cases.

Numerical values for N are only accepted if they are positive integers.

Numerical values for X are only accepted if they are nonnegative integers.

Numerical values for n are only accepted if they are nonnegative integers.

Note: If x is a floating-point number, the result is a floating number provided N, X and n
are numerical values. If x is an exact value, the result is a rational number.

Note that for large numbers, floating-point results are computed much faster than exact
results. If floating-point approximations are desired, pass a floating-point number x to
stats::hypergeometricCDF.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We compute the distribution function with N = 20, X = 4 and n = 3 at various points:

f := stats::hypergeometricCDF(20, 4, 3): 

f(-1), f(0), f(1/2), f(1), f(2), f(PI), f(5)

f(-infinity), f(infinity)

f(-0.2), f(0.0), f(0.7), f(1.0), f(float(PI)), f(4.0)

delete f:

Example 2

We use symbolic arguments:

f := stats::hypergeometricCDF(N, X, n): f(x), f(8), f(8.0)

When real numbers are assigned to N, X and n, the function f starts to produce explicit
results if the argument is numerical:

N := 15: X := 6: n := 5:

f(0), f(1), f(2.0), f(3.5), f(4)
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delete f, N, X, n:

Example 3

If one or more parameters are symbolic, usually a symbolic call is returned. Some
combinations of symbolic and numeric values for N, X, n and x, however, may yield
symbolic or numeric results:

f := stats::hypergeometricCDF(N, X, n):

X := 1:

f(-1), f(0), f(1/2), f(0.5), f(3/2), f(2.0)

X := N - 1:

f(1), f(n-1), f(n)

delete X:

Example 4

If x and all parameters but N are numerical and N is assumed to be greater than X, a
symbolic expression is returned:

X := 6:

assume(N > X):

f := stats::hypergeometricCDF(N, X, 5):

f(1), f(2), f(3)

delete f, N, X:
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Parameters

N

The “population size”: an arithmetical expression representing a positive integer

X

The “success population size”: an arithmetical expression representing a nonnegative
integer

n

The “sample size”: an arithmetical expression representing a nonnegative integer

Return Values

procedure.

See Also

MuPAD Functions
stats::hypergeometricPF | stats::hypergeometricQuantile |
stats::hypergeometricRandom
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stats::hypergeometricPF

Probability function of the hypergeometric distribution

Syntax

stats::hypergeometricPF(N, X, n)

Description

stats::hypergeometricPF(N, X, n) returns a procedure representing the
probability function

for  of the hypergeometric distribution with
“population size” N, “success population size” X and “sample size” n.

The procedure f:=stats::hypergeometricPF(N, X, n) can be called in the form
f(x) with arithmetical expressions x. The return value of f(x) is either a floating-point
number, an exact numerical value, or a symbolic expression:

If x is a noninteger numerical value, f(x) returns 0 or 0.0, respectively.

If x is an integer or the floating-point equivalent of an integer, while N is a positive
integer and both X and n are nonnegative integers, then an explicit numerical value is
returned.

The function f reacts to properties of identifiers set via assume.

If any of the parameters is symbolic with properties as follows, then 0, 1 or a symbolic
result is returned:
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If X = N, then f(x) = 1 for x = n and f(x) = 0 for x ≠ n. If n = N, then f(x) = 1 for x = X and
f(x) = 0 for x ≠ X.

If X = N - 1, then  for x = n,  for x = n - 1 and f(x) = 0 for x ≠ n, n - 1.

If n = N - 1, then  for x = X,  for x = X - 1 and f(x) = 0 for x ≠ X, X - 1.

If X = 1, then  for x = 0,  for x = 1 and f(x) = 0 for x ≠ 0, 1.

If n = 1, then  for x = 0,  for x = 1 and f(x) = 0 for x ≠ 0, 1.

If X = 0 or n = 0, then f(x) = 1 for x = 0 and f(x) = 0 for x ≠ 0.

If x and all parameters but N are numerical and the assumption on N is assume(N > X),
then symbolic values are returned.

f(x) returns the symbolic call stats::hypergeometricPF(N, X, n)(x) in all other
cases.

Numerical values for N are only accepted if they are positive integers.

Numerical values for X are only accepted if they are nonnegative integers.

Numerical values for n are only accepted if they are nonnegative integers.

Note: If x is a floating-point number, the result is a floating number provided N, X and n
are numerical values. If x is an exact value, the result is a rational number.

Note that for large numbers, floating-point results are computed much faster than exact
results. If floating-point approximations are desired, pass a floating-point number x to
stats::hypergeometricPF.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We compute the probability function with N = 20, X = 4 and n = 3 at various points:

f := stats::hypergeometricPF(20, 4, 3): 

f(-infinity), f(0), f(1/2), f(1), f(2), f(4), f(infinity)

f(-0.2), f(0.0), f(0.7), f(1.0), f(2.0), f(2.7), f(3.0), f(4.0)

delete f:

Example 2

We use symbolic arguments:

f := stats::hypergeometricPF(N, X, n): f(x), f(8), f(8.0)

When real numbers are assigned to N, X and n, the function f starts to produce explicit
results if the argument is numerical:

N := 15: X := 6: n := 5:

f(0), f(1), f(2.0), f(3.5), f(4)
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delete f, N, X, n, x:

Example 3

If one or more parameters are symbolic, usually a symbolic call is returned. Some
combinations of symbolic and numeric values for N, X, n and x, however, may yield
symbolic or numeric results:

f := stats::hypergeometricPF(N, X, n):

X := 1:

f(-1), f(0), f(1), f(3/2), f(2), f(3)

X := N:

f(-1), f(n), f(n + 1)

delete f, X:

Example 4

If x and all parameters but N are numerical and N is assumed to be greater than X, a
symbolic expression is returned:

X := 6:

assume(N > X):

f := stats::hypergeometricPF(N, X, 5):

f(2), f(4), f(5.0)

delete f, N, X:
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Parameters

N

The “population size”: an arithmetical expression representing a positive integer

X

The “success population size”: an arithmetical expression representing a nonnegative
integer

n

The “sample size”: an arithmetical expression representing a nonnegative integer

Return Values

procedure.

See Also

MuPAD Functions
stats::hypergeometricCDF | stats::hypergeometricQuantile |
stats::hypergeometricRandom
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stats::hypergeometricQuantile
Quantile function of the hypergeometric distribution

Syntax
stats::hypergeometricQuantile(N, X, n)

Description

stats::hypergeometricQuantile(N, X, n) returns a procedure
representing the quantile function (discrete inverse) of the cumulative
distribution function stats::hypergeometricCDF(N, X, n). For 0 ≤ x ≤ 1, k =
stats::hypergeometricQuantile(N, X, n)(x) is the smallest nonnegative integer satisfying

.

The procedure f:=stats::hypergeometricQuantile(N, X, n) can be called in the
form f(x) with arithmetical expressions x. The return value of f(x) is either a natural
number between 0 and min(X, n), or a symbolic expression:

If x is a real number satisfying 0 ≤ x ≤ 1, while N is a positive integer and both X and n
are nonnegative integers, then an explicit numerical value is returned.

The function f reacts to properties of identifiers set via assume.

If any of the parameters is symbolic, then in some cases a symbolic result will be
returned:

0 will be returned if either any of x, n or X is zero or if n = 1 and  or if X = 1 and

.

1 will be returned if n = 1 and  or if X = 1 and .
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n will be returned if X = N - 1 and  or if X = N and x > 0.

X will be returned if n = N - 1 and  or if n = N and x > 0.

n - 1 will be returned if X = N - 1 and  provided that n is symbolic, whereas X - 1

will be returned if n = N - 1 and  provided that X is symbolic.

Finally min(X, n) will be returned if x = 1.

The symbolic call stats::hypergeometricQuantile(N, X, n)(x) is returned by
f(x) in all other cases.

Numerical values for N are only accepted if they are positive integers.

Numerical values for X are only accepted if they are nonnegative integers.

Numerical values for n are only accepted if they are nonnegative integers.

If x is a floating-point number, the result is a floating number provided N, X and n are
numerical values. If x is an exact value, the result is a rational number.

Note: Note that if floating-point arguments are passed to the quantile function f,
the result is computed with floating-point arithmetic. This is faster than using exact
arithmetic, but the result is subject to internal round-off errors. In particular, round-off
may be significant for arguments x close to 1. Cf. “Example 4” on page 30-267.

The quantile value k = stats::hypergeometricQuantile(N, X, n)(x) satisfies

,

where cdf = stats::hypergeometricCDF(N, X, n).

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the quantile function with N = 50, X = 30 and n = 10 at some points:

f := stats::hypergeometricQuantile(50, 30, 10): 

f(0), f((2/3)^30), f(PI/10), f(0.5), f(1 - 1/10^10)

With cdf = stats::hypergeometricCDF(N, X, n), the quantile value f(x) satisfies the
inequalities cdf(f(x) - 1) < x ≤ cdf(f(x)):

x := 0.7: f(x)

stats::hypergeometricCDF(50, 30, 10)(float(f(x) - 1)), x,

stats::hypergeometricCDF(50, 30, 10)(float(f(x)))

delete f, x:

Example 2

We use symbolic arguments:

f := stats::hypergeometricQuantile(N, X, n): f(x), f(9/10)

When N, X and n evaluate to suitable numbers, the function f starts to produce quantile
values:

N := 500: X := 80: n := 18:

f(1/2),  f(999/1000), f(1 - 1/10^10), f(1 - 1/10^80)
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delete f, N, X, n:

Example 3

If one or more parameters are symbolic, usually a symbolic call is returned. Some
combinations of symbolic and numeric values for N, X, n and x, however, may yield
symbolic or numeric results:

f := stats::hypergeometricQuantile(N, X, n): 

f(0), f(1)

X := N - 1: 

f(n/N), f(7/10)

assume(x > n/N):

f(0.5), f(x)

delete f, X, x:

Example 4

If floating-point arguments are passed to the quantile function, the result is computed
with floating-point arithmetic. This is faster than using exact arithmetic, but the result is
subject to internal round-off errors:

f := stats::hypergeometricQuantile(10000, 2000, 30): 

f(1 - 1/10^18) <> f(float(1 - 1/10^18))
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delete f:

Parameters

N

The “population size”: an arithmetical expression representing a positive integer

X

The “success population size”: an arithmetical expression representing a nonnegative
integer

n

The “sample size”: an arithmetical expression representing a nonnegative integer

Return Values

procedure.

See Also

MuPAD Functions
stats::hypergeometricCDF | stats::hypergeometricPF |
stats::hypergeometricRandom
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stats::hypergeometricRandom
Generate a random number generator for hypergeometric deviates

Syntax
stats::hypergeometricRandom(N, X, n, <Seed = s>)

Description

stats::hypergeometricRandom(N, X, n) returns a procedure that produces
hypergeometric-deviates (random numbers) with population size N, success population
size X and sample size n.

The procedure f:=stats::hypergeometricRandom(N, X, n) can be called in the
form f().

The return value of f(x) is either an integer between max(0, X + n - N) and min(X, n) or
a symbolic expression:

If N is a positive integer and both X and n are nonnegative integers, then an explicit
numerical value is returned.

If any of the parameters is symbolic, then in some cases numerical or symbolic result will
be returned:

0 will be returned if either n or X is zero, n will be returned if N = X and X will be
returned if N = n.

The symbolic call stats::hypergeometricRandom(N, X, n)() is returned in all
other cases.

Numerical values for N are only accepted if they are positive integers.

Numerical values for X and n are only accepted if they are integers that satisfy 0 ≤ X, n ≤
N.

The values R = f() are distributed randomly according to the hypergeometric distribution
with poupulation size N, success population size X and sample size n.
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For any max(0, X + n - N) ≤ x ≤ min(X, n), the probability of R ≤ x is given by

.

Without the option Seed = s, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: With this option, the parameters N, X and n must evaluate to suitable numerical
values at the time, when the generator is created.

Note: In contrast to the function random, the generators produced by
stats::hypergeometricRandom do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::hypergeometricRandom(N, X, n): f() $k = 1..K;

rather than by

stats::hypergeometricRandom(N, X, n)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::hypergeometricRandom(N, X, n, Seed = s)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions
The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We generate hypergeometric deviates with parameters N = 100, X = 30, and n = 7:

f := stats::hypergeometricRandom(100, 30, 7): f() $ k = 1..10

delete f:

Example 2

With symbolic parameters, no random numbers can be produced:

f := stats::hypergeometricRandom(N, X, n): f()

When N, X and n evaluate to suitable numbers, the generator starts to produce random
numbers:

N := 200: X := 80: n := 20: f() $ k= 1..10

delete f, N, X, n:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::hypergeometricRandom(500, 100, 50, Seed = 1):

f() $ k = 1..10
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g := stats::hypergeometricRandom(500, 100, 50, Seed = 1):

g() $ k = 1..10

f() = g(), f() = g()

delete f, g:

Parameters

N

The “population size”: an arithmetical expression representing a positive integer

X

The “success population size”: an arithmetical expression representing a nonnegative
integer

n

The “sample size”: an arithmetical expression representing a nonnegative integer

Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
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integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters N, X and n must be numerical values at the
time when the random generator is generated.

Return Values

procedure.

See Also

MuPAD Functions
stats::hypergeometricCDF | stats::hypergeometricPF |
stats::hypergeometricQuantile
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stats::ksGOFT
The Kolmogorov-Smirnov goodness-of-fit test

Syntax
stats::ksGOFT(x1, x2, …, CDF = f)

stats::ksGOFT([x1, x2, …], CDF = f)

stats::ksGOFT(s, <c>, CDF = f)

Description

stats::ksGOFT([x1, x2, …], CDF = f) applies the Kolmogorov-Smirnov goodness-of-fit
test for the null hypothesis: “x1, x2, … is an f-distributed sample”.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

An error is raised if any of the data cannot be converted to a real floating-point number.

Let y1, …, yn be the input data x1, …, xn arranged in ascending order. stats::ksGOFT
returns the list

containing the following information:

1 K1 is the Kolmogorov-Smirnov statistic .

2 p1 is the observed significance level  of the

statistic K1.
3 K2 is the Kolmogorov-Smirnov statistic .
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4 p2 is the observed significance level  of the

statistic K2.

For the Kolmogorov-Smirnov statistic K corresponding to K1 or K2, respectively, the
observed significance levels p1, p2 are computed by an asymptotic approximation of the
exact probability

.

For large n, these probabilities are approximated by

.

Thus, the observed significance levels returned by stats::ksGOFT approximate the
exact probabilities for large n. Roughly speaking, for n = 10, the 3 leading digits of
p1, p2 correspond to the exact probabilities. For n = 100, the 4 leading digits of p1,
p2 correspond to the exact probabilities. For n = 1000, the 6 leading digits of p1, p2
correspond to the exact probabilities.

The observed significance level PValue1 = p1 returned by stats::ksGOFT has to be
interpreted in the following way:

Under the null hypothesis, the probability p1 = Pr(K > K1) should not be small.
Specifically, p1 = Pr(K > K1) ≥ α should hold for a given significance level . If this
condition is violated, the hypothesis may be rejected at level α.

Thus, if the observed significance level p1 = Pr(K > K1) satisfies p1 < α, the sample
leading to the value K1 of the statistic K represents an unlikely event and the null
hypotheses may be rejected at level α.

The corresponding interpretation holds for PValue2 = p2: if p2 = Pr(K > K2)
satisfies p2 < α, the null hypotheses may be rejected at level α.

Note that both observed significance levels p1, p2 must be sufficiently large to make the
data pass the test. The null hypothesis may be rejected at level α if any of the two values
is smaller than α.
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If p1 and p2 are both close to 1, this should raise suspicion about the randomness of the
data: they indicate a fit that is too good.

Distributions that are not provided by the stats-package can be implemented easily by
the user. A user defined procedure f can implement any cumulative distribution function;
stats::ksGOFT calls f(x) with real floating-point arguments from the data sample. The
function f must return a numerical real value between 0 and 1. Cf. “Example 3” on page
30-278.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We create a sample of 1000 normally distributed random numbers:

r := stats::normalRandom(0, 1, Seed = 123):

data := [r() $ i = 1 .. 1000]:

We test whether these data are indeed normally distributed with mean 0 und variance 1.
We pass the corresponding cumulative distribution function stats::normalCDF(0, 1)
to stats::ksGOFT:

stats::ksGOFT(data, CDF = stats::normalCDF(0, 1))

The result shows that the data can be accepted as a sample of normally distributed
numbers: both observed significance levels  and  are not small.

Next, we inject some further data into the sample:

data := data . [frandom() $ i = 1..100]:

stats::ksGOFT(data, CDF = stats::normalCDF(0, 1))
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Now, the data should not be accepted as a sample of normal deviates with mean 0 and
variance 1, because the second observed significance level PValue2 is very small.

delete r, data:

Example 2

We create a sample consisting of one string column and two non-string columns:

s := stats::sample(

  [["1996", 1242, PI - 1/2], ["1997", 1353, PI + 0.3],

   ["1998", 1142, PI + 0.5], ["1999", 1201, PI - 1],

   ["2001", 1201, PI]])

"1996"  1242  PI - 1/2

"1997"  1353  PI + 0.3

"1998"  1142  PI + 0.5

"1999"  1201    PI - 1

"2001"  1201        PI

We consider the data in the third column. The mean and the variance of these data are
computed:

[m, v] := [stats::mean(s, 3), stats::variance(s, 3)]

We check whether the data of the 3rd column are normally distributed with the mean
and variance computed above:

stats::ksGOFT(s, 3, CDF = stats::normalCDF(m, v))

Both observed significance levels  and  returned by the test are not small.
There is no reason to reject the null hypothesis that the data are normally distributed.
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delete s, m, v:

Example 3

We demonstrate how user-defined distribution functions can be used. The following
function represents the cumulative distribution function Pr(X ≤ x) = x2 of a variable X
supported on the interval [0, 1]. It will be called with floating-point arguments x and
must return numerical values between 0 and 1:

f := proc(x) 

     begin

       if x <= 0 then return(0)

       elif x < 1 then return(x^2)

       else return(1)

       end_if

     end_proc:

We test the hypothesis that the following data are f-distributed:

data := [sqrt(frandom()) $ k = 1..10^2]:

stats::ksGOFT(data, CDF = f)

At a given significance level of 0.1, say, the hypothesis should not be rejected: both
observed significance levels p1 =  and p2 =  exceed 0.1.

delete f, data:

Parameters

x1, x2, …

The statistical data: real numerical values

f

A procedure representing a cumulative distribution function. Typically, one of the
distribution functions of the stats-package such as stats::normalCDF(n, v) etc.
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s

A sample of domain type stats::sample

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc. There is no need to specify a column number c if the sample has only one
column.

Return Values

List with four equations [PValue1 = p1, StatValue1 = K1, PValue2 = p2,
StatValue2 = K2], with floating-point values p1, K1, p2, K2. See the “Details” section
below for the interpretation of these values.

References

D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, pp.
48. Addison-Wesley (1998).

See Also

MuPAD Functions
stats::csGOFT | stats::sample | stats::swGOFT | stats::tTest
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stats::kurtosis

Kurtosis (excess) of a data sample

Syntax

stats::kurtosis(x1, x2, …)

stats::kurtosis([x1, x2, …])

stats::kurtosis(s, <c>)

Description

stats::kurtosis(x1, x2, …, xn) returns the kurtosis (the coefficient of excess)

,

where  is the mean of the data xi.

The kurtosis measures whether a distribution is “flat” or “peaked”. For normally
distributed data, the kurtosis is zero. If the distribution function of the data has a flatter
top than the normal distribution, then the kurtosis is negative. The kurtosis is positive, if
the distribution function has a high peak compared to the normal distribution.

The column index c is optional, if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-281.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.
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Examples

Example 1

We calculate the kurtosis of some values:

stats::kurtosis(0, 7, 7, 6, 6, 6, 5, 5, 4, 1)

Alternatively, data may be passed as a list:

stats::kurtosis([2, 2, 4, 6, 8, 10, 10])

Example 2

We create a sample:

stats::sample([[a, 5, 8], [b, 3, 7], [c, d, 0]])

a  5  8

b  3  7

c  d  0

The kurtosis of the second column is:

stats::kurtosis(%, 2)

Example 3

We create a sample consisting of one string column and one non-string column:
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stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996"  1242

"1997"  1353

"1998"  1142

We compute the kurtosis of the second column. In this case this column does not have to
be specified, since it is the only non-string column:

stats::kurtosis(%)

Parameters

x1, x2, …

The statistical data: arithmetical expressions.

s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

Return Values

Arithmetical expression. FAIL is returned, if the kurtosis does not exist.

See Also

MuPAD Functions
stats::obliquity
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stats::linReg

Linear regression (least squares fit)

Syntax

stats::linReg([x1, x2, …], [y1, y2, …], <[w1, w2, …]>, <CovarianceMatrix>)

stats::linReg([[x1, y1, <w1>], [x2, y2, <w2>], …], <CovarianceMatrix>)

stats::linReg(s, <cx, cy, <cw>>, <CovarianceMatrix>)

stats::linReg(s, <[cx, cy, <cw>]>, <CovarianceMatrix>)

Description

stats::linReg([x1, x2, …], [y1, y2, …], [w1, w2, …]) computes the least
squares estimators a, b of a linear relation yi = a + b xi between the data pairs (xi, yi) by
minimizing

.

A linear relation yi = a + b xi + ei between the data pairs (xi, yi) is assumed.

The column indices cx, cy are optional if the data are given by a stats::sample object
containing only two non-string columns. Cf. “Example 2” on page 30-285.

Multivariate linear regression and non-linear regression is provided by stats::reg.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.
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Examples

Example 1

We calculate the least square estimators of four pairs of values given in two lists. Note
that there is a linear relation y = 1 + 2 x between the entries of the lists. The minimized
quadratic deviation is 0 indicating a perfect fit:

stats::linReg([0, 1, 2, 3], [1, 3, 5, 7])

Alternatively, data may be specified by a list of pairs:

stats::linReg([[1, 1.0], [2, 1.2], [3, 1.3], [4, 1.5]])

We assume that the variable y in the previous example is Poissonian, i.e. that the
measurements (yi) = (1.0, 1.2, 1.3, 1.5) have errors given by the standard deviation

. We provide corresponding weights  and estimate confidence

intervals for the least squares estimators by using the option CovarianceMatrix:

stats::linReg([[1, 1.0, 1/1.0], [2, 1.2, 1/1.2], 

               [3, 1.3, 1/1.3], [4, 1.5, 1/1.5]], CovarianceMatrix)

The square roots of the diagonal elements of the covariance matrix provide standard
deviations for the estimated parameters:

sqrt(%[3][1,1]), sqrt(%[3][2,2])

Thus, we obtain the estimates , .
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Example 2

We create a sample consisting of one string column and two non-string columns:

stats::sample([["1", 0, 0], ["2", 10, 15], ["3", 20, 30]])

"1"   0   0

"2"  10  15

"3"  20  30

The least square estimators are calculated using the data columns 2 and 3. In this
example there are only two non-string columns, so the column indices do not have to be
specified:

stats::linReg(%)

Example 3

We create a sample consisting of three data columns:

stats::sample([[1, 0, 0], [2, 10, 15], [3, 20, 30]])

1   0   0

2  10  15

3  20  30

We compute the least square estimators for the data pairs given by the first and the
second column:

stats::linReg(%, 1, 2)

Example 4

We create a sample of three columns containing symbolic data:
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stats::sample([[x, y, 0], [2, 4, 15], [3, 20, 30]])

x   y   0

2   4  15

3  20  30

We compute the symbolic least square estimators for the data pairs given by the first and
the second column. Here we specify these columns by a list of column indices:

map(stats::linReg(%, [1, 2], CovarianceMatrix), normal)

Example 5

We create data (xi, yi) with a randomized relation yi = a + b xi:

DIGITS := 5:

r := stats::normalRandom(0, 5):

X := [i $ i = 0..100]:

Y := [12 + 17*x + r() $ x in X]:
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By construction, the variances σ(yi)2 for the data yi in the list Y is 5. We use the weights
 for all data:

W := [1/5 $ i = 0..100]:

[ab, chisquared, C]:= stats::linReg(X, Y, W, CovarianceMatrix)

The standard deviations of the estimators a, b are the square roots of the diagonal
elements of C:

sqrt(float(C[1,1])), sqrt(float(C[2,2]))

Thus, the estimate for a is , the estimate for b is
.

delete r, X, Y, W, ab, chisquared, C:

Parameters

x1, x2, …

Statistical data: arithmetical expressions

y1, y2, …

Statistical data: arithmetical expressions

w1, w2, …

Weights: arithmetical expressions. If no weights are provided, w1 = w2 = … = 1 is used.

s

A sample of domain type stats::sample.
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cx, cy, cw

Integers representing column indices of the sample s. Column cx provides the data x1, x2,
…, column cy provides the data y1, y2, …. Column cw, if present, provides the weights w1,
w2, …. If no index for the weights is provided, w1 = w2 = … = 1 is used.

Options

CovarianceMatrix

Changes the return value from [[a, b], chisquared] to [[a, b], chisquared,
C], where C is the covariance matrix

Of the estimators a, b.

With this option, information on confidence intervals for the least squares estimators are
provided. In particular, the return value includes the covariance matrix

Of type Dom::Matrix(). Assuming that the data (yi) are randomly perturbed with
stochastic variations , the quadratic error to be minimized is

With

.
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The covariance matrix of the least squares estimators is given by

,

,

.

Return Values

Without the option CovarianceMatrix, a list [[a, b], chisquared] is returned.
The arithmetical expressions a and b are estimators of the the offset and the slope of the
linear relation. The arithmetical expression chisquared is the quadratic deviation

,

where a, b are the optimized estimators.

With the option CovarianceMatrix, a list [[a, b], chisquared, C] is returned.
The matrix C is the covariance matrix of the optimized estimators a and b.

FAIL is returned if the estimators a and b do not exist.

References

P.R. Bevington and D.K. Robinson, “Data Reduction and Error Analysis for The Physical
Sciences”, McGraw-Hill, New York, 1992.
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See Also

MuPAD Functions
stats::reg | stats::sample

MuPAD Graphical Primitives
plot::Scatterplot
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stats::logisticCDF
Cumulative distribution function of the logistic distribution

Syntax
stats::logisticCDF(m, s)

Description

stats::logisticCDF(m, s) returns a procedure representing the cumulative
distribution function

of the logistic distribution with mean m and standard deviation s > 0 as a procedure.

The procedure f := stats::logisticCDF(m, s) can be called in the form f(x) with
an arithmetical expression x. The return value of f(x) is either a floating-point number
or a symbolic expression:

If x is a floating-point number and m and s can be converted to floating-point numbers,
then f(x) returns a floating-point number between 0.0 and 1.0.

The call f(- infinity ) returns 0; the call f( infinity ) returns 1.

In all other cases, the expression 1/2*(1 + tanh(PI*(x - m)/(2*sqrt(3)*s))) is
returned symbolically.

Numerical values for m and s are only accepted if they are real and s is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the cumulative distribution function with m = 0 and s = 1 at various points:

f := stats::logisticCDF(0, 1):

f(-infinity), f(-3), f(0.5), f(2/3), f(PI), f(infinity)

delete f:

Example 2

We use symbolic arguments:

f := stats::logisticCDF(m, s): f(x)

When numerical values are assigned to m and s, the function f starts to produce
numerical values:

m := 0: s := 1: f(3), f(3.0)

delete f, m, s:
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Parameters

m

The mean: an arithmetical expression representing a real value

s

The standard deviation: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::logisticPDF | stats::logisticQuantile | stats::logisticRandom
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stats::logisticPDF
Probability density function of the logistic distribution

Syntax
stats::logisticPDF(m, s)

Description

stats::logisticPDF(m, s) returns the probability density function

of the logistic distribution with mean m and standard deviation s > 0.

The procedure f := stats::logisticPDF(m, s) can be called in the form f(x) with
an arithmetical expression x. The return value of f(x) is either a floating-point number
or a symbolic expression:

If x is a floating-point number and m and s can be converted to floating-point numbers,
then f(x) returns a positive floating-point number.

f( infinity ) and f(- infinity ) return 0.

In all other cases, the expression  is returned symbolically.

Numerical values for m and s are only accepted if they are real and s is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the probability density function with m = 0 and s = 1 at various points:

f := stats::logisticPDF(0, 1): f(1/2), f(0.5), f(x)

delete f:

Example 2

We use symbolic arguments:

f := stats::logisticPDF(m, s): f(x), f(3)

When numerical values are assigned to m and s, the function f starts to produce
numerical values:

m := 0: s := 1: f(3), f(3.0)

delete f, m, s:
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Parameters

m

The mean: an arithmetical expression representing a real value

s

The standard deviation: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::logisticCDF | stats::logisticQuantile | stats::logisticRandom
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stats::logisticQuantile
Quantile function of the logistic distribution

Syntax
stats::logisticQuantile(m, s)

Description

stats::logisticQuantile(m, s) returns a procedure representing the quantile
function (inverse)

of the cumulative distribution function stats::logisticCDF(m, s). For 0 ≤ x ≤ 1, the
solution of stats::logisticCDF(m, s)(y) = x is given by

.

The procedure f := stats::logisticQuantile(m, s) can be called in the form
f(x) with an arithmetical expression x. The return value of f(x) is either a floating-
point number, ±infinity, or a symbolic expression:

The call f(x) returns a real floating-point number if x is a floating-point number
between 0.0 and 1.0, m can be converted to a real floating-point number, and s can be
converted to a positive real floating-point number.

The calls f(0) and f(0.0) produce - infinity; the calls f(1) and f(1.0) produce
infinity.

In all other cases, the symbolic expression m + sqrt(3)*s*ln(x/(1-x))/PI is
returned.

Numerical values of x are only accepted if 0 ≤ x ≤ 1.
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Numerical values of m and s are only accepted if they are real and s is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the quantile function with mean m = 0 and standard deviation s = 1 at
various points:

f := stats::logisticQuantile(0, 1):

f(0), f(1/10), f(0.7), f(0.999999999), f(1)

The value f(x) satisfies stats::logisticCDF(0, 1)(f(x)) = x:

stats::logisticCDF(0, 1)(f(0.987654321))

delete f:

Example 2

We use symbolic arguments:

f := stats::logisticQuantile(m, s): f(x), f(1/3), f(0.4)
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When suitable numerical values are assigned to a and b, the function f starts to produce
numerical values:

m := 0: s := 1: f(0.999), f(999/1000)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)

f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, m, s:

Parameters

m

The mean: an arithmetical expression representing a real value

s

The standard deviation: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::logisticCDF | stats::logisticPDF | stats::logisticRandom
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stats::logisticRandom
Generate a random number generator for logistic deviates

Syntax
stats::logisticRandom(m, s, <Seed = s>)

Description

stats::logisticRandom(m, s) returns a procedure that produces logistic deviates
(random numbers) with mean m and standard deviation b > 0.

The procedure f := stats::logisticRandom(m, s) can be called in the form f().
The return value of f() is either a floating-point number or a symbolic expression:

If m can be converted to a floating-point number and s can be converted to a positive
floating point number, then f(x) returns a real floating point number.

Otherwise, stats::logisticRandom(m, s)() is returned symbolically.

Numerical values of m and s are only accepted if they are real and s is positive.

The values X = f() are distributed randomly according to the logistic distribution with
mean m and standard deviation s. For any real x, the probability that X ≤ x is given by

.

Without the option Seed = s, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::logisticRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::logisticRandom(m, s): f() $k = 1..K;

rather than by

stats::logisticRandom(m, s)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::logisticRandom(m, s, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate logistic deviates with mean m = 0 and standard deviation s = 1:

f := stats::logisticRandom(0, 1): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::logisticRandom(m, s): f()
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When numbers are assigned to m and s, the function f starts to produce random floating
point numbers:

m := PI: s := 1/8: f() $ k = 1..4

delete f, m, s:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::logisticRandom(PI, 3, Seed = 1): f() $ k = 1..4

g := stats::logisticRandom(PI, 3, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

m

The mean: an arithmetical expression representing a real value

s

The standard deviation: an arithmetical expression representing a positive real value
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Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters m and s must be convertible to floating-point
numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of the logistic deviates uses the quantile
function of the logistic distribution applied to unformly distributed random numbers on
the interval .

See Also

MuPAD Functions
stats::logisticCDF | stats::logisticPDF | stats::logisticQuantile
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stats::lognormalCDF

Cumulative distribution function of the log-normal distribution

Syntax

stats::lognormalCDF(m, v)

Description

stats::lognormalCDF(m, v) returns a procedure representing the cumulative
distribution function

of the log-normal distribution with location parameter m and shape parameter v.

A random variable X is log-normally distributed if ln(X) is a normally distributed
variable. The “location parameter” m of X is the mean of ln(X) and the “shape parameter”
v is the variance of ln(X).

The procedure f := stats::lognormalCDF(m, v) can be called in the form f(x)

with an arithmetical expression x. The value  is returned.

If x is a floating-point number and both m and v can be converted to floating-point
numbers, this value is returned as a floating-point number. Otherwise, a symbolic
expression is returned.

Numerical values for m and v are only accepted if they are real and v is positive.

30-304



 stats::lognormalCDF

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the CDF of a lognormal distribution for some arbitrary parameter values:

f := stats::lognormalCDF(1/2, 3/4):

f(0.1), f(10.3)

delete f:

Example 2

We use symbolic arguments:

f := stats::lognormalCDF(m, v):

f(3), f(x)

When numerical values are assigned to m and v, the function f starts to produce
numerical values:

m := 4: v := PI:

f(3), f(3.0)
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delete f, m, v:

Example 3

From the definition of “lognormal” above it is clear that the probability of X < 0 is zero for
X lognormally distributed:

plotfunc2d(stats::lognormalCDF(0,1))

The following plot shows the influence of the shape parameter on the shape of the
lognormal distribution:

f03 := stats::lognormalCDF(0, 0.3):

f1  := stats::lognormalCDF(0, 1):

f3  := stats::lognormalCDF(0, 3):

f9  := stats::lognormalCDF(0, 9):

plotfunc2d(f03, f1, f3, f9,  x = 0..10)
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As for the normal distribution, a larger value of the shape parameter stretches the
lognormal distribution, also changing its shape in the process:

plotfunc2d(stats::lognormalCDF(m, 1)$ m = 0..2 step .1,

           LegendVisible = FALSE)
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Parameters
m

The location parameter: an arithmetical expression representing a real value

v

The shape parameter: an arithmetical expression representing a positive real value

Return Values
procedure.

See Also

MuPAD Functions
erf | stats::lognormalPDF | stats::lognormalQuantile |
stats::lognormalRandom | stats::normalCDF

30-308



 stats::lognormalPDF

stats::lognormalPDF

Probability density function of the log-normal distribution

Syntax

stats::lognormalPDF(m, v)

Description

stats::lognormalPDF(m, v) returns a procedure representing the probability
density function

of the lognormal distribution with location parameter m and shape parameter v.

A random variable X is log-normally distributed if ln(X) is a normally distributed
variable. The “location parameter” m of X is the mean of ln(X) and the “shape parameter”
v is the variance of ln(X).

The procedure f := stats::lognormalPDF(m, v) can be called in the form f(x)

with an arithmetical expression x. The value  is returned.

If x is a floating-point number and both m and v can be converted to floating-point
numbers, this value is returned as a floating-point number. Otherwise, a symbolic
expression is returned.

Numerical values for m and v are only accepted if they are real and v is positive.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We compute the probability density with location parameter m = 2 and shape parameter
v = 4 at various points:

f := stats::lognormalPDF(2, 4):

f(-infinity), f(-3), f(2.0), f(PI), f(infinity)

delete f:

Example 2

We use symbolic arguments:

f := stats::lognormalPDF(m, v):

f(x), f(0.4)

When numerical values are assigned to m and v, the function f starts to produce
numerical values:

m := PI: v := 2:

f(3), f(3.0)
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delete f, m, v:

Example 3

The following plot shows the influence of the shape parameter on the log-normal
distribution:

plotfunc2d(stats::lognormalPDF(1, 0.25)(x),

           stats::lognormalPDF(1, 0.5)(x),

           stats::lognormalPDF(1, 1)(x),

           stats::lognormalPDF(1, 2)(x),

           stats::lognormalPDF(1, 4)(x),

           stats::lognormalPDF(1, 8)(x),

           x = -0.5 .. 4, ViewingBoxYRange = 0 .. 1.1,

           LegendVisible = FALSE)
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Due to its logarithmic influence, the location parameter changes the shape of the
distribution, too:

plotfunc2d(stats::lognormalPDF(m, 0.5)(x) $ m = 0.5..2 step 0.5,

           x = -0.5 ..4, ViewingBoxYRange = 0 .. 0.5,

           LegendVisible = FALSE)

Parameters
m

The location parameter: an arithmetical expression representing a real value

v

The shape parameter: an arithmetical expression representing a positive real value

Return Values
procedure.
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See Also

MuPAD Functions
exp | stats::lognormalCDF | stats::lognormalQuantile |
stats::lognormalRandom | stats::normalPDF
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stats::lognormalQuantile
Quantile function of the log-normal distribution

Syntax
stats::lognormalQuantile(m, v)

Description

stats::normalQuantile(m, v) returns a procedure representing the quantile
function (inverse) of the cumulative distribution function stats::lognormalCDF(m,
v) of the log-normal distribution with location parameter m and shape parameter
v > 0: For 0 ≤ x ≤ 1, the solution of stats::lognormalCDF(m, v)(y) = x is given by y =
stats::lognormalQuantile(m, v)(x).

The procedure f := stats::lognormalQuantile(m, v) can be called in the form
f(x) with an arithmetical expression x. The return value of f(x) is either a floating-
point number, 0, infinity, or a symbolic expression:

If x is a real number between 0 and 1 and both m and v can be converted to floating-point
numbers, then f(x) returns a real floating-point number approximating the solution y of
stats::lognormalCDF(m, v)(y) = x.

The call f(0) returns 0.

The calls f(1) and f(1.0) produce infinity for all values of m and v.

In all other cases, f(x) returns the symbolic call stats::lognormalQuantile(m, v)
(x).

Numerical values for m and v are only accepted if they are real and v is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the quantile function with location parameter m = π and shape parameter v
= 11 at various points:

f := stats::lognormalQuantile(PI, 11):

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::lognormalCDF(PI, 11)(f(x)) = x:

stats::lognormalCDF(PI, 11)(f(0.987654))

delete f:

Example 2

We use symbolic arguments:

f := stats::lognormalQuantile(m, v):

f(x), f(9/10)

When numerical values are assigned to m and v, the function f starts to produce floating-
point values:

m := 17: v := 6:

f(9/10), f(0.999)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:
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f(0.5)

f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, m, v:

Parameters

m

The location parameter: an arithmetical expression representing a real value

v

The shape parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::lognormalCDF | stats::lognormalPDF | stats::lognormalRandom
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stats::lognormalRandom
Generate a random number generator for log-normal deviates

Syntax
stats::lognormalRandom(m, v, <Seed = s>)

Description

stats::normalRandom(m, v) returns a procedure that produces lognormal deviates
(random numbers) with location parameter m and shape parameter v > 0.

A random variable X is log-normally distributed if ln(X) is a normally distributed
variable. The “location parameter” m of X is the mean of ln(X) and the “shape parameter”
v is the variance of ln(X).

The procedure f := stats::lognormalRandom(m, v) can be called in the form f().
The return value of f() is either a floating-point number or a symbolic expression:

If m and v can be converted to floating-point numbers, f() returns a real floating point
number. Otherwise, the symbolic call stats::lognormalRandom(m, v)() is returned.

Numerical values of m and v are only accepted if they are real and v is positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the log-normal distribution with parameters m and v. For any real x, the
probability that X ≤ x is given by

.

Without the option Seed = s, an initial seed is chosen internally. This initial seed is
set to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.
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Note: In contrast to the function random, the generators produced by
stats::normalRandom do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random numbers via
f := stats::lognormalRandom(m, v): f() $k = 1..K rather than by
stats::lognormalRandom(m, v)() $k = 1..K. The latter call produces a sequence
of generators each of which is called once. Also note that stats::lognormalRandom(m,
v, Seed = n)() $k = 1..K does not produce a random sequence, because a sequence
of freshly initialized generators would be created each of them producing the same
number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate log-normal deviates with location parameter 2 and shape parameter :

f := stats::normalRandom(2, 3/4):

f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::lognormalRandom(m, v):

f()
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When m and v evaluate to real numbers, f starts to produce random floating point
numbers:

m := PI/10: v := 1/8:

f() $ k = 1..4

delete f, m, v:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::lognormalRandom(1, 3, Seed = 1):

f() $ k = 1..4

g := stats::lognormalRandom(1, 3, Seed = 1):

g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

m

The location parameter: an arithmetical expression representing a real value
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v

The shape parameter: an arithmetical expression representing a positive real value

Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters m and v must be convertible to suitable
floating-point numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implementation uses stats::normalRandom.

See Also

MuPAD Functions
stats::lognormalCDF | stats::lognormalPDF | stats::lognormalQuantile
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stats::mean
Arithmetic mean of a data sample

Syntax
stats::mean(x1, x2, …)

stats::mean([x1, x2, …])

stats::mean(s, <c>)

Description

stats::mean(x1, x2, …, xn) returns the arithmetic mean  of the data xi.

The column index c is optional if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-322.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We calculate the arithmetic mean of three values:

stats::mean(a, b, c)

Alternatively, data may be passed as a list:
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stats::mean([2, 3, 5])

Example 2

We create a sample:

stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1  b1  c1

a2  b2  c2

The arithmetic mean of the second column is:

stats::mean(%, 2)

Example 3

We create a sample consisting of one string column and one non-string column:

stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996"  1242

"1997"  1353

"1998"  1142

We compute the arithmetic mean of the second column. In this case, this column does not
have to be specified, since it is the only non-string column:

float(stats::mean(%))
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Parameters

x1, x2, …

The statistical data: arithmetical expressions.

s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

Return Values

Arithmetical expression.

See Also

MuPAD Functions
stats::geometricMean | stats::harmonicMean | stats::median |
stats::modal | stats::quadraticMean | stats::stdev | stats::variance
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stats::meandev
Mean deviation of a data sample

Syntax
stats::meandev(x1, x2, …)

stats::meandev([x1, x2, …])

stats::meandev(s, <c>)

Description

stats::meandev( x1, x2, …, xn) returns the mean deviation

,

where  is the mean of the data xi.

If all data are floating-point numbers, a float is returned. For symbolic data, the mean is
returned as a symbolic expression.

The column index c is optional if the data are given by a stats::sample object
containing only one non-string column.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We calculate the mean deviation of some data:
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stats::meandev(2, 33/7, PI)

Alternatively, the data may be passed as a list:

data:=[2, 33/7, PI]: stats::meandev(data)

If all data are floating-point numbers, the result is a float:

stats::meandev(float(data))

delete data:

Example 2

We create a sample of type stats::sample:

s := stats::sample([[22, 4, 1], [9, 8/3, 1], [2.0, 3, x]])

 22    4  1

  9  8/3  1

2.0    3  x

The mean deviations of the columns are computed:

stats::meandev(s, 1), stats::meandev(s, 2), stats::meandev(s, 3)

delete s:
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Example 3

With symbolic arguments, the mean deviation is returned as a symbolic expression:

stats::meandev(x1, x2, x3)

Parameters

x1, x2, …

The statistical data: arithmetical expressions

s

A sample of domain type stats::sample

c

A column index of the sample s: a positive integer. This column provides the data x1, x2
etc.

Return Values

arithmetical expression.

See Also

MuPAD Functions
stats::moment | stats::stdev | stats::variance
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stats::median
Median value of a data sample

Syntax
stats::median(x1, x2, …, <Averaged>)

stats::median([x1, x2, …], <Averaged>)

stats::median(s, <c>, <Averaged>)

Description

stats::median(x1, x2, …) returns the median of the data xi.

The median of n sorted values x1 ≤ … ≤ xn is .

The averaged median of n sorted values x1 ≤ … ≤ xn is .

For odd n, both the median and the averaged median coincide with the element 

of the sorted data list. For even n, the median is , whilst the averaged median is

.

The median coincides with the -quantile of the data: the calls stats::median(data

<Averaged>) and stats::empiricalQuantile(data)(1/2 <Averaged>) are
equivalent. See the help page of stats::empiricalQuantile for details on the
parameters specifying the data.
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The column index c is optional if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-329.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We calculate the median of a sequence of five values:

stats::median(3, 8, 5, 9/2, 11)

Alternatively, data may be passed as a list:

stats::median([2, 7, 3, 9/2, 11, 12]),

stats::median([2, 7, 3, 9/2, 11, 12], Averaged)

Example 2

We create a sample:

stats::sample([[4, 7, 5], [3, 6, 17], [8, 2, 2]])

4  7   5

3  6  17

8  2   2

The median of the second column is 6:

stats::median(%, 2)
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Example 3

We create a sample consisting of one string column and one non-string column:

stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996"  1242

"1997"  1353

"1998"  1142

The median of the second column is calculated. In this case, there is no need to specify
the index of the column, since it is the only non-string data column in the sample:

stats::median(%)

Parameters

x1, x2, …

The statistical data: real numerical values.

s

A sample of domain type stats::sample

c

A column index of the sample s: a positive integer. This column provides the data x1, x2
etc.

Options

Averaged

Return the averaged median value
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Return Values

arithmetical expression. FAIL is returned if the data sample is empty.

See Also

MuPAD Functions
stats::empiricalQuantile | stats::geometricMean | stats::harmonicMean
| stats::mean | stats::modal | stats::quadraticMean | stats::stdev |
stats::variance
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stats::modal
Modal (most frequent) value(s) in a data sample

Syntax
stats::modal(x1, x2, …)

stats::modal([x1, x2, …])

stats::modal(s, <c>)

Description

stats::modal(x1, x2, …) returns the most frequent value(s) of the data xi.

The column index c is optional, if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-332.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We calculate the modal value of a data sequence:

stats::modal(2, a, b, c, b, 10, 12, 2, b)

Alternatively, data may be passed as a list:

stats::modal([a, a, a, b, c, b, 10, 12, 2, b])
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Example 2

We create a sample containing “age” and “gender”:

stats::sample([[32, "f"], [25, "m"], [40, "f"], [23, "f"]])

32  "f"

25  "m"

40  "f"

23  "f"

The modal value of the second column (the most frequent “gender”) is calculated:

stats::modal(%, 2)

Example 3

We create a sample consisting of only one column:

stats::sample([4, 6, 2, 6, 8, 3, 2, 1, 7, 9, 3, 6, 5, 1, 6, 8]):

The modal value of these data is calculated. In this case, the column does not have to be
specified, since there is only one column:

stats::modal(%)

Parameters

x1, x2, …

The statistical data: arithmetical expressions.
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s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

Return Values

Sequence consisting of a list and an integer. The list contains the most frequent
element(s) in the data, the integer specifies the number of occurrences. E.g., the result
[x5, x10], 21 means that x5 and x10 are the most frequent data items, each
occurring 21 times.

See Also

MuPAD Functions
stats::empiricalQuantile | stats::geometricMean | stats::harmonicMean
| stats::mean | stats::median | stats::quadraticMean | stats::stdev |
stats::variance
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stats::moment
The K-th moment of a data sample

Syntax
stats::moment(k, X, x1, x2, …)

stats::moment(k, X, [x1, x2, …])

stats::moment(k, X, s, <c>)

Description

stats::moment(k, X, [x1, x2, …, xn]) returns the k-th moment

of the data xi centered around X.

If k is an integer, rational or float, and all data X, x1, x2, … are floating-point numbers,
then the moment is returned as a floating-point number. For symbolic data, a symbolic
expression is returned.

The column index c is optional if the data are given by a stats::sample object
containing only one non-string column.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We calculate the third moment of some data centered around 0:

stats::moment(3, 0, 2, 33/7, 21/9, PI)

Alternatively, the data may be passed as a list:

data := [2, 33/7, 21/9, PI]: stats::moment(3, 0, data)

If all data are floating-point numbers, the result is a float:

data := float(data): stats::moment(3, 0, data)

We use stats::moment to compute the variance of the data:

m := stats::mean(data):

stats::moment(2, m, data) = stats::variance(data, Population)

delete data, m:

Example 2

We create a sample of type stats::sample:

s := stats::sample([[22, 4, 1], [9, 8/3, 1], [0.1, 2, 3]])
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 22    4  1

  9  8/3  1

0.1    2  3

The fourth moment around a symbolic center X is computed for all columns in the
sample:

stats::moment(4, X, s, i) $ i = 1..3

delete s:

Example 3

For symbolic arguments, the moment is returned as a symbolic expression:

stats::moment(k, X, [x1, x2, x3, x4])

Parameters

k

An arithmetical expression

X

The center: an arithmetical expression

x1, x2, …

The statistical data: arithmetical expressions

s

A sample of domain type stats::sample
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c

A column index of the sample s: a positive integer. This column provides the data x1, x2,
….

Return Values

arithmetical expression.

See Also

MuPAD Functions
stats::quadraticMean | stats::variance
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stats::normalCDF

Cumulative distribution function of the normal distribution

Syntax

stats::normalCDF(m, v)

Description

stats::normalCDF(m, v) returns a procedure representing the cumulative
distribution function

of the normal distribution with mean m and variance v.

The procedure f := stats::normalCDF(m, v) can be called in the form f(x) with
an arithmetical expression x. The value 1/2 + 1/2* erf((x - m)/sqrt(2*v)) is
returned.

If x is a floating-point number and both m and v can be converted to floating-point
numbers, this value is returned as a floating-point number. Otherwise, a symbolic
expression is returned.

Numerical values for m and v are only accepted if they are real and v is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the cumulative distribution function with mean m = 2 and variance  at

various points:

f := stats::normalCDF(2, 3/4):

f(-infinity), f(-3), f(PI), f(infinity)

f(-100.0), f(-3.0), f(float(PI)), f(10.0), f(100.0)

delete f:

Example 2

We use symbolic arguments:

f := stats::normalCDF(m, v): f(3), f(x)

When numerical values are assigned to m and v, the function f starts to produce
numerical values:

m := 4: v := PI: f(3), f(3.0)
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delete f, m, v:

Parameters

m

The mean: an arithmetical expression representing a real value

v

The variance: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
erf | stats::normalPDF | stats::normalQuantile | stats::normalRandom
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stats::normalPDF
Probability density function of the normal distribution

Syntax
stats::normalPDF(m, v)

Description

stats::normalPDF(m, v) returns a procedure representing the probability density
function

of the normal distribution with mean m and variance v.

The procedure f := stats::normalPDF(m, v) can be called in the form f(x) with
an arithmetical expression x. The value exp(-(x - m)^2/(2*v))/sqrt(2*PI*v) is
returned.

If x is a floating-point number and both m and v can be converted to floating-point
numbers, this value is returned as a floating-point number. Otherwise, a symbolic
expression is returned.

Numerical values for m and v are only accepted if they are real and v is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We compute the probability density with mean m = 2 and variance v = 4 at various
points:

f := stats::normalPDF(2, 4):

f(-infinity), f(-3), f(2.0), f(PI), f(infinity)

delete f:

Example 2

We use symbolic arguments:

f := stats::normalPDF(m, v): f(x), f(0.4)

When numerical values are assigned to m and v, the function f starts to produce
numerical values:

m := PI: v := 2: f(3), f(3.0)

delete f, m, v:
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Parameters

m

The mean: an arithmetical expression representing a real value

v

The variance: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
exp | stats::normalCDF | stats::normalQuantile | stats::normalRandom
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stats::normalQuantile

Quantile function of the normal distribution

Syntax

stats::normalQuantile(m, v)

Description

stats::normalQuantile(m, v) returns a procedure representing the quantile
function (inverse) of the cumulative distribution function stats::normalCDF(m, v)
of the normal distribution with mean m and variance v > 0: For 0 ≤ x ≤ 1, the solution of
stats::normalCDF(m, v)(y) = x is given by y = stats::normalQuantile(m, v)(x).

The procedure f := stats::normalQuantile(m, v) can be called in the form f(x)
with an arithmetical expression x. The return value of f(x) is either a floating-point
number, ±infinity, or a symbolic expression:

If x is a real number between 0 and 1 and both m and v can be converted to floating-point
numbers, then f(x) returns a real floating-point number approximating the solution y of
stats::normalCDF(m, v)(y) = x.

The calls f(0) and f(0.0) produce -infinity for all values of m and v.

The calls f(1) and f(1.0) produce infinity for all values of m and v.

In all other cases, f(x) returns the symbolic call stats::normalQuantile(m, v)(x).

Numerical values for m and v are only accepted if they are real and v is positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the quantile function with mean m = π and variance v = 11 at various
points:

f := stats::normalQuantile(PI, 11):

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::normalCDF(PI, 11)(f(x)) = x:

stats::normalCDF(PI, 11)(f(0.987654))

delete f:

Example 2

We use symbolic arguments:

f := stats::normalQuantile(m, v): f(x), f(9/10)

When numerical values are assigned to m and v, the function f starts to produce floating-
point values:

m := 17: v := 6: f(9/10), f(0.999)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)
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f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, m, v:

Parameters

m

The mean: an arithmetical expression representing a real value

v

The variance: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::normalCDF | stats::normalPDF | stats::normalRandom
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stats::normalRandom
Generate a random number generator for normal deviates

Syntax
stats::normalRandom(m, v, <Seed = s>)

Description

stats::normalRandom(m, v) returns a procedure that produces normal deviates
(random numbers) with mean m and variance v > 0.

The procedure f := stats::normalRandom(m, v) can be called in the form f(). The
return value of f() is either a floating-point number or a symbolic expression:

If m and v can be converted to floating-point numbers, f() returns a real floating point
number. Otherwise, the symbolic call stats::normalRandom(m, v)() is returned.

Numerical values of m and v are only accepted if they are real and v is positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the normal distribution with parameters m and v. For any real x, the
probability that X ≤ x is given by

.

Without the option Seed = s, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::normalRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::normalRandom(m, v): f() $k = 1..K;

rather than by

stats::normalRandom(m, v)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::normalRandom(m, v, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate normal deviates with mean 2 and variance :

f := stats::normalRandom(2, 3/4): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:
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f := stats::normalRandom(m, v): f()

When m and v evaluate to real numbers, f starts to produce random floating point
numbers:

m := PI: v := 1/8: f() $ k = 1..4

delete f, m, v:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::normalRandom(PI, 3, Seed = 1): f() $ k = 1..4

g := stats::normalRandom(PI, 3, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

m

The mean: an arithmetical expression representing a real value
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v

The variance: an arithmetical expression representing a positive real value

Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters m and v must be convertible to suitable
floating-point numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of the normal deviates uses the Box-
Mueller method. For more information see: D. Knuth, Seminumerical Algorithms (1998),
Vol. 2, pp. 122.

See Also

MuPAD Functions
stats::normalCDF | stats::normalPDF | stats::normalQuantile
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stats::obliquity

Obliquity (skewness) of a data sample

Syntax

stats::obliquity(x1, x2, …)

stats::obliquity([x1, x2, …])

stats::obliquity(s, <c>)

Description

stats::obliquity(x1, x2, …, xn) returns the obliquity (skewness)

,

where  is the mean of the data xi.

The obliquity is a measure for the symmetry of a distribution. It is zero, if the
distribution of the data is symmetric around the mean. Positive values indicate that the
distribution function has a “longer tail” to the right of the mean than to the left. Negative
values indicate a “longer tail” to the left.

The column index c is optional, if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-352.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.
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Examples

Example 1

We calculate the obliquity of a data sequence:

float(stats::obliquity(0, 7, 7, 6, 6, 6, 5, 5, 4, 1))

Alternatively, data may be passed as a list:

stats::obliquity([2, 2, 4, 6, 8, 10, 10])

Example 2

We create a sample:

stats::sample([[a, 5, 8], [b, 3, 7], [c, d, 0]])

a  5  8

b  3  7

c  d  0

The obliquity of the second column is:

stats::obliquity(%, 2)

Example 3

We create a sample consisting of one string column and one non-string column:
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stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996"  1242

"1997"  1353

"1998"  1142

We compute the obliquity of the second column. In this case this column does not have to
be specified, since it is the only non-string column:

float(stats::obliquity(%))

Parameters

x1, x2, …

The statistical data: arithmetical expressions.

s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

Return Values

Arithmetical expression. FAIL is returned, if the obliquity does not exist.

See Also

MuPAD Functions
stats::kurtosis

30-353



30 stats – Statistics

stats::poissonCDF
The (discrete) cumulative distribution function of the Poisson distribution

Syntax
stats::poissonCDF(m)

Description

stats::poissonCDF(m) returns a procedure representing the (discrete) cumulative
distribution function

of the Poisson distribution with mean m.

The procedure f := stats::poissonCDF(m) can be called in the form f(x) with
arithmetical expressions x. The return value of f(x) is either a floating-point number,
an exact numerical value, or a symbolic expression:

If x is a numerical real value, then an explicit value is returned. It is a floating-point
number if x is a floating-point number and m can be converted to a positive real float.
Otherwise, an exact expression is returned.

If x is a numerical value < 0, then 0, respectively 0.0, is returned for any value of m.

For symbolic values of x, f(x) returns the symbolic call stats::poissonCDF(m)(x).

Numerical values for m are only accepted if they are nonnegative.

If x is a real floating-point number, the result is a floating number provided m is a
nonnegative numerical value. If both x and m are exact numerical values, the result is an
exact number.
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Note: Note that for large m, floating-point results are computed much faster than exact
results. If floating-point approximations are desired, pass a floating-point number x to
stats::poissonCDF!

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the distribution function with m =  at various points:

f := stats::poissonCDF(1/2):

f(-PI) = f(float(-PI)), f(0) = f(0.0), f(4) = f(4.0)

delete f:

Example 2

We use symbolic arguments. If x is symbolic, a symbolic call is returned:

f := stats::poissonCDF(m): f(x)

If x is a numerical value, symbolic expressions in m are returned:

f(-1), f(0), f(5/2), f(PI)
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When numerical values are assigned to m, the function f starts to produce explicit results
if the argument is numerical:

m := 3: f(-1), f(0), f(5/2), f(PI)

delete f, m:

Parameters

m

The mean: an arithmetical expression representing a nonnegative real number

Return Values

procedure.

See Also

MuPAD Functions
stats::poissonPF | stats::poissonQuantile | stats::poissonRandom
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stats::poissonPF
Probability function of the Poisson distribution

Syntax
stats::poissonPF(m)

Description

stats::poissonPF(m) returns a procedure representing the probability function

of the Poisson distribution with mean m.

The procedure f := stats::poissonPF(m) can be called in the form f(x) with
arithmetical expressions x. The return value of f(x) is either a floating-point number,
an exact numerical value, or a symbolic expression:

If x is a non-integer numerical value, f(x) returns 0 or 0.0, respectively.

If x is an integer or the floating-point equivalent of an integer, then an explicit value is
returned.

In all other cases, f(x) returns the symbolic call stats::poissonPF(n,p)(x).

Numerical values for m are only accepted if they are nonnegative.

If x is a floating-point number, the result is a floating-point number provided m is a
nonnegative numerical value. If both x and m are exact values then the result is an exact
number.

Note that for large m, floating-point results are computed much faster than exact results.
If floating-point approximations are desired, pass a floating-point number x to the
procedure generated by stats::poissonPF.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We calculate the Poisson probability with m = 8 at various points:

f := stats::poissonPF(8):

f(-1), f(-1.0), f(0), f(1/2),  f(1), f(3/2), f(3) = f(float(3))

delete f:

Example 2

We use symbolic arguments:

f := stats::poissonPF(m): f(x)

If x is a numerical value, symbolic expressions in m are returned:

f(8), f(17/2), f(9.0), f(9.2)

When numerical values are assigned to m, the function f starts to produce numbers if the
argument is numerical:
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m := 3: f(8), f(17/2), f(9.0), f(9.2)

delete f, m:

Parameters

m

The mean: an arithmetical expression representing a nonnegative real number

Return Values

procedure.

See Also

MuPAD Functions
stats::poissonCDF | stats::poissonQuantile | stats::poissonRandom
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stats::poissonQuantile
Quantile function of the Poisson distribution

Syntax
stats::poissonQuantile(m)

Description

stats::poissonQuantile(m) returns a procedure representing the quantile function
(discrete inverse) of the cumulative distribution function stats::poissonCDF(m). For
0 ≤ x ≤ 1, k = stats::poissonQuantile(m)(x) is the smallest nonnegative integer
satisfying

.

The procedure f := stats::poissonQuantile(m) can be called in the form
f(x) with an arithmetical expression x. The return value of the call f(x) is either a
nonnegative integer, infinity, or a symbolic expression:

If m is a nonnegative real number and x a real number satisfying 0 ≤ x < 1, then f(x)
returns a nonnegative integer.

If m = 0, then f(x) returns 0 for any x.

If m ≠ 0, then f(1) and f(1.0) return infinity.

In all other cases, f(x) returns the symbolic call stats::poissonQuantile(m)(x).

Numerical values for m are only accepted if they are positive.

If floating-point arguments are passed to the quantile function f, the result is computed
with floating-point arithmetic. This is faster than using exact arithmetic, but the result
is subject to internal round-off errors. In particular, round-off may be significant for
arguments x close to 1. Cf. “Example 3” on page 30-362.
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Finite quantile values k = stats::poissonQuantile(m)(x) satisfy

.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the quantile function with m = π at various points:

f := stats::poissonQuantile(PI):

f(0), f(1/20), f(0.3), f(PI/6), f(0.7), f(1-1/10^10), f(1)

The value f(x) satisfies

:

x := 0.98: k := f(x)

float(stats::poissonCDF(PI)(k - 1)), x, 

float(stats::poissonCDF(PI)(k))

delete f, x, k:
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Example 2

We use symbolic arguments:

f := stats::poissonQuantile(m): f(x), f(9/10)

When m evaluates to a positive real number, the function f starts to produce quantile
values:

m := 17: 

f(1/2),  f(999/1000), f(1 - 1/10^10), f(1 - 1/10^80)

delete f, m:

Example 3

If floating-point arguments are passed to the quantile function, the result is computed
with floating-point arithmetic. This is faster than using exact arithmetic, but the result is
subject to internal round-off errors:

f := stats::poissonQuantile(123):

f(1 - 1/10^19) <> f(float(1 - 1/10^19))

delete f:

Parameters

m

The mean: a arithmetical expression representing a nonnegative real number
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Return Values

procedure.

See Also

MuPAD Functions
stats::poissonCDF | stats::poissonPF | stats::poissonRandom
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stats::poissonRandom

Generate a random number generator for Poisson deviates

Syntax

stats::poissonRandom(m, <Seed = s>)

Description

stats::poissonRandom(m) returns a procedure that produces poisson-deviates
(random numbers) with mean m.

The procedure f := stats::poissonRandom(m) can be called in the form f(). The
return value of f() is a nonnegative integer if m is a nonnegative numerical value.

Otherwise, stats::poissonRandom(m)() is returned symbolically.

Numerical values for m are only accepted if they are nonnegative.

The values X = f() are distributed randomly according to the discrete distribution
function of the Poisson distribution with mean m, i.e., for 0 ≤ x, the probability of X ≤ x is
given by

.

Without the option Seed = s, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: With this option, the mean m must evaluate to a nonnegative numerical value at
the time, when the generator is created.
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Note: In contrast to the function random, the generators produced by
stats::poissonRandom do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::poissonRandom(m): f() $k = 1..K;

rather than by

stats::poissonRandom(m)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::poissonRandom(m, Seed = s)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate Poisson deviates with mean m = 80:

f := stats::poissonRandom(80): f() $ k = 1..10

delete f:
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Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::poissonRandom(m): f()

When m evaluates to a positive real number, the generator starts to produce random
numbers:

m := 80: f(), f(), f()

delete f, m:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::poissonRandom(12, Seed = 1): f() $ k = 1..10

g := stats::poissonRandom(12, Seed = 1): g() $ k = 1..10

f() = g(), f() = g()

delete f, g:
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Parameters

m

The mean: an arithmetical expression representing a nonnegative real number

Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the mean m must be convertible to a positive floating-point
number at the time when the random generator is generated.

Return Values

procedure.

See Also

MuPAD Functions
stats::poissonCDF | stats::poissonPF | stats::poissonQuantile
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stats::quadraticMean
Quadratic mean of a data sample

Syntax
stats::quadraticMean(x1, x2, …)

stats::quadraticMean([x1, x2, …])

stats::quadraticMean(s, <c>)

Description

stats::quadraticMean(x1, x2, …, xn) returns the quadratic mean

of the data xi.

The column index c is optional, if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-369.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Examples

Example 1

We calculate the quadratic mean of three values:

stats::quadraticMean(a, b, c)
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Alternatively, data may be passed as a list:

stats::quadraticMean([2, 3, 5])

Example 2

We create a sample:

stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1  b1  c1

a2  b2  c2

The quadratic mean of the second column is:

stats::quadraticMean(%, 2)

Example 3

We create a sample consisting of one string column and one non-string column:

stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])

"1996"  1242

"1997"  1353

"1998"  1142

We compute the quadratic mean of the second column. In this case this column does not
have to be specified, since it is the only non-string column:
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float(stats::quadraticMean(%))

Parameters

x1, x2, …

The statistical data: arithmetical expressions.

s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

Return Values

arithmetical expression.

See Also

MuPAD Functions
stats::geometricMean | stats::harmonicMean | stats::mean |
stats::median | stats::modal | stats::stdev | stats::variance
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stats::reg
Regression (general linear and nonlinear least squares fit)

Syntax
stats::reg([x1, 1, …,xk, 1], …,[x1, m, …,xk, m], [y1, …,yk], <[w1, …,wk]>, f, [x1, xm], [p1, …,pn], <StartingValues = [p1(0), …,pn(0)]>, <CovarianceMatrix>)

stats::reg([[x1, 1, …,x1, m, y1, <w1>], …,[xk, 1, …,xk, m, yk, <wk>]], f, [x1, …,xm], [p1, …,pm], <StartingValues = [p1(0), …,pn(0)]>, <CovarianceMatrix>)

stats::reg(s, c1, …,cm, cy, <cw>, f, [x1, …,xm], [p1, …,pn], <StartingValues = [p1(0), …,pn(0)]>, <CovarianceMatrix>)

stats::reg(s, [c1, cm], cy, <cw>, f, [x1, …,xm], [p1, …,pn], <StartingValues = [p1(0), …,pn(0)]>, <CovarianceMatrix>)

Description

Consider a “model function” f with n parameters p1, …, pn relating a dependent
variable y and m independent variables x1, …, xm: y = f(x1, …, xm, p1, …, pn). Given k
different measurements x1 j

, …, xkj for the independent variables xj and corresponding
measurements y1, …, yk for the dependent variable y, one fits the parameters p1, …, pn by
minimizing the “weighted quadratic deviation” (“chi-squared”)

.

stats::reg(..data.., f, [x.1, ... , x.m], [p.1, ... , p.n],

[w.1, ..., w.n]) computes numerical approximations of the fit parameters p1, …, pn.

All data must be convertible to real or complex floating-point values via float.

The number of measurements k must not be less than the number n of parameters pi.

The model function f may be non-linear in the independent variables xi and the fit
parameters pi. E.g., a model function such as p1 + p2*x1^2 + exp(p3 + p4*x2)
with the independent variables x1, x2 and the fit parameters p1, p2, p3, p4 is
accepted.
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Note that the fitting of model functions with a non-linear dependence on the parameters
pi is much more costly than a linear regression, where the pi enter linearly. The
functional dependence of the model function on the variables xi is of no relevance.

Note: There are rare cases where the implemented algorithm converges to a local
minimum rather than to a global minimum. In particular, this problem may arise when
the model involves periodic functions. It is recommended to provide suitable starting
values for the fit parameters in this case. Cf. “Example 4” on page 30-374.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Environment Interactions

The function is sensitive to the environment variable DIGITS, which determines the
numerical working precision.

Examples

Example 1

We fit a linear function y = p1 + p2 x1 to four data pairs (xi1, yi) given by two lists:

stats::reg([0, 1, 2, 3], [1, 3, 5, 7],

           p1 + p2*x1, [x1], [p1, p2])

The parameter values p1 = 1.0, p2 = 2.0 provide a perfect fit: up to numerical round-off,
the quadratic deviation vanishes.

Example 2

We fit an exponential function y = a eb x to five data pairs (xi, yi). Weights are used to
decrease the influence of the “exceptional pair” (x, y) = (5.0, 6.5×106) on the fit:
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stats::reg([[1.1, 54, 1], [1.2, 73, 1], [1.3, 98, 1], 

            [1.4, 133, 1], [5.0, 6.5*10^6, 10^(-4)]], 

           a*exp(b*x), [x], [a, b])

Example 3

We create a sample with four columns. The first column is a counter labeling the
measurements. This column is of no further relevance here. The second and third column
provide measured data of two variables x1 and x2, respectively. The last column provides
corresponding measurements of a dependent variable.

s := stats::sample([[1, 0, 0,  1.1], [2, 0, 1,  5.4], 

                    [3, 1, 1,  8.5], [4, 1, 2, 18.5], 

                    [5, 2, 1, 15.0], [6, 2, 2, 24.8]])

1  0  0   1.1

2  0  1   5.4

3  1  1   8.5

4  1  2  18.5

5  2  1  15.0

6  2  2  24.8

First, we try to model the data provided by the columns 2, 3, 4 by a function that is linear
in the variables x1, x2. We specify the data columns by a list of column indices:

stats::reg(s, [2, 3, 4], p1 + p2*x1 + p3*x2, 

           [x1, x2], [p1, p2, p3])

The quadratic deviation is rather large, indicating that a linear function is inappropriate
to fit the data. Next, we extend the model and consider a polynomial fit function of degree
2. This is still a linear regression problem, because the fit parameters enter the model
function linearly. We specify the data columns by a sequence of column indices:

stats::reg(s, 2, 3, 4,

           p1 + p2*x1 + p3*x2 + p4*x1^2 + p5*x2^2, 

           [x1, x2], [p1, p2, p3, p4, p5])
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Finally, we include a further term p6*x1*x2 in the model, obtaining a perfect fit:

stats::reg(s, 2, 3, 4, 

           p1 + p2*x1 + p3*x2 + p4*x1^2 + p5*x2^2 + p6*x1*x2, 

           [x1, x2], [p1, p2, p3, p4, p5, p6])

delete s:

Example 4

We create a sample of two columns:

s := stats::sample([[1, -1.44], [2, -0.82], 

                    [3, 0.97], [4, 1.37]])

1  -1.44

2  -0.82

3   0.97

4   1.37

The data are to be modeled by a function of the form y = p1 sin(p2 x), where the first
column contains measurements of x and the second column contains corresponding data
for y. Note that in this example there is no need to specify column indices, because the
sample contains only two columns:

stats::reg(s, a*sin(b*x), [x], [a, b])

Fitting a periodic function may be problematic. We provide starting values for the fit
parameters and obtain a quite different set of parameters approximating the data with
the same quality:

stats::reg(s, a*sin(b*x), [x], [a, b], StartingValues = [2, 5])
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delete s:

Example 5

The blood sugar level y (in mmol/L) of a diabetic is measured over a period of 10 days
with 5 measurements per day at x1 = 7 (o'clock a.m.), x1 = 12 (noon), x1 = 15 (afternoon),
x1 = 19 (before dinner), and x1 = 23 (bed time). These are the measurements:

Y:=  //hour: 7    12   15   19   23

    [     [ 7.2, 5.5, 6.8, 5.4, 6.0], // day 1

          [ 6.3, 5.0, 5.5, 5.8, 4.9], // day 2

          [ 6.5, 6.3, 4.8, 4.5, 5.0], // day 3

          [ 4.3, 5.2, 4.3, 4.7, 4.0], // day 4

          [ 7.1, 7.2, 6.7, 7.2, 5.5], // day 5

          [ 5.8, 5.5, 4.9, 5.0, 6.2], // day 6

          [ 6.2, 4.8, 5.0, 5.2, 5.3], // day 7

          [ 4.8, 5.8, 5.7, 6.2, 5.0], // day 8

          [ 5.2, 3.8, 4.8, 5.8, 4.7], // day 9

          [ 5.8, 4.7, 5.0, 6.5, 6.3]  // day 10

    ]:

We have a total of 50 measurements. Each measurement is a triple [x1, x2, y], where
x1 is the hour of the day, x2 is the day number, and y is the blood sugar level:

data:= [([ 7, x2, Y[x2][1]], 

         [12, x2, Y[x2][2]], 

         [15, x2, Y[x2][3]], 

         [19, x2, Y[x2][4]], 

         [23, x2, Y[x2][5]]

        ) $ x2 = 1 .. 10]:

We model the blood sugar y as a function of the hour of the day x1 and the day number
x2 (trying to detect a general tendency). We assume a periodic dependence on x1 with a
period of 24 hours:

y := y0 + a*x2 + b*sin(2*PI/24*x1 + c):

A least squares fit of the given data leads to the following parameters y0, a, b, c:

[y0abc, residue]:= stats::reg(data, y, [x1, x2], [y0, a, b, c]):

[y0, a, b, c]:= y0abc
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The average blood sugar level is y0 =  with an improvement of a = 
per day. The amplitude of the daily variation of y is b = . We visualize the
measurements Y by a plot::Matrixplot. The least squares fit of our model function y
is added as a function graph:

plot(plot::Matrixplot(Y, x1 = 0..24, x2 = 1..10),

     plot::Function3d(y, x1 = 0..24, x2 = 1..10,

                      Color = RGB::Green))

delete Y, data, y, y0abc, y0, a, b, c, residue:

Example 6

We consider a decaying radioactive source, whose activity N (“counts”) is measured
at intervals of 1 second. The physical model for the decay is , where N(t) is
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the count rate at time t, N0 is the base rate at time t = 0 and τ is the lifetime of the
radioactive source. Instead of taking data from an actual physical experiment, we create
artificial data with a base rate N0 = 100 and a lifetime τ = 300:

T := [i $ i= 0 .. 100]:

N := [100*exp(-t/300) $ t in T]:

By construction, we obtain a perfect fit when estimating the paramaters N0 and τ of the
model:

stats::reg(T, N, N0*exp(-t/tau), [t], [N0, tau]);

We perturb the data:

N := [stats::poissonRandom(n)() $ n in N]:

Since the data ni in N are Poissonian, their standard deviation is the square root of
their mean: . Thus, suitable weights for a least squares estimation of the
parameters are given by :

W := [1/n $ n in N]:

With these weights, a least squares fit of the model parameters N0 and τ is computed.
The option CovarianceMatrix is used to get information on confidence intervals for the
parameters:

[p, chisquared, C] :=

    stats::reg(T, N, W, N0*exp(-t/tau), [t], [N0, tau],

               CovarianceMatrix)

The square roots of the diagonal elements of the covariance matrix provides the
statistical standard deviations of the fit parameters:
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sqrt(float(C[1,1])), sqrt(float(C[2,2]))

Thus, the estimate for the base rate N0 is , the estimate for the
lifetime τ is . The correlation matrix of the fit parameters is obtained
from the covariance matrix via stats::correlationMatrix:

stats::correlationMatrix(C)

delete T, N, W, p, chisquared, C:

Parameters

x1, 1, …,xk, m

Numerical sample data for the independent variables. The entry xi, j represents the i-th
measurement of the independent variable xj.

y1, …,yk

Numerical sample data for the dependent variable. The entry yi represents the i-th
measurement of the dependent variable.

w1, …,wk

Weight factors: positive real numerical values. The entry wi is used as a weight for the
data xi, 1, …, xi, m, yi of the i-th measurement. If no weights are provided, then wi = 1 is
used.

f

The model function: an arithmetical expression representing a function of the
independent variables x1, …, xm and the fit parameters p1, …, pn. The expression must
not contain any symbolic objects apart from x1, …, xm, p1, …, pn.
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x1, …,xm

The independent variables: identifiers or indexed identifiers.

p1, …,pn

The fit parameters: identifiers or indexed identifiers.

p1(0), …,pn(0)

The user can assist the internal numerical search by providing numerical starting values
pi(0) for the fit parameters pi. These should be reasonably close to the optimal fit values.
The starting values pi(0) = 1.0 are used if no starting values are provided by the user.

s

A sample of domain type stats::sample containing the data xi, j for the independent
variables, the data yi for the dependent variable and, optionally, the weights wi.

cy

A positive integer representing a column index of the sample s. This column provides the
measurements yi for the dependent variable.

cw

A positive integer representing a column index of the sample s. This column provides the
weight factors wi.

Options

StartingValues

Option, specified as StartingValues = [p1(0), …,pn(0)]

Positive integers representing column indices of the sample s. Column pj provides the
measurements xi, j for the independent variable xj.

If the model function depends linearly on the fit parameters pj (“linear regression”), then
the optimized parameters are the solution of a linear system of equations. In this case
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there is no need to provide starting values for a numerical search. In fact, initial values
provided by the user are ignored.

If the model function depends non-linearly on the fit parameters pj (“non-linear
regression”), then the optimized fitting parameters are the solution of a non-linear
optimization problem. There is no guarantee that the internal search for a numerical
solution will succeed. It is recommended to assist the internal solver by providing
reasonably good estimates for the optimal fit parameters.

CovarianceMatrix

Changes the return value from [[p1, …, pn], χ2] to [[p1, …, pn], χ2, C], where C is the
covariance matrix of the estimators pi given by Ci, i = σ(pi)2 and Ci, j = cov(pi, pj) for i ≠ j.

With this option, information on confidence intervals for the least squares estimators
pi are provided. In particular, the return value includes the covariance matrix C of type
Dom::Matrix(). This matrix provides the variances Cii = σ(pi)2 of the least squares
estimators pi and their covariances Cij = cov(pi, pj). The covariance matrix is defined via
its inverse

,

Where

.

The covariance matrix of the least squares estimators only has a statistical meaning if
the stochastic variances σ(yi)2 of the measurements yi are known. These variances are to
be included in the computation by choosing the weights . Cf. “Example 6” on

page 30-376.

The function stats::correlationMatrix serves for converting the covariance matrix
to the corresponding correlation matrix. See “Example 6” on page 30-376
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Return Values

Without the option CovarianceMatrix, a list [[p1, …, pn], χ2] is returned. It contains the
optimized fit parameters pi minimizing the quadratic deviation. The minimized value of
this deviation is given by χ2, it indicates the quality of the fit.

With the option CovarianceMatrix, a list [[p1, …, pn], χ2, C] is returned. The n×n
matrix C is the covariance matrix of the fit parameters.

All returned data are floating-point values. FAIL is returned if a least square fit of the
data is not possible with the given model function or if the internal numerical search
failed.

Algorithms

stats::reg uses a Marquardt-Levenberg gradient expansion algorithm. Searching
for the minimum of , the algorithm does not simply follow the negative
gradient, but the diagonal terms of the curvature matrix are increased by a factor that is
optimized in each step of the search.

References

P.R. Bevington and D.K. Robinson, “Data Reduction and Error Analysis for The Physical
Sciences”, McGraw-Hill, New York, 1992.

See Also

MuPAD Functions
stats::correlationMatrix | stats::linReg | stats::sample
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stats::row
Select and re-arrange rows of a sample

Syntax
stats::row(s, r1, <r2, …>)

stats::row(s, r1 .. r2, <r3 .. r4, …>)

Description

stats::row(s, ..) creates a new sample from selected rows of the sample s.

stats::row is useful for selecting rows of interest or for re-arranging rows.

The rows of s specified by the remaining arguments of stats::row are used to build a
new sample. The new sample contains the rows of s in the order specified by the call to
stats::row. Rows can be duplicated by specifying the row index more than once.

Examples

Example 1

The following sample represents the “population” of a small town:

stats::sample([["1990", 10564], ["1991", 10956], 

               ["1992", 11007], ["1993", 11123], 

               ["1994", 11400], ["1995", 11645]])

"1990"  10564

"1991"  10956

"1992"  11007

"1993"  11123

"1994"  11400

"1995"  11645
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We are only interested in the years 1990, 1991, 1992 and 1995. We create a new sample
containing the rows of interest:

stats::row(%, 1..3, 6)

"1990"  10564

"1991"  10956

"1992"  11007

"1995"  11645

We reorder the sample:

stats::row(%, 4, 3, 2, 1)

"1995"  11645

"1992"  11007

"1991"  10956

"1990"  10564

Parameters

s

A sample of domain type stats::sample.

r1, r2, …

Positive integers representing row indices of the sample s. A range  represents all
rows from r1 through r2.

Return Values

Sample of domain type stats::sample.

See Also

MuPAD Functions
stats::col | stats::concatCol | stats::concatRow | stats::selectRow

30-383



30 stats – Statistics

stats::sample

Domain of statistical samples

Syntax

stats::sample([[a1, 1, a1, 2, …], [a2, 1, a2, 2, …], …])

stats::sample([a1, 1, a2, 1, …])

Description

sample represents a collection of statistical data, organized as a matrix. Usually, each
row refers to an individual of the population described by the sample. Each column
represents an attribute.

stats::sample( [[a1, 1, …, a1, n], …, [am, 1, …, am, n]] ) creates a sample
with m rows and n columns, ai, j being the entry in the i-th row, j-th column.

stats::sample( [a1, 1, …, am, 1] ) creates a sample with m rows and one column.

Each row [ai, 1, …, ai, n] must contain the same number of entries.

Elements of domain type DOM_COMPLEX, DOM_EXPR, DOM_FLOAT, DOM_IDENT, DOM_INT,
or DOM_RAT are regarded as “data” and are stored in a sample as on input. All other
types of input parameters are converted to strings (DOM_STRING).

If one element in a column is a string or is converted to a string, then all elements of that
column are converted to strings.

This produces two kinds of columns: data columns and string columns.

Superdomain

Dom::BaseDomain
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Axioms

Ax::canonicalRep

Categories

Cat::Set

Examples

Example 1

A sample is created from a list of rows:

stats::sample([[5, a], [b, 7.534], [7/4, c+d]])

  5      a

  b  7.534

7/4  c + d

For a sample with only one column one can use a flat list instead of a list of rows:

stats::sample([5, 3, 8])

5

3

8

Example 2

The following input creates a small sample with columns for “gender”, “age” and “height”,
respectively:

stats::sample([["m", 26, 180], ["f", 22, 160], 

               ["f", 48, 155], ["m", 30, 172]])
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"m"  26  180

"f"  22  160

"f"  48  155

"m"  30  172

Note that all entries in a column are automatically converted to strings, if one entry of
that column is a string:

stats::sample([[m, 26, 180], [f, 22, 160], 

               ["f", 48, 155], [m, 30, 172]])

"m"  26  180

"f"  22  160

"f"  48  155

"m"  30  172

Example 3

The functions float, has, map, nops, op, and subsop are overloaded to work on
samples as on lists of lists:

s := stats::sample([[a, 1], [b, 2], [c, 3]])

a  1

b  2

c  3

float(s), has(s, a), map(s, list -> [list[1], list[2]^2]),

nops(s), subsop(s, 1 = [d, 4]), op(s, [1, 2])

a  1.0          a  1       d  4

b  2.0  , TRUE, b  4  , 3, b  2  , 1

c  3.0          c  9       c  3

Indexing works like on arrays:

s[1, 2] := x : s

a  x

b  2

c  3
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delete s:

Example 4

The dot operator may be used to concatenate samples and lists (regarded a samples with
one row):

s := stats::sample([[1, a], [2, b]]): s.[X, Y].s

1  a

2  b

X  Y

1  a

2  b

delete s:

Parameters

a1, 1, a1, 2, …

Arithmetical expressions or strings.

Methods

Mathematical Methods

equal — Test for equality

equal(s1, s2)

Conversion Methods

convert — Convert a list to a sample

convert(x)
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convert_to — Convert a sample to a list of lists

convert_to(s, T)

expr — Convert a sample to a list of lists of expressions

expr(s)

Access Methods

size — Return the number of rows

size(s)

col2list — Return a particular column as a list

col2list(s, c, …)

append — Append a row

append(s, row)

_concat — Create a sample from the rows of several samples

_concat(s, s1, …)

delCol — Delete one or more columns

delCol(s, c)

delRow — Delete one or more rows

delRow(s, r)

float — Map the float function to all entries

float(s)

has — Test for the occurrence of elements

has(s, e)
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If e is a list or a set, then this method tests, whether at least one of its elements is among
the entries of s.

_index — Return a particular entry

_index(s, i, j)

Indexed calls such as s[i, j] call this method.

set_index — Assign a new value to an entry

set_index(s, i, j, x)

This method is called by indexed assignments of the form s[i, j] := x.

map — Map a function to the rows

map(s, f)

nops — Number of rows

nops(s)

op — Get the operands (rows)

op(s, i)

op(s, [i, j])

subsop — Replace a row

subsop(s, i = newrow, …)

row2list — Return a particular row as a list

row2list(s, r, …)

Technical Methods

print — Output

print(s)

30-389



30 stats – Statistics

fastprint — Fast output

fastprint(s)
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stats::sample2list

Convert a sample to a list of lists

Syntax

stats::sample2list(s)

Description

stats::sample2list(s) converts the sample s to a list of lists.

The sub-lists of the list returned by stats::sample2list(s) are the rows of the
sample s.

Examples

Example 1

First we create a sample from a list of lists:

stats::sample([[123, s, 1/2], [442, s, -1/2], [322, p, -1/2]])

123  s   1/2

442  s  -1/2

322  p  -1/2

The input list may be recovered by stats::sample2list:

stats::sample2list(%)
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Parameters

s

A sample of domain type stats::sample.

Return Values

List of lists.

See Also

MuPAD Functions
stats::unzipCol | stats::zipCol
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stats::selectRow
Select rows of a sample

Syntax
stats::selectRow(s, c, x, <Not>)

stats::selectRow(s, [c1, c2, …], [x1, x2, …], <Not>)

Description

stats::selectRow(s, ...) selects rows of the sample s having specific entries in
specific places.

stats::selectRow(s, c, x) returns a sample consisting of all rows in s, which
contain the data element x at the position c.

stats::selectRow(s, [c1, c2, …], [x1, x2, …] ) returns a sample consisting of
all rows in s, which contain the data element x1 at the position c1 and x2 at the position c2
etc. There must be as many positions c1, c2, … as data elements x1, x2, …

Examples

Example 1

We create a sample with two columns:

stats::sample([[a, 5], [c, 1], [a, 2], [b, 3]])

a  5

c  1

a  2

b  3

We select all rows with a as their first entry:
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stats::selectRow(%, 1, a)

a  5

a  2

Example 2

We create a sample containing income and costs in the years 1997 and 1998:

stats::sample([[123, "costs", "97"], [442, "income", "98"],

               [11, "costs", "98"], [623, "income", "97"]])

123  "costs"   "97"

442  "income"  "98"

 11  "costs"   "98"

623  "income"  "97"

We select the row which has "income" in the second and "97" in the third column:

stats::selectRow(%, [2, 3], ["income", "97"])

623  "income"  "97"

We select the remaining rows:

stats::selectRow(%2, [2, 3], ["income", "97"], Not)

123  "costs"   "97"

442  "income"  "98"

 11  "costs"   "98"

Parameters

s

A sample of domain type stats::sample.

c, c1, c2, …

Integers representing column indices of the sample s.
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x, x1, x2, …

Arithmetical expressions.

Options

Not

Causes stats::selectRow to select those rows which do not have the specified entries.

Return Values

Sample of domain type stats::sample.

See Also

MuPAD Functions
stats::row
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stats::sortSample
Sort the rows of a sample

Syntax
stats::sortSample(s)

stats::sortSample(s, c1, c2, …)

stats::sortSample(s, [c1, c2, …])

Description

stats::sortSample(s, ...) sorts the rows of the sample s.

The sorting of rows only uses the entries of the specified columns. First, rows are
sorted according to the elements of the first specified column. Those rows with identical
elements in the first specified column are then ordered according to the elements in the
second specified column etc.

If no columns are specified, then column 1 is used for sorting. In case of a tie, column 2 is
used etc.

Numbers are sorted numerically, strings are sorted lexicographically. Identifiers are
sorted according to the strategy used by the MuPAD sort command. Numbers come
first, identifiers second.

Examples

Example 1

We create a sample with one column and sort it:

stats::sortSample(stats::sample([x, g2, 3, g1, 8/5, 2]))
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8/5

  2

  3

 g1

 g2

  x

Example 2

We create a sample with two columns:

stats::sample([[b, 2], [a, 5], [a, 2], [c, 1], [b, 3]])

b  2

a  5

a  2

c  1

b  3

Note the different sorting priorities specified by the column indices:

stats::sortSample(%, 1), stats::sortSample(%, 2),

stats::sortSample(%, 1, 2), stats::sortSample(%, 2, 1)

a  2    c  1    a  2    c  1

a  5    a  2    a  5    a  2

b  3  , b  2  , b  2  , b  2

b  2    b  3    b  3    b  3

c  1    a  5    c  1    a  5

Example 3

We create a sample containing income and costs in the years 1997 and 1998:

stats::sample([[123, "costs", "97"], [720, "income", "98"],

               [623, "income", "97"], [150, "costs", "98"]])

123  "costs"   "97"

720  "income"  "98"

623  "income"  "97"

150  "costs"   "98"
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We sort according to the year (third column):

stats::sortSample(%, 3)

623  "income"  "97"

123  "costs"   "97"

150  "costs"   "98"

720  "income"  "98"

We sort with priority on the year. Items of the same year are then sorted
lexicographically (“costs” before “income”):

stats::sortSample(%2, 3, 2)

123  "costs"   "97"

623  "income"  "97"

150  "costs"   "98"

720  "income"  "98"

Parameters

s

A sample of domain type stats::sample.

c1, c2, …

Integers representing column indices of the sample s.

Return Values

Sample of domain type stats::sample.

See Also

MuPAD Functions
stats::selectRow
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stats::stdev

Standard deviation of a data sample

Syntax

stats::stdev(x1, x2, …, <Sample | Population>)

stats::stdev([x1, x2, …], <Sample | Population>)

stats::stdev(s, <c>, <Sample | Population>)

Description

stats::stdev( x1, x2, ..., xn) returns the standard deviation

,

where  is the arithmetic mean of the data xi.

stats::stdev( x1, x2, ..., xn, Population) returns

.

The standard deviation is the square root of the variance.

The column index c is optional, if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-400.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.
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Examples

Example 1

We calculate the standard deviation of three values:

stats::stdev(2, 3, 5)

Alternatively, the data may be passed as a list:

stats::stdev([2, 3, 5])

Example 2

We create a sample:

stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1  b1  c1

a2  b2  c2

The standard deviation of the second column is:

expand(stats::stdev(%, 2))

Example 3

We create a sample consisting of one string column and one non-string column:

stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])
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"1996"  1242

"1997"  1353

"1998"  1142

We compute the standard deviation of the second column. In this case this column does
not have to be specified, since it is the only non-string column:

float(stats::stdev(%))

We repeat the computation with the option Population:

float(stats::stdev(%2, Population))

Parameters

x1, x2, …

The statistical data: arithmetical expressions

s

A sample of domain type stats::sample

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc.

Options

Population, Sample

With Sample, the data are regarded as a “sample”, not as a full population. The default
is Sample.
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Return Values

Arithmetical expression.

See Also

MuPAD Functions
stats::geometricMean | stats::harmonicMean | stats::mean |
stats::median | stats::modal | stats::quadraticMean | stats::variance
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stats::swGOFT
The Shapiro-Wilk goodness-of-fit test for normality

Syntax
stats::swGOFT(x1, x2, …)

stats::swGOFT([x1, x2, …])

stats::swGOFT(s, <c>)

Description

stats::swGOFT([x1, x2, …]) applies the Shapiro-Wilk goodness-of-fit test for the null
hypothesis: “the data x1, x2, … are normally distributed (with unknown mean and
variance)”. The sample size must not be larger than 5000 and not smaller than 3.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

An error is raised by stats::swGOFT if any of the data cannot be converted to a real
floating-point number or if the sample size is too large or too small.

Let y1, …, yn be the input data x1, …, xn arranged in ascending order. stats::swGOFT
returns the list [PValue = p, StatValue = w] containing the following information:

• w is the attained value of the Shapiro-Wilk statistic

.

Here, the ai are the Shapiro-Wilk coefficients, and S^2 is the statistical variance of
the sample.

• p is the observed significance level of the Shapiro-Wilk statistic W.
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The observed significance level PValue = p returned by stats::swGOFT has to be
interpreted in the following way: If p is smaller than a given significance level α<<1,
the null hypothesis may be rejected at level α. If p is larger than α, the null hypothesis
should not be rejected at level α.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We test a list of random data that purport to be a sample of normally distributed
numbers:

f := stats::normalRandom(0, 1, Seed = 123):

data := [f() $ i = 1..400]:

stats::swGOFT(data)

The observed significance level  is not small. Consequently, one should not reject
the null hypothesis that the data are normally distributed.

Next, we dote the data with some uniformly continuous deviates:

impuredata := data . [frandom() $ i = 1..101]:

stats::swGOFT(impuredata)

The doted data may be rejected as a sample of normal deviates at significance levels as
small as .
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delete f, data, impuredata:

Example 2

We create a sample consisting of one string column and two non-string columns:

s := stats::sample(

   [["1996", 1242, PI - 1/2],

    ["1997", 1353, PI + 0.3], 

    ["1998", 1142, PI + 0.5], 

    ["1999", 1201, PI - 1], 

    ["2001", 1201, PI]

   ])

"1996"  1242  PI - 1/2

"1997"  1353  PI + 0.3

"1998"  1142  PI + 0.5

"1999"  1201    PI - 1

"2001"  1201        PI

We check whether the data of the third column are normally distributed:

stats::swGOFT(s, 3)

The observed significance level returned by the test is not small: the test does not
indicate that the data are not normally distributed.

delete s:

Parameters

x1, x2, …

The statistical data: real numerical values

s

A sample of domain type stats::sample
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c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc. There is no need to specify a column number c if the sample has only one
column.

Return Values

List of two equations [PValue = p, StatValue = w] with floating-point values p and
w. See the `Details' section below for the interpretation of these values.

Algorithms

The implemented algorithm for the computation of the Shapiro-Wilk coefficients, the
Shapiro-Wilk statistic and the observed significance level is based on: Patrick Royston,
“Algorithm AS R94”, Applied Statistics, Vol.44, No.4 (1995).

Following Royston, the Shapiro-Wilk coefficients ai are computed by an approximation of

where M denotes the expected values of standard normal order statistic for a sample, V is
the corresponding covariance matrix, and MT is the transpose of M.

See Also

MuPAD Functions
stats::csGOFT | stats::ksGOFT | stats::tTest
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stats::tabulate
Statistics of duplicate rows in a sample

Syntax
stats::tabulate(s)

stats::tabulate(s, c1, c2, …, <f>)

stats::tabulate(s, c1 .. c2, c3 .. c4, …, <f>)

stats::tabulate(s, [c1, f1], [c2, f2], …)

stats::tabulate(s, [c1, c2, …, f1], [c3, c4, …, f2], …)

Description

stats::tabulate(s) eliminates duplicate rows in the sample s and appends a column
containing the multiplicities.

stats::tabulate( s, c1, c2, …, f ) combines all rows that are identical except
for entries in the specified columns c1, c2 etc. The function f is applied to these columns,
its result replaces the values in these columns.

stats::tabulate( s, [c1, f1], [c2, f2], … ) combines all rows that are
identical except for entries in the columns c1, c2 etc. The functions f1, f2 etc. are applied to
these columns, the results replace the values in these columns.

stats::tabulate regards rows as duplicates if they have identical entries in the
columns that are not specified.

With stats::tabulate( s, c1, c2, …, f ) the function f is applied to the entries
of the duplicate rows in the specified columns. Duplicates are eliminated and replaced by
a single instance of the row, the result of f is inserted into the corresponding columns.

The function f must accept as many parameters as there are duplicates. Typical
applications involve functions such as stats::mean which accept arbitrarily many
arguments.
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E.g., with stats::mean duplicate rows are replaced by a single row, in which the entries
of the columns c1, c2 etc. are replaced by the mean values of the corresponding entries of
the duplicates.

If no function f is specified, then the default function _plus is used.

If column indices are specified more than once, extra columns with the result of the
specified function are inserted into the sample.

Consecutive columns may be specified by ranges. E.g., the call stats::tabulate(s,
c[1]..c[2], dots, f) is a short hand notation for stats::tabulate(s, c1, c1 +
1, …, c2, …, f).

With stats::tabulate(s, [c1, f1], [c2, f2], …) pairs of columns and
corresponding procedures are specified. Again, rows are regarded as duplicates if they
have identical entries in the columns that are not specified. Duplicates are eliminated
and replaced by a single instance of the row, the result of f1 is inserted in column c1, the
result of f2 is inserted in column c2 etc.

If column indices are specified more than once, then extra columns with the result of the
specified functions are inserted into the sample.

With stats::tabulate(s, [c1, c2, …, f1], …) it is possible to apply functions
that act on several columns. The procedure f1 has to accept a sequence of lists (each
representing a column). The specified columns are replaced by a single column containing
the result of f1. If column indices are specified more than once, then extra columns with
the result of the specified function(s) are inserted into the sample. See “Example 2” on
page 30-409 and “Example 3” on page 30-410.

Examples

Example 1

We create a sample:

s := stats::sample([[a, A, 1], [a, A, 1], [a, A, 2],

                    [b, B, 5], [b, B, 10]])
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a  A   1

a  A   1

a  A   2

b  B   5

b  B  10

Duplicate rows of the sample are counted. There are four unique rows, one occurring
twice:

stats::tabulate(s)

a  A   1  2

a  A   2  1

b  B   5  1

b  B  10  1

In the following call, rows are regarded as duplicates if the entries in the first two
columns coincide. We compute the mean value of the third entry of the duplicates:

stats::tabulate(s, 3, stats::mean)

a  A   4/3

b  B  15/2

We compute both the mean and the standard deviation of the data in the third column
for the sub-samples labeled `a A' and `b B' by the first two columns:

stats::tabulate(s, [3, stats::mean], [3, stats::stdev])

a  A   4/3      3^(1/2)/3

b  B  15/2  (5*2^(1/2))/2

delete s:

Example 2

We create a sample containing columns for “gender”, “age” and “size”:

s := stats::sample([["f", 25, 166], ["m", 30, 180], 

                    ["f", 54, 160], ["m", 40, 170],

                    ["f", 34, 170], ["m", 20, 172]])
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"f"  25  166

"m"  30  180

"f"  54  160

"m"  40  170

"f"  34  170

"m"  20  172

We use stats::mean on the second and third column to calculate the average “age” and
“size” of each gender:

stats::tabulate(s, 2..3, float@stats::mean)

"f"  37.66666667  165.3333333

"m"         30.0        174.0

With the next call both the mean and the standard deviation of “age” and “size” for each
gender are inserted into the sample.

stats::tabulate(s, 

  [2, float@stats::mean], [2, float@stats::stdev],

  [3, float@stats::mean], [3, float@stats::stdev])

"f"  37.66666667  14.84362939  165.3333333  5.033222957

"m"         30.0         10.0        174.0  5.291502622

We compute the Bravais-Pearson correlation coefficient between “age” and “size” for each
gender:

stats::tabulate(s, [2, 3, float@stats::correlation])

"f"  -0.7540135991

"m"  -0.1889822365

delete s:

Example 3

We create a sample:

s := stats::sample([[a, x1, 1, 2], [b, x2, 2, 4], 
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                    [b, x1, 2, 4], [e, x2, 3, 5.5]])

a  x1  1    2

b  x2  2    4

b  x1  2    4

e  x2  3  5.5

We regard rows with the same entry in the second column as “of the same kind”. We
tabulate the sample using different functions on the remaining columns:

stats::tabulate(s, [1, _plus], [3, _mult], [4, stats::mean])

a + b  x1  2     3

b + e  x2  6  4.75

One can apply customized procedures. In the following we define the procedure
plusmult, which sums up the elements of two lists (representing columns) and then
multiplies the sums.

plusmult := proc(x, y) begin _plus(op(x))*_plus(op(y)) end_proc:

This procedure is then used to combine the first and the third column. Simultaneously,
the mean and the standard deviation of the fourth column is inserted into the sample.

stats::tabulate(s, [1, 3, plusmult], [4, stats::mean],

                [4, stats::stdev])

3*a + 3*b  x1     3      2^(1/2)

5*b + 5*e  x2  4.75  1.060660172

delete plusmult, s:

Parameters

s

A sample of domain type stats::sample

c1, c2, …

Integers representing column indices of the sample s
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f, f1, f2, …

Procedures

Return Values

Sample of domain type stats::sample.

See Also

MuPAD Functions
stats::calc
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stats::tCDF
Cumulative distribution function of Student's t-distribution

Syntax
stats::tCDF(a)

Description

stats::tCDF(a) returns a procedure representing the cumulative distribution function

of Student's t-distribution with shape parameter ('degrees of freedom') a>0.

The procedure f := stats::tCDF(a) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If a can be converted to a positive floating point number x is a real number, the return
value f(x) is a floating-point number.

f(infinity) produces 0.0; f(-infinity) produces 1.0.

In all other cases, f(x) returns the symbolic call stats::tCDF(a)(x).

The procedure f := stats::tCDF(a) can also be called in the form f(x, Symbolic)
with arithmetical expressions x.

If a is a positive integer, explicit symbolic expressions in x are returned. Otherwise,
the function behaves as if called without the option Symbolic. Cf. “Example 3” on page
30-415.

Numerical values of a are only accepted if they are positive.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the cumulative distribution function with a =  at various points:

f := stats::tCDF(3/4): 

f(-infinity), f(-4), f(0), f(1/2), f(0.75), f(PI), f(infinity)

Nonpositive numerical values of the shape parameter lead to an error:

stats::tCDF(-1)(0.75)

Error: The shape parameter must be positive. [stats::tCDF]

delete f:

Example 2

We use symbolic arguments:

f := stats::tCDF(a): f(x), f(1/3), f(0.4)

When a positive real number is assigned to a, the call f(x) returns a floating-point
number if x is numerical:

a := sqrt(10): f(PI)
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delete f, a:

Example 3

We demonstrate the option Symbolic. Without this option, the CDF function only
produces explicit results if both a and x are numerical values:

stats::tCDF(3)(x)

If the shape parameter is a positive integer, an explicit symbolic representation of the t-
distribution exists for any x:

f := stats::tCDF(3): f(x, Symbolic)

No internal floating-point conversions occur even if all input parameters are exact
numerical values:

f(sqrt(2), Symbolic) = f(sqrt(2))

If the shape parameter is not a positive integer, the option Symbolic has no effect. The
function f behaves as if called without this option:

f := stats::tCDF(PI): 

f(sqrt(2), Symbolic) = f(sqrt(2))
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f := stats::tCDF(PI):

f(x, Symbolic)

delete f:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::tPDF | stats::tQuantile | stats::tRandom
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stats::tPDF
Probability density function of Student's t-distribution

Syntax
stats::tPDF(a)

Description

stats::tPDF(a) returns a procedure representing the probability density function

of Student's t-distribution with shape parameter ('degrees of freedom') a > 0.

The procedure f := stats::tPDF(a) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number or a
symbolic expression:

If x is a floating-point number and a can be converted to a floating-point number, then
f(x) returns a floating-point number.

f(infinity) and f(-infinity) produce the result 0.0.

In all other cases, the expression  is returned.

If floating-point results are desired, call f(x) with a floating-point value x.
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Numerical values for a are only accepted if they are real and positive.

Examples

Example 1

We evaluate the probability density function with a =  at various points:

f := stats::tPDF(3/4):

f(-infinity), f(-PI), f(1/2), f(0.5), f(3), f(infinity)

delete f:

Example 2

We use symbolic arguments:

f := stats::tPDF(a): f(x), f(0.3)

When numerical values are assigned to a, the function f starts to produce floating-point
values for floating-point arguments:

a := PI: f(0.3)

delete f, a:
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Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::tCDF | stats::tQuantile | stats::tRandom
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stats::tQuantile
Quantile function of Student's t-distribution

Syntax
stats::tQuantile(a)

Description
stats::tQuantile(a) returns a procedure representing the quantile function (inverse)
of the cumulative distribution function stats::tCDF(a). For 0 ≤ x ≤ 1, the solution of
stats::tCDF(a)(y) = x is given by y = stats::tQuantile(a)(x).

The procedure f := stats::tQuantile(a) can be called in the form f(x) with an
arithmetical expression x. The return value of f(x) is either a floating-point number,
±infinity, or a symbolic expression:

If x is a real number between 0 and 1 and the shape parameter a can be converted to
a positive real floating-point number, then f(x) returns a real floating-point number
approximating the solution y of stats::tCDF(a)(y) = x.

The calls f(1/2) and f(0.5) produce 0.0 for all values of a.

The calls f(0) and f(0.0) produce -infinity for all values of a.

The calls f(1) and f(1.0) produce infinity for all values of a.

In all other cases, f(x) returns the symbolic call stats::tQuantile(a)(x).

Numerical values of x are only accepted if 0 ≤ x ≤ 1.

Numerical values of the shape parameter a are only accepted if they are real and
positive.

Environment Interactions
The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the quantile function with a = π at various points:

f := stats::tQuantile(PI): 

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::tCDF(PI)(f(x)) = x:

stats::tCDF(PI)(f(0.987654))

delete f:

Example 2

We use symbolic arguments:

f := stats::tQuantile(a): f(x), f(9/10)

When a positive real value is assigned to the shape parameter a, the function f starts to
produce floating-point values:

a := 17: f(0.999), f(1 - sqrt(2)/10^5)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)
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f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, a:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::tCDF | stats::tPDF | stats::tRandom
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stats::tRandom

Generate a random number generator for Student deviates (t-deviates)

Syntax

stats::tRandom(a, <Seed = s>)

Description

stats::tRandom(a) returns a procedure that produces t-deviates (random numbers)
with shape parameter ('degrees of freedom') a>0.

The procedure f := stats::tRandom(a) can be called in the form f(). The return
value of f() is either a floating-point number or a symbolic expression:

If a can be converted to a positive floating point number, then f() returns a real floating
point number.

In all other cases, stats::tRandom(a)() is returned symbolically.

Numerical values of a are only accepted if they are real and positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the t-distribution with shape parameter a. For any real x, the probability that
X ≤ x is given by

.

Without the option Seed = s, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.
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Note: In contrast to the function random, the generators produced by stats::tRandom
do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random numbers via

f := stats::tRandom(a): f() $k = 1..K;

rather than by

stats::tRandom(a)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::tRandom(a, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate t-deviates with shape parameter a = 23:

f := stats::tRandom(23): f() $ k = 1..4

delete f:
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Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::tRandom(a): f()

When the shape parameter a evaluates to a positive real number, f starts to produce
random floating-point numbers:

a := sqrt(99): f() $ k = 1..4

delete f, a:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::tRandom(PI, Seed = 1): f() $ k = 1..4

g := stats::tRandom(PI, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:
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Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the shape parameter a must be convertible to a positive
floating-point number at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of the t-deviates uses a gamma deviate
X with shape parameter a/2 and a normal deviate Y to arrive at a t-deviate X/sqrt(Y/
a). For more information see: D. Knuth, Seminumerical Algorithms (1998), Vol. 2, p. 135.

See Also

MuPAD Functions
stats::tCDF | stats::tPDF | stats::tQuantile
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stats::tTest
T-test for a mean

Syntax
stats::tTest(x1, x2, …, m, <Normal>)

stats::tTest([x1, x2, …], m, <Normal>)

stats::tTest(s, <c>, m, <Normal>)

Description

stats::tTest( [x1, x2, …], m ) tests the null hypothesis: “the true mean of the
data xi is larger than m”.

stats::tTest accepts numerical data as well as symbolic data.

If all data are real floating-point numbers, the returned values p and t are floating-point
numbers.

If m is a floating-point number, the sample data are converted to floating-point numbers
automatically.

For a sample x1, x2, … of size n, stats::tTest computes , where

is the empirical mean of the data and
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is the empirical variance.

stats::tTest(data, m) returns the list [PValue = p, StatValue = t], where
the observed significance level p is computed as p = stats::tCDF(n - 1)(t).

stats::tTest(data, m, Normal) returns the list [PValue = p, StatValue =
t], where the observed significance level p is computed as p = stats::normalCDF(0,
1)(t). For large n, this is an approximation of stats::tCDF(n - 1)(t).

Intuitively, p corresponds to the “probability” that the true mean of the data (the
expectation value of the underlying distribution) is larger than m.

The most relevant information returned by stats::tTest is the observed significance
level PValue = p. It has to be interpreted in the following way:

The t-test may be used as a one-tailed test of the null hypothesis: “the true mean of the
data is larger than m”. In this case, the null hypothesis may be rejected at level α if the
observed significance level p satisfies p < α.

Alternatively, the t-test may also be used as a one-tailed test of the null hypothesis:
“the true mean of the data is smaller than m”. In this case, the null hypothesis may be
rejected at level α if the observed “significance level” p satisfies p > 1 - α.

Alternatively, the t-test may also be used as a two-tailed test of the null hypothesis:
“the true mean of the data is m”. If the observed “significance level” p returned by
stats::tTest satisfies either  or  for some given level 0 < α < 1, this

null hypothesis may be rejected at level α.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

10 experiments produced the values 1, - 2, 3, - 4, 5, - 6, 7, - 8, 9, 10, which are assumed
to be normally distributed with unknown mean and variance. The empirical mean of the
sample data is 1.5. There is only a small probability p =  that the true mean is
larger than 5.0:

data := [1, -2, 3, -4, 5, -6, 7, -8, 9, 10]:

stats::tTest(data, 5.0)

We compare this result with the observed significance level computed via a standard
normal distribution:

stats::tTest(data, 5.0, Normal)

The approximation of the observed significance level p by the standard normal
distribution is rather poor because of the small sample size. Next, we consider a larger
sample. The true mean of the random data should be 10:

r := stats::normalRandom(10, 12, Seed = 0):

data := [r() $ i = 1..100]:

stats::tTest(data, 10);

stats::tTest(data, 10, Normal)
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With the observed significance level of p = , the data are not disqualified as
having the true mean 10. For samples of this size, the normal distribution approximates
the t-distribution well.

delete data, r:

Parameters

x1, x2, …

The statistical data: arithmetical expressions

m

The estimate for the true mean of the data: an arithmetical expression

s

A sample of domain type stats::sample.

c

An integer representing a column index of the sample s. This column provides the data
x1, x2 etc. There is no need to specify a column number c if the sample has only one non-
string column.

Options

Normal

Compute the observed significance level by a standard normal distribution instead of a t-
distribution.

Return Values

a list of two equations [PValue = p, StatValue = t] with numerical values p and t.
See the `Details' section below for the interpretation of these values.
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If the variance of the data vanishes, FAIL is returned.

Algorithms

If the data are normally distributed with expectation value ('true mean') μ, the variable
 is t-distributed with n - 1 degrees of freedom. The probability of the

event that T attains values not larger than t is Pr(T ≤ t)=stats::tCDF(n - 1)(t).

See Also

MuPAD Functions
stats::csGOFT | stats::ksGOFT | stats::mean | stats::normalCDF |
stats::stdev | stats::swGOFT | stats::tCDF
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stats::uniformCDF
Cumulative distribution function of the uniform distribution

Syntax
stats::uniformCDF(a, b)

Description

stats::uniformCDF(a, b) returns a procedure representing the cumulative
distribution function

of the uniform distribution on the interval [a, b].

The procedure f := stats::uniformCDF(a, b) can be called in the form f(x) with
an arithmetical expression x. The return value of f(x) is either a floating-point number
or a symbolic expression:

If x < a can be decided, then f(x) returns 0. If x > b can be decided, then f(x) returns
the value 1. If a ≤ x and x ≤ b can be decided, then f(x) returns the value (x - a)/(b
- a).

If x is a real floating-point number and both a and b can be converted to real floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ a, or x ≥ b, or a ≤ x and x ≤ b, then the corresponding
values are returned.

f(x) returns the symbolic call stats::uniformCDF(a, b)(x) if it cannot be decided
whether x lies in the interval [a, b].

Numerical values for a and b are only accepted if they are real and a ≤ b.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the cumulative distribution function on the interval [- 3, 2 π] at various
points:

f := stats::uniformCDF(-3, 2*PI):

f(-infinity), f(-3), f(0.5), f(2/3), f(3.0), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether a ≤ x ≤ b
holds. A symbolic function call is returned:

f := stats::uniformCDF(a, b): f(x)

With suitable properties, it can be decided whether a ≤ x ≤ b holds. An explicit expression
is returned:

assume(x < a): f(x)
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Note that assume(x < a) attached properties both to a and x. With the next call, we
overwrite the property attached to x. However, the property attached to a has to be
'unassumed' as well to avoid inconsistent assumptions x < a and x > b:

unassume(a): assume(x > b): f(x)

assume(a <= x <= b): f(x)

assume(b > a): f(a + (b - a)/3)

unassume(x): unassume(a): unassume(b): delete f:

Example 3

We use symbolic arguments:

f := stats::uniformCDF(a, b): f(3), f(3.0)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 0: b := PI: f(3), f(3.0)

delete f, a, b:

30-434



 stats::uniformCDF

Parameters

a, b

arithmetical expressions representing real values; a ≤ b is assumed.

Return Values

procedure.

See Also

MuPAD Functions
stats::uniformPDF | stats::uniformQuantile | stats::uniformRandom

30-435



30 stats – Statistics

stats::uniformPDF
Probability density function of the uniform distribution

Syntax
stats::uniformPDF(a, b)

Description

stats::uniformPDF(a, b) returns a procedure representing the probability density
function

of the uniform distribution on the interval [a, b].

The procedure f := stats::uniformPDF(a, b) can be called in the form f(x) with
an arithmetical expression x. The return value of f(x) is either a floating-point number
or a symbolic expression:

If x < a or x > b can be decided, then f(x) returns 0. If a ≤ x and x ≤ b can be decided,
then f(x) returns the value 1/(b - a).

If x is a real floating-point number and both a and b can be converted to real floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x < a, or x > b, or a ≤ x and x ≤ b, then the corresponding
values are returned.

f(x) returns the symbolic call stats::uniformPDF(a, b)(x) if it cannot be decided
whether x lies in the interval [a, b].

Numerical values for a and b are only accepted if they are real and a ≤ b.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the probability density function on the interval [- 3, 2 π] at various points:

f := stats::uniformPDF(-3, 2*PI):

f(-infinity), f(-PI), f(-3.0), f(1/2), f(0.5), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether a ≤ x ≤ b
hold. A symbolic function call is returned:

f := stats::uniformPDF(a, b): f(x)

With suitable properties, it can be decided whether a ≤ x ≤ b holds. An explicit expression
is returned:

assume(x < a): f(x)

Note that assume(x < a) attached properties both to a and x. With the next call, we
overwrite the property attached to x. However, the property attached to a has to be
'unassumed' as well to avoid inconsistent assumptions x < a and x > b:
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unassume(a): assume(x > b): f(x)

assume(a <= x <= b): f(x)

assume(b > a): f(a + (b - a)/3)

unassume(x): unassume(a): unassume(b): delete f:

Example 3

We use symbolic arguments:

f := stats::uniformPDF(a, b): f(x)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 0: b := PI: f(3), f(3.0)

delete f, a, b:

Parameters

a, b

arithmetical expressions representing real values; a ≤ b is assumed.
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Return Values

procedure.

See Also

MuPAD Functions
stats::uniformCDF | stats::uniformQuantile | stats::uniformRandom
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stats::uniformQuantile

Quantile function of the uniform distribution

Syntax

stats::uniformQuantile(a, b)

Description

stats::uniformQuantile(a, b) returns a procedure representing the quantile
function (inverse) of the cumulative distribution function stats::uniformCDF(a, b)
of the uniform distribution on the interval [a, b]. For 0 ≤ x ≤ 1, the quantile function is
given by .

The procedure f := stats::uniformQuantile(a, b) can be called in the form f(x)
with an arithmetical expression x. The return value of f(x) is either a floating-point
number or a symbolic expression:

If x is a real number between 0 and 1 and a and b can be converted to floating-point
numbers, then f(x) returns the value a + x (b - a) as a floating-point number. Otherwise,
this value is returned as a symbolic expression.

Numerical values of x are only accepted if 0 ≤ x ≤ 1.

Numerical values for a and b are only accepted if they are real and a ≤ b.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.
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Examples

Example 1

We evaluate the quantile function over the interval  at various points:

f := stats::uniformQuantile(2, 11/4):

f(0), f(1/10), f(0.5), f(1 - 10^(-5)), f(1)

delete f:

Example 2

We use symbolic arguments:

f := stats::uniformQuantile(a, b): f(x), f(9/10)

When positive real values are assigned to a and b, the function f starts to produce
numerical values:

a := 3: b := 11/2: f(0.999), f(1 - sqrt(2)/10^5)

delete f, a, b:

Parameters

a, b

arithmetical expressions representing real values; a ≤ b is assumed.
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Return Values

procedure.

See Also

MuPAD Functions
stats::uniformCDF | stats::uniformPDF | stats::uniformRandom
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stats::uniformRandom

Generate a random number generator for uniformly continous deviates

Syntax

stats::uniformRandom(a, b, <Seed = s>)

Description

stats::uniformRandom(a, b) returns a procedure that produces uniformly continous
deviates (random numbers) on the interval .

The procedure f := stats::uniformRandom(a, b) can be called in the form f().
The return value of f() is either a floating-point number or a symbolic expression:

If a and b can be converted to floating-point numbers, then f() returns a floating point
number between a and b.

In all other cases, stats::uniformRandom(a, b)() is returned symbolically.

Numerical values of a and b are only accepted if they are real and a ≤ b.

The values X = f() are distributed randomly according to the cumulative distribution
function of the uniform distribution on the interval . For any a ≤ x ≤ b, the
probability that X ≤ x is given by .

Without the option Seed = s, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::uniformRandom do not react to the environment variable SEED.
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For efficiency, it is recommended to produce sequences of K random numbers
via f := stats::uniformRandom(a, b): f() $ k = 1..K rather than by
stats::uniformRandom(a, b)() $ k = 1..K The latter call produces a sequence of
generators each of which is called once. Also note that

stats::uniformRandom(a, b, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate uniform deviates on the interval :

f := stats::uniformRandom(2, 7): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::uniformRandom(a, b): f()

When a and b evaluate to real numbers, f starts to produce random floating point
numbers:
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a := PI: b := 10: f() $ k = 1..4

delete f, a, b:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::uniformRandom(0, 10, Seed = 10^3): f() $ k = 1..4

g := stats::uniformRandom(0, 10, Seed = 10^3): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

a, b

arithmetical expressions representing real values; a ≤ b is assumed.

Options

Seed

Option, specified as Seed = s
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Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters a and b must be convertible to floating-point
numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

Uniform deviates on the interval  are produced via a + (b - a)*frandom().

See Also

MuPAD Functions
frandom | random | stats::uniformCDF | stats::uniformPDF |
stats::uniformQuantile
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stats::unzipCol
Extract columns from a list of lists

Syntax
stats::unzipCol(list)

Description

stats::unzipCol extracts the columns of a matrix structure encoded by a list of lists.

stats::unzipCol treats a list of lists like a list of rows of a stats::sample and
extracts the columns. In conjunction with stats::sample2list it is useful for
extracting the columns of a stats::sample.

stats::unzipCol is the inverse of stats::zipCol.

Examples

Example 1

We extract the columns from a list of rows representing a matrix structure:

stats::unzipCol([[a11, a12], [a21, a22], [a31, a32]])

Example 2

A list of rows is used to create a sample:

stats::sample([[123, s, 1/2], [442, s, -1/2], [322, p, -1/2]])
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123  s   1/2

442  s  -1/2

322  p  -1/2

We re-convert the sample to a list of lists:

stats::sample2list(%)

Finally, we extract the columns:

stats::unzipCol(%)

Parameters

list

A list of lists.

Return Values

Sequence of lists to be regarded as columns.

See Also

MuPAD Functions
stats::col | stats::sample2list | stats::zipCol
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stats::variance

Variance of a data sample

Syntax

stats::variance(x1, x2, …, <Sample | Population>)

stats::variance([x1, x2, …], <Sample | Population>)

stats::variance(s, <c>, <Sample | Population>)

Description

stats::variance( x1, x2, ..., xn) returns the variance

,

where  is the arithmetic mean of the data xi.

stats::variance( x1, x2, ..., xn, Population) returns

.

The variance is the square of the standard deviation.

The column index c is optional, if the data are given by a stats::sample object
containing only one non-string column. Cf. “Example 3” on page 30-450.

External statistical data stored in an ASCII file can be imported into a MuPAD session
via import::readdata. In particular, see Example 1 of the corresponding help page.

30-449



30 stats – Statistics

Examples

Example 1

We calculate the variance of three values:

stats::variance(2, 3, 5)

Alternatively, the data may be passed as a list:

stats::variance([2, 3, 5])

Example 2

We create a sample:

stats::sample([[a1, b1, c1], [a2, b2, c2]])

a1  b1  c1

a2  b2  c2

The variance of the second column is:

expand(stats::variance(%, 2))

Example 3

We create a sample consisting of one string column and one non-string column:

stats::sample([["1996", 1242], ["1997", 1353], ["1998", 1142]])
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"1996"  1242

"1997"  1353

"1998"  1142

We compute the variance of the second column. In this case this column does not have to
be specified, since it is the only non-string column:

float(stats::variance(%))

We repeat the computation with the option Population:

float(stats::variance(%2, Population))

Parameters

x1, x2, …

The statistical data: arithmetical expressions

s

A sample of domain type stats::sample

c

An integer representing a column index of the sample s. This column provides the data
x1, x2, ….

Options

Population, Sample

With Sample, the data are regarded as a “sample”, not as a full population. The default
is Sample.
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Return Values

Arithmetical expression.

See Also

MuPAD Functions
stats::geometricMean | stats::harmonicMean | stats::mean |
stats::median | stats::modal | stats::quadraticMean | stats::stdev
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stats::weibullCDF
Cumulative distribution function of the Weibull distribution

Syntax
stats::weibullCDF(a, b)

Description

stats::weibullCDF(a, b) returns a procedure representing the cumulative
distribution function

of the Weibull distribution with shape parameter a > 0 and scale parameter b > 0.

The procedure f := stats::weibullCDF(a, b) can be called in the form f(x) with
an arithmetical expression x. The return value of f(x) is either a floating-point number
or a symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0. If x ≥ 0 can be decided, then f(x) returns
the value 1 - exp(-(x/b)^a).

If x is a floating-point number and both a and b can be converted to positive floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x ≥ 0, the corresponding values are returned.

The call f(- infinity ) returns 0.

The call f( infinity ) returns 1.

f(x) returns the symbolic call stats::weibullCDF(a, b)(x) if neither x ≤ 0 nor x ≥ 0
can be decided.
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Numerical values for a and b are only accepted if they are real and positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The procedure generated by stats::weibullCDF reacts to
properties of identifiers set via assume.

Examples

Example 1

We evaluate the cumulative distribution function with a = 2 and b = 1 at various points:

f := stats::weibullCDF(2, 1): 

f(-infinity), f(-3), f(0.5), f(2/3), f(PI), f(infinity)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x ≥ 0 holds.
A symbolic function call is returned:

f := stats::weibullCDF(a, b): f(x)

With suitable properties, it can be decided whether x ≥ 0 holds. An explicit expression is
returned:

assume(0 < x): f(x)
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unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::weibullCDF(a, b): f(x)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 2: b := 1: f(3), f(3.0)

delete f, a, b:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.
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See Also

MuPAD Functions
stats::weibullPDF | stats::weibullQuantile | stats::weibullRandom
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stats::weibullPDF
Probability density function of the Weibull distribution

Syntax
stats::weibullPDF(a, b)

Description

stats::weibullPDF(a, b) returns a procedure representing the probability density
function

of the Weibull distribution with shape parameter a > 0 and scale parameter b > 0.

The procedure f := stats::weibullPDF(a, b) can be called in the form f(x) with
an arithmetical expression x. The return value of f(x) is either a floating-point number
or a symbolic expression:

If x ≤ 0 can be decided, then f(x) returns 0. If x > 0 can be decided, then f(x) returns

the value .

If x is a floating-point number and both a and b can be converted to positive floating-
point numbers, then these values are returned as floating-point numbers. Otherwise,
symbolic expressions are returned.

The function f reacts to properties of identifiers set via assume. If x is a symbolic
expression with the property x ≤ 0 or x > 0, the corresponding values are returned.

f(- infinity ) and f( infinity ) return 0.

f(x) returns the symbolic call stats::weibullPDF(a, b)(x) if neither x ≤ 0 nor x > 0
can be decided.
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Numerical values for a and b are only accepted if they are real and positive.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision. The procedure generated by stats::weibullPDF reacts to
properties of identifiers set via assume.

Examples

Example 1

We evulate the probability density function with a = 2 and b = 1 at various points:

f := stats::weibullPDF(2, 1): f(1/5), f(0.5), f(-1), f(x)

delete f:

Example 2

If x is a symbolic object without properties, then it cannot be decided whether x > 0 holds.
A symbolic function call is returned:

f := stats::weibullPDF(a, b): f(x)

With suitable properties, it can be decided whether x > 0 holds. An explicit expression is
returned:

assume(0 < x): f(x)
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unassume(x): delete f:

Example 3

We use symbolic arguments:

f := stats::weibullPDF(a, b): f(x), f(3)

When numerical values are assigned to a and b, the function f starts to produce
numerical values:

a := 2: b := 1: f(3), f(3.0)

delete f, a, b:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.
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See Also

MuPAD Functions
stats::weibullCDF | stats::weibullQuantile | stats::weibullRandom
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stats::weibullQuantile

Quantile function of the Weibull distribution

Syntax

stats::weibullQuantile(a, b)

Description

stats::weibullQuantile(a, b) returns a procedure representing the quantile
function (inverse)

of the cumulative distribution function stats::weibullCDF(a, b). For 0 ≤ x ≤ 1, the
solution of stats::weibullCDF(a, b)(y) = x is given by

.

The procedure f := stats::weibullQuantile(a, b) can be called in the form f(x)
with an arithmetical expression x. The return value of f(x) is either a floating-point
number, infinity, or a symbolic expression:

If x is a real float point number between 0 and 1 and a and b can be converted to positive
floating-point numbers, then f(x) returns a floating-point number.

The calls f(1) and f(1.0) produce infinity.

In all other cases, f(x) returns the symbolic expression a - ln(1 - x)/b.

Numerical values of x are only accepted if 0 ≤ x ≤ 1.

Numerical values of a and b are only accepted if they are real and positive.
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Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We evaluate the quantile function with a = 2 and b =  at various points:

f := stats::weibullQuantile(2, 3/4): 

f(0), f(1/10), f(0.5), f(1 - 10^(-10)), f(1)

The value f(x) satisfies stats::weibullCDF(2, 3)(f(x)) = x:

stats::weibullCDF(2, 3/4)(f(0.987654321))

delete f:

Example 2

We use symbolic arguments:

f := stats::weibullQuantile(a, b): f(x), f(1/PI), f(0.99)

When suitable numerical values are assigned to a and b, the function f starts to produce
numerical values:
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a := 7: b := 1/8: f(0.999), f(999/1000)

Numerical values for x are only accepted if 0 ≤ x ≤ 1:

f(0.5)

f(2)

Error: An argument x with 0 <= x <= 1 is expected. [f]

delete f, a, b:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

Return Values

procedure.

See Also

MuPAD Functions
stats::weibullCDF | stats::weibullPDF | stats::weibullRandom
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stats::weibullRandom
Generate a random number generator for Weibull deviates

Syntax
stats::weibullRandom(a, b, <Seed = s>)

Description
stats::weibullRandom(a, b) returns a procedure that produces Weibull deviates
(random numbers) with shape parameter a > 0 and scale parameter b > 0.

The procedure f := stats::weibullRandom(a, b) can be called in the form f().
The return value of f() is either a floating-point number or a symbolic expression:

If a and b can be converted to positive floating-point numbers, then f() returns a
nonnegative floating-point number.

In all other cases, stats::weibullRandom(a, b)() is returned symbolically.

Numerical values of a and b are only accepted if they are real and positive.

The values X = f() are distributed randomly according to the cumulative distribution
function of the Weibull distribution with parameters a and b. For any 0 ≤ x, the
probability that X ≤ x is given by .

Without the option Seed = s, an initial seed is chosen internally. This initial seed is set
to a default value when MuPAD is started. Thus, each time MuPAD is started or re-
initialized with the reset function, random generators produce the same sequences of
numbers.

Note: In contrast to the function random, the generators produced by
stats::weibullRandom do not react to the environment variable SEED.

For efficiency, it is recommended to produce sequences of K random numbers via
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f := stats::weibullRandom(a, b): f() $k = 1..K;

rather than by

stats::weibullRandom(a, b)() $k = 1..K;

The latter call produces a sequence of generators each of which is called once. Also note
that

stats::weibullRandom(a, b, Seed = n)() $k = 1..K;

does not produce a random sequence, because a sequence of freshly initialized generators
would be created each of them producing the same number.

Environment Interactions

The function is sensitive to the environment variable DIGITS which determines the
numerical working precision.

Examples

Example 1

We generate Weibull deviates with parameters a = 2 and b = :

f := stats::weibullRandom(2, 3/4): f() $ k = 1..4

delete f:

Example 2

With symbolic parameters, no random floating-point numbers can be produced:

f := stats::weibullRandom(a, b): f()
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When positive real numbers are assigned to a and b, the function f starts to produce
random floating point numbers:

a := PI: b := 1/8: f() $ k = 1..4

delete f, a, b:

Example 3

We use the option Seed = s to reproduce a sequence of random numbers:

f := stats::weibullRandom(PI, 3, Seed = 1): f() $ k = 1..4

g := stats::weibullRandom(PI, 3, Seed = 1): g() $ k = 1..4

f() = g(), f() = g()

delete f, g:

Parameters

a

The shape parameter: an arithmetical expression representing a positive real value

b

The scale parameter: an arithmetical expression representing a positive real value

30-466



 stats::weibullRandom

Options

Seed

Option, specified as Seed = s

Initializes the random generator with the integer seed s. s can also be the option
CurrentTime, to make the seed depend on the current time.

This option serves for generating generators that return predictable sequences of pseudo-
random numbers. The generator is initialized with the seed s which may be an arbitrary
integer. Several generators with the same initial seed produce the same sequence of
numbers.

When this option is used, the parameters a and b must be convertible to positive floating-
point numbers at the time when the random generator is generated.

Return Values

procedure.

Algorithms

The implemented algorithm for the computation of the Weibull deviates uses the quantile
function of the Weibull distribution applied to unformly distributed random numbers on
the interval .

See Also

MuPAD Functions
stats::weibullCDF | stats::weibullPDF | stats::weibullQuantile
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stats::zipCol
Convert a sequence of columns to a list of lists

Syntax
stats::zipCol(column1, column2, …)

Description

stats::zipCol(..) converts a sequence of columns to a format suitable for creating a
stats::sample.

stats::zipCol is useful for converting column data given in lists to a list of lists
accepted by stats::sample.

stats::zipCol is the inverse of stats::unzipCol.

Examples

Example 1

We convert a single column to a nested list:

stats::zipCol([a, b, c])

This list is accepted by stats::sample:

stats::sample(%)

a

b

c
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Example 2

We build a sample consisting of two columns:

column1 := [122, 442, 322]: column2 := [s, s, p]:

stats::zipCol(column1, column2)

stats::sample(%)

122  s

442  s

322  p

Parameters

column1, column2, …

Lists.

Return Values

List of lists.

See Also

MuPAD Functions
stats::sample2list | stats::unzipCol
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stringlib::collapseWhitespace
Collapse whitespace in strings

Syntax
stringlib::collapseWhitespace(string)

Description

stringlib::collapseWhitespace(string) replaces each whitespace sequence in
string by one space.

The characters " " (space), "\n" (newline), "\t" (tabulator) and "\r" (return) are
called whitespace.

stringlib::collapseWhitespace(string) replaces all whitespace characters by
one space and following all sequences of spaces by one space in string.

When string contains no whitespace or only single space characters, the string is
returned without changes.

stringlib::collapseWhitespace is a function of the system kernel.

Examples

Example 1

In the following examples all whitespace is collapsed:

stringlib::collapseWhitespace("          ")

stringlib::collapseWhitespace("MuPAD    is       nice.")
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stringlib::collapseWhitespace("          ")

In this example no whitespace can be collapsed:

stringlib::collapseWhitespace(""),

stringlib::collapseWhitespace("12345"),

stringlib::collapseWhitespace("MuPAD is nice.")

Example 2

stringlib::collapseWhitespace can be useful for output MuPAD code. The
procedure is only an expample:

f:= proc(x) local y; begin y:= 2*x; x + y end

print(f)

expr2text(f)

stringlib::collapseWhitespace(%)
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Parameters

string

Any MuPAD string

Return Values

Given string with collapsed whitespace

See Also

MuPAD Functions
stringlib::remove | stringlib::subs | subs
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stringlib::contains
Test for substring

Syntax
stringlib::contains(string1, string2, options)

Description

stringlib::contains(string1, string2) checks, whether string1 contains
another string string2.

Examples

Example 1

If called without options, stringlib::contains simply returns TRUE or FALSE.

stringlib::contains("abcdeabcdeabcde", "bc")

stringlib::contains("abcdeabcdeabcde", "cb")

stringlib::contains("abcdeabcdeabcde", "bc", Index)

stringlib::contains("abcdeabcdeabcde", "cb", Index)
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stringlib::contains("abcdeabcdeabcde", "bc", IndexList)

stringlib::contains("abcdeabcdeabcde", "cb", IndexList)

Example 2

The following call does not return [1,2] because the first matching substring has not
ended when the second begins.

stringlib::contains("aaa", "aa", IndexList)

Parameters

string1, string2

Non empty string

Options

Index

Causes the first index position at which string2 appears in string1 to be returned as
integer. The return value is FALSE, if string2 occurs nowhere in string1.

IndexList

Causes the list of all positions at which string2 appears in string1 to be returned. The
returned list is empty if string2 occurs nowhere in string1.

An occurrence of string2 is not detected if overlapped by the tail of a previously
detected occurrence. See “Example 2” on page 31-6.
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Return Values

TRUE, an integer, or a list of integers that determines the position (if an option is given),
when string1 contains string2, otherwise FALSE or an empty list.

See Also

MuPAD Functions
contains | stringlib::pos | strmatch
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stringlib::format
Formatting a string

Syntax
stringlib::format(string1, width, <Left | Center | Right>, <fill_char>)

Description

stringlib::format adjusts the length of a string.

If width is less than the length of the given string string1, the substring consisting of
the first width characters of string1 is returned.

If width exceeds the length of string1, the given string will be filled with the necessary
number of spaces or the optional fill_char. These are inserted at the end in case of left
alignment, or at the beginning in case of right alignment. In case of centering, the same
number of filling characters is placed at the beginning and at the end, but one more is
placed at the end if their total number is odd.

If alignment is not given, left alignment is used by default.

Examples

Example 1

By default, a string of length 5 is adjusted to length 10 by inserting five space characters
at the end. Since white spaces are collapsed in typesetting output, we use print:

print(Plain, stringlib::format("abcde", 10))

"abcde     "

In the case of centering, three spaces are inserted at the end and two at the beginning.
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print(Plain, stringlib::format("abcde", 10, Center))

"  abcde   "

Instead of the space character, also any other character may be used as a filling
character.

stringlib::format("abcde", 10, Right, ".")

stringlib::format("abcde", 10, ".")

Parameters

string1

String

width

Integer that determines the length of the returned string

fill_char

One-character string to fill up the result string

Options

Left

Determines that the string will be aligned left

Center

Determines that the string will be centered
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Right

Determines that the string will be aligned right

Return Values

String of length width containing the given string

See Also

MuPAD Functions
stringlib::formatf
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stringlib::formatf
Convert a floating-point number to a string

Syntax
stringlib::formatf(f, digits, <strlength>)

Description

stringlib::formatf(f, d) converts the floating point number f into a string after
rounding it to d digits after the decimal point.

If d is a positive integer, a rounded fixed-point representation with d digits after the
decimal point is returned. If d is zero, then a rounded fixed-point representation with one
zero after the decimal point is returned. If d is negative, then f is rounded to -d digits
before the decimal point and a fixed-point representation with one zero after the decimal
point is returned.

The representation of a negative number starts with the sign and no additional spaces.
The representation of a nonnegative number starts with a single space character.

If a third argument is specified, then the string returned consists of exactly strlength
characters. If the converted number f requires less room, then it is padded on the left
with spaces. If the converted number f requires more room, then the last characters are
truncated.

Examples

Example 1

Convert the number 123.456 with two characters after the point into a string. Since
white spaces are collapsed in typesetting output, we use print:

print(Plain, stringlib::formatf(123.456, 2))
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" 123.46"

The same for -123.456:

print(Plain, stringlib::formatf(-123.456, 2))

"-123.46"

Convert the number 123.456 with two characters after the point into a string of the
length 10:

print(Plain, stringlib::formatf(123.456, 2, 10))

"    123.46"

If the string should only have the length 3, the whole number does not fit into the string:

print(Plain, stringlib::formatf(123.456, 2, 3))

" 12"

Rounding to no number after point:

print(Plain, stringlib::formatf(123.456, 0))

" 123.0"

Rounding to one number in front of point:

print(Plain, stringlib::formatf(123.456, -1))

" 120.0"

Parameters

f

Floating point number
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digits

Integer which determines the precision of the number

strlength

Integer which determines the length of the returned string

Return Values

stringlib::formatf returns a string.

See Also

MuPAD Functions
stringlib::format

31-13



31 stringlib – Manipulating Strings

stringlib::formatTime
Textual description of a time length

Syntax
stringlib::formatTime(t)

Description

stringlib::formatTime returns a textual description such as “5 minutes, 20 seconds”
of a time value such as 320 * unit::sec given as its argument.

When given an integer or floating-point number, stringlib::formatTime interprets it
as milliseconds, for compatibility with time. Cf. “Example 2” on page 31-15.

stringlib::formatTime rounds its input to only use two types of unit, cf. “Example 1”
on page 31-14.

Examples

Example 1

stringlib::formatTime takes a time description and renders it as English text:

stringlib::formatTime(1234*unit::sec)

Excessive precision is avoided:

stringlib::formatTime(12345678*unit::sec)
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Example 2

time and rtime return integers interpreted as milliseconds. stringlib::formatTime
thus interprets integers (and, for consistency, floating-point numbers) as milliseconds:

stringlib::formatTime(1)

stringlib::formatTime(rtime(system("sleep 2")))

Parameters

t

The time to convert: An integer or floating-point value (regarded as milliseconds) or an
expression involving time units.

Return Values

string.

See Also

MuPAD Functions
rtime | time
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stringlib::lower
Convert to lower-case

Syntax
stringlib::lower(string1)

Description

stringlib::lower(string1) converts each upper-case letter in the string string1 to
lower-case. All other characters remains unchanged.

If the string contains no upper-case letters, the given string is returned unchanged.

Examples

Example 1

Convert a string to lower-case:

stringlib::lower("MuPAD"),

stringlib::lower("Mupad"),

stringlib::lower("MUPAD"),

stringlib::lower("mupad")

Example 2

Compare strings not case sensitive:

str_eq:= (str1, str2) ->

           bool(stringlib::lower(str1) = stringlib::lower(str2)):

str_eq("MuPAD", "mupad"), str_eq("Mupad", "MUPAD")
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Parameters

string1

Any string

Return Values

String

See Also

MuPAD Functions
stringlib::format | stringlib::upper
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stringlib::maskMeta
Mask regular expression special characters

Syntax
stringlib::maskMeta(str)

Description

stringlib::maskMeta(str) generates a regular expression (for use with strmatch)
that matches exactly the string str.

As of MuPAD version 3.2, strmatch uses regular expression matching. To search for
some verbatim substring therefore requires “escaping” special characters such as * or ().
stringlib::maskMeta performs this task.

Examples

Example 1

Trying to find "a+b" in the string "a+b+c" via strmatch fails due to the special nature
of "+" in regular expressions, but, for almost the same reason, "a*b" is found:

strmatch("a+b+c", "a+b"),

strmatch("a+b+c", "a*b")

Using stringlib::maskMeta, we lose the ability of using regular expressions, but can
easily search for verbatim strings:

strmatch("a+b+c", stringlib::maskMeta("a+b")),

strmatch("a+b+c", stringlib::maskMeta("a*b"))
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The output of stringlib::maskMeta is just another string, so combinations with other
strings (containing regular expression meta-characters) is possible:

strmatch("a+b+c", "^".stringlib::maskMeta("a+b")),

strmatch("a+b+c", "^".stringlib::maskMeta("b+c"))

Parameters

str

Non empty string

Return Values

String

See Also

MuPAD Functions
stringlib::pos | stringlib::subs | strmatch
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stringlib::order
Sorting procedure for Sort

Syntax
stringlib::order(options)

Description

stringlib::order() returns a procedure that compares two strings and returns TRUE
when they are in lexicographical order, otherwise FALSE. This procedure can be used as
the second argument of sort.

Examples

Example 1

Sort strings in lexicographical order:

sort(["ab", "a", "abc", "B", "ba", "Ca", "bB", "bb"],

     stringlib::order())

Sort strings in lexicographical order without case sensitivity:

sort(["ab", "a", "abc", "B", "ba", "Ca", "bB", "bb"],

     stringlib::order(Nocase))

Sort strings in reverse lexicographical order:

sort(["ab", "a", "abc", "B", "ba", "Ca", "bB", "bb"],
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     stringlib::order(Reverse))

Sort strings in reverse lexicographical order without case sensitivity:

sort(["ab", "a", "abc", "B", "ba", "Ca", "bB", "bb"],

     stringlib::order(ReverseNocase))

Options

Lexicographical

Return a procedure that yields TRUE when the two given strings are in lexicographical
order.

Nocase

Return a procedure that yields TRUE when the two given strings are in lexicographical
order without case sensitivity.

Reverse

Return a procedure that yields TRUE when the two given strings are in reverse
lexicographical order.

ReverseNocase

Return a procedure that yields TRUE when the two given strings are in reverse
lexicographical order without case sensitivity.

Return Values

Procedure that can be used as second argument of sort

31-21



31 stringlib – Manipulating Strings

See Also

MuPAD Functions
sort
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stringlib::pos
Position of a substring

Syntax
stringlib::pos(string1, string2, <pos>)

Description

stringlib::pos returns the position of a substring in a string.

The third optional argument must be less than the length of string1.

If string1 does not contain string2, then FAIL will be returned.

Examples

Example 1

In case of several occurrences of the substring, the position of the first is returned.

stringlib::pos("abcdeabcdeabcde", "bc")

Example 2

If a starting point for the search is given, stringlib::pos returns the first position at
which the substring occurs after that starting point.

stringlib::pos("abcdeabcdeabcde", "bc", 5)
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Example 3

The result is FAIL if the substring does not occur at all or after the given starting point.

stringlib::pos("abcdeabcdeabcde", "bc", 14)

Parameters

string1, string2

Non empty string

pos

Integer that determines the first position to search

Return Values

Integer that determines the position or FAIL.

See Also

MuPAD Functions
length | stringlib::contains
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stringlib::random
Create a random string

Syntax
stringlib::random(<l>, <characters>, options)

Description

stringlib::random() returns a random string of the default length 7.

stringlib::random(l) with a number or a range l returns a random string with
length l or length in the given range. When the prefix and/or suffix is longer than the
given length, stringlib::random raises an error message.

stringlib::random(characters) with a given list oder set of characters builds the
random string of the given characters. When the characters are strings, they are used as
single characters, however, the length is exceeded.

stringlib::random(l, characters) is a combination of the both last calls. When
both parameters are given, the order is significant.

stringlib defines the lists stringlib::lowerLetters,
stringlib::upperLetters, stringlib::digits and stringlib::punctuation
with the characters lower letters, upper letters, digits and punctuation.

Examples

Example 1

Create a random string of the default length 7:

stringlib::random()
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Create a random string of the length 3:

stringlib::random(3)

Create a random string of the length 2 only of digits:

stringlib::random(2, stringlib::digits)

Create a random string of the length 3 only of digits with prefix "+":

stringlib::random(3, stringlib::digits, Prefix = "+")

Create a random string of the length 5 only of digits with suffix ".0":

stringlib::random(5, stringlib::digits, Suffix = ".0")

Create a random strings of the length 3 to 8 only of letters:

stringlib::random(3..8, stringlib::lowerLetters.

                        stringlib::upperLetters) $ k = 1..5

Create a random string of the length 2 to 8 with letters and casual a punctuation:

stringlib::random(2..8, (stringlib::lowerLetters.

                         stringlib::upperLetters $ 4).

                        stringlib::punctuation) $ k = 1..12
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Create a random string of the length 6 to 8 with letters and equivalent punctuation:

stringlib::random(6..8, (stringlib::lowerLetters.

                         stringlib::upperLetters).

                        (stringlib::punctuation $ 2)) $ k = 1..10

Create random names of the length 4 to 6:

stringlib::random(4..6, Name) $ k = 1..12

Create a random password of the length 8 to 10, but without some special characters:

EX := {"\\", "\"", "|", "'", "?", "*", "[", "]"}:

stringlib::random(8..10, Exclude = EX)

Parameters

l

The length of the returned string: a nonnegative integer or a range of nonnegative
integers

characters

A list or set of characters

options

Any of the described options
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Options

Exclude

Option, specified as Exclude = characters

The returned string does not contain characters given in the set or list characters.

Name

The returned string is a valid MuPAD object name.

Prefix

Option, specified as Prefix = string

Adds string in front of each random string. The length of the returned string is the
given length or the default length including the prefix.

Suffix

Option, specified as Suffix = string

Appends string to each random string. The length of the returned string is the given
length or the default length including the suffix.

Return Values

Random string of the given length or the default length including the prefix resp. suffix.

See Also

MuPAD Functions
random | SEED | stringlib::lower | stringlib::upper | substring
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stringlib::readText
Read text file

Syntax
stringlib::readText(filename)

stringlib::readText(filename, String, <NoNL>)

stringlib::readText(filename, String, <Separator = string>)

stringlib::readText(..., <Encoding = "encodingValue">)

Description

stringlib::readText(filename) reads all lines of the text file with name
“filename” and returns a list of strings, one string per line. The linebreaks are not
included at the end of each string. The file must be a text file, otherwise the file cannot be
read.

stringlib::readText(filename, Encoding = "encodingValue") uses the
specified encoding to read the file. For the supported encodings, see “Options” on page
31-31. You can use this option with the previously specified syntaxes.

Examples

Example 1

First create a text file that can be read:

fprint(Unquoted, Text, "test.txt",

       "This file contains three lines.\n",

       "// this line is a MuPAD comment\n",

       "...............................\n"):

By default, stringlib::readText returns a list of all lines:
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stringlib::readText("test.txt")

Because the third line was ended by a newline, the file contains four lines, the last line is
empty.

The file can be read as one string:

stringlib::readText("test.txt", String)

When the newlines should be removed, option NoNL can be used:

stringlib::readText("test.txt", String, NoNL)

Otherwise the newlines can be replaced by another separator:

stringlib::readText("test.txt", String, Separator = " ;; ")

Example 2

To specify the encoding to read data, use Encoding. The Encoding option applies only to
text files that are opened using a file name and not a file descriptor. Open a file and write
strings in the encoding “UTF-8”:

fprint(Unquoted, Text, Encoding="UTF-8", "readtext_test",

       "File to test stringlib::readText\n",

       "Testing to encode characters such as abcäöü"):

Specify the encoding to read the file:

stringlib::readText("readtext_test", Encoding="UTF-8")
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If you do not specify an encoding, the default system encoding is used. Thus, your output
might vary from that shown next. Characters unrecognized by the default system
encoding are replaced by the default substitution character for that encoding:

stringlib::readText("readtext_test")

Parameters

filename

The name of a file as string

string

Any string

Options

String

With this option, stringlib::readText returns one string that contains all contents of
the read file, including the line breaks as separator of the lines.

NoNL

With option NoNL, the returned string does not contain the linebreaks between the lines.

Separator

Option, specified as Separator = string

This option causes stringlib::readText to separate all lines by string instead of
the line break "\n".
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Encoding

This option lets you specify the character encoding to use. The allowed encodings are:

"Big5" "ISO-8859-1" "windows-932"

"EUC-JP" "ISO-8859-2" "windows-936"

"GBK" "ISO-8859-3" "windows-949"

"KSC_5601" "ISO-8859-4" "windows-950"

"Macintosh" "ISO-8859-9" "windows-1250"

"Shift_JIS" "ISO-8859-13" "windows-1251"

"US-ASCII" "ISO-8859-15" "windows-1252"

"UTF-8"   "windows-1253"

    "windows-1254"

    "windows-1257"

The default encoding is system dependent. If you specify the encoding incorrectly,
characters might read incorrectly. Characters unrecognized by the encoding are replaced
by the default substitution character for the specified encoding.

Encodings not listed here can be specified but might not produce correct results.

Return Values

List of strings, or one string

See Also

MuPAD Functions
fprint | ftextinput | stringlib::subs
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stringlib::remove
Delete substrings

Syntax
stringlib::remove(string1, string2, <First>)

Description

With stringlib::remove, a substring can be deleted from another string.

After string2 has been found, the search for further occurrences of it continues after
its last letter; hence only the first of several overlapping occurrences is detected. See
“Example 3” on page 31-34.

Examples

Example 1

By default, out of several occurrences of the given substring all are removed.

stringlib::remove("abcdeabcdeabcde", "bc")

Example 2

Using the option First causes stringlib::remove to remove only the first occurrence
of the given substring.

stringlib::remove("abcdeabcdeabcde", "bc", First)
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Example 3

In the following example, the given substring occurs twice, where both instances of it do
overlap. Only the first occurrence is removed.

stringlib::remove("aaa", "aa")

Parameters

string1, string2

Non empty string

Options

First

Determines that only the first appearance of string2 in string1 will be deleted

Return Values

Given string without the deleted parts

See Also

MuPAD Functions
delete | stringlib::subs | stringlib::subsop
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stringlib::split
Split a string

Syntax
stringlib::split(string, <separator>)

Description

stringlib::split(string, separator) splits string in all parts separated by the
string given as separator, that is not included in the returned strings.

If no separator is given, a single space is used as separator.

A returned part can be the empty string.

When the given string does not contain the separator, a list with the unchanged string is
returned.

Examples

Example 1

The given string is splitted into the numbers separated by comma:

stringlib::split("1,2,3,4,5", ",")

In the next example is the separator a comma followed by a space:

stringlib::split("1, 2, 3, 4, 5", ", ")
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Without separator a single space is used as separator:

stringlib::split("1, 2, 3, 4, 5")

Example 2

The parts can be empty strings – five empty strings separated by four single spaces:

stringlib::split("    ", " ")

The following string (five spaces) consists of two empty strings and a single space
separated by two double spaces:

stringlib::split("     ", "  ")

Example 3

When the string does not contain the separator, a list with the unchanged string is
returned:

stringlib::split("1,2,3,4,5", ".")

Parameters

string, separator

Any non-empty MuPAD string
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Return Values

List of all parts of string without all parts separator; the string itself, if string does
not contain separator.

See Also

MuPAD Functions
stringlib::collapseWhitespace | stringlib::contains | strmatch |
substring
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stringlib::subs
Substitution in a string

Syntax
stringlib::subs(string, substring = replacement, <First>)

Description

stringlib::subs substitutes a substring by another string.

By default, every occurrence of the string substring in string is replaced by
replacement. The option First causes only the first appearance of substring to be
replaced.

The result is not searched again for instances of substring. See “Example 3” on page
31-39.

Among several overlapping occurrences of substring, the leftmost one is replaced.

Examples

Example 1

The string replacement may be empty.

stringlib::subs("abcdeabcdeabcde", "bc" = "")

Example 2

Every substring is replaced unless the option First is given.

31-38



 stringlib::subs

stringlib::subs("abcdeabcdeabcde", "bc" = "xxx")

stringlib::subs("abcdeabcdeabcde", "bc" = "xxx", First)

Example 3

The substitution may produce a new instance of substring, but this one is not replaced.

stringlib::subs("aab", "ab"="b")

Example 4

Collapse all whitespace in strings (see stringlib::collapseWhitespace):

f := proc(x) local y; begin y := 2*x; x + y end_proc:

string := expr2text(f)

string := stringlib::subs(string, "\n" = " "):

string := stringlib::subs(string, "  " = " "):

string := stringlib::subs(string, "  " = " ")

Parameters

string

Non empty string
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substring

Non empty string that should be replaced

replacement

Any string that replaced substring

Options

First

Determines that only the first appearance of substring in string will be replaced

Return Values

Given string with substring replaced by replacement

See Also

MuPAD Functions
stringlib::pos | stringlib::remove | stringlib::subsop | subs
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stringlib::subsop
Substitution in a string

Syntax
stringlib::subsop(string, index = replacement)

Description

stringlib::subsop removes one or more characters at a given position and inserts
another substring at that position instead.

The char with index index in string (if index is an integer) or the range of chars
(if index is a range of integers) is removed. Instead replacement is inserted at that
position. The inserted string need not have the same length.

Examples

Example 1

Delete the first character:

stringlib::subsop("abcdeabcdeabcde", 1 = "")

The 2nd to 3rd character will be replaced by "xxx":

stringlib::subsop("abcdeabcdeabcde", 2..3 = "xxx")

Delete the characters 2 to 11:
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stringlib::subsop("abcdeabcdeabcde", 2..11 = "")

Parameters

string

Non empty string

index

Integer or range of integers that determines the chars to be replaced

replacement

Any string to replace the given char or range

Return Values

Given string with the replacement

See Also

MuPAD Functions
stringlib::pos | stringlib::remove | stringlib::subs | subsop
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stringlib::upper
Convert to upper-case

Syntax
stringlib::upper(string1)

Description

stringlib::upper(string1) converts each lower-case letter in the string string1 to
upper-case. All other characters remains unchanged.

If the string contains no lower-case letters, the given string is returned unchanged.

Examples

Example 1

Convert a string to upper-case:

stringlib::upper("MuPAD"),

stringlib::upper("Mupad"),

stringlib::upper("MUPAD"),

stringlib::upper("mupad")

Example 2

Compare strings not case sensitive:

str_eq:= (str1, str2) ->

           bool(stringlib::upper(str1) = stringlib::upper(str2)):

str_eq("MuPAD", "mupad"), str_eq("Mupad", "MUPAD")
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Parameters

string1

Any string

Return Values

String

See Also

MuPAD Functions
stringlib::format | stringlib::lower
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stringlib::validIdent
Validate identifier name

Syntax
stringlib::validIdent(string)

Description

stringlib::validIdent(string) returns TRUE, when string is a valid identifier
name, otherwise FALSE.

A valid identifier name in MuPAD must follow the rules:

• The first character must be a letter or the character "_".
• All following characters must be letters or digits or the character "_".
• An identifier consists of at least one character up to 512 characters.

Names in backticks ` are not determined as valid names.

Examples

Example 1

The example splits a set of names into valid identifier names and invalid identifier
names:

split({"a", "1", "_111", "____", "A0b.C", "MuPAD", "1ABCDE", "xyz00"},

      stringlib::validIdent)

stringlib::random called with option Name returns always valid identifier names.
The function map applies stringlib::validIdent to each of the 1000 generated
random names:
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map({stringlib::random(1..10, Name) $ k = 1..1000},

    stringlib::validIdent)

Parameters

string

A string

Return Values

TRUE or FALSE

See Also

MuPAD Functions
domtype | stringlib::random
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Symbol::accentPrime
Adds a prime accent to an identifier

Syntax
Symbol::accentPrime(a)

Description

Creates a new identifier with a prime accent, such as .

Examples

Example 1

Symbol::accentPrime adds a “prime” to an identifier:

Symbol::accentPrime(x) = x + f(x)

Parameters

a

An identifier

Return Values

Identifier
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Symbol::accentAsterisk
Adds an asterisk accent to an identifier

Syntax
Symbol::accentAsterisk(a)

Description

Creates a new identifier with an asterisk accent, such as .

Examples

Example 1

Asterisk accents are often used to denote special values:

f(Symbol::accentAsterisk(x)) = 0

Parameters

a

An identifier

Return Values

Identifier
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Symbol::accentTilde
Adds a tilde accent to an identifier

Syntax
Symbol::accentTilde(a)

Description

Creates a new identifier with a tilde accent, such as .

Examples

Example 1

The most common use of the tilde accent is to denote an approximation:

x = Symbol::accentTilde(x) + O(h^2)

Parameters

a

An identifier

Return Values

Identifier

32-4



 Symbol::accentHat

Symbol::accentHat
Adds a hat accent to an identifier

Syntax
Symbol::accentHat(a)

Description

Creates a new identifier with a hat accent, such as .

Examples

Example 1

One of the common uses of the hat (or circumflex) accents is to denote Laplace
transforms:

f = sin(x) ==> Symbol::accentHat(f)

 = laplace(sin(x), x, t)

Parameters

a

An identifier

Return Values

Identifier
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Symbol::accentRightArrow

Adds a right arrow accent to an identifier

Syntax

Symbol::accentRightArrow(a)

Description

Creates a new identifier with a right arrow accent, such as .

Examples

Example 1

Arrow accents are usually used to denote vectors:

Symbol::accentRightArrow(b)

= matrix([1, 2, Symbol::dots, n])

To denote , the null vector, start with the identifier 0:

Symbol::accentRightArrow(`0`)
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Parameters

a

An identifier

Return Values

Identifier
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Symbol::accentDot
Adds a dot accent to an identifier

Syntax
Symbol::accentDot(a)

Description

Creates a new identifier with a dot accent, such as .

Examples

Example 1

In physics, a dot accent is often used as a shorthand for the derivative with respect to
time:

Symbol::accentDot(y) = 

- Symbol::omega^2 * sin(x)

Parameters

a

An identifier

Return Values

Identifier
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Symbol::accentDoubleDot
Adds a double dot accent to an identifier

Syntax
Symbol::accentDoubleDot(a)

Description

Creates a new identifier with a double dot accent, such as a¨.

Examples

Example 1

In physics, the double dot accent usually denotes the second derivative with respect to
time:

Symbol::accentDoubleDot(x) = -x

Parameters

a

An identifier

Return Values

Identifier
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Symbol::accentTripleDot
Adds a triple dot accent to an identifier

Syntax
Symbol::accentTripleDot(a)

Description

Creates a new identifier with a triple dot accent, such as .

Examples

Example 1

Triple dots, where used, usually denote the third derivative with repect to time:

Symbol::accentTripleDot(x)(t) = diff(x(t), t$3)

Parameters

a

An identifier

Return Values

Identifier
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Symbol::accentOverBar
Adds an overbar to an identifier

Syntax
Symbol::accentOverBar(a)

Description

Creates a new identifier with an overbar, such as .

Examples

Example 1

The overbar is used in statistics to denote the arithmetical mean of an observable
quantity:

Symbol::accentOverBar(x) = sum(x[i], i=1..n)/n

Parameters

a

An identifier

Return Values

Identifier
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Symbol::accentUnderBar
Adds an underbar to an identifier

Syntax
Symbol::accentUnderBar(a)

Description

Creates a new identifier with an underbar, such as .

Examples

Example 1

One of the areas where the underbar is used frequently is interval analysis, where an
interval is usually given as follows:

x = [Symbol::accentUnderBar(x),

     Symbol::accentOverBar(x)]

Parameters

a

An identifier

Return Values

Identifier
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Symbol::new
Functional access to symbols

Syntax
Symbol(x)

Description

Symbol::new(symname) or simply Symbol(symname) creates the typesetting symbol
corresponding to symname.

The typesetting symbols can be accessed in two different ways: Most symbols can be
input by typing Symbol::symname, where symname is taken from the lists in the
introduction. For some symbol names (such as not or I), this is not possible in the
MuPAD language. What is possible in any case is to invoke Symbol as a function, taking
a string representation as its argument, as in Symbol("not").

Examples

Example 1

The symbols accessed via Symbol can be used like ordinary identifiers:

Symbol::heartsuit in 

   {Symbol::heartsuit, Symbol::spades}

expand((Symbol::alpha + Symbol::beta)^4);

32-13



32 Symbol – Typesetting Symbols

Some symbol names are MuPAD keywords and can not be accessed via slot calls. They
can be given as function calls:

Symbol("minus"), Symbol("div"), Symbol("in"), 

Symbol("and"), Symbol("subset"), Symbol("NIL"), 

Symbol("UNKNOWN"), Symbol("FAIL"), Symbol("E"), 

Symbol("I"), Symbol("not")

Parameters

symname

A symbol name: a string

Return Values

identifier

See Also

MuPAD Functions
print
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Symbol::subScript
Combines two expressions to a new subscripted identifier

Syntax
Symbol::subScript(a, b)

Description

Creates a new subscripted identifier, such as ab. If the arguments are not yet identifiers,
they are first converted into identifiers.

You can also use _, ^, $, {, and } to create arguments with superscripts and subscripts.
For these arguments a new superscripted identifier appears on top of the existing ones:

 or .

Examples

Example 1

Even if X1 and X2 look identical, only X1 is an identifier whereas X2 is an _index-
expression:

X1 := Symbol::subScript(x, 1):  X2 := x[1]:

X1, X2;   domtype(X1), domtype(X2)

Pre-scripts are possible by subscripting the empty identifier `` and appending an
identifer:
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Symbol::subScript(``, 1).x

Example 2

You can use the nested form of the function:

Symbol::subScript(x, Symbol::subScript(i, j))

Example 3

Use Symbol::subSuperScript or $ to create an expression with both sub- and
superscript properly aligned one above the other:

Symbol::subSuperScript(a,b,c)

If you use the shortcut $, put the expression in single quotation marks:

`a$bc`

If you use a_b^c, it creates the subscripted expression a_b and then attaches the
superscript c to that expression. In this case, the letters b and c do not appear one above
the other.

a_b^c

The same happens when you use a nested call to Symbol::subScript and
Symbol::superScript:
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Symbol::superScript(Symbol::subScript(a, b), c)

Example 4

If you want to create identifiers in which the five special characters (_, ^, $, {, }) appear
explicitly, use string arguments:

Symbol::subScript("a","b_c")

Parameters

a, b

Arbitrary expressions

Return Values

Identifier

See Also

MuPAD Functions
Symbol::subSuperScript | Symbol::superScript
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Symbol::subSuperScript
Combines three expressions to a new combined sub- and superscripted identifier

Syntax
Symbol::subSuperScript(a, b, c)

Description

Creates a new combined sub- and superscripted identifier, such as . If the arguments
are not yet identifiers, they are first converted into identifiers.

You can also use _, ^, $, {, and } to create arguments with superscript and subscript. For
these arguments a new indexed identifier appears on top of the existing ones:  or .

Examples

Example 1

Input of an identifier with sub- and superscript:

X1 := Symbol::subSuperScript(x, 1, 2):

X1, domtype(X1)

Pre-scripts are possible by subsuperscripting the empty identifier `` and appending an
identifer:

Symbol::subSuperScript(``, 1, 2).X
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And at last scripts all around X:

Symbol::subSuperScript(``, 1, 2).Symbol::subSuperScript(X, 3, 4)

Example 2

You can use the nested form of the function:

Symbol::subSuperScript(x, a, Symbol::subSuperScript(b, i, j))

Example 3

Use Symbol::subSuperScript or $ to create an expression with both sub- and
superscript properly aligned one above the other:

Symbol::subSuperScript(a,b,c)

If you use the shortcut $, put the expression in single quotation marks:

`a$bc`

If you use a_b^c, it creates the subscripted expression a_b and then attaches the
superscript c to that expression. In this case, the letters b and c do not appear one above
the other.

a_b^c
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The same happens when you use a nested call to Symbol::subScript and
Symbol::superScript:

Symbol::superScript(Symbol::subScript(a, b), c)

Example 4

If you want to create identifiers in which the five special characters (_, ^, $, {, }) appear
explicitly, use string arguments:

Symbol::subSuperScript("a","b_c","d_e")

Parameters

a, b, c

Arbitrary expressions

Return Values

Identifier

See Also

MuPAD Functions
Symbol::subScript | Symbol::superScript
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Symbol::superScript
Combines two expressions to a new superscripted identifier

Syntax
Symbol::superScript(a, b)

Description

Creates a new superscripted identifier, such as . If the arguments are not yet
identifiers, they are first converted into identifiers.

You can also use _, ^, $, {, and } to create arguments with superscripts and subscripts.
For these arguments a new superscripted identifier appears on top of the existing ones:

 or .

Examples

Example 1

Even if X1 and X2 look identical, only X1 is an identifier whereas X2 is a _power-
expression:

X1 := Symbol::superScript(x, 2):  X2 := x^2:

X1, X2;   domtype(X1), domtype(X2)

Pre-scripts are possible by superscripting the empty identifier `` and appending an
identifer:
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Symbol::superScript(``, 1).x

Example 2

You can use the nested form of the function:

Symbol::superScript(x, Symbol::superScript(i, j))

Example 3

Use Symbol::subSuperScript or $ to create an expression with both sub- and
superscript properly aligned one above the other:

Symbol::subSuperScript(a,b,c)

If you use the shortcut $, put the expression in single quotation marks:

`a$bc`

If you use a_b^c, it creates the subscripted expression a_b and then attaches the
superscript c to that expression. In this case, the letters b and c do not appear one above
the other.

a_b^c

The same happens when you use a nested call to Symbol::subScript and
Symbol::superScript:
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Symbol::superScript(Symbol::subScript(a, b), c)

Example 4

If you want to create identifiers in which the five special characters (_, ^, $, {, }) appear
explicitly, use string arguments:

Symbol::superScript("a","b^c")

Parameters

a, b

Arbitrary expressions

Return Values

Identifier

See Also

MuPAD Functions
Symbol::subScript | Symbol::subSuperScript
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Type – Type Checking and
Mathematical Properties

Type::AlgebraicConstant
Type::AnyType
Type::Arithmetical
Type::Boolean
Type::Complex
Type::ConstantIdents
Type::Constant
Type::Equation
Type::Even
Type::Function
Type::Imaginary
Type::IndepOf
Type::Indeterminate
Type::Integer
Type::Intersection
Type::Interval
Type::ListOf
Type::ListProduct
Type::NegInt
Type::NegRat
Type::Negative
Type::NonNegInt
Type::NonNegRat
Type::NonNegative
Type::NonZero
Type::Numeric
Type::Odd
Type::PolyExpr
Type::PolyOf
Type::PosInt
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Type::PosRat
Type::Positive
Type::Predicate
Type::Prime
Type::Product
Type::Property
Type::RatExpr
Type::Rational
Type::Real
Type::Relation
Type::Residue
Type::SequenceOf
Type::Series
Type::SetOf
Type::Set
Type::Singleton
Type::TableOfEntry
Type::TableOfIndex
Type::TableOf
Type::Union
Type::Unknown
Type::Zero
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Type::AlgebraicConstant
Type representing algebraic constants

Syntax
testtype(obj, Type::AlgebraicConstant)

Description

Type::AlgebraicConstant represents algebraic constants.

In MuPAD, algebraic constants are characterized as follows: a complex number is an
algebraic constant, if both its real part and its imaginary part are rational. Sums and
products of algebraic constants are again algebraic constants. Further, rational powers of
algebraic constants are again algebraic constants.

Taken together, these rules characterize algebraic constants over the rationals defined as
usual, i.e., as roots of polynomial expressions.

This type does not represent a property: it cannot be used in assume to mark an
identifier as an algebraic constant.

Examples

Example 1

The following number is composed of radicals involving rational numbers and therefore is
an algebraic constant:

testtype((3^(1/2)*I + 1/8)^(1/7), Type::AlgebraicConstant)

The following objects are not algebraic constants:

33-3



33 Type – Type Checking and Mathematical Properties

testtype(2^I, Type::AlgebraicConstant),

testtype(PI, Type::AlgebraicConstant)

Example 2

Symbolic objects cannot represent algebraic constants:

testtype(x, Type::AlgebraicConstant)

Example 3

The following call selects the algebraic constants in an expression:

select(x + PI + 2^(1/2) + I, testtype, Type::AlgebraicConstant)

Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Functions
testtype | Type::Constant
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Type::AnyType
Type representing arbitrary MuPAD objects

Syntax
testtype(obj, Type::AnyType)

Description

Type::AnyType represents arbitrary MuPAD objects.

This type is meant to represent arbitrary MuPAD objects in constructors of composite
types such as Type::ListOf.

This type does not represent a property: it cannot be used in assume.

Examples

Example 1

Any object matches this type:

testtype(3, Type::AnyType),

testtype(x, Type::AnyType),

testtype(array(1..1, [x]), Type::AnyType),

testtype(Dom::Matrix(), Type::AnyType)

This type is meant for constructing composite types. The following call tests, whether an
object is a list with arbitrary elements:

testtype([3, x, array(1..1, [x]), Dom::Matrix()],

         Type::ListOf(Type::AnyType))
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Parameters

obj

Any MuPAD object

Return Values

testtype always returns TRUE

See Also

MuPAD Functions
testtype
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Type::Arithmetical

Type representing arithmetical objects

Syntax

testtype(obj, Type::Arithmetical)

Description

Type::Arithmetical represents arithmetical objects.

In MuPAD, arithmetical objects are objects that represent complex numbers
if all identifiers in them also represent complex numbers. Arithmetical objects
include numbers, most expressions, and elements of certain library domains. In
particular, the latter include rectform objects and series expansions of domain type
Series::Puiseux.

Certain infinite objects such as dirac(0), infinity, or complexInfinity are also
defined to be arithmetical expressions.

The following objects are not regarded as arithmetical objects:

• equations and inequalities,
• Boolean objects and Boolean expressions involving and, or, not,
• lists,
• sets and set expressions involving union, intersect, minus,
• polynomials of domain type DOM_POLY,
• functions and procedures,
• arrays and tables.

This type does not represent a property: it cannot be used in assume to mark an
identifier as an arithmetical object.
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Examples

Example 1

The expression  may represent a matrix if A and B are matrices, or it may represent

a number if A and B are numbers. However, MuPAD regards identifiers as numbers:
hence they commute with each other, and a product of identifiers represents a number,
too:

A^(-1) * B * A * B

testtype(%, Type::Arithmetical)

Example 2

Numbers and expressions are regarded as arithmetical objects:

testtype(3 + I, Type::Arithmetical),

testtype(x + sqrt(2) + I*PI, Type::Arithmetical),

testtype(x/y + y/x, Type::Arithmetical)

Equations and inequalities are not regarded as arithmetical objects:

testtype(x^2 = 2, Type::Arithmetical),

testtype(x <> 2, Type::Arithmetical),

testtype(x < 2, Type::Arithmetical),

testtype(x >= 2, Type::Arithmetical)

Sets, lists, tables and arrays are not arithmetical:
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testtype({a, b, c}, Type::Arithmetical),

testtype(array(1..1, [x]), Type::Arithmetical)

Most domain objects such as matrices of some matrix domain are not arithmetical:

testtype(Dom::Matrix()([[1, 2], [3, 4]]), Type::Arithmetical)

Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Functions
testtype
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Type::Boolean
Type representing boolean expressions

Syntax
testtype(obj, Type::Boolean)

Description

Type::Boolean represents logical formulas.

Boolean expressions are all of the following objects: the Boolean constants TRUE, FALSE,
and UNKNOWN; identifiers; equations and inqualities; expressions with operator and, or,
not, xor, _implies, _equiv if each operand is a Boolean expression; or results returned
by solvelib::isEmpty.

Examples

Example 1

Identifiers and boolean constants are Boolean expressions:

testtype(TRUE, Type::Boolean), testtype(a, Type::Boolean)

Example 2

In order that an expression be Boolean, it is not sufficient that only its operator is a
logical operator; also its operands must be Boolean expressions.

testtype(a >= 3 and b, Type::Boolean); 

testtype(a+b and c, Type::Boolean)
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Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Functions
testtype
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Type::Complex
Type and property representing complex numbers

Syntax
testtype(obj, Type::Complex)

assume(x, Type::Complex)

is(ex, Type::Complex)

Description

Type::Complex represents complex numbers. This type can also be used as a property
to mark identifiers as complex numbers.

The call testtype(obj, Type::Complex) checks, whether obj is a complex number
and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT,
DOM_RAT, DOM_FLOAT and DOM_COMPLEX. This does not include arithmetical expressions
such as exp(1), which are not identified as of type Type::Complex.

The call assume(x, Type::Complex) marks the identifier x as a complex number.

The call is(ex, Type::Complex) derives, whether the expression ex is a complex
number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::Complex:
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testtype(2, Type::Complex),

testtype(3/4, Type::Complex),

testtype(0.123, Type::Complex),

testtype(1 + I/3, Type::Complex),

testtype(1.0 + 2.0*I, Type::Complex)

The following expressions are exact representations of complex numbers. Syntactically,
however, they are not of type Type::Complex:

testtype(exp(3), Type::Complex),

testtype(PI^2 + 5, Type::Complex),

testtype(sin(2) + PI*I, Type::Complex)

Example 2

Identifiers may be assumed to represent a complex number:

assume(x, Type::Complex): is(x, Type::Complex)

The real numbers are a subset of the complex numbers:

assume(x, Type::Real): is(x, Type::Complex)

Without further information, it cannot be decided whether a complex number is real:

assume(x, Type::Complex): is(x, Type::Real)

unassume(x):
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Parameters

obj

Any MuPAD object

x

An identifier

ex

An arithmetical expression

Return Values

See assume, is and testtype

See Also

MuPAD Functions
assume | is | testtype | Type::Imaginary | Type::Property | Type::Real
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Type::ConstantIdents
Set of constant identifiers in MuPAD

Syntax
contains(Type::ConstantIdents, obj)

Description

Type::ConstantIdents is the set { CATALAN , E , EULER , I , PI }.

Type::ConstantIdents is the set of identifiers that represent constants. As of version
4.0, these are CATALAN, E (= exp(1)), EULER, I, PI.

These constants will be returned by the function indets, but they cannot be treated like
other identifiers. For example, they cannot have properties or be the left-hand side of an
assignment.

See “Example 1” on page 33-15 for an application.

Type::Constant makes use of Type::ConstantIdents, see “Example 2” on page
33-16.

Examples

Example 1

MuPAD implements π as the identifier PI.

domtype(PI)

However, PI is constant:

testtype(PI, Type::Constant)
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Still, indets regards PI as an identifier with no value (which is syntactically correct),
and you can even use PI as an indeterminate of a polynomial:

indets(PI/2*x);

poly(PI/2*x)

To find the “real” indeterminates, use the following call:

indets(PI/2*x) minus Type::ConstantIdents

Example 2

In the following, the solve command solves for all identifiers found in the equation:

solve(x^2 = KHINTCHINE)

Assume you want MuPAD to regard the identifier KHINTCHINE as a constant. (Probably,
it should represent the Khintchine constant K, which is approximately 2.685452.) First of
all, you should make sure that the identifier does not have a value yet and protect it:

testtype(KHINTCHINE, DOM_IDENT);

protect(KHINTCHINE, ProtectLevelError)
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Next, add KHINTCHINE to Type::ConstantIdents (note that we have to unprotect the
identifier Type, because Type::ConstantIdents is a slot of it):

old_protection := unprotect(Type):

Type::ConstantIdents := Type::ConstantIdents union {KHINTCHINE}:

protect(Type, old_protection):

Type::ConstantIdents

Now, MuPAD regards KHINTCHINE as a constant:

testtype(sin(PI + KHINTCHINE), Type::Constant)

After clearing the remember table of solve, we now obtain:

solve(Remember, Clear):

solve(x^2 = KHINTCHINE)

Parameters

obj

Any MuPAD object

Return Values

See contains

See Also

MuPAD Functions
contains | indets | Type::Constant | Type::Indeterminate
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Type::Constant
Type representing constant objects

Syntax
testtype(obj, Type::Constant)

Description

Type::Constant represents constant objects, i.e., objects not containing symbolic
identifiers.

Numbers, strings, Boolean constants, NIL, FAIL and the identifiers PI, EULER and
CATALAN in the set Type::ConstantIdents are regarded as constant objects. A
composite object is constant, if all its operands are constant.

Any function is identified as a constant, if all arguments are constant, also if the function
is not defined (e.g., an identifier).

This type does not represent a property: it cannot be used in assume to mark an
identifier as a constant.

Examples

Example 1

The following objects are elementary constants:

testtype(3, Type::Constant),

testtype(sin(3/2), Type::Constant),

testtype(TRUE, Type::Constant),

testtype("MuPAD", Type::Constant),

testtype(FAIL, Type::Constant)
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The following expression contains an indeterminate x and, consequently, is not a
constant object:

testtype(exp(x + 1), Type::Constant)

All constant operands of an expression are selected:

select(x^2 + 3*x - 2, testtype, Type::Constant)

Any function call is considered constant, if the arguments are constant:

testtype(f(1, 2, 3, 4), Type::Constant)

Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Functions
testtype
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Type::Equation
Type representing equations

Syntax
testtype(obj, Type::Equation(<lhs_type, <rhs_type>>))

Description

Type::Equation represents equations. The types of the left hand side and the right
hand side can be specified.

The call testtype(obj, Type::Equation(lhs_type,rhs_type)) checks
whether type(obj) yields " _equal " and testtype(lhs(obj), lhs_type) and
testtype(rhs(obj), rhs_type) both yield TRUE and returns TRUE, if all holds,
otherwise FALSE.

The two optional parameters lhs_type and rhs_type determine the types of the left
hand side and the right hand side, respectively.

The default values of lhs_type and rhs_type are Type::AnyType.

Note: The equations lhs=rhs and rhs=lhs are considered different! E.g., the equation
x=3 matches the type Type::Equation(DOM_IDENT,DOM_INT), but it does not match
the type Type::Equation(DOM_INT,DOM_IDENT).

This type does not represent a property, it cannot be used in an assume call.

Examples

Example 1

The following object is an equation:

33-20



 Type::Equation

testtype(x = 3, Type::Equation())

The following calls test, whether the object is an equation with an unknown on the left
hand side and a positive integer on the right hand side:

testtype(x = 3, Type::Equation(Type::Unknown, Type::PosInt)),

testtype(x = 0, Type::Equation(Type::Unknown, Type::PosInt))

Parameters

obj

Any MuPAD object

lhs_type

The type of the left hand side; a type can be an object of the library Type or one of the
possible return values of domtype and type

rhs_type

The type of the right hand side

Return Values

See testtype

See Also

MuPAD Functions
testtype
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Type::Even
Type and property representing even integers

Syntax
testtype(obj, Type::Even)

assume(x, Type::Even)

is(ex, Type::Even)

Description

Type::Even represents even integers. This type can also be used as a property to mark
identifiers as even integers.

The call testtype(obj, Type::Even) checks, whether obj is an even number and
returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and checks, if bool(domtype(x/2) = DOM_INT) holds.

The call assume(x, Type::Even) marks the identifier x as an even number.

The call is(ex, Type::Even) derives, whether the expression ex is an even number
(or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::Even:

testtype(2, Type::Even),

testtype(-4, Type::Even),
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testtype(8, Type::Even),

testtype(-11114, Type::Even),

testtype(4185296581467695598, Type::Even)

Example 2

We use this type as a property:

assume(x, Type::Even):

The following calls to is derive the properties of a composite expression from the
properties of its indeterminates:

is(3*x^2, Type::Even), is(x + 1, Type::Even)

is(x, Type::Integer), is(2*x, Type::Integer),

is(x/2, Type::Integer), is(x/3, Type::Integer)

assume(y, Type::Odd): is(x + y, Type::Even)

is(2*(x + y), Type::Even)

delete x, y:

Parameters

obj

Any MuPAD object
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x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See assume, is and testtype

See Also

MuPAD Functions
assume | is | testtype | Type::Odd | Type::Property
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Type::Function
Type representing functions

Syntax
testtype(obj, Type::Function)

Description

Type::Function represents all MuPAD functions (procedures, executable objects etc).

The call testtype(obj, Type::Function) checks, whether obj is an executable
MuPAD object. The call returns TRUE or FALSE, respectively.

“Executable objects” in MuPAD are procedures (of type DOM_PROC), function
environments (of type DOM_FUNC_ENV), and pure kernel functions (of type DOM_EXEC).

Additionally, symbolic function iteratesf@@n (representing the map x -> f(..
(f(x))..)) and symbolic function compositionsf@g (representing the function x ->
f(g(x)) are regarded as executable objects.

This type does not represent a property.

Examples

Example 1

Type::Function accepts procedures:

testtype(proc(x) begin x^2 end, Type::Function)

Type::Function accepts simple procedures generated with the “arrow operator” ->,
too:
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testtype(x -> x^2, Type::Function)

sin is a function environment, accepted by Type::Function:

testtype(sin, Type::Function)

The first operand of the function environment print is a pure kernel function, accepted
by Type::Function:

testtype(op(print, 1), Type::Function)

The 3-fold iterate of the function diff is accepted by Type::Function:

testtype(diff@@3, Type::Function)

The composition of functions is accepted by Type::Function:

testtype(f@g, Type::Function)

Any other MuPAD object is determined as non executable object by Type::Function:

map([1, TRUE, x, {}], testtype, Type::Function)
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Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Functions
testtype
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Type::Imaginary

Type and property representing imaginary numbers

Syntax

testtype(obj, Type::Imaginary)

assume(x, Type::Imaginary)

is(ex, Type::Imaginary)

Description

Type::Imaginary represents complex numbers with vanishing real part. This type can
also be used as a property to mark identifiers as imaginary numbers.

The call testtype(obj, Type::Imaginary) checks, whether obj is an imaginary
number (or zero) and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type
DOM_COMPLEX and checks, whether iszero(Re(obj)) holds, or whether iszero(obj)
is TRUE. This does not include arithmetical expressions such as I*exp(1), which are not
identified as of type Type::Imaginary.

The call assume(x, Type::Imaginary) marks the identifier x as an imaginary
number.

The call is(ex, Type::Imaginary) derives, whether the expression ex is an
imaginary number (or this property can be derived).

This type represents a property that can be used in assume and is.

The call assume(Re(x) = 0) has the same meaning as assume(x,
Type::Imaginary).
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Examples

Example 1

The following numbers are of type Type::Imaginary:

testtype(5*I, Type::Imaginary),

testtype(3/2*I, Type::Imaginary),

testtype(-1.23*I, Type::Imaginary)

The following expressions are exact representations of imaginary numbers. However,
syntactically they are not of type Type::Imaginary, because their domain type is not
DOM_COMPLEX:

testtype(exp(3)*I, Type::Imaginary),

testtype(PI*I, Type::Imaginary),

testtype(sin(2*I), Type::Imaginary)

In contrast to testtype, the function is performs a semantical test:

is(exp(3)*I, Type::Imaginary),

is(PI*I, Type::Imaginary),

is(sin(2*I), Type::Imaginary)

Example 2

Identifiers may be assumed to represent an imaginary number:

assume(x, Type::Imaginary): is(x, Type::Imaginary), Re(x), Im(x)
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The imaginary numbers are a subset of the complex numbers:

is(x, Type::Complex)

unassume(x):

Parameters

obj

Any MuPAD object

x

An identifier

ex

An arithmetical expression

obj

Any MuPAD object

Return Values

See assume, is and testtype

See Also

MuPAD Functions
assume | is | testtype | Type::Complex | Type::Property
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Type::IndepOf
Type representing objects that do not contain given identifiers

Syntax
testtype(obj, Type::IndepOf(x))

testtype(obj, Type::IndepOf({x1, x2, …}))

Description

Type::IndepOf(x) represents objects that do not contain the identifier x.

Type::IndepOf({x1, x2, ...}) represents objects that do not contain any of the
identifiers x1, x2 etc.

The call testtype(obj, Type::IndepOf(x)) checks, whether obj does not contain
the identifier x and returns a corresponding TRUE or FALSE.

Type::IndepOf uses has to check whether the object contains at least one of the
specified identifiers.

This type does not represent a property.

Examples

Example 1

The following expression depends on x:

testtype(x^2 - x + 3, Type::IndepOf(x))

It is independend of y:
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testtype(x^2 - x + 3, Type::IndepOf(y))

The following expression is independend of x and y:

testtype(2*(a + b)/c, Type::IndepOf({x, y}))

The following call selects all operands of the expression that are independend of x:

select(sin(y) + x^2 - 3*x + 2, testtype, Type::IndepOf(x))

Parameters

obj

Any MuPAD object

x, x1, x2

Identifiers of domain type DOM_IDENT

Return Values

See testtype

See Also

MuPAD Functions
has | indets | testtype | Type::Indeterminate
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Type::Indeterminate
Type representing indeterminates

Syntax
testtype(obj, Type::Indeterminate)

Description

Type::Indeterminate represents all objects that MuPAD regards as indeterminates:
identifiers except those in Type::ConstantIdents, plus indexed identifiers.

This type does not represent a property: it cannot be used in assume to mark an
identifier as an algebraic constant.

Examples

Example 1

The following call selects all indeterminates from a list:

delete x:

testtype(x, Type::Indeterminate),

testtype(sqrt(2), Type::Indeterminate);

l := [x, x[2], x[sqrt(2) + I], x[x], PI, PI[1], sin(x), 3.0];

select(l, testtype, Type::Indeterminate)
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Note that testtype evaluates its arguments:

y := 5;

testtype(y, Type::Indeterminate),

testtype(hold(y), Type::Indeterminate);

Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Domains
DOM_IDENT

MuPAD Functions
_index | indets | testtype | Type::ConstantIdents | Type::IndepOf
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Type::Integer
Type and property representing integers

Syntax
testtype(obj, Type::Integer)

assume(x, Type::Integer)

is(ex, Type::Integer)

Description

Type::Integer represents integers. This type can also be used as a property to mark
identifiers as integers.

The call testtype(obj, Type::Integer) checks, whether obj is an integer number
and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT.

The call assume(x, Type::Integer) marks the identifier x as an integer number.

The call is(ex, Type::Integer) derives, whether the expression ex is an integer
number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::Integer:

testtype(0, Type::Integer), testtype(55, Type::Integer),

testtype(-111, Type::Integer)
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Example 2

We use this type as a property:

assume(x, Type::Integer):

The following calls to is derive the properties of a composite expression from the
properties of its indeterminates:

is(3*x, Type::Real), is(2*x, Type::Even), is(x/2, Type::Integer)

assume(y, Type::Integer): is(x + y^2, Type::Integer)

unassume(x), unassume(y):

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See assume, is and testtype
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See Also

MuPAD Functions
assume | is | testtype | Type::Property | Type::Real
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Type::Intersection
Type representing the intersection of several types

Syntax
testtype(obj, (obj_type, …))

Description

Type::Intersection(type1, type2, ...) represents all objects having all of the
types type1, type2, ...

The call testtype(obj, Type::Intersection(obj_types, ...)) checks, whether
obj has all the given types obj_types, ....

The call testtype(obj, Type::Intersection(obj_types, ...)) is thus
equivalent to the call _lazy_and(map(obj_types, x -> testtype(obj, x))),
testing obj against all types in turn.

obj_types, ... must be a (nonempty) sequence of types (see testtype).

This type does not represent a property.

Examples

Example 1

Check, whether the given object is a positive and odd integer:

testtype(1, Type::Intersection(Type::PosInt, Type::Odd))

2 however, is not a positive and a odd number:
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testtype(2, Type::Intersection(Type::PosInt, Type::Odd))

Example 2

testtype is used to select positive and odd integers:

SET:= {-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 3}:

select(SET, testtype, Type::Intersection(Type::PosInt, Type::Odd))

delete SET:

Parameters

obj

Any MuPAD object

obj_type, …

A sequence of types; a type can be an object of the library Type or one of the possible
return values of domtype and type

Return Values

See testtype

See Also

MuPAD Functions
testtype
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Type::Interval
Property representing intervals

Syntax
Type::Interval(a, b, <ndomain>)

Type::Interval([a], b, <ndomain>)

Type::Interval(a, [b], <ndomain>)

Type::Interval([a], [b], <ndomain>)

Type::Interval([a, b], <ndomain>)

Description

Type::Interval(a, b, ...) represents the interval .

Type::Interval([a], b, ...) represents the interval .

Type::Interval(a, [b], ...) represents the interval .

Type::Interval([a], [b], ...) represents the interval .

Type::Interval([a, b], ...) represents the interval .

With the default domain Type::Real, the type object created by Type::Interval
represents a real interval, i.e., the set of all real numbers between the border points a
and b. If another domain is specified, then the type object represents the intersection
of the real interval with the set represented by the domain. E.g., Type::Interval(a,
b, Type::Rational) represents the set of all rational numbers between a and b, and
Type::Interval([a, b], Type::Residue(0, 2)) represents the set of all even
integers between a and b including a and b.

The type object represents a property that may be used in assume and is. With

assume(x, Type::Interval(a, b, ndomain))
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the identifier x is marked as a number from the interval represented by the type object.
With

is(x, Type::Interval(a, b, ndomain))

one queries, whether x is contained in the interval.

Interval types should not be used in testtype. No MuPAD object matches these types
syntactically, i.e., testtype always returns FALSE.

Examples

Example 1

The following type object represents the open interval (- 1, 1):

Type::Interval(-1, 1)

The following calls are equivalent: both create the type representing a closed interval:

Type::Interval([-1], [1]), Type::Interval([-1, 1])

The following call creates the type representing the set of all integers from -10 to 10:

Type::Interval([-10, 10], Type::Integer)

The following call creates the type representing the set of all rational numbers in the
interval :

Type::Interval([0], 1, Type::Rational)
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The following calls create the types representing the sets of all even/odd integers in the
interval :

Type::Interval([-10], [10], Type::Even),

Type::Interval([-10], [10], Type::Odd)

Example 2

We use intervals as a property. The following call marks x as a real number from the
interval :

assume(x, Type::Interval([0], 2)):

Consequently, x2 + 1 lies in the interval :

is(x^2 + 1 >= 1), is(x^2 + 1 < 5)

The following call marks x as an integer larger than -10 and smaller than 100:

assume(x, Type::Interval(-10, 100, Type::Integer)):

Consequently, x3 is an integer larger than -730 and smaller than 970300:

is(x^3, Type::Integer), is(x^3 >= -729), is(x^3 < 970300),

is(x^3, Type::Interval(-10^3, 100^3, Type::Integer))

is(x <= -730), is(x^3 >= 970300)

is(x > 0), is(x^3, Type::Interval(0, 10, Type::Integer))
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unassume(x):

Parameters

a, b

The borders of the interval: arithmetical objects

ndomain

A type object such as Type::Real, Type::Integer or Type::Rational
representing a subset of the real numbers or a property representing a residue class as
Type::Residue(0, 2). The default domain is Type::Real.

Return Values

Type object

See Also

MuPAD Functions
assume | is | testtype | Type::Integer | Type::Rational | Type::Real |
Type::Residue
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Type::ListOf
Type representing lists of objects with the same type

Syntax
testtype(obj, (obj_type, <min_nr, <max_nr>>))

Description

Type::ListOf describes lists of objects of a specified type.

The call testtype(obj, Type::ListOf(obj_types, ...)) checks, whether obj is
a list with elements of the given type obj_type, ... and returns TRUE, if it holds, otherwise
FALSE.

The two optional parameters min_nr and max_nr determine the minimum and
maximum number of elements in the analyzed list. If the numbers are not be given, the
number of elements in the list will not be checked. If only the minimum is given, only the
minimal number of elements in the list is checked.

Note especially that Type::Union provides a way to allow more than one type for the
list elements.

This type does not represent a property.

Examples

Example 1

Is the given list a list of identifiers?

testtype([a, b, c, d, e, f], Type::ListOf(DOM_IDENT))
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Is the given list a list of at least five real numbers?

testtype([0, 0.5, 1, 1.5, 2, 2.5, 3], Type::ListOf(Type::Real, 5))

Example 2

testtype is used to select lists with exactly two identifiers:

S := {[a], [a, b], [d, 1], [0, d], [e], [d, e]}:

select(S, testtype, Type::ListOf(DOM_IDENT, 2, 2))

Parameters

obj

Any MuPAD object

obj_type

The type of the objects; a type can be an object of the library Type or one of the possible
return values of domtype and type

min_nr

The minimal number of objects as nonnegative integer

max_nr

The maximal number of objects as nonnegative integer

Return Values

See testtype
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See Also

MuPAD Domains
DOM_LIST

MuPAD Functions
testtype | Type::ListProduct | Type::SetOf | Type::Union
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Type::ListProduct
Type representing lists

Syntax
testtype(obj, Type::ListProduct(typedef, …))

Description

With Type::ListProduct, lists with different object types can be identified.

The call testtype(obj, Type::ListProduct(typedef)) checks, whether obj is
a list of objects, which have the types given by typedef and returns TRUE, if it holds,
otherwise FALSE.

obj must have the same number of arguments as the sequence typedef. The elements
of obj are checked one after another: the first element of obj is checked against the type
given by the first element of typedef, and so on. All elements and types must match.

typedef, ... must be a nonempty sequence of types. A type can be an object of the library
Type or one of the possible return values of domtype and type.

This type does not represent a property.

Examples

Example 1

The argument is a list of a positive integer followed by an identifier:

testtype([5, x], Type::ListProduct(Type::PosInt, Type::Unknown))

Is the argument is a sequence of five positive integers?
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testtype([5, 3, 5, -1, 0], Type::ListProduct(Type::PosInt $ 5))

Parameters

obj

Any MuPAD object

typedef

A sequence of types; a type can be an object of the library Type or one of the possible
return values of domtype and type

Return Values

See testtype

See Also

MuPAD Functions
testtype | Type::ListOf | Type::Product
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Type::NegInt
Type and property representing negative integers

Syntax
testtype(obj, Type::NegInt)

assume(x, Type::NegInt)

is(ex, Type::NegInt)

Description

Type::NegInt represents negative integers. Type::NegInt is a property, too, which
can be used in an assume call.

The call testtype(obj, Type::NegInt) checks, whether obj is a negative integer
number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and checks, if bool(obj < 0) holds.

The call assume(x, Type::NegInt) marks the identifier x as a negative integer
number.

The call is(ex, Type::NegInt) derives, whether the expression ex is a negative
integer number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::NegInt:
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testtype(-2, Type::NegInt),

testtype(-3, Type::NegInt),

testtype(-55, Type::NegInt),

testtype(-1, Type::NegInt),

testtype(-111111111, Type::NegInt)

Example 2

Assume an identifier is a negative integer:

assume(x, Type::NegInt):

is(x, Type::NegInt)

Negative integers are integers, of course:

assume(x, Type::NegInt):

is(x, Type::Integer)

However, integers can be negative or not:

assume(x, Type::Integer):

is(x, Type::NegInt)

delete x:

Parameters

obj

Any MuPAD object
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x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property
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Type::NegRat
Type and property representing negative rational numbers

Syntax
testtype(obj, Type::NegRat)

assume(x, Type::NegRat)

is(ex, Type::NegRat)

Description

Type::NegRat represents negative rational numbers. Type::NegRat is a property, too,
which can be used in an assume call.

The call testtype(obj, Type::NegRat) checks, whether obj is a negative rational
number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and DOM_RAT and checks, if bool(obj < 0) holds.

The call assume(x, Type::NegRat) marks the identifier x as a negative rational
number.

The call is(ex, Type::NegRat) derives, whether the expression ex is a negative
rational number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::NegRat:
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testtype(-2, Type::NegRat),

testtype(-3/4, Type::NegRat),

testtype(-55/111, Type::NegRat),

testtype(-1, Type::NegRat),

testtype(-111/111111, Type::NegRat)

Example 2

Assume an identifier is negative rational:

assume(x, Type::NegRat):

is(x, Type::NegRat)

Also negative rational numbers are rational:

assume(x, Type::NegRat):

is(x, Type::Rational)

However, rational numbers can be negative rational or not:

assume(x, Type::Rational):

is(x, Type::NegRat)

delete x:

Parameters

obj

Any MuPAD object
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x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property
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Type::Negative

Type and property representing negative numbers

Syntax

testtype(obj, Type::Negative)

assume(x, Type::Negative)

is(ex, Type::Negative)

Description

Type::Negative represents negative numbers. Type::Negative is a property, too,
which can be used in an assume call.

The call testtype(obj, Type::Negative) checks, whether obj is a negative real
number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT,
DOM_RAT and DOM_FLOAT and checks, if bool(obj < 0) holds. This does not
include arithmetical expressions such as -exp(1), which are not identified as of type
Type::Negative.

The call assume(x, Type::Negative) marks the identifier x as a negative real
number.

The call is(ex, Type::Negative) derives, whether the expression ex is a negative
real number (or this property can be derived).

This type represents a property that can be used in assume and is.

Instead of Type::Negative the assumption can also be assume(x < 0).
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Examples

Example 1

The following numbers are of type Type::Negative:

testtype(-2, Type::Negative),

testtype(-3/4, Type::Negative),

testtype(-0.123, Type::Negative),

testtype(-1, Type::Negative),

testtype(-1.02, Type::Negative)

The following expressions are exact representations of negative numbers, but
syntactically they are not of Type::Negative:

testtype(-exp(1), Type::Negative),

testtype(-PI^2 - 5, Type::Negative),

testtype(-sin(2), Type::Negative)

Example 2

Assume an identifier is negative:

assume(x, Type::Negative):

is(x, Type::Negative)

This is equal to:

assume(x < 0):

is(x < 0)
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Also negative numbers are real:

assume(x, Type::Negative):

is(x, Type::Real)

However, real numbers can be negative or not:

assume(x, Type::Real):

is(x, Type::Negative)

delete x:

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property | Type::Real
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Type::NonNegInt
Type and property representing nonnegative integers

Syntax
testtype(obj, Type::NonNegInt)

assume(x, Type::NonNegInt)

is(ex, Type::NonNegInt)

Description

Type::NonNegInt represents nonnegative integers. Type::NonNegInt is a property,
too, which can be used in an assume call.

The call testtype(obj, Type::NonNegInt) checks, whether obj is a nonnegative
integer number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and checks, if bool(obj >= 0) holds.

The call assume(x, Type::NonNegInt) marks the identifier x as a nonnegative
integer number.

The call is(ex, Type::NonNegInt) derives, whether the expression ex is a
nonnegative integer number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::NonNegInt:
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testtype(2, Type::NonNegInt),

testtype(3/4, Type::NonNegInt),

testtype(55/111, Type::NonNegInt),

testtype(1, Type::NonNegInt),

testtype(111/111111, Type::NonNegInt)

Example 2

Assume an identifier is nonnegative rational:

assume(x, Type::NonNegInt):

is(x, Type::NonNegInt)

Also nonnegative integers are integers:

assume(x, Type::NonNegInt):

is(x, Type::Integer)

However, integers can be nonnegative or not:

assume(x, Type::Integer):

is(x, Type::NonNegInt)

delete x:

Parameters

obj

Any MuPAD object
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x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Integer | Type::Property
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Type::NonNegRat
Type and property representing nonnegative rational numbers

Syntax
testtype(obj, Type::NonNegRat)

assume(x, Type::NonNegRat)

is(ex, Type::NonNegRat)

Description

Type::NonNegRat represents nonnegative rational numbers. Type::NonNegRat is a
property, too, which can be used in an assume call.

The call testtype(obj, Type::NonNegRat) checks, whether obj is a nonnegative
rational number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and DOM_RAT and checks, if bool(obj >= 0) holds.

The call assume(x, Type::NonNegRat) marks the identifier x as a nonnegative
rational number.

The call is(ex, Type::NonNegRat) derives, whether the expression ex is a
nonnegative rational number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::NonNegRat:
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testtype(2, Type::NonNegRat),

testtype(3/4, Type::NonNegRat),

testtype(55/111, Type::NonNegRat),

testtype(0, Type::NonNegRat),

testtype(111/111111, Type::NonNegRat)

Example 2

Assume an identifier is nonnegative rational:

assume(x, Type::NonNegRat):

is(x, Type::NonNegRat)

Also nonnegative rational numbers are rational:

assume(x, Type::NonNegRat):

is(x, Type::Rational)

However, rational numbers can be nonnegative rational or not:

assume(x, Type::Rational):

is(x, Type::NonNegRat)

delete x:

Parameters

obj

Any MuPAD object
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x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property | Type::Rational
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Type::NonNegative

Type and property representing nonnegative numbers

Syntax

testtype(obj, Type::NonNegative)

assume(x, Type::NonNegative)

is(ex, Type::NonNegative)

Description

Type::NonNegative represents nonnegative numbers. Type::NonNegative is a
property, too, which can be used in an assume call.

The call testtype(obj, Type::NonNegative) checks, whether obj is a nonnegative
real number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT,
DOM_RAT and DOM_FLOAT and checks, if bool(obj >= 0) holds. This does not
include arithmetical expressions such as exp(1), which are not identified as of type
Type::NonNegative.

The call assume(x, Type::NonNegative) marks the identifier x as a nonnegative
real number.

The call is(ex, Type::NonNegative) derives, whether the expression ex is a
nonnegative real number (or this property can be derived).

This type represents a property that can be used in assume and is.

Instead of Type::NonNegative the assumption can also be assume(x >= 0).
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Examples

Example 1

The following numbers are of type Type::NonNegative:

testtype(2, Type::NonNegative),

testtype(3/4, Type::NonNegative),

testtype(0.123, Type::NonNegative),

testtype(0, Type::NonNegative),

testtype(1.02, Type::NonNegative)

The following expressions are exact representations of nonnegative numbers, but
syntactically they are not of Type::NonNegative:

testtype(exp(1), Type::NonNegative),

testtype(PI^2 + 5, Type::NonNegative),

testtype(sin(2), Type::NonNegative)

The function is, however, can find these expressions to be nonnegative:

is(exp(1), Type::NonNegative),

is(PI^2 + 5, Type::NonNegative),

is(sin(2), Type::NonNegative)

Example 2

Assume an identifier is nonnegative:

assume(x, Type::NonNegative):

is(x, Type::NonNegative)
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This is equal to:

assume(x >= 0):

is(x >= 0)

Also nonnegative numbers are real:

assume(x, Type::NonNegative):

is(x, Type::Real)

But real numbers can be nonnegative or not:

assume(x, Type::Real):

is(x, Type::NonNegative)

delete x:

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression
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Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property | Type::Real
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Type::NonZero
Type and property representing “unequal to zero”

Syntax
testtype(obj, Type::NonZero)

assume(x, Type::NonZero)

is(ex, Type::NonZero)

Description
Type::NonZero is a type of objects unequal to zero. Type::NonZero is a property, too,
which can be used in an assume call.

The call testtype(obj, Type::NonZero) checks, whether obj is not zero and returns
TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test and uses the function iszero to determine,
whether the object is not zero. This implies that identifiers without a value, for example,
are considered as being different from zero, see “Example 1” on page 33-68.

The call assume(x, Type::NonZero) marks the identifier x as a complex number
unequal to zero.

The call is(ex, Type::NonZero) derives, whether the expression ex is a complex
number unequal to zero (or this property can be derived).

This type represents a property that can be used in assume and is.

The call assume(x <> 0) has the same meaning as assume(x, Type::NonZero).

Examples

Example 1

Usage of Type::NonZero whith testtype:
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testtype(1.0, Type::NonZero)

Since iszero(x) returns FALSE, the following call returns TRUE:

testtype(x, Type::NonZero)

Example 2

Usage of Type::NonZero whith assume and is:

is(x, Type::NonZero)

Assumption: x is Type::NonZero:

assume(x, Type::NonZero):

is(x, Type::NonZero)

The same again:

assume(x <> 0):

is(x <> 0)

The difference between testtype and is:

delete x:

is(x, Type::NonZero), testtype(x, Type::NonZero)
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x could be zero:

assume(x >= 0):

is(x, Type::NonZero), testtype(x, Type::NonZero)

delete x:

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Zero
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Type::Numeric
Type representing numerical objects

Syntax
testtype(obj, Type::Numeric)

Description

With Type::Numeric, numeric objects (numbers) can be identified.

The call testtype(obj, Type::Numeric) checks, whether obj is a number and
returns TRUE, if it holds, otherwise FALSE.

A number has the domain type DOM_INT, DOM_RAT, DOM_FLOAT or DOM_COMPLEX.

This type does not represent a property.

Examples

Example 1

The following objects are numbers.

testtype(2, Type::Numeric),

testtype(3/4, Type::Numeric),

testtype(0.123, Type::Numeric),

testtype(1 + I/3, Type::Numeric),

testtype(1.0 + 2.0*I, Type::Numeric)

The following objects are not numerical objects.

testtype(ln(2), Type::Numeric),
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testtype(sin(3/4), Type::Numeric),

testtype(x + I/3, Type::Numeric)

Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Functions
assume | is | testtype | Type::Complex
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Type::Odd
Type and property representing odd integers

Syntax
testtype(obj, Type::Odd)

assume(x, Type::Odd)

is(ex, Type::Odd)

Description

Type::Odd represents odd integers. Type::Odd is a property, too, which can be used in
an assume call.

The call testtype(obj, Type::Odd) checks, whether obj is an odd number and
returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and checks, if bool(domtype((x-1)/2) = DOM_INT) holds.

The call assume(x, Type::Odd) marks the identifier x as an odd number.

The call is(ex, Type::Odd) derives, whether the expression ex is an odd number (or
this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::Odd:

testtype(1, Type::Odd),
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testtype(-3, Type::Odd),

testtype(7, Type::Odd),

testtype(-11113, Type::Odd),

testtype(4185296581467695597, Type::Odd)

Example 2

Assume an identifier is odd:

assume(x, Type::Odd):

is(x, Type::Odd)

All odd numbers are integer:

assume(x, Type::Odd):

is(x, Type::Integer)

However, integers can be odd or not:

assume(x, Type::Integer):

is(x, Type::Odd)

However, even numbers are not odd:

assume(x, Type::Odd):

is(2*x, Type::Odd)

assume(n, Type::Even):

is(x*n, Type::Odd)
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is(x*n + 1, Type::Odd)

delete x, n:

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Even | Type::Property
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Type::PolyExpr
Type representing polynomial expressions

Syntax
testtype(obj, Type::PolyExpr(unknowns, <coeff_type>))

Description

With Type::PolyExpr, polynomial expressions can be identified.

The call testtype(obj, Type::PolyExpr(unknowns)) checks, whether obj is
a polynomial expression in the indeterminates unknowns and, if so, returns TRUE,
otherwise FALSE.

A polynomial expression in indet is an expression, where indet occurs only as operand
of _plus or _mult expressions and in the base of _power with a positive integer
exponent.

A polynomial expression is a representation of a polynomial, but it has the MuPAD type
DOM_EXPR and is not produced by the function poly.

indets must be an identifier or a list of identifiers.

The optional argument coeff_type determines the type of the coefficients. If it is not
given, Type::AnyType will be used.

This type does not represent a property.

Examples

Example 1

Is the object a polynomial expression with variable x?

X := -x^2 - x + 3:
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testtype(X, Type::PolyExpr(x))

But X is not a MuPAD polynomial in x:

testtype(X, Type::PolyOf(x))

Is the object a polynomial expression with variables x and y and with integer
coefficients?

X := -x^2 - x + 3:

testtype(X, Type::PolyExpr([x, y], Type::Integer))

The next example too?

X := -x^2 - y^2 + 3*x + 3*y - 1:

testtype(X, Type::PolyExpr([x, y], Type::Integer))

delete X:

Parameters

obj

Any MuPAD object

unknowns

An indeterminate or a list of indeterminates
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coeff_type

The type of the coefficients; a type can be an object of the library Type or one of the
possible return values of domtype and type

Return Values

See testtype

See Also

MuPAD Functions
indets | poly | testtype | Type::PolyOf

33-78



 Type::PolyOf

Type::PolyOf
Type representing polynomials

Syntax
testtype(obj, Type::PolyOf(coeff_type, <num_ind>))

Description

With Type::PolyOf, polynomials can be identified.

The call testtype(obj, Type::PolyOf(coeff_type)) checks, whether obj is a
polynomial with coefficients of type coeff_type and, if so, returns TRUE, otherwise
FALSE.

Note: Only polynomials of type DOM_POLY can be identified with Type::PolyOf, see
Type::PolyExpr for polynomial expressions.

coeff_type determines the type of the coefficients.

The optional argument num_ind determines the number of indeterminates. If this
argument is not given, the polynomial may have any number of indeterminates.

This type does not represent a property.

Examples

Example 1

Is the object a polynomial with integer coefficients?

P := poly(-x^2 - x + 3):

testtype(P, Type::PolyOf(Type::Integer))
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Is the object a polynomial with integer coefficients and two indets?

P := poly(-x^2 - x + 3, [x, y]):

testtype(P, Type::PolyOf(Type::Integer, 2))

delete P:

Parameters

obj

Any MuPAD object

coeff_type

The type of the coefficientes; a type can be an object of the library Type or one of the
possible return values of domtype and type

num_ind

The number of indeterminates

Return Values

See testtype

See Also

MuPAD Functions
indets | poly | testtype
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Type::PosInt
Type and property representing positive integers

Syntax
testtype(obj, Type::PosInt)

assume(x, Type::PosInt)

is(ex, Type::PosInt)

Description

Type::PosInt represents positive integers. Type::PosInt is a property, too, which can
be used in an assume call.

The call testtype(obj, Type::PosInt) checks, whether obj is a positive integer
number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and checks, if bool(obj > 0) holds.

The call assume(x, Type::PosInt) marks the identifier x as a positive integer
number.

The call is(ex, Type::PosInt) derives, whether the expression ex is a positive
integer number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::PosInt:
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testtype(2, Type::PosInt),

testtype(3, Type::PosInt),

testtype(55, Type::PosInt),

testtype(1, Type::PosInt),

testtype(111, Type::PosInt)

Example 2

Assume an identifier is positive integer:

assume(x, Type::PosInt):

is(x, Type::PosInt)

Also positive integers are integers:

assume(x, Type::PosInt):

is(x, Type::Integer)

However, integers can be positive or not:

assume(x, Type::Integer):

is(x, Type::PosInt)

delete x:

Parameters

obj

Any MuPAD object
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x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property
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Type::PosRat
Type and property representing positive rational numbers

Syntax
testtype(obj, Type::PosRat)

assume(x, Type::PosRat)

is(ex, Type::PosRat)

Description

Type::PosRat represents positive rational numbers. Type::PosRat is a property, too,
which can be used in an assume call.

The call testtype(obj, Type::PosRat) checks, whether obj is a positive rational
number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and DOM_RAT and checks, if bool(obj > 0) holds.

The call assume(x, Type::PosRat) marks the identifier x as a positive rational
number.

The call is(ex, Type::PosRat) derives, whether the expression ex is a positive
rational number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::PosRat:
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testtype(2, Type::PosRat),

testtype(3/4, Type::PosRat),

testtype(55/111, Type::PosRat),

testtype(1, Type::PosRat),

testtype(111/111111, Type::PosRat)

Example 2

Assume an identifier is positive rational:

assume(x, Type::PosRat):

is(x, Type::PosRat)

Also positive rational numbers are rational:

assume(x, Type::PosRat):

is(x, Type::Rational)

However, rational numbers can be positive rational or not:

assume(x, Type::Rational):

is(x, Type::PosRat)

delete x:

Parameters

obj

Any MuPAD object
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x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property
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Type::Positive

Type and property representing positive numbers

Syntax

testtype(obj, Type::Positive)

assume(x, Type::Positive)

is(ex, Type::Positive)

Description

Type::Positive represents positive numbers. Type::Positive is a property, too,
which can be used in an assume call.

The call testtype(obj, Type::Positive) checks, whether obj is a positive real
number and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT,
DOM_RAT and DOM_FLOAT and checks, if bool(obj > 0) holds. This does not
include arithmetical expressions such as exp(1), which are not identified as of type
Type::Positive.

The call assume(x, Type::Positive) marks the identifier x as a positive real
number.

The call is(ex, Type::Positive) derives, whether the expression ex is a positive
real number (or this property can be derived).

This type represents a property that can be used in assume and is.

Instead of Type::Positive the assumption can also be assume(x > 0).
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Examples

Example 1

The following numbers are of type Type::Positive:

testtype(2, Type::Positive),

testtype(3/4, Type::Positive),

testtype(0.123, Type::Positive),

testtype(1, Type::Positive),

testtype(1.02, Type::Positive)

The following expressions are exact representations of positive numbers, but
syntactically they are not of Type::Positive:

testtype(exp(1), Type::Positive),

testtype(PI^2 + 5, Type::Positive),

testtype(sin(2), Type::Positive)

Ths function is, however, realizes that they are, indeed, positive:

is(exp(1), Type::Positive),

is(PI^2 + 5, Type::Positive),

is(sin(2), Type::Positive)

Example 2

Assume an identifier is positive:

assume(x, Type::Positive):

is(x, Type::Positive)
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This is equivalent to:

assume(x > 0):

is(x > 0)

Also positive numbers are real:

assume(x, Type::Positive):

is(x, Type::Real)

But real numbers can be positive or not:

assume(x, Type::Real):

is(x, Type::Positive)

delete x:

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression
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Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property
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Type::Predicate
Type for testing object satisfying a given predicate

Syntax
testtype(obj, Type::Predicate(<pname>, predicate, <p1, p2, …>))

Description

Type::Predicate(predicate) represents the MuPAD objects which satisfy the
predicate predicate.

The call testtype(obj, pname, Type::Predicate(< pname >, predicate ,
< p1 , p2 >)) test whether obj satisfies predicate; that is it returns
predicate(obj, p1, p2, ...).

Type::Predicate(predicate), Type::Predicate(name, predicate),
Type::Predicate ( predicate( p1 , p2 , …)), and Type::Predicate(name,
predicate p1 , p2 , , …) are respectively pretty printed as
Type::Predicate(predicate), Type::name, Type::Predicate(p, p1,
p2, ...), and Type::name(p1, p2, ...).

Examples

Example 1

We define a type which contains any MuPAD object:

t := Type::Predicate(x -> TRUE):

testtype(1, t), testtype(2, t), testtype(x, t)

We define a type which contains all the MuPAD object which are solution of (x-1)*(x
+1)=0:
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t := Type::Predicate(x -> bool((x - 1)*(x + 1) = 0)):

testtype(1, t), testtype(2, t), testtype(x, t)

We define a type for partitions, that is, decreasing lists of integers:

part :=

    Type::Predicate(l -> _lazy_and(testtype(l, Type::ListOf(Type::Integer)),

                                   bool(revert(sort(l)) = l))):

testtype(a, part), testtype([3, 6, 1], part), testtype([3, 2, 2], part)

Using the naming facility is recommended to improve the readability of error messages:

part :=

    Type::Predicate("Partition",

                    l -> _lazy_and(testtype(l, Type::ListOf(Type::Integer)),

                                   bool(revert(sort(l)) = l))):

f := proc(p: part) begin end:

f(3);

Error: The object '3' is incorrect. The type of argument number 1 must be 'Type::Partition'.

  Evaluating: f

Parameters

pname

A string which will be used for pretty printing the type

predicate

A function of one argument which can return TRUE, FALSE or FAIL

obj, p1, p2, …

Any MuPAD objects

33-92



 Type::Predicate

Return Values

See testtype

See Also

MuPAD Functions
testtype
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Type::Prime
Type representing prime numbers

Syntax
testtype(obj, Type::Prime)

Description
Type::Prime represents prime numbers.

The call testtype(obj, Type::Prime) returns TRUE if obj is a prime number, and
FALSE otherwise.

testtype only performs a syntactical test whether obj is an integer and isprime(obj)
holds.

Examples

Example 1

The following numbers are of type Type::Prime:

testtype(2, Type::Prime),

testtype(3, Type::Prime),

testtype(7, Type::Prime),

testtype(11113, Type::Prime),

testtype(4185296581467695597, Type::Prime)

Parameters
obj

Any MuPAD object
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Return Values

See testtype

See Also

MuPAD Functions
isprime | testtype
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Type::Product
Type representing sequences

Syntax
testtype(obj, Type::Product(typedef, …))

Description

Type::Product is the type of sequences of objects of different types.

The call testtype(obj, Type::Product( typedef , …)) checks, whether obj is a
sequence of objects, which have the types given by typedef and returns TRUE, if it holds,
otherwise FALSE.

obj must have the same number of arguments as the sequence typedef. The elements
of obj are checked one after another: the first element of obj is checked against the type
given by the first element of typedef and so on. All elements and types must match.

typedef, … must be a nonempty sequence of types. A type can be an object of the library
Type or one of the possible return values of domtype and type.

This type does not represent a property.

Examples

Example 1

The argument is a sequence of a positive integer followed by an identifier:

testtype((5, x), Type::Product(Type::PosInt, Type::Unknown))

Is the argument is a sequence of five positive integers?
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testtype((5, 3, 5, -1, 0), Type::Product(Type::PosInt $ 5))

Parameters

obj

Any MuPAD object

typedef

A sequence of types; a type can be an object of the library Type or one of the possible
return values of domtype and type

Return Values

See testtype

See Also

MuPAD Functions
testtype | Type::ListProduct
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Type::Property
Type representing any property

Syntax
testtype(obj, Type::Property)

Description

With Type::Property, properties can be identified.

The call testtype(obj, Type::Property) checks, whether the MuPAD object obj is
a property and returns TRUE, if it holds, otherwise FALSE.

Some elements of the library Type serve two functions. One is to perform syntactical
tests to identify the type of an object (with testtype), the other is to occur as a property
within assume and is.

Note: Type::Property itself is not a property.

To determine whether an element of Type is a property, Type::Property can be used
with testtype.

This type does not represent a property.

Examples

Example 1

Is Type::PosInt a property?

testtype(Type::PosInt, Type::Property)
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Also an interval created with Type::Interval is a property:

testtype(Type::Interval(0, 1), Type::Property)

Is Type::Constant a property?

testtype(Type::Constant, Type::Property)

Type::Constant is not a property and cannot be used as argument of assume:

assume(x, Type::Constant)

Error: The second argument must be a property. [assume]

The next example shows the usage of testtype to select properties among operands of
Type:

T := Type::Numeric, Type::PosInt, Type::Unknown, Type::Zero:

select(T, testtype, Type::Property)

delete x, T:

Parameters

obj

Any MuPAD object

Return Values

See testtype
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See Also

MuPAD Functions
is | testtype
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Type::RatExpr
Type representing rational expressions

Syntax
testtype(obj, Type::RatExpr(indet, <coeff_type>))

Description

With Type::RatExpr, rational expressions can be identified.

The call testtype(obj, Type::RatExpr(indet)) checks, whether obj is a rational
expression in the indeterminante indet, i.e., the quotient of two polynomial expressions
in indet. If it is, the result is TRUE, otherwise FALSE.

A rational expression in indet is a  expression, and indet occurs only as operand of
_plus or _mult expressions and in _power with an integer exponent.

indet must be an identifier, and coeff_type a type for the coefficients of the rational
expression.

This type does not represent a property.

Examples

Example 1

A polynomial expression in x is also a rational expression in x:

testtype(-x^2 - x + 3, Type::RatExpr(x))

testtype is used to select all rational operands in x with positive integer coefficients:
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EX := sin(x) + x^2 - 3*x + 2 + 3/x:

select(EX, testtype, Type::RatExpr(x, Type::PosInt))

delete EX:

Parameters

obj

Any MuPAD object

indet

An indeterminante

coeff_type

A type for the coefficientes; a type can be an object of the library Type or one of the
possible return values of domtype and type

Return Values

See testtype

See Also

MuPAD Functions
indets | testtype
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Type::Rational
Type and property representing rational numbers

Syntax
testtype(obj, Type::Rational)

assume(x, Type::Rational)

is(ex, Type::Rational)

Description

Type::Rational represents rational numbers. Type::Rational is a property, too,
which can be used in an assume call.

The call testtype(obj, Type::Rational) checks, whether obj is a rational number
and returns TRUE, if it holds, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT
and DOM_RAT.

The call assume(x, Type::Rational) marks the identifier x as a rational number.

The call is(ex, Type::Rational) derives, whether the expression ex is a rational
number (or this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::Rational:

testtype(2, Type::Rational),
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testtype(3/4, Type::Rational),

testtype(-1/2, Type::Rational),

testtype(-1, Type::Rational),

testtype(1024/11111, Type::Rational)

Example 2

Integers are rational:

assume(x, Type::Integer):

is(x, Type::Rational)

However, rational numbers can be integer or not:

assume(x, Type::Rational):

is(x, Type::Integer)

delete x:

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression
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Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property
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Type::Real
Type and property representing real numbers

Syntax
testtype(obj, Type::Real)

assume(x, Type::Real)

is(ex, Type::Real)

Description

Type::Real represents real numbers. Type::Real is a property, too, which can be used
in an assume call.

The call testtype(obj, Type::Real) checks, whether obj is a real number and, if it
is, returns TRUE, otherwise FALSE.

testtype only performs a syntactical test identifying MuPAD objects of type DOM_INT,
DOM_RAT and DOM_FLOAT. This does not include arithmetical expressions such as
exp(1), which are not identified as of type Type::Real.

The call assume(x, Type::Real) marks the identifier x as a real number.

The call is(ex, Type::Real) derives, whether the expression ex is a real number (or
this property can be derived).

This type represents a property that can be used in assume and is.

Examples

Example 1

The following numbers are of type Type::Real:
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testtype(2, Type::Real),

testtype(3/4, Type::Real),

testtype(0.123, Type::Real),

testtype(-1, Type::Real),

testtype(-1.02, Type::Real)

The following expressions are exact representations of real numbers, but syntactically
they are not of Type::Real:

testtype(exp(1), Type::Real),

testtype(PI^2 + 5, Type::Real),

testtype(sin(2), Type::Real)

The function is performs a semantical, mathematically more useful check:

is(exp(1), Type::Real),

is(PI^2 + 5, Type::Real),

is(sin(2), Type::Real)

Example 2

Integers are real numbers:

assume(x, Type::Integer):

is(x, Type::Real)

But real numbers can be integer or not:

assume(x, Type::Real):

is(x, Type::Integer)
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The sine of a real number is a real number in the interval [- 1, 1]:

getprop(sin(x))

delete x:

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::Property
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Type::Relation
Type representing relations

Syntax
testtype(obj, Type::Relation)

Description

With Type::Relation, relational expression can be identified.

The call testtype(obj, Type::Relation) checks, whether obj is a relational
expression and returns TRUE, if it is, otherwise FALSE.

A relation in MuPAD is an expression of the type " _equal ", " _unequal ", "
_less " and " _leequal ".

Note: Expressions with the operations >= and > will be interpreted as expressions with
<= and < by exchanging the operands (see “Example 2” on page 33-110).

This type does not represent a property.

Examples

Example 1

x > 3 is a relation, while TRUE is not:

testtype(x > 3, Type::Relation),

testtype(TRUE, Type::Relation)
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Example 2

MuPAD always interprets expressions with the operations >= and > as expressions with
<= and < with the operands exchanged:

x > 3;

prog::exprtree(x > 3):

_less

|

+-- 3

|

`-- x

The operator is not >, but <, and the operands have been swapped:

op(x > 3, 0..2)

Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Functions
testtype
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Type::Residue
Property representing a residue class

Syntax
assume(x, (rem, class, <sub_set>))

is(ex, (rem, class, <sub_set>))

testtype(ex, (rem, class, <sub_set>))

Description

Type::Residue(rem, class) represents the integers n for which n - rem is divisible
by class.

The call assume(x, Type::Residue(rem, class)) marks the identifier x as an
integer divisible by class with remainder rem.

The call is(ex, Type::Residue(rem, class)) derives, whether the expression ex is
an integer divisible by class with remainder rem (or this property can be derived).

This type represents a property that can be used in assume and is.

Type::Even and Type::Odd are objects created by Type::Residue.

The call testtype(obj, Type::Residue(rem, class)) checks, whether obj is an
integer and is divisible by class with remainder rem. If the optional argument sub_set
is given, testtype checks additionally testtype(obj, sub_set).

Examples

Example 1

Type::Residue can be used in testtype:
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testtype(6, Type::Residue(2, 4)),

testtype(13, Type::Residue(1, 20))

Example 2

x is assumed to be divisible by 3 with remainder 1:

assume(x, Type::Residue(1, 3))

Which properties has x + 2 got?

getprop(x + 2)

x is an integer, but it may be odd or not:

is(x, Type::Integer), is(x, Type::Odd)

This example restricts possible values of x to odd integers:

assume(x, Type::Residue(1, 4));

is(x, Type::Odd),

is((-1)^x < 0)

Parameters

x

An identifier or a mathematical expression containing identifiers
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rem

Remainder as integer number between 0 and class - 1; an integer larger than class
- 1 will be divided by class and rem gets the remainder of this division

class

The divider as positive integer

sub_set

A subset of the integers (e.g., Type::PosInt); otherwise Type::Integer is used

ex

An arithmetical expression

obj

Any MuPAD object

Return Values

See assume, is and testtype

See Also

MuPAD Functions
assume | is | testtype | Type::Even | Type::Integer | Type::Odd
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Type::SequenceOf
Type representing sequences

Syntax
testtype(obj, (obj_type, <min_nr, <max_nr>>))

Description

With Type::SequenceOf, sequences with specified objects can be identified.

The call testtype(obj, Type::SequenceOf(obj_type)) checks, whether obj is
a sequence with elements of the given type obj_type. In that case, it TRUE, otherwise
FALSE.

A sequence has the domain type DOM_EXPR and the type "_exprseq".

The two optional parameters min_nr and max_nr determine the minimum and
maximum number of arguments of the analysed sequence, respectively. If the numbers
are not be given, the number of elements of the sequence will not be checked. If only
the minimum is given, the sequence must have at least min_nr elements for the test to
succeed.

This type does not represent a property.

Examples

Example 1

Is the given sequence a sequence of identifiers?

testtype((a, b, c, d, e, f), Type::SequenceOf(DOM_IDENT))
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Is the given sequence a sequence of at least five real numbers?

testtype((0, 0.5, 1, 1.5, 2, 2.5, 3), Type::SequenceOf(Type::Real, 5))

Parameters

obj

Any MuPAD object

obj_type

The type of the objects; a type can be an object of the library Type or one of the possible
return values of domtype and type

min_nr

The minimal number of objects as nonnegative integer

max_nr

The maximal number of objects as nonnegative integer

Return Values

See testtype

See Also

MuPAD Functions
_exprseq | testtype | Type::ListOf
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Type::Series
Type representing truncated Puiseux, Laurent, and Taylor series expansions

Syntax
testtype(obj, (Puiseux | Laurent | Taylor))

testtype(obj, (Puiseux | Laurent | Taylor, x))

testtype(obj, (Puiseux | Laurent | Taylor, x = x0))

testtype(obj, (Puiseux | Laurent | Taylor, x, Undirected | Real | Right | Left))

testtype(obj, (Puiseux | Laurent | Taylor, x = x0, Undirected | Real | Right | Left))

Description

Type::Series(Puiseux), Type::Series(Laurent), and Type::Series(Taylor)
represent truncated Puiseux series, Laurent series, and Taylor series, respectively.

The call testtype(obj, Type::Series(T)) checks, whether obj is a truncated
series expansion of domain type Series::Puiseux and of mathematical type T.

The call testtype(obj, Type::Series(T, x = x0)) checks in addition, whether
the series variable is x and the expansion point is x0. If x0 is omitted, x0 = 0 is
assumed.

The call testtype(obj, Type::Series(T, x = x0, dir)) checks in addition,
whether the direction of expansion is compatible with the specified direction dir. See the
help pages of series and Series::Puiseux for more details about the direction.

See “Example 1” on page 33-117 and “Example 3” on page 33-119.

If obj is of domain type Series::Puiseux, but not a Puiseux expansion in the
mathematical sense, then testtype(obj, Type::Series(T)) returns FALSE. This
is the case if the coefficients of obj depend on the series variable, or if the type flag of
obj is 1. See “Example 2” on page 33-118, and the help page of Series::Puiseux for
more details.
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A Laurent series is a Puiseux series with integral exponents. If the expansion point is
finite, then a Taylor series is a Puiseux series with nonnegative integral exponents. If
the expansion point is complexInfinity, then a Taylor series is a Puiseux series with
nonpositive integral exponents. See “Example 1” on page 33-117 and “Example 4” on
page 33-121.

For the expansion points infinity and -infinity, the directions Left and Right,
respectively, are implicitly assumed.

Specifying x0 = infinity is equivalent to x0 = complexInfinity and dir = Left,
and similarly x0 = -infinity is equivalent to x0 = complexInfinity and dir =
Right.

See “Example 4” on page 33-121.

This type does not represent a property: it cannot be used in assume to mark an
identifier as a truncated series expansion.

Examples

Example 1

The following call returns a Puiseux series:

s := series(sin(sqrt(x)), x);

domtype(s);

However, s is not a Laurent series:

testtype(s, Type::Series(Puiseux)),

testtype(s, Type::Series(Laurent)),

testtype(s, Type::Series(Taylor))
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A Laurent series that is not a Taylor series:

s := series(1/sin(x), x);

domtype(s);

testtype(s, Type::Series(Puiseux)),

testtype(s, Type::Series(Laurent)),

testtype(s, Type::Series(Taylor))

The inverse of s is a Taylor series:

1/s;

testtype(1/s, Type::Series(Puiseux)),

testtype(1/s, Type::Series(Laurent)),

testtype(1/s, Type::Series(Taylor))

Example 2

Type::Series represents only objects of domain type Series::Puiseux:

s := 1 + x + 2*x^2 + O(x^3);

domtype(s), testtype(s, Type::Series(Puiseux));
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s := series(exp(x + 1/x), x = infinity, 3);

domtype(s), testtype(s, Type::Series(Puiseux));

For objects of domain type Series::Puiseux, whose coefficients contain the series
variable or whose type flag is 1, the result is FALSE as well:

s := series(psi(x), x = infinity);

domtype(s), coeff(s, 0), testtype(s, Type::Series(Puiseux));

s := series(sin(sqrt(-x)), x);

domtype(s), testtype(s, Type::Series(Puiseux));

Example 3

By specifying further arguments, you can check for the series variable, the expansion
point, and the direction of expansion as well:

s := series(sin(sqrt(-x)), x, Left);
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testtype(s, Type::Series(Puiseux, y)),

testtype(s, Type::Series(Puiseux, x)),

testtype(s, Type::Series(Puiseux, x = 0)),

testtype(s, Type::Series(Puiseux, x = 2));

Series::Puiseux::direction(s),

testtype(s, Type::Series(Puiseux, x, Undirected)),

testtype(s, Type::Series(Puiseux, x, Real)),

testtype(s, Type::Series(Puiseux, x, Right)),

testtype(s, Type::Series(Puiseux, x, Left));

s := series(x^5/(x - 2), x = 2, 3);

testtype(s, Type::Series(Laurent, x)),

testtype(s, Type::Series(Laurent, x = 2)),

testtype(s, Type::Series(Laurent, x = 3));

If you specify a direction, testtype checks whether it is compatible with the direction of
the series:

Series::Puiseux::direction(s),

testtype(s, Type::Series(Puiseux, x = 2, Undirected)),

testtype(s, Type::Series(Puiseux, x = 2, Real)),

testtype(s, Type::Series(Puiseux, x = 2, Right)),

testtype(s, Type::Series(Puiseux, x = 2, Left));
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Example 4

The following example is a Laurent series around infinity, but not a Taylor series:

s := series(z*exp(1/z), z = infinity);

testtype(s, Type::Series(Puiseux)),

testtype(s, Type::Series(Laurent)),

testtype(s, Type::Series(Taylor))

The expansion point is infinity, or equivalently, complexInfinity from the left:

Series::Puiseux::point(s), Series::Puiseux::direction(s);

testtype(s, Type::Series(Laurent, z)),

testtype(s, Type::Series(Laurent, z = 0)),

testtype(s, Type::Series(Laurent, z = infinity)),

testtype(s, Type::Series(Laurent, z = -infinity)),

testtype(s, Type::Series(Laurent, z = complexInfinity));

testtype(s, Type::Series(Laurent, z = complexInfinity, Undirected)),

testtype(s, Type::Series(Laurent, z = complexInfinity, Real)),

testtype(s, Type::Series(Laurent, z = complexInfinity, Right)),

testtype(s, Type::Series(Laurent, z = complexInfinity, Left));

Mathematically, the expression is even an undirected expansion around
complexInfinity:

s := series(z*exp(1/z), z = complexInfinity);

Series::Puiseux::point(s), Series::Puiseux::direction(s);
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testtype(s, Type::Series(Laurent, z)),

testtype(s, Type::Series(Laurent, z = infinity)),

testtype(s, Type::Series(Laurent, z = -infinity)),

testtype(s, Type::Series(Laurent, z = complexInfinity));

testtype(s, Type::Series(Laurent, z = complexInfinity, Undirected)),

testtype(s, Type::Series(Laurent, z = complexInfinity, Real)),

testtype(s, Type::Series(Laurent, z = complexInfinity, Right)),

testtype(s, Type::Series(Laurent, z = complexInfinity, Left));

Parameters

obj

Any MuPAD object

x

The series variable: an identifier

x0

The expansion point: an arithmetical expression

Options

Laurent, Puiseux, Taylor

The type of series
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Left, Real, Right, Undirected

The direction of the expansion

Return Values

See testtype

See Also

MuPAD Functions
series | Series::Puiseux | testtype | Type::PolyExpr | Type::PolyOf
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Type::SetOf
Type representing sets

Syntax
testtype(obj, (obj_type, <min_nr, <max_nr>>))

Description

Type::SetOf(obj_type) describes sets of elements of type obj_type.

The call testtype(obj, Type::SetOf(obj_type)) checks, whether obj is a set
with elements of the given type obj_type. If it is, the function returns TRUE, otherwise
FALSE.

A set has the domain type DOM_SET.

The two optional parameters min_nr and max_nr determine the minimum and
maximum number of elements in the analysed set. If the numbers are not be given, the
number of elements in the set will not be checked. If only the minimum is given, the set
must contain at least min_nr elements for the test to succeed.

This type does not represent a property.

Examples

Example 1

Is the given set a set of identifiers?

testtype({a, b, c, d, e, f}, Type::SetOf(DOM_IDENT))
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Is the given set a set of at least five real numbers?

testtype({0, 0.5, 1, 1.5, 2, 2.5, 3}, Type::SetOf(Type::Real, 5))

Example 2

testtype is used to select sets with exactly two idetifiers:

S := {{a}, {a, b}, {d, 1}, {0, d}, {e}, {d, e}}:

select(S, testtype, Type::SetOf(DOM_IDENT, 2, 2))

Parameters

obj

Any MuPAD object

obj_type

The type of the objects; a type can be an object of the library Type or one of the possible
return values of domtype and type

min_nr

The minimal number of objects as nonnegative integer

max_nr

The maximal number of objects as nonnegative integer

Return Values

See testtype
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See Also

MuPAD Domains
DOM_SET

MuPAD Functions
testtype | Type::ListOf | Type::Union
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Type::Set
Type representing set-theoretic expressions

Syntax
testtype(obj, Type::Set)

Description

Type::Set comprises all expressions in which the operators are set-theoretic operations

A set-theoretic expression is defined to be any of the following: a set constant, an
identifier, an unevaluated call to a set-valued function, or the composition of set-theoretic
expressions by the operator union, intersect, or minus.

The following objects are set constants: finite sets of type DOM_SET, intervals, the
universe, and every object that belongs to a domain of category Cat::Set.

The following functions are set-valued: solve, discont, RootOf, and
solvelib::Union.

The union, intersection, or difference of objects is not a set-theoretic expression unless
each of the objects is. See “Example 2” on page 33-128.

Examples

Example 1

Sets are set-theoretic expressions.

testtype({3}, Type::Set)
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Example 2

Unions, intersections, and differences are set-theoretic expressions if and only if all
operands are.

testtype(a union {4}, Type::Set)

testtype(a+1 union {4}, Type::Set)

Example 3

If the call to a set-valued function as solve returns unevaluated, then the result is a set-
theoretic expression.

solve(x^2 = sin(x + 1), x)

testtype(%, Type::Set)

Parameters

obj

Any MuPAD object

Return Values

See testtype
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See Also

MuPAD Functions
testtype
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Type::Singleton
Type representing exactly one object

Syntax
testtype(obj, (t_obj))

Description

testtype(x, Type::Singleton(y)) is equivalent to bool(x = y).

The call testtype(obj, Type::Singleton(t_obj)) is equivalent to bool(x = y),
but the latter is faster.

Type::Singleton can be used to create combined types, especially in conjunction
with Type::Union, Type::Equation and other types expecting type information for
subexpressions (see “Example 2” on page 33-131).

This type does not represent a property.

Examples

Example 1

Check, if x is really x:

testtype(x, Type::Singleton(x))

But the next call does the same:

bool(x = x)
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Example 2

Type::Singleton exists to create special testing expressions:

T := Type::Union(Type::Singleton(hold(All)), Type::Constant):

With the type T the option All and any constant can be identified with one call of
testtype:

testtype(4, T), testtype(hold(All), T), testtype(x, T)

But (e.g., in procedures) the following example works faster:

test := X -> testtype(X, Type::Constant) or bool(X = hold(All)):

test(4), test(hold(All)), test(x)

One way to test a list of options for syntactical correctness is the following:

T := Type::Union(

       // Name = "..."

       Type::Equation(Type::Singleton(hold(Name)), DOM_STRING),

       // Mode = n, n in {1, 2, 3}

       Type::Equation(Type::Singleton(hold(Mode)), 

                      Type::Interval([1,3], Type::Integer)),

       // Quiet

       Type::Singleton(hold(Quiet))

     ):

testtype((Name = "abcde", Quiet), Type::SequenceOf(T))

We only allow the values 1, 2, and 3 for Mode, however:

testtype((Quiet, Mode = 0), Type::SequenceOf(T))
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Obviously, it would be a good idea to tell the user which options we could not grok:

error("Unknown option(s): ".expr2text(

        select((Quiet, Mode = 0), 

               not testtype, Type::SequenceOf(T))))

Error: Unknown option(s): Mode = 0

delete T, test:

Parameters

obj

Any MuPAD object

t_obj

Any object to identify

Return Values

See testtype

See Also

MuPAD Functions
_equal | bool | testtype | Type::Union
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Type::TableOfEntry
Type representing tables with specified entries

Syntax
testtype(obj, (obj_type))

Description

Type::TableOfEntry(obj_type) describes tables with entries of type obj_type.

The call testtype(obj, Type::TableOfEntry(obj_type)) checks, whether obj is
a table and all entries of this table are of the type obj_type. If both conditions are met,
the call returns TRUE, otherwise FALSE.

The entries of a table are the right hand sides of the operands of a table.

This type does not represent a property.

Examples

Example 1

The following table uses identifiers as keys and integers as entries:

T := table(a = 1, b = 2, c = 3, d = 4):

testtype(T, Type::TableOfEntry(DOM_INT))

Type::TableOfEntry only checks the type of the entries, not the keys:

T := table(a = 1, b = 2, c = 3, d = 4):

testtype(T, Type::TableOfEntry(DOM_IDENT))
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delete T:

Parameters

obj

Any MuPAD object

obj_type

The type of the entries; can be an object of the library Type or one of the possible return
values of domtype and type

Return Values

See testtype

See Also

MuPAD Functions
table | testtype | Type::TableOfIndex
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Type::TableOfIndex
Type representing tables with specified indices

Syntax
testtype(obj, (obj_type))

Description

Type::TableOfIndex(obj_type) represents tables with indices (keys) of type
obj_type.

The call testtype(obj, Type::TableOfIndex(obj_type)) checks, whether obj is
a table and all indices (keys) are of the type obj_type. If both conditions are met, the
call returns TRUE, otherwise FALSE.

The indices of a table are the left hand sides of the operands of a table.

This type does not represent a property.

Examples

Example 1

The following table uses identifiers as keys and integers as values:

T := table(a = 1, b = 2, c = 3, d = 4):

testtype(T, Type::TableOfIndex(DOM_IDENT))

Type::TableOfIndex only checks the types of the keys of the table, so the following call
returns FALSE:

T := table(a = 1, b = 2, c = 3, d = 4):
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testtype(T, Type::TableOfIndex(DOM_INT))

delete T:

Parameters

obj

Any MuPAD object

obj_type

The type of the indices; can be an object of the library Type or one of the possible return
values of domtype and type

Return Values

See testtype

See Also

MuPAD Functions
table | testtype | Type::TableOfEntry
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Type::TableOf
Type representing tables

Syntax
testtype(obj, (<indices_type, <entries_type>>))

Description

Type::TableOf represents tables; the types of the indices and of the entries can be
specified.

The call testtype(obj, Type::TableOf(indices_type, entries_type))
checks, whether obj is a table with indices of type indices_type and entries of type
entries_type.

The indices (resp. the entries) of a table are the left (resp. right) hand sides of the
operands of a table.

indices_type and entries_type default to Type::AnyType

This type does not represent a property.

Examples

Example 1

We test if the following objects are tables:

testtype(x, Type::TableOf());

testtype(table(), Type::TableOf())
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We test if the following objects are tables with integer indexes:

testtype(table(a = 1), Type::TableOf(Type::Integer));

testtype(table(1 = 2), Type::TableOf(Type::Integer))

We test if the following objects are tables with integer entries:

testtype(table(a = a), Type::TableOf(Type::AnyType, Type::Integer));

testtype(table(a = 2), Type::TableOf(Type::AnyType, Type::Integer))

We test if the following objects are tables with integer indexes and entries:

testtype(table(a = a), Type::TableOf(Type::Integer, Type::Integer));

testtype(table(1 = 2), Type::TableOf(Type::Integer, Type::Integer))

Example 2

Test if the following table uses identifiers as indexes:

T := table(a = 1, b = 2, c = 3, d = 4):

testtype(T, Type::TableOf(DOM_IDENT))

Test if the following table uses integers as indexes:
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T := table(a = 1, b = 2, c = 3, d = 4):

testtype(T, Type::TableOf(DOM_INT))

delete T:

Example 3

The following table uses identifiers as keys and integers as entries:

T := table(a = 1, b = 2, c = 3, d = 4):

testtype(T, Type::TableOf(Type::AnyType, DOM_INT))

Type::TableOf only checks the type of the entries, not the keys:

T := table(a = 1, b = 2, c = 3, d = 4):

testtype(T, Type::TableOf(Type::AnyType, DOM_IDENT))

delete T:

Parameters

obj

Any MuPAD object

indices_type

The type of the indices. It can be an object of the library Type or one of the possible
return values of domtype and type

entries_type

The type of the entries.
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Return Values

See testtype

See Also

MuPAD Functions
table | testtype | Type::TableOfEntry | Type::TableOfIndex
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Type::Union
Type representing several types as one type object

Syntax
testtype(obj, (obj_types, …))

Description

Type::Union ( type1 , type2 , …) represents all objects having at least one of the
types type1, type2, …

The call testtype(obj, Type::Union( obj_types , …)) checks, whether obj has
the type of at least one of the given types obj_types, …. If such a type is found, the call
returns TRUE, otherwise FALSE.

The call testtype(Type::Union( obj , obj_types , …)) is thus equivalent to the
call _lazy_or(map(obj_types, x -> testtype(obj, x))), testing obj against all
types in turn until one is found which matches.

obj_types, … must be a (nonempty) sequence of types (see testtype).

This type does not represent a property.

Examples

Example 1

Check, whether the given object is a positive or negative integer:

testtype(2, Type::Union(Type::PosInt, Type::NegInt))

x however, is neither a positive nor a negative number:
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testtype(x, Type::Union(Type::Positive, Type::Negative))

Example 2

testtype is used to select positive and negative integers:

SET:= {-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2}:

select(SET, testtype, Type::Union(Type::PosInt, Type::NegInt))

delete SET:

Parameters

obj

Any MuPAD object

obj_types

A sequence of types; a type can be an object of the library Type or one of the possible
return values of domtype and type

Return Values

See testtype

See Also

MuPAD Functions
testtype

33-142



 Type::Unknown

Type::Unknown
Type representing variables

Syntax
testtype(obj, Type::Unknown)

Description

Type::Unknown represents identifiers and indexed identifiers.

The call testtype(obj, Type::Unknown) checks, whether obj is an identifier or an
indexed identifier with an integer index. If it is, the call returns TRUE, otherwise FALSE.

An identifier has the domain type DOM_IDENT. An indexed identifier is an expression
with type_index and two operands, the first of which is an identifier and the second one
is an integer. A local variable is not of type Type::Unknown.

This type does not represent a property.

Examples

Example 1

Type::Unknown accepts identifiers:

testtype(x, Type::Unknown)

x[0] is an indexed identifier accepted by Type::Unknown:

testtype(x[0], Type::Unknown)
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The index must be an integer:

testtype(x[-1], Type::Unknown),

testtype(x[1.0], Type::Unknown)

Parameters

obj

Any MuPAD object

Return Values

See testtype

See Also

MuPAD Functions
indets | testtype
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Type::Zero
Type and property representing zero

Syntax
testtype(obj, Type::Zero)

assume(x, Type::Zero)

is(ex, Type::Zero)

Description

testtype(obj, Type::Zero ) is equivalent to iszero(obj). Type::Zero is a
property, too, which can be used in an assume call.

The call testtype(obj, Type::Zero) is equivalent to iszero(obj), which performs
a syntactical test if obj is zero. If it is, the call returns TRUE, otherwise, FALSE is
returned.

The call assume(x, Type::Zero) marks the identifier x as zero.

The call is(ex, Type::Zero) derives, whether the expression ex is zero (or this
property can be derived).

This type represents a property that can be used in assume and is.

The call assume(x = 0) has the same meaning as assume(x, Type::Zero).

Examples

Example 1

testtype determines the syntactical equality to zero:

testtype(0.0, Type::Zero)
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testtype(x, Type::Zero)

Example 2

Type::Zero can be used within assume and is:

is(x, Type::Zero)

Assumption that x is zero:

assume(x, Type::Zero):

is(x^2, Type::Zero)

The next example shows the difference between testtype and is:

is(x, Type::Zero), testtype(x, Type::Zero)

Now the property of x is removed:

delete x:

is(x, Type::Zero), testtype(x, Type::Zero)

A positive number cannot be zero:

assume(x > 0):

is(x, Type::Zero), testtype(x, Type::Zero)
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But in the next example x could be zero:

assume(x >= 0):

is(x, Type::Zero), testtype(x, Type::Zero)

delete x:

Parameters

obj

Any MuPAD object

x

An identifier or a mathematical expression containing identifiers

ex

An arithmetical expression

Return Values

See testtype, assume and is

See Also

MuPAD Functions
assume | is | testtype | Type::NonZero
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